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The propagation of wave disturbances in water of uniform depth is discussed, accounting
for both gravity and compressibility effects. In the linear theory, free-surface (gravity)
waves are virtually decoupled from acoustic (compression) waves, as the sound speed in
water far exceeds the maximum gravity wave phase speed. However, these two types of
wave motion could exchange energy via resonant triad nonlinear interactions. This sce-
nario is analysed for triads comprising a long-crested acoustic mode and two oppositely-
propagating subharmonic gravity waves. Owing to the disparity of the gravity and acous-
tic lengthscales, the interaction timescale is longer than that of a standard resonant triad,
and the appropriate amplitude evolution equations, apart from the usual quadratic in-
teraction terms, also involve certain cubic terms. Nevertheless, it is still possible for
monochromatic wavetrains to form finely tuned triads, such that nearly all the energy
initially in the gravity waves is transferred to the acoustic mode. This coupling mecha-
nism is far less effective for locally confined wavepackets, though.
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1. Introduction

The classical water-wave theory ignores the effects of water compressibility, on the
grounds that acoustic waves are virtually decoupled from free-surface waves. In the linear
theory, this assumption is well justified as acoustic propagation modes possess vastly
different spatial and/or temporal scales from free-surface waves due to the fact that
the sound speed in water far exceeds the maximum surface wave phase speed. When
nonlinear wave interactions come into play, however, neglecting compressibility may not
be always appropriate, as pointed out in a landmark paper by Longuet-Higgins (1950). He
demonstrated that quadratic interactions of gravity surface waves can excite resonantly
compression modes in water of finite depth and, moreover, suggested that this nonlinear
coupling mechanism is key to the generation of oceanic microseisms — small oscillations
of the seafloor in the frequency range of 0.1 – 0.3 Hz.

The specific configuration studied in Longuet-Higgins (1950) involves at the leading
order two oppositely-propagating gravity wavetrains of the same frequency, which decay
exponentially with depth in keeping with the classical, incompressible water-wave theory.
At second order, however, quadratic interactions give rise to a space-averaged pressure
component, at twice the wave frequency, that is not attenuated with depth. This non-
uniform behaviour makes it necessary, in the case that the water depth is comparable to
the acoustic wavelength, to include compressibility in computing the induced pressure
disturbance in the fluid interior. Thus, accounting for compressibility, the second-order
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response features a resonance when a free compression mode has double the surface wave
frequency. Longuet-Higgins (1950) argued that these resonances correspond to the most
favourable conditions, in terms of wave frequency and ocean depth, for the generation of
microseisms. This suggestion is supported by recent comparisons with field observations
in the North Atlantic Ocean (Kedar et al. 2008).

In the present paper, we discuss the nonlinear coupling of gravity and acoustic waves
in water of finite depth from the perspective of resonant wave–wave interactions; see
Phillips (1981) and Craik (1985) for reviews of the general theory of wave interactions.
Recent related work (Kadri & Stiassnie 2013) presented numerical evidence that the res-
onances found by Longuet-Higgins (1950) are particular examples of resonant wave triads
involving a propagating acoustic wave mode and two oppositely-travelling subharmonic
surface waves. Kadri & Stiassnie (2013) further argued theoretically that such resonant
acoustic–gravity interactions are governed by amplitude equations of the same form as a
standard resonant triad (Bretherton 1964).

Here, we develop an asymptotic theory for resonant triad interactions of acoustic–
gravity waves, accounting for the fact that the ratio of the gravity to the acoustic wave
lengthscale is small. In this limit, it is shown that a long-crested acoustic wave mode can,
in general, interact resonantly with two counter-propagating subharmonic gravity waves,
as suggested by the numerical results of Kadri & Stiassnie (2013).

Attention is then focused on whether acoustic–gravity triad interactions can result
in significant energy transfer from surface to acoustic waves, as envisaged by Longuet-
Higgins (1950). Our asymptotic analysis reveals that, owing to the disparity of the gravity
and acoustic lengthscales, the interaction timescale is longer than that of a standard
resonant triad. As a result, the appropriate amplitude evolution equations, apart from the
usual quadratic interaction terms, also involve certain cubic gravity self-interaction terms
ignored in Kadri & Stiassnie (2013), which are responsible for an amplitude-dependent
shift of the gravity-wave frequency. In the presence of these cubic terms, monochromatic
wavetrains can still form finely tuned triads, such that nearly all the energy initially
in the gravity waves is transferred to the acoustic mode. In the more realistic case of
locally confined wavepackets, however, this coupling mechanism is far less effective, as the
frequency shift due to the cubic self-interaction terms creates phase differences depending
on the local gravity-wave amplitude; this detuning effect seriously inhibits the flow of
energy to the acoustic wave.

2. Preliminaries

Consider the propagation of surface–acoustic wave disturbances in water of constant
depth h over a rigid bottom (z = −h), due to the combined action of gravity and
compressibility. Following Longuet-Higgins (1950), water will be treated as an inviscid
barotropic fluid (where the pressure p is a function of the density ρ only) with constant
sound speed c = (dp/dρ)1/2, and the motion will be assumed irrotational.

A key parameter, which controls the effects of compressibility relative to gravity, is

µ =
gh

c2
, (2.1)

where g is the gravitational acceleration. Typically, this parameter is small (µ � 1), as
the sound speed in water, c = 1.5 × 103 m/s, far exceeds the maximum gravity-wave
phase speed (gh)1/2 (under oceanic conditions, for h = 150 – 1500 m, say, µ ' 10−3 –
10−2). As a result, free-surface (gravity) wave disturbances feature vastly different spatial
and/or temporal scales from acoustic (compression) wave modes.
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The present study is concerned with nonlinear interactions between gravity and acous-
tic modes of comparable temporal, but disparate spatial, scales. Specifically, the gravity
wavelength λ is much shorter than the acoustic lengthscale represented by the water
depth (λ � h), whereas the gravity timescale τ ∼ (λ/g)1/2 in keeping with the deep-
water dispersion relation. Then, taking τ to be comparable to the acoustic timescale h/c
implies λ ∼ µh; hence, in the present setting, the parameter µ may be interpreted as the
ratio of the gravity to the acoustic lengthscale.

Based on irrotationality, the surface–acoustic wave problem is formulated in terms of
the velocity potential ϕ(x, z, t), where u = ∇ϕ is the velocity field. Moreover, we shall
use dimensionless variables, employing µh as lengthscale and h/c as timescale. As in
Longuet-Higgins (1950), the equation governing ϕ in the fluid interior is obtained by
combining continuity with the unsteady Bernoulli equation. Specifically, ϕ satisfies

1

µ2
(ϕxx + ϕzz)− ϕtt − ϕz − |∇ϕ|2t − 1

2u · ∇
(
|∇ϕ|2

)
= 0. (2.2)

In addition, the usual kinematic and dynamic conditions apply on the free surface
z = η(x, t). For the purposes of the ensuing weakly nonlinear analysis, it will be sufficient
to satisfy these conditions correct up to cubic terms in the perturbations. After expanding
the two free-surface conditions about z = 0, η may be expressed in terms of ϕ to this order
of approximation. Thus, eliminating η, we arrive at the following boundary condition for
ϕ on z = 0:

ϕtt + ϕz + |∇ϕ|2t −
{
ϕt (ϕtt + ϕz)

}
z

+ 1
2u · ∇

(
|∇ϕ|2

)
−
{
ϕt|∇ϕ|2t

}
z

− 1
2

{
(ϕtt + ϕz)

(
|∇ϕ|2 − ϕ2

t

)}
z

= 0 (z = 0).
(2.3a)

Finally, the boundary condition on the rigid bottom at z = −1/µ reads

ϕz = 0 (z = −1/µ). (2.3b)

In the limit µ � 1, equation (2.2) along with the boundary conditions (2.3) reduce
to the classical incompressible deep-water wave problem (correct to cubic terms). This
reflects the fact that the chosen lengthscale µh pertains to deep-water gravity waves,
which are confined close to the free surface. Acoustic waves, by contrast, extend through
the entire fluid depth, and x and z have to be re-scaled accordingly in order to capture
these disturbances for µ� 1.

This disparity in lengthscales is brought out by the linear propagation modes of a
slightly compressible fluid layer with a free surface (Longuet-Higgins 1950; Dalrymple &
Rogers 2006). Dropping the nonlinear terms in (2.2) and (2.3a), we look for wave modes
that propagate along x with wavenumber k and frequency ω, in the form

ϕ = f(z) exp
(

1
2µ

2z
)

exp
{

i(kx− ωt)
}
. (2.4)

Upon substituting (2.4) into (2.2)–(2.3), the vertical profile f(z) satisfies the boundary-
value problem

d2f

dz2
−
(
k2 − µ2ω2 + 1

4µ
4
)
f = 0 (−1/µ < z < 0) , (2.5)

df

dz
−
(
ω2 − 1

2µ
2
)
f = 0 (z = 0) , (2.6a)

df

dz
+ 1

2µ
2f = 0 (z = −1/µ) . (2.6b)
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For µ � 1 and k = O(1), the solution to this problem decays exponentially into the
fluid,

f = e|k|z +O(µ2), (2.7)

and ω satisfies the dispersion relation

ω2 = |k|+O(µ4). (2.8)

As expected, to leading order, this recovers the familiar gravity surface wave mode on
deep water.

On the other hand, according to (2.5), the vertical profile f(z) becomes oscillatory in
the low-wavenumber limit, k2 < µ2ω2. To analyse this possibility, we write

k = µκ, Z = µz; (2.9)

this re-scaling amounts to using h instead of µh as characteristic lengthscale. Assuming
Ω2 = ω2 − κ2 > 0, it follows from (2.5) and (2.6), after implementing (2.9), that

f = cos Ω(Z + 1)− µ

2Ω
sin Ω(Z + 1) +O(µ2), (2.10)

where

cos Ω + µ
Ω2 − κ2

2Ωω2
sin Ω = O(µ2). (2.11)

Solving (2.11) for µ � 1, then reveals a countable infinity of propagation modes which
obey the dispersion relations

ω2 = ω2
n + κ2 + µ

ω2
n − κ2

ω2
n + κ2

+O(µ2) (n = 0, 1, 2, ...), (2.12)

where ωn =
(
n+ 1

2

)
π.

To leading order the dispersion relations (2.12) agree with those of pure acoustic waves
in a fluid layer bounded by a rigid bottom and a free surface. It should be noted that,
unlike the gravity mode (2.7) which is confined close to the free surface (|Z| � 1), the
compression modes (2.10) reside in the fluid interior (−1 < Z < 0). Moreover, according
to (2.12), each acoustic mode can propagate along x (κ2 > 0) only if ω > ωcn, where

ωcn = ωn +
µ

2ωn
+O(µ2) (2.13)

is the corresponding cut-off frequency.

3. Resonant triads

The strongest nonlinear wave interactions in dispersive systems derive from quadratic
terms, and involve particular trios of wavetrains satisfying certain resonance conditions.
Such resonant triad interactions are not possible among surface gravity waves, though
(Phillips 1960). On the other hand, allowing for compressibility effects, two gravity waves
may interact resonantly with an acoustic wave. Kadri & Stiassnie (2013) gave specific
examples of such acoustic–gravity triads, from numerical solutions of the triad resonance
conditions. Here, we discuss how acoustic–gravity triad interactions arise in the limit
µ� 1.

Consider two gravity waves (k+, ω+) and (k−, ω−) observing the dispersion relation
(2.8), along with an acoustic wave (µκ, ω) which satisfies the dispersion relations (2.12)
for some n = 0, 1, 2, . . . . To form a resonant triad, these modes must also obey the
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resonance conditions

(i) k+ + k− = µκ; (ii) ω+ + ω− = ω. (3.1)

For µ� 1, condition (i) above is met by setting

k± = ±k̄ + 1
2µκ, (3.2)

where k̄ > 0, so

ω± = k̄1/2
(

1± µκ

4k̄

)
+O

(
µ2
)
, (3.3)

according to (2.8). In view of (3.3), condition (ii) in (3.1) then requires

ω = 2k̄1/2 +O(µ2), (3.4)

where

4k̄ = ω2
n + κ2 + µ

ω2
n − κ2

ω2
n + κ2

(n = 0, 1, 2, ...), (3.5)

in keeping with the acoustic dispersion relations (2.12).
Therefore, for µ � 1, any acoustic wave (µκ, ω) of given mode number n = 0, 1, 2, ...

can form a resonant triad along with two counter-propagating gravity waves (k±, ω±)
fixed by (3.2), (3.3) and (3.5). The special triads associated with the resonances noted
by Longuet-Higgins (1950), in particular, comprise a standing acoustic mode at one of
the cut-off frequencies (2.13), (µκ, ω) = (0, ωcn), and two subharmonic gravity waves with
frequency ωcn/2 and opposite wavenumbers.

4. Interaction timescale

Generally, conservative resonant triad interactions result in cyclic exchange of energy
among the members of a triad. This energy sharing is governed by a set of three coupled
nonlinear equations for the amplitudes of the interacting wavetrains, and the associated
timescale is O(1/ε) wave periods, where 0 < ε � 1 is the wave steepness; see, for
example, Craik (1985, Chapter 5). As expected, the acoustic–gravity triads of interest
here also involve energy exchange among the interacting wavetrains. However, owing to
the disparity in the lengthscales of acoustic and gravity waves (µ � 1), the interaction
timescale as well as the form of the amplitude evolution equations differ from those of a
standard resonant triad.

To estimate the appropriate interaction timescale, we recall that the triads identified
in §3 comprise two gravity and an acoustic wave. Suppose the velocity potential of each
gravity wave is O(ε), where 0 < ε � 1. The nonlinear interaction of these gravity
waves due to the quadratic terms in equations (2.2)–(2.3) excites the acoustic wave
whose velocity potential grows to O(α), say, where α will be specified below. From prior
analysis of triad interactions (see, for example, Bretherton 1964), this energy transfer is
expected to occur on a timescale O(α/ε2). Next, consider the interaction between the
O(α) acoustic wave and one of the O(ε) gravity waves. Taking into account the fact that
the acoustic velocity field is O(µα) in view of (2.9), the timescale of energy flow to the
other gravity wave is expected to be O(1/µα).

Now, for a fully coupled three-wave interaction that results in equitable energy sharing
among all members of the triad, the two separate interactions envisaged above must take
place on the same timescale. This requires

ε = αµ1/2. (4.1)
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Hence, in the problem at hand, the interaction timescale is O(1/εµ1/2), which is longer
than the usual O(1/ε) timescale of a triad.

In the ensuing analysis, we take α = O(1), which allows for the strongest acoustic and
gravity waves for given µ� 1. This choice also ensures that the triad nonlinear interaction
has the same O(1/µ) characteristic timescale as the linear coupling between gravity and
acoustic modes according to the dispersion relations (2.12). Moreover, for α = O(1),
the triad interaction timescale turns out to be comparable to the O(1/ε2) timescale of
quartet interactions of O(ε) gravity waves due to cubic terms. As a result, the cubic self-
interaction between the two gravity waves is expected to enter the amplitude evolution
equations at the same order as the quadratic acoustic–gravity wave interaction.

5. Amplitude equations

We now derive the amplitude evolution equations appropriate to a resonant triad of
two gravity waves (k±, ω±) and an acoustic wave (µκ, ω) consistent with conditions (3.1).
Based on the scaling arguments above, the velocity potential for the three interacting
waves is expanded as follows

ϕ = ε
{
S+(T )e|k+|zeiΘ+ + c.c.

}
+ ε
{
S−(T )e|k−|zeiΘ− + c.c.

}
+α
{
A(T ) cosωn(Z + 1)eiΘ + c.c.

}
+ . . . ,

(5.1)

where Θ± = k±x− ω±t and Θ = µκx− ωt.
The first two brackets in (5.1) represent the gravity waves while the third bracket

represents the acoustic mode whose profile depends on the scaled vertical coordinate
Z = µz, in line with (2.10). The gravity wave amplitudes S± and the acoustic wave
amplitude A depend on the ‘slow’ time T = µt, where ε and µ are related via (4.1) with
α = O(1). As noted earlier, the effects of linear coupling between gravity and acoustic
waves also come into play when T = O(1), so at leading order ω and κ satisfy the pure
acoustic dispersion relations, ω2 = ω2

n+κ2, with ωn = (n+ 1
2 )π (n = 0, 1, 2, ...). Moreover,

we allow for a slight detuning in the resonance conditions (3.1),

k± = ±k̄ + 1
2µκ, ω = ω+ + ω− + βµ, (5.2)

where β = O(1) is a detuning parameter.
Upon substituting (5.1) in the surface–acoustic wave problem (2.2)–(2.3), taking also

into account the triad conditions (5.2), of all generated terms we focus on those propor-
tional to exp(iΘ±) and exp(iΘ). Such terms can cause non-uniform (secular) behaviour at
higher order in expansion (5.1) because they have the same dependence on x and t as the
three linear propagation modes at the leading order. As usual, this difficulty is handled
by imposing solvability conditions on the problems governing higher-order corrections to
these modes; the desired evolution equations for the wave amplitudes S±(T ) and A(T )
then follow from these conditions. We remark in passing that Kadri & Stiassnie (2013)
did not invoke such solvability conditions; instead, they took the wave amplitudes to be
functions of a transformed time variable (cf. (7.1) in their paper), an assumption not
justified physically.

Carrying out the programme outlined above, we first collect terms proportional to
exp(iΘ). The associated correction to the acoustic mode is posed as ε2{F (Z, T ) exp(iΘ)+
c.c.}, where F satisfies the boundary-value problem

FZZ + ω2
nF = R1 (−1 < Z < 0), (5.3)
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−ω2F = R2 (Z = 0), (5.4a)

FZ = 0 (Z = −1). (5.4b)

Here,

R1 = − 1

α

{
2iωAT cosωn(Z + 1) + ωnA sinωn(Z + 1)

}
− 4iωk̄2S+S−e2k̄zeiβT , (5.5a)

R2 =
ωn
α

(−1)nA+ 4iωk̄2S+S−eiβT . (5.5b)

Now, since cosωn(Z + 1) is a homogeneous solution, the forcing terms R1 and R2

must satisfy a certain condition in order for the inhomogeneous problem (5.3)–(5.4) to
be solvable. Specifically, upon multiplying both sides of (5.3) with cosωn(Z + 1) and
integrating over −1 < Z < 0, after two integrations by parts and making use of (5.4), we
find

−(−1)n
ωn
ω2
R2 =

0∫
−1

R1 cosωn(Z + 1) dZ. (5.6)

The evolution equation for the acoustic wave amplitude A(T ) is obtained by inserting
expressions (5.5) for R1 and R2 in the solvability condition (5.6). It is also convenient
to redefine A → A exp(iβT ) so the factor exp(iβT ) in (5.5) due to resonance detuning
cancels out from this amplitude equation. Finally, it follows that A(T ) satisfies

dA

dT
= iγA+

(−1)n

4
ωnω

2αS+S−, (5.7)

where

γ =
κ2 − ω2

n

2ω3
− β. (5.8)

Since T = µt, the linear term on the right-hand side of (5.7) amounts to anO(µ) frequency
shift. According to (5.8), this shift is the combined effect of resonance detuning in (5.2)
and the O(µ) correction in (2.12) to the pure acoustic dispersion relations. The nonlinear
term in (5.7) is the expected resonant forcing of the acoustic wave due to quadratic
interactions of the two gravity waves.

Next, we consider the terms proportional to exp(iΘ±) that result from substitut-
ing (5.1) in equations (2.2)–(2.3). To leading order, these terms turn out to be O(ε3)
and involve quadratic acoustic–gravity interactions as well as cubic gravity wave self-
interactions; moreover, they derive entirely from the free-surface condition (2.3a). Thus,
in lieu of a solvability condition, we require that these terms vanish. After factoring out
exp(iβT ) via A→ A exp(iβT ), this condition yields the following evolution equations for
the gravity-wave amplitudes

dS±
dT

= − (−1)n

8
ωnω

2αAS∗∓ −
i

64
ω7α2

(
S2
±S
∗
± − 4|S∓|2S±

)
, (5.9)

where ∗ stands for complex conjugate. The terms on the right-hand side of (5.9) account
for the quadratic and cubic interactions mentioned above, which enter the evolution
equations at the same order for α = O(1). It should be noted that the cubic terms in
(5.9) were ignored by Kadri & Stiassnie (2013).

Finally, we generalise the amplitude equations (5.7) and (5.9) to resonantly interacting
wavepackets, where A and S± are wave envelopes involving temporal as well as spatial
(x-) modulations. From the acoustic dispersion relations (2.12), with T = µt as the slow
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time, the spectral width of sidebands of the acoustic carrier wavenumber κ ought to be
O(µ), assuming κ = O(1); thus, in view of (2.9), the appropriate spatial envelope variable
is X = µ2x.

These spatial modulations directly impact only the acoustic amplitude equation (5.7).
Specifically, the dependence of A on X adds the term −2iκAX cosωn(Z + 1)/α to R1 in
(5.5a). As a result, (5.7) is replaced by

∂A

∂T
+
κ

ω

∂A

∂X
= iγA+

(−1)n

4
ωnω

2αS+S−. (5.10)

On the other hand, the gravity evolution equations (5.9) remain unchanged, as the de-
pendence of S± on X is only parametric. This reflects the fact that the gravity wave
envelopes propagate slowly in comparison with the acoustic wave envelope — the ratio
of the gravity to the acoustic group velocity is O(µ).

6. Numerical results and discussion

To gain a more quantitative understanding of the resonant generation of an acoustic
wave by two monochromatic gravity wavetrains, we solved numerically the amplitude
equations (5.7) and (5.9) for the initial conditions A(0) = 0, S±(0) = 1. The computations
focused on the fundamental acoustic mode (n = 0) with wavenumber κ = 1, so ω0 = π/2
and ω2 = 1 +π2/4. This leaves two free parameters: α which controls via (4.1) the initial
gravity wave steepness in terms of the compressibility parameter µ; and γ which adjusts
the tuning of the resonant triad according to (5.8). Equations (5.7) and (5.9) were solved
numerically by an explicit Runge–Kutta method.

Under the above initial conditions, it follows from (5.7) and (5.9) that |A| and |S| ≡
|S±| satisfy the conservation law

|A|2 + 2|S|2 = 2, (6.1)

which brings out the energy sharing between the gravity and acoustic waves. As sug-
gested by (6.1), this energy exchange is not affected directly by the cubic terms in (5.9);
however, for α = O(1) these gravity self-interaction terms are important in fine-tuning
the resonance, as discussed below.

Our computations confirm that the interaction results in cyclic exchange of energy
among the triad members. Figure 1 shows plots of the maximum acoustic amplitude |A|
reached in the course of the interaction, as γ is varied, for three different values of α. For
the smallest α = 0.2, we obtain a bell-shaped curve with peak near γ = 0, similar to a
classical triad where the cubic terms in (5.9) are absent (Bretherton 1964). Moreover, the
computed peak response is slightly less than

√
2, which according to (6.1) corresponds

to the perfectly tuned situation where all the energy initially in the gravity waves is
transferred to the acoustic wave.

For the two larger α, by contrast, the response curves in figure 1 are no longer sym-
metric and the resonance peak is progressively shifted towards γ > 0 as α is increased;
furthermore, for the largest α = 1, a ‘jump’ phenomenon is observed near γ = 4.1. This
nonlinear-resonance behaviour is instigated by the cubic terms in (5.9), which come into
play as α is increased and cause a shift of the gravity-wave frequency; as a result, γ has
to adjust so as to fine-tune the triad. It should be noted that the peak response remains
close to the upper bound |A| =

√
2 irrespective of α, indicating that nearly all the initial

gravity wave energy can be transferred to the acoustic wave when a triad is suitably
tuned.

Next, we explore the resonant excitation of acoustic waves by locally confined gravity



Acoustic–gravity wave triads 9

γ
-2 -1 0 1 2 3 4 5 6

m
a
x
|A

|

0

0.5

1

1.5

Figure 1. Maximum acoustic wave amplitude |A| due to resonant gravity–acoustic triad inter-
action, as the tuning parameter γ is varied, for three values of the parameter α which controls
the initial gravity wave steepness. (—): α = 1; (– –): α = 0.5; (– · –): α = 0.2. The dotted line

(· · · · ) indicates the upper bound |A| =
√

2 implied by (6.1).

wavepackets, based on numerical solutions of the evolution equations (5.9) and (5.10).
Again, we focus on the acoustic mode n = 0 with κ = 1 and assume that no acoustic
disturbance is initially present, A(X,T = 0) = 0. Also, for simplicity as before, the two
gravity wave envelopes are taken to be equal, S±(X,T ) ≡ S(X,T ), with initial condition
S(X,T = 0) = S0(X), where S0(X) → 0 as X → ±∞. Then from (5.9) and (5.10) we
deduce the conservation law

∞∫
−∞

(
|A|2 + 2|S|2

)
dX = 2

∞∫
−∞

|S0|2dX (6.2)

which is the wavepacket counterpart of (6.1). In all computations reported below, S0 =
exp(−X2), so the right-hand side in (6.2) equals

√
2π. Numerical integration of equations

(5.9) and (5.10) was carried out using MATLAB solver ‘pdepe’.
For the assumed initial conditions, in view of (6.2),

E(T ) =
1√
2π

∞∫
−∞

|A|2dX (6.3)

may be interpreted as the fraction of the initial gravity wave energy transferred to the
acoustic mode in the course of the nonlinear interaction. To gain some insight into this
energy-transfer process, we plot in figure 2 time histories of E(T ) for two values of the
steepness parameter α = 0.2, 1. These α were also considered earlier in the discussion
of monochromatic wavetrains, and it was found that nearly all the initial gravity wave
energy can be transferred to the acoustic wave, if a triad is finely tuned (figure 1). In
the case of interacting wavepackets, however, figure 2 reveals that the situation is quite
different: after an initial transient growth, E(T ) settles to about 40% for α = 0.2, and to
only roughly 20% for α = 1. Moreover, in contrast to monochromatic waves, varying γ
has no appreciable impact on the energy ultimately transferred to the acoustic wave, as
illustrated in figure 2 for γ = 4.1, 0 and α = 1. It should be noted that γ = 4.1 is near
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Figure 2. Time histories of acoustic waves energy, E(T ), for certain values of the wave steepness
parameter α and the resonance tuning parameter γ. (—): α = 1, γ = 4.1; (– –): α = 1, γ = 0;
(· · · · ): α = 0.2, γ = 0.14; (– · –): α = 1, γ = 0 and the cubic terms in equation (5.9) are ignored
(perfectly tuned standard triad).

while γ = 0 is far away from the peak acoustic response found earlier for monochromatic
waves when α = 1 (see figure 1). On the other hand, for a standard triad where the cubic
terms in (5.9) are absent, E(T ) eventually approaches 95% under conditions of perfect
tuning (γ = 0).

We conclude that, for acoustic–gravity triads involving locally confined wavepackets,
the self-interaction terms in the evolution equation (5.9) seriously impede the transfer
of energy to the acoustic wave. As noted earlier, these terms come into play as the
steepness parameter α is increased and are responsible for an amplitude-dependent shift
of the gravity-wave frequency. In the case of monochromatic wavetrains, it is possible to
compensate for this shift by adjusting γ, and thus obtain a tuned triad interaction which
leads to the resonant behaviour displayed in figure 1. For locally confined wavepackets,
however, this frequency shift creates phase differences depending on the local gravity-
wave amplitude, which as time passes detune the resonant triad, inhibiting the flow of
energy to the acoustic wave; the bulk of the acoustic disturbance is thus induced in
the early stages of the interaction and subsequently propagates away at the acoustic
wave group velocity. This detuning is more pronounced for larger α, so resonant triad
interactions become a less effective coupling mechanism as the wave steepness is increased.

7. Concluding remarks

Motivated by the seminal work of Longuet-Higgins (1950), we studied resonant wave in-
teractions of an acoustic mode with two counter-propagating subharmonic surface gravity
waves in water of constant depth over a rigid bottom. It turns out that such acoustic–
gravity wave triads differ fundamentally from a standard resonant triad, as the acoustic
spatial scale is much longer than the gravity wavelength owing to the weak compress-
ibility of water. Exploiting this disparity in lengthscales, we explained the origin of the
acoustic–gravity triads suggested on numerical grounds by Kadri & Stiassnie (2013), and
we obtained via a systematic asymptotic procedure the amplitude evolution equations
governing these resonant triad interactions. The appropriate amplitude equations, apart
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from the expected quadratic acoustic–gravity interaction terms, also involve certain cu-
bic gravity self-interaction terms ignored in Kadri & Stiassnie (2013), which arise due to
the longer than usual interaction timescale. These additional terms are responsible for
an amplitude-dependent shift of the gravity-wave frequency and play an important part
in the energy transfer from surface to acoustic waves. Specifically, for monochromatic
wavetrains, it is feasible to compensate for this shift by allowing for a detuning of the
triad resonance conditions, an effect not considered in Kadri & Stiassnie (2013), so that
still nearly all the energy initially in the gravity waves is transferred to the acoustic
mode. In the more realistic scenario of locally confined wavepackets, however, the cubic
self-interaction terms create phase differences depending on the local gravity-wave am-
plitude; this detuning effect is irreversible and seriously inhibits the flow of energy to the
acoustic wave, particularly as the gravity wave steepness is increased.

Moreover, our asymptotic analysis has brought out the key role of the parameter α
in (4.1), which measures the gravity wave steepness ε relative to the compressibility
parameter µ in (2.1). According to (5.1), the peak acoustic pressure (after restoring
dimensions), p0 ∼ 2αµ2ω|A|ρc2, is linearly proportional to α, and hence ε, as well as to
the local acoustic wave amplitude |A(X,T )|. Thus, for given α, the maximum pressure
amplitude pmax is achieved for |A|max, the maximum value of |A| realised in the course of
the wave interaction. Specifically, for the scenarios considered in figure 2, when α = 0.2
(with γ = 0.14) we find |A|max = 0.96, whereas when α = 1, |A|max = 1.35, 0.36 for
γ = 4.1, 0, respectively. These results suggest that, although the overall energy transfer
to the acoustic mode becomes less efficient as α is increased, the induced pmax may still
increase with the gravity wave steepness, particularly if the frequency tuning parameter
γ is chosen appropriately.
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