The Exploration of an Integrated Representation for the Conceptual Phase of
Structural Design for Tall Buildings Through
Distribuied Multi-Reasoning Algorithms

by

Lucio Soibelman

Engenheiro Civil, 1985
Universidade Federal do Rio Grande do Sul

Master of Science in Civil Engineering, 1993
Universidade Federal do Rio Grande do Sul
Submitted to the Department of Civil and Environmental Engineering in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy in Civil Engineering Systems

at the

Massachusetts Institute of Technology
_ April 1998
© Lucio Soibelman, MCMXCVI\II. All rights reserved

The author hereby grants MIT permission to reproduce and distribut}\e publicly paper and electronic copies
of this thesis document in whole or in part, and to grayit others the right to do so.

Author - ,
ucio Soibelman
April 29, 1998
Certified by —
Feniosky Pefia-Mora
Assistant Professor of Civil and Eryviyonmental Engineering, Thesis Supervisor
Accepted by

Joseph M.Sussman
Chairman, Departmental Committee on Graduate Students

Jun 021998

N

BRCHIVES

The Exploration of an Integrated Representation for the Conceptual Phase of
Structural Design for Tall Buildings Through
Distributed Multi-Reasoning Algorithms
By
Lucio Soibelman

Submitted to the Department of Civil and Environmental Engineering
on April 29, 1998, in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Civil Engineering Systems

Abstract

The design process is an information processing activity. More detailed information about the
task itself, about the constraints, about possible solutions principles, and about known solutions
for similar problems is extremely useful in the process of defining the problem and finding a
solution to the design problem. This research presents the M-RAM (Multi-Reasoning Artificial
Mind) model that aim to assist engineers in the conceptual phase of the structural design of tall
buildings by providing him/her with organized and reliable information. This preliminary
conceptual design involves selecting preliminary materials, selecting the overall structural form
of the building, producing a rough dimensional layout, and considering technological
possibilities. Decisions are made on the basis of such information as height of the building,
building use, typical live load, wind velocity, earthquake loading, design fundamental period,
design acceleration, maximum lateral deflection, spans, story height, and other client
requirements. The M-RAM objective is to provide designers with adapted past design solutions
with the help of a distributed multi-reasoning mechanism creating a support system to enhance
creativity, engineering knowledge and experience of designers. To test the feasibility of the
proposed model a prototype of a distributed artificial intelligence system was developed where
the Internet was used as a communication backbone among the different systems that
implemented the reasoning mechanisms employed. Each different reasoning mechanism was
considered as an autonomous module acting as an intelligent agent supporting the design
process.

Thesis Supervisor: Feniosky Pefia-Mora
Title: Assistant Professor of Civil and Environmental Engineering

Acknowledgments

I wish to thank:

e Professor Feniosky Pefia-Mora for his friendship, support and guidance during these

five years at MIT. His support is present in every part of this thesis.

o Professor Robert D. Logcher for his useful comments and insights both in the
classroom and in the IESL group, and more importantly, for allowing me to be his

apprentice.

o All the members of the doctoral committee for their valuable support and feedback
during this process: Prof. Connor, Prof. Williams, Prof. Logcher, and Prof. Pefia-
Mora.

 Professor Rafael L.Bras for his friendship, support and guidance.

o Karim Hussein, for his friendship and the several discussions we have made that has

brought new interesting ideas.

o Professor Jayachandran Parmasivam for his invaluable explanations, advice and

time.

o Pedro Ledesma for his help in creating the database home pages.

To my mother, Cecilia Soibelman, for having taught me the real value of education.

To my father, Jayme Soibelman, and my uncle, Isaac Soibelman, for teaching me

everything that I know about engineering practice.

CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnoldgico) for the

financial support.

Joan McCusker, Patricia Dixon, Elaine Healy, Cynthia Stewart, Jessie Williamson,
Stephanie George, Danielle Severino, Callum Valleli. Karen Horton, and Patricia

Vargas for their help in all the administrative matters.

All Da Vinci Initiative and IESL members for their support inside and outside of

academics specially Sanjeev, Kennedy, Karim, and Siva.

Prof. Jarbas Militytsky, Prof. Luiz F. Heineck, and Prof. Carlos Torres Formoso for

introducing me the research environment.

MIT’s Civil and Environmental Engineering Department for the additional financial

support.

Most importantly, my wife, my daughter, and my son for bearing with me all my

sorrows and joys.

Dedication

To:

e My parents who by example taught me the power of principle.

Tania for loving me so much and providing me support in everything 1 do.

Livia for being my friend, my daughter, my pride and my best work.

Eric for the unbelievable effort that he made to be among us in this important phase
of my professional life

Contents

1 INTRODUCTION

1.1 OVERVIEW......couuvun...

1.2 RESEARCH PROBLEM

..

..

1.3 RESEARCH OBIECTIVES eveeeeutiiieeeieeesreeesessesesissasesssisssesssassitessssssssasssssnesssssnsssssses

1.4 THESIS ORGANIZATIONuemreieirinrtierieeseesensssssesssssssssssssrssssnins e eeeeeeeesaneeearerareeraes

1.5 CONCLUSIONS...........

2 SUPPORTING RESEARCH

2.1 INTRODUCTION

2.2 DESIGN PROCESS

..

..

..

2.2.1 Structural Conceptu@l DeSign...............cvevvreiiieinmeieniiiiiiieicieiiise s

2.2.2 Related Research in the Conceptual Phase of Structural Design..................

2.3 TRADITIONAL ARTIFICIAL INTELLIGENCE.......cccoitiiiiimmiiriniiiccniens s

2.4 MACHINE LEARNING
2.4.1 Neural Networks

ALGORITHMS ...ovvetiierieeriaeseituiiiienieeniiernrsneteeasasssenmansassesanes

..

13

13
15
16
18
19

20

20
21
25
28
29
34
35

242 CA5 et 38

2.4.3 Genetic AlGOFTIRMS.......cuvcueeeeeeieeeeeeeeeeeee et s e en s enes 39
2.5 REASONING MECHANISMSccocvviuiriniueieitintnieistssssseesee et sss et ses s neseneees 40
2.5.1 Case-Based REASONINGooowveeeeeeveeeciiieeeeeeeteeeeeeeeeeeeeeereeeees e 40
2.5.2 Fuzzy Svstems and FUZZY LOGIC..........coueuovceeeeerireeeeeeeeeeeeeeeeeeeeeeeeveeve e 42
2.5.3 HEUFISEIC SYSIEMS ..o e s e e ene s e 45
2.5.4 Qualitative REASONINGccoueveevvcieereesierereeieeeeeeeeeeeeee oo, 46
2.6 SUPPORT ALGORITHMScocueimrietieenieennseennsenseseessaesssssesesesssssssessesssssnesseseessenes 48
2.6.1. Truth Maintenance SYSIENIS...........cceeveveeereeeeeieieereeeeeeeee e eeee s e eeetees s 48
2.7 DISTRIBUTED ARTIFICIAL INTELLIGENCE (DAcoouioeieeeeeeeeeeeeeeeeeeees 50
2.8 KNOWLEDGE DISCOVERY IN DATABASEScooviieeeeereeeeeeeeeeeeeseeeeeeseeseseseeseseeesens 54
2.9 SUMMARYoooiiiiicict ittt ettt st 57
3 THE M-RAM MODEL 58
3.1 INTRODUCTION ...ttt ettt s e bbbt ettt et ee e eenes 58
3.2 OBJECT-ORIENTED METHODOLOGYcooieeeinirninrenrereieaesessasssossessesesessessorsenees 59
3.3 UNIFIED MODELING LANGUAGE (UML) ..ot 62
3.4 M-RAM MODELouiiiiiiiiiiictiienri ettt st e 63
3o DESIGRET ...ttt ettt 63
3.2 PrOPOSAL ...t ettt e et et 65
Zid 3 IIIONL. ...ttt ettt ettt ettt et n e 65
3.4.4 RECOMMENAQTION ...ttt er s e 66
345 JUSHIICAHON ...ttt n s 66
3.4.6 Computer — M-RAMcccoovimerieeeeeeeeeee et 67
3.4.7 Manager and USer INTEIfACeoocereveeeeeeriiieoeeieeeeeeeseeeeeeeeeeee v 67
3.4.8 ClaSSification ERGINeooveveeeeeeeeeeeeeeieeeeeeeeee e eee e eeseseeress s 70
3.4.9 Past EXPErience EJGINe.couvumieveeeveierereeeeeeeeeeeeeeeeecrseeeee s v e 71

3.4.10 Adaptation ERGINe..............cccoevmeiiiimiiiiinninieneices st eaenes 73
3.5 SUMMARY .. eeieeetere e e e et taanrareeae e aaseesobeteasnstesse s s raas e s essabseeeeesannneeasbesenateennns 76
4 M-RAM ARCHITECTURE AND IMPLEMENTATION 77
4.1 INTRODUCTIONccvoiimiuninninrineeinncniesste st es s b b e s s be s st s es e et as et s e 1
4.2 USER INTERFACEcoutuiiiiteiiiieie ittt ettt eb e s bs bbb s 78
4.3 THE CORBA BUS ..ottt s tas st 80
4.4 THE C4.5 AGENT .cceeiireiiieeeetee e stctestese sttt bbbt 86
4. 4.1 C4.5 REGUITEIMENLSceeeeeniierineeceiiiieeesisnsnsesre s st 87
4.4.2 M-RAM ClASSES....ccueeeeeeeeeieieeeeieieeiereeeeteiee s b sttt e ae s nes 88
4.4.3 The M-RAM C4.5 Implementationc.cccveeeinernicrnnenniiiniieniiiienns 100
4.4.4 C4.5 Decision Tree Construction Method...................ccocooveiiiiennnininneninns 106
4.5 THE CBR AGENT........iieiteietrereietete st ttas st ss e s e s sre et s s 109
.31 CASPiQ@N..ncnanaiieiiiiiiieireeeece et 114
4.5.2 Caspian CASL Languageccoeieniininenrieninie e 115
4.5.3 The CaSE Fle.......cooeeueieeieeeeeeeeecreeeeeieeeiesse st 116
4.5.4 RetrieVING CASES......evevieeiuieiieeiieiiinieiisieiesietes e s 122
4.5.5 Weight Matching AIGOTItRN ..o 122
4.6 THE GA AGENT ...ttt sttt e s e e s s e s seb e 124
4.6.1 The GALID LIDFArYceeeeeeeeeeeeeeeee ettt et sbe s 124
4.6.2 M-RAM’s GA Agent GAIib Implementation..................ccccoeveveeiiinicenenn. 128
4.7 CHAPTER CONCLUSIONScccomiuieniinieenisaesiienescssase et s s s s sensessssses 135
SILLUSTRATIVE EXAMPLE 136
5.1 INTRODUCTIONtuvuivreraenieienieteseeeeieisieses s asrsssase st sssss s 136
5.2 BUILDING DESIGN EXAMPLEocuiiiiiiiiiiiiiciicr s 137
5.3 CHAPTER CONCLUSIONSooviuiiititinintie ettt 156

6 CONCLUSIONS . 157

6.1 INTRODUCTION .. .oeoeeeeeeeeee e e e et et eeeeeeeeeaeeeseessesssseesasasssesssssssnnresssrnsseessesaiees 157
6.2 BENEFITS OF THE IMODEL ...oouvvviiietteieiteteeeeeeeeeeee e eeseeeeteesesessesseessseessssassssssesssssseen 158
6.3. CONTRIBUTIONS «...evetteeeeeeeteseereeeeeeseseeeteeesesaeeseeeeesseeeaeesssessnnsesaseenesasssssssssessenn 160
6.4 FUTURE RESEARCH.......ceteeeeieeee et e e eeeeeeereseesaneaeesesaeessssessasesaestesssssesesesrans 161
REFERENCES 164

List of Figures

FIGURE 1 = DESIGN LOOPoooiiiieteeceeeee ettt ns et n 24
FIGURE 2 — A FEED-FORWARD NEURAL NETWORK WITH TOPOLOGY 2-2-1cccoevveervnennen. 36
FIGURE 3 - FUzZZY SET — NUMBER OF STORIES X DEGREE OF MEMBERSHIP....................... 44
FIGURE 4 - M-RAM OBJECTMODELcucoiiiiiieiiecieeeeteeeetreeeeesseeeeseessessssesssensessseessnseees 64
FIGURE 5 - M-RAM COMPONENTScoceetirienreesreeerireaenseessreesseeesesseseesssesssensessssneessneses 68
FIGURE 6 - M-RAM STATE DIAGRAMc.ocuiiiieeiieeeeieceeereeteeeneeseesaeesseesssssenneessesenee s 69
FIGURE 7 — CLASSIFICATION ENGINE.......cc0cctiiiieerterertasaeeseseesesseseesessersesessessssensessesesnsenes 70
FIGURE 8 — PAST EXPERIENCE ENGINEcocoviteuereeseesaeareesessesessessassessessessessessssesseenes 72
FIGURE 9 - ADAPTATION ENGINEuoiititieiieeeiteesteeseneeeteseseesseeteessesssssnsenseessessenseessesssses 74
FIGURE 10 — M-RAM ARCHITECTUREveeutetiieeieeneeeeeeseesseeseesseesnesssesseessessessensssesses 78
FIGURE 11 - M-RAM INTERFACEuiictiiitcteteeeie ettt rtesaeeeeeenaeesssesseseaesenaeesenees 79
FIGURE 12 — CUSTOM INTERFACES VERSUS CORBA SOLUTIONScceoevueriireeenieenrenne 81
FIGURE 13 — THE PRINCIPAL CORBA INTERFACESocvveeeterereeteeeeeerenenesesesseseeeenens 84
FIGURE 14 - FRAMEWORK AND TYPICAL BAY SECTION; TAJ MAHAL HOTEL-USA.......... 90
FIGURE 15 = SHEAR WALL ..ottt ceveere s b s e eas s seetenbennseene e ere s 92
FIGURE 16 - MEANDERING SHEAR WALL; METROPOLITAN TOWER-USAc............. 93
FIGURE 17 - TYPICAL FLOOR PLANS; TWO PRUDENTIAL PLAZA-USAccoveeeen. 95
FIGURE 18 - STRUCTURAL STEEL SCHEMA; CENTRAL PLAZA-HONG KONG..................... 96

FIGURE 19 - STRUCTURAL STEEL SYSTEM; OVERSEAS UNION BANK CENTER-SINGAP....99

FIGURE 20 — FILE TESE-DESIGN.INAMESenuuieeoueeeeeeeeeeeeeeeeeeeeeteeesseemeeeseaeeemaessneeeasaaaen 101

10

FIGURE 22 - OUTPUT OF THE DECISION TREE GENERATOR — PARTIIccooevienn 104
FIGURE 23 — GRAPHICAL REPRESENTATION OF THE M-RAM C4.5 TREE........ccocovvmne.... 105
FIGURE 24 — HOME PAGE OF THE RETRIEVED CASEcocovioviitiierieeeeeeeeeteeeeseeeeenenene 110
FIGURE 25 — TEXT DESCRIPTION OF RETRIEVED CASEcuviuiiitieeeeeeeeeeeeeeeeeeeeeeenenees 111
FIGURE 26 — STRUCTURAL INFORMATION OF RETRIEVED CASE........eoveeveeeeeeeeeeeeeeeeeenns 112
FIGURE 27 — STRUCTURAL DETAILS OF RETRIEVED CASE.........ccuoooiiiiiiiicerereeeeeeeernanes 113
FIGURE 28 — M-RAM CASL INTRODUCTION BLOCK ...c..ovveveiueiieeeeeeeeeeeeeeeeeeeeeesseeeseeane 116
FIGURE 29 — M-RAM CASL CASE DEFINITION BLOCKc0covviimieeieeeeeneeeesseeeeeeneennes 117
FIGURE 30 — M-RAM CASL INDEX DEFINITION BLOCKcouvtiuieeeeeeeeeeeeeeeeeeeeeseeeeeenes 118
FIGURE 31 — M-RAM CASL MODIFICATION DEFINITION BLOCKooveveeerererereeenenn 119
FIGURE 32 - M-RAM CASL PARTIAL CASE DEFINITION BLOCK (2 OF 54 CASES).......... 121
FIGURE 33 —m GALIB GA....ccoiiiiiiieeeeeteeeteeeee ettt ettt ee et eeeanenenn 125
FIGURE 34 — A BUILDING GENOME REPRESENTATIONc.ccoveevuiinirienneeeeeeeeeereeeeeenens 130
FIGURE 35 — M-RAM’S GA AGENT OBJECTIVE FUNCTION — PART I ...ccoovooviiieiiinann. 132
FIGURE 36 - M-RAM’S GA AGENT OBJECTIVE FUNCTION — PART IL.........cooocvveuennnnne. 133
FIGURE 37 - M-RAM’S GA AGENT OBJECTIVE FUNCTION — PART Iccoooviinn, 134
FIGURE 38 — M-RAM PROJECT HOME PAGEcoovoiirieeeieeeeeee et 138
FIGURE 39 ~ INITIAL M-RAM INTERFACEooiitictieieeeieeeeeeee et eeseenen e o 139
FIGURE 40 — M=-RAM HELP PAGEov ettt e s e enenn 140
FIGURE 41 —~ M-RAM INTERFACE WITH C4.5 AGENT OUTPUToooveeeeeeeeeeeeeeeeeeeeenrenn 141
FIGURE 42 — M-RAM CLASSIFICATION AGENT OUTPUT PART L.....ccooviviiriiereieenn, 142
FIGURE 43 — M-RAM CLASSIFICATION AGENT OUTPUT PART ITooovvniiieren 143
FIGURE 44 —~ M-RAM INTERFACE WITH CBR AGENT OUTPUTvovveeeveeeeeeeeeereeseeneeeen, 145
FIGURE 45 — HOME PAGE OF THE EXAMPLE’S MATCHING CASE........cccovivueeueoeeereeeeens 146
FIGURE 46 — TEXT DESCRIPTION OF THE EXAMPLE’S MATCHING CASE..........cveoecvveeenn. 147
FIGURE 47 — STRUCTURAL INFORMATION OF THE EXAMPLE’S MATCHING CASE 148
FIGURE 48 — STRUCTURAL DETAIL OF THE EXAMPLE’S MATCHING CASEovoveeeenen. 149

FIGURE 49 — HOME PAGE OF INDEXED CASES OF THE EXAMPLE’S MATCHING CLASS...... 150

FIGURE 50 - M-RAM INTERFACE WITH GA AGENT OUTPUT...ovveeeeeeeeeeeeeeee oo 153
FIGURE 51 - M-RAM GA AGENT OUTPUT PART L., 154
FIGURE 52 - M-RAM GA AGENT OUTPUT PART IL....ccooeieeeeee oo 155

12

Chapter 1

1 Introduction

1.1 Overview

The main task of desigrers is to apply their scientific and engineering knowledge to the
solution of technical problems, and then to optimize those solutions within the
requirements and constraints set by material, technological, economic, legal,

environmental and human-related considerations [Pahl and Beitz, 1996].

Design can be described as an information processing activity. After each information
output, it might become necessary to improve or increase the value of the result of the
previous step repeating each step until the necessary imprevements have been achieved.
Every design involves first of all a confrontation of the problem with what is known or
not known. The intensity of this confrontation depends on the knowledge, ability and
experience of the designers on the particular field in which they are engaged. In all

cases, however, more detailed information about the task itself, about the constraints,

13

about possible solution principles, and about known solutions for similar problems is
extremely useful as it clarifies the precise nature of the requireraents. This information

can also reduce confrontation and increase confidence for finding solutions.

This research presents the M-RAM (Multi-Reasoning Artificial Mind) model that aim
to assist engineers in the initial stages of the structural design of tall buildings. This
preliminary conceptual design involves selecting preliminary materials, selecting the
overall structural form of the building, producing a rough dimensionai layout, and
considering technological possibilities. Decisions are made on the basis of such
information as height of the building, building use, typical live load, wind velocity,
earthquake loading, design fundamental period, design acceleration, maximum lateral
deflection, spans, story height, and other client requirements. Based on functional,
architectural, and aesthetic requirements, the conceptual design is accomplished, where
the designer arrive at a few possible configurations for the structural systems, mainly
based on geometry and load distribution for gravity and lateral loads, such as dead, life,

wind, and earthquake loading.

The conceptual design phase is the first step in the design process. After knowing the
problem definition, a designer makes an overall guess about the feasible solution,
consistent with designer's experience and knowledge, the constraints, and the
requirements. The efficiency and success of the design process depends heavily on the
initial guess. Because this design phase requires a lot of knowledge, use of past
experience, ruies of thumb, intuition, and so forth it is very difficult to use any
procedural programming language for its computerization [Maher, 1987]. The human
intelligence plays a very important roie being hard to computerize because it needs

human intuition.

14

In the conceptual design phase past experience plays a vital role, where the process is
often assisted by identifying, retrieving and then modifying appropriate past design
cases, and generalizing the cases, with the implied benefit of being able to utilize

relevant past experience {[Manfaat et al. 1997].

During this research a model and a system prototype were developed with the objective
of providing designers with adapted past design solutions. The application of a new
Artificial Intelligence approach allowed to overcome the difficulties presented by
traditional procedural programming languages to computerize or to support the

conceptual phase of structural design for tall buildings.

1.2 Research Problem

The design problem is a complex problem that cannot be solved by only one reasoning
mechanism. To solve this kind of problem human designers use a combination of
heuristic cases, first principles, and past experience to reduce complexity of the problem

and to come up with possible solutions.

The most powerful way known for discovering how to solve a complex problem is to
find a method that splits it into several simpler ones, each of which can be solved
separately. The division of the problem into its smallest unit parts has the objective of
imitating the way the human brain deals with complex problems. According to Minsky
[1988], each mind is made of many smaller processes. These, he calls agents. Each
mental agent by itself can only do some simple thing that needs no mind or thought at
all. Yet when those agents are joined in societies — in certain very special ways — this

lead to true intelligence [Minsky, 1988]. The human brain, when dealing with a

15

complex problem uses different reasoning mechanisms to solve each part of the divided
problem. No reasoning mechanism by itself is powerful enough to solve a complex
problem like the conceptual design. The perception of the complexity of the problem

being studied led to the formulation of the following questions:

1. Is it possible to decompose the design problem to allow complexity reduction?

2. Isitfeasible to develop a model that mimics the designer reasoning?

3. Can we map different Artificial Intelligence tools to each part of the decomposed
problem?

4. Can a Distributed Artificial Intelligence system support this design process?

1.3 Research Objectives

The aim of this research is to develop a methodology to support designers to solve the
initial structural design problem that can be classified as a complex problem. The final
objective is to propose an architecture, based on collaborative solutions of a problem by
several reasoning mechanisms, allowing complexity reduction or, in other words,
reduction of the search space by decomposing a problem into interacting modules,

yielding smaller problems that are much easier tc tackle.

The M-RAM (Multi-Reasoning Artificial Mind) model goal is to provide designers with
adapted past design solutions with the help of a distributed multi-reasoning mechanism
and to support designers to reason in a better way employing past experience and
avoiding past mistakes. The final objective is to relieve structural designers from having
to “reinvent the wheel” with the need to develop feasible structural configuration for

each new design situation from scratch and to allow designers to avoid limiting

16

The scope of testing of both the model and the prototype is limited to small-scale
problems dealing with the conceptual phase of structural design for high rise buildings.
The approach is potentially extensible to apply in the design of large-scale design

problems.

1.4 Thesis Organization

e Chapter 2 presents the background information for the research that supported the
research described in the reminder of the thesis. Conceptual structural design theory
and principles, traditional artificial intelligence, machine learning algorithms,
reasoning mechanisms, distributed artificial intelligence, knowledge discovery in

databases, and data mining research are introduced.

e Chapter 3 describes the M-RAM model, which incorporates the different elements
of conceptual design. This chapter presents the M-RAM primitive classes, its

relationships, and the process of design with M-RAM objects.

o Chapter 4 presents the functionality of the developed prototype that supports
structural designers in the conceptual phase of the structural design of tall buildings.
The different sections of this chapter cover the system architecture and

implementation.

e Chapter 5 illustrates the system at work through an example.

18

* Chapter 6 summarizes the main issues discussed in the thesis. It also discusses

future research issues.

1.5 Conclusions

Finding a solution for the conceptual phase of the structural design requires detailed
information about the task itself, about project constraints, about possible solutions
principles, and about known solutions for similar problems. It requires a lot of designer
intelligence being very hard to computerize because it needs human intuition. However,
this stage of the design is of fundamental importance for the quality of the design as a
whole and consequently for the quality of the final product, the building being designed.
Therefore the need for models to better understand this design process and for computer

systems to support designers during this design phase must be addressed.

19

Chapter 2

2 Supporting Research

2.1 Introduction

This chapter summarizes the knowledge about artificial intelligence, machine learning
algorithms, reasoning mechanisms, support algorithms, distributed artificial intelligence
and knowledge discovery in databases with the objective of understanding how the
research available in these areas could support the development of a mode] and a system
prototype to assist designers during the conceptual phase of structural design that is also

summarized in the beginning of the chapter.

This research finds a connection among the different studies presented in this chapter. It
focuses on distributedness and parallel implementation as factors crucial to a fast and
robust system. Instead of building general functional models, an approach is proposed
by developing competence models that provide expertise for particular and small task-
oriented competence. In this approach each module is responsible for doing all the
representation, computation, reasoning, and execution, related to ijts particular

competence.

20

The emphasis in the proposed architecture is on a more direct coupling of perception to
action, distributedness and decentralization, dynamic interaction with the environment
and intrinsic mechanisms to cope with resource limitations and incomplete knowledge.
Machine-learning algorithms and reasoning mechanisms were obtained from the
literature and were adapted but not developed during this research. The focus of this
research was to develop a methodology for the interconnection, collaboration and
distribution of existing algorithms, mechanism, and models at the technical level,
together with the application of this different expertise to support designers during the
conceptual phase of structural design. To do so this research joins the efforts of the
Knowledge Discovery In Databases (KDD) community in solving the coordination
problems between different reasoning mechanisms and the efforts of the Distributed
Artificial Intelligence community in defining communication protocols between

cooperative agents.

Section 2.2 offers a summary of design theory denoting where the M-RAM research fits
in this large research area. Section 2.3 presents an introduction to traditional artificial
intelligence. Section 2.4, 2.5, and 2.6 provides an overview of available machine
learning algorithms, reasoning mechanisms, and support algorithms. Section 2.7
provides an introduction to the distributed artificial intelligence research and Section 2.8
presents an overview of the research in knowledge discovery in databases area. Finally,

Section 2.9 provides a summary of this chapter.

2.2 Design Process

Engineering design is an activity in which people have been engaged for centuries. It is

only in the past few decades that this activity has been perceived as a systematic process

21

capable of comprehensive analysis and improvement. The penetration of knowledge-

based tools into the design process is widely perceived as leading to fundamental

changes not only in the accuracy and speed in which a design is achieved, but also in

the design process itself.

The overall design process can be decomposed into various stages [Woodson 1966,

Dixon 1966, Hubka 1982, French 1985, Gardam 1994, and Pahl and Beitz, 1996]. The

decomposition of the design process may vary from one theory to another, but in

general it contains:

1.

Needs analysis: Needs analysis is the stage in which a need is identified and

Jjustified.

Problem statement: Problem statement is the phase in which the problem

specifications are defined.

Conceptual design: Conceptual design is the phase in which various designs

alternatives are generated and evaluated.

Embodiment stage: Embodiment stage refines the design alternatives an performs

more sophisticated analysis and evaluation.

Detailed design: Detailed design is the phase that lays out deign specifications for

production.
Production: Production is the phase where the designed product is built. This stage

may include part of the manufacturing efforts when design for manufacture is

considered.

22

7. Consumption: Consumption is the stage in which the marketing plan is developed.

According to Serrano [1987] design is primarily a constraint satisfaction process. The
major cause for revisiting previous stages is either constraint violations or the detection
of missing information. The result of the design process is the description, of the

artifact.

The engineering design process is primarily a synthesis analysis repetition. The
engineer synthesizes (formulates) the problem and then analyzes it. If certain
constraints are not met then he/she goes back to the synthesis part, changes the
formulation and then analyzes again and so on until the specific constraints are met
[Pouangare, 1986]. This synthesis analysis loop is also denoted as the design-analysis

cycle.

As far as the structural engineer is concerned the design process consists only of two
stages. The synthesis and the analysis evaluation stages. The synthesis stage can be sub-
divided into two stages: selection and elaboration. Design is then a selection-

elaboration-analyses-evaluation ioop (Figure 1)

Depending in the way that selection is performed the design can be classified in three

different ways.

1. Routine Design: A known set of solutions to the problem exists. The subparts and
alternatives are known in advance. The engineer has to find for each subpart the
appropriate alternative that satisfies the given constraints. This is the most common

form of design.

23

2. Innovative Design: The decomposition of the problem is known, but the
alternatives for each of its subparts do not exist and must by synthesized. The

designer uses some fundamental principles of the domain to develop alternatives.
3. Creative Design: A known plan for the solution of the problem does not exist. The

designer uses a divergent thought process rather than a convergent line of reasoning

to come to the solution. This type of design is rarely performed.

Keep valid alternatives

Selection Elaboration

Examine valid options

Evaluation Analysis

Figure 1 - Design Loop [adapted from Poungatre, 1986]

24

2.2.1 Structural Conceptual Design

Conceptual design can be described as the part of the design process that starts with the
problem statement in the form of a set of specification. Its outcome is a set of broad
(preliminary) solutions in the form of one or more concepts. A concept is a description
of an artifact subject to constraints arising from several sources. The problem of

cenceptual design addresses both synthesis and analysis.

The designer generates possible design alternatives based on the specifications and the
available knowledge. Such synthesis is followed by analysis. The analysis determines
whether the proposed concept complies with the specifications. If the design fails the

synthesis procedure must begin again.

Of all design phases the conceptualization phase is the most difficult one to
computerize. In this phase, knowing just the basic needs, configuration of the structure
and geometry of the site the structural designer has to define the structural system and

the key parameters that are needed to proceed to the next design step.

The most important output of the conceptual phase of a structural design is the
definition of the structural system. The structural system can be defined as an
arrangement of structural components and subsystems to properly transmit the forces
from the superstructure to the substructure subjeci to constraints on geometry,
flexibility, ductility, durability and cost. The structural system must have the ability to
transmit the forces both globally and locally. In the conceptualization phase the

structural designer is only concerned with the global transmission of forces.

25

The conceptual phase of the structural design of the building involves the selection of a

feasible structural system satisfying a few constraints. The key terms can be defined as

selection and constraints.

Selection: The selection of a structural system implies that there is a set of potential
configurations from which to choose. The set of feasible configurations for a
particular building must be defined with that building in mind. Classes of generic
structural subsystems may be used as a basis for the generation of the set of feasible
system. Some examples of structural subsystems are moment resisting frames,
braced frames, shear walls, core and outriggers, tubular, and hybrid (see Section
4.4.2). These subsystem are not complete structural systems, because they do not
specify the building to the extent needed for evaluation of alternatives or input to the
next stage of design namely analysis. The generic structural subsystems are used as
a starting point for the specification of the feasible systems and are expanded and
combined to fit the needs of a particular building. The subsystem named above may
be used as descriptors of the building’s structural system. Typically, a high rise
building is described in terms of its lateral load resisting system since this system is
most critical to the function of the building. The other major functional system is the

gravity load resisting system.

Constraints: The constraints applicable to the conceptual phase of structural design
may be grouped in several categories. The following list elaborated by Maher and

Fenves [1985] defines the nature of the constraints in each group.
1. Spatial: The spatial constraints defines areas set aside for circulation and

mechanical equipment, and open areas needed for the functional use of the

building.

26

Administrative: The administrative constraints include the zoning laws and

heights restrictions on the building.

Initial Economic: The initial economic constraints include cost and

construction time

Long-term Economic: The long term economic constraints are concerned
with the operation and maintenance involved in the long-term use of the

building.

Horizontal Compatibility: The horizontal compatibility constraints include
considerations of compatibility between the structural system and the
building components, namely, the foundations, mechanical systems, and

electrical system.

Vertical Compatibility: The vertical compatibility constraints include
considerations of ease of construction, contractor experience, site condition,

delivery, erection method, etc.

Functional: The functional constraints are the major purely structural
constraints concerned with the provision of a load path. There are three

possible levels of specifying these constraints:
» Provide a load path;

o Provide the most direct load path;

e Provide alternate load paths (redundancy).

27

8. Stable Equilibrium: These constraints ensure that the building or any of its

components remains in stable equilibrium in its intended environment.

9. Strength and Serviceability: These constraints include component and
system load capacity requirements as well as serviceability requirements
such as stiffness. The formal representation of the constraint is contained in
the applicable building and material codes, standards, and design
specifications while the final design must obviously satisfy all applicable
constraints, at the conceptual phase the designer must make a deliberate

selection of a subset of controlling constraints to be used.

2.2.2 Related Research in the Conceptual Phase of Structural
Design

In the early 1970s computers began to be applied as a helpful tool for structural design
but until the early 1980s there were no tools available for the synthesis part of the
design problem. This led to the situation where the engineer did the synthesis part and

the computer did the analysis part of the design.

In mid 1980s with the growth of artificial intelligence science different researchers
initiated distinct attempts to computerize the synthesis part of the design problem.
Different expert systems were developed. One of the most innovative one called HI-
RISE was developed by Maher and Fenves from Carnegie-Mellon University [Maher
and Fenves, 1985]. Like the majority of the expert systems developed at that time HI-
RISE fell short in the learning process (see Section 2.5.3). Knowledge acquisition and
lack of flexibility were the main probleins faced by expert systems like HI-RISE and

those systems never evolved from the initial prototypes developed in the 1980s.

28

Just in mid 1990s with the development of new artificial intelligence tools that
researchers reinitiated efforts to automate the synthesis part of the conceptual phase of
structural design. Work done by Fenves et al. [1995] applied case based reasoning to
allow designers to save solutions as a by-product of the design process. Such cases
could then be retrieved in later “similar” design situations and adapted to the new
situation. Maher and Garza [1996] went one step further applying genetic algorithms to

adapt cases retrieved by the case based reasoning tool.

M-RAM research builds upon the work done by those researchers. The main difference
resides in the approach that was applied. First a model was developed to allow a better
understanding of the problem requirements. This led to a distributed agent architecture
implementation providing a “plug and play” approach with easy system maintenance

and evolution as will be demonstrated in the next two chapters.

2.3 Traditional Artificial Intelligence

Barr and Feigenbaum [1981] define artificial intelligence as:

“Artificial Intelligence is the part of computer science concerned with
designing intelligent computer systems, that is, systems that exhibit the
characteristics we associate with intelligence in human behavior -
understanding language, learning, reasoning, solving problems, and so

"

on.

29

The goals of creating artificial intelligence and artificial life can be traced back to the
very beginnings of the computer age. The earliest computer scientists — Alan Turing,
John von Neumann, Norbert Wiener, and others — were motivated in large part by
visions of imbuing computer programs with intelligence, with the life-like ability to
self-replicate, and with the adaptive capability to learn and control their environments.
These early pioneers of computer science were as much interested in biology and
psychology as in electronics, and they looked to natural systems as guiding metaphors

for how to achieve their visions [Mitchell, 1997].

In 1956 the term Artificial Intelligence was coined when John McCarthy organized a
two-month ten-man study of artificial intelligence at Dartmouth College, New
Hampshire. In the 1960s general problem solving methods, supplemented by domain
specific heuristics, were applied to a wide range of problems, and Al gradually
separated out into the application areas of language understanding and generation, game
playing, theorem proving, vision, and robotics. At this time there was little attempt to
construct programs that accurately modeled the human mind; the emphasis was on
perfermance — computer systems that acted in intelligent ways by, for instance, playing

chess or solving mathematical problems.

Artificial Intelligence (Al) is a very general investigation of the nature of intelligence
and the principles and mechanism required for understanding and replicating it.
According to Sharples et al. [1989] Al is a cloth woven from three academic disciplines
— psychology (cognitive modeling), philosophy (philosophy of mind), and computer
science — with further strands from linguistics, mathematics, and logic. The aim of Al is
broad: to get below the surface of human behavior, to discover the processes, systems,
and principles that make intelligent behavior possible. Computers are needed as tools

for modeling these mental states and processes.

30

A basic notion about computer-based problem solving can be traced back to early
attempts to program computers to perform tasks such as game-playing and puzzle-

solving programs.

The fundamental idea that came out of early research is calied space search. Problems

were formulated in terms of three ingredients:

1. Starting state such as the initial state of a chessboard.

2. Termination test for detecting final states or solutions to the problem, such as a

simple rule for detecting checkmate in chess.

3. Set of operations that can be applied to change the current state of the problem,

such as a legal move of chess.

The simplest form of state space search is called generate-and-test, and its basic

algorithm is:

1. Generate a possible solution in form of a state in the search space, a new position as

the result of a move.

2. Test to see if the state is actually a solution by seeing if it satisfies the conditions for

success, such as a checkmate.

3. If the current state is a solution, then quit, else go back to step 1.

31

There are two main variants of the basic generate-and-test: depth-first search and
breadth-first search. The difference between them lies in the order in which possible

solutions are generated in step 1.

At any given state N, depth-first search consider the “successors” of N, those states
which result from applying operations to N, before considering “siblings” of N (states
which were generated along with N, when operations where applied to N’s “ancestors”).

13

In breadth-first search, it is the other way around; N’s “siblings™ are checked out before
expanding N, that is, before going on to N’s “successors”. Thus, in breadth-first search,
one searches layer by layer through successive levels of the search space, whereas in
depth-first search one pursues a single path at a time, returning to N to pick another path

only if the current path fails.

Depth-first search reach the solution faster as long as it is guided in some “intelligent”
way, that is, if it makes good decisions when choosing which path to pursue next. On
the other hand, breadth-first search may never terminate if the search space is infinite,
even if a solution exists along some as yet unexplored path, the number of feasible sates

may grow exponentially, phenomenon usually referred as combinatorial explosion.

In addition to game playing, another principal concern of early artificial intelligence
researchers was what is called theorem proving. Theorem proving involves showing
that some statement in which we are interested follows logically from a set of special
statements, the axioms (which are known or assumed to be true), and is therefore a
theorem. Thus, knowledge relevant to the solution of some problem can be represented
as a set of axioms. Problem solving can be viewed as the process of showing that the
desired solution is a theorem. Unfortunately, the process of generating all the theorems

that follow from some set of axioms is also combinatorially explosive, since one can

32

add any theorems derived to the axioms and use the new set of statements to derive still

more theorems.

Given that exhaustive search is not feasible for anything other than small search spaces,
some means of guiding the search is required. A search that uses one or more items of
domain-specific knowledge to traverse a state space is called heuristic search. A
heuristic is best thought of as a rule of thumb; it is not a guarantee to succeed, in the
way that an algorithm or decision procedure is, but it was considered to be usefui in the

majority of cases.

A simple form of heuristic search is hill climbing. This involves giving the program an
evaluation function which it can apply to the current state of the problem to obtain a
rough estimate of how well things are going. There are well-known problems with this
approach. The evaluation function may not be a faithful estimate of the “goodness” of
the current state of the problem and even if the evaluation function gives a good
estimate, there are various other problems like that of local maxima, which occurs when
the evaluation function leads to a peak position, from which the only way is down,

while the solution is on other, higher peak.

Early artificial intelligence atteinpted to tackle the difficulties of search by explicitly
representing in detail both the knowledge that experts possess about some domain and

the strategies that they use to reason about what they know.

The fundamental assumption in early Artificial Intelligence research was that experts
possess the necessary knowledge regarding the problem domain, and that this expert
knowledge can be explicitly written using formal representations. Most research has
been carried out in such a way that researchers developed a highly intelligent system in

a very restricted domain. Scholars believed that these systems could be increased in

33

scope with larger funding and increased effort. However, experiences in expert systems,
machine translation systems, and other knowledge-based systems indicate that scaling
up is extremely difficult. As a consequence, poor results have been obtained. The few
sysiems built showed deficiencies such as brittleness, inflexibility, and no real time
operationalism [Maes, 1991]. Thus, three factors prevented the application of the
traditional Artificial Intelligence approach in the real world: incompleteness - because it
is almost impossible to obtain a detailed set of knowledge for a given problem domain;
incorrectness - because there is no guarantee that expert knowledge is always correct,

and inconsistency - because the set of knowledge may be inconsistent.

Subsequent research in Artificial Intelligence developed systems that assumed that data
resources are inconsistent, incomplete, and inaccurate [Drumheller 1986, Robertson
1987, Dixon and de Kleer 1988, Kolodner 1988, Stanfill et al. 1989, Cook 1986, Geller
1991, Huhns and Bridgeland 1991, Gero and Qian 1992, Maher and Zhao 1992, and
Ketler et al. 1993]. These were however, developed for very restricted domains.

Furthermore, the studies lacked feasibility analyses of scaling up the system.

2.4 Machine Learning Algorithms

The M-RAM model as will be demonstrated in Chapter 3, divided the conceptual phase
of the structural design problem in its small parts and each small part of the defined
problem was mapped to the most suitable technical solution. To do so eight machine
learning algorithms, reasoning mechanisms, and support algorithms were evaluated and,
as will be demonstrated in chapters 3 and 4, three mechanisms were chosen as the most

suitable ones.

34

Machine learning tools allow to process raw data, to search for patterns, to describe past
trends, to predict future trends, to process information in order to extract meaning, and
to generalize knowledge. The algorithms investigated were neural networks, C4.5 and

genetic algorithms.

2.4.1 Neural Networks

A neural network is a computational structure inspired by the study of biological neural
processing. This study has been motivated by the recognition that the brain computes in
an entirely different way from the conventional digital computer [Haykin, 1994]. A
neural network is a massively parallel distributed processor that has a natural propensity
for storing experiential knowledge and making it available for use. Information
processing takes place through the interaction of a large number of neurons, each of
which sends excitatory and inhibitory signals to other neurons in the network. The
network through a learning process acquires knowledge and interneuron connection

strengths known as synaptic weights are used to store the knowledge.

A popular paradigm of learning called supervised learning involves the modification of
the synaptic weights of a neural network by applying a set of labeled training samples
or tasks examples. The training of the network is repeated for many examples in the set
until the network reaches a steady state. The network learns from examples by

constructing an input-output mapping for the problem in hand.

There are many different types of neural networks, from relatively simple to very
complex, just as there are many theories on how biological neural process works. The
most useful neural network model is called layered feed-forward neural network. It has
layers, or subgroups of processing elements. A layer of processing elements makes

independent computation on data that it receives and passes the results to another layer.

35

The next layer may in turn make independent computations and pass on the results to
yet another layer. Finally, a subgroup of one or more processing elements makes its
computation based upon a weighted sum of its inputs. The first layer is the input layer
and the last the output layer. The layers that are placed between that first and last layers

are the hidden layers (Figure 2).

Input Layer Hidden Layer Output layer
W13—p
w3s
w14 N
w23 e
was
W24—»p»

For Example, for X3 and X5:

X3 = W23X2 + W13X1
X5 = W35X3 + Wa5X4

Figure 2 — A feed-forward neural network with topology 2-2-1

The processing elements are seen as units that are similar to the neurons in a human
brain, and hence, they are referred as cells or artificial neurons [Rao and Rao, 1995]. In
figure 2 the neurons are represented by the circular nodes. A threshold function is
sometimes used to qualify the output of a neuron in the output layer. Finally, synapses

between neurons are referred to as connections.

Basically, the internal activation or raw output of a neuron in a neural network is a
weighted sum of its inputs, but a threshold function is also used to determine the final
value, or the output. When the output is 1, the neuron is said to fire, and when it is 0, the
neuron is considered not to have fired. When a threshold function is used, different
results of activation, all in the same interval of values, can cause the same final output

value.

Weights that are used on the connections between different layers have much
significance in the working of the neural network and the characterization of a network.

The following actions are possible in a neural network:

1. Start with one set of weights and run the network (no training).

2. Start with one set of weights, run the network, and modify some or all the weights,
and run the network again with the new set of weights. Repeat the process until

some predetermined goal is met {(with training).

To be able to train the network it is important to have information fed back from the
output neurons to neurons in some layer before that, to enable further processing and
adjustment of weights on the connections. What is fed back is usually the error in the
output, modified appropriately according to some useful paradigm. The process of
feedback continues through the subsequent cycles of operation of the neural networks

and ceases when training is completed.

The feed-forward neiwork configuration with backpropagation training is the most
common configuration in use due to its ease of training. It is estimated that over 80% of
all neural network projects in development use backpropagation [Rao and Rao, 1995].

In backpropagation there are two phases in its learning cycle, one to propagate the input

37

pattern through the network and the other to adapt the output, by changing the weights
in the network. It is the error signals that are backpropagated in tf * network operation to
the hidden layer(s). The portion of the error signal that a hidden-layer neuron receives
in this process is an estimate of the contribution of a particular neuron to the output
error. Adjusting on this basis the weights of the connections, the squared error, or some

other metric, is reduced in each cycle and finally minimized, if possible.

Neural networks have the capability to adapt to changes in the surrounding
environment, can provide information not only about which pattern to select, but also
about the confidence in the decision made, exhibits a graceful degradation in
performance rather than catastrophic failure, and, as a consequence of its massively

parallel nature, it is potentially fast for the computation of certain tasks.

In the initial M-RAM implementation a five layers backpropagation feed-forward
neural network agent was developed to work as a classification engine but because of
the small size of the available data set, it had an unacceptable behavior and was not

used in the final M-RAM implementation.

2.4.2C4.5

In C4.5 numerous recorded classifications are examined and a model is constructed
inductively by generalization from specific examples. This machine-learning algorithm
can be defined as a set of computer programs that construct classification models by
discovering and analyzing patterns found in given records. The algorithm that has
fundamental importance in C4.5 is the one that generates the initial decision tree from a

set of training cases. Since the cases do not all belong to the same class, a divide-and-

38

conquer algorithm attempts to split them into subsets using statistical evaluations tests,

and an information gain ratio criterion to find the best possible tree structure.

C4.5 was very useful in the current problem domain but first a definition of the most
significant attributes of the design process had to be found. The biggest advantage of
C4.5 is its simplicity of use and its final product: the classification tree. This tree can be
described as a model of the problem being solved. The disadvantages are that, unlike
neural network that can be used to predict real numerical values, C4.5 just allows us to
obtain categorical results, and that it lacks incremental induction. Each time a new case
is added to the collection of data a new classifier from all the accumulated data needs to

be constructed.

C4.5 was one of the tools applied in the development of the M-RAM prototype. Section

4.4 presents a detailed description of its implementation and most important algorithms.

2.4.3 Genetic Algorithms

Genetic algorithms (GA) provide a robust yet efficient search methodology, explicitly
modeled upon the biological “survival of the fittest” reproductive model. In the
broadest sense, a GA creates a set of solutions that reproduce based on their fitness in a
given environment. The process follows the following pattern: (1) An initial population
of random solutions is created; (2) Each member of the population is assigned a fitness
value based on its evaluation against the current problem; (3) Solutions with a higher
fitness value are most likely to parent new solutions during reproduction; and (4) The
new solution set replaces the old, a generation is complete, and the process continues

from step 2. That sequence implements, in a most simplistic way, the concept of the

39

survival of the fittest. The outcome of a genetic algorithm is based on probabilities just
as biological success is grounded in chance. The standard model for a GA solution is a
bit string called chromosome after its biological counterpart. During reproduction, the
chromosomes of parent solutions combine and undergo mutation in creating the next
generation. It should be noted that searching for an optimum value in a domain space
can be called “learning” in the sense that one searches for this value because it is
unknown, and after the search, the information represented by the value, is known. The
method is not an adaptive learning mechanism like Neural Network but given a
criterion function it does provide the means to learn the value of a target. Thus the
method has found a place among machine learning applications such as a classifier

system.

A genetic algorithm was another of the tools applied in the development of the M-RAM

prototype. Section 4.6 presents a detailed description of its implementation.

2.5 Reasening Mechanisms

These mechanisms are applied as tools for the analysis of previous similar situations
and to model expert's knowledge. The mechanisms investigated are case-based

reasoning, fuzzy systems, and heuristic reasoning.

2.5.1 Case-Based Reasoning

Case-based reasoning is the process of “remember and adapt” or “remember and
compare [Kolodner, 1993]. A reasoner remembers previous situations similar to the

current one and uses them to help solve the new problem. It is a model nf reasoning that

40

incorporates problem solving, understanding and learning and integrates all with the
memory processes. Learning occurs as a natural consequence of reasoning where
procedures applied to new problems are indexed in the memory. Feedback and analysis
of feedback through follow-up procedures and explanatory reasoning are necessary
parts of the complete reasoning-learning circle. The knowledge of a case-based reasoner
is constantly changing as new experiences give rise to new cases that are stored for
future use. A case-based reasoner learns from experience to exploit prior successes and

avoid repeating prior failures [Leake, 1996].

Case-based reasoning provides a wide range of advantages. It allows the reasoner to
propose solutions to problems quickly, avoiding the time necessary to derive the
answers from scratch, allows a reasoner to propose solutions in domains that aren't
completely understood, gives a reasoner a means of evaluating solutions when no
algorithmic method is available for evaluation, makes it possible to interpret open-
ended and ill-defined concepts, allows the reasoner to focus on important parts of a
problem by pointing out what features of a problem are the crucial ones, and can warn

of the potential for problems avoiding the repetition of past mistakes.

There is much evidence that people do, in fact, use case-based reasoning in their daily
reasoning. People learning a new skill often refer to previous problems. Past experience
can often provide guidelines on how to deal with current problems. The computer can
be used as a retrieval tool to augment people's memories. References to old cases are
advantageous in dealing with situations that recur. However, in applying Case-Based
Reasoning to the current problem domain of conceptual structural design of tall
buildings it is important to keep in mind, that since the description of problems are often
incomplete, the further step of understanding or interpreting the problem is a necessary
prerequisite for reasoning. Furthermore, since no previous case is ever exactly the same

as a new one, it is usually necessary to adapt an old solution. Practical retrieval

41

technologies are available, but the general adaptation problem remains extremely

difficult for CBR systems.

The best use of CBR for today's applied systems is as advisory systems that rely on the
user to perform evaluation and adaptation. Central question for adaptation are which
aspects of a situation to adapt, which changes are reasonable for adapting them, and

how to control the adaptation process.

The questions that then rise are that is it possible to interpret new data and adapt old
solutions effectively in the conceptual structural design problem with the available
information? How frequently do situations recur in the problem domain? This research
evaluated the analysis of similar situations. Considering that few things facilitate a
decision as much as a precedent, Case-Based Reasoning provided objective standards in
the M-RAM model. It was a2~other tool applied in the development of the M-RAM

prototype. Section 4.5 presents a detailed description of its implementation.

2.5.2 Fuzzy Systems and Fuzzy Logic

Logic deals with true and false. A proposition can be true on one occasion and false on
another. When, for example, a meteorologist says that is going to rain today he/she is
making a statement with certainty. His/her statements in this case can be true or false.
The truth-values of his/her statements can be only 1 or 0. This statement then is said to

be crisp.
On the other hand, there are statements that cannot be made with certainty. The

meteorologist may be able to say with a degree of certainty (e.g. 0.8 rather than 1) in

his/her statement that it will rain today. This type of situation is what fuzzy logic was

42

developed to model. A fuzzy system deals with propositions that can be true to a certain
degree somewhere from O to 1. The degree of certainty sounds like a probability, but its
not quite the same. Probabilities for mutually exclusive events cannot add up to more

than 1, but their fuzzy values may.

According to Cox [1994] humans reason not in terms of discrete symbols and numbers
but in terms of fuzzy sets. Fuzzy sets are actually functions that map a value that might
be a member of the set to a number between zero (value is not in the set) and one (value
completely representative of the set) indicating its actual degree of membership. Fuzzy
logic is a calculus of compatibility. Unlike probability, which is based on frequency
distributions in a random population, fuzzy logic deals with describing the characteristic
of properties. Fuzziness is a measure of how well an instance (value) conforms to a

semantic ideal or concept. It describes the degree of membership in a fuzzy set.

Fuzzy sets are actually functions that map a value that might be a member of the set to a
number between O and 1 indicating its actual degree of membership. This produces a
curve across the members of the set. Figure 3 illustrates how this concept might be

represented.

The fuzzy set in figure 3 indicates to what degree a project of a specific number of
stories is a member of the set shear wall system structure (see Section 4.4.2.2). As the
number of stories approximates to the range of 25 to 30 floors increases cur belief that
shear wall system is a feasible solution as structural system to resist lateral loads. In the
other hand, as the number of stories approximates the extreme values of 15 and 40
floors our belief that shear wall systems is a feasible solution to resist lateral loads

decreases.

43

A shear wall system
structure

14

Degree of
membership

K(x)

0|/

15 20 25 30 35 40

»
>

Number of Stories

Figure 3 — Fuzzy set — Number of stories x degree of membership

Fuzzy set theory and fuzzy logic does not replace existing methods for dealing with real
world problems arising in the analysis and design of decision, control and knowledge
systems. Rather, they provide additional tools which enlarge the domain of problems

which can be solved.

In the M-RAM implementation a fuzzyfier was applied to preprocess and to postprocess
data for the neural network when the neural network agent wasn’t producing the
expected results as a classification engine. Because of the fact that the C4.5 agent
outperformed the neural network implementation even after the application of the
fuzzyfier function the fuzzy-neural network implementation was abandoned. The major
difficulty faced during this implementation was knowledge acquisition for the definition
of meaningful fuzzy sets. Other possible use of the fuzzy logic in the M-RAM model is

to apply fuzzyfiers to improve the objective function of the genetic algorithm agent.

44

This was never tried but is a possible interesting improvement to the proposed model

and prototype.

2.5.3 Heuristic Systems

Heuristic reasoning systems also known as the expert systems are computer programs
that represent and reason with the knowledge of some specialist. Such systems may
completely fulfill a function that normally requires human expertise, or may play the
role of an assistant to a human decision-maker. An expert system simulates human
reasoning about a problem domain rather than simulating the domain itself. It performs
reasoning over representations of human knowledge. In addition to doing numerical
calculations or data retrieval, it solves problems by heuristic (rule of thumb which
encodes a piece of knowledge) or approximate methods [Jackson, 1990]. Expert
systems do not require perfect data because solutions may be proposed with varying
degrees of certainty. The expert must be able to perform the task, know how to perform
the task, be able to explain how to perform the task, have the time to explain how to
perform the task, and be motivated to cooperate in the enterprise. These systems fall
short when inputs are not exactly as requested by the stored knowledge. Any deviation
from the patterns they expect tends to result in a breakdown or impracticable behavior.
They fall short too in the learning process. It is also difficult to integrate information
with the already existing information. Knowledge acquisition is “the bottleneck

problem” of expert systems applications.

How then can we elicit knowledge from a human expert and codify it? It must be taken
into consideration that specialists have their own jargon, that facts and principles in
many domains cannot be characterized precisely in terms of a mathematical theory or a

deterministic world, that experts need to know more than the mere facts or principles of

45

a domain in order to solve problems, and that the human expertise is enhanced by a lot

of common sense (knowledge about the everyday world).

Expert systems were not applied in the M-RAM implementation. Difficulties to acquire
and to codify knowledge from designers experts, difficulties to evolve the model
integrating new with old information, lack of flexibility, and lessons learned with past
expert systems implementation failures discouraged the use of those systems during the

development of this research.

2.5.4 Qualitative Reasoning

Qualitative reasoning automates the process of determining all of the possible outcomes
of a deterministic system where some factors necessary to analyze the system are
unknown. It is thus a simulation technique, as well as an inference mechanism. An
example of a deterministic system is a structural system of specific beams, columns,
connections, and applied forces. In such a system, the fundamental physics necessary to
analyze possible outcomes, and the differential equations representing the physics, are
well known to engineers. With quantitative knowledée of the physical parameters -
lengths, cross-sections, materials, forces - the system may be analyzed for highly
accurate predictions of specific behavior outcomes of actual constructions. Another
example of a deterministic system is a system of two reservoirs connected by a conduit.
The behavior of this system may be completely analyzed and accurate behavior
predictions derived, if the physical parameters of the reservoirs and conduit, the liquid

characteristics, and so on, are all known.

However, early in the design process of a structural system or reservoir system

knowledge of the physical parameters may be incomplete. That is, exact lengths, cross

46

sections or loads may not be known, or may be very likely to change. Conventional
analysis, which depends upon solution of systems of differential equations, is stymied,
if some of the necessary variables are unknown, and must be repeated if any of the
variables change in value. Qualitative analysis replaces the ordinary differential
equations (ODE) of a deterministic system with qualitative differential equations
(QDE), which inherently include uncertainty in their cons*ruction, development, and
analytic process. The introduction of uncertainty means that the system is not

deterministic, and multiple outcomes will result from a simulation analysis.

This approach to machine learning is appropriate for situations where a reasoning
system must infer all of the possible outcomes of a deterministic system of phenomena
which operates in accordance with known functions of time, but where quantitative
knowledge of at least some of the parameters of the system is incomplete. That is,
assume first that one is examining, a system of phenomena which can be described by a
known system of ordinary differential equations, but for which the values of some of
the variables are unknown. If the values of all of the variables were known, then
solving the system of equations would fully describe the behavior of the system of
phenomena. The underlying mechanisms of the phenomena operating in the system
must be well understood, for such a system of equations to be possible. The unknown
parameters or variable values are such maitters as the size of a tank or a beam, not the
fundamental way the system operates. However, even with a complete set of equations,
the system with unknown variable values is no longer deterministic; multiple outcomes
are possible, dependent on the values of the unknown variables. Such a system may be
modeled with a qualitative reasoning framework, to automaticaily simulate all of the
possible outcomes of the non-deterministic system, and to discover the dependencies of

events in the system.

47

In classical qualitative reasoning [Kuipers, 1994] the mathematical functions describing
the system are not modeled with the same precision that a system of differential
equations models the system. Mathematical functions are grouped into broad classes,
and behavior inferred for the entire class. All monotonically increasing functions are
grouped together and treated as a sort of meta-function, for example. This implies that
full knowledge of the underlying mechanisms may not be necessary to model a system
with qualitative reasoning. Nevertheless, this machine learning paradigm may be less
useful in a situation where the underlying mechanisms of a system of phenomena are

unknown.

Qualitative reasoning was not applied during this research. The underlying mechanisms
of the conceptual phase of structural design are, until now, not well understood making

it difficult to develop the required qualitative differential equations system.

2.6 Support Algorithms

Support Algorithms could be applied to give justifications to the decisions adopted by
the different reasoning mechanisms. Truth Maintenance System is outlined in section
2.6.1.

2.6.1. Truth Maintenance Systems

The fundamental idea of truth maintenance systems is that a problem solver can be
decomposed into two parts: an inference engine and a Truth Maintenance System
(TMS). This natural partitioning of concerns allows the inference engine to focus on

drawing inferences within the task domain and the TMS to focus on beliefs,

48

assumptions, and contexts. Every important inference made by the inference engine is

communicated to the TMS as a justification.

There are several different families of truth maintenance systems. Each type partitions

problem-solving concerns somewhat differently and hence supports different types of

problem solver inference engine interactions. Within each family there remain a large

number of design alternatives. As a result there are many unexplored combination of

options. Truth maintenance systems (TMS) have five principal uses:

Identifying responsibilities for conclusions: TMS allow a problem solver to identify
responsibility for its conclusions by providing rational explanations of how its
conclusions follow from the premises. Generally just providing the answer is not
enough. By providing explanations the problem solver enables the user (or itself) to

figure what to change when things go wrong.

Recovering from inconsistencies: In an ideal world all the data would be valid and
every constraint imposed would be perfectly satisfied. Neither we not our programs

live in such a world. For example, the data we give to our program can be wrong.

Maintaining a cache of inferences: Most artificial intelligence solvers search. Since
they search, they often go over parts of the search space again and again. If a
problem solver cached its inferences, then it would not need to retrieve conclusions

that it had already derived earlier in the search.
Guiding backtracking: When the search detects an inconsistency while exploring the

solution TMS chronological backtracking, as the rame implies, backtracks to the

most recent choice the search has made and explores the next alternative.

49

e Default reasoning: Many artificial intelligence applications require the problem
solver to make conclusions based on insufficient information. TMS assumes that

the solution is the generic one unless there is some evidence to the contrary.

It is important to realize that TMS are not reasoning engines by itself. They are just
additional modules to existing reasoners. A good example of TMS application is the
dependence network used as an additional module by VT (an Expert System for
designing elevators systems). This dependence network is a TMS developed to keep
track of, which values of design variables depend on values determined by earlier

decisions and to propagate updates brought about by changing data or assumptions.

M-RAM relies in the description of the outcome of retrieved past experience suggested
by a case-based reasoning agent to provide the justification for the solutions that it
presents to the design problem being analyzed. In a future implementation a truth
maintenance system module could be an interesting addition to the proposed model to

provide this feature in a more structured way.

2.7 Distributed Artificial Intelligence (DAI)

Artificial Intelligence has historically been interested in the architecture of single
agents. Work on natural language understanding, planning, knowledge representation,
reasoning, and learning focused on how an agent would operate carrying out various
sophisticated tasks. Even when the tasks themselves where inherently multi-agent (such

as understanding natural language), the approach was to study how to design the

50

individual agent. Artificial intelligence has focused on the micro issues of agent

architecture.

All this began to change with the emergence of a distinct sub field within artificial
intelligence, known as distributed artificial intelligence (DAI). It traces its roots to early
work in the Contract Net Protocol [Smith, 1980]. The main research focus of distributed
artificial intelligence has been on ways of getting multiple agents to interact
appropriately. Early work was exclusively on interacting agents that had been designed
by a single designer; to a certain degree, agents could be counted on to act for the
greater good of the system, since they could be programmed that way by their designer
who was only concerned with increasing the general system’s performance, not the

performance of individual agents. Utility was measured at the system level.

Now a distinct research direction within DAI is beginning to take shape. Certain
researchers began to ask questions related to individually motivated agents, who had

been designed by independent designers.

The original stream of DAI research became known as Cooperative Problem Solving
(CPS), while the latter stream became known as Multiple Agent Systems (MAS). The
approach taken in this research is based on MAS. The question it analyzes is those that

are of interest when independently designed and motivated agents interact.

With the advent of large computer and telecommunication networks, the probiem of
integrating and coordinating many human and automated problem solvers werking on
multiple simultaneous problems has becoming a pressing concern. Just as traditional Al
research has sometimes used individual human psychology or cognition as a model or
driving metaphor, DAI considers concepts such as group interaction, social

organization, and society as metaphors and problem generators.

51

Research done by Lenat [1975], Durfee and Lesser [1987], Bond and Gasser [1988],
Lander and Lesser [1989], Lesser and Durfee [1989], Sycara [1989], Gasser [1992],
Pope et al. [1992], Shoham and Tennenholtz [1993], Zlotkin and Rosenchain [1991],
and Chaib-draa [1995], in Distributed Artificial Intelligence (DAI) supported the M-
RAM model in defining a broad range of issues related to the distribution and
coordination of knowledge and actions in an environment that involves multiple
entities. These entities, called agents, can be viewed collective as a society where agents

work together to achieve their own goals, as well as the goals of the society as a whole.

Researchers view the focus of DAI studies differently. According to Gasser [1992],
DAI is concerned with the study and construction of semi-autonomous automated
systems that interact with each other and their environments. It goes beyond the study
of individual “intelligent agents” solving individual problems, to consider problem

solving that has social components.

Rosenchein and Zlotkin [1994] classify existing DAI research according to the model
applied to coordinate agent interaction. According to those authors four main streams of
research in DAI have approached the problem of multi-agent coordination in different
ways. They categorize it in the general areas of multi-agent planning, negotiation, social

laws, and economic approaches.

e Multi-Agent Planning - DAI research concentrated on “planning for multiple
agents” aims to demonstrate that problem solvers improve collective coherence by
synchronizing actions with global plans. Centralized multiagent planning attempts
to do this by having one problem solver generate a plan for all of the others [Smith,
1980]. A second focus of research has been “distributed planning” where problem

solvers incrementally build a plan by constructing their local subparts,

52

cooperatively, resolving the conflicts, and then aggregating them into one plan
[Durfee and Lesser 1987, Zlotkin and Rosenchein, 1991, and Pope et al. 1992].

* Negotiation - Interagent collaboration in DAI systems has been explored by
different researchers with different approaches. One approach aims at agents
exchanging partial solutions at various levels of detail to construct global solutions.
This includes a study of effective strategies for communication of data and
hypotheses among agents. These negotiation procedures also include the exchange
of partial global plans [Lichter et al., 1994], the communication of information
intended to alter others agent's goals [Sykara, 1989], and the use of incremental

suggestions leading to a joint plan of action [Wilkenfeld and Kraus,‘ 1993].

° Social Law - Researchers have suggested applying the “society” metaphor to
artificial systems to improve the performance of its agents. Systems are structured
so that agents will not arrive at potentially conflicting situations. These systems
have a flat organization of problem solvers who are specialists in a given area. Their
mode of interaction is directed by rules of behavior, which amount to a protocol of
interaction [Lenat 1975 and Shoham and Tennenholtz 1993]. These social laws are
seen as a method to avoid the necessity for costly coordination techniques, like

planning and negotiation.

» Economic Approaches - Control is distributed in a marketplace. Agents interact via
competition for tasks and resources through bidding and contractual mechanisms for
control, or economic valuation of services and demand [Smith 1980 and Malone et

al. 1988].

The M-RAM research and the majority of DAI research have the common goal of

building a dynamically self configurable system which can adapt to new environments

53

of circumstances without input or redesign from human user. Existing DAI systems
provided good testbed for the development of the M-RAM model but is important to
consider that most DAI experiments and theories depend upon closed-systems
assumptions such as common communication protocols, a shared global means of
assessing coherent behavior, some ultimate commensurability of knowledge, or some
boundary to a system. Most DAI Systems suppose that all agents are built using the
same architecture. These current models cannot emphasize autonomy and heterogeneity
and are inadequate for supporting the integration of heterogeneous systems with

possibly incompatible internal semantics like the ones that M-RAM integrates.

2.8 Knowledge Discovery in Databases

In the last decade, we have seen an explosive growth in our capabilities to both generate
and collect data. Advances in scientific data collection, introduction of bar codes, and
computerization of many businesses have generated a flood of data. Advances in data
storage technology and better database management systems allowed us to transform
the available data in a huge quantity of stored data. These clearly overwhelm the
traditional manual methods of data analysis. A significant need exists for a new
generation of techniques and tools with the ability to assist humans in analyzing the
available data for nuggets of useful knowledge. These techniques and tools are the

subject of the emerging field of knowledge discovery in databases (KDD).

Historically the notion of finding useful patterns in raw data has been given various
names, including KDD and data mining. Statisticians, data analysts and information
sysiems managers have commonly used the term data mining, while KDD has been

mostly used by artificial intelligence and machine learning researchers. In this research

54

we adopt Fayyad et al [1996] view that KDD refers to the overall process of discovering
useful knowledge from data while data mining refers to the application of algorithms
for extracting patterns from data without the additional steps of the KDD process. In

other words data mining is considered to be just one of the steps in the KDD process.

KDD is then defined as the overall process of finding and interpreting patterns from
data [Fayyad et al., 1996]. It is typically interactive and iterative, involving the repeated
application of specific data mining methods or algorithms and the interpretation of the
patterns generated by the algorithms. The KDD process is a multi-step process, that
involves data preparation, search for patterns, knowledge evaluation, and refinement
involving iteration after modification. KDD is, thus the non-trivial process of

identifying valid, novel, potential useful, and ultimately understandable patterns in data.
KDD systems typically draw upon methods, algorithms, and techniques from diverse
research fields like machine learning, pattern recognition, databases, statistics, artificial
intelligence, knowledge acquisition for expert systems, and data visualization.
Brachman and Anand [1996] subdivide de KDD process in 9 steps:

1. Developing an understanding of the application domain

2. Creating a target data set.

3. Data cleaning and preprocessing with noise removal and deciding on strategies for

handling missing data fields.

4. Data reduction and projection

55

Choosing the data mining tool by deciding whether the goal of the KDD process is
classification (learning a function that maps a data item into one of several
predefined classes), regression (learning a function which maps a data item to a real-
valued prediction variable), clustering (seeking to identify a finite set of categories
or clusters to describe the data), summarization (finding a compact description for a
subset of data), dependency modeling (finding a model which describes significant
dependencies between variables), and change and deviation detection (discovering
the most significant changes in the data from previously measured or normative

values).

Choosing the data mining algorithm(s).

Data mining by searching for patterns of interest in a particular representational
form or a set of such representations: classification rules or tree, regression,
clustering, and so forth.

Interpreting mined patterns for further iteration.

Consolidating discovered knowledge.

Information available from the Knowledge Discovery in Databases (KDD) and Data

Mining research proved to be very helpful during the development of M-RAM model

that intended to analyze data available in a database of past structural designs with the

objective of generating knowledge. However it is important to realize that the majority

of the KDD systems are supported by one data mining tool without considering the

possible advantages of the interaction between different tools. When different tools are

applied they are not developed as intelligent agents and don’t interact. The process is

managed by a human user that after receiving the results of one data mining tool plans

56

the next step and decides which tool is going to be used next. It is equally important to
know that their main objective is data description that focuses on finding human
interpretable patterns describing and classifying the data. This objective is different
from the main objective of this research that is data prediction that involves using some
variables in the database to predict unknown or future values of other variables of

interest.

2.9 Summary

Research related to design theory, traditional artificial intelligence, machine learning
algorithms, reasoning mechanisms, support algorithms, distributed artificial
intelligence, and Knowledge Discovery in Databases was described in this chapter. The
need to better understand those different studies surge of the limitations of existing tools
to solve complex problems as the design problem. The objective here was first to better
understand the available tools to be able to map the most suitable ones to different parts
of the decomposed design problem and second to understand what studies were
available to support in the definition of communication protocols among cooperative

agents.

57

Chapter 3

3 The M-RAM Modei

3.1 Introduction

The M-RAM model is presented in this chapter and used for the modeling of the
information relevant to the conceptual phase of structural design for tall buildings. The
model is implemented with object-oriented modeling and design theory applying the
unified modeling language (UML). In order to understand the M-RAM model and to
understand the different tools used for its implementation within this research the
object-oriented methodology is explained in Section 3.2 and the UML language is
explained in Section 3.3. Finally, Section 3.4 presents the M-RAM model
demonstrating the way in which the multi-reasoning distributed artificial intelligent
system selects the characteristics of an artifact like the structural material, the structural
form, the structural system, and the structural parameters for tall building design. It does
so by, first, choosing the most suitable structural system using a classification agent
(C4.5), then, by providing different possible structural forms and coefficients presenting
cases provided by the case base reasoning (CBR) agent and, finally, by adapting the

retrieved cases applying a genetic algorithm (GA) agent.

58

3.2 Object-Oriented Methodology

In Chapter 1 conceptual design was described as a complex problem. According to
Booch [1994], the technique of mastering complexity has been known since ancient
times: “divide et impera” (divide and rule). When designing a complex system, it is
essential to decompose it into smaller and smaller parts, each of which we may then
refine independently. Object oriented decomposition, where each object in the system
embodies its own unique behavior and each one models some object in the real world,

help us to cope with this complexity.

In the object oriented paradigm models are organized around real-world concepts. The
fundamental construct is the object, which combines both data structure and behavior in

a single entity.

A model is an abstraction of something for the purpose of understanding it before
building it. Models serve several purposes as testing a physical entity before building it,
communication with customers, visualization, and reduction of complexity. An object
model captures the static structure of a system by showing the objects in the system,
relationships between the objects, and the attributes and operations that characterize
each class of objects. Object models provide an intuitive graphic representation of a

system.

There is some disputes about exactly what components, characteristics, and properties

are required by an object-oriented approach, but it generally includes:

1. Object: An object can be defined as a concept, abstraction, or thing with crisp

boundaries and meaning for the problem in hand. An object has state, behavior, and

59

identity. The state of an object encompasses all of the properties of the object plus
the current values of each of these properties, behavior is how an object acts and
reacts, in terms of its state changes and message passing, and identity is the property

of an object which distinguishes it from all other objects.

Class: An object class describes a group of objects with similar properties
(attributes), common behavior (operations), common relationships to other objects,
and common semantics [Rumbaugh et. al, 1991]. Each object is said to be an
instance of its class. Each instance of the class has its own value for each attribute,

but shares the attribute names and operations with other instances of the class.

Attribute: Attribute is a data value held by the object in a class. Each attribute has a

value for each object instance and each attribute name is unique within a class.

QOperations and methods: Operation is a function or transformation that may be
applied to or by objects in a class. All objects in a class share the same operations. A

method is the implementation of an operation for a class.

Abstraction: Abstraction denotes the essential characteristics of an object that
distinguish it from all other kinds of objects and thus provide crisply defined
conceptual boundaries, relative to the perspective of the viewer. An abstraction
focuses on the outside view of an object, and so serves to separate an vbject

essential behavior from its implementation.

Encapsulation: Encapsulation is the process of compartmentalizing the elements of
an abstraction that constitute its structure and behavior [Booch, 1994]. It serves to
separate the contractual interface of an abstraction and its implementation. The

abstraction of an object should precede the decisions about its implementation. Once

60

an implementation is selected, it should be treated as a secret of the abstraction and
hidden from most clients. No part of a complex system should depend on the
internal details of any other part. Encapsulation allows programs changes to be

reliable made with limited effort.

Modularity: Modularity is the property of a system that has been decomposed into
a set of cohesive and loosely coupled modules. System details that are likely to
change independently should be the secrets of separate modules. The only
assumptions that should appear between modules are those that are considered

unlikely to change.

Hierarchy: Hierarchy is a ranking or ordering of abstractions. The two most
important hierarchies in a complex system are inheritance and aggregation.
Inheritance defines a relationship among classes wherein one class shares the
structure or behavior defined in one or more classes (denoting single inheritance and
multiple inheritance, respectively). Inheritance thus represents a hierarchy of
abstractions, in which a sub class inherits from one or more super classes. Typically,
a subclass augments or redefines the existing structure and behavior of its super
classes. Semantically, inheritance denotes an “is a” relationship implying a
generalization/specialization hierarchy, wherein a sub class specializes the more
general structure or behavior of its super ciasses. Aggregation, in the other hand,
permits the physical grouping of logically related structures denoting a “part of”

relationship.

Polymorphism: Polymorphism means that the same operation may behave
differently in different classes. Polymorphism allows programs to automatically
select the correct method to implement an operation based on the name of the

operation and the class of the object being operated on.

61

3.3 Unified Modeling Language (UML)

The Unified Modeling Language (UML) is the successor to the object-oriented analysis
and design methods that appeared in the late 80s and early 90s. Before UML the object
oriented methods scene was pretty split and competitive. Different authors had methods
that were very similar, yet they contained a number of often annoying minor differences
among them. Talk of standardization had surfaced, but nobody seemed willing to do

anything about it [Fowler, 1997].

This situation began to change in 1994 when Jim Rumbaugh joined Grady Booch at
Rational Software, with the intention of merging their methods. In 1995 Ivar Jacobson
joined Rational fact that allowed the unification of the three most used object-oriented
methods and during 1996, Grady, Jim, and Ivar, worked on their unified method. At this
time the consortium called Object Management Group (OMG) - that includes over 700
companies, representing the entire spectrum of the computer industry — created a task
force to work on standardization in the methods area. Finally in 1997 Rational released
version 1.0 of UML documentation as their proposal to the OMG task force. After
proposing some small adaptation, OMG supported the method that soon obtained wide

industry support.

The UML is a modeling language, not a method. The UML has no notion of the
process. The modeling language is the (mainly graphical) notation that methods use to
express designs. The process is the advice on what steps to take in doing a design. As
this thesis is being written, Jim, Grady, and Ivar are working on merging their processes

and the resuit will be called the Rational Objectory Process.

62

3.4 M-RAM Model

The M-RAM model is an object model that describes the structure of the objects in the
system, their identity, their relationships to other objects, their attributes, and their
operations. The various components of the M-RAM model shown in figure 4 are
discussed here; the graphical notation is the UML method [Rational Software
Corporation, 1997a] [Rational Software Corporation, 1997b] [Rational Software
Corporation, 1997¢c] [Rational Software Corporation, 1997d].

3.4.1 Designer

A designer represents the entity (human, e.g., a structural engineer; or a computer, e.g.,
a structural engineer assistant) that presents a proposal, based on a design intent and/or
an artifact characteristic that need to be satisfied. An example would be a designer that
after receiving from the architect information and specifications of the building to be
built defines structural coefficients like loads (life, wind, and earthquake), design
fundamental period, and maximum lateral deflection based on past experience, local
standards, and some structural formulae. All this information is used as input for the

next structural design stage: the dimensioning of the structural components.

63

This model was
built uyming the
UML mathod

[l
| 1. lmgomm-mm Present Propomal
) s
Designer .
L 9 Pa N hall prowprs
int height
1 s in1 storiea
char siruc_type é double wind-velocity
int height 2
define atruc_type() . present-recommendation()
define present-jusblication()
struc_atiributes(} e -

intent 1. 1.0
1
int ranking 1.4 1.,
char satistacticn

Recommendstion Justification
chat recommendsion char justification
char clase
int height
e int stories it stories
double wind-velocity double wind-velocily
' presant-recommaendatio(}
refers-lo
«computers
wau O | . l s tot e
char class
int haight jo Funttions
it stories
double wind-velocity
deftne ype(} ™ 1 1.
retrieve p () M U show-function()
adapt p) dafine-objectives()) define-tunction()
1 1
J—inlmducel—
| 1.4 Artitact
Manager User Interiace chor behavior
char staucture
int height nt haight
iy slones inl stanes
char use char use show -behavior()
double wind-val double wind-ve! shoa_structure{)
broadcast-mput(} getanpul()
get-rasuita() show-results()

Legend

Ternary association

Classitication

Englne Adapt
1 i 1
int haight classity double fund-paniod

Int stories. double accelerstion

 Adaptation Engine Composition

Stereotype icon

Q
char use double damping)
foutt windve index/retrieve A Inheritance
1

ases teproduction])
45 1 crossover(}
54.5&..() l mutation(} Note
consult() Pm::;;r.lonn one
char class
1t height 1.* One to many

int stories
char use
double wind-val

1.4 One to four
«..» Stereolype string

add-case(}
reirieve-case(}

Figure 4 - M-RAM object medel
[Graphical notation of the UML model (Rational Software Corp. 1997)]

- 64

3.4.2 Proposal

A proposal represents the statement given by the computer designer. A proposal
includes two important elements: (1) The recommendation believed to satisfy a design
intent and a required artifact characteristics, and (2) the justifications of why the

recommendation fulfills that design intent and/or artifact characteristics.

3.4.3 Intent

Design intent refers to what the designer needs to achieve or satisfy [Pefia-Mora
et al., 1995]. Design intent has ranking that specifies its importance and a satisfaction
measure that specifies the extent to which the design intent has been satisfied by a
recommendation. Design intent refers to the following attributes of a design: (1)

Objectives, (2) constraints, and (3) functions.

1. “Objective” is a characteristic to be optimized by the artifact. It presents a
measure against which the design is checked (e.g., minimize the construction
cost). Designers tend to use this class of intents as an evaluation, which

requires comparison among several competing designs.

2. “Constraints” is a confinement of an artifact (e.g., lack of skilled labor in
certain regions making it very difficult to build concrete structures). In this
class of intents, designers only need to test if the criterion is met by the
design recommendation without the need to compare it to other design

alternatives (see Section 2.2.1).

65

3. “Function” is an action or activity performed by an artifact (e.g., to safely
withstand the earthquake loads during the building lifetime). This class
establishes the performance criteria that later translates to the behavior of the

system and specific constraints.

3.4.4 Recommendation

Recommendation refers to the entity that satisfies the design intents and/or the required
artifact characteristics. A recommendation is a proposed structural system presented by
the C4.5 agent, the cases presented by the CBR agent, and the adaptation of the
retrieved cases presented by the GA agent. Several alternate structural systems could be

proposed for the same tall building.

3.4.5 Justification

Justification refers to the reason that partially explains why a recommendation will
satisfy a design intent. According do Pefia-Mora [1994] a justification could be a rule
(e.g., if the number of Floors < 40 then braced frame structural system is feasible), a
case (e.g., this building is similar to the Sears Tower in Chicago), a catalog (e.g., this
structural system solution was taken from an entry in the “Structural Systems for Tall
Buildings” published by the Council on Tall Buildings and Urban Habitat), a principle
(e.g., the relationship between force and deformation is supported by Hoke’s law), an
authority (e.g., this structural system has been suggested by someone who is an
authority in the field), a rrade-off (e.g., this is the best possible design based on the trade
off between minimizing the cost and minimizing the deflection), a prototype (e.g., the

model of the proposed structure produced these measurements in the wind tunnel), a

66

constraint network (e.g., this condition satisfies all the constraints on the system), or a
Paretto Optimal Surface (e.g., this design fall on the surface of best possible design

when optimizing cost, schedule, and ecological impact).

A justification may support other justifications by providing supporting evidence or
assumptions. Cases of past experience provided by the CBR engine are used as

justification in the M-RAM implementation.

3.4.6 Computer - M-RAM

The M-RAM computer implementation is a distributed artificial intelligence computer
system developed as a decision support tool for the preliminary design of tall building
structures. Decisions are made on the basis of such information as height of the
building, building use, region, typical live load, wind velocity, earthquake loading,
design fundamental period, design acceleration, maximum lateral deflection, spans,
story height, and other client requirements. It runs on the Internet using a World Wide

Web interface (see URL: hup://cec-ta.mit.edu).

3.4.7 Manager and User Interface

The Internet is being used as a communication backbone among the different systems
that implement the reasoning mechanisms being employed. Each different reasoning
mechanism considered as an autonomous module can be installed in different severs
dispersed in diverse locations around the world (Figure 5). Each distributed server acts
as an intelligent agent. A World Wide Web (WWW) interface receives the expected

data as input and launches a manager program that broadcast the problem to all existing

67

modules. Each module solves a part of the problem and sends back their partial solution
to the manager program. This program sends the solution or possible solutions back to

the WWW interface that display it to the user (Figure 6).

In the current implementation M-RAM is being developed with three modules: The
classification module implemented by the C4.5 agent, the past cases/experience module
implemented by the CBR agent, and the adaptation module implemented by the GA

agent.

Problem Domain Technological Domain

A - Genetic Algorithms
B-C4.5 & ID3
C - Case Based Reasoning

Figure 5 - M-RAM components

68

User types
M-Ram URL

User
disconnect

Legend

Fork independent
processes

Active

M-Ram Home
page

1ype attribute (n)

M-RAM Home Page
do/display M-RAM input
form

inpul attribute
oul ol range

type attribute (n)
{incomplete]

help/gisplay srror messag

clazsitied

Reasoning with

do/classity the
design problem

o
-
o

connected

send chosen
class

do/display window
with the chosen
A like the

(3
29
FE]

Reasoning with
BR

a

doiretrieve cases

solvad

to the manager

connected

one being)

send atiridutes of
ved cases 1o the
manager

ussr
click on
acase
Showing case link Showing case list
intormation

doldisplay window with
case home page

new aitributes
crosted

Reasoning with
A

'

do/adapt cases
ralrieved by the
CBR agent

Connecting to
M-RAM manage:

connected

send attributes
to the managar

Showing new desig
attributes
do/display window wit!

the stiributes created
by the GA

Connacting to
1-RAM manage:

B

Figure 6 - M-RAM state diagram

[Graphical notation of the UML model (Rational Software Corp. 1997)]

69

3.4.8 Classification Engine

In the M-RAM implementation a C4.5 agent implemented the classification engine. In
C4.5, recorded classifications are examined and a model is constructed inductively by
generalization from specific examples. This machine-learning algorithm can be defined
as a set of computer programs that construct classification models by discovering and
analyzing patterns found in given records. The algorithm that has fundamental
importance in C4.5 is the one that generates the initial decision tree from a set of
training cases. Since the cases do not all belong to the same class, a divide-and-conquer
algorithm attempts to split them into subsets using statistical evaluation tests, and an

information gain ratio criterion to find the best possible tree structure [Quinlan, 1993].

Classification
Engine
C4s
int height 1
int stories
char use
double wind-vel
¢4.5()
c4.5rulas{)
consult{)
1 1
1
1.0 .
1 1.
Training Decisi Decision Rule
Cases Tree
int height int height int height
int stories int stories int stories
char use char use char use
double wind-vel double wind-vel double wind-vel
add-case() create-tree(} create-rules(}
retrigve-case() print-lree() print-rules(}
reason()
1 1
| 1.
Leaf Decision
node
char class int height
int stories
— char use
retrieve class() double wind-vel
define -subtree()

Figure 7 - classification engine

[Graphical notatior: of the UML model (Rationa! Software Coxp. 1997)]
70

C4.5 can be divided in a set of training cases, in a decision tree, and in a set of decision
rules generated by simplification of the decision tree (Figure 7). The decision tree can
be subdivided in leafs that indicate classes and in decision nodes that specifies some test

to be carried out on a single attribute value (see Figure 23).

3.4.9 Past Experience Engine

In the M-RAM implementation Caspian, a Case-Based Reasoning agent, implemented
the past experience engine. Case-based reasoning is the process of “remember and
compare” [Kolodner, 1993]. A reasoner remembers previous situations similar to the
current one and uses them to help solve a new problem. It is a model of reasoning that
incorporates problem solving, understanding and learning as well as integrates all with
the memory processes. Learning occurs as a natural consequence of reasoning where
procedures applied to the new problems are indexed in the memory. Feedback, and
analysis of feedback through follow-up procedures and explanatory reasoning, are
necessary parts of the complete reasoning-learning circle. The knowledge of a case-
based reasoner is constantly changing as new experience give rise to new cases that are
stored for future use. Case-based reasoner learns from experience to exploit prior

successes and avoids repeating past failures [Leake, 1996].

The CBR agent can be divided in three parts (see figure 8): a case library, and indexing
engine, and a retrieving engine. The case library is organized in the cases problem
description (the state of the world at the moment the case was happening and, if
appropriate, what problem needed solving at the time), the cases solution description

(the state or derived solution to the problem specified in the problem description, or the

71

reaction to the situation), and the cases outcome (the resulting state of the world after

solution was carried out).

Past Experience
Engine
cBR
char class
int haight
int stanes
char e
double wind-vot
add-casa()
relrgva-case(}
1
1
1
Indexing
Engine
<har sate-
descrption Juslification
char class
char use
doudle wind-vel :::t'):‘:t‘-:clhon
index-case() 0t height
int stones
1 doubie wing-valocity
1 ' 1 1
Case Ratrievin presant-ustiicaneni}
Lib 1 1 g "
ran. Engine ratnave-CBAcase()
char cass- Cane Library "
gescripuon Lebsling Engine Crgenization :’::: 'f:;:n T
h
char class char case- Engine char ciass |
ehlr’nn descnptien char cass- char use
1 |doutle wind-vel char ciars descriphon doutis wind-ve! I
-——fm - ——— - e char use char clans - '
| . double wind-vat o use ing-cass) | |
| doubls wind-vel \
1abel-caser() - I
| ! t b 1 1 i 1
| 1 9 yi) !
] 1.0 1.0 1.0 1 1 I I
| Cases/Problem Searching Hatching | |
| Englne Englne | |
] char char Z char case-outcame char case- char case-dascription |
) char ciass char cless cnar class description char ciass | |
char use char use char use char class char ute — o ugalls e ———
l - - . char use doubia wind-vat ‘. ca I
double wind-vet . |
()
! 5 , = ,

Figure 8 - Past experience engine

{Graphical notation of the UML model (Ratiecnal Software Corp. 1997)]

The biggest issue in CBR is retrieval of appropriate cases. How can the computer

remember the right cases at the right time? This is known as the indexing problem. The

72

indexing engine can be subdivided in two parts: the case labeling engine and the library
organization engine. The case-labeling engine ensures that cases can be retrieved at
appropriate times. In general, labels designate under what circumstances the case might
have a lesson to teach and therefore when it is likely to be useful. The library
organization engine organizes the cases so that the search trough the case library can be
done efficiently and accurately. Related, of course, is the problem of retrieval algorithm

itself.

The case library can be considered a special kind of database. Like those of a database,
whose retrieval algorithms must be able to find appropriate records when queried, and
like a database, it must be able to do its job fast and efficiently. Like databases, retrieval
of cases can be seen as a massive search problem but with a important difference: no
case in the library can ever be expected to match a new situation exactly, so search must
result in retrieval of a close partial match. The retrieving engine can be subdivided in
the searching engine (finding potentially matching cases) and a matching engine (each
case is judged for its potential usefulness). In some schemes, search and matching are

sequential; in others, they are interleaved.

3.4.10 Adaptation Engine

In the M-RAM implementation a Genetic Algorithm (GA) Agent implemented
adaptation engine. In nature, variety is manifested as a variation in the chromosomes of
the entities in the population [Koza, 1996]. Entities that are better able to perform tasks
in their environment survive and reproduce at a higher rate. Over time, the structure of
individuals in the population changes because of natural selection. When modifications

in structure that arose from differences in fitness (how suitable the entity is to the

73

surrounding environment) are visible and measurable is said that the population has

evolved. In this process, structure arises from fitness.

As shown in figure 9 GA can be subdivided in phenotype (a design solution) and a
genotype (a way of representing or encoding the information, which is used to produce
de phenotype). The principle of the survival of the fittest determines whether a genotype
survives to reproduce. The first step in preparing to solve a GA problem is the
identification of a suitable representation scheme. After the phenotype is converted into

a genotype the GA solves the problem with the help of thiee basic operations:

Adaptation
Engine

GA

double fund-period
double acceieration
double damping

reproduction()
crossover()
mutation()

Class name
1.* 1.

Phenotype Genotype

double fund-period double fund-period
double acceleration double acceleration
double damping double damping

translate-to-genotype() reproduction()
translate-from-genotype() crossover()
mutation()

Figure 9 - Adaptation engine
[Graphical notation of the UML model (Rational Software <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>