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Abstract

Reinforcement learning (RL) has great potential in robotic systems as a tool for
developing policies and controllers in novel situations. However, the cost of real-
world samples remains prohibitive as most RL algorithms require a large number of
samples before learning near-optimal or even useful policies. Simulators are one way
to decrease the number of required real-world samples, but imperfect models make
deciding when and how to trust samples from a simulator difficult. Two frameworks
are presented for efficient RL through the use of simulators. The first framework
considers scenarios where multiple simulators of a target task are available, each with
varying levels of fidelity. It is designed to limit the number of samples used in each
successively higher-fidelity/cost simulator by allowing a learning agent to choose to
run trajectories at the lowest level simulator that will still provide it with useful
information. Theoretical proofs of this framework’s sample complexity are given
and empirical results are demonstrated on a robotic car with multiple simulators.
The second framework focuses on problems represented with continuous states and
actions, as are common in many robotics domains. Using probabilistic model-based
policy search algorithms and principles of optimal control, this second framework uses
data from simulators as prior information for the real-world learning. The framework
is tested on a propeller-driven inverted pendulum and on a drifting robotic car. These
novel frameworks enable RL algorithms to find near-optimal policies in physical robot
domains with fewer expensive real-world samples than previous transfer approaches
or learning without simulators.

Thesis Supervisor: Jonathan P. How
Title: R. C. Maclaurin Professor of Aeronautics and Astonautics
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Chapter 1

Introduction

Real robots are often physically more capable than the software that controls them.

For instance, expert human pilots are able to control remote-controlled (RC) airplanes

and helicopters through very aggressive aerobatics and flight maneuvers, often push-

ing the aircraft to the limits of its physical structure. However, with few exceptions

(e.g., using expert demonstrations to facilitate learning [1, 2]), computer algorithms

have been unable to exploit the full capabilities of RC airplanes and helicopters to cre-

ate flight performances that rival that of expert pilots. While significant limitations

in achieving this goal can be attributed to limitations in sensors and state estimation

capabilities, developing robust, aggressive flight controllers remains difficult, particu-

larly because high-fidelity models of dynamic robots are both difficult to develop and

difficult to use, resulting in using simplified models for control design and the real

robots for experimentation and verification.

Reinforcement Learning (RL) [97] provides a framework that can help robots au-

tonomously develop control laws and policies that enable them to achieve complicated

motion in difficult-to-model environments. By allowing the robot to explore the envi-

ronment and perceived rewards, learning agents discover policies and controllers, of-

ten through a trial-and-error methodology. In addition to freeing the design engineer

from having to hand-code controllers, RL can discover new policies and controllers

and adapt to novel situations without requiring reprogramming.

Over the past 20 years RL has demonstrated impressive results in many com-
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plicated domains such as robot locomotion [55], helicopter flight [9, 76], backgam-

mon [107], and elevator control [13]. However, many limitations exist when imple-

menting RL on real robots [52]. In particular, real robots operate in a continuous

world and often have relatively high-dimensional state and action spaces, thus suffer-

ing from the “curse of dimensionality” [14]. Also, real robots have real costs associate

with running them, thus also suffering from the “curse of real-world samples” [52].

These costs can be financial (robots are often expensive), temporal (robots run in

the real world and therefore are limited to running in real-time), and occasionally

emotional (watching your robot crash for the 𝑛’th time is demoralizing). Because

classical RL typically requires a large number of samples before converging to opti-

mal or near-optimal policies [49], using RL to learn optimal behavior from scratch on

a real robot is often ineffective and impractical. This thesis attempts to improve the

efficiency and practicality of RL algorithms for robots through the use of simulations

of the robot.

1.1 Motivation: Using Simulators Efficiently to In-

crease Learning Speed

Simulators often accompany any work with real robots. While it is difficult, if not

impossible, to perfectly model something as complicated as a robot interacting with

the world, simplified simulations are typically either already available or easy to

construct for most robots. These simulations provide valuable insight for design

engineers as they are used to effectively “weed-out” algorithms, code bugs, and ideas

that would certainly be not useful and possibly even detrimental to implement on the

real robot. In many cases, the simulator is a sanity check to ensure that, at least in

the simplified setting of the simulation, the robot is operating correctly.

As Figure 1-1 indicates, simulations of robots often vary in quality. For example,

a robot helicopter can be simulated by a simple point-mass model simulation of the

helicopter that captures the general effects of different actions, but ignores much
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Increasing Cost

Increasing Accuracy

Figure 1-1: Many robotic domains (like the airplane on the right) use simulators for
initial code development, hardware design, etc. Often, a range of simulators are used,
varying from simple, low-cost (time and/or computing power) simulators on the left
to complex, high-cost simulators on the right. The main goal of this thesis is to
develop algorithms that use a series of simulators to efficiently learn useful behavior
on real robots.

of the dynamics. Alternatively, a complicated physics simulation that accounts for

aerodynamic forces such as blade flapping, motor dynamics, battery wear, etc can be

used. This more complicated simulation may be more accurate in predicting how the

actual robot will behave, but also may take significantly more time and computation

power to run, although still being less accurate and less costly than flying the actual

helicopter.

The key idea of this thesis is to efficiently utilize the simulators available for a

robotic task to both decrease the time and real-world samples required for learning

and increase the performance of a target task. In particular, I develop frameworks

that use simulations when possible and only learn on the real robot that which cannot

be learned in the simulator. The key challenge is choosing both when and how to use

simulated data versus real-world data when learning a novel task.

1.2 Problem Statement

The primary goal of this work is to develop algorithms that increase the efficiency of

real-world RL by transferring sampling complexity from the robot to simulations of

the robot. Loosely speaking, the simulations should be used for what they are good

at—generating lots and lots of samples, while the robot should be used to generate

a few very good samples. Together, these ideas lead to algorithms that only learn in
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the real world the things that the simulators do not accurately predict.

There are several challenges associated with this problem, primarily dealing with

the type of information that is passed between simulators during a learning process.

∙ Passing Information Between Simulators:

For any robotic task, the real robot performance is ultimately the most impor-

tant metric. Thus, by definition, data generated by the physical robot are more

accurate than data generated by the simulators. Similarly, data observed in a

higher-fidelity simulator are assumed to be more accurate than data collected

in the same state-action space in lower-fidelity simulators. Thus, the accuracy

of lower-fidelity simulators (with respect to the real world) can be improved by

appropriately using this observed information. This can decrease the samples

required in the real world by allowing learning agents to rely more on lower-cost

simulators; however, the benefits will depend on the type of information passed

(e.g. observed reward and transition values or learned policy parameters) and

on how that information is used by the lower-fidelity simulators. The primary

challenge of this work is effectively combining information from inexpensive,

potentially inaccurate simulators with expensive real-world samples to generate

optimal behavior in the real world.

∙ Generalization Between Simulators: Function approximation [87] has been crit-

ical for scaling RL problems to real-world domains, as tabular representations

of transition dynamics and value functions are impractical for large, high-

dimensional problems. Function approximation has also allowed data collected

in a specific state-action pair to be generalized to neighboring states and ac-

tions. A similar challenge exists when using multi-fidelity simulators to learn in

a real-world target task. Specifically, the challenge is to generalize data across

simulators in order to maximize the utility of observing samples in high-fidelity

simulators and the real world.

∙ Avoiding Negative Transfer: A major concern in Transfer Learning (TL) [104]

is the notion of negative transfer, or transferring information between different
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domains that causes worse behavior in the target domain than had no informa-

tion been passed at all. When passing information between simulators, both

up and down the multi-fidelity chain, ensuring that passed information will not

negatively affect the learning is a major challenge.

1.3 Literature Review

There is a vast existing literature regarding RL and robotics. This section attempts to

highlight the major contributions relevant to using simulations to solve RL, control,

and optimization problems.

1.3.1 Simulators in Robotics and Reinforcement Learning

Many researchers have used simulators to speed learning in RL. For instance, pri-

oritized sweeping [72] and the Dyna architecture [98] perform computation between

real-world samples to direct learning. In adaptive control [85], forward models of

dynamic systems are learned from data [71] and are used to compute controllers.

However, these learned forward models will never perfectly model the outcomes of a

complicated real-world system, often resulting in policies learned in the model that

do not perform well in the real world [7].

While a few researchers have shown that policy transfer from a simulation to a real

robot is possible [10, 31, 32, 45, 100], as noted in [52], policy transfer from simulation

to the real world will probably only work if the system is inherently stable. It almost

certainly won’t work if the transferred policy is needed for high-rate stabilization

because of discrepancies between the real robot and the simulation. Also, policy

transfer is limited in performance by the accuracy of the simulator. Unless the real

world is perfectly simulated, it is very unlikely that a policy which is optimal in the

simulator will be optimal in the real world. Therefore, some real-world experience is

needed to find optimal policies on real robots.

To account for model uncertainty, some researchers have used methods that ex-

plicitly account for variance in the learned forward models [9, 91], yielding methods
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that are cautious on the real robot by noting where the forward model is uncertain

of outcomes. These methods, though, do not incorporate specific simulators of the

robot, but instead just apply the model uncertainty across learned models.

As an alternative to directly transferring learned optimal policies from a simulator

to the real robot, simulators are often used to train learning agents, with real-world

experience used later to update the simulator or the agent’s policy (e.g. [3]). How-

ever, such systems do not guarantee an efficient collection of samples from different

models, require practitioners to decide when to run policies in the simulator/real

world, and do not guarantee efficient exploration. Another approach is to always

execute actions in the real world but use a low-fidelity simulator to help compute

policy search gradients [3,26,29,53,56,81]. However, these approaches are specific to

policy search algorithms and, again, do not provide exploration guarantees. A similar

idea in the controls community is know as Iterative Learning Control (ILC) [5,6,18],

where simple models of the system are used to improve closed-loop control. ILC

has shown impressive results on dynamic robots when the task to be performed is

repetitive [36,73,92,109]. However, these methods work only for explicitly repetitive

tasks.

Simulators and demonstrations have also been used in model-based RL as a way to

gain additional samples for the learning agents without running the real hardware [11,

75]. These approaches, though, do not allow for multiple levels of simulation nor do

they guarantee efficient exploration. Recently (and after this initial work was already

published), an algorithm for decreasing samples needed from hardware experiments

was published [40]. The authors use an iterative, model-free RL algorithm with

neither formal guarantees nor hardware results.

Significant recent advances in RL for robotics have also come from model-based

policy search methods [28]. Real-world data are used to construct a model of the

world, from which trajectory roll-outs can be used to update policy parameters [25].

These methods search locally for improvements to the current policy and so scale

well as the problem dimensionality increases. However, due to the local nature of

the search, they typically lack any formal guarantees as to global optimality and
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are subject to local solutions. As shown in Chapter 5, problems exist for which

these methods get stuck in very poor local solutions, particularly when multiple local

solutions exist.

Methods such as trajectory optimization for exploration [62] and skill generaliza-

tion [58] have shown impressive results in simulated and real robot domains, albeit

often without convergence or sample complexity guarantees. By contrast, the frame-

works developed in this thesis use data not just from a target domain but also from

available simulators to build multiple models. Furthermore, to make provably efficient

use of data, the framework developed in Chapter 3 uses KWIK-Rmax-style learning

and planning [65] rather than policy search techniques.

Multi-fidelity simulator models have been considered for a single agent that learns

different policies for varying observability conditions [115], but these models are not

actively selected as they depend strictly on the observed environment. Multi-fidelity

models have been used in the multi-agent context to combine data from people per-

forming tasks in different simulators [90], but these policies were learned from traces

through supervised learning, not RL.

1.3.2 Simulators and Models in Control

Many systems utilize models of varying fidelity for design, validation, and control [22,

23,35,108]. Simple models, such as linearized equations of motion, are typically used

for control design, while more complex, data based or finite element based simulations

are used for control and design verification. Finally, by assumption, the real world is

the highest fidelity simulator and is used to verify the controllers and designs from

the simulators, ultimately determining value.

Simple models are needed in the control design process as many traditional meth-

ods such as classical, adaptive, and optimal control rely on models with explicit

equations of motion to develop the required controllers. These simple models are

often deterministic and use closed-form, expressible equations of motion. Particu-

larly in the case of optimal control, resulting policies are sometimes open-loop and

depend entirely on the model used to compute them. These restrictions on simple

21



models used for control design lead to models that sometimes neglect parts of the true

system, either because they are non-linear or because they are just not well-enough

understood to be expressed in equations.

On the other hand, simple models for control are advantageous in that the policies

designed for them consider the entire state-action space during the design process.

The controllers are designed considering the equations of motion as a whole, rather

than by sampling a complex simulator or the physical environment, leading to “global”

policies, or policies that have considered the state-action space globally.

More complex (and hopefully more accurate) simulations are then used to ver-

ify and validate the controllers developed using the simple models [37, 46]. These

complex simulations are typically stochastic, either through an attempt to model

the stochasticity inherent in the physical system, or as a way to compensate for and

capture unmodeled dynamics [3]. Complex simulators can also be “black-box” in the

sense that the equations of motion can not be easily written down (e.g. when using

physics simulators such as Gazebo [54]) or that the simulation engine is proprietary

or otherwise unavailable (e.g. a commercial video game).

1.3.3 Transfer Learning

Similar to approaches in RL that attempt to generalize observed transition and reward

information to nearby states and actions, transfer learning (TL) tries to generalize

learned behavior across different tasks and domains. In TL, an RL algorithm is ap-

plied in a source task. Pertinent information is then transferred to a target task

of interest, with the hope that the transferred information will increase the perfor-

mance and/or decrease the learning time in the target task when compared to not

using the transferred information. Significant results have been obtained through

TL, such as learning a cart-pole task with changing parameters [93], reusing a set

of learned policies [33], and transferring data between tasks with different state and

action spaces [106].

In the TL framework, algorithms are designed to maximize utility when the do-

mains being transferred to and the time at which transfer occurs are not selected
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by the algorithm. Also, information transfer in TL is typically unidirectional, from a

source task to a target task, but not the other way. Recent work in TL has considered

sample complexity bounds in a series of environments under both bandit [8] and full

MDP conditions [20]. However, both of these works assume environments are chosen

i.i.d., not by the agent itself.

Representation transfer [105] applies the ideas of TL to transferring information

between different representations of the same task. By changing the representation the

RL algorithm is using (e.g. the current function approximation form), representation

transfer may be able to decrease learning time and increase performance.

Significant information can be transferred from a source task to a target task

through the use of region transfer [60,61]. State transition and reward values observed

in a source task are transferred directly to the target task, but only from regions that

are known to be similar to the target task. Thus, if the source task is similar to the

target task in one half of the state-action space, observed transition values from that

half would be used in the transferred domain, but not from the other half. This idea

has interesting potential if applied to robotic domains where information is transferred

from a simulator, but only in those parts of the state-action space that accurately

model the real-world robot.

Transferred Delayed Q-Learning (TDQL) [67] transfers the value function uni-

directionally from a source learning task as a heuristic initialization for the target

learning task. Because TDQL uses Delayed Q-learning [95] as its base learner, it can

only be used with tabular representations, not more general structured representa-

tions such as those covered by the “knows what it knows” (KWIK) framework [65].

Also, the TDQL algorithm does not support transferring learned model parameters

to lower-fidelity simulators from higher-fidelity simulators, returning to lower-fidelity

simulators when useful information might be gained.

Finally, TL with partially constrained models [34] learns in a computationally

complex environment by using an approximation to the true simulation. The approx-

imate model is created by removing some of the constraints that exist in the original

problem. As with TDQL, information is passed only from the approximate model to
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the true model, and not the other direction.

1.3.4 Multi-Fidelity Optimization

While not directly related to RL, the field of multi-fidelity optimization (MFO) [83,

88, 89] uses the idea of multiple levels of simulation to solve optimization problems.

Sometimes, the objective function that needs to be optimized requires significant

computation and time to return each function evaluation. In these cases, MFO uses

approximations to the true objective function to perform a global search, finding a

region that contains the optimal solution. Then, a final local search is performed

using the original objective function to reach the true optimum.

Approximations to the true objective function, called surrogate or meta-models,

fit into three broad categories [88]: data-fit models, reduced-order models, and hier-

archical models. Data-fit surrogate models [48,83,112] are statistical representations

of the true objective function created using sampled points of the true function. The

statistical models used range from parametric methods such as polynomial regression

to non-parametric methods such as radial basis functions [83]. Reduced-order mod-

els [86] approximate the objective function by constructing a simpler function using

a set of basis functions and data from the target function, often using proper or-

thogonal decomposition [44]. Finally, hierarchical models use simpler, physics-based

models as an approximation to the true objective function. These simpler functions

could be simpler engineering models [4] or the original objective function solved with

a coarser grid [63]. The simple models can be used as valid approximation models

through the use of additive corrective terms, where the output of the simple model

is corrected to predict observed outcomes from the actual objective function. These

additive corrections can be described in the original objective function’s state space

which is not necessarily the same as the approximate model’s state space [88].

Techniques in MFO include learning model disparities [113] and constraining

search based on results from lower-fidelity models [70]. However, MFO does not

consider sequential decision making tasks. One of the key contributions of this the-

sis is borrowing lessons from MFO and applying them to RL problems in order to
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minimize the number of needed real-world samples to learn a given task.

1.3.5 Evolutionary Robotics

The field of evolutionary robotics commonly uses a combination of simulated and real

data to learn new controllers [47]. Genetic algorithms are used to evaluate candidate

controllers, with most of the evaluations occurring in simulation. Several papers have

investigated the “reality gap” that occurs when controllers that work well in simulated

environments perform poorly on the physical hardware, and develop robust ways of

making simulators that can be used in conjunction with the physical hardware [57,

69, 116]. While the ideas are similar to the current work, the first half of this thesis

focuses on the RL problem where efficient exploration can be guaranteed.

Very recent work shows an evolutionary robotics algorithm that combines a heavy

preprocessing phase in simulation that allows robots to intelligently update predicted

real-world performance based on sparse samples [21]. The researchers use Bayesian

optimization and Gaussian processes to select new test parameters in the presence

of hardware failures. In principle, these ideas mirror closely those presented in this

thesis: use simulated data where possible. However, the algorithms presented later

are specifically designed to avoid exhaustively sampling the simulated state-space and

learn closed-loop feedback controllers with continuous states and actions, rather than

open-loop gait patterns.

1.4 Summary of Contributions

This thesis focuses on the development of algorithms and methods that reduce the

sample complexity of learning in the real world, as an attempt to make RL practical

for physical robots. As such, the goal is not to make novel, sample efficient RL

algorithms, but rather to develop methods that use existing algorithms in novel ways

to transfer sampling burden from the real world to the simulator(s). In this respect,

a number of contributions to the state of the art have been made.

First, a new framework, Multi-Fidelity Reinforcement Learning (MFRL), for per-
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forming RL with a heterogeneous set of simulators (including the real world) is in-

troduced, analyzed, and empirically demonstrated. MFRL not only chooses actions

for an agent to execute, but also chooses in which simulator to perform them. The

result is an agent that both

∙ uses information from lower-fidelity simulators to perform limited exploration

in its current simulator, and

∙ updates the learned models of lower-fidelity agents with higher-fidelity data.

The MFRL framework specifies rules for when the agent should move to a higher-

fidelity simulator, as well as moving to a lower-fidelity level before over-exploring in

a more expensive simulation. These rules and the transfer of values and data provide

theoretical guarantees on convergence and sample efficiency. Specifically, given the

assumptions in Section 3.1.2, the framework

∙ does not run actions at high-fidelity levels that have been proven to be subop-

timal at lower-fidelity levels,

∙ minimizes (under certain conditions) the number of samples used in the real

world, and

∙ polynomially limits the total number of samples used in all simulators.

In addition, in the worst case, MFRL provably uses no more real-world samples than

unidirectional transfer approaches.

The main contributions relating to MFRL are

∙ introducing the MFRL framework for learning with multiple simulators, which

is the first framework that dynamically chooses which simulator to perform

actions in,

∙ a theoretical analysis of the framework’s sample complexity, and

∙ several demonstrations of efficient learning on a robotic car with fewer real-world

data points than unidirectional transfer or learning without simulators.
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These results demonstrate MFRL is a provably and practically efficient manager of

the low and high quality simulators often available for robotics tasks.

The second major set of contributions revolves around a framework tailored for

domains with continuous representations of the states and actions. Policy search

methods have gained a lot of traction in recent years in high-dimensional, continuous

robotic domains [28]. By searching directly in the space of policies many of the

computational complexities of the “curse of dimensionality” can be avoided, at the

expense of theoretical guarantees (and sometimes practical performance).

In the second half of this thesis a framework that is similar in spirit to MFRL,

but is centered around a model-based policy search algorithm called Probabilistic

Inference for Learning Control (Pilco) [25], is developed. Pilco is applied to a

simulator to learn a model of the simulated dynamics and a good policy for the

simulated domain. The learned transition dynamics and policy are then used as

a prior for a real-world learning agent. The simulated prior is used in a Gaussian

process (GP) model of the transition dynamics in Pilco to infer about states that

the real-world system has not yet sampled. Experiments demonstrate that, even

when the simulator is inaccurate, using an informative simulated prior decreases the

learning samples needed in the real world and increases the average performance

of the achieved solution. This approach differs from previous work using priors in

Pilco [15] since it is not limited to linear priors. Using a learned, nonlinear prior

from a simulator allows for incorporating prior information from arbitrarily complex

simulations without needing to make assumptions about the underlying dynamics of

the system.

Finally, a method for transferring information gained from the physical system

back to the simulator (referred to as reverse transfer) is developed. Combined with

intelligent policy initializations based on optimal control, this reverse transfer helps

avoid local minima and helps Pilco converge to good policies that a generic pol-

icy search algorithm would be very unlikely to find. Experiments demonstrate that

using data observed in the real world, learning agents can revisit the simulator and

sometimes find different policies that have lower cost in the real system.
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The main contributions of this framework are

∙ a way to incorporate principles of optimal control for initializing policy param-

eters and avoiding local minima,

∙ a principled approach to incorporating data from any simulator into the Pilco

learning algorithm,

∙ a derivation of propagating uncertain inputs through a Gaussian process with

a nonparametric mean function,

∙ a derivation of mixing real and simulated data together in order to re-plan in a

simulated environment, and

∙ simulated and hardware results empirically showing the benefits of using prior

information in the learning process.

Using prior data from a simple simulator, convergence to a good policy on a physical

inverted pendulum is shown with at least three times less data than is needed when

a zero-mean prior is used. The framework is also applied to a robotic car that learns

to drift by using optimal control to find an initial policy.

A summary of and links to the videos of the hardware experiments relating to this

thesis can be found in Appendix A.
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Chapter 2

Background

This section provides background on some of tools used in this thesis.

2.1 Reinforcement Learning

A simulator, Σ, is represented by a Markov Decision Process (MDP) [82],𝑀 = ⟨𝑆,𝐴,𝑅, 𝑇, 𝛾⟩
with states 𝑆 and actions 𝐴. The bounded reward function is defined as 𝑅(𝑠, 𝑎) ↦→
[𝑅min, 𝑅max] where 𝑅min and 𝑅max are real numbers. The transition function 𝑇 en-

codes the probability of reaching some next state given the current state and action.

Specifically, 𝑇 (𝑠, 𝑎, 𝑠′) = 𝑃𝑟(𝑠′|𝑠, 𝑎).

The optimal state-action value function is specified as

𝑄*(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾
∑︁
𝑠′

𝑇 (𝑠, 𝑎, 𝑠′)𝑉 *(𝑠′),

where 𝑉 *(𝑠) = max𝑎𝑄
*(𝑠, 𝑎). Intuitively, 𝑄*(𝑠, 𝑎) is the expected sum of discounted

rewards when taking action 𝑎 in 𝑠 and then acting optimally thereafter. A determin-

istic policy 𝜋 : 𝑆 ↦→ 𝐴 is said to be optimal when 𝜋*(𝑠) = argmax𝑎𝑄(𝑠, 𝑎). Given an

MDP (including 𝑇 and 𝑅), planning methods such as value iteration [82] can be used

to calculate the optimal value function and optimal policy.

In Chapters 4 and 5 both the states and the actions will be real-valued vectors.

The reward function is also be defined as the negative of a user-defined cost function,
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such that 𝑅(𝑠) = −𝑐(𝑠). The cost function is chosen to depend only on the current

state and not the chosen action. The goal of the RL algorithm will be to find a policy

𝜋* : 𝑠→ 𝑎 that minimizes the expected long-term cost

𝐽 =
𝐻∑︁
𝑡=0

E𝑠𝑡 [𝑐(𝑠𝑡)], (2.1)

where the expected cost is a function of the state 𝑠𝑡, over some fixed horizon 𝐻.

In RL, an agent knows 𝑆, 𝐴, and 𝛾 but not 𝑇 and 𝑅, which it learns from

interaction with the environment. Many classes of algorithms exist for learning in

this setting including classical algorithms such as Q-learning [114], which do not build

explicit representations of 𝑇 and 𝑅. Model-based reinforcement learning solutions,

like classical R-max [17], explicitly build estimates 𝑇 and 𝑅̂ from data and then use a

planner, such as value iteration, to determine the optimal policy. These model-based

learners are generally more sample efficient than model-free approaches [102].

RL algorithms also differ as to how the optimal policy is found. In policy search

methods, 𝜋*(𝜃) is parameterized by a vector 𝜃 and the RL algorithm searches for the

optimal parameter values. In value-function methods, 𝜋* is instead found by keeping

track of the estimated long-term cost of each state. Policy search methods are often

advantageous as expert knowledge can easily be incorporated by specifying the form

of the policy. Also, the number of parameters needed to optimize are usually fewer

in policy search methods than in corresponding value-function approaches [52].

2.2 Sample Complexity and the KWIK Framework

An RL algorithm searches for an optimal policy but does not know 𝑇 and 𝑅 a priori.

This leads to an inherent tension between exploration, where an agent seeks out new

experiences to update its model, and exploitation of its current knowledge where the

agent attempts to complete the task. The exploration/exploitation trade-off has been

studied extensively in RL [17,65,95,101].

To judge the exploration efficiency of the algorithm, previous definitions [95] of
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sample complexity for an RL agent are followed. Sample complexity analysis is used

to bound the worst-case number of experiences needed by an agent to reach near-

optimal behavior with high probability. Specifically, the following definition is used.

Definition 1. The sample complexity of a reinforcement learning algorithm 𝒜 that

selects action 𝑎𝑡 at state 𝑠𝑡 on each timestep 𝑡 is, with probability 1− 𝛿, the maximum

number of timesteps where 𝑉 𝒜𝑡(𝑠𝑡) < 𝑉 *(𝑠𝑡)− 𝜖.

The KWIK framework [65] standardizes sample complexity analysis for model-

based RL agents by measuring the number of times the learners of 𝑇 and 𝑅 are

uncertain in making a prediction. Because samples for 𝑇 and 𝑅 have labels (the noisy

sampled transition and the reward signal itself), these learners can be analyzed in the

supervised learning setting. The KWIK framework defines sample complexity for

supervised learners that initially only know the intended hypothesis class 𝐻 : 𝑋 ↦→ 𝑌

and accuracy/confidence parameters 𝜖 and 𝛿. Learning then follows the following

protocol:

1. At each timestep 𝑡, the learner is given an input 𝑥𝑡 ∈ 𝑋, potentially chosen

adversarially. No distributional assumptions are made on the choice or order of

inputs.

2. If the agent is certain of its prediction (||𝑦𝑡 − 𝑦𝑡|| < 𝜖 with high probability), it

predicts 𝑦𝑡.

3. Otherwise, it must state “I don’t know” (denoted ⊥) and will view a noisy state

measurement 𝑧𝑡, where 𝐸[𝑧𝑡] = 𝑦𝑡.

The framework forbids (with high probability) the agent from making an inaccurate

prediction of 𝑦𝑡. It must explicitly admit areas of the input space where it does

not yet have enough data to make accurate predictions of 𝑇 and/or 𝑅. A state

becomes known once it has been observed sufficiently many times for the learner to

be 𝜖-confident of the outcomes. The KWIK sample complexity for such a supervised

learner is just the number of times, with probability 1 − 𝛿, where it predicts ⊥. A
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Algorithm 1 KWIK-Rmax [65]
1: Input: Planner 𝑃 , 𝑆 (in some compact form), 𝐴, 𝛾, 𝜖, 𝛿
2: Initialize: KWIK learners 𝐿𝑇 (𝜖, 𝛿) and 𝐿𝑅(𝜖, 𝛿)
3: for each timestep and state 𝑠𝑡 do
4: if 𝑡 = 0 ∨ ⟨𝑠𝑡−1, 𝑎𝑡−1⟩ produced ⊥ but are now known then
5: Build 𝑇 and 𝑅̂ by filling in ⊥ predictions from

𝐿𝑇 and 𝐿𝑅 with 𝑅max heuristic
6: 𝜋 = 𝑃 (⟨𝑆,𝐴, 𝐿𝑇 .𝑇 , 𝐿𝑅.𝑅̂, 𝛾⟩)
7: 𝑎𝑡 = 𝜋(𝑠𝑡)
8: Execute 𝑎𝑡, Observe 𝑠𝑡+1, 𝑟𝑡.
9: if 𝐿𝑇 (𝑠𝑡, 𝑎𝑡) = ⊥ then

10: 𝐿𝑇 .𝑢𝑝𝑑𝑎𝑡𝑒(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1)

11: if 𝐿𝑅(𝑠𝑡, 𝑎𝑡) = ⊥ then
12: 𝐿𝑅.𝑢𝑝𝑑𝑎𝑡𝑒(𝑠𝑡, 𝑎𝑡, 𝑟𝑡)

hypothesis class 𝐻 is said to be KWIK learnable if an agent can guarantee, with

probability 1− 𝛿, it will only predict ⊥ a polynomial (in 1
𝜖
, 1
𝛿
, |𝐻|) number of times.

The KWIK learnability of 𝑇 and 𝑅 can be used to induce a polynomially sample

efficient RL algorithm, through the KWIK-Rmax RL framework [65], as illustrated

in Algorithm 1. KWIK-Rmax maintains KWIK learners 𝐿𝑇 and 𝐿𝑅 with appropriate

accuracy parameters (line 2) and queries these learners to create an approximate MDP

with transition and reward functions 𝑇 and 𝑅̂. The KWIK learners are fed samples

from the agent’s experience. Whenever a state/action pair goes from “unknown” to

“known,” the algorithm replans with the learned MDP constructed from 𝑇 and 𝑅̂.

Because of its reliance on KWIK learners, the algorithm is explicitly aware of which

areas of the state space are “known” (where 𝐿𝑅 and 𝐿𝑇 can make accurate predictions)

or “unknown” (𝐿𝑇 or 𝐿𝑅 predict ⊥). In the unknown areas, ⊥ predictions from the

learners are replaced using the “optimism in the face of uncertainty” heuristic when

constructing 𝑇 and 𝑅̂. Specifically, when 𝐿𝑅 predicts ⊥ for ⟨𝑠, 𝑎⟩, 𝑅̂(𝑠, 𝑎) = 𝑅max.

When 𝐿𝑇 predicts ⊥, a special transition to a state with a value of 𝑉𝑚𝑎𝑥 = 𝑅max

1−𝛾 is

inserted (line 5). This interpretation encourages exploration of unknown areas but

not at the expense of already uncovered dominant policies. It has been shown that

proving 𝑇 and 𝑅 are KWIK learnable and using them in the KWIK-Rmax framework

guarantees polynomial sample complexity of the resulting RL agent [65]. The crucial
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tenets of this relationship are the following properties of the KWIK-Rmax framework:

∙ Optimism: 𝑉𝑡(𝑠) ≥ 𝑉 *(𝑠)− 𝜖 for all timesteps 𝑡

∙ Accuracy: 𝑉𝑡(𝑠)−𝑉 𝜋𝑡
𝑀𝑘𝑡

(𝑠) ≤ 𝜖 for all timesteps 𝑡. That is, the values at known

states must be accurate with respect to all other known states and the current

policy on all timesteps.

∙ Bounded number of changes: The number of changes to the value function

and visits to unknown states should be polynomial with respect to the accuracy

and domain parameters.

The first property stems from the optimistic construction of 𝑇 and 𝑅̂ in areas where

the learners predict ⊥ and helps drive exploration to under-sampled areas. The

second property follows from the KWIK accuracy requirement that predictions are

made only when significant evidence is available. The final property is a result of the

KWIK polynomial sample complexity of 𝐿𝑇 and 𝐿𝑅.

In MFRL, the KWIK-Rmax framework is used at each level of simulation. Un-

known and known areas at each level are cataloged by KWIK learners as specified

above. However, the uninformed 𝑅max heuristic is instead replaced by value functions

from lower level simulators, filling in areas where learners at the current level pre-

dict ⊥. Learned parameters of 𝑇 and 𝑅̂ from higher-fidelity levels are also shared to

increase the accuracy of lower-fidelity simulations.

The same base KWIK learners are used for the parameters of the MDP in MFRL.

This will allow the algorithm to determine which simulators have accurate models, and

where the learned parameters of those models differ. Also, unlike single-environment

KWIK-Rmax, the 𝑅max

1−𝛾 heuristic is replaced with a more informed heuristic based on

interactions with other simulators.

Use of the KWIK framework also encourages the use of MFRL with compact

(non-tabular) representations of 𝑇 and 𝑅. That is, because the KWIK framework

faciliates general learning algorithms for 𝑇 and 𝑅, representations with far fewer

parameters than the number of states can be used by an RL agent. For instance,
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Algorithm 2 Probabilistic Inference for Learning COntrol (Pilco) [25]
1: input: Random controller parameters (𝜃 ∼ 𝒩 (0, 𝐼)). Apply random control

signals and record data.
2: while task not learned do
3: Learn probabilistic (GP) dynamics model using observed data
4: while not converged do
5: Approximate inference for policy evaluation
6: Gradient-based policy improvement
7: Update parameters 𝜃 (e.g., CG or L-BFGS)
8: return 𝜃*

9: Set 𝜋* ← 𝜋(𝜃)*

10: Apply 𝜋* to system and record data

despite a potentially infinite number of reachable states in a continuous environment,

linear dynamics are KWIK learnable with only an 𝑂̃(𝑛3) dependency on the number

of dimensions 𝑛 [65]. Thus, the sample complexity of KWIK-Rmax may be smaller

than |𝑆| if 𝑇 and 𝑅 can be represented compactly. By building the MFRL framework

over KWIK learners, the ability to efficiently explore in large domains is gained, a

fact used in Section 3.4 and later in the robotic car experiments.

2.3 Pilco

Probabilistic Inference for Learning COntrol (Pilco) is a recently developed model-

based policy search RL algorithm [25–27]. One of the key advantages of Pilco is

a careful handling of uncertainty in the learned model dynamics that helps prevent

negative effects of model bias. By explicitly accounting for uncertainty, the algo-

rithm is able to determine where in the state space it can accurately predict policy

performance and where more data are needed to be certain of future outcomes.

The Pilco algorithm is shown in Algorithm 2. Learning begins by randomly

applying control signals and then using the observed data to build a probabilistic

model of the transition dynamics. This model is then used to update the policy

parameters by optimizing over long-term roll-outs of the learned model. Closed-

form gradients of the optimization problem are available and so any gradient-based

optimization algorithm can be applied. Once converged, the new policy parameters
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are executed on the system and the process repeats until satisfactory performance is

obtained.

In this thesis, as for the original Pilco algorithm, empirical simulations and

hardware results are used to verify the utility of the proposed algorithm.

2.4 Gaussian Processes

Gaussian processes (GPs) [84] are a popular regression tool for modeling observed

data while accounting for uncertainty in the predictions, and are used to model the

transition dynamics in Pilco. Formally, a GP is a collection of random variables,

of which any finite subset are Gaussian distributed. A GP can be thought of as a

distribution over possible functions 𝑓(𝑥), 𝑥 ∈ 𝒳 such that

𝑓(𝑥) ∼ 𝒢𝒫(𝑚(𝑥), 𝑘(𝑥,𝑥′)), (2.2)

where 𝑚(𝑥) is the mean function and 𝑘(𝑥,𝑥′) is the covariance function.

With a fixed mean function and data {𝑋,𝑦}, where 𝑋 and 𝑦 are the input and

output data, respectively, the predictive distribution for a deterministic input 𝑥* is

𝑓* ∼ 𝒩 (𝜇*,Σ*)

𝜇* = 𝑚(𝑥*) + 𝑘(𝑥*, 𝑋)(𝐾 + 𝜎2
𝑛𝐼)−1(𝑦 −𝑚(𝑋))

= 𝑚(𝑥*) + 𝑘(𝑥*, 𝑋)𝛽

Σ* = 𝑘(𝑥*,𝑥*)− 𝑘(𝑥*, 𝑋)(𝐾 + 𝜎2
𝑛𝐼)−1𝑘(𝑋,𝑥*)

where 𝛽 = (𝐾 + 𝜎2
𝑛𝐼)−1(𝑦 − 𝑚(𝑋)), 𝐾 = 𝑘(𝑋,𝑋), and 𝜎2

𝑛 is the noise variance

parameter.

As in the Pilco algorithm [25], in this thesis the squared error kernel is used for

its computational advantages. Thus, the kernel is

𝑘(𝑥,𝑥′) = 𝛼2 exp(−1

2
(𝑥− 𝑥′)𝑇Λ−1(𝑥− 𝑥′)),
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where 𝛼2 is the signal variance and Λ is a diagonal matrix containing the square of

the length scales for each input dimension. The hyperparmeters (𝜎2
𝑛, 𝛼2, and Λ) are

learned via evidence maximization [84].

2.5 Summary

This section provided some brief background material on the tools used later in the

thesis. In particular, details regarding reinforcement learning, sample complexity,

the “Knows What It Knows” RL framework, the Probabilistic Inference for Learning

Control algorithm, and Gaussian processes were covered. These tools will be used in

the following chapters to develop two frameworks to decrease the hardware sample

complexity of RL problems with real robots.
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Chapter 3

Multi-Fidelity Simulations

This chapter considers the problem of efficient real-world RL when multiple simula-

tions are available, each with varying degrees of fidelity to the real world. Lower-

fidelity simulators are assumed to be less expensive (typically less time to evaluate),

but also less accurate with respect to the actual robot. Lower-fidelity simulators are

also assumed to be optimistic with respect to the real world. While this assumption

may not be valid in all domains, it is consistent with my observations of many sim-

ulators; policies that work in simulation might work on the real robot, but policies

that perform poorly in simulation are unlikely to succeed in hardware. Machinery is

also included to relax this optimistic assumption.

A new framework, Multi-Fidelity Reinforcement Learning (MFRL), for performing

RL with a heterogeneous set of simulators (including the real world) is introduced, an-

alyzed, and empirically demonstrated. MFRL, depicted in Fig. 4-1, not only chooses

actions for an agent to execute, but also chooses which simulator to perform them in.

The framework combines ideas from multi-fidelity optimization [88] and advances in

model-based RL that have yielded efficient solutions to the exploration/exploitation

dilemma. More specifically, heuristics from lower-fidelity simulators and adjustments

from high-fidelity data (common techniques in multi-fidelity optimization) are instan-

tiated in MFRL using the successful “optimism in the face of uncertainty” heuristic

and the “Knows What It Knows” (KWIK) model-learning framework from RL [65].

The result is an agent that both
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Low-Fidelity
and/or Cost

Σ1

Σ2

High-Fidelity
and/or Cost
(real-world)

Σ𝐷

Exploration heuristics

Learned (certain) model parameters

𝜌1

𝛽1

𝜌2

𝛽2

Figure 3-1: The MFRL architecture: a multi-fidelity chain of simulators and learning
agents. Agents send exploration heuristics to higher-fidelity agents and learned model
parameters to lower-fidelity agents. The environments are related by state mappings
𝜌𝑖 and optimism bounds 𝛽𝑖. Control switches between learning agents, going to
high-fidelity levels when an optimal policy is found, and to lower-fidelity levels when
unexplored regions are encountered.

∙ uses information from lower-fidelity simulators to perform limited exploration

in its current simulator, and

∙ updates the learned models of lower-fidelity agents with higher-fidelity data.

Unlike unidirectional methods that transfer heuristics only once to the real-world

agent [67], the MFRL framework specifies rules for when the agent should move to

a higher-fidelity simulator, as well as moving to a lower-fidelity level before over-

exploring in a more expensive simulation. These rules and the transfer of values and

data provide theoretical guarantees on convergence and sample efficiency. Specifically,

the framework (1) does not run actions at high-fidelity levels that have been proven

to be suboptimal at lower-fidelity levels, (2) minimizes (under certain conditions) the

number of samples used in the real world and (3) polynomially limits the total number

of samples used in all simulators. In addition, in the worst case, MFRL provably uses

no more real-world samples than unidirectional transfer approaches.

The MFRL algorithm implements single-environment, model-based learners from

the KWIK-Rmax family of algorithms at each level of simulation. The KWIK-Rmax

algorithms explicitly track areas of the state space that are “known” or “unknown”

and use an “optimism in the face of uncertainty” heuristic to fill in the unknown areas.
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Theoretical results in this chapter are tied to the general KWIK framework and so

apply not only to tabular models of environments, but also to a large class of represen-

tations such as linear and Gaussian-noise dynamics covered by the KWIK learning

framework [65]. This theoretical link is illustrated by using a Dynamic Bayesian

Network (DBN) representation [24] for model learning in two separate domains.

Section 3.1 formally introduces the multi-fidelity learning problem. Section 3.2

analyzes MFRL in the single-state, “bandit”, setting, highlighting many of the core

properties of the algorithm. MFRL is then presented and analyzed in the multi-state

case in Section 3.3, with experiments in a multi-fidelity version of the puddle world

domain [97]. Section 3.4 demonstrates learning using a DBN model of the transi-

tion dynamics and Section 3.5 discusses the use of generative models with random

access to samples in the framework. The MFRL framework is demonstrated using

robotic car experiments in Section 3.6, which are done with bandit, tabular, and

DBN models. In all of these experiments, the car learns by utilizing a dynamics-free,

input-based simulator and a reasonable-fidelity dynamics simulator, as illustrated in

Fig. 4-1. The car experiments show that near-optimal driving policies can be found

with fewer samples from the real car than unidirectional transfer methods or without

using simulators.

The main contributions of this chapter are (1) introducing the MFRL framework

for learning with multiple simulators, which is the first framework that dynamically

chooses which simulator to perform actions in, (2) a theoretical analysis of the frame-

work’s sample complexity, and (3) several demonstrations of efficient learning on a

robotic car with fewer real-world data points than unidirectional transfer or learning

without simulators. These results demonstrate MFRL is a provably and practically

efficient manager of the low and high quality simulators often available for robotics

tasks.

MFRL is most applicable in situations where simulators are already available or

where the cost of coding the simulator is outweighed by the increased learning speed.

In my experience, most robotics domains construct simulators for reasons other than

learning, such as during the initial hardware and software develop phases, and so
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simulators are often readily available [12,94].

This chapter is based on previously published work in [22,23].

3.1 Assumptions

This section provides background on the relationship between the KWIK framework

and MFRL. The assumptions made about the multi-fidelity simulators to ensure the

discovery of a near-optimal policy are also described.

3.1.1 The KWIK Framework

The KWIK framework was formally introduced in Section 2.2. In MFRL, the KWIK-

Rmax framework is used at each level of simulation. Unknown and known areas at

each level are cataloged by KWIK learners as specified above. However, the unin-

formed 𝑅max heuristic is instead replaced by value functions from lower-level simula-

tors, filling in areas where learners at the current level predict ⊥. Learned parameters

of 𝑇 and 𝑅̂ from higher-fidelity levels are shared to increase the accuracy of lower-

fidelity simulations.

The same base KWIK learners are used for the parameters of the MDP in MFRL.

This allows MFRL to determine which simulators have accurate models for, and

where the learned parameters of those models differ. Also, unlike single-environment

KWIK-Rmax, the 𝑅max

1−𝛾 heuristic is replaced with a more informed heuristic based on

interactions with other simulators.

The use of the KWIK framework also encourages the use of MFRL with compact

(non-tabular) representations of 𝑇 and 𝑅. That is, because the KWIK framework

faciliates general learning algorithms for 𝑇 and 𝑅, representations with far fewer

parameters than the number of states can be used by an RL agent. For instance,

despite a potentially infinite number of reachable states in a continuous environment,

linear dynamics are KWIK learnable with only an 𝑂̃(𝑛3) dependency on the number

of dimensions 𝑛 [65]. Thus, the sample complexity of KWIK-Rmax may be smaller

than |𝑆| if 𝑇 and 𝑅 can be represented compactly. By building the MFRL framework
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over KWIK learners, this ability to efficiently explore in large domains is gained, a

fact used in Section 3.4 and later in the robotic car experiments.

3.1.2 Simulator Assumptions and Objectives

The notion of a multi-fidelity simulator chain used throughout this chapter is now

defined and the assumptions made for using them in the MFRL architecture. The

objectives of this work are then described in terms of minimizing sampling costs

throughout the chain of simulators.

In this work, a simulator Σ is defined as any environment that can be modeled as

an MDP. The complexity of such domains, |Σ|, is defined as the number of parameters

of their corresponding 𝑇 and 𝑅 representations [65], which may be far smaller than

the number of parameters need to represent 𝑆. Also, since 𝑆 may differ between Σ𝑖

and a higher-fidelity Σ𝑗 (some variables may be absent in Σ𝑖), prior work in TL [106]

is followed and a transfer mapping 𝜌𝑖 : 𝑆𝑖 ↦→ 𝑆𝑗 is assumed to exist. Specifically, it

is assumed that 𝑆𝑖 ⊆ 𝑆𝑗, that is, that the states available in lower simulators are a

subset of those available at a higher level, and that 𝜌𝑖 maps states in 𝑆𝑖 to states

in 𝑆𝑗, setting data uniformly across variables that exist in 𝑆𝑗, but not in 𝑆𝑖. For

instance, in the robotic car simulations, the lowest-fidelity simulator (Σ1) does not

model rotational rate 𝜓̇, so states in 𝑆1 map to all states in 𝑆2 with the same variable

values except for 𝜓̇. The reverse mapping 𝜌−1
𝑖 only applies to states in 𝑆𝑗 with a

single default value of the missing variable (𝜓̇ = 0 for the car). The set of available

actions is also assumed to be the same in all simulators.

Fidelity is defined based on how much Σ𝑖 overvalues the state/actions of Σ𝑗.

Specifically, the fidelity 𝑓 of Σ𝑖 to Σ𝑗, with associated mapping 𝜌𝑖 and tolerance 𝛽𝑖, is

𝑓(Σ𝑖,Σ𝑗, 𝜌𝑖, 𝛽𝑖) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−max𝑠,𝑎 |𝑄*

Σ𝑖
(𝑠, 𝑎)−𝑄*

Σ𝑗
(𝜌𝑖(𝑠), 𝑎)|,

if ∀𝑠, 𝑎, [𝑄*
Σ𝑗

(𝑠, 𝑎)−𝑄*
Σ𝑖

(𝜌𝑖(𝑠), 𝑎) ≤ 𝛽𝑖]

−∞, otherwise

(3.1)

where 𝑠 ∈ 𝑆𝑖. Intuitively, the fidelity of Σ𝑖 to Σ𝑗 is inversely proportional to the
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maximum error in the optimal value function, given that Σ𝑖 never undervalues a

state/action pair by more than 𝛽𝑖. Otherwise, Σ𝑖 is considered to have no fidelity to

Σ𝑗. While there are many other possible definitions of fidelity (for instance based on 𝑇

and 𝑅), this definition fits natural chains of simulators and facilitates efficient learning

through the MFRL architecture. Note that this definition is not a distance metric

(for instance, it is not symmetric), but rather describes the relationship between

simulators based on optimistic differences in their value functions.

While it may seem restrictive, this relationship is fairly common in real-life sim-

ulators. For instance, in the car simulators used later, the lowest-fidelity simulator

assumes that actions will have perfect outcomes, so aggressive maneuvers achieve

their desired results. In higher-fidelity simulators, and eventually the real world,

these optimistic values are replaced with more realistic outcomes/values. Hence, the

simulators form an optimistic chain, formally defined as follows:

Definition 2. An optimistic multi-fidelity simulator chain is a series of 𝐷 sim-

ulators ordered Σ1, . . . ,Σ𝐷, with Σ𝐷 being the target task (real-world model) and

𝑓(Σ𝑖,Σ𝑖+1, 𝜌𝑖, 𝛽𝑖) ̸= −∞ for specified 𝜌𝑖 and 𝛽𝑖.

Intuitively, each simulator overvalues the optimal value function of the next higher

simulator, with 𝛽 compensating for any undervalues.

This ordering can be calculated recursively starting from level 𝐷 (the target task,

known a priori) and simply maximizing the fidelity of the remaining simulators to

the simulator above and using the minimum 𝛽𝑖 to maintain optimism at each level.

To make use of this simulator chain and minimize the number of samples used, the

following assumptions about the cost and accessibility of the simulators are also used.

Assumption 1. A single step from simulator Σ𝑖 has a larger (but polynomially

bounded in |Σ𝑖−1|) cost than a sample from simulator Σ𝑖−1.

Assumption 2. Access to each simulator may be limited to running contiguous tra-

jectories rather than having random access to a generative model or the model param-

eters.
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The first assumption states that each successively higher-fidelity simulator costs

more to run per step than the one below it, but it is potentially not worth sampling

every ⟨𝑠, 𝑎⟩ at the lower level. For instance, an inverse kinematics model of a single

robot takes less time to run than an ODE simulator of the robot and its environment,

which is less costly than trials in the real world. The polynomial relationship enforces

the fact that samples should be limited at the lower level. The second restriction

states that access may not be available to the simulator parameters or the ability

to sample state/action outcomes generatively. This is the case in the real world

and in certain simulators (e.g. most commercial video games). Section 3.5 provides

an algorithm for MFRL without Assumption 2 restricting generative access to the

simulators, but first the algorithm is presented and efficiency results are shown in the

more restricted trajectory-only case.

Given such simulators, the objectives are the following:

1. Minimize the number of suboptimal learning samples (with respect to 𝑄*) taken

in Σ𝐷.

2. Ensure that, for any run of the agent with simulator Σ𝑖, only a polynomial

number of steps (in |Σ𝑖|) are taken before near-optimal behavior (given con-

straints from higher-fidelity simulators) is achieved or control is passed to a

lower-fidelity simulator.

3. Guarantee that there are only a polynomial (in |Σ1,...,𝐷| and 𝐷) number of

switches between simulators.

Objective 1 skews the sampling burden to lower-fidelity simulators while objective

2 limits the sample complexity of the algorithm as a whole. Objective 3 is included

to prevent excessive switching between the real-world robot and a simulator, as there

may be significant start-up costs associated with the robot. This is particularly

pertinent with dynamic robots that can not pause their actions to wait for a learning

agent to update a model or policy based on simulated outcomes. These objectives are

achieved by leveraging properties of KWIK algorithms at each level of simulation.
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3.2 Multi-Fidelity Bandit Optimization

One of the simplest RL settings where exploration is studied is the 𝑘-armed bandit

case, an episodic MDP with a single state, 𝑘 actions (called arms), and 𝛾 = 0. A

learner must choose actions to explore the rewards, eventually settling on the best

arm, which it then exploits. A Multi-Fidelity RL algorithm for the bandit setting,

which has several features of the full MFRL algorithm, is now presented.

3.2.1 A MF-Reward Learning Algorithm

Consider a chain of bandit simulators: at each level 𝑑 ∈ {1, . . . , 𝐷} there are |𝐴|
actions with expected rewards 𝑅𝑑(𝑎) ≤ 𝑅𝑑−1(𝑎) + 𝛽𝑑. For a single simulator, a base

learner is utilized that can update the estimates of each arm’s reward. Here, KWIK

reward learners 𝐿𝑅,𝑑,𝑎 are used with parameter 𝑚 based on the required accuracy

parameters for a single-arm learner: 𝜖 and 𝛿. These quantities are related to the overall

accuracy parameters in the learning scenario and are defined later in Theorem 1.

Specifically, a KWIK learner for a single bandit arm 𝑎 at a single level 𝑑 can be

created by keeping track of the number of times 𝑐𝑑,𝑎 that arm has been pulled. The

algorithm then predicts the learned reward 𝐿𝑅,𝑑,𝑎 as

𝐿𝑅,𝑑,𝑎 =

⎧⎪⎨⎪⎩𝑅̂𝑑(𝑎) if 𝑐𝑑,𝑎 ≥ 𝑚 = 1
2𝜖2

log(2
𝛿
)

⊥ otherwise
(3.2)

where the value of 𝑚 is set based on Hoeffding’s inequality [42], assuming that the

rewards are bounded on [0, 1].1 When ⊥ is predicted, a loose upper bound for the

possible payout of the action is 𝑅max, which will be used in the algorithm below.

Algorithm 3 presents the Multi-Fidelity Bandit Framework (MF-Bandit) for ac-

complishing objectives 1-3 using a KWIK learner that keeps track of empirical reward

means 𝑅̂𝑑(𝑎), number of pulls 𝑐𝑑,𝑎, and upper bounds on the rewards 𝑈̂𝑑,𝑎 at fidelity

level 𝑑. MF-Bandit also tracks the informed upper bound 𝑈𝑑,𝑎, which is the minimum

1This assumption is made for notational convenience. An extra term is added if the range is
larger than 1.
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of 𝑈̂𝑑,𝑎 and the heuristic from the lower level: 𝑈𝑑−1,𝑎 + 𝛽𝑑−1 (lines 20 and 25). The

algorithm also keeps track of whether the value of each action has converged (𝑐𝑜𝑛𝑑,𝑎),

whether an optimal action has been identified (𝑐𝑙𝑜𝑠𝑒𝑑𝑑), and if the learned model has

changed (𝑐ℎ𝑎𝑛𝑔𝑒𝑑) at simulator level 𝑑.

Starting in Σ1, the algorithm selects an action 𝑎* greedily based on 𝑈𝑑 and checks

if learning at the current level is complete (line 7). Before executing the action,

it checks to make sure the action has been tried sufficiently at the simulator below

(line 8). If not, control is returned to level 𝑑−1 where actions are selected using values

from 𝑑 that are converged (lines 11-15). Otherwise, if learning at 𝑑 is not finished,

the action is taken and 𝐿𝑅 and 𝑈̂ are updated (lines 17-22). Once the optimal action

has been identified, the algorithm moves up to the level 𝑑+ 1 (lines 23-26).

Algorithm 3 differs from unidirectional heuristic transfer [67] because it can back-

track to a lower-fidelity simulator when a previously identified optimal action per-

forms poorly. In unidirectional transfer, information is only transferred from lower-

to higher-fidelity levels, with no option for the learning agent to return to lower-

fidelity levels to continue exploration. Effectively, backtracking asks the lower-fidelity

learner to find a new optimal policy given additional knowledge from higher-fidelity

simulators.

An example where this behavior is beneficial on the robotic car is when an optimal

configuration of parameters in the simulator generates a path with tight turns, but

data in the real world prove such settings cause the car to spin out. In such a scenario

there is still information to be gleaned from the lower-level simulator by exploring

policies given the knowledge of spinning out from above, which is exactly what trans-

ferring the learned parameters accomplishes. As shown below, this behavior is crucial

in minimizing the number of actions taken at the highest level.

3.2.2 Bandit Examples

Examples are now presented to showcase various features of Algorithm 3. First, MF-

Bandit is shown to find an optimal policy for Σ𝐷 with far fewer samples in Σ𝐷 than

an algorithm without multiple simulators. Consider a Bandit problem with |𝐴| = 5
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Algorithm 3 Multi-Fidelity Bandit Framework
1: Input: A bandit simulator chain ⟨Σ, 𝛽⟩, Actions 𝐴, 𝑅max, Accuracy requirements
𝜖 and 𝛿

2: Initialize: con𝑑,𝑎, change𝑑 := false,∀𝑎, 𝑑
3: Initialize: KWIK learners 𝐿𝑅,𝑑(𝑎, 𝜖, 𝛿)
4: Initialize: 𝑑 := 1, 𝑈̂𝑑,𝑎, 𝑈1,𝑎 := 𝑅max∀𝑎
5: for each timestep do
6: Select 𝑎* := argmax𝑎 𝑈𝑑,𝑎
7: closed𝑑 := con𝑑,𝑎* ∨ 𝑎* is definitely near optimal
8: if 𝑑 > 1 ∧ ¬con𝑑−1,𝑎* ∧ change𝑑 then
9: // Return to level 𝑑− 1

10: change𝑑−1 := false
11: for 𝑎 ∈ 𝐴 do
12: if con𝑑,𝑎 then
13: // Updated learner using 𝑅̂𝑑 and 𝑈̂𝑑
14: Set 𝐿𝑅,𝑑−1,𝑎 based on 𝐿𝑅,𝑑,𝑎
15: con𝑑−1,𝑎, change𝑑−1 := true
16: 𝑑 := 𝑑− 1
17: else if ¬closed𝑑 then
18: Execute 𝑎* in Σ𝑑, Observe 𝑟.
19: Update 𝐿𝑅,𝑑,𝑎* // Update 𝑅̂𝑑(𝑎

*), 𝑈̂𝑑,𝑎*
20: 𝑈𝑑,𝑎* := min(𝑈𝑑,𝑎* , 𝑈̂𝑑,𝑎*)
21: if 𝐿𝑅,𝑑,𝑎* switched from ⊥ to “known” then
22: con𝑑,𝑎* , change𝑑 := true
23: else if 𝑑 < 𝐷 ∧ closed𝑑 then
24: // Chosen action already converged, go up
25: Where ¬con𝑑+1,𝑎: 𝑈𝑑+1,𝑎 := 𝑈𝑑,𝑎 + 𝛽𝑑
26: change𝑑+1 := false, 𝑑 := 𝑑+ 1

arms and 𝐷 = 3 simulators with bounded reward [0, 1]. The rewards for each of the

5 actions in each simulator are

Σ1 = {0.8, 0.8, 0.8, 0.8, 0.1}

Σ2 = {0.8, 0.8, 0.6, 0.6, 0.1}

Σ3 = {0.8, 0.6, 0.6, 0.6, 0.1},

all with uniform random noise up to 0.1. Table 3.1 shows the results of running

Algorithm 3 in this scenario with the KWIK bandit learner with 𝑚 = 20. Results
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Table 3.1: Samples used from the simulators when the optimal action in Σ3 is also
optimal in Σ1 and Σ2.

Sims Used Σ1 Σ2 Σ3

Σ1, Σ2, Σ3 100 80 40

Σ2, Σ3 − 100 40

Σ3 − − 100

Table 3.2: Samples used from the simulators when the optimal action in Σ3 is not
optimal in Σ2.

Sims Used Σ1 Σ2 Σ3′

Σ1, Σ2, Σ3′ 100 80 60

Uni-directional 100 60 80

Σ3′ − − 100

with only ⟨Σ2,Σ3⟩ and only Σ3 are also shown. Using both simulators or just Σ2

produces a significant reduction in samples from Σ3, and having Σ1 helps limit the

samples needed from Σ2.

In the scenario above, the algorithm could potentially avoid backtracking because

one of the optimal actions always remained the same at each level. But, consider the

same scenario except with an alternate top level, Σ3′ = {0.4, 0.4, 0.6, 0.6, 0.1}. Now,

neither of the optimal actions in Σ2 are optimal in Σ3′ . Table 3.2 shows the results

of Algorithm 3 in this case along with a version that does no transfer and a version

that only performs unidirectional transfer (UNI) [67]. By allowing the algorithm to

return to lower-fidelity simulators once the previously considered optimal action has

been disproved at a higher level, valuable exploration steps in Σ𝐷 are saved and the

cost in terms of samples from the highest level is minimized.

3.2.3 Theoretical Analysis

The examples above show the importance of using lower-fidelity simulators to generate

heuristics and using data from higher-fidelity simulators to make lower learning agents

explore policies that are potentially more useful for the target task. This intuition

47



is now formalized in theoretical guarantees for the bandit case. Throughout these

theoretical results the rewards of each arm are assumed, without loss of generality,

to be bounded on [0, 1]. The base learner is also assumed to be the KWIK bandit

learner as described earlier that predicts ⊥ as the output of an action where it does

not have 𝑚 samples and otherwise predicts the empirical mean 𝑅̂(𝑎). Multi-state

versions of most of these guarantees are presented in later sections.

The theoretical results begin by focusing on objectives 2 and 3 from Section 3.1.2:

limiting the number of suboptimal actions at each level and the number of samples

overall. The following theorem provides these sample complexity results as well as

guidelines for setting 𝜖 and 𝛿 in (3.2).

Theorem 1. Algorithm 3 uses only a polynomial number of samples over all the

levels, specifically using only 𝑂( |𝐴|𝐷
2

𝜖2
log( |𝐴|

2𝐷
𝛿

)) samples per run at level 𝑑 and only

changing 𝑑 a maximum of |𝐴|𝐷 times.

Proof. First, 𝜖 and 𝛿, the accuracy parameters for a learner of an individual action’s

mean reward at a particular level 𝑑 are set. The following settings will be sufficient

for the theorem:

𝜖 =
𝜖

2𝐷
(3.3)

𝛿 =
𝛿

|𝐴|2𝐷 (3.4)

Instantiating 𝑚 based on (3.2) with these values and applying Hoeffding’s inequal-

ity [42] produces a sample complexity bound of 𝑂(𝐷
2

𝜖2
log( |𝐴|

2𝐷
𝛿

)). There are |𝐴| arms

at the given level, thus yielding the bound given in the theorem statement. This

bound guarantees that, at each level 𝑑, if an arm is pulled 𝑚 times, the rewards

are learned with 𝜖 accuracy with probability 1 − 𝛿. Applying a Union bound across

actions gives a probability of failure at a specific level 𝑑 of 𝛿
|𝐴|𝐷 .

Each execution at a level must learn a new action’s reward before moving up or

down, and once an arm’s value is set from above it cannot be sampled at the current

level. Therefore, by the Pigeonhole principle, there can be at most |𝐴|𝐷 level changes

(changes to 𝑑). Applying a Union bound across these |𝐴|𝐷 possible runs, each with
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failure probability 𝛿
|𝐴|𝐷 , the total probability of failure in the algorithm is 𝛿, satisfying

the overall failure bound. Since each level achieves accuracy of 𝜖
2𝐷

, the potential errors

across levels are added to determine the total error due to pruning out actions based

on rewards from below. This quantity is 2𝐷 * 𝜖
2𝐷

= 𝜖, so the accuracy requirements

are fulfilled with the sample efficiency described in the theorem statement.

Next, objective 1 from Section 3.1.2 is considered, minimizing the number of

samples used in Σ𝐷. This investigation begins with the following lemma, which is

similar to Lemma 1 of [67], stating that no action is tried at a level beyond which it

is dominated by the value of 𝑎* in Σ𝐷.

Lemma 1. In the bandit setting described above with actions 𝑎 ∈ 𝐴 and levels

1, . . . , 𝐷, consider action 𝑎 at level 𝑑. If 𝑎 has been executed 𝑚 times at level 𝑑,

let 𝜇𝑑 = 𝑅̂𝑑(𝑎). Otherwise, set 𝜇𝑑 = 𝑈𝑑(𝑎). If 𝜇𝑑 < 𝑅𝐷(𝑎*𝐷)−∑︀𝐷−1
𝑑=𝑑 𝛽𝑑− 𝜖, where 𝑎*𝐷

is the optimal action in Σ𝐷, then, with probability 1− 𝛿, 𝑎 will not be attempted at or

above level 𝑑.

Proof. Set 𝛿 and 𝜖 based on (3.3) and (3.4) and again instantiate each individual arm’s

KWIK Learner with 𝑚 based on (3.2). As above, Hoeffding’s inequality ensures that,

with probability 1 − 𝛿, the learners will introduce no more than 𝜖 error throughout

the process.

Now consider action 𝑎 as above. At each level 𝑑′ ≥ 𝑑, by Definition 2, the expec-

tation on the reward of 𝑎*𝐷 will satisfy

𝑅𝑑′(𝑎
*
𝐷) ≥ 𝑅𝐷(𝑎*𝐷)−

𝐷−1∑︁
𝑑=𝑑

𝛽𝑑. (3.5)

Also, from the lemma’s assumption,

𝜇𝑑 < 𝑅𝐷(𝑎*𝐷)−
𝐷−1∑︁
𝑑=𝑑

𝛽𝑑 − 𝜖. (3.6)

Combining these two inequalities shows that at level 𝑑′, 𝑅𝑑′(𝑎
*
𝐷) > 𝜇𝑑. Since the upper

bound 𝑈𝑑′𝑎* ≥ 𝑅𝑑′(𝑎
*) with high probability, 𝑈𝑑′𝑎* > 𝜇𝑑. This means whenever the
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algorithm enters level 𝑑′, action 𝑎*𝐷 will be used before 𝑎. By Hoeffding’s inequality,

pulling arm 𝑎*𝐷 𝑚 times gives a mean reward estimate 𝑅̂𝑑′(𝑎
*
𝐷) ≥ 𝑅𝑑′(𝑎

*
𝐷) − 𝜖 with

high probability, so there will also be no need to pull arm 𝑎 at level 𝑑′ after collecting

these 𝑚 samples.

It is now shown that only actions that must be tested in Σ𝐷 are used there

(objective 1 from Section 3.1.2).

Theorem 2. With probability 1 − 𝛿, any action 𝑎 attempted in simulator Σ𝐷 (the

real world) by Algorithm 3 is either near optimal (within 𝜖 of 𝑅𝐷(𝑎*)) or could only

be shown to be suboptimal in Σ𝐷.

Proof. Consider any action 𝑎 executed in Σ𝐷 and its associated 𝜇𝐷−1 values at the

next lower-fidelity simulator as defined in Lemma 1. From Lemma 1,

𝜇𝐷−1 ≥ 𝑅𝐷(𝑎*𝐷)− 𝛽𝐷−1 − 𝜖. (3.7)

Otherwise, with high probability, 𝑎 would have been pruned and not executed in Σ𝐷.

If 𝑎 is near optimal then the problem is complete. If not, then by line 8 of Algorithm 3

the algorithm must have taken action 𝑎 at level 𝐷 − 1 and, with high probability,

found

𝑈𝐷(𝑎) = 𝑅̂𝐷−1(𝑎) ≥ 𝑅𝐷(𝑎*𝐷)− 𝛽𝐷−1 − 𝜖. (3.8)

Therefore, the only way to determine that 𝑎 is sub-optimal is to execute it in Σ𝐷.

Thus, Algorithm 3 never tries actions that can be pruned by lower-fidelity simula-

tors. A corollary of this theorem is that, in the worst case, MF-Bandit uses no more

samples in Σ𝐷 than unidirectional transfer methods use.

3.3 Multi-Fidelity Reinforcement Learning

This section instantiates the principles of generating heuristics from lower-fidelity

simulators and sending learned model data down from higher-fidelity simulators in

the multi-state, cumulative discounted reward RL case.
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Algorithm 4 MFRL (MF-KWIK-Rmax)
1: Input: A simulator chain ⟨Σ, 𝛽, 𝜌⟩, 𝑅max, Planner 𝑃 , accuracy parameters ⟨𝜖, 𝛿,
𝑚𝑘𝑛𝑜𝑤𝑛⟩

2: Initialize: change𝑑 := false,∀𝑑
3: Initialize: 2𝐷 KWIK learners 𝐿𝑅,𝑑(𝜖, 𝛿) and 𝐿𝑇,𝑑(𝜖, 𝛿)
4: Initialize: 𝑄̂0 := 𝑅max

1−𝛾 , 𝑄̂1(𝑠, 𝑎) := Plan(1)
5: Initialize: 𝑑 := 1, 𝑚𝑘 := 0
6: for each timestep and state 𝑠 do
7: Select 𝑎* := argmax𝑎 𝑄̂𝑑(𝑠, 𝑎)
8: if 𝑑 > 1∧ change𝑑 ∧ (𝐿𝑇,𝑑−1(𝜌

−1
𝑑−1(𝑠), 𝑎

*) = ⊥∨𝐿𝑅,𝑑−1(𝜌
−1
𝑑−1(𝑠), 𝑎

*) = ⊥) then
9: // Return to level 𝑑− 1

10: 𝑄̂𝑑−1 := Plan(𝑑− 1)
11: 𝑚𝑘 := 0, 𝑑 := 𝑑− 1
12: else
13: Execute 𝑎* in Σ𝑑, Observe 𝑟, 𝑠′.
14: if 𝐿𝑅,𝑑(𝑠, 𝑎*) = ⊥ ∨ 𝐿𝑇,𝑑(𝑠, 𝑎*) = ⊥ then
15: 𝑚𝑘 := 0
16: Update 𝐿𝑅,𝑑 and/or 𝐿𝑇,𝑑 that predict ⊥
17: else
18: 𝑚𝑘 := 𝑚𝑘 + 1

19: if 𝐿𝑅,𝑑(𝑠, 𝑎*) or 𝐿𝑇,𝑑(𝑠, 𝑎*) is now known then
20: 𝑄̂𝑑 := Plan(𝑑), change𝑑 := true
21: if 𝑑 < 𝐷 ∧𝑚𝑘 = 𝑚𝑘𝑛𝑜𝑤𝑛 then
22: // Go up to level 𝑑+ 1
23: 𝑄̂𝑑+1(𝑠, 𝑎) := Plan(𝑑+ 1)
24: 𝑚𝑘 := 0, change𝑑 := false, 𝑑 := 𝑑+ 1

25: procedure Plan(𝑑)
26: // Call planner 𝑃 using highest-fidelity data available
27: For any (𝑠, 𝑎) let 𝑑*(𝑠, 𝑎) be largest 𝑑 such that 𝐿𝑅,𝑑*(𝑠, 𝑎) ̸= ⊥∧𝐿𝑇,𝑑*(𝑠, 𝑎) ̸=
⊥ ∧ 𝑑* ≥ 𝑑

28: if 𝑑* does not exist then
29: 𝑑* := 𝑑
30: 𝑄̂𝑑 := 𝑃 (⟨𝑆𝑑, 𝐴, 𝐿𝑅,𝑑* .𝑅̂, 𝐿𝑇,𝑑* .𝑇 , 𝛾⟩, 𝑄𝑑−1 + 𝛽𝑑−1)
31: end procedure

3.3.1 The MFRL Algorithm

Algorithm 4 shows the MFRL framework, which takes as input a simulator chain, the

maximum reward 𝑅max, a state-mapping between simulators 𝜌1, . . . , 𝜌𝐷−1, a planner

𝑃 , and accuracy requirements 𝜖, 𝛿, and 𝑚𝑘𝑛𝑜𝑤𝑛. MFRL is similar to MF-Bandit but

now the heuristic passed to higher-fidelity simulators is the 𝑄-function, and both the
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reward and transition functions are passed to lower-fidelity simulators.

The algorithm begins by initializing the variables 𝑑, 𝑚𝑘 and 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 and the base

KWIK learners 𝐿𝑇,𝑑 and 𝐿𝑅,𝑑, parametrized by 𝜖 and 𝛿. These KWIK learners are

proxies for the learned transition and reward functions at level 𝑑, which are denoted

𝐿𝑇,𝑑.𝑇 and 𝐿𝑅,𝑑.𝑅̂, respectively. More specifically, whenever a state/action pair is

“known” (neither 𝐿𝑅 nor 𝐿𝑇 predict ⊥), 𝑇 and 𝑅̂ model the predictions of the KWIK

learners. If one of the learners predicts ⊥, the 𝑄-values from the previous level will be

inserted as a heuristic to encourage exploration. The 𝑄-values for the lowest-fidelity

simulator are set optimistically using 𝑅max

1−𝛾 , and the agent begins choosing actions at

that level.

The agent chooses actions for the current state greedily. If, according to the

KWIK model learners, the selected state/action pair is not known at level 𝑑 − 1,

and a change has been made at the current level, the algorithm backtracks one layer

of fidelity (lines 8-11). Otherwise, the action is executed and 𝐿𝑇 and 𝐿𝑅 at the

current level are updated. If control returns to the lower-fidelity simulator, this

forces the corresponding agent to explore policies that might be optimal given the

dynamics of the higher-fidelity simulator. Note that while backtracking after seeing

a single state/action pair that is not known at level 𝑑 − 1 is theoretically correct,

in the experiments the learning agent typically waits until 𝑚𝑢𝑛𝑘𝑛𝑜𝑤𝑛 such “unknown”

state/action pairs are encountered, which helps control sampling at lower-fidelity

simulators.

If the model parameters change, the 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 flag is also set and the planner

recalculates the 𝑄-values using the Plan subroutine (lines 25-31). Information from

the highest-fidelity level that does not predict ⊥ is used in the planner. If no such level

exists, then the planner uses the current heuristic value (passed from a lower-fidelity

level).

Finally, the convergence check (line 21) determines if MFRL should move to a

higher-fidelity simulator. In the multi-state case, simply encountering a known state

does not indicate convergence, as states that are driving exploration may be multiple

steps away. Instead, Algorithm 4 checks if the last 𝑚𝑘𝑛𝑜𝑤𝑛 states encountered at the
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Figure 3-2: Σ1, . . . ,Σ3 for the puddle world. The learning agent starts in the lower
left corner, taking actions until it reaches the pink goal region at the top right. Σ1

has no puddle. Σ2 has most of the puddle, but the optimal policy in Σ1 can bypass
these puddle portions. Thus, the optimal policy in Σ1 is still optimal in Σ2, but not
in Σ3.

current level were known according to the base learners. For theoretical purposes,

𝑚𝑘𝑛𝑜𝑤𝑛 can be set to the following quantity, which is the number of steps needed

to show that an MDP comprised only of the “known” states sufficiently models the

environment (see Theorem 4 of [64]).

𝑚𝑘𝑛𝑜𝑤𝑛 =
1

1− 𝛾 ln

(︂
4 (𝑅max −𝑅min)

𝜖(1− 𝛾)

)︂
(3.9)

This quantity guarantees that, if the true value function is significantly different from

the value of the current policy in the “known” MDP, with high probability an unknown

state will be encountered during the run of 𝑚𝑘𝑛𝑜𝑤𝑛 states. Further details about the

theoretical properties are given in Theorem 3 below. In practice, a smaller value is

usually adequate to check for convergence and move to a higher-fidelity simulator,

but (3.9) can be used to ensure theoretical correctness.

3.3.2 Puddle World with MFRL

The behavior of MFRL is illustrated in a variant of the puddle world domain [99]

with multi-fidelity simulators, shown in Fig. 3-2. A puddle world agent moves in one

of four diagonal directions with a step cost of −1 (0 at the goal) and high negative
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Table 3.3: Parameters used for the puddle world results.

Sim mLR
mLT

𝜎 mknown munknown 𝛽

Σ1 1 3 0 75 − 0

Σ2 1 4 0.01 75 20 0

Σ3 1 5 0.02 75 20 −

rewards in the puddle. The puddle world is implemented with diagonal actions and

𝛾 = 0.95, so the optimal policy in Σ3 is generally to skirt along the outer edges of the

puddle, while the optimal policy in Σ2 is to move diagonally between the puddles.

The puddle world is 1 unit square and each step moves 0.1 units plus some zero

mean Gaussian noise. For learning and policy evaluation, the world is discretized in

the two dimensions into a 10 by 10 grid array, yielding a state-action space of size

10× 10× 4 = 400.

MFRL is tested in the presence of two lower-fidelity simulators with respect to

the “real” puddle world. The base level Σ1 contains no puddle and has deterministic

actions. The middle level Σ2 contains some of the puddle and has noisy actions, but

has an opening in the worst reward region from Σ3. This creates a scenario where an

optimal policy in the low-fidelity simulator is poor in Σ3 but still contains significant

useful information, such as the puddle portions in Σ2 and the goal location. The top

level Σ3 contains the full puddle and the full action noise.

Fig. 3-3 shows learning curves from this experiment with Table 3.3 showing the

parameters used during the experiments. Here, 𝑚𝐿𝑇
and 𝑚𝐿𝑅

denote the number of

times a state/action pair must be observed before the transition and reward functions,

respectively, are known. MFRL is compared with unidirectional transfer (UNI), no-

transfer (RMAX) and prioritized sweeping (PS) [97]. The 𝑚𝐿𝑇
and 𝑚𝐿𝑅

parameters

were the same in each of the three Rmax-based algorithms, ensuring a consistent com-

parison. In PS, the agent explores using an 𝜖-greedy policy (𝜖 = 0.1) and optimistic

initialization while evaluation occurs greedily.

MFRL performed the best, with some negative transfer at the beginning from

the “shortcut” in Σ2. As the learning agent encounters the real puddle in Σ3, it
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MFRL (Σ1, Σ2, Σ3)
UNIL (Σ1, Σ2, Σ3)
RMAX (Σ3)
PS (Σ3)
MFRL (Σ1, Σ3)
MFRL (Σ2, Σ3)

Figure 3-3: During learning, MFRL consistently outperforms unidirectional transfer
(UNI), no-transfer Rmax (RMAX), and prioritized sweeping (PS) at Σ3. Note that
these are only the samples from Σ3. Each point is an average of 1000 learning runs
(standard errors shown). Greedy policies are evaluated 60 times, each capped at 600
steps.

starts exploring areas of the state-action space that where not explored in Σ2. This

exploration results in several level changes where the learning agent in Σ2 plans using

information from Σ3, causing that lower-fidelity agent to find a way around the puddle.

The result is a consistent and significant improvement over unidirectional transfer

throughout learning. Note that backtracking from higher- to lower-fidelity levels

occurs only when there is still uncertainty at the lower-fidelity levels. If no uncertainty

exists at the lower-fidelity levels, then returning to those levels will not yield better

𝑄-values to guide exploration at the higher-fidelity levels.

MFRL also outperforms naïve model-based RL algorithms such as PS despite PS

performing better than Rmax alone. Fig. 3-3 also shows that even in the presence of

only one simulator (MFRL (Σ1, Σ3) and MFRL (Σ2, Σ3)), MFRL still outperforms

standard Rmax.
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(b) Example MFRL algorithm run

Figure 3-4: (a) At the top level, MFRL requires fewer than half the samples needed
by both unidirectional transfer (UNI) and no-transfer Rmax (RMAX). This is ac-
complished by transferring some learning burden to the other simulators. Each bar
represents an average of 1000 learning runs with standard deviations shown. (b) An
example run of the MFRL algorithm. After initially exploring the top level, the algo-
rithm spends a significant number of samples exploring the rest of the middle level,
thus decreasing the required samples at the top level.

If Σ2 and Σ3 were switched so that Σ2 is the “real” world, the optimistic chain

assumption would be violated. In this case, the learning agent would explore all of

the puddle in Σ3, converging to a policy that moves around the puddle towards the

goal. When the agent transitioned to Σ2, it would not explore and find the “shortcut”

between the puddles, but instead continue with the optimal policy from Σ3. Despite

not converging to the true optimum, a good policy in Σ2 would be found with very

few steps needed from that level.

The improvement of MFRL over unidirectional transfer is accomplished while

using more than 50% fewer samples in the top level as seen in Fig. 3-4(a). In fact,

unidirectional transfer takes almost as long as the no-transfer case to consistently find

the optimal policy, primarily because even with unidirectional transfer, the learning

agent still needs to explore the majority of the state/action space in Σ3 before finding
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the path around the puddle. Fig. 3-4(b) shows a single run of MFRL with bars

showing samples in each of the 3 simulators. The MFRL agent relied heavily on Σ1

initially and swapped back to Σ2 several times while learning at Σ3, gathering crucial

information through this lower cost simulator.

A video showing the progression of the MFRL framework in the puddle world is

available at https://youtu.be/-UYu0cGER-s.

3.3.3 Theoretical Analysis

Similar to the bandit examples earlier, the puddle world examples above enhance intu-

itions about the behavior of Algorithm 4. The behavior of Algorithm 4 is now formally

quantified by extending the theoretical results from the bandit case. Throughout this

section the standard assumption is made, without loss of generality, that the rewards

of the MDP are in the range [0, 𝑅max]. The parameter 𝑚𝑘𝑛𝑜𝑤𝑛 is also set by (3.9) and

instantiate the accuracy parameters of the KWIK MDP learners as

𝜖 = 𝜖
4(𝐷+1)

𝛿 = 𝛿
4(𝐷+2𝐷|Σ|)

(3.10)

where |Σ| is the maximum number of parameters used to describe a simulator in

the optimistic chain. Typically, |Σ| is the number of parameters representing the

transition and reward functions in the real world MDP. Furthermore, throughout

this section the variables in each Σ𝑖 are assumed to be the same; that is, 𝜌𝑖 is the

identity mapping. This assumption is revisited at the end of the section, where it is

shown that 𝛽𝑖 may need to be increased to preserve the stated properties when some

simulators have missing variables.

It should be noted that, like all algorithms in the Rmax family, the sample com-

plexity bounds presented here are meant to show the scalability of the algorithm

with respect to problem size, not for actually setting the known-ness parameters in

practice. That is, the analysis shows that as problems grow larger (with respect to

|𝑆|, |𝐴|, 𝜖, or 𝛿), the number of samples needed increases only polynomially in those
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terms. However, because of the loose bounds used, practitioners almost always choose

far lower values for known-ness based on the noisiness and risk in their environments.

It is likely that setting known-ness parameters lower in this way invalidates the the-

oretical worst-case sample complexity, but in most problems these algorithms have

proven remarkably robust to these lower values. Indeed, recent theoretical results [66]

indicate that tighter bounds can be achieved by considering such features, supporting

these more aggressive known-ness parameters.

The analysis begins by analyzing the sample complexity of a run at each level of

simulation and the total number of level changes in the MFRL algorithm. As with

Theorem 1, this Theorem covers objectives 2 and 3 from Section 3.1.2.

Theorem 3. Algorithm 4 uses only a polynomial number of samples in ⟨|Σ|, 1
𝜖
, 1
𝛿
, 1
1−𝛾 ⟩

per run at level 𝑑 and only changes 𝑑 a maximum of (𝐷 + 2𝐷|Σ|) times.

Proof. For the first portion, note that, when entering a level, the KWIK-Rmax al-

gorithm at each instantiation makes only a polynomial number of suboptimal steps

(where 𝑉 𝜋(𝑠) < 𝑉 *(𝑠)−𝜖). This bound on the number of suboptimal steps is a known

property of the KWIK-Rmax algorithm [64,65]. Also note that the derivation of this

property shows that “unknown” states are only encountered a polynomial number of

times. In fact, this is exactly 𝐵(𝜖, 𝛿) where 𝐵 is the KWIK bound for learning the

transition and reward functions.

Since the number of samples used at each level should be limited and not just the

number of suboptimal steps, the number of optimal steps taken at level 𝑑 should also

be bounded. For this, 𝑚𝑘𝑛𝑜𝑤𝑛 is utilized as described in (3.9). There can be at most

𝑚𝑘𝑛𝑜𝑤𝑛−1 steps between encounters with “unknown” states, and, since the latter can

only occur 𝐵(𝜖, 𝛿) times, this results in at most 𝐵(𝜖, 𝛿)(𝑚𝑘𝑛𝑜𝑤𝑛 − 1) samples.

The number of steps before moving to another level also need to be limited. For

moving down to level 𝑑− 1, a state/action pair at 𝑑− 1 can only be unknown if it is

unknown at level 𝑑. Therefore, the bound on the number of steps before this might

happen is the same as the number of steps before learning all the unknown states:

𝐵(𝜖, 𝛿)(𝑚𝑘𝑛𝑜𝑤𝑛 − 1). For moving up to level 𝑑 + 1, a maximum of 𝐵(𝜖, 𝛿)(𝑚𝑘𝑛𝑜𝑤𝑛 −
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1) +𝑚𝑘𝑛𝑜𝑤𝑛 steps is needed to reach the conditions for going to the next higher level

of fidelity.

Next, it is shown that if 𝑚𝑘𝑛𝑜𝑤𝑛 known states in a row are encountered, then, with

high probability, the optimal policy has been identified at the current level. This

property has been shown previously in Theorem 4 of [64], which is briefly recounted

here. First, an escape probability 𝑃𝑟(𝑊 ) of encountering an unknown state is defined.

From this follows

𝑉 𝜋(𝑠𝑡,𝑚𝑘𝑛𝑜𝑤𝑛) ≥ 𝑉 𝜋
𝑀𝑘

(𝑠𝑡,𝑚𝑘𝑛𝑜𝑤𝑛)− 𝑃𝑟(𝑊 )𝑉max, (3.11)

where 𝑉 𝜋(𝑠𝑡,𝑚𝑘𝑛𝑜𝑤𝑛) is the value of running policy 𝜋 from 𝑠 for 𝑚𝑘𝑛𝑜𝑤𝑛 steps. By

using the closeness of this finite-horizon sum to the infinite discounted sum and several

properties of the KWIK-Rmax algorithm, Li showed that

𝑉 𝜋(𝑠𝑡,𝑚𝑘𝑛𝑜𝑤𝑛) ≥ 𝑉 *(𝑠𝑡)−
3𝜖

4
− 𝑃𝑟(𝑊 )𝑉max. (3.12)

If 𝑃𝑟(𝑊 ) < 𝜖
4𝑉max

, then there is a very low probability of reaching an unknown state,

and it can be shown that the current policy is near-optimal. Otherwise, 𝑃𝑟(𝑊 ) ≥
𝜖

4𝑉max
, which means that the probability of reaching an unknown state is high, and,

with high probability, an unknown state will be encountered before 𝑚𝑘𝑛𝑜𝑤𝑛 known

states are seen in a row.

For the number of possible changes to 𝑑, 𝐷 + 2𝐷|Σ| is an upper bound on the

number of level changes because each backtrack can only occur when at least one

parameter is learned, and the number of parameters in the system is |Σ|𝐷. The

number of “up” entries can only be 𝐷 more than he number of down entries, giving

us 𝐷 + 2𝐷|Σ| level changes.

Because Theorem 3 uses the KWIK framework to derive its sample complexity

guarantees and 𝑚𝑘𝑛𝑜𝑤𝑛 in Equation 3.9 depends only on 𝛾, 𝜖 and 𝛿, these results apply

to MDP learning algorithms using a large number of representations. That is, while

the bounds apply to the tabular MDP case where each ⟨𝑠, 𝑎⟩ is learned independently,
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they also apply to any KWIK learnable class, including Dynamic Bayesian Networks

and linear transitions [65]. Such generalizations will be used in Section 3.4.

While Theorem 3 covers the convergence and sample complexity of MFRL, the

worst case bounds in the theorem above may require an agent to do the same amount

of learning in Σ𝐷 as an agent without any simulators. This is necessary because in

the worst case the simulators provide no useful information to the real world (for

instance, assigning the same 𝑄-value to each state-action pair). To understand the

more general theoretical benefits of MFRL and its relationship to the unidirectional

transfer method, Lemma 1 and Theorem 2 are expanded to the multi-state case,

covering objective 1: limiting steps in Σ𝐷.

The following extension of Lemma 1 shows that, for a given state 𝑠, if an action’s

𝑄-value is definitely dominated by the optimal action at 𝑠, with high probability the

action will not be attempted at the current or higher-fidelity levels.

Lemma 2. Consider state 𝑠 and action 𝑎 at level 𝑑 and let 𝜇𝑑 = 𝑄̂𝑑(𝑠, 𝑎) if 𝑇 (𝑠, 𝑎)

and 𝑅̂(𝑠, 𝑎) are known. Otherwise, 𝜇𝑑 = 𝑄𝑑−1(𝑠, 𝑎). If 𝜇𝑑 < 𝑄𝐷(𝑠, 𝑎*𝐷)−∑︀𝐷−1
𝑑=𝑑′ 𝛽𝑑− 𝜖

where 𝑎*𝐷 is the optimal action for 𝑠 in Σ𝐷, then, with probability 1− 𝛿, 𝑎 will not be

attempted in 𝑠 at or above level 𝑑.

Proof. The proof of this property is similar to the proof of Lemma 1 so the argument

is merely outlined here.

The parameters 𝛿 and 𝜖 are set based on (3.10) to ensure the accuracy of the

known model parameters throughout the learning process. Through the simulation

lemma (Lemma 4 of [50]) it is known that a learned MDP with 𝜖-accurate parameters

will model the value function with comparable loss (adding some additional, but still

polynomial, terms).

Therefore, a chain of inequalities similar to those in Lemma 1 can be formed, but

now replacing 𝑅 with 𝑄 from the lower-fidelity simulators. The situation in each state

becomes exactly the same as in the single-state bandit case, where an action will not

be chosen if its optimistic value has fallen beyond the optimal action’s 𝑄-value as

stated in the lemma.
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Unlike the bandit case, the lemma above does not translate directly into a guar-

antee on the necessity of an action in Σ𝐷 because the KWIK-Rmax algorithm is not

guaranteed to be the most efficient exploration algorithm possible. It does, however,

guarantee that every suboptimal step is, with high probability, leading towards a

learning experience (see Lemma 13 of [65] and Theorem 4 of [64]). Therefore, the

following property of Algorithm 4 can be stated based on the lemma above and this

guarantee of a future learning experience.

Property 1. With probability 1 − 𝛿, any action 𝑎 attempted in state 𝑠 of simulator

Σ𝐷 (the real environment) by Algorithm 4 is either near optimal (within 𝜖 of 𝑉 *
𝐷(𝑠))

or will eventually lead to an unknown state that is either not learned about in levels

below or that needs to be learned about in Σ𝐷.

Thus, Property 1 means that MFRL tries actions in the real world that either lead

to needed exploration or backtracking to a lower-fidelity level. Property 1 also means

that MFRL will, with high probability, enter no more unknown states in Σ𝐷 than

a unidirectional transfer method with the same base learner and architecture. Both

approaches will be drawn to areas that fit the two cases above. However, by returning

to Σ𝐷−1, MFRL can potentially learn about areas that were not visited earlier in

Σ𝐷−1 and thereby prune actions as in Lemma 2. By contrast, the unidirectional case

can only learn about such areas in Σ𝐷. Because of the optimistic chain assumption,

obtaining data from the lower-fidelity simulator can only strengthen the heuristic and

prune more actions. Therefore, in the case where MFRL returns to Σ𝐷 in the exact

state it was in before it decided to use the simulators, MFRL will make no more

(worst case) sub-optimal steps than the unidirectional approach with the same base

learners.

However, in cases where the agent “resets” to the start state of Σ𝐷 upon returning

from the lower-fidelity simulators, it is possible for MFRL to make more suboptimal

steps than the unidirectional algorithm because it needs to retake potentially subop-

timal steps to reach the state it was in when it decided to return to the lower-fidelity

simulators. However, this increase in suboptimal steps is at most a multiple of the
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polynomial number of possible entries into the simulator (covered in Theorem 3) and

will usually be offset by better information gained in the lower simulators.

3.3.4 MFRL Properties with Missing Variables

The analysis now returns to the assumption, made in Section 3.3.3, that each Σ𝑖

contains the same set of variables. In cases where a variable 𝑣 exists in Σ𝑖 but is

missing in Σ𝑖−1, one value of the variable is designated as the default value and only

parameters learned in states with this value can be used by the planner in Σ𝑖−1. For

instance, in the robotic car, if a simulator is missing the “wheel slip” variable, only

non-slip dynamics should be used by the planner in that simulator. However, because

𝜌𝑖 is potentially one-to-many from Σ𝑖−1 to Σ𝑖, the 𝑄-values passed up to Σ𝑖 could

cause an undervaluation of some states in Σ𝑖.

Consider the wheel-slip example with states 𝑠0 and 𝑠1 in Σ𝑖 where 𝑠0 has no slip

and 𝑠1 has slip. Suppose 𝑉 *(𝑠1) = 1 and 𝑉 *(𝑠0) = 0; that is, the slipping state is

more valuable. If the agent experiences 𝑠0 first and then returns to Σ𝑖−1, 𝑠0 in Σ𝑖−1

may set 𝑉 * = 0, the value in the simulator above. Now, when the agent returns to Σ𝑖,

0 will be used as the heuristic value for 𝑠1. Unfortunately, this is an underestimate of

the value function in the slippery state, invalidating the KWIK-Rmax assumptions.

However, MFRL has machinery to compensate for such undervaluation. Specifi-

cally, 𝛽𝑖−1 can be used to increase the transferred heuristics in this case. All of the

properties described above hold in the case of missing variables as long as 𝛽𝑖−𝑖 is set

high enough at each level to guarantee both Definition 2 and that 𝑄*
𝑖 (𝑠1, 𝑎) + 𝛽𝑖−1 >

𝑄*
𝑖−1(𝑠0, 𝑎) where 𝑠1 and 𝑠0 are states in Σ𝑖 that were aliased in Σ𝑖−1.

In summary, missing variables in some of the simulators add complications to the

algorithm’s exploration strategy, but they can be overcome by utilizing the existing

𝛽𝑖 parameters already built into the framework. Future work could investigate the

effects of a non-unity 𝜌𝑖 mapping in greater detail.
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Figure 3-5: The true optimality tolerance for the puddle world example is 𝛽 = 0.
As this value is increased, the top level learns less and less from the other levels.
Eventually, no useful information is passed to the top level and the algorithm needs
as many samples in the full puddle world (Σ3) as it needed in the no puddle grid
world (Σ1). Bold lines denote means and shaded areas show one standard deviation.

3.3.5 Sensitivity of MFRL Parameters

This section demonstrates how the input parameters 𝛽𝑖, 𝑚𝑘𝑛𝑜𝑤𝑛, and 𝑚𝑢𝑛𝑘𝑛𝑜𝑤𝑛 affect

the performance of Algorithm 4. Fig. 3-5-3-7 show the performance of the algorithm

in the puddle world domain as each of the three parameters is varied from its nominal

value. The nominal values used in the domain are 𝛽 = 𝛽1 = 𝛽2 = 0, 𝑚𝑘𝑛𝑜𝑤𝑛 = 75,

and 𝑚𝑢𝑛𝑘𝑛𝑜𝑤𝑛 = 20. Each data point in the graphs is an average of 1000 runs of the

MFRL algorithm in the puddle world domain, with the shaded regions denoting one

standard deviation.

In Fig. 3-5, the simulator tolerance 𝛽 is increased significantly from the true value

of 𝛽 = 0. The algorithm converges to the optimal policy for all values of 𝛽; however,

as the tolerance is increased, the number of simulator steps at Σ𝐷 increases since

the algorithm is unable to prune as many suboptimal state/action pairs. Eventually,

Σ3 no longer gains any information from the simulators below it and the number of
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Figure 3-6: The parameter 𝑚𝑢𝑛𝑘𝑛𝑜𝑤𝑛 controls how many unknown states must be
seen at Σ𝑖 before moving down to Σ𝑖−1. The number of samples used at the top
level monotonically increases with increasing 𝑚𝑢𝑛𝑘𝑛𝑜𝑤𝑛. However, the number of
switches between simulator levels decreases with increasing 𝑚𝑢𝑛𝑘𝑛𝑜𝑤𝑛. Thus, setting
𝑚𝑢𝑛𝑘𝑛𝑜𝑤𝑛 is determined by the trade-off between the cost of obtaining samples at the
top level versus the cost of switching environments, as certain robots may have sub-
stantial initialization costs. The default value of 𝑚𝑢𝑛𝑘𝑛𝑜𝑤𝑛 used in the experiments
is 𝑚𝑢𝑛𝑘𝑛𝑜𝑤𝑛 = 20. Bold lines denote means and shaded areas show one standard
deviation.

samples needed to converge at Σ3 quickly approaches the number needed to converge

at Σ1. However, even with an inaccurate 𝛽 value, the MFRL algorithm converges to

the correct policy using no more top-level samples than had learning been performed

at the top level alone.

Fig. 3-6 shows how the number of samples used at the top level increases with in-

creasing𝑚𝑢𝑛𝑘𝑛𝑜𝑤𝑛. As with changing 𝛽, the MFRL algorithm converged to the optimal

policy for all values of 𝑚𝑢𝑛𝑘𝑛𝑜𝑤𝑛. For the theoretically correct value of 𝑚𝑢𝑛𝑘𝑛𝑜𝑤𝑛 = 1

(see Section 3.3.1), the number of samples used at Σ3 is minimized, but at the ex-

pense of a high number of simulator switches during the progression of the algorithm

and a large number of samples used at the other simulator levels. Setting 𝑚𝑢𝑛𝑘𝑛𝑜𝑤𝑛
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Figure 3-7: The parameter 𝑚𝑘𝑛𝑜𝑤𝑛 controls how many known states must be seen
in a row at Σ𝑖 before moving up to Σ𝑖+1. The number of samples used at the top
level monotonically increases with increasing 𝑚𝑘𝑛𝑜𝑤𝑛. As seen by the average reward,
selecting 𝑚𝑘𝑛𝑜𝑤𝑛 too low can lead to under-exploration and suboptimal policies. The
default value of 𝑚𝑘𝑛𝑜𝑤𝑛 used in the experiments is 𝑚𝑘𝑛𝑜𝑤𝑛 = 75. Bold lines denote
means and shaded areas show one standard deviation.

determines a trade-off between minimizing the samples at Σ3 and minimizing the

number of simulator switches. For many robotic scenarios it may be advantageous

to set 𝑚𝑢𝑛𝑘𝑛𝑜𝑤𝑛 > 1 if the start-up costs of running the robot are significant. Also,

setting 𝑚𝑢𝑛𝑘𝑛𝑜𝑤𝑛 low for a particular expensive simulator can help limit the number

of samples needed from that level.

Finally, Fig. 3-7 shows the algorithm performance as the convergence parameter

𝑚𝑘𝑛𝑜𝑤𝑛 is varied. Notice that setting 𝑚𝑘𝑛𝑜𝑤𝑛 too low causes the algorithm to con-

verge prematurely to a suboptimal policy, while setting the value too high wastes

unnecessary samples converging to the same policy.

Empirically, the MFRL algorithm is robust to variations in the tuning parameters

of 𝛽, 𝑚𝑢𝑛𝑘𝑛𝑜𝑤𝑛, and 𝑚𝑘𝑛𝑜𝑤𝑛. The algorithm converges to the optimal policy at the top

level for all values of the tried parameters, except for when 𝑚𝑘𝑛𝑜𝑤𝑛 is set artificially
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too low. While no firm guidelines exist yet for determining these parameters for

new domains, in general, 𝛽 should be set based on approximately how optimistic

two adjacent simulators are, 𝑚𝑘𝑛𝑜𝑤𝑛 based on how many successive “known” samples

should be observed before being confident that further exploration is not needed, and

𝑚𝑢𝑛𝑘𝑛𝑜𝑤𝑛 based on how costly it is to backtrack to a lower-fidelity simulator.

3.4 More General Representations through KWIK

Thus far, while the analysis of MFRL’s sample complexity has been done through

the general KWIK framework, the focus has been mostly on tabular representations

of 𝑇 and 𝑅, where each state/action pair’s transition and reward dynamics are com-

pletely independent of other state/action pairs. However, the KWIK framework al-

lows model-based RL agents to employ a number of more general representations that

scale polynomially efficient learning to larger environments.

The mechanism for performing such scaling is to use a representation of 𝑇 and

𝑅 with far fewer parameters than |𝑆|. For instance, in a continuous domain, 𝑇 or 𝑅

might be represented as a linear combination of the 𝑛 state factors with 𝑛 unknown

weights. In that case, only 𝑛 parameters need to be learned by the base learners, and

hence polynomial sample efficiency can ultimately be guaranteed. Many such rep-

resentation classes have been analyzed within the KWIK framework [65], including

linear systems [96], “typed” Gaussian-offset dynamics [19], Dynamic Bayesian Net-

works (DBNs) [65], and Gaussian processes [39]. Complex robotic motion may also

benefit from stronger relational representations such as Object Oriented MDPs [30].

Since the theoretical analysis was done for any KWIK learnable representation, the

algorithm and efficiency guarantees hold for these representations as well. When con-

tinuous representations are used, 𝑄 is approximated with a function approximator.

The approximator parameters are passed from lower- to higher-fidelity levels to con-

struct optimistic values. Note that not all systems are KWIK learnable [65] (e.g., the

conjunction of 𝑛 terms).

The following sections describe one of these general representations, a DBN, in
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Figure 3-8: An example Dynamic Bayesian Network (DBN) representation of an
MDP transition function where the state has 3 factors. DBN representations are
most useful when the network is not fully connected, as shown here.

more depth and illustrate how it can be used in the MFRL framework in the puddle

world simulators from Section 3.3.2. Later, coupling MFRL with a DBN representa-

tion allows the robotic car experiments to scale to much larger state spaces.

3.4.1 KWIK Learning a Dynamic Bayesian Network

A Dynamic Bayesian Network [16, 24] represents the evolution of a set of factors 𝐹

from one step to another. A DBN can be viewed as a graphical model containing

2|𝐹 | nodes representing the value of each factor at time 𝑡 and time 𝑡+ 1. Each factor

𝑓 at level 𝑡+ 1 is connected to a set of parent nodes Π(𝑓) at level 𝑡.2 The assumption

leveraged in a DBN is that the probability distribution over 𝑓 ’s value is independent

of the probability of any other factor value given Π(𝑓). Thus, the probability of

𝑓 taking on a given value can be encoded in a small probability table that grows

exponentially only in the number of parents. In this work tabular representations

of the conditional probability distributions are used, but any non-tabular, KWIK

compatible representation could also be used.

DBNs can naturally be used to represent an MDP transition function for a factored

state space by representing the factors of 𝑠 and 𝑎 in the top level and the factors of

𝑠′ in the bottom level (with dependencies on the variables of 𝑠 and 𝑎). Fig. 3-8 shows

2Cross-Edges within the 𝑡 + 1 level are also allowed as long as they do not create cyclic depen-
dencies.
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an example DBN. Based on the independence assumption of the DBN,

𝑇 (𝑠, 𝑎, 𝑠′) =
∏︁
𝑓∈𝐹

𝑃𝑟(𝑓(𝑠′)|Π(𝑓 |𝑠, 𝑎)).

A DBN over 𝑛 factors, each with 𝑣 values, contains only 𝑛(𝑣 − 1)𝑣|Π| parameters,

where |Π| is the maximum number of parents of any node. Thus, the DBN is KWIK

learnable given the structure Π using the KWIK-Rmax framework.3 Specifically, a

parameter

𝑚 =
2𝑣

𝜖2
ln(

2𝑣

𝛿
)

is set, and, for a given ⟨𝑠, 𝑎⟩, if any factor induces a Π(𝑓 |𝑠, 𝑎) with fewer than 𝑚

experiences, 𝐿𝑇 (𝑠, 𝑎) = ⊥, otherwise the maximum likelihood distribution given the

current data is used for 𝑇 . Combining this partitioning of known and unknown

factor combinations with the 𝑅max heuristic yields agents that efficiently target factor

combinations that are unknown but may lead to better behavior, without exploring

the entire ground state space.

In MFRL, the generic Algorithm 4 with the base KWIK-DBN learners are used

as described above, but instead of the 𝑅max heuristic, 𝑄̂𝑖(𝑠, 𝑎) is set for any 𝑠 that

induces an unknown parent configuration (that is, 𝐿𝑇 (𝑠, 𝑎) = ⊥) to 𝑄̂𝑖−1(𝑠, 𝑎).

An example of how the DBN representation can speed up MFRL’s learning is

now provided. Later sections show how such a representation allows MFRL to scale

to state spaces on the robotic car that would be prohibitive to learn with a tabular

representation, even in the presence of high-fidelity simulators.

3.4.2 MFRL DBNs for the Puddle World

States in the puddle world domain described in Section 3.3.2 consist of the 𝑥 and 𝑦

coordinates of the grid containing the current location of the agent. When the agent

takes a step, the 𝑥 coordinate of the new grid depends only on the previous 𝑥 grid

3KWIK algorithms also exist for learning this structure. See [65].
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Figure 3-9: A Dynamic Bayesian Network representation of the transition dynamics
for the puddle world domain introduced in Section 3.3.2. Each state consists of an
𝑥 and a 𝑦 grid location. These dimensions are independent given the current action,
thus reducing the fully connected tabular representation to one with 2 factors.

coordinate, and not on the previous 𝑦 grid coordinate. Similarly, transitions between

𝑦 grid values depend only on the current 𝑦 values. Therefore, the transition dynamics

of the puddle world agent can be captured by the DBN model shown in Fig. 3-9,

where the next 𝑥 and 𝑦 state values depend only on the previous action and previous

𝑥 or 𝑦 state value, respectively. It should be noted that this DBN representation

is not the most efficient way to represent or solve the puddle world domain, but is

merely an example of how DBN’s can be used to increase the speed of learning.

Fig. 3-10(a) and 3-10(b) shows average learning curves at the top level and aver-

age samples at each of the three levels using Algorithm 4 with the DBN extensions

described in Section 3.4.1. Improvement over the tabular transition function repre-

sentation is evident as more than 50% fewer samples are needed in the three levels

when using the DBN.

One unanticipated effect of using the more general representation is the increased

negative transfer from Σ1 and Σ2 to Σ3, as demonstrated by the more substantial

initial decrease in average reward during learning shown in Fig. 3-10(a). The increased

negative transfer is due to the increased generalization of the transition dynamics.

When exploring Σ3, the agent is less likely to initially reach states unobserved at Σ2

because the DBN generalizes each experience to many more states than a tabular

representation would. Thus, the DBN agent will explore more of the puddle in Σ3

before moving back to Σ2 and Σ1. A detailed analysis of the effects of transition

and reward dynamics generalization on the amount of negative transfer in MFRL is
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Figure 3-10: Using the Dynamic Bayes Network (DBN) shown in Fig. 3-9 to represent
the transition function for the puddle world decreases the top-level convergence time
and overall samples used. (a) However, the more generalized representation function
also transfers more negative information than the tabular representation (TAB) as
seen by the initial dips in average reward. (b) The total samples used across the
three simulator levels is decreased by an average of 52% and 66% for the MFRL and
unidirectional transfer (UNI) cases, respectively.

outside the scope of this thesis and will be saved for future work.

3.5 Generative Simulators

Thus far, the analysis and experiments have been conducted under Assumption 2,

which states samples can only be obtained by executing trajectories. While this

is certainly true in the real world and may be true in many high-level simulators

with little API access (such as a commercial video game or complex simulator),

often this assumption may be too restrictive. Many simulators provide generative

access to dynamics and reward information, where arbitrary state/action pairs can

be queried. Many simulators provide generative access to dynamics and reward in-
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formation. Specifically, many simulators can be queried with a ⟨𝑠, 𝑎⟩ and will return

a next 𝑠′ and reward without the user having to perform all of the steps to reach the

query state 𝑠.

However, generative access does not necessarily make choosing where to sample

any easier. For instance, consider the case where an agent in Σ𝑑 encounters a state

that has not been visited in Σ𝑑−1. It is tempting to simply query Σ𝑑−1 at that

state. However, these samples might be ineffective. The state may have been reached

because of a poor decision made much earlier in the trajectory. In fact, the information

gathered in the Σ𝑑 trajectory may have already updated the model to correct such

a decision in the future. A concrete example of this phenomenon happens in the

robotic car experiments in Section 3.6 where optimistic transitions in Σ𝐷−1 cause the

car to attempt aggressive maneuvers that lead to spinning out in Σ𝐷. But this does

not mean the system should query the simulator to learn what happens during an

unrecoverable spin. The more prudent course may be to replan in Σ𝐷−1 given the

transition dynamics actually encountered in Σ𝐷, which is what MFRL does.

Of course, there are situations where the opposite reaction would be better. For

instance, if simulator Σ𝑑−1 lacks a variable used in Σ𝑑, it may not support the trajec-

tory in Σ𝑑 that encountered an unknown state 𝑠. Thus, running greedy trajectories

in Σ𝑑−1 may not lead to 𝑠 even though the simulator may have a perfect model of the

dynamics in 𝑠 itself.

Since both of these cases can occur, a simple extension is proposed to the MFRL

algorithm when one or more simulators provide generative access. When moving to

a lower-fidelity simulator based on a set 𝑆 of states unknown at level 𝑑 − 1, if Σ𝑑−1

is generative, the algorithm runs greedy trajectories starting directly at the states in

𝑆 to gather samples for its model of Σ𝑑−1. Once all of the states in 𝑆 are known,

it performs the normal greedy trajectories in Σ𝑑−1 as specified in the original MFRL

algorithm.

Fig. 3-11 and 3-12 show the result of applying Algorithm 4 to the puddle world

domain described in Section 3.3.2, where generative access is assumed at all levels of

the domain. Generative access does little to improve the convergence of the algorithm

71



0 200 400 600 800 1000 1200
Full Puddle (Σ3) Samples

−700

−600

−500

−400

−300

−200

−100

0

A
ve

ra
ge

C
um

ul
at

iv
e

R
ew

ar
d

MFRL
MFRL-GEN
MFRL-DBN
MFRL-DBN-GEN

Figure 3-11: Using generative access in the puddle world domain doesn’t significantly
improve learning performance. Other simulation environments could benefit more
from generative access to the simulation environments. Learning curves are the av-
erage of 1000 runs with standard errors shown.

in the real puddle world or with the robotic car in the next section. However, I believe

other domains might benefit more from generative simulator access.

3.6 Robotic Car Results

Small robotic (or remote-controlled) cars have been popular testbeds for RL algo-

rithms, with several results demonstrating improved trajectory tracking performance

using various RL techniques [3,56,59], though none of these approaches chose which,

if any, simulator to run trajectories in. Several bandit and multi-state experiments are

run on a robotic car with two simulators of the car’s dynamics. This section describes

the car, simulators, experimental setup and results. A video showing an example of

MFRL applied on the car is available at https://youtu.be/c_d0Is3bxXA.
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Figure 3-12: Using generative access in the puddle world does not significantly alter
the average samples used in any of levels of learning. Bars show an average of 1000
runs with standard deviations shown.

3.6.1 Experimental Setup

The MFRL algorithms are experimentally verified using a robotic car driving on an

indoor track. The car is an off-the-shelf 1/16 scale 4-wheel drive rally car shown in

Fig. 3-14. The position, velocity, and heading angle of the vehicle are measured using

an external motion capture system. The wheel velocity is measured and filtered using

an optical encoder read by a microcontroller.

Fig. 3-13 shows the car task, which consists of selecting different radii and ve-

locities to minimize lap-times on a track of fixed length. In this scenario, the track

consists of straight and curved segments, each with an associated distance and ve-

locity parameter, both of which remain constant during the length of each segment.

As shown in the diagram, the virtual “cones” are fixed and denote the length of the

73



ri,cmd

ri+1,cmd

i+1

i

i-1
ri,cmd

vi,cmd

ai=

vx

r
y

c

si =

r

Allowable Area

Figure 3-13: The robotic car task consists of driving around a fixed-length track
(length determined by cone placement). Each lap is divided into four segments and
the car must choose both the commanded velocity and commanded turn radius of each
segment upon completion of the current segment. These decisions are made based on
the state values at the end of each segment, namely the car forward velocity, current
radius, rotational velocity, and segment type.

path. As the car finishes each segment, the commanded radius 𝑟𝑖,𝑐𝑚𝑑 and velocity

𝑣𝑖,𝑐𝑚𝑑 values for the next segment are chosen. The reward returned for each segment

is −𝑡 where 𝑡 is the elapsed time required to drive that segment. If the car drives,

or often slips, out of a virtual “drivable” area around the track (denoted by the large

black box in Fig. 3-13), the car resets to a fixed initial condition and is given a large

negative reward. The state variables in 𝑠𝑖 (Fig. 3-13) are the body frame forward

velocity 𝑉𝑥, rotational rate 𝜓̇, distance from track center 𝑟, and the current segment

type 𝑐 (straight or curved).

Choosing the next radius and velocity fully defines the desired path for the next

segment (note that straight and curved track segments are forced to alternate). The

car follows this path using a pure pursuit controller where the look ahead control

distance is a function of the commanded velocity [79]. Running at 50 Hz, the pure

pursuit controller computes the desired forward velocity, rotational rate and heading

angle required to keep the car on the specified trajectory. Steering angle commands

and desired wheel velocities are computed using the closed-loop controllers from [43],

where the cross track error term in the steering angle control law is omitted, as the
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Figure 3-14: One of the benefits of the MFRL framework is the ability to wrap the
learning around fixed lower-level controllers. The car is controlled using a series of
closed-loop controllers that perform high-rate velocity and position tracking, while
MFRL learns which high-level commands to issue at a much slower rate. The robotic
car and associated state and control variables are also shown. The state variables
consist of the body-frame linear velocities 𝑉𝑥 and 𝑉𝑦, the wheel velocity 𝜔, and the
heading rate 𝜓̇. The control inputs are the steering angle 𝛿 and the desired wheel
velocity 𝜔𝑐𝑚𝑑.

cross track error is reduced by the pure pursuit algorithm. The 𝐶𝑦 parameter in this

control law (see Equation 8 in [43]) is found by matching measured vehicle data to

input commands.

The steering angle 𝛿 and commanded wheel speed 𝜔𝑐𝑚𝑑 are sent to the car’s

microcontroller over a wireless serial connection. Steering commands are sent directly

to the servo. Commands to the motor come from a simple closed-loop controller

around the commanded and measured wheel speed. This proportional-integral wheel

speed controller is used to lessen the effects of the time-varying battery voltage on

the velocity dynamics.

An overview of the control loops used to control the vehicle is shown in Fig. 3-14.

One of the strengths of the MFRL framework is that it can be used around existing

closed-loop controllers. These closed-loop controllers need not be the same at the

different levels of simulation.

The simulation environments for the robotic car consist of a naïve simulator (Σ1)

and a dynamics-based simulator (Σ2). The naïve simulator ignores the dynamic model
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of the car and returns ideal segment times assuming the car followed the requested

trajectory exactly. As mentioned in Section 3.1.2, this simulator does not model

rotational rate 𝜓̇ and so the state-space mapping is not 1-to-1 when going from Σ1

to Σ2. The higher-fidelity simulator models the basic dynamics of the car, including

wheel slip, where model parameters such as the “Magic Tyre Parameters” [110] are

estimated using test data collected on the car. This simulator captures much of the

dynamic behavior of the car, although discrepancies in real-world data and simulator

data become more significant at higher velocities (above about 2.0 m/s) and when

the wheels slip significantly. Therefore, learning needs to be performed not only in

the simulators, but also on the physical car. Descriptions of this simulator and its

underlying equations are included in Appendix B.

Both car simulators (Σ1 and Σ2) run many times faster than real time. Therefore,

the total learning time in the experiments below is dominated by the time spent

collecting samples from the real car. As mentioned earlier, the known-ness (𝑚 and

𝑚𝑘𝑛𝑜𝑤𝑛) parameters for the base learners in these experiments are set lower than the

loose worst-case bounds from the theoretical section, which is standard practice with

the Rmax family of algorithms.

3.6.2 Experiments for the Bandit Setting

The first robotic car experiment takes place in the bandit setting: choosing a single

radius and two velocities (one for curves and one for straightaways) at the beginning

of a 3-lap run. Five values were allowed for radii (between 0.5 and 1.2 m) and five

values for velocities (between 2.0 and 3.5 m/s), yielding 125 actions/arms in the

bandit scenario. Algorithm 3 is evaluated in this setting as well as unidirectional

transfer of 𝑄-value heuristics, that is, the transfer mechanism of [67] applied with the

KWIK-Rmax framework.

The simulators are deterministic (Σ2 has only a small amount of added artificial

noise) and so the known-ness parameter is set as 𝑚 = 1 at Σ1 and Σ2. To account

for real-world noise, 𝑚 = 2 is set at Σ3, meaning 2 tries with a given parameter

setting were needed to determine its value. Both MFRL and unidirectional transfer
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Figure 3-15: Samples used by MFRL and unidirectional transfer (UNI) at each level
in the (a) bandit case and the (b) state-based case. In both experiments, the MFRL
algorithm converges to an equally fast policy when compared to unidirectional trans-
fer; however, MFRL uses over 50% fewer real-world samples in the bandit case and
over 30% fewer in the state-based case. Each algorithm is tested 3 times with bars
showing the average.

found a near-optimal policy within 60 steps on the real car. These results were not

compared to a no-transfer algorithm since it would need at least 250 trials to identify

the optimal policy4.

Fig. 3-15(a) depicts the samples used in each simulator by the algorithms. MF-

Bandit on average uses fewer than half as many samples in the real-world when

compared to the unidirectional learner. Both MF-Bandit and unidirectional transfer

converged to policies with lap times of about 3.7 seconds per lap and learned to use

higher velocities on the straightaways than the curves. These lap times are similar to

the ones found in the state-based setting described in the next section, although the

state-based policy is more robust to disturbances and noise.

4While there are only 125 actions, each action must be tried 𝑚 = 2 times in the real world before
it is known.
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Table 3.4: State and action discretizations for the state-based car MFRL results.

Value Min Max Disc. Small Disc. Large

𝑐 (segment) − − 2 2
𝜓̇ (rad/s) -1.0 3.5 3 3
𝑟 (m) 0.5 1.2 3 4
𝑣𝑥 (m/s) 2.0 3.2 3 6
𝑟𝑐𝑚𝑑 (m) 0.5 1.2 3 4
𝑣𝑥,𝑐𝑚𝑑 (m/s) 2.0 3.2 3 6

Table 3.5: Parameters for the state-based car MFRL results.

Parameter Σ1 Σ2 Σ3

𝑚𝐿𝑅
1 1 1

𝑚𝐿𝑇
1 3 3

𝑚𝑘𝑛𝑜𝑤𝑛 100 100 50
𝑚𝑢𝑛𝑘𝑛𝑜𝑤𝑛 − 10 10
𝛽 0 0 −

3.6.3 Experiments for the State-Based Setting

In the multi-state case, the state space described in Section 3.6.1 and Fig. 3-13 was

used, allowing the car to pick a radius and velocity at the beginning of every segment

(4 per lap). Because closed-loop, state-based decisions (i.e. changing velocities and

radii in short segments), are being made, the action-space can be reduced from the

bandit setting, since |Π| = 𝑂(|𝐴||𝑆|). Here, 3 radii and 3 velocities are used (|𝐴| =
9). The discretization of the state and action values is shown in Table 3.4 (small

problem). Since the discretization in the state space makes the simulation results

potentially noisier (from state aliasing), 𝑚𝐿𝑇
is set to 3 in Σ2 and the real car. The

MFRL parameters used for these results are shown in Table 3.5.

In the experiment, both MFRL and unidirectional transfer converged to a policy

with lap times of just under 3.7 seconds, slightly faster than the bandit results from

the previous section. Fig. 3-15(b) shows the samples used in each level by MFRL

and unidirectional transfer. The MFRL algorithm converges using an average of 35%
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Figure 3-16: A Dynamic Bayesian Network representation of the transition dynamics
for the robotic car. The next radius, forward velocity, and rotational rate depend
primarily on the commanded radius, commanded velocity and the current segment.
The next segment depends only on the current segment as the car is forced to go from
straight to curved to straight and so forth. Note that this transition model decreases
the maximum factor order from 6 to 3.

fewer samples in the real world when compared to unidirectional transfer.

The converged policy in the state-based experiments is different from the bandit

case, due to the versatility of state-based control. Instead of an oval shape, MFRL

chose different values for the radius entering a curve versus the radius exiting the

curve. This led to initially wide turns towards the cones followed by a sharp turn

towards the straightaway, maximizing the time the car could drive fast down the

straight section. Reaching this fairly complicated policy with a reasonable number

of real-world samples was made possible by MFRL’s efficient use of samples from

the previous levels. Particularly, experience in Σ1 pruned policies that were too

slow, while experience in Σ2 pruned policies that were too fast on the curves. Finally,

experience with the real car refined the policy under the actual, but noisier, conditions

in the real environment.

3.6.4 Experiments using DBN Representation and Generative

Access

This section uses the notion of a generalized transition function via a DBN introduced

in Section 3.4.1 to decrease the required real-world samples needed to solve the track

problem. The independence assumptions made are shown in Fig. 3-16. Because the

closed-loop controllers guiding the car are fast relative to the length of the track
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Figure 3-17: (a) Using the Dynamic Bayes Network (DBN) shown in Fig. 3-16 to
represent the transition function of the car decreases the total samples used across
the three levels of learning by an average of 63% for both the MFRL and unidirectional
transfer cases. (b) With the larger domain specified in Table 3.4, the MFRL algorithm
decreases the samples used on the real car by an average of 40% when compared to a
unidirectional transfer case. Note that the size of the state/action space here is over
3400, but the MFRL algorithm converges in fewer than 2500 samples on the real car.

segments, the state values at the end of a segment are assumed to depend only on the

segment type and the actions chosen for that segment, and not on the state values

when the segment was started. There are cases when this assumption is violated, such

as when the car starts sliding out of control in one segment before transferring to the

next segment; however, for most of the state/action space and the testing performed,

this assumption holds true.

Fig. 3-17(a) shows the samples used to solve the track problem using the small

discretization values shown in Table 3.4. The DBN transition model significantly

decreases the samples needed to converge at all levels of the learning, with both the

MFRL and the unidirectional algorithms using more than 60% fewer samples than

when using the nominal tabular transition function (results from Fig. 3-15(b)).
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(b) Converged real-world policy

Figure 3-18: Actual trajectories driving by the car during one of the learning runs.
(a) As the MFRL algorithm transitions to the real car for the first time, the at-
tempted trajectories are too aggressive for the actual hardware, leading to the car
frequently exiting the allowable region. (b) By the end of the learning process, the
car consistently drives fast along the straight segments and slower around the turns,
yielding fast lap times.
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Comparing the MFRL algorithm using a DBN transition model (MFRL-DBN) to

unidirectional transfer with a DBN (UNI-DBN), MFRL-DBN uses slightly (though

not significantly) fewer samples in Σ3 while using more samples in Σ2. This trade-off

is by design, as MFRL assumes (under Assumption 1) that using more samples in a

lower-fidelity simulator is worth using fewer samples in the real world, since the real

world samples are far more costly. Indeed, this is true in the robotic car experiments

where actually running the car in the lab takes significantly more time and effort

than the computer simulation. The combination of a DBN and the MFRL transfer

framework significantly decreases the number of real world samples compared to the

other representations/framework combinations studied here.

This decreased number of required samples now allows MFRL to solve the track

problem using a larger state/action space. Table 3.4 shows state and action dis-

cretization values for the larger problem solved using MFRL with a DBN transition

function representation. Note that, in this case, the state/action size is nearly an order

of magnitude larger than the state/action size for the smaller problem in Table 3.4,

the parameter settings used in the previous section.

Fig. 3-17(b) shows that with this larger state/action space, the MFRL algorithm

uses on average more than 40% fewer samples in the real world than the unidirectional

transfer algorithm. As in the puddle world examples, giving the algorithm generative

access to the simulators does little to improve the convergence rate of the algorithm.

In all of the tested cases, the algorithms converged to policies very similar to those

found in the smaller state/action space problem described in Section 3.6.3. In these

experiments, the car converged to this policy with fewer real-world samples than the

size of the state/action space.

An example of the types of policies that the MFRL algorithm converges to in

these experiments is shown in Fig. 3-18. Plots of the actual trajectory driven by the

car for the first several and last several laps during the learning process are shown in

Figs. 3-18(a) and 3-18(b), respectively. When the MFRL algorithm first transitions

to the real world, the optimism assumption in the simulators is evident by the fact

that the car often attempts to drive quickly around the turns, a strategy that works
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well in simulation but causes the car to drive out of the feasible region in practice.

Eventually, the algorithm discovers that driving quickly on the straight-aways and

slower around the cones yields a safer and faster policy.

3.7 Summary

This chapter introduced MFRL, which extends lessons from the multi-fidelity opti-

mization community to sequential decision making problems. MFRL transfers heuris-

tics from lower- to higher-fidelity simulators to guide exploration. Unlike previous

transfer learning techniques, this framework also allows agents in lower-fidelity sim-

ulators to plan using higher-fidelity learned model parameters, a tactic shown to be

crucial for minimizing sub-optimal steps in the real world. Many robotics domains

already use simulators of varying fidelity during the initial stages of hardware and

software development. MFRL can leverage these existing simulators to decrease the

dependence of RL algorithms on the physical hardware.

Throughout MFRL, the learning agents retain theoretical sample efficiency guar-

antees over the entire learning process because of the integration of the KWIK-Rmax

framework, and the empirical results show these algorithms are also efficient in prac-

tice. Experiments with a robotic car show that, not only is the framework theoreti-

cally sound, but it is also a practical technique for scaling RL algorithms to real-world

decision making problems.
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Chapter 4

Using Informative Simulated Priors

This chapter introduces a method for using samples from a simulated robot to decrease

the number of real-world samples that are needed to learn a good policy (see Fig-

ure 4-1). Specifically, a learning algorithm is applied in a simulator to learn a model

of the simulated dynamics and a good policy for the simulated domain. The learned

transition dynamics and policy are then used as a prior for real-world learning using

the Probabilistic Inference for Learning Control (Pilco) algorithm [25]. The simu-

lated prior is used in a GP model of the transition dynamics in Pilco to infer about

states that the real-world system has not yet sampled. Empirical results show that,

even when the simulator is inaccurate, using an informative simulated prior decreases

the learning samples needed in the real world and increases the average performance

of the achieved solution. This approach differs from previous work using priors in

Pilco [15] in that it is not limited to linear priors. Using a learned, nonlinear prior

from a simulator allows for incorporating prior information from arbitrarily complex

simulations without needing to make assumptions about the underlying dynamics of

the system.

There is significant existing work verifying the idea that using prior knowledge

can increase the performance of learning algorithms. For instance, using a physics-

based prior when learning inverse dynamics using a Gaussian process has been shown

to yield superior performance when compared to using no prior knowledge [51, 77].

Also, several existing RL algorithms use simulators to augment real robot data [3,22,
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Figure 4-1: The proposed algorithm provides a method for transferring policies and
learned transition dynamics from a simulated environment (left) to a real-world learn-
ing agent (right). The simulator captures the basic dynamics of the physical system
but is not sufficiently accurate for performing learning in the simulator alone. Using
policy parameters and transition dynamics learned in the simulator leads to faster
learning on the physical robot. The algorithm is shown to decrease the number of
samples needed by the real-world learning agent to achieve useful behavior.

56]. Likewise, the transfer learning community [106] has sought to more seamlessly

transfer information from simulators to the real world [67]. However, the above

work assumes either an explicit form for the simulator equations or a discrete state

and action space. In contrast, this work leverages nonparametric Gaussian processes

(GPs) to incorporate data from simulators in a principled way. The simulators can

model continuous states and actions and be black-box codes such as proprietary robot

simulators or based on finite element methods.

The main contributions of this chapter are (1) a principled approach to incorpo-

rating data from any simulator into the Pilco learning algorithm, (2) a derivation of

propagating uncertain inputs through a Gaussian process with a nonparametric mean

function, and (3) simulated and hardware results empirically showing the benefits of

using prior information in the learning process. Using prior data from a simple simu-

lator, experimental results show convergence to a good policy on a physical inverted

pendulum with at least three times less data than is needed when a zero-mean prior
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Algorithm 5 Pilco [25] with Prior Knowledge
1: input: Controller parameters, either random (𝜃 ∼ 𝒩 (0, 𝐼)) or from the simulator

(𝜃𝑝). Apply random control signals and record data.
2: input: Observed simulator data {𝑋𝑝,𝑦𝑝}
3: Learn dynamics model using simulator data
4: while task not learned do
5: Learn probabilistic (GP) dynamics model using real-world data with the sim-

ulator data as a prior
6: while not converged do
7: Approximate inference for policy evaluation
8: Gradient-based policy improvement
9: Update parameters 𝜃 (e.g., CG or L-BFGS)

10: return 𝜃*

11: Set 𝜋* ← 𝜋(𝜃)*

12: Apply 𝜋* to system and record data

is used.

The remainder of this chapter is organized as follows. Section 4.1 details the

derivation of using a Gaussian process with a nonlinear mean when the inputs are

uncertain. Simulated and hardware results of the proposed algorithm are then shown

in Section 4.2. Finally, the chapter concludes with a brief discussion in Section 4.3

and summary in Section 4.4.

4.1 Pilco using a Nonlinear Prior Mean

The generic Pilco algorithm (Algorithm 5, black text) assumes a zero-mean prior on

the transition dynamics. This uninformative prior does not bias the model, giving the

algorithm freedom to model arbitrary transition dynamics. However, the uninforma-

tive prior also means that the policy search algorithm cannot make informed decisions

about areas of the state space from which no samples have yet been collected. In con-

trast, this chapter proposes using Pilco with an informative prior consisting of data

from a simulator of the real domain. The informative prior gives the policy search

phase information about what effect a policy will have on the system even in areas

of the state space that have not yet been explored. The proposed algorithm is shown

in Algorithm 5, with the additions to the original algorithm highlighted in blue on
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lines 1-3 and 5.

The modified algorithm takes as inputs policy parameters (either randomly ini-

tialized or from a learning algorithm applied to the simulator) and observed simulated

data. The simulated data are used to build a probabilistic model of the simulator’s

transition dynamics. The mean of this model is then used as a prior for the transition

dynamics model learned in the target domain.

Given data from a simulation of the target domain, one way to incorporate the

data into the learning algorithm is to train a single GP using both simulated and

real data as inputs. Mixing simulated and real data has been shown to cause poor

performance as the GP models of the real-world transition dynamics can become

corrupted by incorrect simulation data [68]. In this approach, even with an incorrect

simulator, real data from the target domain will eventually overcome the effects of

the prior and converge to the true transition dynamics as the number of obtained

data points increases.

To effectively use the learned GP dynamics model in Pilco (line 7 in Algorithm 5),

the algorithm performs simulated roll-outs of the system dynamics using the learned

model. This calculation requires machinery for correctly propagating the mean and

covariance of uncertain inputs through the GP model of the transition dynamics.

This section gives the required calculations to propagate uncertain inputs through a

GP when the prior function is the mean of a different GP. This mean prior function

is equivalent to a radial basis function (RBF) network.

Unlike deterministic inputs, mapping an uncertain Gaussian test input 𝑥* ∼
𝒩 (𝜇,Σ) through a GP does not, in general, result in a Gaussian posterior distri-

bution. However, the posterior can be approximated as a Gaussian distribution by

computing the mean and covariance of the posterior distribution [38]. Pilco iter-

atively uses these Gaussian approximations when performing long-term predictions

using the learned GP transition dynamics.

Next, the posterior mean and covariance equations are shown when the prior

mean of the GP is an RBF network. When the learning domain has multiple target

variables (such as angle and angle rate for the inverted pendulum), independent GPs
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are learned for each output dimension. Where necessary, different output dimensions

are differentiated with the subscripts 𝑎 and 𝑏. In each equation, blue text denotes

the terms that come from the prior. A full derivation of these equations is given in

Appendix C.

The predictive mean 𝜇* is given by

𝜇* = 𝛽𝑇𝑞+𝛽𝑇𝑝 𝑞𝑝, (4.1)

where 𝑞𝑖 = 𝛼2|ΣΛ−1 +𝐼|−1/2 exp(−1
2
𝜈𝑇𝑖 (Σ+Λ)−1)𝜈𝑖) with 𝜈𝑖 = 𝑥𝑖−𝜇. The subscript

𝑝 denotes terms coming from the prior.

The predictive covariance Σ* of the uncertain test inputs through the GP 𝑓(𝑥) is

given element-wise as

𝜎2
𝑎𝑏 = 𝛿𝑎𝑏(𝛼

2
𝑎 − tr((𝐾𝑎 + 𝜎2

𝜖𝑎𝐼)−1𝑄)) + 𝛽𝑇𝑎𝑄𝛽𝑏 + 𝛽𝑇𝑝𝑎𝑄𝑝𝛽𝑝𝑏 + 𝛽𝑇𝑝𝑎𝑝𝑄̂𝛽𝑏 + 𝛽𝑇𝑎 𝑄̂𝑝𝛽𝑝𝑏−(︀
𝛽𝑇𝑎 𝑞𝑎 + 𝛽𝑇𝑝𝑎𝑞𝑝𝑎

)︀ (︀
𝛽𝑇𝑏 𝑞𝑏 + 𝛽𝑇𝑝𝑏𝑞𝑝𝑏

)︀
, (4.2)

where 𝛿𝑎𝑏 is 1 when 𝑎 = 𝑏 and 0 otherwise.

Finally, Pilco uses the covariance between the uncertain test input 𝑥* ∼ 𝒩 (𝜇,Σ)

and the predicted output 𝑓(𝑥*) ∼ 𝒩 (𝜇*,Σ*) to compute the joint distribution 𝑝(𝑥*, 𝑓(𝑥*)).

This covariance is calculated as

Σ𝑥*,𝑓* =
𝑛∑︁
𝑖=1

𝛽𝑖𝑞𝑖Σ(Σ + Λ)−1(𝑥𝑖 − 𝜇) +

𝑛𝑝∑︁
𝑖=1

𝛽𝑝𝑖𝑞𝑝𝑖Σ(Σ + Λ𝑝)
−1(𝑥𝑝𝑖 − 𝜇). (4.3)

In summary, Eq. (4.1)–(4.3) are the true predictive mean, covariance, and input-

output covariance of an uncertain input passed through a GP with a mean function

modeled as an RBF network.

In addition to propagating uncertain inputs through the transition dynamics

model, Pilco requires the calculation of closed-form derivatives of the predicted

mean, covariance, and input-output covariance with respect to the input mean and

covariance. These calculations are rather long, but not particularly difficult and so are

not included here. A full derivation of the required derivatives is given in Appendix C.
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Table 4.1: Default parameters used in the inverted pendulum and cart pole domains.

Pendulum
Mass

Pendulum
Length

Friction
Coefficient

Cart
Mass

Max Force
or Torque

Inverted Pendulum 1 Kg 1 m 0.1 N/m/s - 2.5 Nm
Cart Pole 0.5 Kg 0.5 m 0.1 N/m/s 0.5 Kg 10 N

The computation of the predictive mean, covariance, and input-output covariance

using a simulated prior requires approximately twice as much computation time as

the zero-mean prior case (assuming the number of data points in the prior GP and

the current GP are roughly equal), as most of the computations are merely repeated

on the prior data. However, note that the size of the prior data is fixed and does

not grow with iteration number, thus the additional computational complexity of the

algorithm due to the nonlinear prior does not grow as new data points are observed.

4.2 Results

Using the equations derived in the previous section, both simulated and hardware

experiments are performed to identify how well the proposed alterations to Pilco

work in practice. In all of these experiments the generic Pilco algorithm is run in the

simulated domain and use the data collected during that learning exercise as the prior

for the learning in the target domain. Note that any learning algorithm (including

just randomly sampling the state-action space) could be applied in the simulator to

obtain the required observations for the prior, but collecting data in the simulator

using a good policy will more likely yield better results as data points will exist in

the important areas of the state space.

As in [25], dynamics models are learned using tuples (𝑥𝑡,𝜇𝑡) as inputs and dif-

ferences ∆𝑡 = 𝑥t+1 − 𝑥t as training targets. In all the experiments the generalized

binary saturating cost function from [25] is also used.
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(a) Inverted Pendulum
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(b) Cart-Pole

Figure 4-2: Learning curves for the 2-dimensional inverted pendulum (a) and the 4-
dimensional cart-pole (b) domains when the prior comes from the same domain. Using
an informative prior on the transition dynamics consistently improves performance
regardless of the initial policy parameters. In the more complicated cart-pole domain
using good initial policy settings does little to improve the algorithm performance
unless prior transition information is used as well. Each line shows the mean of 20
independent learning samples each evaluated 5 times. The shaded regions show 95%
confidence bounds on the standard error of the mean.
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4.2.1 Using a Simulation Prior in a Simulated Domain

The first set of results explore the performance of Algorithm 5 using two different

simulations of the same domain. This will demonstrate the benefits of the algorithm

as a function of the difference between the domains. The two chosen domains are the

benchmark RL domains of the inverted pendulum and the inverted pendulum on a

cart, or the cart-pole domain. Unless otherwise stated, the default parameters used

for simulation of these domains are giving in Table 4.1.

Using two identical instances of the target domains, the results first verify that,

given a perfect simulation of a physical robot (assuming such a simulation exists),

no learning needs to be performed in the real-world as a learning algorithm can be

applied in the simulator and the resulting control policy used on the real robot.

Figures 4-2(a) and 4-2(b) show the performance of Algorithm 5 under these idealized

circumstances in the pendulum and cart-pole domains, respectively. In each figure the

learning curves depict average cost as a function of learning episode. The following

scenarios are compared: (a) the original Pilco algorithm with a random policy

initialization, (b) the original Pilco algorithm using learned policy parameters from

the simulation, (c) the proposed algorithm using a random policy initialization, and

(d) the proposed algorithm using policy parameters from the simulation.

Note that, as expected, the learning curves either start with the performance

of a random policy or with the performance of the converged policy, depending on

the initial policy parameters used. When the prior policy is used and the prior

for the transition dynamics comes from the same domain, the algorithm remains at

the same performance level during the duration of the learning episodes as there

is no incentive for the algorithm to explore different policy parameters. However,

when a zero-mean prior is used (the original Pilco algorithm), even when initialized

with near-optimal policy parameters, the performance actually gets worse for several

learning episodes while the policy search explores different policy parameters before

returning to the initial values. This transient learning phase is mild in the simple

inverted pendulum domain. However, in the more complicated cart-pole domain,
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using a good prior policy does little to increase the learning rate when compared a

random policy initialization.

In both domains, even when the algorithms are initialized with random policy

parameters, using an informative prior speeds the learning process and consistently

leads to a better policy. The on-average worse performance of the original Pilco

algorithm comes from the algorithm occasionally converging to a sub-optimal solu-

tion. For instance, in the inverted pendulum domain, the pendulum has sufficient

torque to swing up to vertical with just one swing-back. However, the learning agent

occasionally, depending on the random initial policy parameters, converges to a pol-

icy that consists of a double swing-back, taking longer than is necessary to get the

pendulum to the inverted configuration. In these experiments, the prior data were

generated using an instance of the Pilco algorithm that converged to a single swing-

back policy. Thus, even when the policy parameters are randomly initialized, having

an informative prior coming from a good policy consistently helps the algorithm to

converge to a single swing-back policy.

The next set of results demonstrates the performance of Algorithm 5 when the data

for the prior come from a domain with different transition dynamics than the target

domain. In Figures 4-3 and 4-4 the performance of Pilco using an informative prior

(transition dynamics and policy parameters) is compared to using a uniform prior

and random initial policy parameters. The plots show the difference between the

uninformative and the informative prior as the domain parameters are varied between

the prior domain and the target domain. For instance, in Figure 4-3(a) a prior learned

in the default domain was used in a target domain where the friction coefficient was up

to 15 times more than the default value. In each plot, the parameters not varied were

kept at their default values. Positive cost differences show the modified algorithm

performing better than the original. Except for extreme changes in the parameters

of the target domain compared to the prior domain, using an informative prior from

an imperfect simulator is still better than using no prior at all.

Due to the nature of continuous state-action RL being an optimization problem in

an arbitrary non-convex space, it is difficult, if not impossible, to quantify or predict
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(a) Varying friction coefficient
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(b) Varying thrust
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(c) Varying pendulum inertia

Figure 4-3: Differences between the original Pilco algorithm and the algorithm when
using an informative prior in the pendulum domain. In each case the informative prior
was learned using the nominal pendulum parameters in Table 4.1 and then tested in a
domain where the default parameters were varied. Positive cost differences show the
modified algorithm performing better than the original during that episode. Thus,
except when the target domain was extremely different from the prior domain, the
modified algorithm performed better than the original. Each line is the average of
24 independent learning runs. The error bars have been left off for clarity, but are
similar in magnitude to those in Figure 4-2.
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(b) Varying torque

Figure 4-4: Results when varying the friction coefficient and the actuator force from
the prior to the target domain in the cart-pole domain. As in the inverted pendulum
(see Figure 4-3), the modified algorithm is robust to significant difference between
the prior and the target domain.

the expected improvement of using a simulated prior in a domain as opposed to using

a zero-mean prior. Intuitively, data from an arbitrarily poor simulator should be

expected not to be useful, and possibly even be harmful to the learning process if

it causes the gradient-based policy optimizer to look in the wrong directions. For

instance, in Figure 4-3(b), when the true domain thrust is 200% higher than the

simulated domain thrust, the optimal policies are fundamentally different between

the domains. The additional thrust allows the pendulum to go directly from hanging

down to upright without a swing-back. The zero-mean prior algorithm discovers this

simple policy after a single iteration; however, using the simulated prior, the learning

is biased towards policies that use a swing-back to reach the goal position, temporarily

causing worse performance. Further discussion on whether the proposed algorithm

will improve the learning performance is contained in Section 4.3.

4.2.2 Using a Simulated Prior on an Inverted Pendulum

This section verifies the performance of Algorithm 5 on a physical implementation of

the inverted pendulum, shown in Figure 4-1. The pendulum is actuated using two

propellers driven by independent brushless motors. The propellers are facing opposite
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Figure 4-5: Difference between Pilco with a zero-mean prior and the proposed ex-
tension with a nonparametric prior coming from a simulator when implemented on a
physical inverted pendulum. In the simulated prior both the dynamics and the policy
are passed to the real domain. Each algorithm was run three times, with the policy
at each episode evaluated 5 times. Error bars show a 95% confidence interval on the
standard error of the mean. On average, the additional knowledge from the simulator
led the physical system to converge to a good policy in just one episode, whereas
without prior knowledge Pilco required at least three learning episodes before the
pendulum could be stabilized.

directions, blowing air away from each other. The control input to the motors keep

the propellers spinning at all times as brushless motors have a significant spin-up time

when starting from rest. The model of the inverted pendulum consists of two states,

the angle 𝜃 and the angle rate 𝜃. The equation of motion is given as

𝐼𝜃 = 𝐹𝐿− 𝑏𝜃 − 𝑇𝑔𝑟𝑎𝑣𝑖𝑡𝑦,

where 𝐼 is the moment of inertia of the pendulum, 𝐹 is the force produced by the

propellers, 𝐿 is the distance from the pivot to the propellers, 𝑏 is the friction coefficient,

and 𝑇𝑔𝑟𝑎𝑣𝑖𝑡𝑦 is the torque from gravity.
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The angle and angle rate of the pendulum are estimated using on-board inertial

sensors (rate gyro and accelerometer). These estimates are relatively low-noise and

so are treated as truth in the learning process. Policy roll-outs are performed by

sending policy parameters to the on-board microcontroller which, in turn, implements

a nonlinear deterministic GP policy using the received parameters. Observed state

values and control inputs are sent back to the host computer upon completion of the

roll-out as the policy learning is not performed on-board the robot. The control is

executed at 20 Hz and each roll-out is 3 seconds long, giving 60 additional data points

for each new policy update phase.

The prior comes from a very simple simulation of the physical pendulum with pa-

rameters such as mass, inertia, and commanded force roughly measured or estimated.

Figure 4-5 shows a comparison of the proposed algorithm with both prior transition

dynamics and initial policy parameters coming from the simulator. The simple sim-

ulator does not model physical effects such as aerodynamic interactions between the

propellers or the change in generated torque as a function of angular rate. Thus,

the initial policy parameters do not do much better than random control signals at

stabilizing the system (episode 0 in Figure 4-5). However, with just 3 seconds of data

from the initial policy roll-out, the proposed algorithm is able to consistently stabilize

the pendulum. While the simulator does not model the physical system well enough

to be used to generate an optimal policy, it is still very useful for increasing learning

efficiency on the physical system. The zero-mean original Pilco algorithm, on the

other hand, requires on average at least 3 times as much data from the real system

before a stabilizing controller is learned.

Snapshots of the algorithm performance is shown in Figure 4-6. A video of the

hardware using the two algorithms can be found at http://youtu.be/kKClFx6l1HY.
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𝑡 = 0.0 s 𝑡 = 0.33 s 𝑡 = 0.87 s 𝑡 = 1.27 s 𝑡 = 1.53 s 𝑡 = 1.73 s 𝑡 = 2.0 s

Figure 4-6: Snapshots of example converged policies using prior information (top row) and without prior information (bottom
row). Note that, when using an informative prior, the hardware consistently converges to a policy requiring only two swing-
backs, indicated by the green dots in the images. Conversely, when using a random policy initialization and no prior information,
the hardware frequently converged to a suboptimal policy using three swing-backs, as in the bottom row. This behavior was
also seen when transferring between simulators, as discussed in Section 4.2.1 The relative time of each of the snapshots is shown
between the two rows. The video containing these results can be found at http://youtu.be/kKClFx6l1HY.
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4.3 Discussion

The transfer framework developed in this chapter is centered around the Pilco al-

gorithm. While other continuous state-action RL algorithms exist, Pilco is advan-

tageous because it is model based, efficient, and tends to work well on real hardware.

On the other hand, Pilco takes a long time to run during the off-line phase as the

long-term GP predictions are expensive to compute.

Pilco does not have exploration strategy guarantees but rather relies an exploration-

exploitation strategy that emerges from the saturating cost function used in the ex-

periments. While this strategy appears to work well in general, as shown in the

previous section, in my experience Pilco does not always converge to the global

optimum. Even in simple problems, such as the inverted pendulum, the algorithm

occasionally gets stuck in local minima. One advantage of the proposed modifications

to the Pilco algorithm is the ability to apply any applicable learning strategy in the

simulated domain and then use the data to form a prior for the modified Pilco algo-

rithm. Also, since running the simulator is most likely much cheaper and easier than

running the physical hardware, many learning instances could be run in the simulator

before turning on the physical hardware.

The results in the previous section made sure to use data for the prior from a

learning instance where the algorithm converged to near-optimal behavior. As such

behavior will not, in general, be known beforehand in any giving learning setup,

the prior could instead be chosen by repeatedly applying a learning algorithm in

the simulator with varying initial conditions and then using the data from the best

performance.

Note that using a simulated prior will not increase the algorithm performance

in all cases. If the simulation is arbitrarily poor, the prior can bias the transition

dynamics in the wrong directions. Given sufficient data from the target domain, the

observed data will eventually overpower the prior. However, since Pilco is a policy

search algorithm that follows local gradients, a poor prior can alter the policy search

directions and lead to different policies than had no prior been used.
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Note also that, as discussed in [7], applying policies learned in imperfect simula-

tions can yield arbitrarily poor performance, possibly even causing harm to the robot

if the policy is overly aggressive. Thus, transferring the initial policy should be done

with care. If there is danger of harming the robot, the prior dynamics model can still

be used, but with a less aggressive initial policy.

4.4 Summary

This chapter introduced a method for incorporating data from arbitrary simulators

in the Pilco learning framework. The simulated data are used to learn a GP model

of the simulated transition dynamics. The mean of these dynamics is then used as

an informative prior for the real transition dynamics in the target domain. The ap-

propriate equations were derived for predicting the mean and covariance of uncertain

inputs using a GP with a mean modeled as an RBF network. The proposed exten-

sions to the Pilco algorithm are demonstrated to result in faster and more robust

convergence to good policies than the original Pilco algorithm. These results are

shown in both simulated domains and on a physical inverted pendulum using a simple

simulator.
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Chapter 5

Reverse Transfer for Continuous

States and Actions

This chapter introduces a framework, outlined in Figure 5-1, that combines simple

and complex simulators with a real-world robot to efficiently find good policies, while

minimizing the number of samples from the physical robot. Similar to MFRL from

Chapter 3, the framework combines the strengths of various simulation levels. This

chapter, though, focuses on domains that are modeled with continuous states and

actions. The framework begins by first finding globally optimal policies in a simple

model (Σ𝑠), and then using that solution to initialize a gradient-based learner in a

more complex simulation (Σ𝑐). The policy and transition dynamics from the com-

plex simulation are in turn used to guide the learning in the physical world (Σ𝑟𝑤),

as described in Chapter 4. In this chapter a method is developed for transferring

information gathered in the physical world back to the learning agent in the complex

simulation. The new information is used to re-evaluate whether the original simulated

policy is still optimal given the updated knowledge from the real-world.

As shown in Chapter 3, this reverse transfer is critical to minimizing samples

from the physical world. However, when using policy search algorithms, the reverse

transfer is even more important as poor initial policies from the simple and complex

simulations can lead the real-world learning agent to converge to a suboptimal policy.

As with policy search methods in general, the framework presented here will not
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Figure 5-1: Many robotic systems utilize models of varying fidelity for design, val-
idation, and control. Simple models are good for finding globally optimal policies
using traditional control, while more complex simulations (including the real world)
can use learning-based control methods to refine initial policies. By sending observed
data from the real world back to the complex simulation, better policies are found in
the real world with fewer samples.

guarantee convergence to an optimal policy, but, as shown empirically, will increase

the probability of converging to a good policy while using few expensive real-world

data samples.

5.1 Using Optimal Control to Initialize Policy Search

Because continuous state-action spaces are prohibitively large for performing global

searches, many RL researchers use prior knowledge to initialize learning algorithms.

This prior information often comes in the form of an initial policy from an expert

demonstration [52]. Many examples of these initializations exist, such as learning

helicopter aerobatics [1] and learning to play table tennis [74]. These expert initial

policies give local search algorithms a good initial policy from which to start a policy

search.

While initial policies from expert demonstrations can be extremely valuable, these

demonstrations may not always be available. As an alternative to expert demonstra-

tions, in this chapter, initial policies generated from simple models using traditional

control techniques are used to initialize the learning in complex simulations. Control
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methods, such as optimal control, provide globally optimal control policies and so

are well suited for initializing local search algorithms. Gauss Pseudospectral Opti-

mization Software (GPOPS) [80] is used to compute initial policies using simplified

models of the environment. The resulting policies are then fed to a gradient-based

learning agent in the complex simulation, as indicated in Figure 5-1.

Note that additional learning beyond the resulting policy from GPOPS is only

needed when discrepancies exist between reality and the simple model. As any model

(especially a simple one) will rarely, if ever, perfectly match the physical system,

applying the open-loop optimal control policy from GPOPS to the real robot will, in

general, result in sub-optimal or even dangerous behavior [7]. Therefore, these policies

are instead treated as an initialization for the learning algorithm in the complex

simulation.

The policies learned in the complex simulation are parameterized, with the pa-

rameter values found by the learning algorithm. As in Chapter 4, the primary focus

in this chapter is on policies that are represented using a regularized radial basis

function (RBF) network (equivalent to a deterministic Gaussian process), where the

centers, the associated targets, and the length-scale values of the RBFs are the pa-

rameters to be learned. The RBF network provides a general function approximation

scheme for representing various policies.

To transfer the open-loop optimal control policy to the complex simulator, the

policy is approximated as a closed-loop controller using an RBF network. Given a

fixed budget size on the number of RBFs allowed (typically based on the computa-

tional constraints of the learning algorithm in the complex simulation), the centers

and targets of the RBF network are found by applying the 𝑘-means algorithm [41] to

a discretrized representation of the optimal control policy and corresponding optimal

states from the simple model. The length scale parameters are then found using ev-

idence maximization, just as the hyperparmeters of a Gaussian process are typically

computed. In practice, this is a quick and easy way to train the RBF network using

the optimal control policy.
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5.2 Reverse Transfer Using Gaussian Processes

The framework from Figure 5-1 is shown in Algorithm 6. The algorithm first uses

optimal control methods to find a policy 𝜋*
𝑠 that is globally optimal in the simple

model (line 2). This policy is then approximated as an RBF network in line 3. Using

these policy parameters, the Pilco algorithm is used to refine and update the initial

policy using the more complex simulation in line 4. Once converged, the framework

passes these new policy parameters and learned transition dynamics from the complex

simulation to an instance of Pilco running in the real world (line 6), as described in

Chapter 4.

After real data are observed, they can be passed back to the simulator and used to

re-plan in much the same way that the MFRL algorithm re-plans using higher-fidelity

data in Chapter 3 (line 7). Finally, in line 8, the algorithm exits when the re-planned

policy is not sufficiently different from the policy previously found in the simulator,

indicating that the new data provided by the real world will not cause new policy

performance or new exploration in the simulator.

In practice, and where sufficient computational power exists, several instances

of Pilco in the simulation environment should be run in parallel. One of the main

advantages of using a simulator is the low cost of obtaining samples. Thus, to increase

the probability of converging to the global optimum, or of converging to a new local

optimum, the simulation can be run in parallel with various random seeds and initial

conditions. Then, the best performing or most different policy can be tried on the

real system.

To re-plan using real-world data, the algorithm must determine if a given state-

action pair is sufficiently well known. When using discrete representations of the

state-action space, the known-ness check is binary and depends on whether or not

the current state-action pair has been observed a sufficient number of times, based

on an assumption of how much noise is inherent in the system (see Section 3.3.1).

With continuous states and actions, the number of times a specific state-action pair

has been observed can not be counted as it is unlikely that the exact same data will
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Algorithm 6 Continuous State-Action Reinforcement Learning using Multi-
Direction Information Transfer
1: Input: Simple, deterministic simulation Σ𝑠, more complex, stochastic simulator

Σ𝑐, and real world Σ𝑟𝑤

2: Use optimal control methods to find policy 𝜋*
𝑠 in Σ𝑠

3: Use 𝑘-means to approximate 𝜋*
𝑠 as 𝜋𝑖𝑛𝑖𝑡𝑐 with an RBF network

4: Run Pilco in Σ𝑐 with 𝜋𝑐 = 𝜋𝑖𝑛𝑖𝑡𝑐 as initial policy
5: while 1 do
6: Run Pilco in Σ𝑟𝑤 using Algorithm 5
7: Run Pilco in Σ𝑐 to get 𝜋𝑛𝑒𝑤𝑐 , combining GP predictions from Σ𝑟𝑤

8: if ‖𝜋𝑛𝑒𝑤𝑐 − 𝜋𝑐‖ < 𝜖 then
9: break

10: else
11: 𝜋𝑐 = 𝜋𝑛𝑒𝑤𝑐

be observed multiple times. Instead, the algorithm must determine if the current

state-action pair is sufficiently “close” to states and actions about which there is little

uncertainty. For this purpose, the covariance of the GP’s representing the state-action

space is used as a known-ness measure.

As described in Section 2.4, for a single output dimension the predictive covariance

is

Σ* = 𝑘(𝑥*,𝑥*)− 𝑘(𝑥*, 𝑋)(𝐾 + 𝜎2
𝑛𝐼)−1𝑘(𝑋,𝑥*). (5.1)

This covariance is a measure of how uncertain the GP is about the true function at

the test input 𝑥*, minus the learned noise variance 𝜎2
𝑛𝐼. Thus, Σ* approaches zero as

the true function is correctly modeled (or at least thought to be correctly modeled).

The actual predictive covariance of 𝑦* is Σ* + 𝜎2
𝑛𝐼 and so does not approach zero

unless the data observations are noise free. Therefore, the value of Σ* relative to the

underlying noise in the system, 𝜎2
𝑛, can be used as a measure of how much uncertainty

remains about the function at a given test point.

The covariance Σ* will be used to determine the extent to which data should be

trusted from the real world versus relying on simulated data. For the remainder of

this section a subscript (𝑟𝑤) is used to indicate variables relating to data from the

real world, and a subscript (𝑠𝑖𝑚) to denote variables relating to simulated data.

105



The general approach for using data from the real world when re-planning in the

simulation will be to determine, for each sampled state-action pair when doing long-

term predictions (when Pilco is sampling its model of the environment to see how

well a given set of policy parameters will work), how much information is known about

that state-action pair in the real world. As in Chapter 3, when the real-world data

is well known, those transition dynamics will be used, otherwise, the algorithm will

default to the simulated values. Unlike in MFRL, though, a continuous representation

of the known-ness of a given state-action pair can now be used. Based on the ratio

of Σ* to 𝜎2
𝑛𝐼, a scalar mixing value 𝑝(𝑟𝑤) is determined that dictates what percentage

of the real-world data should be incorporated into the current prediction step. Thus,

given 𝑝(𝑟𝑤), the predictive mean is a linear combination of the predicted mean from

the simulated data and the real-world data as

𝜇* = 𝜇*(𝑠𝑖𝑚)
+ 𝑝(𝑟𝑤)(𝜇*(𝑟𝑤)

− 𝜇*(𝑠𝑖𝑚)
). (5.2)

Similarly, using standard results of mixing normal distributions, the predictive co-

variance becomes

𝛽(𝑠𝑖𝑚) = (𝜇*(𝑠𝑖𝑚)
− 𝜇*)(𝜇*(𝑠𝑖𝑚)

− 𝜇*)
𝑇 + Σ*(𝑠𝑖𝑚)

𝛽(𝑟𝑤) = (𝜇*(𝑟𝑤)
− 𝜇*)(𝜇*(𝑟𝑤)

− 𝜇*)
𝑇 + Σ*(𝑟𝑤)

Σ* = 𝛽(𝑠𝑖𝑚) + 𝑝(𝑟𝑤)(𝛽(𝑟𝑤) − 𝛽(𝑠𝑖𝑚)), (5.3)

where 𝛽(𝑠𝑖𝑚) and 𝛽(𝑟𝑤) are defined for notational convenience. The covariance between

the input and output is similarly defined as

Σ𝑥*,𝑓* = Σ𝑥*,𝑓*(𝑠𝑖𝑚)
+ 𝑝(𝑟𝑤)(Σ𝑥*,𝑓*(𝑟𝑤)

− Σ𝑥*,𝑓*(𝑠𝑖𝑚)
). (5.4)

In Pilco, given a multidimensional problem, each output dimension is modeled

using a separate GP. With deterministic inputs, these separate GP’s would be inde-

pendent, but in Pilco uncertain inputs are passed through the GP’s to get long-term

cost and state predictions. Given these uncertain inputs, the outputs of the GP’s co-
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Table 5.1: Parameter values used for the generalized logistic function that dictates
the extent to which state-action pairs are known in the real world.

𝑄 𝐵 𝑥0

Value 1.5 400 0.02

vary and are no longer independent. Thus, for a given state-action pair, an individual

𝑝(𝑟𝑤) can not be determined for each output dimension, but a single scalar value is

found based on the entire output covariance matrix.

For smoothness properties (derivatives of 𝑝(𝑟𝑤) will be needed later) a generalized

logistic function 𝑓(𝑥) defined as

f(𝑥) =
1

(1 +𝑄 e𝐵(𝑥−𝑥0))
1
𝑄

(5.5)

is chosen to determine 𝑝(𝑟𝑤) based on the norm of the current covariance matrix

and the norm of the learned noise variance parameters representing the noise in the

observed data. The mixing probability 𝑝(𝑟𝑤) is therefore defined as

𝑝(𝑟𝑤) = f

(︃
‖Σ*(𝑟𝑤)

‖𝐹
‖
[︀
𝜎2
𝑛1
, . . . , 𝜎2

𝑛𝐸

]︀
‖

)︃
(5.6)

where ‖.‖𝐹 is the Frobenius norm. A plot of 𝑝(𝑟𝑤) versus the covariance ratio is shown

in Figure 5-2, where the parameters of the logistic function are given in Table 5.1.

With these parameters the real-world data are only used if there is very little uncer-

tainty about the true function. Otherwise, the simulated data are used. The shape

of the logistic function plays the same role that the known-ness parameter 𝑚𝑘𝑛𝑜𝑤𝑛

played in MFRL, and is set based on how noisy the real world is believed to be. In all

the experiments tried in this thesis, the parameters in Table 5.1 worked well, without

needing to tune them for different domains.

Using equations 5.2-5.4, the transfer of information from the real world back to the

complex simulation is achieved by computing 𝑝(𝑟𝑤) at each state-action pair during

long-term state predictions and using the combined output of the mean, covariance,
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Figure 5-2: Generalized logistic function for determining to what extent data should
be used from the real world.

and input-output covariance. As in Chapter 4, to use these equations in Pilco the

partial derivatives of these expressions with respect to the input mean and covariance

are also needed. These partial derivatives are given in Appendix D.

5.3 Results

Algorithm 6 is implemented in two simulated domains and one real domain to show

the applicability of using real-world data to re-plan in a continuous state-action sim-

ulator. In the two simulated domains, the “real world” is a simulator that differs from

the other simulation, demonstrating the performance of the algorithm in controlled

environments.
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Table 5.2: Parameter values for the simple 1-D simulation domain.

𝜎 𝑎 𝑏

Σ𝑐 0.25 3 5
Σ𝑟𝑤 0.25 3 1.25

5.3.1 Simple 1-D Problem

The first test domain is a single state, single action domain. This toy domain is used

to illustrate how the reverse transfer in line 7 of Algorithm 6 is accomplished. The

domain consists of a state 𝑥 and action 𝑢. A saturating cost function 𝑐(𝑥) is defined

as

𝑐(𝑥) = 1− e−
𝑥2

2𝜎2 , (5.7)

with the dynamics being

𝑥̇ =

⎧⎪⎨⎪⎩−𝑎𝑢
2, 𝑢 ≥ 0

−𝑏𝑢2, 𝑢 < 0,

(5.8)

where |𝑢| ≤ 1. The parameters for Σ𝑐 and Σ𝑟𝑤 are given in Table 5.2. Figure 5-3

shows the mean of the dynamics for the simulator and the real world, with a sampling

rate of 20 Hz. Each episode starts with 𝑥0 = 3 and, according to the cost function,

tries to drive 𝑥 to zero. Both positive and negative values of 𝑢 result in negative

velocities, but with varying magnitudes. In Σ𝑐, the optimal solution is to start with

negative 𝑢, while in Σ𝑟𝑤 the optimal policy starts with positive 𝑢. With this simple

domain, the optimal control portion of Algorithm 6 is omitted and 𝜋𝑖𝑛𝑖𝑡𝑐 is instead

randomly initialized. The parameterized policy in this domain is linear in the state

as

𝑢 = 𝐴𝑥+ 𝑏, (5.9)

rather than using an RBF network as in the other domains.
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Figure 5-3: Dynamics for the 1-D domain. In the simulator, the optimal solution
involves negative 𝑢 while in the real world the optimal solution uses postive 𝑢.

Figure 5-4 shows the performance of Algorithm 6 on this simple problem. Each

subplot shows the current representation of the GP modeling the transition dynamics

(Equation 5.8). In Figure 5-4(a), the initial random policy explores the state space.

After this initial exploration, the first iteration of the policy update phase (lines 7-9

in Algorithm 5) finds the optimal policy as seen by the low cost in Figure 5-4(b) and

the new data all on the negative side of 𝑢.

The policy and transition dynamics from Σ𝑐 are passed to Σ𝑟𝑤 as explained in

Algorithm 5. Despite the dynamics being different from the simulator, the gradient-

based policy update scheme does not explore policy parameters that would involve

positive 𝑢 values since the initial policy is in a local minimum. As seen in Figures 5-

4(c) and 5-4(d), the policy update phase improves the initial policy, but stays on the

negative side of 𝑢.
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Figure 5-4: Algorithm 6 running on a simple 1-D domain. Each subplot shows the current representation of the GP modeling
the transition dynamics (Equation 5.8). In Figures (a) and (b), an initial random policy explores the state space and then
quickly converges to the optimal policy, as seen by the low cost in (b) and the new data all in the negative 𝑢 range. Policy
and transition dynamics from Σ𝑐 are passed to Σ𝑟𝑤 and used in (c) and (d). The real-world policy is improved, but is stuck in
a local minimum based on the initialization. In (e) and (f), model data is passed back to Σ𝑐 which uses data from Σ𝑟𝑤 where
possible to find a policy involving positive 𝑢. This optimal policy (with respect to Σ𝑟𝑤) is passed to Σ𝑟𝑤 in (g) and (h) and the
algorithm terminates.
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Table 5.3: Parameter values for the two hill mountain car domain.

𝑎 𝑏 𝑚 𝐷 𝜎

Σ𝑐 0 1 0.2 0.2 1
Σ𝑟𝑤 2 1 0.2 0.2 1

Following Algorithm 6, the data observed from Σ𝑟𝑤 are passed back to Σ𝑐. The

GP in Figures 5-4(e) and 5-4(f) is a combination of the data from Σ𝑟𝑤 where the

variance was low (negative 𝑢 values) and Σ𝑐 elsewhere, shown by the embedded plots

of 𝑝(𝑟𝑤). With this updated hybrid model of the dynamics, the algorithm converges

to a policy that favors positive 𝑢 first. While this new policy is not optimal in Σ𝑐,

is it optimal given the data observed from the real world. This new policy is then

passed back to Σ𝑟𝑤 whereupon the policy improvement phase largely keeps the same

policy, converging to the true optimum in Σ𝑟𝑤.

This simple example is clearly contrived to show the performance of Algorithm 6;

however, it illustrates an important point of any gradient-based policy improvement

method: convergence to local solutions is sensitive to the initial policy. Algorithm 6

attempts to formally provide a method to account for initial policies that come from

inaccurate simulators. Note that the policy found in Figure 5-4(d) is not necessarily

bad—it solves the problem of driving 𝑥 to zero. The reverse transfer framework pro-

vides a way, though, to revisit the simulator and verify, given the updated information

from the real world, whether or not a better policy exists for the real world.

5.3.2 Mountain Car with Two Hills

A slightly more complex simulated domain is now provided that shows Algorithm 6

operating in a multi-dimensional problem. This domain is loosely related to the

standard RL mountain car domain [97], but where the car is fully powered and two

hills exist. The car is represented by a position 𝑥 and a velocity 𝑥̇, with an input

|𝑢| ≤ 1 related to the acceleration of the car. The car starts at 𝑥 = 0 with the goal

of driving to the top of either of the two hills in minimum time. The dynamics and
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Figure 5-5: The two hill mountain car domain. The cost function encourages driving
up one of the two hills while gravity, drag, and a rock penalty term pull the car down.

cost functions are given by

𝑚𝑥̈ = 𝑢+𝑚𝑔 sin 𝜃(𝑥)−𝐷𝑥̇−𝑅(𝑎, 𝑏, 𝑥)𝑥̇ (5.10)

𝑐(𝑥) = 1− e−
(𝑥−1)2

2𝜎2 − e−
(𝑥+1)2

2𝜎2 (5.11)

where 𝑚 is the mass of the car, 𝜃(𝑥) is the current slope of the hill, 𝑔 is gravity,

𝐷 is a drag coefficient, and 𝑅 is a “rock” penalty term relating to the roughness of

the ground. The values of these parameters in the two domains is given in Table 5.3.

Figure 5-5 shows the domain with the forces acting on the car, while Figure 5-6 shows

the 𝑅 penalty term as a function of the 𝑎 and 𝑏 parameters and 𝑥.

Figure 5-7 shows the evolution of Algorithm 6 in the two hill mountain car domain.

In each plot the cost function, the position, and the velocity data are shown. The

black line shows the roll-out data used to build the GP’s, while the dashed lines show

10 more roll-outs with the same policy, showing the repeatability of the policy. The

grey area indicates two standard deviations of the predicted values based on Pilco’s
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Figure 5-6: Definition of the rock penalty term in Equation 5.10.

understanding of the dynamics.

In this example, GPOPS is used to solve Σ𝑠, a deterministic version of Σ𝑐. Fig-

ure 5-7(a) shows 𝜋𝑖𝑛𝑖𝑡𝑐 from Σ𝑠 applied in Σ𝑐. The optimal control policy correctly

identifies 𝑥𝑔𝑜𝑎𝑙 = −1 as the optimal strategy given the smaller rock force on that side,

but the noise in Σ𝑐 keeps this initial policy from maintaining balance at the top of the

hill. Figure 5-7(b) shows the next episode of the Pilco algorithm, showing a policy

that robustly solves the problem.

As in the previous section, policy and transition dynamics are passed to Σ𝑟𝑤,

where the rock force is much higher. Figures 5-7(c) and 5-7(d) show the first and

third episodes in Σ𝑟𝑤. The policy improvement algorithm improves the initial policy,

but still drives the car to 𝑥𝑔𝑜𝑎𝑙 = −1.

The observed data are then passed back to Σ𝑐 where the algorithm uses the in-

formation to converge to a new policy, driving instead to 𝑥𝑔𝑜𝑎𝑙 = 1. This new policy

is shown in Figure 5-7(e). Finally, the updated policy and dynamics information are

sent to the real world in Figure 5-7(f), where the algorithm keeps the optimal solution
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Figure 5-7: Algorithm 6 applied to a mountain car domain with two hills. Please
refer to the text for details.
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Figure 5-8: Total costs (with one standard deviation shown) of the policies in Σ𝑐 and
Σ𝑟𝑤 for the two hill mountain car domain. By returning to the simulation after the
running the real world, the algorithm is able to improve the policy in the real world.

of driving to 𝑥𝑔𝑜𝑎𝑙 = 1.

A summary of the total costs of the policies in the two environments is shown in

Figure 5-8. Using GPOPS, Pilco is able to quickly converge to the optimal solution

in Σ𝑐 during the first run. This policy, however, leads to a sub-optimal solution

during the first real-world run, as the policy improvement step gets stuck in a local

minimum. With a random re-initialization of the policy and the observed data from

the real world, the algorithm converges to the policy that is optimal in the real world.

5.3.3 Drifting Car

The final example in this chapter shows Algorithm 6 applied to a small robotic car

learning to drift, or drive sideways. The car is shown in Figure 5-9 and is the same

car that was used in the experiments in Section 3.6, but with slick plastic tires instead

of the stock rubber tires. With the slick tires on the hard lab floor, the car is quite
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Figure 5-9: Car used for the drifting experiments. The wheels are made of hard
plastic, resulting in very low friction on the lab linoleum floor. The car has been
outfitted with an optical encoder for wheel speed measurements and a high current
voltage regulator. An on-board microcontroller executes the policy roll-outs and
transmits data back to a host computer for processing.

difficult to control, with most members of the lab being unable to drive it without

running into the walls. More details on the car setup are provided in Appendix B.

The target task in this section is to control the car in a steady-state drift, where

the car maintains a constant sideways velocity. Recent work demonstrated an LQR

and backstepping control approach to stabilizing a car under steady-state drift con-

ditions [111]. The controller calculates stead-state cornering conditions which rely on

exact knowledge of tire and road forces and conditions. In reality, these values will

not be known and inaccuracies in these parameters will yield steady-state errors in

the control law. Also, the controller developed is only valid around an equilibrium

and so open-loop commands based on expert driver data are needed to get the vehicle

close to the desired state before the controller can be engaged.

Anecdotal evidence from comparing expert drivers on pavement (such as during

stock car racing) to off-road racing (such as rally racing) suggests that when trac-

tion between the tires and road is high, minimum-time trajectories involve little,

if any, vehicle side-slip; however, when traction is low, optimal trajectories involve

sliding, or drifting, sideways around turns. These observations can also be shown
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Figure 5-10: State variables used for the steady-state drifting domain. The body-
frame forward and side velocities are 𝑉𝑥 and 𝑉𝑦, respectively, with 𝑉 being the total
velocity and 𝜓̇ the body turn rate. The slip (or drift) angle is 𝛽 while 𝑅 is the radius
of curvature of the desired trajectory.

mathematically—as the tire traction decreases, minimum-time trajectories around

turns involve more and more side-slip [103]. This example illustrates a way to fully

automatically generate feedback controllers that can maintain steady-state drifting

motion using very little data from the physical car.

The equations of motion of the complex simulator Σ𝑐 for the drifting car domain

are described in Appendix B. The goal of the learning algorithm is to control the

vehicle to constant forward, side, and turn rate velocities, resulting in a steady-state

drifting motion as indicated by Figure 5-10. The vehicle state consists of body-frame

component velocities 𝑉𝑥 and 𝑉𝑦, a turn rate 𝜓̇, and the current wheel speed 𝜔. The

action 𝛿 is the command sent to the on-board servo actuating the wheel steering. The

cost function is

𝑐(𝑥) = 1− e[−((𝑉𝑥−𝑉𝑥𝑠𝑠 )2+(𝑉𝑦−𝑉𝑦𝑠𝑠 )2+(𝜓̇−𝜓̇𝑠𝑠)2)/(2𝜎2)], (5.12)
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Figure 5-11: Policy roll-outs of the simulated car learning to drift. The light colored
lines show the performance of the optimal policy from Σ𝑠 when first applied to Σ𝑐.
The dark lines show the improvement the policy search algorithm is able to make
over the initial policy. A single representative roll-out of each type is shown in (a),
while (b) shows the mean and one standard deviation of five learning runs, where
each policy was executed five times. Note that only the velocity states are controlled
here, and so the position starting locations in (a) are irrelevant.
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where the subscript 𝑠𝑠 signifies the desired steady-state values for that variable. The

magnitude of these values and how they are computed is described in Appendix B.

This cost function favors steady state drifting where the state variables are kept at a

constant value, with a non-zero 𝑉𝑦 component.

Importantly, the action for the car is now a continuous signal rather than a set

of discrete, higher-level path commands like in Section 3.6. The throttle setting was

kept constant as a car can maintain a steady-state drift with just modulating the

steering command. The car used a high-current switching voltage regulator to keep

the battery voltage from affecting the performance of the learning algorithm.

As in the previous domain, Σ𝑠 is a deterministic version of Σ𝑐. GPOPS is used to

solve for 𝜋*
𝑠 , the optimal policy with respect to the deterministic simulation. Figure 5-

11 shows the performance of the initial policy from GPOPS in the noisy simulator

compared to the policy from Σ𝑐 after several policy improvement steps are made.

The car is able to quickly initiate a drifting motion by turning into the drift, briefly

counter steering, and then settling on a near constant steering angle.

Figure 5-12 shows the performance of the Pilco algorithm in Σ𝑐 when the de-

terministic simulator is not used. In this example, the car starts with a forward

velocity of 2 m/s and then tries to turn around as quickly as possible, maintaining

a velocity of 3 m/s in the opposite direction. The cost function penalizes sideways

motion, encouraging solutions that reverse direction in minimum time. Here, both

the steering and throttle commands are learned. In this domain, the problem is suffi-

ciently complex with enough local minima that Pilco is unable to solve the problem

without prior information. The problem was run several times with varying initial

random policy parameters, but in almost every case Pilco was unable to find a policy

that quickly reversed the car’s direction. Figure 5-12(a) shows some representative

samples of the performance of Pilco in Σ𝑐 using an optimal control prior versus a

randomly initialized policy. In Figure 5-12(b), immediate and cumulative costs of 20

learning runs for each case are displayed. As shown by the histogram, without prior

information, Pilco was rarely able to solve the problem.

This behavior is perhaps not unexpected. As noted in [52], many, if not most,
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Figure 5-12: The effect of a good prior on the performance of Pilco. The light
colored lines show the results of applying Pilco to the car turning domain with
randomly initialized policy parameters (showing converged policy). In almost every
case, the algorithm is unable to find the correct control inputs to turn the car around,
instead getting stuck in local optima. Figure (a) shows some representative samples of
the two cases while (b) shows the instantaneous and cumulative costs for 20 learning
runs for each case. This figure highlights the need for the optimal control prior for
complicated domains.
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Figure 5-13: Policy roll-outs of the real car learning to drift. The light colored lines
show the performance of the optimal policy from Σ𝑐 when first applied to Σ𝑟𝑤. The
dark lines show the improvement the policy search algorithm is able to make over
the initial policy. A single representative roll-out of each type is shown in (a), while
(b) shows the mean and one standard deviation of three learning runs, where each
policy was executed five times. The real car requires a more counter steering than the
simulated car to slow the initial vehicle rotation. Note that only the velocity states
are controlled here, and so the position starting locations in (a) are irrelevant.
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Figure 5-14: Results of Algorithm 6 applied to the real drifting car. Snapshots of the
car every 0.25 seconds are shown. The vehicle starts from rest and quickly enters a
controlled drifting motion with a 0.8 m radius.

researchers doing RL in real robotics domains initialize the problem with problem-

specific data, often through example demonstrations or hand-crafted policies. In this

domain, no one in the lab was expert enough to drive the car in a steady-state drift.

It was also not immediately clear how to hand-craft a policy that would lead to this

behavior. Thus, the proposed algorithm uses principles of optimal control to take the

place of these demonstrations and specific policies.

Figure 5-13 shows the performance of Algorithm 6 applied to the real car. Figure 5-

14 shows snapshots of the car as it begins a steady-state drift from rest. The car is

able to initiate and maintain a steady-state drifting motion with a trajectory radius

of approximately 0.8 m. Drifting with other trajectory radii was also successfully

accomplished. The learned real-world policy looks very similar to the optimal policy

from Σ𝑐, but with a longer period of counter-steering (see 𝛿 in Figure 5-13 from

0.7–1.5 seconds). This highlights the utility of incorporating simulated data into the

learning framework. Rather than having to learn the entire policy from scratch, the
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learning agent just needed to learn those parts of the policy that were different in the

real world when compared to the simulator.

Due to limitations in the size of the testing area, the drifting domain was unable to

be solved without prior information from the simulators. Executing random actions

(the typical initialization for Pilco) always resulted in the car quickly running into

a wall. In this case, the simulated data are necessary to solve the problem.

A video showing the performance of the drifting car can be seen at https://

youtu.be/opsmd5yuBF0.

5.4 Summary

This chapter developed a framework for incorporating optimal control solutions into

the learning process and for transferring data from real-world experiments back to

simulators, allowing the simulator to re-plan using the updated information. The

re-planning both validates policies from the real world and possibly leads to better

real-world policies by exploring more of the state-action space in the simulator. The

reverse transfer was combined together with the forward propagation from Chapter 4,

resulting in a continuous state-action version of MFRL. The framework was applied

to two simulated domains, a simple 1-D example and a two-hill mountain car, both

showing that the reverse transfer is necessary to find the optimal solution in the real

world. Finally, the algorithm was applied to a robotic car learning to drift. The task

was sufficiently complex that Pilco was unable to solve the problem without the use

of prior information.
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Chapter 6

Conclusions and Future Work

This thesis focused on the core idea of using simulators to increase the efficiency

of reinforcement learning in the real world. RL for robots is particularly difficult

as getting samples from real robots can be tedious. The thesis explored various

ways of using simulators to transfer sampling burden from the real robot to the

simulators, resulting in two frameworks that increase the efficiency and performance

of robotic RL.

Chapter 3 introduced MFRL, which extends lessons from the multi-fidelity opti-

mization community to sequential decision making problems. MFRL uses a sequence

of optimistic simulators to transfer heuristics from lower- to higher-fidelity simula-

tors. The framework also allows agents in lower-fidelity simulators to plan using

higher-fidelity learned model parameters, a tactic shown to be crucial for minimizing

sub-optimal steps in the real world. MFRL can leverage existing robotic simulators

to decrease the dependence of RL algorithms the physical hardware.

In MFRL, the learning agents maintain theoretical sample efficiency guarantees

over the learning process because of the integration of the KWIK-Rmax framework.

The empirical results show that MFRL is also efficient in practice. Experiments with

a robotic car show that, not only is the framework theoretically sound, but it is also a

practical technique for scaling RL algorithms to real-world decision making problems.

While MFRL primarily focused on domains where the state-action space is repre-

sented discretely, Chapters 4 and 5 move towards domains with continuous represen-
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tations of the state-action space. Chapter 4 introduced a method for incorporating

data from arbitrary simulators in the Pilco policy search learning framework. The

simulated data were used to learn a GP model of the simulated transition dynam-

ics. The mean of these dynamics was then used as an informative prior for the real

transition dynamics in the target domain. The appropriate equations for predicting

the mean and covariance of uncertain inputs using a GP with a mean modeled as an

RBF network were derived. The proposed extensions to the Pilco algorithm were

demonstrated to result in faster and more robust convergence to good policies than

the original Pilco algorithm. These results were shown in both simulated domains

and on a physical inverted pendulum using a simple simulator.

Finally, Chapter 5 developed a framework that incorporated the simulated prior

from Chapter 4 with a method for sending data back from the real world to the

simulator. This reverse transfer was shown to be crucial when operating in domains

that have many local minima, as policy search algorithms are particularly sensitive

to the initial parameters. The reverse transfer algorithm allowed the learning agent

to return to the simulator to verify if the current policy should be modified given

the updated information from the real world, without excessively running the phys-

ical hardware. The framework also provides a method for using optimal control to

initialize policy parameters, significantly increasing convergence time and accuracy,

and, in some cases, playing a critical role in convergence to non-trivial solutions. The

framework developed in Chapters 4 and 5 was tested on a robotic car learning to

drift. Hardware results showed the benefit of using simulated data in the learning

process.

6.1 Future Work

There are several possible avenues to extend this current work. The MFRL algo-

rithm developed in Chapter 3 relies heavily on several assumptions that would be

interesting to revisit and possibly relax. Perhaps the biggest of these assumptions is

the optimistic simulator chain. While the chain of optimistic simulators makes some
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intuitive sense, and I believe it to be mostly valid in many domains, verifying that

a chain of simulators is optimistic based on the definition in Equation 3.1 is just as

difficult as solving the original RL problem in all the levels, as it requires a knowledge

of the optimal 𝑄-values. An interesting future work would be to develop methods

that can efficiently (and perhaps approximately) check if a chain of simulators are

optimistic either before learning begins or as part of the learning process. As part

of this, the relaxation parameter 𝛽𝑖 could be modified to be a function of the state

and action space. That way, if only certain states and actions are not optimistic in a

given level, the 𝛽 parameter can efficiently account for that non-optimism.

Another future area of research could be investigating the mapping function 𝜌𝑖,

that maps states between different simulator levels. In this thesis, the mapping func-

tion was typically assumed to be identity, with only some very preliminary work on

non-identity mappings. Using ideas from transfer learning, more intelligent mapping

functions could be developed. In realistic learning scenarios, it is very likely that

simple simulators will have different state spaces from more complex simulators, and

a better understanding of this mapping relationship will be needed to use MFRL in

these environments. Along the same lines, it is possible that various levels of simula-

tors might have different action spaces as well. A similar mapping function for action

spaces could be added to MFRL.

Finally, there are many interesting research options relating to combining simu-

lators and real environments using model-based policy search methods. This thesis

only thoroughly considered one such algorithm, Pilco. Exploring other model-based

policy search methods and new ways of transferring information between simulator

levels might yield insightful results.
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Appendix A

Index to Multimedia Extensions

Extension Link Description

Video 1 https://youtu.be/-UYu0cGER-s Example propagation of the

MFRL algorithm in the

puddle world domain

Video 2 https://youtu.be/c_d0Is3bxXA Demonstration of the MFRL

algorithm on a robotic car

Video 3 https://youtu.be/kKClFx6l1HY Pilco using an informative

simulated prior applied to an

inverted pendulum

Video 4 https://youtu.be/opsmd5yuBF0 Continuous state-action MFRL

applied to a drifting

robotic car
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Appendix B

Car Dynamics Simulator

B.1 Race Track Car

The dynamics simulator used in the robotic car results uses slightly simplified versions

of equations outlined in [110]. For completeness, the simulation equations used are

detailed below. The equations and parameters in this section are used for the race

track MFRL results in Chapter 3. The following section gives the equations and

parameters used for the drifting results from Chapter 5.

The full state of the vehicle is 𝑠 = [𝑥, 𝑦, 𝑉𝑥, 𝑉𝑦, 𝜓, 𝜓̇, 𝜔], where 𝑥 and 𝑦 are the

inertial-frame positions, 𝑉𝑥 and 𝑉𝑦 are the body-frame velocities, 𝜓 is the heading, 𝜓̇

is the rotational rate, and 𝜔 is the wheel velocity. Since the car is a 4-wheel drive

vehicle where the front and rear wheels are mechanically connected, the simplifying

assumption is made that all four wheels are rotating at the same speed.

At each iteration (time step) of the simulation, the derivative of the state 𝑠 is

calculated and then integrated over a fixed time step using a fourth-order Runge-

Kutta method. To calculate 𝑠̇, the total velocity 𝑉 , the slip angle 𝛽, and the vehicle
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Table B.1: Parameters used for Car Simulator (rubber tires)

Parameter Value Description

𝑚 (kg) 0.906 Mass
𝐼𝑧 (kg m2) 3.78e-3 Mass moment of Inertia about 𝑧
𝑙𝐹 (m) 0.1 Forward body length
𝑙𝑅 (m) 0.107 Rear body length
ℎ (m) 0.028 Height to center of gravity
𝑟 (m) 0.03 Wheel radius
𝐵 9.5 Magic parameter
𝐶 1.1 Magic parameter
𝐷 0.62 Magic parameter
𝛿𝑚𝑎𝑥 (deg) 18 Maximum turn command
𝜔𝐶𝐿+ 4.45 Wheel control gain
𝜔𝐶𝐿− 1.5 Wheel control gain
𝑎𝑛𝑜𝑖𝑠𝑒 8 Acceleration noise variance
𝜓𝑛𝑜𝑖𝑠𝑒 12 Angular acceleration noise variance
𝜔̇𝑛𝑜𝑖𝑠𝑒 100 Wheel acceleration noise variance

front and rear inertial frame velocities are first calculated.

𝛽 = tan−1

(︂
𝑉𝑦
𝑉𝑥

)︂
𝑉 =

√︁
𝑉 2
𝑥 + 𝑉 2

𝑦

𝑉𝐹𝑥 = 𝑉 cos(𝛽 − 𝛿) + 𝜓̇𝑙𝐹 sin 𝛿

𝑉𝐹𝑦 = 𝑉 sin(𝛽 − 𝛿) + 𝜓̇𝑙𝐹 cos 𝛿

𝑉𝑅𝑥 = 𝑉 cos 𝛽

𝑉𝑅𝑦 = 𝑉 sin 𝛽 − 𝜓̇𝑙𝑅
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Next, these velocities are used to calculate the theoretical slip quantities

𝑠𝐹𝑥 =
𝑉𝐹𝑥 − 𝜔𝑟
|𝜔𝑟| 𝑠𝐹𝑦 =

𝑉𝐹𝑦

|𝜔𝑟|

𝑠𝑅𝑥 =
𝑉𝑅𝑥 − 𝜔𝑟
|𝜔𝑟| 𝑠𝑅𝑦 =

𝑉𝑅𝑦

|𝜔𝑟|
𝑠𝐹 =

√︁
𝑠2𝐹𝑥

+ 𝑠2𝐹𝑦
𝑠𝑅 =

√︁
𝑠2𝑅𝑥

+ 𝑠2𝑅𝑦
,

from which the friction forces can be calculated as

𝜇𝐹𝑥 =
−𝑠𝐹𝑥

𝑠𝐹MF(𝑠𝐹 )
𝜇𝐹𝑦 =

−𝑠𝐹𝑦

𝑠𝐹MF(𝑠𝐹 )

𝜇𝑅𝑥 =
−𝑠𝑅𝑥

𝑠𝑅MF(𝑠𝑅)
𝜇𝑅𝑦 =

−𝑠𝑅𝑦

𝑠𝑅MF(𝑠𝑅)
.

The MF function refers to Pacejka’s “magic formula” [78] and is defined as

MF(s) = 𝐷 sin
(︀
𝐶 tan−1 (𝐵𝑠)

)︀
with parameters 𝐵, 𝐶, and 𝐷. The front and rear wheel normal loads can then be

calculated as

𝑓𝐹𝑧 =
𝑙𝑅𝑚𝑔 − ℎ𝑚𝑔𝜇𝑅𝑥

𝑙𝑅 + 𝑙𝐹 + ℎ(𝜇𝐹𝑥 cos 𝛿 − 𝜇𝐹𝑦 sin 𝛿 − 𝜇𝑅𝑥)

𝑓𝑅𝑧 = 𝑚𝑔 − 𝑓𝐹𝑧 .
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Using the above, 𝑠̇ can now be calculated as

𝑥̇ = 𝑉𝑥 cos𝜓 − 𝑉𝑦 sin𝜓 (B.1)

𝑦̇ = 𝑉𝑥 sin𝜓 + 𝑉𝑦 cos𝜓 (B.2)

𝑉𝑥 =
1

𝑚

(︁
𝑚𝑉𝑦𝜓̇ + 𝜇𝐹𝑥𝑓𝐹𝑧 cos 𝛿− 𝜇𝐹𝑦𝑓𝐹𝑧 sin 𝛿 + 𝜇𝑅𝑥𝑓𝑅𝑧

)︁
+ 𝑎𝑛𝑜𝑖𝑠𝑒 (B.3)

𝑉𝑦 =
1

𝑚

(︁
−𝑚𝑉𝑦𝜓̇ + 𝜇𝐹𝑥𝑓𝐹𝑧 sin 𝛿+ 𝜇𝐹𝑦𝑓𝐹𝑧 cos 𝛿 + 𝜇𝑅𝑦𝑓𝑅𝑧

)︁
+ 𝑎𝑛𝑜𝑖𝑠𝑒 (B.4)

𝜓 =
1

𝐼𝑧

(︀(︀
𝜇𝐹𝑦𝑓𝐹𝑧 cos 𝛿 + 𝜇𝐹𝑥𝑓𝐹𝑧 sin 𝛿

)︀
𝑙𝐹− 𝜇𝑅𝑦𝑓𝐹𝑧 𝑙𝑅

)︀
+ 𝜓𝑛𝑜𝑖𝑠𝑒 (B.5)

𝜔̇ = 𝜔𝐶𝐿+/− (𝜔𝑑𝑒𝑠 − 𝜔) + 𝜔̇𝑛𝑜𝑖𝑠𝑒 (B.6)

The parameters and their values and descriptions used in the state equations are

shown in Table B.1. The parameter values were found by either direct measurement

or by fitting collected data to the equations. The input to the simulator consists of a

desired wheel speed 𝜔𝑑𝑒𝑠 and a wheel turn angle 𝛿. On the actual car, Equation B.6

is implemented as a PI controller. In the simulation, this controller is modeled as

a simple first order system where the gain for increasing wheel speed 𝜔𝐶𝐿+ is larger

than the gain for decreasing wheel speed, 𝜔𝐶𝐿− . The gains were found by matching

empirical data to the structure of Equation B.6.

B.2 Drifting Car

The previous section gave the equations of motion and parameters for the car used

in the race track hardware experiments from Chapter 3 and pictured in Figure 3-

14. In the drifting results from Chapter 5, the same car was used but with new

tires, battery, and power electronics. The drifting results required (relatively) high

rate feedback controllers, with the output of the learned controller being commands

to the on-board actuators. Thus, in this configuration, the on-board wheel speed

controller is not needed as the learning algorithm dictates the throttle command to

the motor speed controller. To keep battery voltage from affecting the performance

of the learning algorithm, the car was outfitted with a 3 cell LiPo battery and a high-
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Table B.2: Parameters used for Drifting Car Simulator (slick tires)

Parameter Value Description

𝑚 (kg) 1.143 Mass
𝐼𝑧 (kg m2) 4.8e-3 Mass moment of inertia about 𝑧
𝐵 3.0 Magic parameter
𝐶 1.5 Magic parameter
𝐷 0.2 Magic parameter
𝐼𝜔 (kg m2) 2.56e-5 Wheel mass moment of inertia

current switching voltage regulator to provide a constant 8 V to the speed controller.

Also, to make the drifting problem more interesting, the original rubber tires were

replaced with slick, hard plastic tires, resulting in very little friction between the

wheels and the laboratory linoleum floor. Finally, the car’s front and rear differentials

were locked so that all the wheels would spin at the same rate. Table B.2 shows the

parameters of the car with the updated battery and new wheels. The parameters not

listed are the same as those in Table B.1.

As drifting depends only on the body-frame velocities of the vehicle, the equations

of motion are given by Equations B.3-B.5, with the dynamics of the wheel being

𝜔̇ =
1

𝐼𝜔

(︂
𝑇 − 𝑓𝐹𝑥 + 𝑓𝑅𝑥

2
𝑟

)︂
, (B.7)

where 𝑇 is the throttle command.

A steady-state drift is defined as an operating regime where the body-frame vehicle

velocities and the wheel speed all maintain constant values [110]. The constraints that

𝑉̇𝑥 = 𝑉̇𝑦 = 𝜓 = 𝜔̇ = 0 give four equations with six unknowns (four state variables and

two control variables). Therefore, to find a feasible steady-state drifting condition,

two of the six unknowns are fixed and the remaining non-linear system of equations is

solved using standard numerical methods. Note that there are many feasible drifting

conditions. A manifold of these conditions is created by varying the chosen fixed

variables [111]. The steady-state values from the non-linear equation solver become

inputs to the cost function given in Equation 5.12.
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For the results in Section 5.3.3, the throttle was fixed at 50% and the radius of

the steady-state drift was fixed at

𝑅 =
𝑉

𝜓̇
= 0.8 m, (B.8)

although experiments where also successfully implemented at other radii. These val-

ues result in the following steady-state control variables:

𝑉𝑥𝑠𝑠 = 0.32 m/s

𝑉𝑦𝑠𝑠 = −1.18 m/s

𝜓̇𝑠𝑠 = 1.53 rad/s

𝜔𝑠𝑠 = 184.5 rad/s

𝛿𝑠𝑠 = 4.86 deg,

which were used in the cost function for both simulation and hardware results.
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Appendix C

Prior for Pilco

This appendix derives the main equations and derivatives required to implement the

informative prior from a simulator in Pilco [25] (see Chapter 4). First, the mean,

covariance, and input-output covariance of the predictive mean of a Gaussian process

(GP) are derived when the prior mean is a radial basis function (RBF) network.

Then, the partial derivatives of the predictive distribution with respect to the input

distribution are detailed.

C.1 Predictive Distribution

Here Eq. (4.1)-(4.3) from Section 4.1 are derived. Following the outline of the deriva-

tions in [25] and [15] the predictive mean of uncertain input 𝑥* ∼ 𝒩 (𝜇,Σ) is given

by

𝜇* = E𝑥*,𝑓𝑓 [𝑓(𝑥*)] = E𝑥* [E𝑓 [𝑓(𝑥*)]] = E𝑥* [𝑘(𝑥*, 𝑋)𝛽 +𝑚(𝑥*)]. (C.1)

The prior mean function 𝑚(𝑥*) is assumed to be the mean of a GP that is trained

using data from a simulator. Thus,

𝑚(𝑥*) = 𝑘𝑝(𝑥*, 𝑋𝑝)𝛽𝑝
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where {𝑋𝑝,𝑦𝑝} are the simulated data, 𝛽𝑝 = (𝐾𝑝 + 𝜎2
𝑛𝑝
𝐼)−1(𝑦𝑝 − 𝑚(𝑋𝑝)), 𝐾𝑝 =

𝑘𝑝(𝑋𝑝, 𝑋𝑝), and 𝜎2
𝑛𝑝

is the noise variance parameter of the simulated data. Note that

the prior mean is trained using a zero-prior GP. Substituting the form of the mean

function into Eq. (C.1) yields

𝜇* = 𝛽𝑇𝑞 + 𝛽𝑇𝑝 𝑞𝑝, (C.2)

where 𝑞𝑖 = 𝛼2|ΣΛ−1 + 𝐼|−1/2 exp(−1
2
𝜈𝑇𝑖 (Σ + Λ)−1𝜈𝑖) with 𝜈𝑖 = 𝑥𝑖 − 𝜇. The corre-

sponding prior terms are similar with 𝑞𝑝𝑖 = 𝛼2
𝑝|ΣΛ−1

𝑝 +𝐼|−1/2 exp(−1
2
𝜈𝑇𝑝𝑖(Σ+Λ𝑝)

−1𝜈𝑝𝑖)

and 𝜈𝑝𝑖 = 𝑥𝑝𝑖 − 𝜇.

Multi-output regression problems can be solved by training a separate GP for each

output dimension. When the inputs are uncertain, these output dimensions covary.

The covariance for different output dimensions 𝑎 and 𝑏 is now computed as

Cov𝑥*,𝑓 [𝑓𝑎(𝑥*), 𝑓𝑏(𝑥*)] =E𝑥* [Cov𝑓 [𝑓𝑎(𝑥*), 𝑓𝑏(𝑥*)]] + E𝑥* [E𝑓 [𝑓𝑎(𝑥*)]E𝑓 [𝑓𝑏(𝑥*)]]

− E𝑥* [E𝑓 [𝑓𝑎(𝑥*)]]E𝑥* [E𝑓 [𝑓𝑏(𝑥*)]]. (C.3)

As noted in [15], due to the independence assumptions of the GPs, the first term in

Eq. (C.3) is zero when 𝑎 ̸= 𝑏. Also, for a given output dimension, Cov𝑓 [𝑓𝑎(𝑥*), 𝑓𝑏(𝑥*)]

does not depend on the prior mean function. Therefore, using the results of [25], the

first term in Eq. (C.3) becomes

E𝑥* [Cov𝑓 [𝑓𝑎(𝑥*), 𝑓𝑏(𝑥*)]] = 𝛿𝑎𝑏(𝛼
2
𝑎 − tr((𝐾𝑎 + 𝜎2

𝜖𝑎𝐼)−1𝑄)), (C.4)
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where 𝛿𝑎𝑏 is 1 when 𝑎 = 𝑏 and 0 otherwise, and

𝑄 =

∫︁
𝑘𝑎(𝑥*, 𝑋)𝑇𝑘𝑏(𝑥*, 𝑋)𝑝(𝑥*)𝑑𝑥*

𝑄𝑖𝑗 = |𝑅|−1/2𝑘𝑎(𝑥𝑖,𝜇)𝑘𝑏(𝑥𝑗,𝜇) exp(1
2
𝑧𝑇𝑖𝑗𝑇

−1𝑧𝑖𝑗) (C.5)

𝑅 = Σ(Λ−1
𝑎 + Λ−1

𝑏 ) + 𝐼

𝑇 = Λ−1
𝑎 + Λ−1

𝑏 + Σ−1

𝑧𝑖𝑗 = Λ−1
𝑎 𝜈𝑖 + Λ−1

𝑏 𝜈𝑗.

The third term in Eq. (C.3) is computed using Eq. (C.2) as

E𝑥* [E𝑓 [𝑓𝑎(𝑥*)]]E𝑥* [E𝑓 [𝑓𝑏(𝑥*)]] =
(︀
𝛽𝑇𝑎 𝑞𝑎 + 𝛽𝑇𝑝𝑎𝑞𝑝𝑎

)︀ (︀
𝛽𝑇𝑏 𝑞𝑏 + 𝛽𝑇𝑝𝑏𝑞𝑝𝑏

)︀
. (C.6)

Finally, the second term in Eq. (C.3) is computed as

E𝑥* [E𝑓 [𝑓𝑎(𝑥*)]E𝑓 [𝑓𝑏(𝑥*)]] =E𝑥* [𝑘(𝑥*, 𝑋)𝛽𝑎𝑘(𝑥*, 𝑋)𝛽𝑏 +𝑚𝑎(𝑥*)𝑚𝑏(𝑥*)+

𝑚𝑎(𝑥*)𝑘(𝑥*, 𝑋)𝛽𝑏 + 𝑘(𝑥*, 𝑋)𝛽𝑎𝑚𝑏(𝑥*)]. (C.7)

As above, each term will be computed separately. Using Eq. (C.5), the first term

in Eq. (C.7) becomes

E𝑥* [𝑘(𝑥*, 𝑋)𝛽𝑎𝑘(𝑥*, 𝑋)𝛽𝑏] = 𝛽𝑇𝑎𝑄𝛽𝑏. (C.8)

Similarly, the second term in Eq. (C.7) is

E𝑥* [𝑚𝑎(𝑥*)𝑚𝑏(𝑥*)] = E𝑥* [𝑘𝑝(𝑥*, 𝑋𝑝)𝛽𝑝𝑎𝑘𝑝(𝑥*, 𝑋𝑝)𝛽𝑝𝑏 ] = 𝛽𝑇𝑝𝑎𝑄𝑝𝛽𝑝𝑏 , (C.9)

where 𝑄𝑝 is defined analogously to Eq. (C.5) but using the prior rather than the

current data. The third term in Eq. (C.7) is

E𝑥* [𝑚𝑎(𝑥*)𝑘(𝑥*, 𝑋)𝛽𝑏] = 𝛽𝑇𝑝𝑎E𝑥* [𝑘𝑝(𝑋𝑝,𝑥*)𝑘(𝑥*, 𝑋)]𝛽𝑏 = 𝛽𝑇𝑝𝑎(𝑝𝑄̂)𝛽𝑏, (C.10)
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where 𝑝𝑄̂ is defined as

𝑝𝑄̂ =

∫︁
𝑘𝑝𝑎(𝑥*, 𝑋𝑝)

𝑇𝑘𝑏(𝑥*, 𝑋)𝑝(𝑥*)𝑑𝑥*

𝑝𝑄̂𝑖𝑗 = |𝑝𝑅̂|−1/2𝑘𝑝𝑎(𝑥𝑝𝑖 ,𝜇)𝑘𝑏(𝑥𝑗,𝜇) exp(1
2
(𝑝𝑧̂𝑖𝑗)

𝑇 (𝑝𝑇 )−1(𝑝𝑧̂𝑖𝑗) (C.11)

𝑝𝑅̂ = Σ(Λ−1
𝑝𝑎 + Λ−1

𝑏 ) + 𝐼

𝑝𝑇 = Λ−1
𝑝𝑎 + Λ−1

𝑏 + Σ−1

𝑝𝑧̂𝑖𝑗 = Λ−1
𝑝𝑎 𝜈𝑝𝑖 + Λ−1

𝑏 𝜈𝑗.

The forth term in Eq. (C.7) is analogously defined as 𝛽𝑇𝑎 𝑄̂
𝑝𝛽𝑝𝑏 , where

𝑄̂𝑝 =

∫︁
𝑘𝑎(𝑥*, 𝑋)𝑇𝑘𝑝𝑏(𝑥*, 𝑋𝑝)𝑝(𝑥*)𝑑𝑥*

𝑄̂𝑝
𝑖𝑗 = |𝑅̂𝑝|−1/2𝑘𝑎(𝑥𝑖,𝜇)𝑘𝑝𝑏(𝑥𝑝𝑗 ,𝜇) exp(1

2
(𝑧̂𝑝𝑖𝑗)

𝑇 (𝑇 𝑝)−1𝑧̂𝑝𝑖𝑗) (C.12)

𝑅̂𝑝 = Σ(Λ−1
𝑎 + Λ−1

𝑝𝑏
) + 𝐼

𝑇 𝑝 = Λ−1
𝑎 + Λ−1

𝑝𝑏
+ Σ−1

𝑧̂𝑝𝑖𝑗 = Λ−1
𝑎 𝜈𝑖 + Λ−1

𝑝𝑏
𝜈𝑝𝑗 .

Combining Eq. (C.4)-(C.12) the covariance for an uncertain input with multiple

outputs is obtained. Writing this covariance element-wise results in

𝜎2
𝑎𝑏 =𝛿𝑎𝑏(𝛼

2
𝑎 − tr((𝐾𝑎 + 𝜎2

𝜖𝑎𝐼)−1𝑄)) + 𝛽𝑇𝑎𝑄𝛽𝑏 + 𝛽𝑇𝑝𝑎𝑄𝑝𝛽𝑝𝑏 + 𝛽𝑇𝑝𝑎
𝑝𝑄̂𝛽𝑏 + 𝛽𝑇𝑎 𝑄̂

𝑝𝛽𝑝𝑏−(︀
𝛽𝑇𝑎 𝑞𝑎 + 𝛽𝑇𝑝𝑎𝑞𝑝𝑎

)︀ (︀
𝛽𝑇𝑏 𝑞𝑏 + 𝛽𝑇𝑝𝑏𝑞𝑝𝑏

)︀
. (C.13)

The final derivation needed for propagating uncertain inputs through the GP

transition model in the Pilco algorithm is the covariance between the uncertain test

input 𝑥* ∼ 𝒩 (𝜇,Σ) and the predicted output 𝑓(𝑥*) ∼ 𝒩 (𝜇*,Σ*). This covariance is
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calculated as

Σ𝑥*,𝑓* =E𝑥*,𝑓 [𝑥*𝑓(𝑥*)
𝑇 ]− E𝑥* [𝑥*]E𝑥*,𝑓 [𝑓(𝑥*)]

𝑇

=E𝑥*,𝑓 [𝑥*𝑘(𝑥*, 𝑋)𝛽]− E𝑥* [𝑥*]E𝑥* [𝑘(𝑥*, 𝑋)𝛽]𝑇+

E𝑥*,𝑓 [𝑥*𝑘𝑝(𝑥*, 𝑋𝑝)𝛽𝑝]− E𝑥* [𝑥*]E𝑥* [𝑘𝑝(𝑥*, 𝑋𝑝)𝛽𝑝]
𝑇 .

Here, the input-output covariance has been separated into a part that comes from

the current data and a part that comes from the prior data. Therefore, the results

from [25] can be directly applied to obtain

Σ𝑥*,𝑓* =Σ(Σ + Λ)−1

𝑛∑︁
𝑖=1

𝛽𝑖𝑞𝑖(𝑥𝑖 − 𝜇) + Σ(Σ + Λ𝑝)
−1

𝑛𝑝∑︁
𝑖=1

𝛽𝑝𝑖𝑞𝑝𝑖(𝑥𝑝𝑖 − 𝜇). (C.14)

Note that the derivation above does not assume that there are the same number

of data points in the prior GP and the current GP. Thus, the matrices 𝑝𝑄̂ and 𝑄̂𝑝

need not be square.

C.2 Partial Derivatives

Given the predictive distribution 𝒩 (𝜇*,Σ*) from Section C.1, the partial derivative

of the predictive mean 𝜇* with respect to the input mean 𝜇 is first computed. Using

the mean derived in Eq. (C.2) results in

𝜕𝜇*

𝜕𝜇
=

𝑛∑︁
𝑖=1

𝛽𝑖
𝜕𝑞𝑖
𝜕𝜇

+

𝑛𝑝∑︁
𝑖=1

𝛽𝑝𝑖
𝜕𝑞𝑝𝑖
𝜕𝜇

=
𝑛∑︁
𝑖=1

𝛽𝑖𝑞𝑖(𝑥𝑖 − 𝜇)𝑇 (Σ + Λ)−1 +

𝑛𝑝∑︁
𝑖=1

𝛽𝑝𝑖𝑞𝑝𝑖(𝑥𝑝𝑖 − 𝜇)𝑇 (Σ + Λ𝑝)
−1. (C.15)

The derivative of the predictive mean with respect to the input covariance is

written as

𝜕𝜇*

𝜕Σ
=

𝑛∑︁
𝑖=1

𝛽𝑖
𝜕𝑞𝑖
𝜕Σ

+

𝑛𝑝∑︁
𝑖=1

𝛽𝑝𝑖
𝜕𝑞𝑝𝑖
𝜕Σ

, (C.16)
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where, as in Eq. (C.15), the derivative consists of two distinct parts, one from the

current data and one from the prior data. Using results from [25], Eq. C.16 becomes

𝜕𝜇*

𝜕Σ
=

𝑛∑︁
𝑖=1

𝛽𝑖𝑞𝑖

(︂
−1

2
((Λ−1Σ + 𝐼)−1Λ−1)𝑇 − 1

2
(𝑥𝑖 − 𝜇)𝑇

𝜕(Λ + Σ)−1

𝜕Σ
(𝑥𝑖 − 𝜇)

)︂
+

𝑛𝑝∑︁
𝑖=1

𝛽𝑝𝑖𝑞𝑝𝑖

(︂
−1

2
((Λ−1

𝑝 Σ + 𝐼)−1Λ−1
𝑝 )𝑇 − 1

2
(𝑥𝑝𝑖 − 𝜇)𝑇

𝜕(Λ𝑝 + Σ)−1

𝜕Σ
(𝑥𝑝𝑖 − 𝜇)

)︂
,

(C.17)

where, for 𝐷 input dimensions and 𝐸 output dimensions and 𝑢, 𝑣 = 1, . . . , 𝐷 + 𝐸

𝜕(Λ + Σ)−1

𝜕Σ(𝑢𝑣)

= −1
2

(︁
(Λ + Σ)−1

(:,𝑢)(Λ + Σ)−1
(𝑣,:) + (Λ + Σ)−1

(:,𝑣)(Λ + Σ)−1
(𝑢,:)

)︁
, (C.18)

and the corresponding prior term

𝜕(Λ𝑝 + Σ)−1

𝜕Σ(𝑢𝑣)

= −1
2

(︁
(Λ𝑝 + Σ)−1

(:,𝑢)(Λ𝑝 + Σ)−1
(𝑣,:) + (Λ𝑝 + Σ)−1

(:,𝑣)(Λ𝑝 + Σ)−1
(𝑢,:)

)︁
. (C.19)

Next, the partial derivatives of the predictive covariance Σ* with respect to the

input mean and covariance are derived. These derivatives are taken element-wise for

output dimensions 𝑎 and 𝑏 using Eq. (C.13). The derivative with respect to the input

mean becomes

𝜕𝜎2
𝑎𝑏

𝜕𝜇
=𝛿𝑎𝑏

(︂
−(𝐾𝑎 + 𝜎2

𝜖𝑎𝐼)−1𝜕𝑄

𝜕𝜇

)︂
+

𝛽𝑇𝑎

(︂
𝜕𝑄

𝜕𝜇
− 𝜕𝑞𝑎
𝜕𝜇

𝑞𝑇𝑏 − 𝑞𝑎
𝜕𝑞𝑇𝑏
𝜕𝜇

)︂
𝛽𝑏 + 𝛽𝑇𝑝𝑎

(︃
𝜕𝑄𝑝

𝜕𝜇
− 𝜕𝑞𝑝𝑎

𝜕𝜇
𝑞𝑇𝑝𝑏 − 𝑞𝑝𝑎

𝜕𝑞𝑇𝑝𝑏
𝜕𝜇

)︃
𝛽𝑝𝑏+

𝛽𝑇𝑎

(︃
𝜕𝑄̂𝑝

𝜕𝜇
− 𝜕𝑞𝑎
𝜕𝜇

𝑞𝑇𝑝𝑏 − 𝑞𝑎
𝜕𝑞𝑇𝑝𝑏
𝜕𝜇

)︃
𝛽𝑝𝑏 + 𝛽𝑇𝑝𝑎

(︃
𝜕(𝑝𝑄̂)

𝜕𝜇
− 𝜕𝑞𝑝𝑎

𝜕𝜇
𝑞𝑇𝑏 − 𝑞𝑝𝑎

𝜕𝑞𝑇𝑏
𝜕𝜇

)︃
𝛽𝑏,

(C.20)

where, from [25],

𝜕𝑄𝑖𝑗

𝜕𝜇
= 𝑄𝑖𝑗((Λ𝑎 + Λ𝑏)

−1(Λ𝑏𝑥𝑖 + Λ𝑎𝑥𝑗)− 𝜇)((Λ𝑎 + Λ𝑏)
−1 + Σ)−1 (C.21)
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and similarly

𝜕𝑄𝑝𝑖𝑗

𝜕𝜇
= 𝑄𝑝𝑖𝑗((Λ𝑝𝑎 + Λ𝑝𝑏)

−1(Λ𝑝𝑏𝑥𝑝𝑖 + Λ𝑝𝑎𝑥𝑝𝑗)− 𝜇)((Λ𝑝𝑎 + Λ𝑝𝑏)
−1 + Σ)

−1
(C.22)

𝜕(𝑝𝑄̂𝑖𝑗)

𝜕𝜇
= 𝑝𝑄̂𝑖𝑗((Λ𝑝𝑎 + Λ𝑏)

−1(Λ𝑏𝑥𝑝𝑖 + Λ𝑝𝑎𝑥𝑗)− 𝜇)((Λ𝑝𝑎 + Λ𝑏)
−1 + Σ)

−1
(C.23)

𝜕𝑄̂𝑝
𝑖𝑗

𝜕𝜇
= 𝑄̂𝑝

𝑖𝑗((Λ𝑎 + Λ𝑝𝑏)
−1(Λ𝑝𝑏𝑥𝑖 + Λ𝑎𝑥𝑝𝑗)− 𝜇)((Λ𝑎 + Λ𝑝𝑏)

−1 + Σ)
−1
. (C.24)

Note that 𝜕𝑞
𝜕𝜇

and 𝜕𝑞𝑝

𝜕𝜇
are given in Eq. (C.15).

The derivative of the predictive covariance with respect to the input covariance is

𝜕𝜎2
𝑎𝑏

𝜕Σ
=𝛿𝑎𝑏

(︂
−(𝐾𝑎 + 𝜎2

𝜖𝑎𝐼)
−1𝜕𝑄

𝜕Σ

)︂
+

𝛽𝑇𝑎

(︂
𝜕𝑄

𝜕Σ
− 𝜕𝑞𝑎
𝜕Σ

𝑞𝑇𝑏 − 𝑞𝑎
𝜕𝑞𝑇𝑏
𝜕Σ

)︂
𝛽𝑏 + 𝛽𝑇𝑝𝑎

(︃
𝜕𝑄𝑝

𝜕Σ
− 𝜕𝑞𝑝𝑎

𝜕Σ
𝑞𝑇𝑝𝑏 − 𝑞𝑝𝑎

𝜕𝑞𝑇𝑝𝑏
𝜕Σ

)︃
𝛽𝑝𝑏+

𝛽𝑇𝑎

(︃
𝜕𝑄̂𝑝

𝜕Σ
− 𝜕𝑞𝑎
𝜕Σ

𝑞𝑇𝑝𝑏 − 𝑞𝑎
𝜕𝑞𝑇𝑝𝑏
𝜕Σ

)︃
𝛽𝑝𝑏 + 𝛽𝑇𝑝𝑎

(︃
𝜕(𝑝𝑄̂)

𝜕Σ
− 𝜕𝑞𝑝𝑎

𝜕Σ
𝑞𝑇𝑏 − 𝑞𝑝𝑎

𝜕𝑞𝑇𝑏
𝜕Σ

)︃
𝛽𝑏,

(C.25)

where, from [25],

𝜕𝑄𝑖𝑗

𝜕Σ
=− 1

2
𝑄𝑖𝑗

[︀
(Λ−1

𝑎 + Λ−1
𝑏 )𝑅−1 − 𝑦𝑇𝑖𝑗Ξ𝑦𝑖𝑗

]︀
(C.26)

𝑦𝑖𝑗 =Λ𝑏(Λ𝑎 + Λ𝑏)
−1𝑥𝑖 + Λ𝑎(Λ𝑎 + Λ𝑏)

−1𝑥𝑗 − 𝜇

Ξ(𝑢𝑣) =1
2
(Φ(𝑢𝑣) + Φ(𝑣𝑢))

Φ(𝑢𝑣) =
(︁

((Λ−1
𝑎 + Λ−1

𝑏 )−1 + Σ)−1
(:,𝑢) × ((Λ−1

𝑎 + Λ−1
𝑏 )−1 + Σ)−1

(𝑣,:)

)︁
.
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As before, the terms containing the prior data are similar as

𝜕𝑄𝑝𝑖𝑗

𝜕Σ
=− 1

2
𝑄𝑝𝑖𝑗

[︁
(Λ−1

𝑝𝑎 + Λ−1
𝑝𝑏

)𝑅−1
𝑝 − 𝑦𝑇𝑝𝑖𝑗Ξ𝑝𝑦𝑝𝑖𝑗

]︁
(C.27)

𝑦𝑝𝑖𝑗 =Λ𝑝𝑏(Λ𝑝𝑎 + Λ𝑝𝑏)
−1𝑥𝑝𝑖 + Λ𝑝𝑎(Λ𝑝𝑎 + Λ𝑝𝑏)

−1𝑥𝑝𝑗 − 𝜇

Ξ𝑝(𝑢𝑣) =1
2
(Φ𝑝(𝑢𝑣) + Φ𝑝(𝑢𝑣))

Φ𝑝(𝑢𝑣) =
(︁

((Λ−1
𝑝𝑎 + Λ−1

𝑝𝑏
)−1 + Σ)−1

(:,𝑢)((Λ
−1
𝑝𝑎 + Λ−1

𝑝𝑏
)−1 + Σ)−1

(𝑣,:)

)︁
𝜕(𝑝𝑄̂𝑖𝑗)

𝜕Σ
=− 1

2
(𝑝𝑄̂𝑖𝑗)

[︀
(Λ−1

𝑝𝑎 + Λ−1
𝑏 )(𝑝𝑅)−1 − (𝑝𝑦𝑖𝑗)

𝑇 (𝑝Ξ)(𝑝𝑦𝑖𝑗)
]︀

(C.28)

𝑝𝑦𝑖𝑗 =Λ𝑏(Λ𝑝𝑎 + Λ𝑏)
−1𝑥𝑝𝑖 + Λ𝑝𝑎(Λ𝑝𝑎 + Λ𝑏)

−1𝑥𝑗 − 𝜇

𝑝Ξ(𝑢𝑣) =1
2
(𝑝Φ(𝑢𝑣) + 𝑝Φ(𝑢𝑣))

𝑝Φ(𝑢𝑣) =
(︁

((Λ−1
𝑝𝑎 + Λ−1

𝑏 )−1 + Σ)−1
(:,𝑢)((Λ

−1
𝑝𝑎 + Λ−1

𝑏 )−1 + Σ)−1
(𝑣,:)

)︁
𝜕𝑄̂𝑝

𝑖𝑗

𝜕Σ
=− 1

2
𝑄̂𝑝
𝑖𝑗

[︀
(Λ−1

𝑎 + Λ−1
𝑝𝑏

)(𝑅𝑝)−1 − (𝑦𝑝𝑖𝑗)
𝑇Ξ𝑝𝑦𝑝𝑖𝑗

]︀
(C.29)

𝑦𝑝𝑖𝑗 =Λ𝑝𝑏(Λ𝑎 + Λ𝑝𝑏)
−1𝑥𝑖 + Λ𝑎(Λ𝑎 + Λ𝑝𝑏)

−1𝑥𝑝𝑗 − 𝜇

Ξ𝑝
(𝑢𝑣) =1

2
(Φ𝑝

(𝑢𝑣) + Φ𝑝
(𝑢𝑣))

Φ𝑝
(𝑢𝑣) =

(︁
((Λ−1

𝑎 + Λ−1
𝑝𝑏

)−1 + Σ)−1
(:,𝑢)((Λ

−1
𝑎 + Λ−1

𝑝𝑏
)−1 + Σ)−1

(𝑣,:)

)︁
.

Note that 𝜕𝑞
𝜕Σ

and 𝜕𝑞𝑝

𝜕Σ
are given in Eq. (C.17).

The final derivatives are the partial derivatives of the input-output covariance

with respect to the input mean and covariance. Note that from Eq. (C.14), Σ𝑥*,𝑓*

consists of two distinct but similar parts, one from the current data and one from the
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prior data. Thus, applying results from [25], these derivatives are

𝜕Σ𝑥*,𝑓*

𝜕𝜇
=Σ(Σ + Λ)−1

𝑛∑︁
𝑖=1

𝛽𝑖

(︂
(𝑥𝑖 − 𝜇)

𝜕𝑞𝑖
𝜕𝜇
− 𝑞𝑖𝐼

)︂
+

Σ(Σ + Λ𝑝)
−1

𝑛𝑝∑︁
𝑖=1

𝛽𝑝𝑖

(︂
(𝑥𝑝𝑖 − 𝜇)

𝜕𝑞𝑝𝑖
𝜕𝜇
− 𝑞𝑝𝑖𝐼

)︂
(C.30)

𝜕Σ𝑥*,𝑓*

𝜕Σ
=

(︂
(Σ + Λ)−1 + Σ

𝜕(Σ + Λ)−1

𝜕Σ

)︂ 𝑛∑︁
𝑖=1

𝛽𝑖𝑞𝑖(𝑥𝑖 − 𝜇)+

Σ(Σ + Λ)−1

𝑛∑︁
𝑖=1

𝛽𝑖(𝑥𝑖 − 𝜇)
𝜕𝑞𝑖
𝜕Σ

+

(︂
(Σ + Λ𝑝)

−1 + Σ
𝜕(Σ + Λ𝑝)

−1

𝜕Σ

)︂ 𝑛𝑝∑︁
𝑖=1

𝛽𝑝𝑖𝑞𝑝𝑖(𝑥𝑝𝑖 − 𝜇)+

Σ(Σ + Λ𝑝)
−1

𝑛𝑝∑︁
𝑖=1

𝛽𝑝𝑖(𝑥𝑝𝑖 − 𝜇)
𝜕𝑞𝑝𝑖
𝜕Σ

, (C.31)

where 𝜕(Σ + Λ)−1/𝜕Σ and 𝜕(Σ + Λ𝑝)
−1/𝜕Σ are defined in Eq. (C.18) and Eq. (C.19),

respectively.

This concludes the derivation of the partial derivatives needed to implement Pilco

with a prior mean function that is an RBF network.
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Appendix D

Derivatives for Continuous

State-Action Reverse Transfer

This appendix derives the derivatives needed to use the moment matching method

from [25] for doing Gaussian process (GP) predictions when using uncertain inputs.

In this case, the GP predictions are combinations of the predictions of two GP’s, one

from real-world data (𝑟𝑤) and one from simulated data (𝑠𝑖𝑚). In the equations below

superscript letters encased in parentheses indicate indices of a vector or matrix.

First, since the proportion to which the real data is valued is a function of both

the input mean and the covariance (see Equation 5.6 and note that Σ*(𝑟𝑤)
depends

on 𝜇 and Σ), the derivatives of 𝑝(𝑟𝑤) with respect to 𝜇 and Σ are needed.

The derivative of the generalized logistic function from Equation 5.5 with respect

to the input is

d f(𝑥)

d𝑥
= −𝐵 e𝐵(𝑥−𝑥0)

(︀
𝑄 e𝐵(𝑥−𝑥0) +1

)︀(− 1
𝑄
+1)

. (D.1)

Defining a helper variable

𝛾 =
‖Σ*(𝑟𝑤)

‖𝐹
‖
[︀
𝜎2
𝑛1
, . . . , 𝜎2

𝑛𝐸

]︀
‖ ,
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the chain rule of differentiation is applied to get

𝜕𝑝(𝑟𝑤)
𝜕𝜇

=
d f (𝛾)

d 𝛾
× d 𝛾

d‖Σ*(𝑟𝑤)
‖𝐹
×

d‖Σ*(𝑟𝑤)
‖𝐹

d Σ*(𝑟𝑤)

×
𝜕Σ*(𝑟𝑤)

𝜕𝜇

=
d f (𝛾)

d 𝛾⏟  ⏞  
1×1

× 1

‖
[︀
𝜎2
𝑛1
, . . . , 𝜎2

𝑛𝐸

]︀
‖⏟  ⏞  

1×1

×
Σ*(𝑟𝑤)

‖Σ*(𝑟𝑤)
‖𝐹⏟  ⏞  

𝐸×𝐸

×
𝜕Σ*(𝑟𝑤)

𝜕𝜇⏟  ⏞  
𝐸×𝐸×𝐷

.

Since 𝑝(𝑟𝑤) is a scalar, 𝜕𝑝(𝑟𝑤)

𝜕𝜇
is a 1×𝐷 vector, which is computed element-wise as

𝜕𝑝(𝑟𝑤)
𝜕𝜇(𝑖)

=
d f (𝛾)

d 𝛾
× 1

‖
[︀
𝜎2
𝑛1
, . . . , 𝜎2

𝑛𝐸

]︀
‖ ×

1

‖Σ*(𝑟𝑤)
‖𝐹
×

𝐸∑︁
𝑘=1

𝐸∑︁
𝑙=1

Σ(𝑘,𝑙)
*(𝑟𝑤)

𝜕Σ
(𝑘,𝑙)
*(𝑟𝑤)

𝜕𝜇(𝑖)
. (D.2)

Again using the chain rule, the partial derivative of 𝑝(𝑟𝑤) with respect to the input

covariance is computed as

𝜕𝑝(𝑟𝑤)
𝜕Σ

=
d f (𝛾)

d 𝛾⏟  ⏞  
1×1

× 1

‖
[︀
𝜎2
𝑛1
, . . . , 𝜎2

𝑛𝐸

]︀
‖⏟  ⏞  

1×1

×
Σ*(𝑟𝑤)

‖Σ*(𝑟𝑤)
‖𝐹⏟  ⏞  

𝐸×𝐸

×
𝜕Σ*(𝑟𝑤)

𝜕Σ⏟  ⏞  
𝐸×𝐸×𝐷×𝐷

,

where the 𝐷 ×𝐷 output is calculated element-wise as

𝜕𝑝(𝑟𝑤)
𝜕Σ(𝑖,𝑗)

=
d f (𝛾)

d 𝛾
× 1

‖
[︀
𝜎2
𝑛1
, . . . , 𝜎2

𝑛𝐸

]︀
‖ ×

1

‖Σ*(𝑟𝑤)
‖𝐹
×

𝐸∑︁
𝑘=1

𝐸∑︁
𝑙=1

Σ(𝑘,𝑙)
*(𝑟𝑤)

𝜕Σ
(𝑘,𝑙)
*(𝑟𝑤)

𝜕Σ(𝑖,𝑗)
. (D.3)

Given the derivatives of 𝑝(𝑟𝑤), the derivatives of the prediction mean with respect

to the input mean can now be calculated as

𝜕𝜇*

𝜕𝜇
=
𝜕𝜇*(𝑠𝑖𝑚)

𝜕𝜇
+ 𝑝(𝑟𝑤)

(︂
𝜕𝜇*(𝑟𝑤)

𝜕𝜇
−
𝜕𝜇*(𝑠𝑖𝑚)

𝜕𝜇

)︂
+
(︁
𝜇*(𝑟𝑤)

− 𝜇*(𝑠𝑖𝑚)

)︁(︂𝜕𝑝(𝑟𝑤)
𝜕𝜇

)︂𝑇
, (D.4)

and the prediction covariance with respect to the input covariance as

𝜕𝜇
(𝑖)
*

𝜕Σ
=
𝜕𝜇

(𝑖)
*(𝑠𝑖𝑚)

𝜕Σ
+ 𝑝(𝑟𝑤)

(︃
𝜕𝜇

(𝑖)
*(𝑟𝑤)

𝜕Σ
−
𝜕𝜇

(𝑖)
*(𝑠𝑖𝑚)

𝜕Σ

)︃
+
(︁
𝜇(𝑖)
*(𝑟𝑤)
− 𝜇(𝑖)

*(𝑠𝑖𝑚)

)︁ 𝜕𝑝(𝑟𝑤)
𝜕Σ

. (D.5)

Similarly, the derivative of the input-output covariance with respect to the input

148



mean is calculated element-wise as

𝜕Σ𝑥*,𝑓*

𝜕𝜇(𝑖)
=
𝜕Σ𝑥*,𝑓*(𝑠𝑖𝑚)

𝜕𝜇(𝑖)
+ 𝑝(𝑟𝑤)

(︂
𝜕Σ𝑥*,𝑓*(𝑟𝑤)

𝜕𝜇(𝑖)
−
𝜕Σ𝑥*,𝑓*(𝑠𝑖𝑚)

𝜕𝜇(𝑖)

)︂
+(︁

Σ𝑥*,𝑓*(𝑟𝑤)
− Σ𝑥*,𝑓*(𝑠𝑖𝑚)

)︁ 𝜕𝑝(𝑟𝑤)
𝜕𝜇(𝑖)

, (D.6)

and with respect to the input covariance as

𝜕Σ
(𝑖,𝑗)
𝑥*,𝑓*

𝜕Σ
=
𝜕Σ

(𝑖,𝑗)
𝑥*,𝑓*(𝑠𝑖𝑚)

𝜕Σ
+ 𝑝(𝑟𝑤)

⎛⎝𝜕Σ
(𝑖,𝑗)
𝑥*,𝑓*(𝑟𝑤)

𝜕Σ
−
𝜕Σ

(𝑖,𝑗)
𝑥*,𝑓*(𝑠𝑖𝑚)

𝜕Σ

⎞⎠+

(︁
Σ

(𝑖,𝑗)
𝑥*,𝑓*(𝑟𝑤)

− Σ
(𝑖,𝑗)
𝑥*,𝑓*(𝑠𝑖𝑚)

)︁ 𝜕𝑝(𝑟𝑤)
𝜕Σ

. (D.7)

To calculate the partial derivatives of the predictive covariance, some helper vari-

ables are first defined as

Φ
(𝑖,𝑗)
(𝑠𝑖𝑚) =

(︁
𝜇(𝑖)
*(𝑠𝑖𝑚)

− 𝜇(𝑖)
*

)︁(︃𝜕𝜇(𝑗)
*(𝑠𝑖𝑚)

𝜕𝜇
− 𝜕𝜇

(𝑗)
*

𝜕𝜇

)︃
+

(︁
𝜇(𝑗)
*(𝑠𝑖𝑚)

− 𝜇(𝑗)
*

)︁(︃𝜕𝜇(𝑖)
*(𝑠𝑖𝑚)

𝜕𝜇
− 𝜕𝜇

(𝑖)
*

𝜕𝜇

)︃
+
𝜕Σ

(𝑖,𝑗)
*(𝑠𝑖𝑚)

𝜕𝜇

Φ
(𝑖,𝑗)
(𝑟𝑤) =

(︁
𝜇(𝑖)
*(𝑟𝑤)
− 𝜇(𝑖)

*

)︁(︃𝜕𝜇(𝑗)
*(𝑟𝑤)

𝜕𝜇
− 𝜕𝜇

(𝑗)
*

𝜕𝜇

)︃
+

(︁
𝜇(𝑗)
*(𝑟𝑤)
− 𝜇(𝑗)

*

)︁(︃𝜕𝜇(𝑖)
*(𝑟𝑤)

𝜕𝜇
− 𝜕𝜇

(𝑖)
*

𝜕𝜇

)︃
+
𝜕Σ

(𝑖,𝑗)
*(𝑟𝑤)

𝜕𝜇
.

Using Φ(𝑠𝑖𝑚) and Φ(𝑟𝑤), the partial derivative of the predictive covariance with respect

to the input mean are calculated as

𝜕Σ
(𝑖,𝑗)
*

𝜕𝜇
= Φ

(𝑖,𝑗)
(𝑠𝑖𝑚) + 𝑝(𝑟𝑤)

(︁
Φ

(𝑖,𝑗)
(𝑟𝑤) − Φ

(𝑖,𝑗)
(𝑠𝑖𝑚)

)︁
+
(︁
𝛽
(𝑖,𝑗)
(𝑟𝑤) − 𝛽

(𝑖,𝑗)
(𝑠𝑖𝑚)

)︁(︂𝜕𝑝(𝑟𝑤)
𝜕𝜇

)︂𝑇
. (D.8)
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Defining similar helper variables for the covariance

Ψ
(𝑖,𝑗)
(𝑠𝑖𝑚) =

(︁
𝜇(𝑖)
*(𝑠𝑖𝑚)

− 𝜇(𝑖)
*

)︁(︃𝜕𝜇(𝑗)
*(𝑠𝑖𝑚)

𝜕Σ
− 𝜕𝜇

(𝑗)
*

𝜕Σ

)︃
+

(︁
𝜇(𝑗)
*(𝑠𝑖𝑚)

− 𝜇(𝑗)
*

)︁(︃𝜕𝜇(𝑖)
*(𝑠𝑖𝑚)

𝜕Σ
− 𝜕𝜇

(𝑖)
*

𝜕Σ

)︃
+
𝜕Σ

(𝑖,𝑗)
*(𝑠𝑖𝑚)

𝜕Σ

Ψ
(𝑖,𝑗)
(𝑟𝑤) =

(︁
𝜇(𝑖)
*(𝑟𝑤)
− 𝜇(𝑖)

*

)︁(︃𝜕𝜇(𝑗)
*(𝑟𝑤)

𝜕Σ
− 𝜕𝜇

(𝑗)
*

𝜕Σ

)︃
+

(︁
𝜇(𝑗)
*(𝑟𝑤)
− 𝜇(𝑗)

*

)︁(︃𝜕𝜇(𝑖)
*(𝑟𝑤)

𝜕Σ
− 𝜕𝜇

(𝑖)
*

𝜕Σ

)︃
+
𝜕Σ

(𝑖,𝑗)
*(𝑟𝑤)

𝜕Σ
,

the partial derivative of the predicted covariance with respect to the input covariance

are

𝜕Σ
(𝑖,𝑗)
*

𝜕Σ
= Ψ

(𝑖,𝑗)
(𝑠𝑖𝑚) + 𝑝(𝑟𝑤)

(︁
Ψ

(𝑖,𝑗)
(𝑟𝑤) −Ψ

(𝑖,𝑗)
(𝑠𝑖𝑚)

)︁
+
(︁
𝛽
(𝑖,𝑗)
(𝑟𝑤) − 𝛽

(𝑖,𝑗)
(𝑠𝑖𝑚)

)︁ 𝜕𝑝(𝑟𝑤)
𝜕Σ

. (D.9)

In summary, Equations D.1-D.9, together with the partial derivatives in [25] and

Appendix C define the partial derivatives needed to implement the moment matching

algorithm for approximating the output of the combined real-world and simulation

GP from Chapter 5.
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