Automated Elementary Geometry Theorem
Discovery via Inductive Diagram Manipulation
by
Lars Erik Johnson
S.B., Massachusetts Institute of Technology (2015)

Submitted to the
Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2015

(© Massachusetts Institute of Technology 2015. All rights reserved.

Author ..o
Department of Electrical Engineering and Computer Science
June 23, 2015

Certified Dy . ..o
Gerald Jay Sussman
Panasonic Professor of Electrical Engineering, Thesis Supervisor

Accepted Dy ... o
Christopher J. Terman
Chairman, Masters of Engineering Thesis Committee

Automated Elementary Geometry Theorem Discovery via

Inductive Diagram Manipulation
by
Lars Erik Johnson

Submitted to the
Department of Electrical Engineering and Computer Science
on June 23, 2015, in partial fulfillment of the
requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

I created and analyzed an interactive computer system capable of exploring geome-
try concepts through inductive investigation. My system begins with a limited set
of knowledge about basic geometry and enables a user interacting with the system
to teach the system additional geometry concepts and theorems by suggesting inves-
tigations the system should explore to see if it “notices anything interesting.” The
system uses random sampling and physical simulations to emulate the more human-
like processes of manipulating diagrams “in the mind’s eye.” It then uses symbolic
pattern matching and a propagator-based truth maintenance system to appropriately
generalize findings and propose newly discovered theorems. These theorems could
be rigorously proved using external proof assistants, but are also used by the system
to assist in its explorations of new, higher-level concepts. Through a series of simple
investigations similar to an introductory course in geometry, the system has been able
to propose and learn a few dozen standard geometry theorems.

Thesis Supervisor: Gerald Jay Sussman
Title: Panasonic Professor of Electrical Engineering

Acknowledgments

I am thankful for my family, friends, advisors, mentors, and teachers for their contin-
ued support of my pursuits:

I’d specifically like to thank Dan Butler, my geometry teacher who taught our
class using Michael Serra’s text, Discovering Geometry: An Investigative Approach.
Such experience with an investigative methodology served as an important inspiration
for pursuing this project.

I appreciate Nyan Lounge at Simmons Hall’s patience with my efforts and assur-
ance that I had plenty of fun along the way. With a great group of friends, I always
had a reason to smile each day. I also thank my parents, sister, grandparents, and
extended family for their unfailing love, open ears, and reassuring guidance over the
years, providing me with a strong foundation for my current and future endeavors.

Finally, I could not have completed this project without my thesis advisor, Gerald
Jay Sussman: Thank you for emphasizing the importance of seeking out and working
on problems one finds personally interesting, and for providing insightful discussions,

stories, and advice along the way.

Contents

2 Motivation and Examples|

[2.1 Manipulating Diagrams “In the Mind’s Eye”|

2.1.1 An Initial Example]

[2.1.2 Diagrams, Figures, and Constraints|

2.2 Geometry Investigation|.

[2.2.1 Vertical Angles

[2.2.2 Elementary Results|

[3.1 Imperative Figure Construction|

[3.2 Perception and Observation|

[3.3.2 Geometry Examples|

[3.4 Learning Module|

[3.5 Final Example: Simplitying Definitions|

[4 System Overview|

11
12

15
17
17
18
19
19
20
21
22

23
23
27
29
30
32
38
47

49

4.2 Diagram Representations/. 50
4.3 Steps in a Typical Interaction| 51
[4.3.1 Interpreting Construction Instructions 52
[4.3.2 Creating Figures| 53
[4.3.3 Noticing Interesting Propertiesf 53
[4.3.4 Reporting and Simplifying Findings| 53

[> Imperative Construction System| 55
D1 OVerviewl. o o 55
[b.2 Basic Structuresl. oo 56
[>.2.1 Creating Elements| 57
0.2.2 IBssential Math Utilities 58

[>.3 Higher-order Procedures and Structures|. 59
[>.3.1 Polygons and Figures 60

b4 Random Choices oo oL 60
[>.4.1 Backtrackingl 00000000 61

[5.5 Construction Language Support| 62
[5.5.1 Multiple Component Assignment| 62
[5.5.2 Names and Dependencies|. 64

[>.6 Graphics and Animation|o 68
L7 Discussionlo 69
6 Perception Module| 71
6.1 Overviewl. 71
[6.2 Relationships| oo 71
[6.2.1 What i1s Interesting?| 73

6.3 Observationsl.o 73
[6.3.1 Numerical Accuracy| 75

[6.4 Analysis Procedure, o000 75
[6.5 Focusing on Interesting Observations| 76

8

[6.6.1 Auxiliary Segments| 79
[6.6.2 Extracting Angles|. 79
[6.6.3 Merging Related Observations| 80

[Declarative Geometry Constraint Solver| 81
(L1 OVerviewl. o 81
[7.1.1 Mechanical Analogies|. 82
[7.1.2 Propagator System| 82

(7.2 Example of Solving Geometric Constraints| 83
[r.3 Partial Information Structuresf o000 86
(7.3.1 Regions| 86
[(.3.2 Direction Intervalsl 86

(4 Bar and Joint Constraintsl 87
(4.1 Bar Structure and Constraintsl 88
(4.2 Joint Structure and Constraintsl 89

[7.5 User-specified Constraints| 89
[r.b.1 Slice Constraintsl oL 90

[7.6 Assembling Mechanisms| 90
[7.7 Solving Mechanisms|. o000 92
[7.7.1 Interfacing with imperative diagrams| 94

[[.8 Discussion and Extensions 94
[7.8.1 Backtrackingl 0000000 95
[7.8.2 Improved Partial Informationl 95
[7.8.3 Basing Choices on Existing Values| 96

[8 Learning Module| 97
B1 Overviewl. e 97
[8.2 Learning Module Interface| 98
[8.3 Querying|. 98
8.3.1 Student Structurel.o 99

[8.4 Testing Definitions| L. 100
[8.4.1 Conjecture Structurel 101

[8.5 Examining Objects|o 101
[8.5.1 Maintaining the Term Lattice| 102

[8.5.2 Core Knowledge|. 104

[8.6 Learning new Terms and Conjectures| 104
[8.6.1 Performing Investigations| 105

(8.7 Simplitying Definitions| 000 106
8.8 Discussionl 108

9 _Related Work 109
[9.1 Automated Geometry Proof| 110
9.2 Automated Geometry Discovery| 110
[9.3 Geometry Constraint Solving and Mechanics| 111
9.4 Dynamic Geometry| oL 111
9.5 DSoftwarel 111
10 Conclusion| 113
0.1 Overviewl. 113
(10.2 Dimitationsl oo 114
(10.2.1 Probabilistic Approach| 114

[10.2.2 Negative Relations and Definitions| 114

[10.2.3 Generality of Theorems|. 115

[10.3 System-level Extensions| 115
(10.3.1 Deductive Proof Systems| 115

(10.3.2 Learning Constructions|. 116

(10.3.3 Selt-directed Explorations| 116

[A Code Listings| 117
(B Bibliographyi 195

10

Chapter 1

Introduction

I developed and analyzed an interactive computer system that emulates a student
learning geometry concepts through inductive investigation. Although geometry
knowledge can be conveyed via a series of factual definitions, theorems, and proofs,
my system focuses on a more investigative approach in which an external teacher
guides the student to “discover” new definitions and theorems via explorations and
self-directed inquiry.

My system emulates such a student by beginning with a limited knowledge set
regarding basic definitions in geometry and providing a means for a user interacting
with the system to “teach” additional geometric concepts and theorems by suggesting
investigations the system should explore to see if it “notices anything interesting.”

To enable such learning, my project includes the combination of four intertwined
modules: an imperative geometry construction language to build constructions, an
observation-based perception module to notice interesting properties, a declarative
geometry constraint solver to solve and test specifications, and a learning module to
analyze information from the other modules and integrate it into new definition and
theorem discoveries.

To evaluate its recognition of such concepts, my system provides means for a user
to extract the observations and apply its findings to new scenarios. Through a series
of simple investigations similar to an introductory course in geometry, the system has

been able to propose and learn a few dozen standard geometry theorems.

11

1.1 Document Structure
Following this introduction,

Chapter 2| Motivation discusses motivation for the system and presents some ex-
amples of learning via diagram manipulation, emphasizing the technique of

visualizing diagrams “in the mind’s eye.”

Chapter 3| Demonstration provides several sample interactions with the system

showing the results for this project.

Chapter [4] System Overview presents several concepts used in the system, intro-
duces the four main modules, and discusses how they work together in the

discovery of new definitions and theorems.

Chapters [5| - [8] describe the implementation and function of the four primary sys-

tem modules:

Chapter [5| Imperative Construction describes the construction module that

enables the system to represent, perform, and display figure constructions.

Chapter [6] Perception describes the perception module that focuses on ob-
serving interesting properties in diagrams. A key question involves deter-

mining “what is interesting?”.

Chapter [7] Declarative Constraint Solver describes the propagator-based
declarative geometry constraint solver that builds instances of diagrams

satisfying declarative constraints.

Chapter (8] Learning Module describes the learning module that integrates
results from the other systems to create new discoveries. Main features in-
clude filtering out obvious and known during investigations, representing
and storing newly discovered definitions and theorems, providing an inter-
face to apply these findings to new situations, and simplifying the resulting

definitions.

12

Chapter [9] Related Work discusses some related work to automated geometry
theorem discovery and proof, as well as a comparison with existing dynamic

geometry systems.

Chapter Conclusion evaluates the strengths and weaknesses of the system and

discusses future work and extensions.

Appendix [A] Code Listings provides full listings for code used in the system and

explains an external dependency on a propagator system.

Appendix B Bibliography lists works referenced in the document.

13

14

Chapter 2

Motivation and Examples

Understanding elementary geometry is a fundamental reasoning skill, and encom-
passes a domain both constrained enough to model effectively, yet rich enough to
allow for interesting insights. Although elementary geometry knowledge can be con-
veyed via series of factual definitions, theorems, and proofs, a particularly intriguing
aspect of geometry is the ability for students to learn and develop an understanding
of core concepts through visual investigation, exploration, and discovery.

These visual reasoning skills reflect many of the cognitive activities used as one
interacts with his or her surroundings. Day-to-day decisions regularly rely on visual
reasoning processes such as imagining what three-dimensional objects look like from
other angles, or mentally simulating the effects of one’s actions on objects based
on a learned understanding of physics and the object’s properties. Such skills and
inferred rules are developed through repeated observation, followed by the formation
and evaluation of conjectures.

Similar to such day-to-day three-dimensional reasoning, visualizing and manipu-

lating two-dimensional geometric diagrams “in the mind’s eye” allows one to explore

) 7

questions such as “what happens if...” or “is it always true that...” to discover
new conjectures. Further investigation of examples can increase one’s belief in such
a conjecture, and an accompanying system of deductive reasoning from basic axioms
could prove that an observation is correct.

As an example, a curious student might notice that in a certain drawing of a

15

triangle, the three perpendicular bisectors of the sides are concurrent, and that a
circle constructed with center at the point of concurrence through one triangle vertex
intersects the other two triangle vertices. Given this “interesting observation”, the
student might explore other triangles to see if this behavior is just coincidence, or
conjecture about whether it applies to certain classes of triangles or all triangles in
general. After investigating several other examples, the student might have sufficient
belief in the conjecture to explore using previously proven theorems (in this case,
correspondences in congruent triangles) to prove the conjecture. This project is a

software system that simulates and automates this inductive thought process.

Automating geometric reasoning is not new, and has been an active field in com-
puting and artificial intelligence. Dynamic geometry software, automated proof assis-
tants, deductive databases, and several reformulations into abstract algebra models
have been proposed in the last few decades. Although many of these projects have
focused on the end goal of obtaining rigorous proofs of geometric theorems, I am par-
ticularly interested in exploring and modeling the more creative human-like thought
processes of inductively exploring and manipulating diagrams to discover new insights

about geometry.

My interactive computer system emulates the curious student described above,
and is capable of exploring geometric concepts through inductive investigation. The
system begins with a limited set of factual knowledge regarding basic definitions in
geometry and provides means by which a user interacting with the system can “teach”
it additional geometric concepts and theorems by suggesting investigations the system

should explore to see if it “notices anything interesting.”

To evaluate its recognition of such concepts, the interactive system provides means
for a user to extract its observations and apply such findings to new scenarios. In
addition to the automated reasoning and symbolic artificial intelligence aspects of a
system that can learn and reason inductively about geometry, the project also has
some interesting opportunities to explore educational concepts related to experiential
learning, and several extensions to integrate it with existing construction synthesis

and proof systems.

16

2.1 Manipulating Diagrams “In the Mind’s Eye”

Although the field of mathematics has developed a rigorous structure of deductive
proofs explaining most findings in geometry, much of human intuition and initial
reasoning about geometric ideas come not from applying formal rules, but rather
from visually manipulating diagrams “in the mind’s eye.” Consider the following

example:

2.1.1 An Initial Example

[] [] [] []

D C D C D C

Example 1: Of the three diagrams above, determine which have constraints sufficient
to restrict the quadrilateral ABC' D to always be a rectangle.

An automated deductive solution to this question could attempt to use forward-
chaining of known theorems to determine whether there was a logical path that led
from the given constraints to the desired result that the quadrilateral shown is a
rectangle. However, getting the correct results would require having a rich enough
set of inference rules and a valid logic system for applying them.

A more intuitive visual-reasoning approach usually first explored by humans is
to initially verify that the marked constraints hold for the instance of the diagram
as drawn and then mentally manipulate or “wiggle” the diagram to see if one can
find a nearby counter-example that still satisfies the given constraints, but is not a
rectangle. If the viewer is unable to find a counter-example after several attempts,
he or she may be sufficiently convinced the conclusion is true, and could commit to

exploring a more rigorous deductive proof.

17

B B [

[[

D C D C D C

Solution to Example 1: As the reader likely discovered, the first two diagrams can
be manipulated to yield instances that are not rectangles, while the third is sufficiently
constrained to always represent a rectangle. (This can be proven by adding a diagonal
and using the Pythagorean theorem.)

2.1.2 Diagrams, Figures, and Constraints

This example of manipulation using the “mind’s eye” also introduces some terminol-
ogy helpful in discussing the differences between images as drawn and the spaces of
geometric objects they represent. For clarity, a figure will refer to an actual configura-
tion of points, lines, and circles drawn on a page. Constraint annotations (congruence
or measure) placed on objects form a diagram, which is the abstract representation
of the entire space of figure instances that satisfy the constraints.

An annotated figure presented on a page is typically an instance of its correspond-
ing diagram. However, it is certainly possible to add annotations to a figure that are
not satisfied by that figure, yielding impossible diagrams. In such a case the diagram
represents an empty set of satisfying figures.

In the initial example above, the three quadrilateral figures are drawn as rectan-
gles. It is true that all quadrilateral figures in the space represented by the third
diagram are rectangles. However, the spaces of quadrilaterals represented by the
first two diagrams include instances that are not rectangles, as shown above. At
this time, the system only works with diagrams whose constraints can be satisfied in
some figure. Detecting and explaining impossible diagrams, purely from their set of

constraints would be an interesting extension.

18

2.2 Geometry Investigation

These same “mind’s eye” reasoning techniques can be used to discover and learn new
geometric theorems. Given some “interesting properties” in a particular figure, one
can construct other instances of the diagram to examine if the properties appear to
hold uniformly, or if they were just coincidences in the initial drawing. Properties that
are satisfied repeatedly can be further explored and proved using deductive reasoning.

The examples below provide several demonstrations of such inductive investigations.

2.2.1 Vertical Angles

Investigation 1: Construct a pair of vertical angles. Notice anything interesting?

Often one of the first theorems in a geometry course, the fact that vertical angles
are equal is one of the simplest examples of applying “mind’s eye” visual reasoning.
Given the diagram on the left, one could “wiggle” the two lines in his or her mind
and imagine how the angles respond. In doing so, one would notice that the lower
angle’s measure increases and decreases proportionately with that of the top angle.
This mental simulation, perhaps accompanied by a few drawn and measured figures,
could sufficiently convince the viewer that vertical angles always have equal measure.

Of course, this fact can also be proved deductively by adding up pairs of angles
that sum to 180 degrees, or by using a symmetry argument. However, the inductive
manipulations are more reflective of the initial, intuitive process one typically takes

when first presented with understanding a problem.

19

2.2.2 Elementary Results

A /\\ | A
C B C B C B C B
Investigation 2: Construct a triangle ABC with /B = /C'. Notice anything inter-
esting?

A slightly more involved example includes discovering that if a triangle has two
congruent angles, it is isosceles. As above, this fact has a more rigorous proof that
involves dropping an altitude from point A and using corresponding parts of congru-
ent triangles to demonstrate the equality of AB and AC. However, the inductive
investigation of figures that satisfy the constraints can yield the same conjecture, give
students better intuition for what is happening, and help guide the discovery and
assembly of known rules to be applied in future situations.

In this and further examples, an important question becomes what properties are
considered “interesting” and worth investigating in further instances of the diagram,
as discussed in Section [£.3.3] As suggested by the examples in Investigation 3, this
can include relations between segment and angle lengths, concurrent lines, collinear

points, or parallel and perpendicular lines.

A B

f <

D

Investigation 3: What is interesting about the relationship between AB, C'D, and
E'F in the trapezoid? What is interesting about the diagonals of a rhombus? What
is interesting about /1, /2, and /37

20

2.2.3 Nine Point Circle and Euler Segment

Finally, this technique can be used to explore and discover conjectures well beyond

the scope of what one can visualize in his or her head:

A

C VA, B

Investigation 4a: In triangle ABC, construct the side midpoints A’, B, C’, and
orthocenter O (from altitudes). Then, construct the midpoints of the segments con-
necting the orthocenter with each triangle vertex. Notice anything interesting?

As a more complicated example, consider the extended investigation of the Nine
Point Circle and Euler Segment. As shown in Investigation 4a, the nine points created
(feet of the altitudes, midpoints of sides, and midpoints of segments from orthocenter
to vertices) are all concentric, lying on a circle with center labeled N.

Upon first constructing this figure, this fact seems almost beyond chance. How-
ever, as shown in Investigation 4b (next page), further “interesting properties” con-
tinue to appear as one constructs the centroid and circumcenter: All four of these
special points (O, N, D, and M) are collinear on what is called the Fuler Segment,
and the ratios ON : ND : DM of 3: 1 : 2 hold for any triangle.

21

C B

Investigation 4b: Continue the investigation from 4a by also constructing the cen-
troid D (from median concurrence) and circumcenter M (from perpendicular bisector
concurrence). Notice anything interesting?

2.3 Discussion

As the examples and investigations in this chapter demonstrate, mental manipula-
tion of figures to observe interesting relationships that are invariant across diagram
instances is a useful reasoning skill. Such relationships can be generalized as conjec-
tures or theorems and used in further analysis.

The following chapters present an interactive computer system that emulates this
process. Similar to the process of making, manipulating, and observing pictures “in
the mind’s eye”, the system constructs several examples of figures under investigation
and extracts interesting relationships. A learning module aggregates and applies the

results to new investigations.

22

Chapter 3

Demonstration

My system uses this idea of manipulating diagrams “in the mind’s eye” to explore
and discover geometry theorems. Before describing its internal representations and
implementation, I will present and discuss several sample interactions with the system.
Further details details can be found in subsequent chapters.

The overall goal of the system is to emulate a student learning geometry via an
investigative approach. To accomplish this, the system is divided into four main mod-
ules: an imperative construction system, a perception-based analyzer, a declarative
constraint solver, and a synthesizing learning module. The following examples will
explore interactions with these modules in increasing complexity, building up to a full

demonstration of the system achieving its learning goals in Sections [3.4] and [3.5

3.1 Imperative Figure Construction

At its foundation, the system provides a language and engine for performing geometry
constructions and building figures. Example presents a simple specification of
a figure. Primitives of points, lines, segments, rays, and circles can be combined
into polygons and figures, and complicated constructions such as the perpendicular
bisector of a segment can be abstracted into higher-level procedures. The custom
special form let-geox* emulates the standard let* form in Scheme but also annotates

the resulting objects with the names and dependencies as specified in the construction.

23

Code Example 3.1: Basic Figure Example

1 (define (triangle-with-perp-bisectors)

2 (Llet-geo* ((a (make-point 0 0))

3 (b (make-point 1.5 0))

4 (c (make-point 1 1))

5 (t (polygon-from-points a b c))

6 (pbl (perpendicular-bisector (make-segment a b)))
7 (pb2 (perpendicular-bisector (make-segment b c)))
8 (pb3 (perpendicular-bisector (make-segment c a))))
9 (figure t pbl pb2 pb3)))

Interaction Example 3.2: Rendering the Basic Figure

=> (show-figure (triangle-with-perp-bisectors))

Given such an imperative description, the system can construct and display an
instance of the figure as shown in Example (3.2l The graphics system uses the un-
derlying X window system-based graphics interfaces in MIT Scheme, labels named
points (a, b, c), and repositions the coordinate system to display interesting features.

In the first example, the coordinates of the points were explicitly specified yield-
ing a deterministic instance of the figure. However, to represent entire spaces of dia-
gram instances, the construction abstractions support random choices. Example [3.3]
demonstrates the creation of a figure involving an arbitrary triangle.

The second formulation, (simple-random-triangle-perp-bisectors), is equiv-

alent to the first. It displays a syntax extension provided by let-geox* that shortens

24

the common pattern of accessing and naming the components of an object. In this
case, ((t (a b c)) (random-triangle)) will assign to the variable t the resulting

random triangle, and to the variables a, b, and ¢ the resulting triangle’s vertices.

Interaction Example 3.3: Introducing Randomness

(define (random-triangle-perp-bisectors)
(Llet-geo* ((t (random-triangle))
(a (polygon-point-ref t 0))
(b (polygon-point-ref t 1))
(c (polygon-point-ref t 2))
(pbl (perpendicular-bisector (make-segment a b)))
(pb2 (perpendicular-bisector (make-segment b c)))
(pb3 (perpendicular-bisector (make-segment c a))))
(figure t pbl pb2 pb3)))

Q

(define (simple-random-triangle-perp-bisectors)
(Let-geox (((t (a b c)) (random-triangle))
(pbl (perpendicular-bisector (make-segment a b)))
(pb2 (perpendicular-bisector (make-segment b c)))
(pb3 (perpendicular-bisector (make-segment c a))))
(figure t pbl pb2 pb3)))

As examples of more involved constructions, Examples [3.4] and demonstrate
working with other objects (angles, rays, circles) and construction procedures. No-
tice that, in the angle bisector example, the pattern matching syntax extracts the
components of an angle (ray, vertex, ray) and segment (endpoints), and that in the
Inscribed /Circumscribed example, some intermediary elements are omitted from the

final figure list and will not be displayed or analyzed.

25

Interaction Example 3.4: Angle Bisector Distance

(define (angle-bisector-distance)
(let-geox (((a (r-1 v r-2)) (random-angle))
(ab (angle-bisector a))
(p (random-point-on-ray ab))
((s-1 (p b)) (perpendicular-to r-1 p))
((s-2 (p c)) (perpendicular-to r-2 p)))
(figure a r-1 r-2 ab p s-1 s-2)))

=> (show-figure (angle-bisector-distance))

% scheme-graphics X/ scheme-graphics
Y

Interaction Example 3.5: Inscribed and Circumscribed Circles

(define (inscribed-circumscribed)
(Let-geox (((t (a b c)) (random-triangle))
(((a-1 a-2 a-3)) (polygon-angles t))
(abl (angle-bisector a-1))
(ab2 (angle-bisector a-2))
((radius-segment (center-point radius-point))
(perpendicular-to (make-segment a b)
(intersect-linear-elements abl ab2)))
(ins-circle (circle-from-points center-point radius-point))
(pbl (perpendicular-bisector (make-segment a b)))
(pb2 (perpendicular-bisector (make-segment b c)))
(pb-center (intersect-lines pbl pb2))
(circum-circle (circle-from-points pb-center a)))
(figure t a-1 a-2 a-3 pb-center radius-segment
ins-circle circum-circle)))

26

=> (show-figure (inscribed-circumscribed))

The sample images shown alongside these constructions represent images from
separate executions of the figure. An additional method for viewing and displaying
involves “running an animation” of these constructions in which several instances of
the figure are created and displayed, incrementally wiggling each random choice. In
generating and wiggling the random values, some effort is taken to avoid degenerate
cases or instances where points are too close to one another, as such cases can lead

to undesirable floating-point errors in the numerical analysis.

3.2 Perception and Observation

Given the imperative construction module that enables the specification and con-
struction of geometry figures, the second module focuses on perception and extracting
interesting observations from these figures.

Example [3.6] demonstrates the interface for obtaining observations from a figure.
An observation is a structure that associates a relationship (such as concurrent, equal
length, or parallel) with objects in the figure that satisfy the relationship. Relation-
ships are represented as predicates over typed n-tuples and are checked against all
such n-tuples found in the figure under analysis. For example, the perpendicular

relationship is checked against all pairs of linear elements in the figure.

27

The observation objects returned are compound structures that maintain prop-
erties of the underlying relationships and references to the original objects under
consideration. Dependency information about how these original objects were con-
struction will be later used to generalize these observations into conjectures. For now,
my custom printer print-observations can use the name information of the objects

to display the observations in a more human-readable format.

Interaction Example 3.6: Simple Analysis

=> (all-observations (triangle-with-perp-bisectors))

(#[observation 77] #[observation 78] #[observation 79] #[observation 80])
=> (print-observations (all-observations (triangle-with-perp-bisectors)))
((concurrent pbl pb2 pb3)

(perpendicular pbl (segment a b))

(perpendicular pb2 (segment b c))
(perpendicular pb3 (segment c a)))

The fact that the perpendicular bisector of a segment is perpendicular to that
segment is not very interesting. Thus, as shown in Example|3.7} the analysis module
also provides an interface for reporting only the interesting observations. Currently,
information about the interesting relationships formed by a construction operation
such as perpendicular bisector is specified alongside instructions for how to perform
the operation, but a further extension of the learning module could try to infer in-

ductively which obvious properties result from various known operations.

Interaction Example 3.7: Interesting Analysis

=> (print-observations (interesting-observations
(triangle-with-perp-bisectors)))

((concurrent pbl pb2 pb3))

For an example with more relationships, Example [3.8 demonstrates the observa-
tions and relationships found in a figure with a random parallelogram. These analysis

results will be used again later when I demonstrate the system learning definitions for

28

polygons and simplifying such definitions to minimal sufficient constraint sets. Note
that although the segments, angles, and points were not explicitly listed in the figure,
they are extracted from the polygon that is listed. Extensions to the observation
model can extract additional points and segments not explicitly listed in the original

figure.

Interaction Example 3.8: Parallelogram Analysis

(define (parallelogram-figure)
(Let-geox (((p (a b c d)) (random-parallelogram)))
(figure p)))

=> (pprint (all-observations (parallelogram-figure)))

((equal-length (segment a b) (segment c d))
(equal-length (segment b c) (segment d a))
(equal-angle (angle a) (angle c))
(equal-angle (angle b) (angle d))
(supplementary (angle a) (angle b))
(supplementary (angle a) (angle d))
(supplementary (angle b) (angle c))
(supplementary (angle c) (angle d))
(parallel (segment a b) (segment c d))
(parallel (segment b c) (segment d a)))

all-observations will report all reasonable observations found, but as will be
shown in Section [3.4], as the system learns new terms and concepts, a request for
interesting-observations will use such learn concepts to eliminate redundant ob-
servations and filter out previously-discovered facts. In this case, once a definition for
parallelogram is learned, interesting-observations would simply report that p is

a parallelogram and omit observations implied by that fact.

3.3 Mechanism-based Declarative Constraint Solver

The first two modules focus on performing imperative constructions to build dia-
grams and analyzing them to obtain interesting symbolic observations and relation-
ships. Alone, these modules could assist a mathematician in building, analyzing, and

exploring geometry concepts.

29

However, an important aspect of automating learning theorems and definitions
involves reversing this process and obtaining instances of diagrams by solving provided
symbolic constraints and relationships. When we are told to “Imagine a triangle ABC
in which AB = BC”, we visualize in our mind’s eye an instance of such a triangle before
continuing with the instructions.

Thus, the third module is a declarative constraint solver. To model the physical
concept of building and wiggling components until constraints are satisfied, the sys-
tem is formulated around solving mechanisms built from bars and joints that must
satisfy certain constraints. Such constraint solving is implemented by extending the
Propagator Model created by Alexey Radul and Gerald Jay Sussman [22] to handle
partial information and constraints about geometry positions. Chapter [7] discusses

further implementation details.

3.3.1 Bars and Joints

Example [3.9] demonstrates the specification of a very simple mechanism. Unlike
the sequential, Scheme variable based let-geox* specification of constructions in the
imperative construction system, to specify mechanisms, m:mechanism is applied to
a list of bar, joint, and constraint declarations containing symbolic identifiers. This
example mechanism is composed of two bars with one joint between them, along with

a constraint that the joint is a right angle.

Code Example 3.9: Very Simple Mechanism

1 (define (simple-mechanism)

z (m:mechanism

3 (m:make-named-bar 'a 'b)

4 (m:make-named-bar 'b 'c)

5 (m:make-named-joint 'a 'b 'c)

6 (m:c-right-angle (m:joint 'b))))

Assembling a mechanism involves first adjoining the bars and joints together so
that the named points are identified with one another. Initially, each bar has un-

known length and direction, each joint has an unknown angle, and each endpoint has

30

unknown position. Constraints for the bar and joint properties are then introduced
alongside any explicitly specified constraints.

Solving a mechanism involves repeatedly selecting position, lengths, angles, and
directions that are not yet determined and selecting values within the domain of that
element’s current partial information content. As values are specified, the wiring of
the propagator model propagates partial information updates to neighboring cells.

The printed statements in Example demonstrate that solving the simple
mechanism above involves specifying the location of point a, then specifying the length
of bar a-b and the direction from a that the bar extends. After those specifications,
the joint angle is constrained to be a right angle and the location of point b is known
by propagating information about point a and bar a-b’s position and length. Thus,
point ¢ is known to be on a ray extending outwards from b and the only remaining
property needed to fully specify the figure is the length of bar b-c. The command
m: run-mechanism builds and solves the mechanism, then converts the result into an

analytic figure and displays it.

Interaction Example 3.10: Solving the Very Simple Mechanism

=> (m:run-mechanism simple-mechanism)

(initializing-point m:bar:a:b-pl (0 0))

(specifying-bar-length m:bar:a:b .5644024854677596)
(initializing-direction m:bar:a:b-dir (direction 4.999857164003272))
(specifying-bar-length m:bar:b:c 1.1507815910257295)

31

3.3.2 Geometry Examples

These bar and joint mechanisms can be used to represent the topologies of several
geometry figures. Bars correspond to segments and joints correspond to angles. Ex-
ample demonstrates the set of linkages necessary to specify the topology of a
triangle. The second formulation, (simpler-arbitrary-triangle) is equivalent to
the first since the utility procedure m:establish-polygon-topology expands to cre-
ate the set of n bars and n joint specifications needed to represent a closed polygon

for the given n vertex names.

Code Example 3.11: Describing an Arbitrary Triangle

1 (define (arbitrary-triangle)

2 (m:mechanism

3 (m:make-named-bar 'a 'b)

4 (m:make-named-bar 'b 'c)

5 (m:make-named-bar 'c 'a)

6 (m:make-named-joint 'a 'b 'c)

7 (m:make-named-joint 'b 'c 'a)

8 (m:make-named-joint 'c 'a 'b)))

9

10 (define (simpler-arbitrary-triangle)
11 (m:mechanism

12 (m:establish-polygon-topology 'a 'b 'c)))

As seen in Example [3.12] (next page), once joints b and ¢ have had their angles
specified, propagation fully determines the angle of joint a. The only parameter
remaining is the length of one of the bars. The two initializing- steps don’t affect

the resulting shape but determine its position and orientation on the canvas.

In this case, joint angles are specified first. The ordering of what is specified is
guided by a heuristic that helps all of the examples shown in this chapter converge to
solutions. The heuristic generally prefers specifying the most constrained values first.
However, in some scenarios, specifying values in the wrong order can yield premature
contradictions. A planned extension will attempt to recover from such situations

more gracefully by trying other orderings for specifying components.

32

Interaction Example 3.12: Solving the Triangle

=> (m:run-mechanism (arbitrary-triangle))

(specifying-joint-angle m:joint:c:b:a .41203408293499)
(initializing-direction m:joint:c:b:a-dir-1 (direction 3.888926311421853))
(specifying-joint-angle m:joint:a:c:b 1.8745808264593105)
(initializing-point m:bar:c:a-pl (0 0))

(specifying-bar-length m:bar:c:a .4027149730292784)

To include some user-specified constraints, Example [3.13|shows the steps involved
in solving an isosceles triangle from the fact that its base angles are congruent. Notice
that the only two values that must be specified are one joint angle and one bar length.

The rest is handled by propagation.

Propagation involves representing the partial information of where points and
angles can be. A specified angle constrains a point to a ray and a specified length
constrains a point to be on an arc of a circle. As information about a point is
merged from several sources, intersecting these rays and circles yields unique solutions
for where the points must exist. Then, as the locations of points are determined,
the bidirectional propagation continues to update the corresponding bar lengths and
joint angles Although not as dynamic, these representations correspond to physically

wiggling and extending the bars until they reach one another.

33

Interaction Example 3.13: Constraint Solving for Isosceles Triangle

(define (isosceles-triangle-by-angles)
(m:mechanism
(m:establish-polygon-topology 'a 'b 'c)
(m:c-angle-equal (m:joint 'a)
(m:joint 'b))))

=> (m:run-mechanism isosceles-triangle-by-angles)

(specifying-joint-angle m:joint:c:b:a .6219719886662947)
(initializing-direction m:joint:c:b:a-dir-1 (direction .9330664240883363))
(initializing-point m:bar:b:c-pl (0 0))

(specifying-bar-length m:bar:b:c .3557699722973674)

X\ scheme-graphics \| scheme-graphics

Example continues the analysis of properties of the parallelogram. In this
case, the constraint solver is able to build figures given the fact that its opposite
angles are equal. The fact that these all happen to be parallelograms will be used by

the learning module to produce a simpler definition for a parallelogram.

Interaction Example 3.14: Constraint Solving for Parallelogram

(define (parallelogram-by-angles)
(m:mechanism
(m:establish-polygon-topology 'a 'b 'c 'd)
(m:c-angle-equal (m:joint 'a)
(m:joint 'c))
(m:c-angle-equal (m:joint 'b)
(m:joint 'd))))

34

=> (m:run-mechanism parallelogram-by-angles)

(specifying-joint-angle m:joint:c:b:a 1.6835699856637936)
(initializing-angle m:joint:c:b:a-dir-1 (direction 1.3978162819212452))
(initializing-point m:bar:a:b-pl (0 0))

(specifying-bar-length m:bar:a:b .8152792207652096)
(specifying-bar-length m:bar:b:c .42887899934327023)

To demonstrate the constraint solving working on a more complicated example,
Example |3.15| represents the constraints from the middle “Is this a rectangle?” ques-
tion from Chapter [2| (page . This question asks whether a quadrilateral in which
a pair of opposite sides is congruent, a pair of opposite angles is congruent, and one
of the other angles is a right angle, is always a rectangle. Try working this constraint

problem by hand or in your mind’s eye.

Code Example 3.15: Rectangle Constraints Example

1 (define (is-this-a-rectangle-2)

2 (m:mechanism

3 (m:establish-polygon-topology 'a 'b 'c 'd)

4 (m:c-length-equal (m:bar 'a 'd) (m:bar 'b 'c))
5 (m:c-right-angle (m:joint 'd))

6 (m:c-angle-equal (m:joint 'a) (m:joint 'c))))

As seen in Example [3.16] solutions are not all rectangles. Chapter [7] includes
a more detailed walkthrough of how this example is solved. Interestingly, once the
initial scale is determined by the first bar length, the remaining shape only has one

degree of freedom.

35

Interaction Example 3.16: Solved Constraints

=> (m:run-mechanism (is-this-a-rectangle-2))

(specifying-bar-length m:bar:d:a .6742252545577186)
(initializing-direction m:bar:d:a-dir (direction 4.382829365403101))
(initializing-point m:bar:d:a-pl (0 0))

(specifying-joint-angle m:joint:c:b:a 2.65583669872538)

\| scheme-graphics

As a final mechanism example, in addition to solving constraints of the angles
and sides for a single polygon, the mechanism system can support the creation of
arbitrary topologies of bars and joints. In the following examples, by using several
calls to the m:establish-polygon-topology, I build the topology of a quadrilateral
whose diagonals intersect at a point e and explore the effects of various constraints
on these diagonal segments. m:quadrilateral-with-intersecting-diagonals will

simplify specification of this topology in the following examples.

Code Example 3.17: More Involved Topologies for Constraint Solving

1 (define (m:quadrilateral-with-intersecting-diagonals a b c d e)
2 (list (m:establish-polygon-topology a b e)
3 (m:establish-polygon-topology b c e)
4 (m:establish-polygon-topology c d e)
5 (m:establish-polygon-topology d a e)
6 (m:c-line-order c e a)
7 (m:c-line-order b e d)))

36

Interaction Example 3.18: Kites from Diagonal Properties

(define (kite-from-diagonals)
(m:mechanism
(m:quadrilateral-with-intersecting-diagonals 'a 'b 'c 'd 'e)
(m:c-right-angle (m:joint 'b 'e 'c)) ;; Right Angle in Center
(m:c-length-equal (m:bar 'c 'e) (m:bar 'a 'e))))

=> (m:run-mechanism kite-from-diagonals)

Interaction Example 3.19: Isosceles Trapezoids from Diagonals

(define (isosceles-trapezoid-from-diagonals)
(m:mechanism
(m:quadrilateral-with-intersecting-diagonals 'a 'b 'c 'd 'e)
(m:c-length-equal (m:bar 'a 'e) (m:bar 'b 'e))
(m:c-length-equal (m:bar 'c 'e) (m:bar 'd 'e))))

=> (m:run-mechanism isosceles-trapezoid-from-diagonals)

Wy

37

Interaction Example 3.20: Parallelograms from Diagonal Properties

(define (parallelogram-from-diagonals)
(m:mechanism
(m:quadrilateral-with-intersecting-diagonals 'a 'b 'c 'd 'e)
(m:c-length-equal (m:bar 'a 'e) (m:bar 'c 'e))
(m:c-length-equal (m:bar 'b 'e) (m:bar 'd 'e))))

. J

As seen in Examples through [3.20, simple specifications on the diagonals of a
quadrilateral can fully constrain such quadrilaterals to particular classes. Such results
are interesting to be able to explore via this module alone, but also becomes a powerful

tool as the learning module combines imperative and declarative information.

3.4 Learning Module

The previous sections described modules for performing constructions, observing in-
teresting symbolic relationships, and rebuilding figures that satisfy such relationships.
As the final module, the learning module interfaces with these modules to achieve the
end goal of emulating a student learning geometry via an investigative approach.
Although we have seen examples of various higher-level terms and objects, the
learning module begins with very limited knowledge about geometry. The lattice in
Example [3.21] represents the built-in objects the system understands. Although it has
some knowledge of points, segments, lines, rays, angles, circles and polygons, upon
startup, it knows nothing about higher-level terms such as trapezoids, parallelograms,

or isosceles triangles.

38

Interaction Example 3.21: Initial Lattice at Startup

=> (what-is 'trapezoid)
unknown

=> (what-is 'line)
primitive-definition

=> (what-is 'triangle)
(triangle (polygon)
((n-sides-3 identity)))

=> (show-definition-lattice)

[BON) =/ lattice.png

A user representing a “teacher” can interact with the system by creating investi-
gations using these primitives. These investigations are typically steps to construct a
diagram instance, but can include other specifications. The system will construct and
examine the figure resulting from such investigations, and sometimes perform related
investigations of its own. Interesting relationships invariant across the instances are
generalized into new concepts and theorems. To evaluate the system’s learning, the
system provides means for a user to query its knowledge or apply it to new situations.

One example of this process involves the “teacher” user crafting a procedure
that creates instances of a new class of object. For instance, a user could define
random-trapezoid to be a procedure that, each time it is called, returns a randomly
constructed trapezoid. Example shows the full range of trapezoids created via

the random-trapezoid procedure.

39

Interaction Example 3.22: Random Figures

=> (show-element (random-trapezoid))

The learning module can interface with the perception module to obtain observa-
tions about given elements. In Example [3.23] the results show the full dependencies
of elements under consideration instead of their names. These dependency structures
are later used to convert the observations about this specific trapezoid into general

conjectures that can be tested against other polygons.

Interaction Example 3.23: Analyzing an Element

=> (pprint (analyze-element (random-trapezoid)))

((supplementary (polygon-angle 0 <premise>) (polygon-angle 3 <premise>))
(supplementary (polygon-angle 1 <premise>) (polygon-angle 2 <premise>))
(parallel (polygon-segment 0 1 <premise>) (polygon-segment 2 3 <premise>)))

With these analysis abilities, a user can teach the system new object classes by
providing a term (’'trapezoid) and a generator procedure that produces instances of

that element as seen in Example |3.24

Interaction Example 3.24: Learning New Terms

=> (learn-term 'parallelogram random-parallelogram)
done

=> (learn-term 'isosceles-triangle random-isosceles-triangle)
done

40

Although the internal implementations of these user-provided generator proce-
dures are opaque to the learning module, it is able to examine interesting relation-
ships invariant across instances of such objects and discover properties to include in

the new definition.

As shown in example [3.25] after being instructed to learn what a parallelogram
is from the random-parallelogram procedure, when queried for a definition, one is
given the term, the base classifications of the parallelogram, and all properties known

to be true for parallelograms.

Interaction Example 3.25: Asking about Terms

=> (what-is 'parallelogram)
(parallelogram
(quadrilateral)
((equal-length (polygon-segment 0 1 <premise>)
(polygon-segment 2 3 <premise>))
(equal-length (polygon-segment 1 2 <premise>)
(polygon-segment 3 0 <premise>))
(equal-angle (polygon-angle 0 <premise>)
(polygon-angle 2 <premise>))
(equal-angle (polygon-angle 1 <premise>)
(polygon-angle 3 <premise>))

(supplementary (polygon-angle 0 <premise>)
(polygon-angle 1 <premise>))
(supplementary (polygon-angle 0 <premise>)
(polygon-angle 3 <premise>))
(supplementary (polygon-angle 1 <premise>)
(polygon-angle 2 <premise>))
(supplementary (polygon-angle 2 <premise>)
(polygon-angle 3 <premise>))

(parallel (polygon-segment 0 1 <premise>)
(polygon-segment 2 3 <premise>))

(parallel (polygon-segment 1 2 <premise>)
(polygon-segment 3 0 <premise>))))

To use such learned knowledge, we can use is-a? to test whether other elements
also satisfy the current definition of a term. As shown in example[3.20] results are cor-
rectly returned for any polygon that satisfies the observed properties. In cases where
the properties are not satisfied, the system reports the failed conjectures or classi-
fications (e.g. an equilateral triangle is not a parallelogram: It failed the necessary

classification that it must be a quadrilateral because it didn’t have 4 sides).

41

Interaction Example 3.26: Testing Definitions

=> (is-a? 'parallelogram (random-parallelogram))
#t

=> (is-a? 'parallelogram (random-rectangle))
#t

=> (is-a? 'parallelogram (polygon-from-points
(make-point 0 0)
(make-point 1 0)
(make-point 2 1)
(make-point 1 1)))
#t

=> (is-a? 'parallelogram (random-trapezoid))
(failed-conjecture
(equal-length (polygon-segment 0 1 <premise>)
(polygon-segment 2 3 <premise>)))

=> (is-a? 'parallelogram (random-equilateral-triangle))
(failed-conjecture (n-sides-4 <premise>))
(failed-classification quadrilateral)

=> (is-a? 'parallelogram (random-segment))
(failed-classification polygon)
(failed-classification quadrilateral)

Learning individual definitions is nice, but cool properties arise when definitions
build upon one another. When a new term is learned, the system checks other related
terms for overlapping properties to determine where the new definition fits in the
current lattice of terms. In Example [3.27) we see that, after learning definitions of
kites and rhombuses, the reported definition of a rhombus is that it a parallelogram
and kite that satisfies two additional rhombus-specific properties about equal length
sides. Later, after learning about rectangles, the system shows us that the definition
of a square amazingly has no additional properties beyond that of being both a
rhombus and a rectangle. The system is able to make these same deductions and

update definitions irrespective of the order in which it is taught the terms.

42

Interaction Example 3.27: Building on Definitions

=> (learn-term 'rhombus random-rhombus)
=> (learn-term 'kite random-kite)
=> (what-is 'rhombus)
(rhombus
(parallelogram kite)
((equal-length (polygon-segment 0 1 <premise>)
(polygon-segment 3 0 <premise>))
(equal-length (polygon-segment 1 2 <premise>)
(polygon-segment 2 3 <premise>))))

=> (learn-term 'rectangle random-rectangle)
=> (learn-term 'square random-square)

=> (what-is 'square)

(square (rhombus rectangle) ())

As it learns definitions, the system constructs and maintains a lattice of known
concepts in which child nodes are more specific classes of their parents. An example
of the polygon definition sublattice the system generated after learning several more

terms is shown in Example 3.28] We see that the accurate relations are expressed:

Interaction Example 3.28: Expanded Definition Lattice

=> (show-definition-sublattice 'polygon)

43

Although most terms can be distinguished from one another using the basic angle
and side properties, in some cases the initial analysis of the polygon is insufficient. As
seen in Example [3.29] when initially learning the orthodiagonal term, the system was
not able to observe any differentiating properties between arbitrary quadrilaterals
and orthodiagonal quadrilaterals. Orthodiagonal quadrilaterals are quadrilaterals

with the property that their diagonals are perpendicular to one another.

Interaction Example 3.29: Learning Orthodiagonal Quadrilaterals

=> (learn-term 'orthodiagonal random-orthodiagonal-quadrilateral)

"Warning: No new known properties for term: orthodiagonal. Appears same as
quadrilateral."

done

To handle such situations and to enable the learning module to capture more
general theorems about its objects, the system allows users to specify investigations
based on a premise. These investigations represent the English instructions of “Given
<premise objects>, construct <secondary constructions>. Notice anything in-
teresting?”. They also use the imperative construction let-geo* macros, but have
a “dependency injected” premise argument to enable the learning module to con-
trol what is being investigated. By conditioning such constructions and analysis on
the premise objects, the learning module is able to filter out observations based on
previously-learned theorems and store new observations as theorems for future use.

The investigation in Example [3.30] takes a quadrilateral as its base premise and

constructs a figure including the quadrilateral’s diagonals.

Code Example 3.30: Diagonals Investigation

1 (define diagonal-investigation
(make-investigation
'quadrilateral
(Lambda (premise)
(let-geox*
((((a b cd)) premise)
(diag-1 (make-segment a c))
(diag-2 (make-segment b d)))
(figure premise diag-1 diag-2)))))

© 0 N o oA W N

44

Investigations can be run either for a particular premise term or for an entire sub-
lattice of descendants. Example shows the results of the diagonals investigation

being run for orthodiagonal and equidiagonal terms.

Interaction Example 3.31: Performing Investigations

=> (run-investigation-for-term diagonal-investigation 'equidiagonal)
((equal-length diag-1 diag-2))

=> (run-investigation-for-term diagonal-investigation 'orthodiagonal)
((perpendicular diag-1 diag-2))

. J

In addition to displaying the interesting new results the investigation yields, run-
ning an investigation stores discovered properties in the definition structures of the
premises being checked. In the orthodiagonal and equidiagonal cases, performing this
investigation correctly identifies and adds properties of the diagonals that can differ-
entiate the shapes from arbitrary quadrilaterals and moves the terms to the correct
locations in the lattice.

Running investigations on entire subtrees of related terms can often provide in-
teresting information about where in the lattice particular properties change. Exam-
ple[3.32| shows selected output from running a consecutive midpoint investigation that
builds a inner quadrilateral from the midpoints of the sides of a given premise quadri-
lateral. The resulting interesting observations are simplified by expressing results in

terms of known shapes.

45

Interaction Example 3.32: Consecutive Midpoint Investigation

[Selected Output]

=> (run-investigation consecutive-midpoints-investigation)
(investigating quadrilateral)
((parallelogram inner-polygon))

(investigating equidiagonal) ;; Left Image
((rhombus inner-polygon))

(investigating orthodiagonal) ;; Right Image
((rectangle inner-polygon))

(investigating square)
((square inner-polygon))

Interestingly, these results show that, given any outer quadrilateral premise, the
inner quadrilateral is a parallelogram, that the inner polygon for any equidiagonal
quadrilateral is a rhombus, and the inner polygon for any orthodiagonal quadrilateral
is a rectangle. Then, as reinforced by looking back to the full lattice in Example [3.28]
it reports that the inner quadrilateral of a square (a descendent of both equidiagonal

and orthodiagonal) is also a square (a descendent of both rhombus and rectangle).

Thus, user-specified investigations can represent broader explorations for the sys-
tem to perform. Although not yet implemented, a similar process using a multi-
element premise structure could explore relationships yielded by a applying a con-
struction procedure to its arguments. In future executions, these observations could

be marked as uninteresting and excluded from reporting.

46

3.5 Final Example: Simplifying Definitions

As properties accumulate from analysis and investigation, the need to satisfy all
known properties for a shape over-constrains the resulting definitions. For example,
satisfying some small subset of the known properties of a parallelogram is sufficient
to determine whether an unknown object is a parallelogram without checking every
property known about parallelograms.

Accordingly, the final, fun example that integrates all of these systems is the
process of learning simpler definitions for geometry terms. In these examples, the
procedure get-simple-definitions takes a known term, looks up the known prop-
erties for that term, and tests all reasonable subsets of those properties as constraints
using the constraint solver. For each subset of properties, if the constraint solver was
able to create a diagram satisfying exactly those properties, the resulting diagram is
checked using with the is-a? procedure to see if all the other known properties of
the original term still hold.

If so, the subset of properties is reported as a sufficient definition of the term, and
if the resulting diagram fails some properties, the subset is reported as an insufficient
set of constraints. These resulting sufficient definitions can be treated as equivalent,
simpler definitions and used as the premises in new theorems about the objects.

In the Example the initial necessary properties of an isosceles triangle are
that it both has congruent legs and congruent base angles. After the definition sim-
plification via constraint solving, we correctly discover that either of these constraints
alone is sufficient: either a single pair of congruent base angles or a pair of congruent

sides.

Interaction Example 3.33: Learning Simple Definitions

=> (what-is 'isosceles-triangle)
(isosceles-triangle
(triangle)
((equal-length (polygon-segment 0 1 <premise>)
(polygon-segment 2 0 <premise>))
(equal-angle (polygon-angle 1 <premise>) (polygon-angle 2 <premise>))))

47

=> (get-simple-definitions 'isosceles-triangle)

((sufficient
(((equal-angle (*anglex b) (*xanglex c)))
((equal-length (*xsegmentx a b) (xsegmentx c a)))))
(insufficient (()))
(unknown ()))

In the parallelogram Example [3.34], some subsets are marked as unknown because
the constraint solver wasn’t able to solve a diagram given those constraints. However,
the results still show the interesting sufficient definitions of either pairs of opposite
angles being equal as explored in Example or pairs of opposite sides being equal,

and correctly mark several sets of insufficient definitions as not being specific enough.

Interaction Example 3.34: Learning Simple Parallelogram Definitions

=> (get-simple-definitions 'parallelogram)

((sufficient
(((equal-length (xsegmentx a b) (xsegmentx c d))
(equal-length (*xsegmentx b c) (xsegmentx d a)))
((equal-angle (*anglex a) (*xanglex c))
(equal-angle (*xanglex b) (*xanglex d)))))
(insufficient
(((equal-length (xsegmentx a b) (xsegmentx c d))
(equal-angle (*xanglex b) (xanglex d)))))
(unknown
(((equal-angle (*xanglex a) (*xanglex c)))
((equal-length (*segment*x b c) (*xsegmentx d a))))))

This simple definitions implementation is still a work in progress and has room
for improvement. In the future I plan to use the knowledge about what properties
are violated in an insufficient figure to add to the next constraint set to check, and
improve how the solver handles difficult cases to construct. Further extensions could
also involve generalizing get-simple-definitions to support other topologies for
the initial properties such as the quadrilaterals being fully specified by their diagonal
properties as in Example through [3.20]

Given this context of use cases for the modules, the remaining chapters will discuss

additional representation and implementation details.

48

Chapter 4

System Overview

This chapter provides an overview of the system. It presents several concepts relating
to input and output representations, introduces the four main modules, and discusses

how they work together in the discovery of new definitions and theorems.

4.1 Goals

The end goal of the system is for it to notice and learn interesting concepts in Ge-
ometry from inductive explorations. Because these ideas are derived from inductive
observation, I will typically refer to them as conjectures. Once the conjectures are
reported, they can easily be integrated into existing automated proof systems if a
deductive proof is desired. The conjectures explored can be grouped into three areas:

properties, definitions, and theorems:

Properties Properties include all the facts derived from a single premise, such as
“Opposite angles in a rhombus are equal” or “The midpoint of a segment divides

it into two equal-length segments”.

Definitions Definitions classify and differentiate an object from other objects. For
instance “What is a rhombus?” yields the definition that it is a quadrilateral

(classification) with four equal sides (differentiation). As seen in the demonstra-

49

tion, the system will attempt to simplify definition properties to more minimal
sets, provide alternative formations, and use pre-existing definitions when pos-

sible: “A square is a thombus and a rectangle”

Theorems Theorems involve relations among additional elements constructed from
an initial premise. For instance, theorems about triangles may involve the
construction of angle bisectors, incenters or circumcenters, or the interaction

among several polygons in the same diagram.

Given a repository of these conjectures about geometry, the system is able to apply
its findings in future investigations by examining elements to display its knowledge
of definitions, and focusing future investigations by omitting results implied by prior

theorems.

4.2 Diagram Representations

The system and modules are built around three core diagram representations. As
discussed in the motivation chapter, we use the term “diagram” to represent the

abstract geometric object represented by these means:

Construction Steps The main initial representation for most diagrams is a series
of construction steps. These generally comprise the input investigation from an
external user trying to teach the system a concept. In some investigations, the
actual construction steps are opaque to the system (as in a teacher that provides
a process to “magically” produce rhombuses), but often, the construction steps
use processes known by the system so that the resulting figures can include

dependency information about how the figure elements are built.

Analytic Figure The second representation is an analytic figure for a particular
instance of a diagram. This representation includes coordinates for all points in
the diagram and can be displayed. This representation is used by the perception

module to observe interesting relationships.

50

Symbolic Relationships Finally, the third representation of a diagram is as a col-
lection of symbolic relationships or constraints on elements of the diagram.
These are initially formed from the results of the perception module, but may
also be introduced as known properties for certain premises and construction
steps. These symbolic relationships can be further tested and simplified to

discover which sets of constraints subsume one another.

While construction steps are primarily used as input and to generate examples, as
the system investigates a figure, the analytic figure and symbolic relationship models
get increasingly intertwined. The “mind’s eye” perception aspects of observing rela-
tionships in the analytic figure lead to new symbolic relationships and a propagator-
based approach of finding solutions to the symbolic constraints yields new analytic
figures.

As relationships are verified and simplified, results are output and stored in the

student’s repository of geometry knowledge.

4.3 Steps in a Typical Interaction

The system overview figure on the next page depicts the typical process of interacting
with the system and shows relationships between the four system modules.

These four modules are an imperative geometry construction interpreter used to
build diagrams, a declarative geometry constraint solver to solve and test specifica-
tions, an observation-based perception module to notice interesting properties, and a
learning module to analyze information from the other modules and integrate it into

new definition and theorem discoveries.

51

Investigations

specified by “Teacher”

Construction Steps
execute
+
build (
Analytic Figure
manipulate solve
® "™ " ®
observe construct

Symbolic Relationships

®

System Overview: Given construction steps for an investigation an external teacher
wishes the student perform, the system first (1) uses its imperative construction mod-
ule to execute these construction steps and build an analytic instance of the diagram.
Then, (2) it will manipulate the diagram by “wiggling” random choices and use the
perception module to observe interesting relationships. Given these relationships, it
will (3) use the declarative propagator-based constraint solver to reconstruct a figure
satisfying a subset of the constraints to determine which are essential in the origi-
nal diagram. Finally (4), a learning module will monitor the overall process, omit
already-known results, and assemble a repository of known definitions, properties,
and theorems.

Definitions, Properties,

————_
e

Theorems

4.3.1 Interpreting Construction Instructions

The first step in an exploration is interpreting an input of the diagram to be investi-
gated. The imperative construction module takes as input explicit construction steps
that results in an instance of the desired diagram. These instructions can still include
arbitrary selections (let P be some point on the line, or let A be some acute angle),
but otherwise are restricted to basic construction operations that could be performed
using a compass and straight edge.

To simplify the input of more complicated diagrams, some of these steps can be
abstracted into a library of known construction procedures. For example, although
the underlying figures are limited to very simple objects of points, lines, and angles,
the steps of constructing a triangle (three points and three segments) or bisecting a

line or angle are encapsulated into single steps.

52

4.3.2 Creating Figures

Given a language for expressing the constructions, the second phase of the system
is to perform such constructions to yield an instance of the diagram. This process
mimics “imagining” images and results in an analytic representation of the figure with
coordinates for each point. Arbitrary choices in the construction (“Let ¢ be some
point on the line.”) are chosen via an random process, but with an attempt to keep

the figures within a reasonable scale to ease human inspection.

4.3.3 Noticing Interesting Properties

Having constructed a particular figure, the system examines it to find interesting
properties. These properties involve facts that appear to be “beyond coincidence”.
This generally involves relationships between measured values, but can also include
“unexpected” configurations of points, lines, and circles. As the system discovers in-
teresting properties, it will reconstruct the diagram using different choices and observe

if the observed properties hold true across many instances of a diagram.

4.3.4 Reporting and Simplifying Findings

Finally, once the system has discovered some interesting properties that appear re-
peatedly in instances of a given diagram, it reports its results to the user via the
learning module. Although this initially includes a simple list of all simple relation-
ships, effort is taken to avoid repeating observations that obvious in the construction.
For example, if a perpendicular bisector of segment AB is requested, the fact that it
bisects that segment in every instance is not informative. To do so, the construction
process interacts with properties known in the learning module to maintain a list of
facts that can be reasoned from construction assumptions so that these can be omit-
ted in the final reporting. Finally, given several properties that are true of a figure,
the learning module uses the constraint solver in an attempt to reconstruct a figure
satisfying a subset of the constraints to determine which are essential in the original

diagram.

53

o4

Chapter 5

Imperative Construction System

5.1 Overview

The first module is an imperative system for performing geometry constructions. This
is the typical input method for generating coordinate-backed, analytic instances of

diagrams.

The construction system is comprised of a large, versatile library of useful utility
and construction procedures for creating figures. To appropriately focus the discussion
of this module, I will concentrate on the implementation of structures and procedures
necessary for the sample construction seen in Example 5.1} Full code and more usage

examples are provided in Appendix [A]

In doing so, I will first describe the basic structures and essential utility pro-
cedures before presenting some higher-level construction procedures, polygons, and
figures. Then, I will explore the use of randomness in the system and examine how
construction language macros handle names, dependencies, and multiple assignment
of components. Finally, I will briefly discuss the interface and implementation for

animating and displaying figures.

95

Interaction Example 5.1: Sample Construction Figure for Chapter

(define (angle-bisector-distance)
(Let-geox (((a (r-1 v r-2)) (random-angle))
(ab (angle-bisector a))
(p (random-point-on-ray ab))
((s-1 (p b)) (perpendicular-to r-1 p))
((s-2 (p c)) (perpendicular-to r-2 p)))
(figure a r-1 r-2 ab p s-1 s-2)))

=> (show-figure (angle-bisector-distance))

The sample construction in Example [5.1] constructs perpendiculars from an arbi-
trary point on an angle bisector to the ray extensions of the angle being bisected. It

will be referenced several times in this chapter.

5.2 Basic Structures

The basic structures in the imperative construction system are points, segments, rays,
lines, angles, and circles. These structures, as with all structures in the system are
implemented using Scheme record structures as seen in Listings [p.2] and [5.3] In the
internal representations, a segment is two ordered endpoints, a ray is an endpoint and
a direction, and a line is a point on the line and the direction from that point the line
extends. Thus, lines and segments are directioned, and the same geometric line and
segment can have several different internal representations. Predicates exist to allow

other procedures to work with or ignore these distinctions.

56

Code Listing 5.2: Basic Structures

1 (define-record-type <point>
2 (make-point x y)
3 point?

4 (x point-x)
5 (y point-y))
6

7

8

9

(define-record-type <segment>
(make-segment pl p2)
segment?

10 (pl segment-endpoint-1)
11 (p2 segment-endpoint-2))

13 (define-record-type <line>

14 (make-line point dir)

15 line?

16 (point line-point) ;; Point on the line
17 (dir line-direction))

As shown in Listing [5.3] angles are represented as a vertex point and two arm

directions, and circles have a center point and radius length.

Code Listing 5.3: Angle and Circle Structures

1 (define-record-type <angle>
2 (make-angle dirl vertex dir2)
3 angle?

4 (dirl angle-arm-1)

5 (vertex angle-vertex)

6 (dir2 angle-arm-2))

7
8
9

(define-record-type <circle>
(make-circle center radius)
10 circle?
11 (center circle-center)
12 (radius circle-radius))

5.2.1 Creating Elements

Elements can be created explicitly using the underlying make-* constructors defined
with the record types. However, several higher-order constructors are provided to
simplify construction as shown in Listings and 5.5l In angle-from-lines, we

make use of the fact that lines are directioned to uniquely specify an angle.

57

Code Listing 5.4: Higher-order Constructors

1 (define (line-from-points pl p2)
2 (make-line pl (direction-from-points pl p2)))

Code Listing 5.5: Generic Constructors for Creating Angles

(define angle-from (make-generic-operation 2 ‘'angle-from))

1

2

3 (define (angle-from-lines 11 12)

4 (let ((d1 (line->direction 11))

5 (d2 (line->direction 12))

6 (p (intersect-lines 11 12)))

7 (make-angle dl1 p d2)))

s (defhandler angle-from angle-from-lines line? line?)

Listing also demonstrates one of many places in the system where I use generic
operations to add flexibility. Here, angle-from-lines is defined as the handler for
the generic operation angle-from when both arguments are lines. Similar handlers

exist for other combinations of linear elements.

5.2.2 Essential Math Utilities

Several math utility structures support these constructors and other geometry pro-
cedures. One particularly useful abstraction is a direction that fixes a direction in
the interval [0, 27]. Listing [5.6| demonstrates some utilities using directions. Similar

abstractions exist for working with vectors.

Code Listing 5.6: Directions

1 (define (subtract-directions d2 d1)

2 (if (direction-equal? dl d2)

3 0

4 (fix-angle-0-2pi (- (direction-theta d2)

5 (direction-theta dl1)))))
6

7 (define (direction-perpendicular? dl d2)

8 (Let ((difference (subtract-directions dl d2)))
9 (or (close-enuf? difference (/ pi 2))

10 (close-enuf? difference (* 3 (/ pi 2))))))

58

5.3 Higher-order Procedures and Structures

Higher-order construction procedures and structures are built upon these basic ele-
ments and utilities. Listing [5.7] shows the implementation of the perpendicular con-

structions used in the chapter’s sample construction.

Code Listing 5.7: Perpendicular Constructions

1 ;; Constructs line through point perpendicular to linear-element
2 (define (perpendicular linear-element point)

3 (Llet* ((direction (->direction linear-element))

4 (rotated-direction (rotate-direction-90 direction)))

5 (make-line point rotated-direction)))

6

7 ;3 Constructs perpendicular segment from point to linear-element

s (define (perpendicular-to linear-element point)

9 (Let ((pl (perpendicular linear-element point)))

10 (Let ((i (intersect-linear-elements pl (->line linear-element))))
11 (make-segment point i))))

Traditional constructions generally avoid using rulers and protractors. However,
as shown in Listing[5.8] the internal implementation of the angle-bisector procedure
uses measurements to simplify construction instead of repeatedly intersecting circle
arcs to emulate compass sweeps. Although the internal implementations of some
constructions use measured values, when providing the system with investigations,
a user can still limit the construction steps used to ones that could be performed
using only a compass and straight edge since the internal implementations of the

constructions operations remain opaque to the learning module.

Code Listing 5.8: Angle Bisector Construction

1 (define (angle-bisector a)

2 (Llet* ((d2 (angle-arm-2 a))

3 (vertex (angle-vertex a))

4 (radians (angle-measure a))

5 (half-angle (/ radians 2))

6 (new-direction (add-to-direction d2 half-angle)))
7 (make-ray vertex new-direction)))

59

5.3.1 Polygons and Figures

Polygon record structures contain an ordered list of points in counter-clockwise order,
and provide procedures such as polygon-point-ref or polygon-segment to obtain
particular points, segments, and angles specified by indices.

Figures are simple groupings of geometry elements and provide procedures for
extracting all points, segments, angles, and lines contained in the figure, including

ones extracted from within polygons or subfigures.

5.4 Random Choices

Given these underlying objects and operations, to allow figures to represent general
spaces of diagrams, random choices are needed when instantiating diagrams. The
chapter’s sample construction uses random-angle and random-point-on-ray, imple-
mentations of which are shown in Listing|5.9] Underlying these procedures are calls to
Scheme’s random function over a specified range ([0, 27] for random-angle-measure,
for instance). Since infinite ranges are not well supported and to ensure that the
figures stay reasonably legible for a human viewer, in random-point-on-ray, the
procedure extend-ray-to-max-segment clips the ray at the current working canvas

so a point on the ray can be selected within the working canvas.

Code Listing 5.9: Random Constructors

1 (define (random-angle)
(Letx ((v (random-point))
(d1 (random-direction))
(d2 (add-to-direction dl (rand-angle-measure))))
(make-angle dl1 v d2)))

2
3
4
5
6
7 (define (random-point-on-ray r)

8 (random-point-on-segment

9 (extend-ray-to-max-segment r)))

10

1 (define (random-point-on-segment seg)

12 (Let* ((pl (segment-endpoint-1 seg))

fun

13 (p2 (segment-endpoint-2 seg))
14 (t (safe-rand-range 0 1.0))

15 (v (sub-points p2 pl)))

16 (add-to-point pl (scale-vec v t))))

60

Other random elements are created by combining these random choices, such as
the random parallelogram in Listing[5.10] In random-parallelogram, a parallelogram
is created by constructing two rays with an random angle between them, and selecting
an arbitrary point on each. The final point is computed using vector arithmetic to

“complete the parallelogram”.

Code Listing 5.10: Random Parallelogram

1 (define (random-parallelogram)
(Letx ((rl (random-ray))
(pl (ray-endpoint rl))
(r2 (rotate-about (ray-endpoint rl) (rand-angle-measure) rl))
(p2 (random-point-on-ray rl))
(p4 (random-point-on-ray r2))
(p3 (add-to-point p2 (sub-points p4 pl))))
(polygon-from-points pl p2 p3 p4)))

0o N O oA W N

5.4.1 Backtracking

The module currently only provides limited support for avoiding degenerate cases,
or cases where randomly selected points happen to be very nearly on top of existing
points. Several random choices use safe-rand-range seen Listing to avoid the
edge cases of ranges, and some retry their local choices if the object they are returning
has points too close to one another. However, further extensions could improve this
system to periodically check for unintended relationships amongst all elements created

previously in the figure and backtrack to select other values.

Code Listing 5.11: Safe Randomness

1 (define (safe-rand-range min-v max-v)

(let ((interval-size (max O (- max-v min-v))))
(rand-range
(+ min-v (* 0.1 interval-size))
(+ min-v (% 0.9 interval-size)))))

[S.EET VU V)

61

5.5 Construction Language Support

To simplify specification of figures, the module provides the let-geo* macro which
allows for a multiple-assignment-like extraction of components from elements and
automatically tags resulting elements with their variable names and dependencies.
These dependencies are both symbolic for display and procedural so the system can

generalize observations into conjectures that can be applied in other situations.

5.5.1 Multiple Component Assignment

Listing shows the multiple component assignment expansion of a simple usage
of let-geox. In this case, ((a (r-1 v r-2)) (random-angle)) will assign to the
variable a the resulting random angle, and to the variables r-1, v, and r-2 the
resulting angle’s ray-1, vertex, and ray-2, respectively. If the specification was for a
random quadrilateral, such as ((s (a b ¢ d)) (random-square)), the macro would
assign to the variable s the resulting random square, and to the variables a, b, ¢ and

d the resulting square’s vertices.

Interaction Example 5.12: Expansion of let-geo* macro

(let-geox (((a (r-1 v r-2)) (random-angle)))
(figure a r-1 r-2 ...))

=> macro expands to:
(let* ((a (random-angle))
(r-1 (element-component a 0))
(v (element-component a 1))
(r-2 (element-component a 2)))
(figure a r-1 r-2 ...))

To handle these varied cases, the macro expands to use the generic operation
element-component to determine what components are extracted from an object
during multiple component assignment. As shown in Listing [5.13] for polygons, the
components are the point references directly, whereas angles and segments generate

their handlers from a provided list of getters.

62

Code Listing 5.13: Generic Element Component Handlers

(declare-element-component-handler polygon-point-ref polygon?)

1
2
3 (declare-element-component-handler

4 (component-procedure-from-getters

5 ray-from-arm-1 angle-vertex ray-from-arm-2)
6 angle?)

7

8

9

(declare-element-component-handler
(component-procedure-from-getters
10 segment-endpoint-1 segment-endpoint-2)
11 segment?)
12
13 (define (component-procedure-from-getters . getters)
14 (Let ((num-getters (length getters)))

15 (Lambda (el i)

16 (if (not (<= 0 i (- num-getters 1)))

17 (error "Index out of range for component procedure: " i))
18 ((list-ref getters i) el))))

Listing [5.14] demonstrates the multiple assignment portion of the let-geo* macro
in which the user’s specifications are expanded into the element-component expres-

sions.

Code Listing 5.14: Multiple and Component Assignment Implemen-

tation

1 (define (expand-compound-assignment lhs rhs)

2 (if (not (= 2 (length 1lhs)))

3 (error "Malformed compound assignment LHS (needs 2 elements): " lhs))
4 (Let ((key-name (car 1lhs))

5 (component-names (cadr 1lhs)))

6 (if (not (list? component-names))

7 (error "Component names must be a list:" component-names))
8 (Let ((main-assignment (list key-name rhs))

9 (component-assignments

10 (make-component-assignments key-name component-names)))
11 (cons main-assignment

1% component-assignments))))

13
14 (define (make-component-assignments key-name component-names)
15 (map (lambda (name 1)

16 (list name " (element-component ,key-name ,i)))
17 component -names
18 (iota (length component-names))))

63

5.5.2 Names and Dependencies

The other task the let-geo* macro handles is assigning names and dependencies to
objects. As shown in Listing [5.15] these properties are attached to elements using the
eq-properties methods. In this approach, a hash table is used to store mappings of
elements to property values. Similar interfaces are provided for element dependencies

and element sources.

Code Listing 5.15: Element Names

1 (define (element-name element)
(or (eqg-get element 'name)
*unnamedx))

(define (set-element-name! element name)

2
3
4
5
6 (eq-put! element 'name name))

When an assignment is made in the let-geo* macro, three pieces of information
are associated with the assigned object: (1) its name, taken from the variable used for
the object in the let statement, (2) its symbolic dependency that stores the procedure
name and arguments used to obtain the object, primarily stored for display purposes,
and (3) a source procedure that allows the object to be recreated from a different
starting premise. Example [5.16] shows the expansion of these dependencies in a very
simple construction. These dependencies are attached after the multiple component

assignments are expanded so will apply to all objects named in the form.

Interaction Example 5.16: Dependency and Name Assignment

(let-geox
((s (make-segment a b)))
(figure s))

=> macro expands to:
(let* ((s (make-segment a b)))
(set-element-name! s 's)
(set-source! s
(Lambda (p)
(make-segment (from-new-premise p a) (from-new-premise p b))))
(set-dependency! s (list 'make-segment a b))
(figure s))

64

The decision to attach a procedure of a premise argument to an element as its
source allows other starting premises to be injected during later explorations in the
learning module. from-new-premise allows the system to recreate the corresponding
object for a specified element given a different premise. Example [5.17] shows the
implementation of from-new-premise and the interface for specifying an explicit
premise dependency via set-as-premise!. To allow for multiple premises to be

injected, the premise structure is represented as a list.

Code Example 5.17: Using sources with new premises

1 (define (from-new-premise new-premise element)
((element-source element) new-premise))

(set-dependency! element (symbol '<premise- i '>))

2

3

4 (define (set-as-premise! element i)

5

6 (set-source! element (lambda (p) (list-ref p i))))

These source and premise structures will be used more later in learning new terms,
but Example [5.18| provides a concrete example of its use. The first definition creates
a random square and obtains the intersection point of its two diagonals. let-geox
sets up the names and dependencies, and the square is marked as the initial premise.
However, the intersection point is returned rather than a figure. The print state-
ments (continued on the next page) show that while diag-intersection-point is
a point structure with explicit coordinates it can produce information about how it

was created via print-dependencies.

Interaction Example 5.18: Using from-new-premise

(define diag-intersection-point
(Llet-geo*
(((sq (@ b c d)) (random-square))
(diag-1 (make-segment a c))
(diag-2 (make-segment b d))
(p (intersect-linear-elements diag-1 diag-2)))
(set-as-premise! sq 0)

Pp))

=> (pp diag-intersection-point)
#[point 26] (x -.1071) (y -0.4464)

65

=> (print-dependencies (element-dependency diag-intersection-point))
(intersect-linear-elements
(make-segment (element-component <premise-0> 0)
(element-component <premise-0> 2))
(make-segment (element-component <premise-0> 1)
(element-component <premise-0> 3)))

(define new-figure
(Llet-geo* (((k (e f g h)) (random-kite))
(p2 (from-new-premise (list k) diag-intersection-point)))
(figure k p2)))

=> (show-figure new-figure)

The second definition at the end of Example [5.18, new-figure, demonstrates
using from-new-premise to apply source information from an existing object to a
new premise. The specification of new-figure constructs a random kite and uses
that object, k, as the new premise in creating point p2 using the source information
of the diag-intersection-point. Asseen in the image, from-new-premise was able
to correctly extract the construction steps about how diag-intersection-point was
constructed and apply it to the new kite to specify p2 as the intersection point of the
kite’s diagonals.

A similar process to this example will appear in an abstracted form later in the

learning module as the system tests whether conjectures apply to new situations.

66

Listing [5.19| presents the implementation of the manipulations used to add depen-
dency information to figures and Listing [5.20] presents the top-level definition for the

let-geox* form.

Code Listing 5.19: Implementation of Dependency Expressions

1
2
3
4
5
6
7
8
9

(define (args-from-premise args)
(map (lambda (arg)
" (from-new-premise p ,arg))
args))

(define (set-dependency-expressions assignments)
(append-map
(Lambda (a)
(let ((name (car a))
(value (cadr a)))
(if (list? value)
(Llet ((proc (car value))
(args (cdr value)))
" ((set-source!
,name (lambda (p) (,proc ,@(args-from-premise args))))
(set-dependency!
,name (list (quote ,proc) ,@args))))
“((set-source! ,name (element-source ,value))
(set-dependency! ,name (element-dependency ,value))))))
assignments))

[S R S L T
S © ® N o o A W N = O

Code Listing 5.20: Full let-geo* Implementation

1 (define-syntax let-geox
2 (sc-macro-transformer

3 (Lambda (exp env)

4 (Llet ((assignments (cadr exp))

5 (body (cddr exp)))

6 (let ((new-assignments (expand-assignments assignments))

7 (variable-names (variables-from-assignments assignments)))
8 (let ((result " (letx

9 ,hew-assignments

10 ,@(set-name-expressions variable-names)

11 ,@(set-dependency-expressions new-assignments)
12 ,@body)))

13 ;5 (pp result) ;; To debug macro expansion

14 (close-syntax result env)))))))

67

5.6 Graphics and Animation

Given the primitive objects and a language for specifying constructions, the final task
of the imperative system is to display and animate figures. To do so, the system inte-
grates with Scheme’s graphics procedures for the X Window System. It can include
labels and highlight specific elements, as well as display animations representing the

“wiggling” of the diagram. Implementations of core procedures of these components

are shown in Listings and [5.22|

Code Listing 5.21: Drawing Figures

1 (define (draw-figure figure canvas)

2 (set-coordinates-for-figure figure canvas)
3 (clear-canvas canvas)

4 (for-each

5 (Lambda (element)

6 (canvas-set-color canvas (element-color element))
7 ((draw-element element) canvas))

8 (all-figure-elements figure))

9 (for-each

10 (Lambda (element)

11 ((draw-label element) canvas))

12 (all-figure-elements figure))

13 (graphics-flush (canvas-g canvas)))

To support animation, constructions can call animate with a procedure f that
takes an argument in [0,1]. When the animation is run, the system will use fluid
variables to iteratively animate each successive random choice through its range of
[0,1]. animate-range provides an example where a user can specify a range to sweep

over. The system uses this to “wiggle” random choices by sweeping over small ranges.

Code Listing 5.22: Animation

1 (define (animate f)

2 (Llet ((my-index *next-animation-indexx))

3 (set! xnext-animation-index* (+ *next-animation-indexx 1))
4 (f (cond ((< *animating-index* my-index) 0)

5 ((= *animating-index* my-index) *animation-valuex)
6 ((> *animating-index* my-index) 1)))))
7
8
9

(define (animate-range min max)
(animate (lambda (v) (+ min (x v (- max min))))))

68

5.7 Discussion

In creating the imperative construction module, the main challenges involved set-
tling on appropriate representations for geometry objects and properly yet effortlessly
tracking dependencies. Initial efforts used over-specified object representations such
as an angle consisting of three points and a line consisting of two points. Reducing
these to nearly-minimal representations using directions helped simplify the creation
of other construction utilities. In addition, the module initially had each individual
construction procedure attach dependencies to the elements it produced. Automat-
ing this in the let-geo* macro helped simplify the annotation process and make the
persistence of source procedures feasible.

Future extensions could provide additional construction procedures, particularly
with added support for circle and arc-related operations, or improve the resilience
of random choices. However, I believe the imperative module provides a sufficiently
versatile library of components and procedures to enable users to specify interesting
investigations. With this ability to construct and represent figures, the following
chapters explain details of how the system is able to make, generalize, and learn from

observations in user-specified constructions.

69

70

Chapter 6

Perception Module

6.1 Overview

The perception module focuses on “seeing” figures and simulating our mind’s eye.
Given analytic figures represented using structures of the imperative construction
module, the perception module is concerned with finding and reporting interesting
relationships seen in the figure. In a generate-and-test-like fashion, it is rather liberal
in the observations it returns. The module uses several techniques to attempt to
omit obvious properties, and combines with the learning module (Chapter [8)) to filter
already-learned discoveries and simplify results.

To explain the module, I will first describe the implementation of underlying
relationship and observation structures before examining the full analyzer routine. I
will conclude with a discussion of extensions to the module, including further ways
to detect and remove obvious results and some attempted techniques used to extract

auxiliary relationships from figures.

6.2 Relationships

Relationships are the primary structures defining what constitutes interesting prop-
erties in a figure. Relationships are represented as predicates over typed n-tuples and

are checked against all such n-tuples found in the figure under analysis.

71

Code Listing 6.1: Relationships

(define-record-type <relationship>
(make-relationship type arity predicate equivalence-predicate) ...))

1
2
3
4 (define equal-length-relationship

5 (make-relationship 'equal-length 2 segment-equal-length?

6 (set-equivalent-procedure segment-equivalent?)))
7
8
9

(define concurrent-relationship
(make-relationship 'concurrent 3 concurrent?
10 (set-equivalent-procedure linear-element-equivalent?)))
11
12 (define concentric-relationship
13 (make-relationship 'concentric 4 concentric?
14 (set-equivalent-procedure point-equal?)))

Listing [6.1] displays some representative relationships. The relationship predicates
can be arbitrary Scheme procedures and often use constructions and utilities from the
underlying imperative system as seen in Listing [6.2] concurrent? is checked over
all 3-tuples of linear elements (lines, rays, segments) and concentric? is checked

against all 4-tuples of points.

Code Listing 6.2: Concurrent and Concentric Predicates

(define (concurrent? 11 12 13)
(Let ((i-point (intersect-linear-elements-no-endpoints 11 12)))
(and i-point
(on-element? i-point 13)
(not (element-endpoint? i-point 13)))))

(define (concentric? pl p2 p3 p4)
(and (distinct? pl p2 p3 p4)
(let ((pb-1 (perpendicular-bisector (make-segment pl p2)))
(pb-2 (perpendicular-bisector (make-segment p2 p3)))
(pb-3 (perpendicular-bisector (make-segment p3 p4))))
(concurrent? pb-1 pb-2 pb-3))))

© 0 N O A W N e

= e
N o= O

In addition to the type, arity, and predicate checked against arguments, the rela-
tionship structure also includes an equivalence predicate that is used in determining
whether two observations using the relationship are equivalent, as will be discussed

after explaining the observation structure in Section 6.3

72

6.2.1 What is Interesting?

The system currently checks for:

e concurrent, parallel, and perpendicular linear elements,
e segments of equal length,
e supplementary and complementary angles,
e angles of equal measure,
e coincident and concentric points, and
e sets of three concentric points with a fourth as its center.
These relationships covered most of the basic observations needed in my investiga-

tions, but further relationships can be easily added.

6.3 Observations

Observations are structures used to report the analyzer’s findings. As seen in List-
ing [6.3] they combine the relevant relationship structure with a list of the actual
element arguments from the figure that satisfy that relationship. Maintaining refer-
ences to the actual figure elements allows helper procedures to print names or extract

dependencies as needed.

Code Listing 6.3: Observations

1 (define-record-type <observation>

2 (make-observation relationship args)

3 observation?

4 (relationship observation-relationship)
5 (args observation-args))

. J

It is important to know whether two arbitrary observations are equivalent. This
enables the system to detect and avoid reporting redundant or uninteresting rela-
tionships. Listing shows the implementation of observation-equivalent?. The
procedure checks the observations are the same and then applies that observation’s

equivalence predicate to the two tuples of observation arguments.

73

Code Listing 6.4: Equivalent Observations

1 (define (observation-equivalent? obsl obs2)

2 (and (relationship-equal?

3 (observation-relationship obsl)

4 (observation-relationship obs2))

5 (let ((rel-eqv-test

6 (relationship-equivalence-predicate
7 (observation-relationship obsl)))
8 (argsl (observation-args obsl))

9 (args2 (observation-args obs2)))

10 (rel-eqv-test argsl args2))))

These equivalence predicates handle the various patterns in which objects may
appear in observations. For example, in an observation that two segments have equal
length, it does not matter which segment comes first or which order the endpoints are
listed within each segment. Thus, as shown in Listing [6.5], the equivalence procedure

ignores these ordering differences by comparing set equalities:

Code Listing 6.5: Equivalence of Equal Segment Length Observations

(set-equivalent-procedure segment-equivalent?)

(define (set-equivalent-procedure equality-predicate)
(lambda (setl set2)
(set-equivalent? setl set2 equality-predicate)))

(define (set-equivalent? setl set2 equality-predicate)
(and (subset? setl set2 equality-predicate)
(subset? set2 setl equality-predicate)))

© 00 N O O s W N =

11 (define (segment-equivalent? sl s2)
12 (set-equivalent?

13 (segment-endpoints sl)
14 (segment-endpoints s2)
15 point-equal?))

17 (define (point-equal? pl p2)
18 (and (close-enuf? (point-x pl) (point-x p2))
19 (close-enuf? (point-y pl) (point-y p2))))

74

6.3.1 Numerical Accuracy

Throughout the system, numerical accuracy issues and floating point errors arise
when comparing objects. As a result, the system uses custom equality operators for
each data type, such as point-equal? shown in Listing [6.5] These use an underly-
ing floating-point predicate close-enuf? taken from the MIT Scheme Mathematics
Library [26] that estimates and sets a tolerance based on current machine’s precision
and handles small magnitude values intelligently. With this floating point tolerance

in comparisons, floating point errors have been significantly less prevalent.

6.4 Analysis Procedure

Given these relationship and observation structures, Listing [6.6] presents the main
analyzer routine in this module. After extracting various types of elements from the
figure, it examines the relationships relevant for each set of elements and gathers all

resulting observations.

Code Listing 6.6: Analyzer Routine

1 (define (analyze-figure figure)

2 (Let* ((points (figure-points figure))

3 (angles (figure-angles figure))

4 (linear-elements (figure-linear-elements figure))

5 (segments (figure-segments figure)))

6 (append

7 (extract-relationships points

8 (list concurrent-points-relationship

9 concentric-relationship

10 concentric-with-center-relationship))
11 (extract-relationships segments

12 (list equal-length-relationship))

13 (extract-relationships angles

14 (list equal-angle-relationship

15 supplementary-angles-relationship
16 complementary-angles-relationship))
17 (extract-relationships linear-elements

18 (list parallel-relationship

19 concurrent-relationship

20 perpendicular-relationship)))))

I6)

The workhorses of extract-relationships and report-n-wise shown in List-
ing generate the relevant n-tuples and report observations for those that satisfy
the relationship under consideration. For these homogeneous cases, all-n-tuples

returns all (unordered) subsets of size n as lists.

Code Listing 6.7: Extracting Relationships

1 (define (extract-relationship elements relationship)
% (map (lambda (tuple) (make-observation relationship tuple))
3 (report-n-wise

4 (relationship-arity relationship)

5 (relationship-predicate relationship)

6 elements)))
7
8
9

(define (report-n-wise n predicate elements)
(Let ((tuples (all-n-tuples n elements)))
10 (filter (nary-predicate n predicate) tuples)))

For the full all-observations procedure in Listing [6.8] the utility procedure
require-majority-animated is used to generate random frames from wiggling the
random choices in the provided figure procedure. It then only reports observations
present in a majority of the frames. This corresponds to wiggling choices in a con-

struction and observing invariant relationships.

Code Listing 6.8: All Observations from Wiggling Choices

1 (define (all-observations figure-proc)

2 (require-majority-animated

3 (Lambda () (analyze-figure (figure-proc)))
4 observation-equal?))

6.5 Focusing on Interesting Observations

The final task of the perception module involves filtering out obvious and previously
discovered observations. Listing[6.9shows the module’s current state of accomplishing
this task via the interesting-observations procedure. The procedure first extracts
all observations from the figure and aggregates a list of obvious relations specified

during the construction. It then uses the learning module to examine all polygons
76

found in the figure and determine the most specific definitions each satisfies. The
procedure obtains all previously-discovered facts about such shapes to remove from
the final result and adds new polygon observations in their place. Example[6.11]shows

a concrete example of this.

Code Listing 6.9: Obtaining Interesting Observations

1 (define (interesting-observations figure-proc)
2 (set! xobvious-observationsx* '())

3 (Lletx ((fig (figure-proc))

4 (all-obs (analyze-figure fig))

5 (polygons (figure-polygons fig))

6 (polygon-observations (polygon-observations polygons))
7 (polygon-implied-observations

8 (polygon-implied-observations polygons))

9 (set-difference (append all-obs polygon-observations)

10 (append xobvious-observations*
polygon-implied-observations)
11 observation-equivalent?)))

Listing [6.10| shows the implementation of the save-obvious-observation! pro-
cedure. Construction procedures can use this to mark obvious relationships for the
elements they create. For instance, the procedure that creates the perpendicular bi-
sector of a segment creates and saves an observation that the line it is creating is

perpendicular to the original segment before returning the bisector line.

Code Listing 6.10: Marking Obvious Observations

1 (define (save-obvious-observation! obs)

2 (if xobvious-observationsx

3 (set! *obvious-observationsx

4 (cons obs xobvious-observationsx))))

Example [3.7 in the demonstration chapter demonstrated a simple example of a
construction procedure that marked obvious properties of its results. Example [6.11],
demonstrates the other, polygon definition-based technique of simplifying observa-
tions. Although there were 21 total observations found in the resulting figure, after
examining the types of polygons in the figure and removing observations previously

discovered about those elements, only two observations remain:

7

Interaction Example 6.11: Substituting Polygon Observations

(define (orthodiagonal-inner-polygon)
(let-geo*

(((og (@ b c d)) (random-orthodiagonal-quadrilateral))
(e (midpoint a b))
(f (midpoint b c))
(g (midpoint c d))
(h (midpoint d a))
(inner-p (polygon-from-points e f g h)))

(figure oq inner-p)))

=> (length (all-observations orthodiagonal-inner-polygon))
21

=> (pprint (interesting-observations orthodiagonal-inner-polygon)
((orthodiagonal oq) (rectangle inner-p))

6.6 Discussion and Extensions

Perfectly determining what observations are interesting or non-obvious is a large task,
particularly since filtering out obvious relations often requires relationship-specific
information:

As one example, imagine implementing a collinear? predicate that only reports
non-obvious relations. Testing whether three arbitrary coordinate-based points are
collinear is straightforward. However, it is not interesting that a random point on

a line is collinear with the two points from which the line was defined. In order to

78

accurately know whether or not it is interesting that such points are collinear, the
system would need to have access to a graph-like representation of which points were
specified to be on which lines. Similar auxiliary structures can help filter other types
of relationships.

The analysis routine was initially one large, complicated procedure in which in-
dividual checks were arbitrarily added. The restructuring to use relationships and
observations has simplified the complexity and enabled better interactions with the
learning module, but limited the ability for adding many relationship-specific opti-
mizations.

Despite these limitations, the perception system has been sufficient to discover
several relations via the learning model and use basic filtering of obvious relations to
present intelligible results.

The examples below describe further efforts explored for improving the perception
module. These involve extracting relationships for elements not explicitly specified in
a figure, such as auxiliary segments between all pairs of points in the figure, treating
all intersections as points, extracting angles, or merging results. These are areas for

future work.

6.6.1 Auxiliary Segments

In some circumstances, it is useful for the system to insert and consider segments
between all pairs of points. Although this can sometimes produce interesting results,
it can often lead to too many uninteresting observations. This option is off by default

but could be extended and enabled in a self-exploration mode, for instance.

6.6.2 Extracting Angles

In addition, I briefly explored an implementation in which the construction module
also maintains a graph-like representation of the connectedness and adjacencies in the
figure. Such a representation could help with extracting angles not explicitly created

in a figure. However, in addition to the complexity of determining which angles

79

to keep, keeping track of obvious relationships due to parallel lines and overlapping

angles is quite a challenge.

6.6.3 Merging Related Observations

A final process I explored involved merging related observations into larger, combined
results. For instance, when reporting segment length equality for a square, it is ex-
cessive to report all possible pairs of equal sides. I initially implemented a step to
merge such observations to simply report that all four sides are congruent. However,
as more relationships were added, the merge process became complicated as the argu-
ments for all observations were not commutative and transitive. For example merging
relationships about angles being supplementary to one another and merging sets of
three concentric points with a fourth as its center would each require a unique merge
procedure. Generalizing and adding such merge procedures would be an interesting

extension.

80

Chapter 7

Declarative Geometry Constraint

Solver

7.1 Overview

The third module is a declarative geometry constraint solver. Given a user-specified
topology of a diagram and various constraints on segments and angles, this module
attempts to solve the specification by instantiating a figure that satisfies the con-

straints.

The solver is implemented using propagators, uses new types of partial information
about point regions and direction intervals, and focuses on emulating the mental
process of building and solving constrained figures in the mind’s eye. The physical
nature of this process is captured by forming analogies between geometry diagrams

and mechanical linkages of bars and joints.

After providing a brief overview of the mechanical analogies and quick background
on the propagator system, I examine an example of the system solving a set of con-
straints for an under-constrained rectangle. Then, I describe the module implementa-
tion, starting with the new partial information representations and linkage constraints
before explaining how mechanisms are assembled and solved. Finally, some limita-

tions and extensions are discussed.

81

7.1.1 Mechanical Analogies

Mechanical analogies are often applied to mathematical problems to yield alternate,
often more-intuitive solutions. Several texts such as [15] and [27] explore this and
provide examples such as deriving the Pythagorean Theorem from a physical example

dealing with water pressure in and torque on a rotating drum.

In this system, mechanical analogies are used to represent the physics simulation
going on as one mentally manipulates a diagram “in the mind’s eye”. Often, given
a diagram with constraints, one can imagine assembling a physical example of the
figure out of bars and joints in one’s head. Some bars can be sliding to make their
lengths adjustable whereas others are constrained to be of equal length. As a person
moves and wiggles these pieces to assemble satisfying mechanisms, they can examine
whether the resulting mechanisms retain properties across instances and generalize

such invariants into theorems.

This module simulates this process by assembling mechanisms of bars and joints,
and using a propagator system to simulate incrementally selecting where bars and

joints are positioned while maintaining local physical constraints.

7.1.2 Propagator System

The declarative geometry solver is built upon an existing propagator system created
by Alexey Radul under the advisement of Gerald Jay Sussman [22]. The propagator
system allows a user to create cells and connect them with propagator constraints. As
content is added to cells, their neighbors are notified and updated with computations
performed on the new information. Often, cells maintain a representation of partial

information about their content and merge new information from several sources.

This module uses Radul’s propagation system to handle the underlying propa-
gation of data, but implements constraints, partial information types, specification

protocols, and input formats particular to geometric figures.

82

7.2 Example of Solving Geometric Constraints

I begin by fully explaining an example. The geometry problem of inadequately con-
strained rectangles was introduced in the first example of Chapter [2] on page [I7] The
second proposed set of constraints in that problem was expressed as a mechanism in
Example in the demonstration (page , and is repeated here in Example .
Example shows the module’s print messages as it solves the mechanism.

The illustrations in Explanation [7.3]and accompanying text on the following pages

explain how propagation is used to solve this mechanism.

Code Example 7.1: Rectangle Constraints Example

1 (define (is-this-a-rectangle-2)

2 (m:mechanism

3 (m:establish-polygon-topology 'a 'b 'c 'd)

4 (m:c-length-equal (m:bar 'a 'd) (m:bar 'b 'c))
5 (m:c-right-angle (m:joint 'd))

6 (m:c-angle-equal (m:joint 'a) (m:joint 'c))))

Interaction Example 7.2: Solved Constraints

=> (m:run-mechanism (is-this-a-rectangle-2))

(specifying-bar m:bar:d:a .6742252545577186)

(initializing-direction m:bar:d:a-dir (direction 4.382829365403101))
(initializing-point m:bar:d:a-pl (0 0))

(specifying-joint m:joint:c:b:a 2.65583669872538)

83

Solving a mechanism involves repeatedly selecting positions, lengths, angles, and
directions that are not fully specified and selecting values within the domain of that
element’s current partial information. As values are specified, the wiring of the prop-

agator model propagates further partial information to other values.

Propagation Explanation 7.3: This series of illustrations depicts the propagation
steps that occur to enable the system to solve the underconstrained rectangle from

Example [7.1]

a
2 b bc
L E N, direction unknown
] O
o &
o
v N
dll
(0,0) C onray

Step 1: The first value the module specifies is the length of bar ad. In doing so, it
also initializes the bar’s endpoint and direction to anchor it on the canvas. Because
joint d is constrained to be a right angle, the system knows the direction but not
length of bar dc. It propagates the partial information that point c is on the ray r1
extending out from d to the cell within point c¢. Furthermore, since bars ad and bc
are constrained to have equal length, at this point, bar bc also knows its length but
not direction. Next, the system specifies joint angle b:

a . b
bon ray
1 bc
direction known
dll
(0,0) C onray

Step 2: Once the angle measure of b is specified, constraints using the sum of
angles in the specified polygon and a “slice” constraint on the pair of constrained
angles will set the angle measures of joints a and c to be half of the remaining total:
a,c 2“_2& With these angles specified, point b is informed that it is on the ray
r2 and bar bc now knows both its length and direction.

84

Propagation Explanation 7.3 continued: This series of illustrations depicts the
propagation steps that occur to enable the system to solve the underconstrained
rectangle solved in Example 7.1}

a b on ray
5

b onray
[]

dl1

©.0 C onray

Step 3: Since now both the length and direction of bar bc are known and point ¢
is known to be on ray r1, the propagation constraints can translate this ray by the
length and direction of bc and provide the information that point b must therefore
also be on ray r3. This emulates the physical process of sliding bar bc along ray r1.

dUl ¢
0,0

Step 4: The information about point b being on rays r2 and r3 is merged via ray
intersection to fully determine the location of b. Then, once point b is specified, since
the length and direction of bar bc is known, propagation sets the value and location
of point c, yielding a fully-specified solution.

Similar steps allow propagation to solve specifications for many figures including
isosceles triangles, parallelograms, and quadrilaterals from their diagonals. Several of
these are shown in Section [3.3] In cases when bars have their length and one endpoint
determined first, the propagators specify that the other endpoint is on an arc of a
circle. The next sections describe the implementation of these partial information

structures before explaining bar and joint structures and how mechanisms are built

and solved.

85

7.3 Partial Information Structures

Radul’s propagation system typically used numeric intervals for partial information.
The declarative constraint solver uses some standard numeric intervals, but also uses
its own module-specific partial information structures. These include regions and

direction-intervals, described below:

7.3.1 Regions

Regions are the partial information structure for point locations and represent subsets
of the plane where the points could be located. These could be arbitrarily complex
regions of the plane, but the module currently implements point sets, rays, and arcs
as shown in Listing [7.4] As new information about locations are provided, regions

are merged by intersection. A contradiction region represents an empty region.

Code Listing 7.4: Region Structures

(define-record-type <m:point-set>
(% m:make-point-set points) ...)

(define-record-type <m:ray>
(% m:make-ray endpoint direction) ...)

(define-record-type <m:arc>
(m:make-arc center-point radius dir-interval) ...)

© N O s W N =

=
[=}

(define-record-type <m:region-contradiction>
(m:make-region-contradiction error-regions) ...)

=
N

3 (defhandler merge m:intersect-regions m:region? m:region?)

=

7.3.2 Direction Intervals

In addition, a module-specific direction interval structure is used for the partial infor-
mation about directions. Several additional utilities were needed for working with and
merging direction intervals since directions form a periodic range [0, 27). Currently,
the subsystem treats an intersection of direction intervals that would yield multiple

distinct direction intervals as providing no new information.

86

7.4 Bar and Joint Constraints

The solver uses bar and joint linkages to represent segments and angles. These struc-
tures are composed of propagator cells storing information about locations, lengths,
directions, and angles. To assist with some of the propagation between these cells,
the module uses substructures for points and vectors.

Point structures contain both numeric Cartesian coordinate cells and a cell con-
taining region structures. The propagatorsm:x-y->region and m: region->x,y trans-

form location information between these representations.

Code Listing 7.5: Points and Regions

1 (define (m:make-point)

2 (let-cells (x y region)

3 (p:m:x-y->region x y region)
4 (p:m:region->x region Xx)

5 (p:m:region->y region y)

6 (% m:make-point x y region)))
7
8
9

(define (m:x-y->region x y)
(m:make-singular-point-set (make-point x y)))
o (propagatify m:x-y->region)
11
2 (define (m:region->x region)
13 (if (m:singular-point-set? region)
14 (point-x (m:singular-point-set-point region))
15 nothing))
16 (propagatify m:region->x)

[un

o

Vectors represent the difference between two points and bidirectionally constrain

both rectangular and polar information.

Code Listing 7.6: Vectors

1 (define (m:make-vec)
2 (let-cells (dx dy length direction)

3 (p:make-direction (e:atan2 dy dx) direction)
4 (p:sqrt (e:+ (e:square dx)

5 (e:square dy))

6 length)

7 (p:* length (e:direction-cos direction) dx)
8 (p:* length (e:direction-sin direction) dy)
9 (% m:make-vec dx dy length direction)))

87

7.4.1 Bar Structure and Constraints

As seen in Listing [7.7], bar structure contains two m:points and a m:vec represent-
ing the distance and direction between the points. The bar links these structures
together using simple bidirectional constraints on the coordinates. These constrains
will only propagate information when the bar’s length and direction are fully specified.

m:pl->p2-bar-propagator and its reverse handle the other cases.

Code Listing 7.7: Basic Bar Structure

1 (define (m:make-bar bar-id)
2 (let ((pl (m:make-point))

3 (p2 (m:make-point))

4 (v (m:make-vec)))

5 (c:+ (m:point-x pl) (m:vec-dx v)

6 (m:point-x p2))

7 (c:+ (m:point-y pl) (m:vec-dy v)

8 (m:point-y p2))

9 (let ((bar (% m:make-bar pl p2 v)))

10 (m:pl->p2-bar-propagator pl p2 bar)
11 (m:p2->pl-bar-propagator p2 pl bar)
12 bar)))

. J

The propagators specified by m:pl->p2-bar-propagator shown in Listing
propagate partial information about point locations based on whether the bar’s di-
rection or length is determined. m:x-y-length-di->region handles the case where
only the length of the bar is specifies and adds information to the other endpoint’s
region cell that it is on the arc formed from the bar’s length and current direction

interval. This implementation is seen in Listing [7.8]

Code Listing 7.8: Bar Region Propagator

1 (define (m:pl->p2-bar-propagator pl p2 bar)
(let ((plx (m:point-x pl))

(ply (m:point-y pl))

(plr (m:point-region pl))

(p2r (m:point-region p2))

(length (m:bar-length bar))

(dir (m:bar-direction bar)))
(p:m:x-y-direction->region plx ply dir p2r)
(p:m:x-y-length-di->region plx ply length dir p2r)
(p:m:region-length-direction->region plr length dir p2r)))

© 00 N O O ok W N

=
[=}

88

11 (define (m:x-y-length-di->region px py length dir-interval)
12 (if (direction-interval? dir-interval)

13 (let ((vertex (make-point px py)))
14 (m:make-arc vertex length dir-interval))
15 nothing))

7.4.2 Joint Structure and Constraints

Joints are represented by a vertex point, two directions, and an angle representing
the measure between the directions. Propagators bidirectionally constrain the angle
measure to reflect and update the ranges of the joint’s directions. Special mechanism-
specific operators adding and subtracting directions were created since both the di-
rection and angle argument could be intervals. Creating a joint also initializes its

measure to the range [0, 7], reflecting the maximum angle sweep.

Code Listing 7.9: Joint Constraints

1 (define (m:make-joint)

2 (Llet ((vertex (m:make-point)))

3 (let-cells (dir-1 dir-2 theta)

4 (p:m:add-to-direction dir-1 theta dir-2)

5 (p:m:add-to-direction dir-2 (e:negate theta) dir-1)

6 (p:m:subtract-directions dir-2 dir-1 theta)

7 (m:instantiate theta (make-interval 0 xmax-joint-swingx) 'theta)
8 (% m:make-joint vertex dir-1 dir-2 theta))))

7.5 User-specified Constraints

In addition to constraints resulting from the bar and joint connections, users can
specify additional constraints on the mechanism. Listing shows the structure for
a user constraint. These structures include a name, a list of bar or joint identifiers

the constraint constrains, and a procedure used to apply the constraint.

Code Listing 7.10: User Constraints

1 (define-record-type <m:constraint>
2 (m:make-constraint type args constraint-procedure) ...)

89

Code Listing 7.11: Bar Length Equality

1 (define (m:c-length-equal bar-id-1 bar-id-2)
(m:make-constraint
'm:c-length-equal
(list bar-id-1 bar-id-2)
(Lambda (m)
(let ((bar-1 (m:lookup m bar-id-1))
(bar-2 (m:lookup m bar-id-2)))
(c:id (m:bar-length bar-1)
(m:bar-length bar-2))))))

© 0 N O ks W N

. J

This constraint procedure takes the assembled mechanism as its argument. As
shown in Listing such procedures typically look up mechanism elements by bar
or joint identifiers and introduce additional constraints. In m:c-length-equal, the

lengths of the two bars are set to be identical to one another.

7.5.1 Slice Constraints

In addition to general user constraints, mechanisms are also support slice constraints.
These slices are structured in the same manner as constraints but are applied after all
other user constraints, and thus can use information about user constraints in adding
their propagators. In particular, the system uses slices to determine the values of
cells that are constrained as equal to one another within a sum, once the total of the
sum and all other cells in the sum have been determined. This process is inspired
by Gerald Jay Sussman’s use of slices to represent local patterns and help determine

values in propagation networks for circuit design [25].

7.6 Assembling Mechanisms

Mechanism structures in the declarative system are the analogs of figures from the
imperative system. Here, instead of grouping geometry elements, the mechanism
group linkages and constraints. As seen in Listing m:mechanism will flatten
and separate its arguments. Then, in addition to storing the components in a record
structure, m:make-mechanism will also build hash tables for looking up bars and joints

by their endpoint and vertex names.
90

Code Listing 7.12: Mechanism Structure

(define-record-type <m:mechanism>
(% m:make-mechanism bars joints constraints slices
bar-table joint-table joint-by-vertex-table)...)

(define (m:mechanism . args)
(Llet ((elements (flatten args)))
(let ((bars (m:dedupe-bars (filter m:bar? elements)))
(joints (filter m:joint? elements))
(constraints (filter m:constraint? elements))
(slices (filter m:slice? elements)))
(m:make-mechanism bars joints constraints slices))))

© 0 N O A W N e

— e
= o

To assist with specifying the bars and joints for a closed polygon, the utility
m:establish-polygon-topology is often used. The procedure takes n vertex names
as its arguments and returns n bars and n joints. It uses the linkage constructors
m:make-named-* to attach names to the structures. Such names are later used to

attach linkages to one another and to lookup elements in constraint procedures.

Code Listing 7.13: Establishing Topology

1 (define (m:establish-polygon-topology . point-names)

2 (if (< (length point-names) 3)

3 (error "Min polygon size: 3"))

4 (Llet ((extended-point-names

5 (append point-names (list (car point-names) (cadr point-names)))))
6 (Let ((bars (map (lambda (pl-name p2-name)

7 (m:make-named-bar pl-name p2-name))

8 point-names (cdr extended-point-names)))

9 (joints (map (lambda (pl-name vertex-name p2-name)

10 (m:make-named-joint pl-name vertex-name p2-name))
11 (cddr extended-point-names)

12 (cdr extended-point-names)

13 point-names)))

14 (append bars joints

15 (list (m:polygon-sum-slice (map m:joint-name joints)))))))

Once specified, mechanisms can be assembled using m:build-mechanism. That
procedure first identifies all joint vertices with the same names as being identical to
one another to handle topologies in which multiple joints share vertices. Then it

assembles bars and joints based on their names.

91

Code Listing 7.14: Building Mechanisms

1 (define (m:build-mechanism m)

2 (m:identify-vertices m)

3 (m:assemble-linkages (m:mechanism-bars m)

4 (m:mechanism-joints m))
5 (m:apply-mechanism-constraints m)

6 (m:apply-slices m))

When assembling the mechanism, bars are identified into or out of the arms of
joints that share their names. Joints names refer to the three vertices they connect
and bar names refer to their two endpoint vertices. m:identify-into-arm-1
demonstrates how bars and joints get attached to one another. Corresponding point
locations and directions are constrained to be identical to one another via c:id.

Identifying two points involves identifying all of its component properties.

Code Listing 7.15: Identifying points

1 (define (m:identify-into-arm-1 joint bar)

(m:set-joint-arm-1 joint bar)

(m:identify-points (m:joint-vertex joint) (m:bar-p2 bar))

(c:id (ce:reverse-direction (m:joint-dir-1 joint))
(m:bar-direction bar)))

(define (m:identify-points pl p2)
(for-each (lambda (getter)
(c:id (getter pl) (getter p2)))
(list m:point-x m:point-y m:point-region)))

© 0 N O oA W N

=
[=}

7.7 Solving Mechanisms

Once assembled, mechanisms can be solved via m:solve-mechanism. Solving a mech-
anism involves repeatedly selecting position, lengths, angles, and directions that are
not fully specified and selecting values within the domain of that element’s current
partial information structure. As values are specified, the constraint wiring of the

propagator model propagates updated partial information to other values.

92

Code Listing 7.16: Solving Mechanisms

(define (m:solve-mechanism m)
(m:initialize-solve)
(let 1p ()
(run)
(cond ((m:mechanism-contradictory? m)
(m:draw-mechanism m c)
#f)
((not (m:mechanism-fully-specified? m))
(if (m:specify-something m)
(1p)
(error "Couldn't find anything to specify.")))
(else 'mechanism-built))))

© 0 N O A W N =

I
N o= O

The ordering of what is specified is guided by a heuristic in m: specify-something
(7.17). This heuristic was determined empirically and helps the majority of the
examples I explored converge to solutions. It generally prefers specifying the most
constrained values first. However, in some scenarios, specifying values in the wrong
order can yield premature contradictions. Additionally, sometimes partial information
about a value is incomplete and picking a value arbitrarily may fail. A planned
extension will attempt to recover from such situations more gracefully by trying other

values or orderings for specifying components.

Code Listing 7.17: Specifying and Instantiating Values

1 (define (m:specify-something m)

% (or

3 (m:specify-bar-if m m:constrained?)

4 (m:specify-joint-if m m:constrained?)

5 (m:specify-joint-if m m:joint-anchored-and-arm-lengths-specified?)
6 (m:initialize-bar-if m m:bar-length-specified?)

7 L)

The system uses m:instantiate to add content to cells. As seen in Listing [7.18§]
m:instantiate wraps the value in a truth maintenance system structure provided
by Radul’s propagator system. These structures maintain dependencies for values,
can report which sets of premises are at odds with one another and allow individual

choices to be removed and replaced with new values.

93

Code Listing 7.18: Instantiating Values with TMS

1 (define (m:instantiate cell value premise)
2 (add-content cell (make-tms (contingent value (list premise)))))

7.7.1 Interfacing with imperative diagrams

Finally, as shown in Listing [7.19, m:mechanism->figure can convert fully specified

mechanisms into their corresponding figures so they can be observed and analyzed.

Code Listing 7.19: Converting to Figure

1 (define (m:mechanism->figure m)

2 (let ((points (map m:joint->figure-point (m:mechanism-joints m)))

3 (segments (map m:bar->figure-segment (m:mechanism-bars m)))

4 (angles (map m:joint->figure-angle (m:mechanism-joints m))))

5 (apply figure (filter identity (append points segments angles)))))

7.8 Discussion and Extensions

The process of incrementally specifying values and propagating properties implied by
constraints is able to solve many geometry constraint problems. Radul’s propaga-
tor network framework helps with propagating local constraints, representing partial
information, and merging updates.

Although the module successfully solves many useful mechanism configurations,
adding propagation alone is not a magic wand. Even with selecting values based on
updated partial information and heuristics for choosing items to specify, there are
several instances in which the module can fail to solve a mechanism specification that
actually has a solution. Because of such false negatives, the constraint solver is never
able to report that a set of constraints is infeasible, just that it hasn’t been able to
produce a solution. This works for my main use cases as the module is typically used

to explore the diversity represented by subsets of satisfiable constraints.

94

As an example with premature contradictions, imagine the system attempting
to solve a specification that should yield an isosceles trapezoid and that the angle
measures and non-parallel side lengths have already been determined. The remaining
step to fully specify the polygon is to determine how long the parallel sides are. If the
shorter parallel side is selected to be specified first, any length value chosen will yield
a valid solution. However, if the longer parallel side is selected to be specified first,
choosing too small of a length value yields a contradiction since the shorter parallel
side must be additively shorter than the longer one.

The two main ways of alleviating this problem are to change the order of how
elements are selected to be specified and to change how values are chosen. These are

the focus of several proposed extensions to the system:

7.8.1 Backtracking

One approach to handling the fact that certain orders and value selections are better
than others is to backtrack and retry previous choices when contradictions occur. This
could involve both backtracking and retrying different values for a certain specification
or choosing different orderings of bars and joints to specify.

I started implementing this ability but ended up focusing efforts elsewhere. The
current system only has support for retrying an entire figure specification on failure.
However, the module does already use a feature of the underlying propagator system
that tracks dependency and contingency information. Thus, the task of identifying
and replacing the choices that led to such contradictions should be rather straight-
forward. Deciding what values to try in a choice’s place, possibly through a binary

search-like process, is more complicated.

7.8.2 Improved Partial Information

In the isosceles trapezoid case, computing the minimum feasible length is possible
given sufficient information. However adding such computations to the system would

require measuring and representing distances between more complicated region struc-

95

ture representations. Although such extensions may fix some cases, it still does not
solve the general problem of the system sometimes failing to solve some otherwise

feasible constraint sets.

7.8.3 Basing Choices on Existing Values

A final idea for an extension to improve value selection is to base values chosen as
slight variations on an already-satisfied solved instance of the constraint specification.
Although this wouldn’t help with solving general specifications, in the typical use case
the learning module is testing declarative specifications for which it already has one
solution instance to see what other instances exist. Choosing values in such a manner
may limit the diversity of solutions found but could eliminate some extreme value

choices made in the existing system that lead to contradictions.

96

Chapter 8

Learning Module

8.1 Overview

As the final module, the learning module integrates information from the other mod-
ules and provides the primary, top-level interface for interacting with the system.
It defines means for users to query its knowledge and provide investigations for the
system to carry out. Through performing such investigations, the learning module
formulates conjectures based on its observations and maintains a repository of infor-

mation representing a student’s understanding of geometry concepts.

I will first discuss the interface for interacting with the system. Then, after de-
scribing the structures for representing and storing definitions and conjectures, I
demonstrate how the system learns new terms and conjectures. Finally, I will ex-
plain the cyclic interaction between the imperative and declarative modules used to

simplify definitions and discuss some limitations and future extensions.

Sections [3.4 and [3.5] in the demonstration chapter included several use cases and
examples of working with the learning module. As a result, this discussion will focus
on structures and implementation rather than uses and applications. Refer to the

demonstration for examples.

97

8.2 Learning Module Interface

As seen in the demonstration, the learning module defines the primary interface by
which users interact with the system. As such, it provides means by which users can
both query the system to discover and use what it has known, as well as to teach the
system information by suggesting investigations it should explore. Listing shows

the implementation for some of these methods.

Code Example 8.1: Learning System Interface Examples

(define (what-is term)
(pprint (lookup term)))

(define (example-object term)
((definition-generator (lookup term))))

(define (show-example term)
(show-element (example-object term))

© 0 N g s W N =

fun
[=}

(define (is-a? term obj)
(Let ((def (lookup term)))
12 (definition-holds? def obj)))
13
4 (define (examine object)
15 (let ((satisfying-terms

[
=

=

16 (filter (lambda (term) (is-a? term object))
17 (known-terms))))
18 (remove-supplants more-specific? satisfying-terms)))

Explaining these interface implementations serves as a context for introducing the

representations of definitions and conjectures.

8.3 Querying

Users can query the system’s knowledge using what-is. When queried, the system
uses lookup to find a definition from its dictionary. Printing this definition provides
the classification (that a rhombus is a parallelogram) and a set of properties that
differentiates that object from its classification. Further requests can present all
known properties of the named object or generate a minimal set of properties needed

to specify the object.

98

8.3.1 Student Structure

Internally, geometry knowledge is stored in a student object that maintains a defini-
tion dictionary mapping terms to definitions and a term-lattice representing how
these definitions relate to one another. Listing demonstrates how the interfaces
above use a global xcurrent-student* variable to access information. Although the
system currently only ever instantiates one student, this architecture provides the

flexibility to teach or compare multiple students in the future.

Code Listing 8.2: Student Structure

(define-record-type <student>
(% make-student definition-dictionary term-lattice) ...)

1
2
3
4 (define (student-lookup-definition s name)

5 (hash-table/get (student-dictionary s) name #f))
6

7

8

9

(define *current-student* (make-initialized-student))

(define (lookup-definition term)
10 (student-lookup-definition *current-studentx term))

12 (define (lookup term)
13 (or (lookup-definition term) (error "Term Unknown:" term)))

8.3.2 Definition Structure

Code Listing 8.3: Definition Structure

1 (define-record-type <definition>

2 (% make-definition name generator primitive-predicate

3 primitive?

4 all-conjectures

5 classifications specific-conjectures) ...)

Listing 8.3 shows the implementation of definition structures. Definitions combine
the name and generator procedure provided when originally learning the definition
with a list of all conjectures known about that class of object. primitive? is a

boolean indicator of whether the definition is a primitive, built-in definition. In such

99

cases, primitive-predicate is an imperative system predicate that tests whether an
object satisfies the definition. In non-primitive definitions, the primitive-predicate
is that of the primitive that the definition is a specialization of. Storing and checking
against this primitive predicate prevents inapplicable operations from being performed

such as attempting to obtain the angles of a segment object.

The last two fields, classifications and specific-conjectures, are derived
fields that are updated based on the definition’s relation to other terms in the lattice.
A definition’s classifications are the next-least specific terms that its class of ob-
jects also satisfy and specific-conjectures are added conjectures that differentiate

the definition from being the union of those classification definitions.

8.4 Testing Definitions

The learning module provides the is-a? procedure to test whether a given object
satisfies a known term. As shown in Listing[8.4] testing whether a definition holds in-
volves ensuring that it is the right type of primitive object by checking the underlying

primitive predicate and then ensuring the relevant conjectures are satisfied.

In this nonrecursive version, the system checks that an object satisfies all known
conjectures. A recursive version shown later first checks that it satisfies the parent
classifications before checking definition-specific conjectures that differentiate it from

its classifications.

Code Listing 8.4: Definition Checking

1 (define (definition-holds-nonrecursive? def obj)
(Llet ((all-conjectures (definition-conjectures def)))
(and ((definition-primitive-predicate def) obj)
(every (lambda (conjecture)
(satisfies-conjecture? conjecture (list obj)))
all-conjectures))))

D s W N

100

8.4.1 Conjecture Structure

Conjectures are similar to observations in that they associate a perception relation-
ship with information about what satisfies the relationship. However, instead of
associating a relationship with actual elements that satisfy the relationship, conjec-
tures abstract this observation by storing only the symbolic dependencies and source
procedures of those arguments.

Similar to how Example [5.18| in the imperative system used the element source
procedures to obtain constructed elements corresponding to those observed in an
original diagram, satisfying a conjecture involves applying its source-procedures to a
new premise structure to obtain new relationship arguments. These new arguments
are then checked to see if they satisfy the underlying relationship. This process is
shown in Listing [8.5] The interface procedure is-a? creates a list of the object in

question to use as the new premise.

Code Listing 8.5: Conjecture Structure

(define-record-type <conjecture>
(make-conjecture dependencies source-procedures relationship) ...)

1
2
3
4 (define (satisfies-conjecture? conj premise-instance)

5 (or (true? (observation-from-conjecture conj premise-instance))
6 (begin (if *xexplainx (pprint " (failed-conjecture ,conj)))

7 #f)))

8

9

(define (observation-from-conjecture conj premise-instance)
10 (Let ((new-args

11 (map (lambda (construction-proc)

12 (construction-proc premise-instance))
13 (conjecture-construction-procedures conj)))
14 (rel (conjecture-relationship conj)))

15 (and (relationship-holds rel new-args)

16 (make-observation rel new-args))))

8.5 Examining Objects

Given these tests, examine, the last interface function shown in Listing [8.1] allows a

user to provide a geometry object and ask the system to examine it and report what

101

it is. Its implementation (in Listing first determines all terms that apply to an
object and then removes terms that are supplanted by others in the list. It uses the
procedure more-specific? to determine which terms supplant others. As shown in
Listing [8.6] this procedure checks if an example object of the proposed less specific

term satisfies the definition of the proposed more specific term.

Code Listing 8.6: Relations among terms

1 (define (more-specific? more-specific-term less-specific-term)
2 (let ((more-specific-obj (example-object more-specific-term)))
3 (is-a? less-specific-term more-specific-obj)))

8.5.1 Maintaining the Term Lattice

In addition to helping remove redundant information in results, this partial order on
terms is used to build and maintain a lattice of terms in the student structure. This

lattice can be rendered to a figure using dot/Graphviz as shown in Example .

Interaction Example 8.7: Full Definition Lattice

=> (show-definition-lattice)

e0e | lattice.png

102

The definition lattice is implemented as a general lattice data structure I created
that can be used with any partial order comparator. It correctly positions nodes and

updates the relevant parent and child pointers as nodes are added and removed.

Information from the lattice is used to update the derived definition fields. As seen
in Listing [8.8] after a new definition term is added to the lattice, it and its child terms
(determined from lattice) are updated. The immediate parent nodes in the lattice be-
come the definition’s classifications. Then definition-specific-conjectures
is updated to be the set difference of the definition’s current conjectures and the

conjectures known about its ancestors in the lattice.

Code Listing 8.8: Updating Terms from Lattice

(define (add-definition-lattice-node! term)
(add-lattice-node (definition-lattice) (make-lattice-node term term))
(update-definitions-from-lattice (cons term (child-terms term))))

(define (update-definition-from-lattice term)
(Letx ((def (lookup term))
(current-conjectures (definition-conjectures def))
(ancestor-terms (ancestor-terms term))
(ancestor-defs (map lookup ancestor-terms))
(ancestor-conjectures
(append-map definition-conjectures ancestor-defs))
(new-conjectures
(set-difference current-conjectures
ancestor-conjectures
conjecture-equivalent?)))
(set-definition-classifications! def (parent-terms term))
(set-definition-specific-conjectures! def new-conjectures)))

© 0 N O g s W N

[S O S S S
N O R W N = O

This lattice structure allows terms definitions to build off of one another and allows
definitions to report only definition-specific conjectures. These updated classification
and definition-specific properties are also used in the full version of checking when a
definition holds as shown in Listing[8.9] This version checks that a definition satisfies
all parent classifications first before checking the definition-specific conjectures that

differentiate it from those classifications.

103

Code Listing 8.9: Recursive Definition Holds

1 (define (definition-holds? def obj)

2 (Let ((classifications (definition-classifications def))

3 (specific-conjectures (definition-specific-conjectures def)))
4 (and ((definition-predicate def) obj)

5 (every (lambda (classification-term)

6 (is-a? classification-term obj))

7 classifications)

8 (every (lambda (conjecture)

9 (satisfies-conjecture? conjecture (list obj)))

10 specific-conjectures))))

8.5.2 Core Knowledge

To initialize the system, the student structure is provided with several primitive

definitions at startup as shown in Listing [8.10]

Code Listing 8.10: Introducing Core Knowledge

(define (provide-core-knowledge)
(for-each add-definition! primitive-definitions))

1

2

3

4 (define primitive-definitions

5 (list

6 (make-primitive-definition 'object true-proc true-proc)
7 (make-primitive-definition 'point point? random-point)
8 (make-primitive-definition 'line line? random-line)

9

10 (make-primitive-definition 'triangle triangle? random-triangle))

8.6 Learning new Terms and Conjectures

To learn a new definition, the system must be given the name of the term being
learned as well as a procedure that will generate arbitrary instances of that definition.
To converge to the correct definition, that random procedure should present a wide
diversity of instances (i.e. the random-parallelogram procedure should produce all
sorts of parallelograms, not just rectangles). However, reconciling mixed information

about what constitutes a term could be an interesting extension.

104

Code Listing 8.11: Learning a new term

(define (learn-term term object-generator)
(if (term-known? term) (error "Term already known:" term))
(Let ((term-example (name-polygon (object-generator))))
(Let* ((primitive-predicate (get-primitive-predicate term-example))
(fig (figure (as-premise term-example 0)))
(observations (analyze-figure fig))
(conjectures (map conjecture-from-observation observations)))
(pprint conjectures)
(let ((new-def
(make-definition term object-generator
primitive-predicate conjectures)))
(add-definition! new-def)
(check-new-def new-def)
‘done))))

© 0 N O oA W N =

e e =
= W N = O

16 (define (conjecture-from-observation obs)
17 (make-conjecture

18 (map element-dependencies->list (observation-args obs))
19 (map element-source (observation-args obs))
20 (observation-relationship obs)))

Listing shows the implementation of the learn-term procedure. It uses the
provided generator procedure to produce an example object for the term, creates a
figure with that object as its premise and obtains observations. These observations
are converted to conjectures via conjecture-from-observation and the resulting

definition is added to the student dictionary and term lattice.

8.6.1 Performing Investigations

As demonstrated in Example (page , the learning module also supports in-
vestigations to learn conjectures based on elements constructed from base premises.
Performing investigations are similar to learning terms except that, rather than pro-
viding a procedure that just generates an example of the term in consideration, an
investigation uses a procedure which takes an instance of the premise (polygon in these
cases) and constructs an entire figure to analyze. In addition to reporting the inter-
esting observations of such investigations, conjectures for new observations derived

by that investigation are added to the definition for the term under investigation.

105

8.7 Simplifying Definitions

As properties accumulate from analysis and investigation, the need to satisfy all
known properties for a shape overconstraints the resulting definitions. Thus, the final
role of the learning module is to simplify term definitions by checking declarative
constraints.

As seen in Listing 8.12] get-simple-definitions takes a known term, looks
up the known properties for that term, and tests all reasonable subsets of those
properties as constraints using the constraint solver. For each subset of properties, if
the constraint solver was able to create a diagram satisfying exactly those properties,
the resulting diagram is checked using with the is-a? procedure to see if all the other
known properties of the original term still hold.

If so, the subset of properties is reported as a sufficient definition of the term, and
if the resulting diagram fails some properties, the subset is reported as an insufficient
set of constraints. These resulting sufficient definitions can be treated as equivalent,

simpler definitions and used as the premises in new theorems about the objects.

Code Listing 8.12: Simplifying Definitions

1 (define (get-simple-definitions term)

2 (Let ((def (lookup term))

3 (simple-def-result (make-simple-definitions-result)))

4 (Let* ((object ((definition-generator def)))

5 (fig (figure (as-premise (name-polygon object) 0)))
6 (all-observations (analyze-figure fig))

7 (eligible-observations

8 (filter observation->constraint all-observations)))
9

(for-each
10 (lambda (obs-subset)
11 (if (simple-def-should-test? simple-def-result obs-subset)
12 (let ((polygon
13 (polygon-from-object-observations object obs-subset)))
14 ((cond ((false? polygon) mark-unknown-simple-def!)
15 ((is-a? term polygon) mark-sufficient-simple-def!)
16 (else mark-insufficient-simple-def!))
17 simple-def-result obs-subset)
18 (simplify-definitions-result! simple-def-result))
19 (pprint " (skipping ,obs-subset))))
20 (shuffle (all-subsets eligible-observations)))
2l simple-def-result)))

106

The simple-definitions-result structure maintains information about what
subsets are known to sufficient or insufficient as the analysis proceeds and provides
the predicate simple-def-should-test? to skip over subsets where the result is
already known.

The main workhorse in this definition simplification process is the procedure
polygon-from-object-observations. It interfaces with the constraint solver via
observations->figure to convert observations back into a figure. Its implementa-
tion is shown below in Listing [8.13] The object provided is used to determine the
topology and names of bars and linkages in the mechanism and the observation struc-
tures are used to add the necessary mechanism constraints. If the declarative system
can solve the mechanism, it once again uses the element names to extract and return

the resulting object.

Code Listing 8.13: Converting Observations to a Figure

(define (polygon-from-object-observations object obs-subset)
(Let* ((topology (topology-for-object object))
(new-figure (observations->figure topology obs-subset)))
(and new-figure (object-from-new-figure object new-figure))))

(define (establish-polygon-topology-for-polygon polygon)
(Llet* ((points (polygon-points polygon))
(vertex-names (map element-name points)))
(apply m:establish-polygon-topology vertex-names)))

© 0 N O oA W N =

11 (define (observations->figure-one-trial topology observations)
12 (initialize-scheduler)
13 (let*x ((constraints (observations->constraints observations))

14 (m (m:mechanism topology constraints)))
15 (m:build-mechanism m)

16 (and (m:solve-mechanism m)

17 (let ((fig (m:mechanism->figure m)))

18 (show-figure fig)

19 fig))

107

8.8 Discussion

The learning module has been able to successfully integrate with the other system
modules to discover and learn dozens of simple elementary geometry terms and the-
orems through its investigations. These include simple properties such as “the base
angles in an isosceles triangle are congruent,” derived properties such as “the diago-
nals of a rhombus are orthogonal and bisect one another” or “the polygon found by
connecting consecutive side midpoints of an orthodiagonal quadrilateral is always a
rectangle,” and simplified definitions such as “a quadrilateral with two pairs of con-
gruent opposite angles is a parallelogram.”

The current system has focused on discoveries related to polygons. Further ex-
tensions of the module could explore ideas related to other object types (segments,
lines, circles) or derive conjectures that depend on several arbitrary choices. Finally,
an interesting extension of the learning module would be to investigate properties
about constructions. This would be similar to a teacher instructing a student “this
is how you create a perpendicular bisector...” The student could then independently
explore creating perpendicular bisectors of various elements so that the system could
infer what interesting properties such constructions yield and omit those observations

when that construction is used.

108

Chapter 9

Related Work

The topics of working with geometry theorems and diagrams have rich histories yet
are still areas of active research.

As a seminal paper in the field, in the early 1960s, Herbert Gelernter created
a “Geometry Theorem Proving Machine” [8]. His machine focused on a deductive
process to search for proofs and used a formal system based on strings of characters. In
addition to purely logic-based inference rules, the system also asks the user requesting
a proof to provide a coordinate-backed diagram against which the system checks
various subgoals it is considering in a proof.

Despite this long history, several examples of related work are still found in the
proceedings of annual conferences such as Automated Deduction in Geometry [29)
and Diagrammatic Representation and Inference [1]. In addition, two papers from
the past year combine these concepts with a layer of computer vision interpretation
of diagrams. Chen, Song, and Wang present a system that infers what theorems
are being illustrated from images of diagrams [2], and a paper by Seo and Hajishirzi
describes using textual descriptions of problems to improve recognition of their ac-
companying figures [23].

The main areas of work related to my thesis are automated geometry theorem
proof, automated geometry theorem discovery, and mechanical analogs of geometry
concepts. After explaining some systems in these areas, I will discuss further re-

lated work including descriptions of the educational impacts of dynamic geometry

109

approaches and some software to explore geometric diagrams and proofs.
Some systems use techniques similar to those in this system’s modules, but most
approaches focus on deductive proof or complicated algebraic reformulations rather

than inductive reasoning and exploration.

9.1 Automated Geometry Proof

As opposed to my system which focuses on modeling a student’s investigations and
discoveries about geometry, the main focus of historic Artificial Intelligence efforts
related to geometry was obtaining proofs for theorems given by a user. Projects
explored both algebraic and synthetic approaches, some of which involved using dia-
grams in addition to purely symbolic manipulations [3], [9], [18]. Texts such as [11]
include a more detailed history and description of such systems. These systems are

reasonably powerful but generally produce long proofs.

9.2 Automated Geometry Discovery

Several papers also describe automated discovery in geometry. However, most of
these use alternate, more algebraic methods to find and later prove theorems. These
approaches include an area method [20], Wu’s Method involving systems of polyno-
mial equations [6], and a system based on Grobner Bases [16]. Some papers discuss
reasoning systems including the construction and application of a deductive database
of geometric theorems [4]. However, all of these methods focused on either deductive
reasoning or complex algebraic reformulations.

The effort closest to my system’s approach is Chen, Song and Wang’s “Auto-
mated Generation of Geometric Theorems from Images of Diagrams” [2]. This pa-
per includes an initial section with several image processing algorithms for detecting
points and segments from images. It then applies a series of heuristic strategies to
determine which elements are particularly relevant and propose candidate theorems.

These strategies generally involved assigning weights to points to determine which are

110

“characteristic points” or “points of attraction.” By doing so, their system successfully
proposed several nontrivial theorems that the original image could have been illus-
trating. Integrating some of these strategies into my system would be an interesting

extension.

9.3 Geometry Constraint Solving and Mechanics

Ideas about solving geometry diagram constraints are related to the fields of kine-
matic mechanisms and computer-aided design. Glenn Kramar provides a system
for solving geometry constraints in mechanisms [14], but focuses on several practi-
cal three-dimensional case studies with complicated joints. Summaries such as [12]
provide more information about other graph-based, logic-based, and algebraic meth-
ods for solving 2D geometry constraints. My system builds on a propagator system
by Alexey Radul and Gerald Jay Sussman [2I] and applies it to simple geometry

constraints.

9.4 Dynamic Geometry

From an education perspective, there are several texts that emphasize an investiga-
tive, conjecture-based approach to teaching. These include Discovering Geometry by
Michael Serra [24], the text I used to learn geometry and that served as an inspiration
to this thesis project. Some researchers praise these investigative methods [19] while

others question whether they appropriately encourage deductive reasoning skills [I3].

9.5 Software

Some of these teaching methods include accompanying software such as Cabri Ge-
ometry [7] and the Geometer’s Sketchpad [10] designed to enable students to explore
constructions interactively. These programs occasionally provide scripting tools, but

have no theorem or proof-related automation.

111

A few more academic analogs of these programs introduce some proof features.
For instance, GeoProof [17] integrates diagram construction with verified proofs using
a number of symbolic methods carried out by the Coq Proof Assistant, and Geometry
Explorer [28] uses a full-angle method of chasing angle relations to check assertions
requested by the user. However, none of the software described simulates or automates
the exploratory, inductive investigation process used by students first discovering new
conjectures.

One interesting piece of software is Geometer [0 created by Tom Davis. Like the
other programs, Geometer is primarily a user interface for accurately constructing
diagrams. It does not attempt to produce or prove theorems, but does have a “Test
Diagram” mode. When this mode is activated, the user can wiggle elements in the
diagram as they please. When “End Test” is selected, the program lists all features
that were maintained during the users’ manipulations. The creator claims that these
observations can be useful pieces for a user attempting to deductively prove a the-
orem about the figure they are drawing. This is a similar to the observations and
manipulations in my system but requires the user to manually manipulate elements

in the figure rather than automatically arbitrary choices in a specified construction.

112

Chapter 10

Conclusion

10.1 Overview

The system presented in this thesis provides a versatile framework for building, ex-
ploring, and analyzing geometry diagrams. As shown in the demonstrations, the
modules can both be used independently to construct and analyze interesting prop-
erties in geometric figures, and combined with one another to discover new geometry
concepts. By constructing and examining figures, generalizing observations, solving
constraints, and aggregating results, the system has been able to discover, learn, and
simplify dozens of elementary geometry properties and theorems.

In doing so, the process modeled and emulated the human-like process of imagin-
ing and manipulating instance of problems “in the mind’s eye” to better understand
new concepts. By focusing on noticing interesting invariants in externally specified
investigations, it simulates the effectiveness of an investigative-based approach to
learning and discovering geometry concepts.

Although the architecture of the four interrelated imperative construction build-
ing, perceiving, declarative constraint solving, and learning modules serves as a proof
of concept of and foundation for exploring such a learning approach, it has room
for further improvement and extension. Several chapters conclude with a discussion
section including ideas for future extensions and improvements.

In addition, while the techniques developed in this system generally reflect my

113

own approach to visualizing and thinking about geometry and background in learn-
ing geometry via an investigative approach, there is room to integrate the discovery
ideas in this system with some of the techniques from the rich history of automated

geometry theorem proving.

10.2 Limitations

Despite its successes, there are certainly limitations to the system’s current abilities.
Reasoning about geometry concepts is a very broad domain, and it becomes difficult
to develop general techniques that can apply in a wide variety of circumstances.
Chapters[6|and [7]discuss how this challenge arises when trying to filter more categories
of obvious observations and when deciding the ideal method for specifying values in
the constraint solver. There are also some sizable limitations to the system’s purely-

investigative approach that restrict what it is able to discover:

10.2.1 Probabilistic Approach

One challenge is that its approach is inherently probabilistic. As with any numerical-
based system, an important issue with using a coordinate-based, inductive technique
for discovering concepts is dealing with numerical inaccuracies. Although techniques
were used to lessen some of the effects of floating point errors, such techniques also
emphasize the probabilistic nature of the system. Without using deductive reasoning,
the system cannot ever fully confirm its findings are correct and may occasionally re-
port false properties due to uncertainty. However, reporting likely results is sufficient
for encouraging discovery as results in question could be further explored and checked

using external approaches.

10.2.2 Negative Relations and Definitions

In addition to only providing probabilistic confidence for its findings, there are some

relations and definitions that are hard to notice via a purely inductive, random-

114

sampling based approach. For instance, negative definitions such as learning that
scalene triangles are ones with no equal sides would require the system to handle

more complicated logical combinations of relationships.

10.2.3 Generality of Theorems

Finally, the full space of theorems about geometry is quite broad. Some of these state-
ments require a richer set of tools than provided in this system. For instance, noticing
the fact that that “the shortest distance from a point to a line is along the perpen-
dicular to the line” would require the current system to be testing and searching for
maxima and minima in its manipulations. The current system is limited to discov-
ering conjectures regarding simple relationships among objects that are constructed

from some initial premises.

10.3 System-level Extensions

In addition to improvements to individual modules to reduce the effects of ran-
domness, filter out additional obvious properties, and support more declarative con-
straints, there are several interesting larger-scale extensions that could integrate with

the system.

10.3.1 Deductive Proof Systems

One of the main extensions is to integrate the results from the system with an auto-
mated, deductive geometry prover. Although such provers often use less human-like
approaches when verifying statements, having access to such a system could increase
this system’s confidence in the properties and conjectures it finds as it continues to

explore new concepts.

115

10.3.2 Learning Constructions

In addition to generating formal, deductive proofs about the properties and theorems
resulting from the system’s explorations, another interesting extension would be for
the system to learn from the process it uses in generating its results. For example,
the sequence and dependencies for how values were determined in solving a set of
declarative constraints might be able to be abstracted into a sequence of more typical

construction procedures that produce the same diagram.

10.3.3 Self-directed Explorations

A final exciting addition to the system is to build a self-directed mode of operation in
which the system proposes its own constructions and diagrams to investigate rather
than being prompted from an outside user. As the system expands its repository of
knowledge about constructions and conjectures, it could use these findings to direct
further explorations. This would provide some full circle closure to the discovery
process and could even lead to the system creatively devising interesting exercises or

exam questions that test the knowledge it has acquired.

116

Appendix A

Code Listings

This appendix contains full code listings for the system, implemented using MIT /GNU

Scheme 9.2. In addition to the code provided here, the system is dependent on the

propagator system used in Alexey Radul and Gerald Jay Sussman’s Revised Report

on the Propagator Model available at http://groups.csail.mit.edu/mac/users/

gjs/propagators/.

The three files in 1ib/ are code used with permission from external sources, and

include excerpts of code created by Gerald Sussman and others from the MIT Scheme

Mechanics Library [26]. These excerpts handle numeric accuracy, generic operations,

and hash-table based eq-properties. All other code in these listings is written solely

by me for use in this thesis.

List of Listings

AT Toadscml 120
Imperative Construction System:

A2 figure/core.scm| Lo 120
IA.3 figure/linear.scm| oo L L 120
A4 figure/direction.scm|o 123
A5 figure/vec.sem| ... L. 123
IA.6 figure/measurements.scm|o 124

http://groups.csail.mit.edu/mac/users/gjs/propagators/
http://groups.csail.mit.edu/mac/users/gjs/propagators/

A7 figure/angle.scm| 125

[A.8 figure/bounds.scm| 127
A9 figure/circle.ssem|o 128
[A.10 figure/point.scm| L. 129
[A.11 figure/constructions.scm| 129
[A.12 figure/intersections.scm|o oL 131
[A.13 figure/figure.scm| L. 133
[A.14 figure/math-utils.sem| o oo 133
[A.15 figure/polygon.sem|. 134
[A.16 figure/metadata.scm| o oo 135
[A.17 figure/dependencies.scm| Lo Lo oL 136
[A.18 figure/randomness.scm|.o L L 137
A.19 figure/transforms.scm| o Lo 139
[A.20 figure/direction-interval.scm|.o oL 140

Perception Module:

[A.21 perception/relationship.scm|o 144
[A.22 perception/observation.scm| oo 145
[A.23 perception/analyzer.scm|. o oL 145

Graphics Utilities:

[A.24 graphics/appearance.scml| 148
[A.25 graphics/graphics.scmfo o oL 148
Declarative Constraint Solver:

[A.26 solver/linkages.scm|. Lo 149
[A.27 solver/region.scm|. L oo 158
[A.28 solver/constraints.scm| oL Lo 162
[A.29 solver/topology.scm| oo 164
[A.30 solver/mechanism.scm| oo o 164
[A.31 solver/main.scm| 167

Learning Module:

[A.32 learning/interface.scm| oL Lo 169

[A.33 learning/lattice.scm| oo oL L

[A.34 learning/definitions.scm|o oo o oL

[A.35 learning/conjecture.scml|

[A.36 learning/simplifier.scm|. o oL

[A.37 learning/student.scm|. oo oL

[A.38 learning/core-knowledge.scm| 0L

[A.39 learning/investigation.scm|.o oL

Example Content:

[A.40 content/random-polygons.scm|.

[A.41 content/thesis-demos.scm|

[A.42 content/walkthrough.scm|o

[A.43 content/investigations.scm|.o L oL

[A.44 content/initial-demo.scm| L0000

Core Components and Utilities:

[A.45 core/animation.scm|o Lo

[A.46 core/macros.scm|

[A.47 core/print.scm|

A48 core/utils.sem|

External Library Procedures:

[A.49 lib/close-enuf.scm|o

[A.50 lib/eq-properties.scml. Lo
[A.51 lib/ghelper.scm|.o

119

0cI

35
36
37
38
39
40
41

N o O W N

Listing A.1: load.scm

;33 load.scm -- Load the system
;3 Code:
3isiiiiniiiiasiisasiasasisass Utilities [;iii3iiiiiiiiiiiiiaiiiiriiiis

(define (reset)
(ignore-errors (lambda () (close)))
(ge (make-top-level-environment))
(load "load"))

(define (load-module subdirectory)
(let ((cur-pwd (pwd)))
(cd subdirectory)
(load "load")
(cd cur-pwd)))

piiiiiisiiisiiiiiiiiiiiiiiss Load Modules ;iiiiisiiiiisiiiiiiiiiiiiiii

(for-each (lambda (m) (load-module m))
'("lib"
"core"
"figure"
"graphics"
"solver"
"perception"
"learning"
"content"))

3isisiiniiiiasiieasiisasiias: Initialize ;;ii3iiiiiiiiiiiiiaiiiiriiiig

(define c (if (environment-bound? (the-environment) 'c) c (canvas)))
(define (close) (ignore-errors (lambda () (graphics-close (canvas-g

c)))))

(set! xrandom-statex (fasload "a-random-state"))
(initialize-scheduler)
(initialize-student)

'done-loading

Listing A.2: figure/core.scm

;33 core.scm --- Core definitions used throughout the figure elements
;35 Commentary:

;3 Ideas:
;5 - Some gemeric handlers used in figure elements

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

© 00 N O U W N

;3 Future:
;3 - figure-element?, e.g.

;33 Code:

(define element-component
(make-generic-operation
2 'element-component
(lambda (el i)
(error "No component procedure for element" el))))

(define (component-procedure-from-getters
(let ((num-getters (length getters)))
(lambda (el i)
(if (not (<= 0 i (- num-getters 1)))

. getters)

(error "Index out of range for component procedure:

((list-ref getters i)
el))))

(define (declare-element-component-handler handler type)
(defhandler element-component handler type number?))

(declare-element-component-handler list-ref list?)

#]
Example Usage:

(declare-element-component-handler
(component-procedure-from-getters car cdr)
pair?)

(declare-element-component-handler vector-ref vector?)

(element-component '(3 . 4) 1)
;Value: 4

(element-component #(1 2 3) 2)

;Value: 3
|#

Listing A.3: figure/linear.scm
;35 line.scm --- Line

;53 Commentary:

;3 Ideas:

;5 - Linear Elements: Segments, Lines, Rays

;3 - ALl have direction

;3 - Conversions to directions, extending.

;3 - Lines are point + direction, but hard to access point

" 1))

1¢1

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

;3 - Means to override dependencies for random segments

;3 Future:

;3 - Simplify direction requirements

;3 - Improve some predicates, more tests
;5 - Fill out more dependency information

;15 Code:

(define-record-type <segment>
(make-segment pl p2)
segment?

(pl segment-endpoint-1)
(p2 segment-endpoint-2))

(defhandler print
(lambda (s)
(if (named? s)
(element-name s)
" (xsegmentx , (print (segment-endpoint-1 s))
, (print (segment-endpoint-2 s)))))
segment?)

(define (segment-endpoints s)
(list (segment-endpoint-1 s)
(segment-endpoint-2 s)))

(declare-element-component-handler
(component-procedure-from-getters segment-endpoint-1

segment-endpoint-2)
segment?)

(defhandler generic-element-name
(lambda (seg)
* (xsegmentx* , (element-name (segment-endpoint-1 seg))
, (element-name (segment-endpoint-2 seg))))
segment?)

sisiisaaiisaasisaassaaiisaaiss Lines igiiiiaiiiiaiiiiiiiiiiiiiiiiiig

(define-record-type <line>
(make-1line point dir)
line?
(point line-point) ;; Point on the line
(dir line-direction))

(defhandler print
element-name
line?)

(define (line-from-points pl p2)
(make-line pl (direction-from-points pl p2)))

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

(define (line-from-point-direction p dir)
(make-line p dir))

(define (two-points-on-line line)
(let ((point-1 (line-point line)))
(let ((point-2 (add-to-point
point-1
(unit-vec-from-direction (line-direction line)))))
(list point-1 point-2))))

(define (line-pl line)
(car (two-points-on-line line)))

(define (line-p2 line)
(cadr (two-points-on-line line)))

(define-record-type <ray>
(make-ray initial-point direction)
ray?
(initial-point ray-endpoint)
(direction ray-direction))

(define (ray-from-point-direction p dir)
(make-ray p dir))

(define (ray-from-points endpoint pl)
(make-ray endpoint (direction-from-points endpoint pl)))

(define (reverse-ray ray)
(make-ray
(ray-endpoint ray)
(reverse-direction (ray-direction ray))))

(define (shorten-ray-from-point r p)
(if (not (on-ray? p r))
(error "Can only shorten rays from points on the ray"))
(ray-from-point-direction p (ray-direction r)))

(define (ray-from-arm-1 a)
(let ((v (angle-vertex a))
(dir (angle-arm-1 a)))
(make-ray v dir)))

(define (ray-from-arm-2 a)
(ray-from-arm-1 (reverse-angle a)))

(define (line-from-arm-1 a)
(ray->line (ray-from-arm-1 a)))

¢cl

118
119

127

(define (line-from-arm-2 a)
(ray->line (ray-from-arm-2 a)))

siisaiaaaiaaasiiasiisissirass vransforms Gigguaiiiiiiiiiiiiiiiiiiiiiig
(define flip (make-generic-operation 1 'flip))

(define (flip-line line)

(make-line

(line-point line)

(reverse-direction (line-direction line))))
(defhandler flip flip-line line?)

(define (flip-segment s)
(make-segment (segment-endpoint-2 s) (segment-endpoint-1 s)))
(defhandler flip flip-segment segment?)

(define (reverse-ray r)
(make-ray (ray-endpoint r)
(reverse-direction (ray-direction r))))

(define (segment-length seg)
(distance (segment-endpoint-1 seg)
(segment-endpoint-2 seg)))

Siiiiiiaiisiiisiiiiaiiiiiii Predicates ;iiiisiiiiiiiiiiiiiiiiiiiii

(define (linear-element? x)
(or (line? x)
(segment? x)
(ray? x)))

(define (parallel? a b)
(direction-parallel? (->direction a)
(->direction b)))

(define (perpendicular? a b)
(direction-perpendicular? (->direction a)
(->direction b)))

(define (segment-equal? sl s2)
(and
(point-equal? (segment-endpoint-1 sl)
(segment-endpoint-1 s2))
(point-equal? (segment-endpoint-2 sl)
(segment-endpoint-2 s2))))

;13 Regardless of ordering or point naming, refers to the same pair of
;33 point locations.
(define (segment-equivalent? sl s2)

(set-equivalent?

172
173
174
175
176
177
178

180
181
182
183
184
185
186
187
188
189

191
192
193
194
195
196
197
198
199
200
201
202

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

(segment-endpoints s1)
(segment-endpoints s2)
point-equal?))

(define (segment-equal-length? seg-1 seg-2)
(close-enuf? (segment-length seg-1)
(segment-length seg-2)))

(define (ray-equal? rl r2)
(and (point-equal?
(ray-endpoint rl)
(ray-endpoint r2))
(direction-equal?
(ray-direction rl)
(ray-direction r2))))

;35 Ignores line point and direction
(define (line-equivalent? 11 12)
(and (or (on-line? (line-point 11) 12)
(on-1ine? (line-point 12) 11))
(or
(direction-equal?
(line-direction 11)
(line-direction 12))
(direction-opposite?
(line-direction 11)
(line-direction 12)))))

Siiiiiiasissiiiiiiiiiiisiis; Conversions ;iiiiiiiiiiiiiiiiiiiiiiiiiiii

;73 Ray shares point pl
(define (segment->ray segment)
(make-ray (segment-endpoint-1 segment)
(direction-from-points
(segment-endpoint-1 segment)
(segment-endpoint-2 segment))))

(define (ray->line ray)
(make-line (ray-endpoint ray)
(ray-direction ray)))

(define (segment->line segment)
(ray->line (segment->ray segment)))

(define (line->direction 1)
(line-direction 1))

(define (ray->direction r)
(ray-direction r))

(define (segment->direction s)
(direction-from-points
(segment-endpoint-1 s)
(segment-endpoint-2 s)))

€cl

254

==
H O © 0 N O U s W N =

e e
0 N O Ul W N

19

(define (segment->vec s)
(sub-points
(segment-endpoint-2 s)
(segment-endpoint-1 s)))

(define ->direction (make-generic-operation 1 '->direction))
(defhandler ->direction line->direction line?)

(defhandler ->direction ray->direction ray?)

(defhandler ->direction segment->direction segment?)

(define ->line (make-generic-operation 1 '->line))
(defhandler ->line identity line?)

(defhandler ->line segment->line segment?)
(defhandler ->line ray->line ray?)

(define linear-element-equivalent?
(make-generic-operation 2 'linear-element-equivalent?
false-proc))

(defhandler linear-element-equivalent?
segment-equivalent?
segment? segment?)

(defhandler linear-element-equivalent?
ray-equal?
ray? ray?)

(defhandler linear-element-equivalent?

line-equivalent?
line? line?)

Listing A.4: figure/direction.scm

;33 direction.scm --- Low-level direction structure

;33 Commentary:

;3 A Direction is equivalent to a unit vector pointing in some direction.

;3 Ideas:
;3 - Ensures range [0, 2pi]

;3 Future:
;3 - Could generalize to dx, dy or theta

;3 Code:
iiisiiiisiiiiiiiiiiiiss Direction Structure ;555555 5555555555550000
(define-record-type <direction>

(% direction theta)
direction?

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

(theta direction-theta))

(define (make-direction theta)
(%direction (fix-angle-0-2pi theta)))

(define (print-direction dir)
‘(direction , (direction-theta dir)))
(defhandler print print-direction direction?)

3iiiiiiiiiiiiiisisiiniiiiizi; Arithemtic ;j3:i55iiiiiiiiiiisiiiiiiiiiii

(define (add-to-direction dir radians)
(make-direction (+ (direction-theta dir)
radians)))
;35 D2 - D1
(define (subtract-directions d2 d1)

(if (direction-equal? d1 d2)
0
(fix-angle-0-2pi (- (direction-theta d2)

(direction-theta d1)))))
Siiiiiiiaaaasaiiiiiiiiiiiiiss Operations iiiiiiiiiiiiiiiiiiiiiiiiiiii
;i CCW
(define (rotate-direction-90 dir)

(add-to-direction dir (/ pi 2)))

(define (reverse-direction dir)
(add-to-direction dir pi))

siiiisiiasaiiiiiiiiiiiaiiiiyy Predicates giiiiiiiiiiiiiiiiiiiiiiiiiiig

(define (direction-equal? dl1 d2)
(or (close-enuf? (direction-theta dl)
(direction-theta d2))
(close-enuf? (direction-theta (reverse-direction dl))
(direction-theta (reverse-direction d2)))))

(define (direction-opposite? dl d2)
(close-enuf? (direction-theta dl1)
(direction-theta (reverse-direction d2))))

(define (direction-perpendicular? dl1 d2)
(let ((difference (subtract-directions dl1 d2)))

(or (close-enuf? difference (/ pi 2))
(close-enuf? difference (x 3 (/ pi 2))))))

(define (direction-parallel? dl d2)

(or (direction-equal? d1 d2)
(direction-opposite? dl d2)))

Listing A.5: figure/vec.scm

Vel

—
= O © 00N O Uk WN K-

CU O Ol OOl R R R R R R R R D W0 WW W W W W WWWNNNNNNNNNNEE R e e e
AW DR OOBCHETIOOhAE ®DHOO®OWN®ONE X®RRE OGNS KR WNRO®OWN O R WK

;33 vec.scm --- Low-level vector structures
;35 Commentary:

;3 Ideas:
;7 - Simplifies lots of computation, cartesian coordiates
;3 - Currently 2D, could extend

;3 Future:
;3 - Could generalize to allow for polar vs. cartesian vectors

;3 Code:
siiiaaaaasiiviisaiiiiiisss Vector Structure iiiiiiiiiiiiiiiiiiiiiig

(define-record-type <vec>
(make-vec dx dy)
vec?
(dx vec-x)
(dy vec-y))

;33 Transformations of Vectors
(define (vec-magnitude v)
(let ((dx (vec-x v))
(dy (vec-y v)))
(sqrt (+ (square dx) (square dy)))))

iiisiiiiiiiiiiiiiiiiss Alternate Constructors ;;;iiiii5iiii5iiiiiiiig

(define (unit-vec-from-direction direction)
(let ((theta (direction-theta direction)))
(make-vec (cos theta) (sin theta))))

(define (vec-from-direction-distance direction distance)
(scale-vec (unit-vec-from-direction direction) distance))

Pivisisaiisiiiiiiiaaiiiiiiss Conversions ;iiiiiiiiiiiiiiiiiiiiiiiiiiii

(define (vec->direction v)
(let ((dx (vec-x v))
(dy (vec-y v)))
(make-direction (atan dy dx))))

;33 Returns new vecs

(define (rotate-vec v radians)
(let ((dx (vec-x v))
(dy (vec-y v))
(c (cos radians))
(s (sin radians)))
(make-vec (+ (* c dx) (- (* s dy)))
(+ (x s dx) (x cdy)))))

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

© 00 N O U W N

e e
B W N = O

(define (scale-vec v c)

(let ((dx (vec-x v))

(dy (vec-y v)))
(make-vec (* c dx) (*x c dy))))

(define (scale-vec-to-dist v dist)
(scale-vec (unit-vec v) dist))

(define (reverse-vec v)
(make-vec (- (vec-x v))
(- (vec-y v))))

(define (rotate-vec-90 v)
(let ((dx (vec-x v))
(dy (vec-y v)))

(make-vec (- dy) dx)))

(define (unit-vec v)
(scale-vec v (/ (vec-magnitude v))))
Siiisaaasaiiiiiisaiiaaaiiyyy Predicates giiiiiiiiiiiiiiiiiiiiiiiiiiig

(define (vec-equal? vl v2)
(and (close-enuf? (vec-x vl)
(close-enuf? (vec-y vl)

(vec-x v2))
(vec-y v2))))

(define (vec-direction-equal? v1 v2)
(direction-equal?
(vec->direction vl)
(vec->direction v2)))

(define (vec-perpendicular? vl v2)
(close-enuf?

(x (vec-x vl) (vec-x v2))
(* (vec-y vl1) (vec-y (reverse-vec v2)))))

Listing A.6: figure/measurements.scm
;53 measurements.scm
;5 Commentary:
;; Ideas:
;3 - Measurements primarily for analysis

;5 - Occasionally used for easily duplicating angles or segments

;3 Future:
;3 - Arc Measure

;35 Code:

piiisiisiiiiiiiisisisiiiiiiess Distance ;iiiiiiiiiiiiiiiiiiiiiiiiii

acl

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

(define (distance pl p2)

(sqrt (+ (square (- (point-x p1) 1 ;55 angle.scm --- Angles
(point-x p2))) 2 . .
(square (- (point-y pl) 3 ;;; Commentary:
oint-y p2 4
(p y p2)))))) 5 . Ideas:
;33 Sign of distance is positive if the point is to the left of 6 ff - Initially threg p01nts, now vertex + two directions
;33 the line direction and negative if to the right. T Cognter—clockw1§elorlentatlon .
(define (signed-distance-to-line point line) 8 ;; - Uniquely determining from elements forces directions
(let ((pl (line-pl line)) 9 ;; - naming of "arms" vs. "directions"
(p2 (line-p2 line))) 10 - .
(let ((x@ (point-x point)) 11 ;; Future Ideas: , _
(y® (point-y point)) 12 ;; - Automatically discover angles from diagrams (e.g. from a pile of
(x1 (point-x pl)) 13 ;; points and segments)
(yl (point-y pl)) 14 ;; - Angle intersections
(x2 (point-x p2)) ' . .
(y2 (point-y p2))) 16 ;;; Code:
(/ (+ (- (xx0 (- y2 y1))) S ANGLES 55t
(* y0 (- x2 x1)) IR U [1 X I R R R R R R R R
(- (x x2 y1)) L0 . . N
(* y2 x1)) 20 ;;; dirl and dir2 are directions of the angle arms
(x 1.0 21 ;;; The angle sweeps from dir2 *counter clockwisex to dirl
(sqrt (+ (square (- y2 y1)) 22 (define-record-type <angle>
(square (- x2 x1))))))))) 23 (make-angle dirl vertex dir2)
24 angle?
(define (distance-to-line point line) 25 (dirl angle-arm-1)
(abs (signed-distance-to-line point line))) 26 (vgrtex angle-vertex)
27 (dir2 angle-arm-2))
Siiasaasasassiiiaaassaiisss Angles iguiiaiiiiiiaiiiiiiiiiiiiiig 28
29 (declare-element-component-handler
(define (angle-measure a) 30 (component-procedure-from-getters
(letx ((d1 (angle-arm-1 a)) 31 ray-from-arm-1
(d2 (angle-arm-2 a))) 32 angle-vertex
(subtract-directions d1 d2))) 33 ray-from-arm-2)
34 angle?)
Siiiiiiiiiisiiiiiiiiiiis; Measured Elements ;555555555 555555555555000 35 .)
36 (define (angle-equivalent? al a2)
(define (measured-point-on-ray r dist) 37 (and (point-equal?
(letx ((pl (ray-endpoint r)) 38 (angle-vertex al)
(dir (ray-direction r)) 39 (angle-yertex 32))
(v (vec-from-direction-distance 40 (seF—equ1va1ent.
dir dist))) 41 (list (angle-arm-1 al) (angle-arm-2 al))
(add-to-point pl v))) 42 (list (angle-arm-1 a2) (angle-arm-2 a2))
43 direction-equal?)))
(define (measured-angle-ccw pl vertex radians) 44
(let* ((v1 (sub-points pl vertex)) 45 (defhandler generic-element-name
(v-rotated (rotate-vec v (- radians)))) 46 (I?mbda (angle)
(angle vl vertex v-rotated))) 47 (xanglex , (element-name (angle-vertex angle))))
48 angle?)
(define (measured-angle-cw pl vertex radians) 49
(reverse-angle (measured-angle-ccw pl vertex (- radians)))) 50 (defhandler print
51 (lambda (a)
52 (if (named? a)

Listing A.7: figure/angle.scm

9¢I

53
54

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

(element-name a)
" (xanglex ,(print (angle-vertex a)))))

angle?)
iiisiisisiisiiiiiiiss Transformations on Angles ;;55i5555555iii5ii305
(define (reverse-angle a)

(
(let ((d1 (angle-arm-1 a))
(v (angle-vertex a))
(d2 (angle-arm-2 a)))
(make-angle d2 v dl1)))

(define (smallest-angle a)
(if (> (angle-measure a) pi)
(reverse-angle a)
a))

piiiiiiiiiiiiiiiiiiiss; Alternate Constructors ;5i5555555555555555ii00

(define (angle-from-points pl vertex p2)
(let ((arml (direction-from-points vertex pl))
(arm2 (direction-from-points vertex p2)))
(make-angle arml vertex arm2)))

(define (smallest-angle-from-points pl vertex p2)
(smallest-angle (angle-from-points pl vertex p2)))

(define angle-from (make-generic-operation 2 'angle-from))

(define (angle-from-lines 11 12)
(let ((d1l (line->direction 11))
(d2 (line->direction 12))
(p (intersect-lines 11 12)))
(make-angle d1 p d2)))
(defhandler angle-from angle-from-lines line? line?)

(define (angle-from-line-ray 1 r)
(let ((vertex (ray-endpoint r)))
(assert (on-line? vertex 1)
"Angle-from-line-ray: Vertex of ray not on line")

(let ((d1l (line->direction 1))

(d2 (ray->direction r)))

(make-angle dl1 vertex d2))))
(defhandler angle-from angle-from-line-ray line? ray?)

(define (angle-from-ray-line r 1)
(reverse-angle (angle-from-line-ray 1 r)))
(defhandler angle-from angle-from-ray-line ray? line?)

(define (angle-from-segment-segment sl s2)
(define (angle-from-segment-internal sl s2)
(let ((vertex (segment-endpoint-1 sl)))

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

135

139
140

146

150

(let ((dl (segment->direction sl1))
(d2 (segment->direction s2)))
(make-angle dl1 vertex d2))))
(cond ((point-equal? (segment-endpoint-1 s1)
(segment-endpoint-1 s2))
(angle-from-segment-internal sl s2))
((point-equal? (segment-endpoint-2 s1)
(segment-endpoint-1 s2))
(angle-from-segment-internal (flip s1) s2))
((point-equal? (segment-endpoint-1 s1)
(segment-endpoint-2 s2))
(angle-from-segment-internal sl (flip s2)))
((point-equal? (segment-endpoint-2 sl1)
(segment-endpoint-2 s2))
(angle-from-segment-internal (flip sl1) (flip s2)))
(else (error "Angle-from-segment-segment must share vertex"))))
(defhandler angle-from angle-from-segment-segment segment? segment?)

(define (smallest-angle-from a b)
(smallest-angle (angle-from a b)))

(define (angle-measure-equal? al a2)
(close-enuf? (angle-measure al)
(angle-measure a2)))

(define (supplementary-angles? al a2)
(close-enuf? (+ (angle-measure al)
(angle-measure a2))

pi))

(define (complementary-angles? al a2)
(close-enuf? (+ (angle-measure al)
(angle-measure a2))

(/ pi 2.0)))

visiiiiasiisiiiisiissss ldeas for Definitions ;5555555555330
;33 Not currently used, but could be learned later?

(define (linear-pair? al a2)
(define (linear-pair-internal? al a2)
(and (point-equal? (angle-vertex al)
(angle-vertex a2))
(direction-equal? (angle-arm-2 al)
(angle-arm-1 a2))
(direction-opposite? (angle-arm-1 al)
(angle-arm-2 a2))))
(or (linear-pair-internal? al a2)
(linear-pair-internal? a2 al)))

(define (vertical-angles? al a2)
(and (point-equal? (angle-vertex al)

Lcl

161
162
163
164
165

=
H O © 0 N O U W N -

IR R R R R W W W W W W W W W W NNNDNDNINDNNRNNRERRRB®H®B B B
Ul W N - O © 0O U B WNFHFOO©OWNOUEWNRROO©®WNO O B WK

(angle-vertex a2))
(direction-opposite? (angle-arm-1 al)
(angle-arm-1 a2))
(direction-opposite? (angle-arm-2 al)
(angle-arm-2 a2))))

Listing A.8: figure/bounds.scm

;33 bounds.scm --- Graphics Bounds
;35 Commentary:

;3 Ideas:

;3 - Logic to extend segments to graphics bounds so they can be drawn.

;3 Future:

;3 - Separate logical bounds of figures from graphics bounds

;3 - Combine logic for line and ray (one vs. two directions)

;3 - Should these be a part of "figure" vs. "graphics"

;3 - Remapping of entire figures to different canvas dimensions

;3 Code:

(define-record-type <bounds>
(make-bounds x-interval y-interval)
bounds?

(x-interval bounds-x-interval)
(y-interval bounds-y-interval))

(define (bounds-xmin b) (interval-low (bounds-x-interval b)))
(define (bounds-xmax b) (interval-high (bounds-x-interval b)))
(define (bounds-ymin b) (interval-low (bounds-y-interval b)))
(define (bounds-ymax b) (interval-high (bounds-y-interval b)))

(define (print-bounds b)
* (bounds , (bounds-xmin b)
, (bounds-xmax b)
, (bounds-ymin b)
, (bounds-ymax b)))
(defhandler print print-bounds bounds?)

piiiiiiiiiisiiiiiiiiiiiii; Bounds Constants ;iiiiiiiiisiiiiiiiiiiiiiii

;33 Max bounds of the graphics window

(define *g-min-x*x -2)
(define xg-max-x* 2)
(define *g-min-y* -2)
(define *g-max-yx 2)

Siiiiiaasiiaaiiiiiiiiiaiirasiy Bounds uaiiiaiiiiiiiiiiiiiiiiiiiiig

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

(define

(let ((x1 (point-x pl))

x2 (point-x p2
y2 (point-y p2

(let ((dx (- x2 x

(dy (- y2 y1)))

(
(
(y1 (point-y pl
(
(

1)

)
)
)
)
)

)
)
)

extend-to-max-segment pl p2)

)

(make-segment

(make-point x1 *g-min-yx*)
(make-point x1 xg-max-yx)))

(make-segment

(make-point xg-min-xx* yl)
(make-point xg-min-yx* yl)))

(cond
((= 0 dx)
((= 0 dy)
(else
(let ((t-xmin (/
(t-xmax (/
(t-ymin (/
(t-ymax (/
(let* ((sorted
(min-t
(max-t
(min-x
(min-y
(max-x
(max-y

(
(
(
(
(
(

- *g-min-x* x1) dx
- kg-max-xx x1) dx
- xg-min-yx yl) dy
- *g-max-yx yl) dy
sort (list t-xmin t-xmax t-ymin t-ymax) <))
adr sorted))

addr sorted))

+ x1 (* min-t dx)))

+ yl (* min-t dy)))

+ x1 (* max-t dx)))

+ yl (x max-t dy))))

OO~~~ ~ ~

(make-segment (make-point min-x min-y)

(make-point max-x max-y)))))))))

(define (ray-extend-to-max-segment pl p2)
(let ((x1 (point-x pl))
(yl (point-y pl

(x2 (point-x p2

(y2 (point-y p2

(let ((dx (- x2 x

(dy (- y2 y1)))

(cond

1)

)
)
)
)
)

)
)
)

)

((= 0 dx) (make-segment
(make-point x1 *g-min-y*)
(make-point x1 xg-max-yx)))
((= 0 dy) (make-segment
(make-point *g-min-x* yl)
(make-point *g-min-yx* y1)))

(else
(let ((t-xmin (
(t-xmax (
(t-ymin (
(t-ymax (
(letx ((sorte
(min-t
(max-t
(min-x
(min-y

QNN NN

- *g-min-xx x1)
- *g-max-x* x1)
- *g-min-y* yl1)
- xg-max-y* yl))

sort (list t-xmin t-xmax t-ymin t-ymax) <))
adr sorted))

caddr sorted))

+ x1 (*x min-t dx)))

+ yl (* min-t dy)))

dx))
dx))
dy))
dy))

O~~~ ~ —~

8¢I

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

(max-x (+ x1 (x max-t dx)))
(max-y (+ yl (x max-t dy))))
(make-segment pl
(make-point max-x max-y)))))))))

(define empty-bounds (make-bounds (make-interval 0 0)
(make-interval 0 0)))

(define (extend-interval i new-value)
(let ((low (interval-low i))
(high (interval-high i)))
(make-interval (min low new-value)
(max high new-value))))

(define (interval-length i)
(- (interval-high i)
(interval-low 1i)))

(define (extend-bounds bounds point)
(let ((px (point-x point))
(py (point-y point)))
(make-bounds
(extend-interval (bounds-x-interval bounds)
px)
(extend-interval (bounds-y-interval bounds)
py))))

(define (bounds-width bounds)
(interval-length (bounds-x-interval bounds)))

(define (bounds-height bounds)
(interval-length (bounds-y-interval bounds)))

(define (bounds->square bounds)
(let ((new-side-length
(max (bounds-width bounds)
(bounds-height bounds))))
(recenter-bounds bounds
new-side-length
new-side-length)))

(define (recenter-interval i new-length)
(letx ((min (interval-low i))
(max (interval-high 1))
(old-half-length (/ (- max min) 2))
(new-half-length (/ new-length 2)))
(make-interval (- (+ min old-half-length) new-half-length)
(+ (- max old-half-length) new-half-length))))

(define (recenter-bounds bounds new-width new-height)
(make-bounds
(recenter-interval (bounds-x-interval bounds) new-width)

154
155
156
157
158
159
160
161
162

164
165
166
167
168
169

=
H O © 0 N O Uk W N

12

30

(recenter-interval (bounds-y-interval bounds) new-height)))

(define (scale-bounds bounds scale-factor)
(recenter-bounds
bounds
(* (bounds-width bounds) scale-factor)
(* (bounds-height bounds) scale-factor)))

(define (extract-bounds figure)
(let ((all-points (figure-points figure)))
(let lp ((bounds empty-bounds)
(points all-points))
(if (null? points)
bounds
(extend-bounds (lp bounds (cdr points))
(car points))))))

Listing A.9: figure/circle.scm

;33 circle.scm --- Circles
;35 Commentary:

;3 Ideas:
;3 - Currently rather limited support for circles

;3 Future:
;3 - Arcs, tangents, etc.

;33 Code:
siiiiiiisiiiiiiiiiiiiiiisy Circle structure ;5555555 3555ii55ii0053305

(define-record-type <circle>
(make-circle center radius)
circle?

(center circle-center)
(radius circle-radius))

siiiiiiisiiiiiiiiiiiss Alternate Constructions ;;5ii5isi5iiiiiiiiiiiig

(define (circle-from-points center radius-point)
(make-circle center
(distance center radius-point)))

siiiisaaasaiiiiiisiiiissss Points on circle 5555555505555

(define (point-on-circle-in-direction cir dir)
(let ((center (circle-center cir))
(radius (circle-radius cir)))
(add-to-point
center
(vec-from-direction-distance

6C1

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

=
H O © 0 N O U e W N

W W W W WNNNNNNNNNLNE 2 = e e e e
B W N O © 0O UEWN OO WO U WN

dir radius))))
siiiiiiaiiiiiiiiiiiiiiiiiiiss Predicates iiiiiiiiiiiiiiiiiiiiiiiiiiig

(define (circle-equivalent? cl c2)
(and (point-equal?
(circle-center cl)
(circle-center c2))
(close-enuf?
(circle-radius cl)
(circle-radius c2))))

(define (on-circle? p c)
(close-enuf?
(distance p (circle-center c))
(circle-radius c)))

Listing A.10: figure/point.scm

;33 point.scm --- Point
;33 Commentary:

;3 Ideas:
;3 - Points are the basis for most elements

;3 Future:
;3 - Transform to different canvases
;3 - Have points know what elements they are on.

;13 Code:
visiiiiiiiiiiiisiiiiiiiiss Point Structure ;iiiiiiiiiiiiiiiiiiiiiiiii

(define-record-type <point>
(make-point x y)
point?
(x point-x)
(y point-y))

(define (print-point p)
(if (named? p)
(element-name p)
*(point , (point-x p) ,(point-y p))))

(defhandler print
print-point point?)

Siiiiiiaiisiiisiiiiiisiiiiii Predicates ;iiiisiiiiiiiiiiiiiiiiiiiiig

(define (point-equal? pl p2)
(and (close-enuf? (point-x pl)

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

=
H O © 00 N O 0w N -

e e e
W N O Uk W N

19

[V
(=]

(point-x p2))
(close-enuf? (point-y pl)
(point-y p2))))

;5 P2 - P1
(define (sub-points p2 pl)
(let ((x1 (point-x pl))
(x2 (point-x p2))
(y2 (point-y p2))
(yl (point-y pl))

(make-vec (- x2 x1)

(- y2 y1))))

)

;55 Direction from pl to p2
(define (direction-from-points pl p2)
(vec->direction (sub-points p2 pl)))

(define (add-to-point p vec)
(let ((x (point-x p))
(y (point-y p))

(dx (vec-x vec))

(dy (vec-y vec))
(make-point (+ x dx)
(+y dy))))

)

(define (points-non-overlapping? points)
(= (length points)
(length (dedupe-by point-equal? points))))

Listing A.11: figure/constructions.scm

;35 constructions.scm --- Constructions
;3; Commentary:

;3 Ideas:
;3 - Various logical constructions that can be peformed on elements
;3 - Some higher-level constructions...

;; Future:

;3 - More constructions?

;3 - Separation between compass/straightedge and compound?
;3 - Experiment with higher-level vs. learned constructions

;33 Code:

(define (midpoint pl p2)
(let ((newpoint
(make-point (avg (point-x pl)

0€T

34
35

51

59
60
61
62
63
64
65
66

68
69
70
71
72
73

(point-x p2))
(avg (point-y pl)
(point-y p2)))))
(save-obvious-observation!
(make-observation equal-length-relationship
(list
(make-segment pl newpoint)
(make-segment p2 newpoint))))
newpoint))

(define (segment-midpoint s)
(let ((pl (segment-endpoint-1 s))
(p2 (segment-endpoint-2 s)))
(midpoint pl p2)))

Siiasaasasaiiiiiaaasaiiaissyy Predicates giiiiiiiiiiiiiiiiiiiiiiiiiig

(define
(let (

on-segment? p seg)

seg-start (segment-endpoint-1 seg))

seg-end (segment-endpoint-2 seg)))

point-equal? seg-start p)

point-equal? seg-end p)

let ((seg-length (distance seg-start seg-end))
(p-length (distance seg-start p))
(dir-1 (direction-from-points seg-start p))
(dir-2 (direction-from-points seg-start seg-end)))

(and (direction-equal? dir-1 dir-2)

(< p-length seg-length))))))

(or

(define (on-line? p 1)

(let ((line-pt (line-point 1))
(line-dir (line-direction 1)))
(

(

(or (point-equal? p line-pt)
let ((dir-to-p (direction-from-points p line-pt)))
(or (direction-equal? line-dir dir-to-p)
(direction-equal? line-dir (reverse-direction

dir-to-p)))))))

(define (on-ray? p r)
(let ((ray-endpt (ray-endpoint r))
(ray-dir (ray-direction r)))
(or (point-equal? ray-endpt p)
(let ((dir-to-p (direction-from-points ray-endpt p)))
(direction-equal? dir-to-p ray-dir)))))

piiiiiiiiiiiiiiiiiissss Construction of lines ;5555555555505

(define (perpendicular linear-element point)

(let* ((direction (->direction linear-element))
(rotated-direction (rotate-direction-90 direction))
(new-line (make-line point rotated-direction)))

(save-obvious-observation!
(make-observation
perpendicular-relationship

101
102

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

(list linear-element new-line)))
new-line))

;35 endpoint-1 is point, endpoint-2 is on linear-element
(define (perpendicular-to linear-element point)
(let ((pl (perpendicular linear-element point)))
(let ((i (intersect-linear-elements pl (->line linear-element))))
(let ((seg (make-segment point 1i)))
(save-obvious-observation!
(make-observation
perpendicular-relationship
(list seg linear-element)))
seg))))

(define (perpendicular-line-to linear-element point)
(let ((pl (perpendicular linear-element point)))
pl))

(define (perpendicular-bisector segment)
(let ((midpt (segment-midpoint segment)))
(let ((pb (perpendicular (segment->line segment)
midpt)))
(save-obvious-observation!
(make-observation perpendicular-relationship
(list segment pb)))
pb)))

(define (angle-bisector a)
(letx ((d1l (angle-arm-1 a))
(d2 (angle-arm-2 a))
(vertex (angle-vertex a))
(radians (angle-measure a))
(half-angle (/ radians 2))
(new-direction (add-to-direction d2 half-angle)))
(save-obvious-observation!
(make-observation
equal-angle-relationship
(list (make-angle d2 vertex new-direction)
(make-angle new-direction vertex dl))))
(make-ray vertex new-direction)))

(define (polygon-angle-bisector polygon vertex-angle)
(angle-bisector (polygon-angle polygon vertex-angle)))

(define (circumcenter t)
(let ((pl (polygon-point-ref t 0))
(p2 (polygon-point-ref t 1))
(p3 (polygon-point-ref t 2)))
(let ((11 (perpendicular-bisector (make-segment pl p2)))
(12 (perpendicular-bisector (make-segment pl p3))))
(intersect-linear-elements 11 12))))

1€1

128 iii33333iiss55555555 Concurrent Linear Elements ;555555 5555555555355 23 (x3 (point-x p3))
129 24 (y3 (point-y p3))
130 (define (concurrent? 11 12 13) 25 (x4 (point-x p4))
131 (let ((i-point (intersect-linear-elements-no-endpoints 11 12))) 26 (y4 (point-y p4)))
132 (and i-point 27 (let* ((denom
133 (on-element? i-point 13) 28 (det (det x1 1 x2 1)
134 (not (element-endpoint? i-point 13))))) 29 (det y1 1 y2 1)
135 30 (det x3 1 x4 1)
136 (define (concentric? pl p2 p3 p4) 31 (det y3 1 y4 1)))
137 (and (distinct? (list pl p2 p3 p4) point-equal?) 32 (num-x
138 (let ((pb-1 (perpendicular-bisector 33 (det (det x1 yl x2 y2)
139 (make-segment pl p2))) 34 (det x1 1 x2 1)
140 (pb-2 (perpendicular-bisector 35 (det x3 y3 x4 y4)
141 (make-segment p2 p3))) 36 (det x3 1 x4 1)))
142 (pb-3 (perpendicular-bisector 37 (num-y
143 (make-segment p3 p4)))) 38 (det (det x1 yl x2 y2)
144 (concurrent? pb-1 pb-2 pb-3)))) 39 (det y1 1y2 1)
145 40 (det x3 y3 x4 y4)
146 (define (collinear? pl p2 p3) 41 (det y3 1y4 1))))
147 (and (distinct? (list pl p2 p3) point-equal?) 42 (if (= denom 0)
148 (on-1line? p3 (line-from-points pl p2)))) 43 ()
149 44 (let
150 (define (concentric-with-center? center pl p2 p3) 45 ((px (/ num-x denom))
151 (let ((dl (distance center pl)) 46 (py (/ num-y denom)))
152 (d2 (distance center p2)) 47 (list (make-point px py)))))))
153 (d3 (distance center p3))) 48
154 (and (close-enuf? dl1 d2) 49 (define (intersect-circles-by-centers-radii cl rl c2 r2)
155 (close-enuf? dl d3)))) 50 (letx ((a (point-x cl))
51 (b (point-y c1))
52 (c (point-x c2))
Listing A.12: figure/intersections.scm o (o (Poimey <)
1 ;;; intersections.scm --- Intersections 55 (f (- db))
2 56 (p (sqrt (+ (square e)
3 ;;; Commentary: 57 (square f))))
4 58 (k (/ (- (+ (square p) (square rl))
5 ;; Ideas: 59 (square r2))
6 ;; - Unified intersections 60 . (x 2p))))
7 ;; - Separation of core computations 61 (if (> k rl)
8 62 (error "Circle's don't intersect")
9 :: Future: 63 (let* ((t (sqrt (- (square rl)
10 ;; - Amb-like selection of multiple intersections, or list? 64 (square k))))
11 ;; - Deal with elements that are exactly the same 65 (x1 (+a (/ (x e k) p)))
1o 66 (yl (+ b (/ (x T k) p)))
13 ;;; Code: 67 (dx (/ (x f 1) p))
14 68 (dy (- (/ (x e t) p))))
15 5iiisii5isiiisiiiiaiisiisyy Computations 55i5555ii5ii5i5iii5iii5iii3 69 (list (make-point (+ x1 dx)
16 70 (+ yl dy))
17 ;;; line 1 through pl, p2 with line 2 through p3, p4 71 (make-point (- x1 dx)
18 (define (intersect-lines-by-points pl p2 p3 p4) 72 (- yldy)))))))
19 (let ((x1 (point-x pl)) 73
20 (yl (point-y pl)) 74 ;;; Intersect circle centered at c with radius r and line through
21 (x2 (point-x p2)) 75 ;;; points pl, p2
29 (y2 (point-y p2)) 76 (define (intersect-circle-line-by-points ¢ r pl p2)

¢l

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

(let ((offset (sub-points (make-point 0 0) c)))
(let ((pl-shifted (add-to-point pl offset))
(p2-shifted (add-to-point p2 offset)))
(let ((x1 (point-x pl-shifted))
(yl (point-y pl-shifted)
(x2 (point-x p2-shifted)
(y2 (point-y p2-shifted)
(let*x ((dx (- x2 x1))
(dy (- y2 y1))
(dr (sqrt (+ (square dx) (square dy))))
(d (det x1 x2 yl y2))
(disc (- (* (square r) (square dr)) (square d))))
(if (< disc 0)

)
)
))

(list)
(let ((x-a (x d dy))
(x-b (* (sgn dy) dx (sqrt disc)))
(y-a (- (x d dx)))
(y-b (x (abs dy) (sqrt disc))))
(let ((ipl (make-point

(/ (+ x-a x-b) (square dr))
(/ (+ y-a y-b) (square dr))))
(ip2 (make-point
(/ (- x-a x-b) (square dr))
(/ (- y-a y-b) (square dr)))))
(if (close-enuf? 0 disc) ;; Tangent
(list (add-to-point ipl (reverse-vec offset)))
(list (add-to-point ipl (reverse-vec offset))
(add-to-point ip2 (reverse-vec

offset))))))))))))
Fiiiiiiiiiiiiiiiiiiiiis; Basic Intersections jiiiiiiiiiiiiiiiiiiiiiii

(define
(let (

intersect-lines-to-list linel line2)
pl (line-pl linel))
p2 (line-p2 linel))
p3 (line-pl line2))

(p4 (line-p2 line2)))
(intersect-lines-by-points pl p2 p3 p4)))

(define (intersect-lines linel line2)
(let ((i-list (intersect-lines-to-list linel line2)))
(if (null? i-list)
(error "Lines don't intersect")
(car i-list))))

(intersect-circles cirl cir2)

(cl (circle-center cirl))

(c2 (circle-center cir2))

(rl (circle-radius cirl))

(r2 (circle-radius cir2)))
(intersect-circles-by-centers-radii cl rl c2 r2)))

(define
(let (

(define (intersect-circle-line cir line)
(let ((center (circle-center cir))

130
131

133

(radius (circle-radius cir))

(pl (line-pl line))

(p2 (line-p2 line)))
(intersect-circle-line-by-points center radius pl p2)))

(define standard-intersect
(make-generic-operation 2 'standard-intersect))

(defhandler standard-intersect
intersect-lines-to-list line? line?)

(defhandler standard-intersect
intersect-circles circle? circle?)

(defhandler standard-intersect
intersect-circle-line circle? line?)

(defhandler standard-intersect
(flip-args intersect-circle-line) line? circle?)

piiiiiiiissaiiiiiiiiisss Generic intersection iiiiiiiiiiiiiiiiiiiiii

(define (intersect-linear-elements el-1 el-2)
(let ((i-list (standard-intersect (->line el-1)
(->line el-2))))
(if (null? i-list)
#f
(let ((i (car i-list)))
(if (or (not (on-element? i el-1))
(not (on-element? i el-2)))
#f
i)))))

(define (intersect-linear-elements-no-endpoints el-1 el-2)
(let ((i (intersect-linear-elements el-1 el-2)))
(and (or i
(element-endpoint? i el-1)
(element-endpoint? i el-2))

sisaasiaasiisasiisaiiiaiaiess On Elements i5iiiiiiiiiiiiiiiiiiiiiiiiig
(define on-element? (make-generic-operation 2 'on-element?))
defhandler on-element? on-segment? point? segment?)

defhandler on-element? on-line? point? line?)

(

(

(defhandler on-element? on-ray? point? ray?)
(defhandler on-element? on-circle? point? circle?)

(define element-endpoint? (make-generic-operation 2 'on-endpoint?
(lambda (p el) #f)))

eel

184
185
186
187
188
189
190
191

=
H O © 00 N O U W N =

W W W W W wWwwwwwhNNND DN NN = = e e e e
© 00 N O Uk WN O © 03Uk WN O ©O0WN OO WN

IS
= o

(define (segment-endpoint? p seg)
(or (point-equal? p (segment-endpoint-1 seg))
(point-equal? p (segment-endpoint-2 seg))))
(defhandler element-endpoint? segment-endpoint? point? segment?)

(define (ray-endpoint? p ray)
(point-equal? p (ray-endpoint seg)))
(defhandler element-endpoint? ray-endpoint? point? ray?)

Listing A.13: figure/figure.scm

;33 figure.scm --- Figure
;33 Commentary:

;3 Ideas:
;3 - Gathers elements that are part of a figure
;3 - Helpers to extract relevant elements

;3 Future:
;3 - Convert to record type like other structures
;3 - Extract points automatically?

;13 Code:

(define (figure . elements)
(cons 'figure elements))

(define (figure-elements figure)
(cdr figure))

(define (all-figure-elements figure)
(append (figure-elements figure)
(figure-points figure)
(figure-linear-elements figure)))

(define (figure? x)
(and (pair? x)
(eq? (car x 'figure))))

Sriiiiiiiisiiiiiiiisiiisiiie Getters iiiiiiiiiiiiiiiiiiiiiiiiiiii;

(define (figure-filter predicate figure)
(filter predicate (figure-elements figure)))

(define (figure-points figure)
(dedupe-by point-equal?
(append (figure-filter point? figure)
(append-map (lambda (polygon) (polygon-points
polygon))
(figure-filter polygon? figure))
(append-map (lambda (s)

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

=
H O © 00 N O Uk W N

O I I I I T i i G
S AR WO RO ©KNO TR W N

(list (segment-endpoint-1 s)
(segment-endpoint-2 s)))
(figure-filter segment? figure))
(map (lambda (a)
(angle-vertex a))
(figure-filter angle? figure)))))

(define (figure-angles figure)
(append (figure-filter angle? figure)
(append-map (lambda (polygon) (polygon-angles polygon))
(figure-filter polygon? figure))))

(define (figure-polygons figure)
(figure-filter polygon? figure))

(define (figure-segments figure)
(append (figure-filter segment? figure)
(append-map (lambda (polygon) (polygon-segments polygon))
(figure-filter polygon? figure))))

(define (figure-linear-elements figure)
(append (figure-filter linear-element? figure)
(append-map (lambda (polygon) (polygon-segments polygon))
(figure-filter polygon? figure))))

Listing A.14: figure/math-utils.scm
;35 math-utils.scm --- Math Helpers
;35 Commentary:
;; Ideas:

;3 - ALl angles are [0, 2pi]
;5 - Other helpers

;3 Future:
;5 - Add more as needed, integrate with scmutils-basic

;53 Code:

(define pi (x 4 (atan 1)))

(define (fix-angle-0-2pi a)
(float-mod a (x 2 pi)))

(define (rad->deg rad)
(x (/ rad (x 2 pi)) 360))

Siiaaiaaaaiisaaaisaaiiaiaaeassy Modular gagaaaaiiaiiiiiiiiiiiiiiiiig

(define (float-mod num mod)

Vel

27

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

=
= O © 0 N O 0w N

NN NN NN e e e e e
R W N RO ©0 U AWN

26

(- num
(* (floor (/ num mod))
mod)))
Siiisaasssaiiiiissassiisys Basic Operators iiiiiiiiiiiiiiiiiiiiiiiig

(define (avg a b)
(/ (+ab) 2))

(define (sgn x)
(if (< x 0) -11))

(define (det all al2 a2l a22)
(- (* all a22) (* al2 a2l)))

siiaiaaaaasssiaisiiiasss Extensions of Max/Min ;55555

(define (min-positive . args)
(min (filter (lambda (x) (>= x 0)) args)))

(define (max-negative . args)
(min (filter (lambda (x) (<= x 0)) args)))

Listing A.15: figure/polygon.scm

;33 polygon.scm --- Polygons
;33 Commentary:

;3 Ideas:
;3 - Points and (derived) segments define polygon

;3 Future
;3 - Figure out dependencies better
;3 - Other operations, angles? diagonals? etc.

;13 Code:

;33 Data structure for a polygon, implemented as a list of
;33 points in counter-clockwise order.
;33 Drawing a polygon will draw all of its points and segments.
(define-record-type <polygon>
(% polygon n-points points)
polygon?
(n-points polygon-n-points)
(points % polygon-points))

(define (polygon-from-points . points)
(let ((n-points (length points)))

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80

(% polygon n-points points)))

(define ((ngon-predicate n) obj)
(and (polygon? obj)
(= n (polygon-n-points obj))))

(defhandler print
(lambda (p)
(if (named? p)
(element-name p)
* (xpolygon* ,@(map print (polygon-points p)))))
polygon?)

;33 Internal reference for polygon points
(define (polygon-point-ref polygon i)
(if (not (<= 0 i (- (polygon-n-points polygon) 1)))
(error "polygon point index not in range"))
(list-ref (% polygon-points polygon) 1i))

(define (polygon-points polygon)
(map (lambda (i) (polygon-point polygon 1))
(iota (polygon-n-points polygon))))

;33 External polygon points including dependencies
(define (polygon-point polygon i)
(with-dependency-if-unknown
" (polygon-point ,i , (element-dependency polygon))
(with-source
(lambda (p) (polygon-point (car p) i))
(polygon-point-ref polygon i))))

(declare-element-component-handler
polygon-point
polygon?)

(define (polygon-index-from-point polygon point)
(index-of
point
(% polygon-points polygon)
point-equal?))

(define (name-polygon polygon)
(for-each (lambda (i)
(set-element-name! (polygon-point-ref polygon i)
(nth-letter-symbol (+ i 1))))
(iota (polygon-n-points polygon)))
polygon)

;55 1 and j are indices of adjacent points
(define (polygon-segment polygon i j)

Gel

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

(let ((n-points (polygon-n-points polygon)))
(cond
((not (or (= i (modulo (+ j 1) n-points))
(= j (modulo (+ i 1) n-points))))
(error "polygon-segment must be called with adjacent indices"))
((or (>= 1 n-points)
(>= j n-points))
(error "polygon-segment point index out of range"))
(else
(letx ((pl (polygon-point-ref polygon i))
(p2 (polygon-point-ref polygon j))
(segment (make-segment pl p2)))
segment)))))

(define (polygon-segments polygon)
(let ((n-points (polygon-n-points polygon)))
(map (lambda (i)
(Let ((j (modulo (+ i 1) n-points)))
(with-dependency-if-unknown

* (polygon-segment ,polygon ,i ,j)

(with-source

(lambda (p)

(polygon-segment (from-new-premise p polygon)
ij))
(polygon-segment polygon i j)))))
(iota n-points))))

(define polygon-angle
(make-generic-operation 2 'polygon-angle))

(define (polygon-angle-by-index polygon i)
(let ((n-points (polygon-n-points polygon)))
(cond
((not (<=0 i (- n-points 1)))
(error "polygon-angle point index out of range"))
(else
(letx ((v (polygon-point-ref polygon 1))
(alp (polygon-point-ref polygon
(modulo (- i 1)
n-points)))
(a2p (polygon-point-ref polygon
(modulo (+ i 1)
n-points)))
(angle (angle-from-points alp v a2p)))
angle)))))

(defhandler polygon-angle
polygon-angle-by-index
polygon? number?)

(define (polygon-angle-by-point polygon p)
(let ((i (polygon-index-from-point polygon p)))

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

23

29

(if (not 1)
(error "Point not in polygon" (list p polygon)))
(polygon-angle-by-index polygon i)))

(defhandler polygon-angle
polygon-angle-by-point
polygon? point?)

(define (polygon-angles polygon)
(map (lambda (i)
(with-dependency
* (polygon-angle ,polygon ,1i)
(with-source
(lambda (p)
(polygon-angle-by-index
(from-new-premise p polygon) 1i))
(polygon-angle-by-index polygon i))))
(iota (polygon-n-points polygon))))

Listing A.16: figure/metadata.scm

;3; metadata.scm - Element metadata
;55 Commentary:

;3 Ideas:
;5 - Currently, names
;; - Dependencies grew here, but are now separate

;3 Future:
;3 - Point/Linear/Circle adjacency - walk like graph

;33 Code:

siisaaaaaiaaiaasaasairaaaaraays NaMes G uiuaiiiiiiiiiiiiiiiiiiiiiiig

(define (set-element-name! element name)
(if (and (named? element)
(not (eq? (element-name element)
name)))
(error "Reassining element name:"
(list element (element-name element) name)))
(eq-put! element 'name name)
element)

(define (element-name element)
(or (eq-get element 'name)
*unnamedsx))

(define *xunnamed* 'xunnamedx)
(define (is-unnamed? x) (eq? *unnamedx X))

(define generic-element-name

9¢T

34
35
36
37

=
H O © 0 N O U W N -

AR R R R W W W W W W W W W W NNDNDNNDNNNNE R e e e
B W N O © 0O U E WNFEOO©OOW-NOUEWNKHOO©®WNO O B WK

45

(make-generic-operation 1 'generic-element-name
element-name))

(define (named? element)
(not (is-unnamed? (element-name element))))

Listing A.17: figure/dependencies.scm

;3 dependencies.scm --- Dependencies of figure elements
;35 Commentary:

;3 Ideas:

;3 - Use eq-properties to set dependencies of elements

;3 - Some random elements are gien external/random dependencies

;3 - For some figures, override dependencies of intermediate elements

;3 Future:
;3 - Expand to full dependencies
;3 - Start "learning" and generalizing

;3 Code:

Tiiiaaaaaaaivaisaiiiiiiiiiiiiy SOUFCES Giiiiiiiiiiiiaiiiiiiiiiiiiii

(define (set-source! element source)
(eg-put! element 'source source))

(define (with-source source element)
(set-source! element (memoize-function source))
element)

(define (element-source element)
(or (eq-get element 'source)
(lambda (p) element)))

(define (from-new-premise new-premise element)
((element-source element)
new-premise))

(define (set-dependency! element dependency)
(if (not (number? element))
(eq-put! element 'dependency dependency)))

(define (set-dependency-if-unknown! element dependency)
(if (dependency-unknown? element)
(set-dependency! element dependency)))

(define (with-dependency dependency element)
(set-dependency! element dependency)
element)

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

(define (with-dependency-if-unknown dependency element)
(if (dependency-unknown? element)
(with-dependency dependency element)
element))

Siasaaaaaaiiiaasaasasaaaaisay Premises uiiuiiiiiiiiiiiiiiiiiaiiiiia

(define (set-as-premise! element i)
(set-dependency! element (symbol '<premise- i '>))
(set-source! element (lambda (p) (list-ref p i))))

(define (as-premise element i)
(set-as-premise! element 1)
element)

(define (dependency-known? element)
(eq-get element 'dependency))

(define dependency-unknown? (notp dependency-known?))

(define (clear-dependency! element)
(set-dependency! element #f))

(define (element-dependency element)
(or (eq-get element 'dependency)
element))

(define element-dependencies->list
(make-generic-operation
1 'element-dependencies->list
(lambda (x) x)))

(define (element-dependency->list el)
(element-dependencies->list
(element-dependency el)))

(defhandler element-dependencies->list
element-dependency->list
dependency-known?)

(defhandler element-dependencies->list
(lambda (1)
(map element-dependencies->list 1))
list?)

(define (print-dependencies object)

LET

100

e
H O © 0N O TR Ww N =

BB R R R R R R R R W W W W W W W W W WNNNNNNDNNNDNRE R e
© 00 N O Uk WNHE O ©WOWNO U B WNRO®©OWNNO U B WNFO©OW-NO O = WN

(pprint (element-dependencies->list object)))

Listing A.18: figure/randomness.scm

;33 randomness.scm --- Random creation of elements
;i; Commentary:

;3 Ideas:
;3 - Random points, segments, etc. essential to system
;3 - Separated out animation / persistence across frames

;3 Future:
;3 - Better random support

;3 Code:
iiisiiiisiiiiiiiiiiisis; Base:r Random Scalars ;;iiiiiiiiiiiiiiiiiiiiig

(define (internal-rand-range min-v max-v)
(if (close-enuf? min-v max-v)
(error "range is too close for rand-range"
(list min-v max-v))
(let ((interval-size (max *machine-epsilon* (- max-v min-v))))
(persist-value (+ min-v (random (*x 1.0 interval-size)))))))

(define (safe-internal-rand-range min-v max-v)
(let ((interval-size (max 0 (- max-v min-v))))
(internal-rand-range
(+ min-v (* 0.1 interval-size))
(+ min-v (*x 0.9 interval-size))

)))

(define *wiggle-ratiox 0.15)

;33 Will return floats even if passed integers
;33 Rename to animated?
(define (rand-range min max)
(let* ((range-size (- max min))
(wiggle-amount (* range-size xwiggle-ratiox))
(v (internal-rand-range min (- max wiggle-amount))))
(animate-range v (+ v wiggle-amount))))

(define (safe-rand-range min-v max-v)
(let ((interval-size (max 0 (- max-v min-v))))
(rand-range
(+ min-v (* 0.1 interval-size))
(+ min-v (x 0.9 interval-size)))))

3+ Random Values - distances, angles

(define (rand-theta)

50
51
52
53
54
55
56
57

66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

(rand-range 0 (x 2 pi)))

(define (rand-angle-measure)
(rand-range (* pi 0.05) (* .95 pi)))

(define (rand-acute-angle-measure)
(rand-range (* pi 0.05) (* .45 pi)))

(define (rand-obtuse-angle-measure)
(rand-range (* pi 0.55) (* .95 pi)))

(define (random-direction)
(let ((theta (rand-theta)))
(make-direction theta)))

siiiaasssaiiiiiassssssssss Random Points iiiiiiiiiiiiiiiiiiiiiiiiiig

(define *point-wiggle-radius* 0.05)
(define (random-point)
(let ((x (internal-rand-range -0.8 0.8))
(y (internal-rand-range -0.8 0.8)))
(random-point-around (make-point x y))))

(define (random-point-around p)
(let ((x (point-x p))
(y (point-y p)))
(let ((theta (internal-rand-range 0 (* 2 pi)))
(d-theta (animate-range 0 (*x 2 pi))))
(let ((dir (make-direction (+ theta d-theta))))

(add-to-point

(make-point x y)

(vec-from-direction-distance dir *point-wiggle-radiusx))))))

;33 Maybe separate out reflection about line?
(define (random-point-left-of-line line)
(letx ((p (random-point))
(d (signed-distance-to-line p line))
(v (rotate-vec-90
(unit-vec-from-direction
(line-direction line)))))
(if (> d 0)

p
(add-to-point p (scale-vec v (x 2 (- d)))))))

(define (random-point-between-rays rl r2)
(let ((offset-vec (sub-points (ray-endpoint r2)
(ray-endpoint rl1))))
(let ((d1 (ray-direction rl))
(d2 (ray-direction r2)))
(let ((dir-difference (subtract-directions d2 dl1)))
(let ((new-dir (add-to-direction
dl
(internal-rand-range 0.05 dir-difference))))
(random-point-around

8€T

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

157

(add-to-point
(add-to-point (ray-endpoint rl)
(vec-from-direction-distance
new-dir
(internal-rand-range 0.05 0.9)))
(scale-vec offset-vec
(internal-rand-range 0.05 0.9)))))))))

(define (random-point-on-segment seg)
(let* ((pl (segment-endpoint-1 seg)
(p2 (segment-endpoint-2 seg)
(t (rand-range 0.05 1.0))
(v (sub-points p2 pl)))
(add-to-point pl (scale-vec v t))))

)
)

(define (random-point-on-line 1)
(letx ((pl (line-pl 1))
p2 (line-p2 1))
seg (extend-to-max-segment pl p2))
spl (segment-endpoint-1 seg))
sp2 (segment-endpoint-2 seg))
t (rand-range 0.0 1.0))
v (sub-points sp2 spl)))
(add-to-point spl (scale-vec v t))))

(
(
(
(
(
(

(define (random-point-on-ray r)

(let* ((pl (ray-endpoint r))
(dir (ray-direction r))
(p2 (add-to-point pl (unit-vec-from-direction dir)))
(seg (ray-extend-to-max-segment pl p2))
(spl (segment-endpoint-1 seg))
(sp2 (segment-endpoint-2 seq))
(t (rand-range 0.05 1.0))
(v (sub-points sp2 spl)))
(add-to-point spl (scale-vec v t))))
#]
(define (random-point-on-ray r)

(random-point-on-segment
(ray-extend-to-max-segment r)))
| #

(define (random-point-on-circle c)
(let ((dir (random-direction)))
(point-on-circle-in-direction c dir)))

(define (n-random-points-on-circle-ccw c n)
(letx ((thetas
(sort
(make-initialized-1list n (lambda (i) (rand-theta)))
<)))
(map (lambda (theta)
(point-on-circle-in-direction

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

c
(make-direction theta)))
thetas)))

siiissssssaiiiiiissssss Random Linear Elements ;;5;555555555555555555505

(define (random-line)
(let ((p (random-point)))
(random-line-through-point p)))

(define (random-segment)
(let ((pl (random-point))
(p2 (random-point)))
(let ((seg (make-segment pl p2)))
seg)))

(define (random-ray)
(let ((p (random-point)))
(random-ray-from-point p)))

(define (random-line-through-point p)
(let ((v (random-direction)))
(line-from-point-direction p v)))

(define (random-ray-from-point p)
(let ((v (random-direction)))
(ray-from-point-direction p v)))

(define (random-horizontal-line)
(let ((p (random-point))
(v (make-vec 1 0)))

(line-from-point-vec p v)))

(define (random-vertical-line)
(let ((p (random-point))
(v (make-vec 0 1)))

(line-from-point-vec p v)))

iiiiiiiisiiiiiiiiiiiis: Random Circle Elements ;;555555555i55ii5553303

(define (
(let ((center (circle-center circle))
(radius (circle-radius circle))
(angle (random-direction)))
(let ((radius-vec
(scale-vec (unit-vec-from-direction
(random-direction))
radius)))
(let ((radius-point (add-to-point center radius-vec)))
(make-segment center radius-point)))))

random-circle-radius circle)

(define (random-circle)
(let ((prl (random-point))
(pr2 (random-point)))

6€T

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262

264
265

(circle-from-points (midpoint prl pr2) prl))) 266
267
(define (random-angle)
(letx ((v (random-point))
(d1 (random-direction))
(d2 (add-to-direction
dl 1
(rand-angle-measure)))) 2
(make-angle d1 v d2))) 3
4
(define (random-acute-angle) 5
(letx ((v (random-point)) 6
(d1 (random-direction)) 7
(d2 (add-to-direction 8
dl 9
(rand-acute-angle-measure)))) 10
(make-angle d1 v d2))) 11
12
(define (random-obtuse-angle) 13
(letx ((v (random-point)) 14
(d1 (random-direction)) 15
(d2 (add-to-direction 16
di 17
(rand-obtuse-angle-measure)))) 18
(make-angle d1 v d2))) 19
20
(define (random-n-gon n) 21
(if (< n 3) 22
(error "n must be > 3")) 23
(letx ((pl (random-point)) 24
(p2 (random-point))) 25
(let ((ray2 (reverse-ray (ray-from-points pl p2)))) 26
(let lp ((n-remaining (- n 2)) 27
(points (list p2 pl))) 28
(if (= n-remaining 0) 29
(apply polygon-from-points (reverse points)) 30
(lp (- n-remaining 1) 31
(cons (random-point-between-rays 32
(reverse-ray (ray-from-points (car points) 33
(cadr points))) 34
ray2) 35
points))))))) 36
37
(define (random-polygon) 38
(random-n-gon (+ 3 (random 5)))) 39
4
(define (random-triangle) 42
(letx ((pl (random-point)) 42
(p2 (random-point)) 43
(p3 (random-point-left-of-line (line-from-points pl p2)))) 44
(polygon-from-points pl p2 p3))) 45
4
(define (random-quadrilateral) 43
(random-n-gon 4)) 48

;33 More in content/random-polygons.scm

Listing A.19: figure/transforms.scm

;35 transforms.scm --- Transforms on Elements
;35 Commentary:

;5 Ideas:
;3 - Generic transforms - rotation and translation
;5 - None mutate points, just return new copies.

;3 Future:

;5 - Translation or rotation to match something
;; - Consider mutations?

;3 - Reflections?

;3 Code:

Prrr R ORI RRYIRRRIIRRIR NI RN

IR R R R R R R RN T

Rotations

;55 Rotates counterclockwise
(define (rotate-point-about rot-origin radians point)
(let ((v (sub-points point rot-origin)))
(let ((rotated-v (rotate-vec v radians)))
(add-to-point rot-origin rotated-v))))

(define (rotate-segment-about rot-origin radians seg)
(define (rotate-point p) (rotate-point-about rot-origin radians p))
(make-segment (rotate-point (segment-endpoint-1 seg))
(rotate-point (segment-endpoint-2 seg))))

(define (rotate-ray-about rot-origin radians r)
(define (rotate-point p) (rotate-point-about rot-origin radians p))
(make-ray (rotate-point-about rot-origin radians (ray-endpoint r))
(add-to-direction (ray-direction r) radians)))

(define (rotate-line-about rot-origin radians 1)
(make-line (rotate-point-about rot-origin radians (line-point 1))
(add-to-direction (line-direction 1) radians)))

(define rotate-about (make-generic-operation 3 'rotate-about))
(defhandler rotate-about rotate-point-about point? number? point?)
(defhandler rotate-about rotate-ray-about point? number? ray?)
(defhandler rotate-about rotate-segment-about point? number? segment?)
(defhandler rotate-about rotate-line-about point? number? line?)

(define (rotate-randomly-about p elt)
(let ((radians (rand-angle-measure)))
(rotate-about p radians elt)))

rrrrrrrrrarrrrrrr gy

rrrrrrrrrrrrrrr Ty iy

Translations

4!

49
50
51

52

(define (translate-point-by vec point)
(add-to-point point vec))

(define (translate-segment-by vec seg)
(define (translate-point p) (translate-point-by vec p))
(make-segment (translate-point (segment-endpoint-1 seg))
(translate-point (segment-endpoint-2 seg))))

(define (translate-ray-by vec r)
(make-ray (translate-point-by vec (ray-endpoint r))
(ray-direction r)))

(define (translate-line-by vec 1)
(make-line (translate-point-by vec (line-point 1))
(line-direction 1)))

(define (translate-angle-by vec a)
(define (translate-point p) (translate-point-by vec p))
(make-angle (angle-arm-1 a)
(translate-point (angle-vertex a))
(angle-arm-2 a)))

(define translate-by (make-generic-operation 2 'rotate-about))
(defhandler translate-by translate-point-by vec? point?)
(defhandler translate-by translate-ray-by vec? ray?)
(defhandler translate-by translate-segment-by vec? segment?)
(defhandler translate-by translate-line-by vec? line?)
(defhandler translate-by translate-angle-by vec? angle?)

piiiiiiiiiiiiiiiiiiiiiiiiiis Reflections ii55iiiiiiiiiiiiiiiiiiiiiiii

(define (reflect-about-line line p)
(if (on-line? p line)
p
(let ((s (perpendicular-to line p)))
(let ((v (segment->vec s)))
(add-to-point
p
(scale-vec v 2))))))

siiisiisssiiiiiisiiisiiss Random Translation ;55555 555555555555555005

(define (translate-randomly-along-line 1 elt)
(let*x ((vec (unit-vec-from-direction (line->direction 1)))
(scaled-vec (scale-vec vec (rand-range 0.5 1.5))))
(translate-by vec elt)))

(define (translate-randomly elt)
(let ((vec (rand-translation-vec-for elt)))
(translate-by vec elt)))

(define (rand-translation-vec-for-point pl)
(let ((p2 (random-point)))

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

o
= O © 00N O U W N

[I R
N = O ©owNo g ks W

23

(sub-points p2 pl)))

(define (rand-translation-vec-for-segment seg)
(rand-translation-vec-for-point (segment-endpoint-1 seg)))

(define (rand-translation-vec-for-ray r)
(rand-translation-vec-for-point (ray-endpoint r)))

(define (rand-translation-vec-for-line 1)
(rand-translation-vec-for-point (line-point 1)))

(define rand-translation-vec-for
(make-generic-operation 1 'rand-translation-vec-for))

(defhandler rand-translation-vec-for
rand-translation-vec-for-point point?)

(defhandler rand-translation-vec-for
rand-translation-vec-for-segment segment?)

(defhandler rand-translation-vec-for
rand-translation-vec-for-ray ray?)

(defhandler rand-translation-vec-for
rand-translation-vec-for-line line?)

Listing A.20: figure/direction-interval.scm

;35 direction-interval.scm --- Direction Intervals
;53 Commentary:

;3 Ideas:

;3 - Structure for representing ranges of directions

;3 - Also interface for propagating partial information about angles
;3 - Full circle intervals

;3 Future:

;3 - Multi-segment direction intervals

;3 - Include direction? as direction-interval?

;3 - Migrate additional direction/interval code from linkages.scm
;3 - Deal with adding intervals to directions

;3 - Clean up direction-interval intersection

A (subtract to start-1, e.g.)

;13 Code:
siiiiiiisiiiisiiiiiiisss Direction Intervals ;;55i55ii55iii5iiii5i303

;53 "arc" of the circle from start-dir CCW to end-dir
;35 "invalid" allows for "impossible" intervals
(define-record-type <standard-direction-interval>

(% make-standard-direction-interval start-dir end-dir)

standard-direction-interval?

(start-dir direction-interval-start)

(end-dir direction-interval-end))

1

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

78
79
80
81
82

(define (make-direction-interval start-dir end-dir)
(if (direction-equal? start-dir end-dir)
(error "Cannot make direction-interval with no range:
use direction or full interval"))
(% make-standard-direction-interval start-dir end-dir))

(define (print-direction-interval di)
“(direction-interval , (direction-theta (direction-interval-start di))
, (direction-theta (direction-interval-end di))))

(define (direction-interval-center di)
(add-to-direction
(direction-interval-start di)
(/ (direction-interval-size di) 2.0)))

(defhandler print print-direction-interval standard-direction-interval?)

piiiisiiiisiiiiiisss Invalid Direction Intervals ;5555555555555555i0:

(define-record-type <invalid-direction-interval>
(% make-invalid-direction-interval)
invalid-direction-interval?)

(define (make-invalid-direction-interval)
(% make-invalid-direction-interval))

(define (print-invalid-direction-interval di)
“(invalid-direction-interval))
(defhandler print print-invalid-direction-interval
invalid-direction-interval?)

iiiiisiiiiiiiiisiiiiss Full Direction Intervals ;iiiiiiiiiiiisiiiiiii

(define-record-type <full-circle-direction-interval>
(% make-full-circle-direction-interval)
full-circle-direction-interval?)

(define (make-full-circle-direction-interval)
(% make-full-circle-direction-interval))

(define (print-full-circle-direction-interval di)
“(full-circle-direction-interval))

(defhandler print print-full-circle-direction-interval
full-circle-direction-interval?)

(define (direction-interval? x)
(or (standard-direction-interval? x)
(invalid-direction-interval? x)
(full-circle-direction-interval? x)))

piiisiiiiaiiiiaisiiiiiiss More Constructors iiiiiiiiiiiiiiiiiiiiii

83

97

102

105
106
107
108
109
110
111
112
113
114
115
116
117

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

(define (make-semi-circle-direction-interval start-dir)
(make-direction-interval start-dir
(add-to-direction start-dir pi)))

(define (make-direction-interval-from-start-dir-and-size start-dir
radians)
(cond ((or (close-enuf? radians (* 2 pi))
(>= radians (*x 2 pi)))

(make-full-circle-direction-interval))
((close-enuf? radians 0)
(error "cannot have interval of size 0: use direction"))
((< radians 0)
(make-invalid-direction-interval))

(else
(make-direction-interval
start-dir

(add-to-direction start-dir radians)))))

(define direction-interval-equal?
(make-generic-operation 2 'direction-interval-equal?))

(define (standard-direction-interval-equal? dil di2)
(and (direction-equal?
(direction-interval-start dil)
(direction-interval-start di2))
(direction-equal?
(direction-interval-end dil)
(direction-interval-end di2))))

(defhandler direction-interval-equal?
false-proc direction-interval? direction-interval?)

(defhandler direction-interval-equal?
true-proc full-circle-direction-interval?
full-circle-direction-interval?)

(defhandler direction-interval-equal?
true-proc invalid-direction-interval? invalid-direction-interval?)

(defhandler direction-interval-equal?
standard-direction-interval-equal?
standard-direction-interval?
standard-direction-interval?)

siviaaaaasaiiiiisaasaaaisyyy Inclusion iguisaiiiiiiiiiiiiiiiiiiiig

(define within-direction-interval?
(make-generic-operation 2 'within-direction-interval?))

(define (within-standard-direction-interval? dir dir-interval)
(let ((dir-start (direction-interval-start dir-interval))
(dir-end (direction-interval-end dir-interval)))

vl

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

154

157

(or (direction-equal? dir dir-start)
(direction-equal? dir dir-end)
(< (subtract-directions dir dir-start)
(subtract-directions dir-end dir-start)))))

(defhandler within-direction-interval?
within-standard-direction-interval?
direction?
standard-direction-interval?)

(defhandler within-direction-interval?
true-proc direction? full-circle-direction-interval?)

(defhandler within-direction-interval?
false-proc direction? invalid-direction-interval?)

(define within-direction-interval-non-inclusive?
(make-generic-operation 2 'within-direction-interval-non-inclusive?))

(define (within-standard-direction-interval-non-inclusive? dir
dir-interval)
(let ((dir-start (direction-interval-start dir-interval))

(dir-end (direction-interval-end dir-interval)))

(and (not (direction-equal? dir dir-start))
(not (direction-equal? dir dir-end))
(< (subtract-directions dir dir-start)

(subtract-directions dir-end dir-start)))))

(defhandler within-direction-interval-non-inclusive?
within-standard-direction-interval-non-inclusive?
direction?
standard-direction-interval?)

(defhandler within-direction-interval-non-inclusive?
true-proc direction? full-circle-direction-interval?)

(defhandler within-direction-interval-non-inclusive?
false-proc direction? invalid-direction-interval?)

(define reverse-direction-interval
(make-generic-operation 1 'reverse-direction-interval))

(define (reverse-standard-direction-interval di)
(make-direction-interval
(reverse-direction (direction-interval-start di))
(reverse-direction (direction-interval-end di))))

(defhandler reverse-direction-interval
reverse-standard-direction-interval
standard-direction-interval?)

(defhandler reverse-direction-interval identity

188

205

211

241

full-circle-direction-interval?)

(define direction-interval-size
(make-generic-operation 1 'direction-interval-size))

(define (standard-direction-interval-size di)
(subtract-directions (direction-interval-end di)
(direction-interval-start di)))

(defhandler direction-interval-size
standard-direction-interval-size
standard-direction-interval?)

(defhandler direction-interval-size
(lambda (di) (* 2 pi))
full-circle-direction-interval?)

;53 Rotate CCW by radians
(define shift-direction-interval
(make-generic-operation 2 'shift-direction-interval))

(define (shift-standard-direction-interval di radians)
(make-direction-interval
(add-to-direction (direction-interval-start di) radians)
(add-to-direction (direction-interval-end di) radians)))

(defhandler shift-direction-interval
shift-standard-direction-interval
standard-direction-interval? number?)

(defhandler shift-direction-interval
(lambda (fcdi r) fcdi) full-circle-direction-interval? number?)

iiisisisiiiiiiiis; Direction interval intersection ;;55555555555555555

(define intersect-direction-intervals
(make-generic-operation 2 'intersect-direction-intervals))

(define (test-intersect-standard-dir-intervals di-1 di-2)
(let ((result (internal-intersect-standard-dir-intervals di-1 di-2)))
(let ((r-start (direction-interval-start result))
(r-center (direction-interval-center result))
(r-end (direction-interval-start result)))

(if (not (and (within-direction-interval? r-start di-1)
(within-direction-interval? r-end di-1)
(within-direction-interval? r-center di-1)
(within-direction-interval? r-start di-2)
(within-direction-interval? r-center di-2)
(within-direction-interval? r-end di-2)))

(error "Dir Intersection faill"
(print (list di-1 di-2 result))))
result)))

(define (intersect-standard-dir-intervals di-1 di-2)

eVl

242 (let ((start-1 (direction-interval-start di-1)) 294
243 (end-1 (direction-interval-end di-1)) 295 (defhandler intersect-direction-intervals
244 (start-2 (direction-interval-start di-2)) 296 (lambda (di idi) idi)
245 (end-2 (direction-interval-end di-2))) 297 direction-interval? invalid-direction-interval?)
246 (if (> (direction-theta start-1) 298
247 (direction-theta start-2)) 299 (defhandler intersect-direction-intervals
248 (intersect-standard-dir-intervals di-2 di-1) 300 (lambda (idi di) idi)
249 (cond 301 invalid-direction-interval? direction-interval?)
250 ((or (direction-equal? start-2 start-1) 302
251 (within-direction-interval-non-inclusive? start-2 di-1)) 303 (defhandler intersect-direction-intervals
252 ;5 case 1: di-2 starts within di-1 304 (lambda (fcdi di) di)
253 (if (within-direction-interval? end-1 di-2) 305 full-circle-direction-interval? direction-interval?)
254 (cond ((direction-equal? end-1 end-2) 306
255 (make-direction-interval start-2 end-2)) 307 (defhandler intersect-direction-intervals
256 ;3 Exclude the case where it loops around end ends 308 (lambda (di fcdi) di)
257 ;3 within the start of di-1 again 309 direction-interval? full-circle-direction-interval?)
258 ((within-direction-interval-non-inclusive? end-2 310

di-1) 311 (defhandler intersect-direction-intervals
259 nothing) 312 intersect-standard-dir-intervals
260 (else 313 standard-direction-interval? standard-direction-interval?)
261 (make-direction-interval start-2 end-1))) 314
262 (make-direction-interval start-2 end-2))) 315
263 ;5 case 2: di-2 starts after di-1 and ends within di-1 316 (define (intersect-direction-with-interval dir dir-interval)
264 ((within-direction-interval? end-2 di-1) 317 (if (within-direction-interval? dir dir-interval)
265 (make-direction-interval start-1 end-2)) 318 dir
266 ;; case 3: di-2 starts after di-1 and ends beyond di-1 319 (make-invalid-direction-interval)))
267 ((or (within-direction-interval? end-1 di-2) 320
268 (direction-equal? end-1 end-2)) 321 #|
269 (make-direction-interval start-1 end-1)) 322 (define a (make-direction 0))
270 ;; Case 4: di-2 starts after di-1 and ends before di-1 starts 323 (define b (make-direction (/ pi 4)))

again 324 (define c (make-direction (/ pi 2)))

271 (else 325 (define d (make-direction pi))
272 (pp (print (list di-1 di-2))) 326 (define e (make-direction (* 3 (/ pi 2))))
273 (error "No intersection") 327 (define f (make-direction (x 7 (/ pi 4))))
274 (make-invalid-direction-interval)))))) 328
275 329 (within-direction-interval? b
276 #| 330 (make-direction-interval f c))
277 ;; Test cases 331 ;Value: #t
278 (define dO (make-direction 0.)) 332
279 (define d1 (make-direction 1.)) 333 (within-direction-interval? b
280 (define d2 (make-direction 2.)) 334 (make-direction-interval c¢ f))
281 (define d3 (make-direction 3.)) 335 ;Value: #f
282 (define d4 (make-direction 4.)) 336
283 (define d5 (make-direction 5.)) 337 (print-direction-interval
284 (define d6 (make-direction 6.)) ; almost all the way around 338 (intersect-direction-intervals
285 339 (make-direction-interval b d)
286 (define (test sl el s2 e2) 340 (make-direction-interval f c)))
287 (print (intersect-standard-dir-intervals 341 ;Value: (dir-interval .7853981633974483 1.5707963267948966)
288 (make-direction-interval sl el) 342
289 (make-direction-interval s2 e2)))) 343 etc.
290 344 |#
291 (test dO dl do dl) 345
292 346 ;3335333533535 Direction Intervals as propagator values ;;;;:ii:55:5533

293 |# 347

ad!

348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399

(defhandler equivalent? direction-interval-equal?
direction-interval? direction-interval?)

(defhandler equivalent? (lambda (a b) #f)
direction-interval? direction?)

(defhandler equivalent? (lambda (a b) #f)
direction? direction-interval?)

(defhandler merge intersect-direction-intervals
direction-interval? direction-interval?)
(defhandler merge intersect-direction-with-interval
direction? direction-interval?)
(defhandler merge
(lambda (di d)
(intersect-direction-with-interval d di))
direction-interval? direction?)
(defhandler merge
(lambda (d1 d2)
(if (direction-equal? dl1 d2)
dl
(make-invalid-direction-interval)))
direction? direction?)

(defhandler contradictory? invalid-direction-interval?
direction-interval?)

(propagatify make-direction)
(define direction-sin (make-generic-operator 1 'direction-sin))
(defhandler direction-sin
(Llambda (d) nothing)
direction-interval?)
(defhandler direction-sin
(lambda (d) (sin (direction-theta d)))
direction?)
(define direction-cos (make-generic-operator 1 'direction-cos))
(defhandler direction-cos
(lambda (d) nothing)
direction-interval?)
(defhandler direction-cos
(Llambda (d) (cos (direction-theta d)))
direction?)

(propagatify direction-sin)

(propagatify direction-cos)

e
H O © 0 N O Uk W N =

BB R R R R R R R R W W W W W W W W W WNNNNNDNNNDNN R e e e e e e
© 00 N0 TR WN RO © 00Ok WN RO O©OWNOOERE WNRRO®©OW-NO U AR WN

50
51

Listing A.21: perception/relationship.scm

;33 relationship.scm -- relationships among element-list
;33 Commentary

;3 Ideas:
;3 - Include with relationship types predicates for how to use them.

;3 Future:
;3 - Think about procedures / dependencies to obtain arguments

;35 Code:

(define-record-type <relationship>
(make-relationship name arity predicate equivalence-predicate)
relationship?
(name relationship-name)
(arity relationship-arity)
(predicate relationship-predicate)
(equivalence-predicate relationship-equivalence-predicate))

(define (relationship-equivalent? rl r2)
(eq? (relationship-name r1)
(relationship-name r2)))

(define print-relationship relationship-name)

(defhandler print print-relationship relationship?)

(define (relationship-holds r element-list)
(apply (relationship-predicate r) element-list))

;53 Segments:

(define equal-length-relationship
(make-relationship 'equal-length 2 segment-equal-length?
(set-equivalent-procedure segment-equivalent?)))

;55 Angles:
(define equal-angle-relationship
(make-relationship 'equal-angle 2 angle-measure-equal?
(set-equivalent-procedure angle-equivalent?)))

(define supplementary-angles-relationship
(make-relationship 'supplementary 2 supplementary-angles?
(set-equivalent-procedure angle-equivalent?)))

vl

53
54
55
56
57
58
59
60

61
62
63
64

65
66
67
68

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

oUs W N

(define complementary-angles-relationship
(make-relationship 'complementary 2 complementary-angles?
(set-equivalent-procedure angle-equivalent?)))

;33 Linear elements:
(define perpendicular-relationship
(make-relationship 'perpendicular 2 perpendicular?
(set-equivalent-procedure
linear-element-equivalent?)))

(define parallel-relationship
(make-relationship 'parallel 2 parallel?
(set-equivalent-procedure
linear-element-equivalent?)))

(define concurrent-relationship
(make-relationship 'concurrent 3 concurrent?
(set-equivalent-procedure
linear-element-equivalent?)))

;33 Points:
(define concurrent-points-relationship
(make-relationship 'concurrent 2 point-equal?
(set-equivalent-procedure point-equal?)))

(define concentric-relationship
(make-relationship 'concentric 4 concentric?
(set-equivalent-procedure point-equal?)))

(define concentric-with-center-relationship
(make-relationship 'concentric-with-center
4 concentric-with-center?
(set-equivalent-procedure point-equal?)))

;51 Polygons:
(define (make-polygon-n-sides-relationship n)
(make-relationship (symbol 'n-sides- n)
1 (ngon-predicate n)
eq?))

(define (make-polygon-term-relationship polygon-term)
(make-relationship polygon-term
1

(lambda (obj) (is-a? polygon-term obj))
eq?))

Listing A.22: perception/observation.scm

;1; observation.scm -- observed relationships
;53 Commentary:

;3 Future:

=
H O © 0 N0 U W N

;3 - Observation equality is more complicated!
;35 Code:
siviaaaasaiiiiisaasaaaissy Observation iiiiiiiiiiiiiiiiiiiiiiiig

(define-record-type <observation>
(make-observation relationship args)
observation?

(relationship observation-relationship)
(args observation-args))

(define (observation-equal? obsl obs2)
(equal? (print-observation obsl)
(print-observation obs2)))

(define (print-observation obs)
(cons
(print (observation-relationship obs))
(map print (observation-args obs))))

(defhandler print print-observation observation?)

(define (print-observations obs-list)
(map print-observation obs-list))

(define (observation-with-premises obs)
(cons (observation-relationship obs)
(map element-dependencies->list (observation-args obs))))

(define (observation-equivalent? obsl obs2)
(and (relationship-equivalent?

(observation-relationship obs1l)

(observation-relationship obs2))

(let ((rel-eqv-test (relationship-equivalence-predicate

(observation-relationship obsl)))
(argsl (observation-args obsl))
(args2 (observation-args obs2)))
(rel-eqv-test argsl args2))))

Listing A.23: perception/analyzer.scm

;35 analyzer.scm --- Tools for analyzing Diagram
;53 Commentary

;; Ideas:
;3 - Analyze figrue to dermine properties "beyond coincidence"
;5 - Use dependency structure to eliminate some obvious examples.

;3 Future:
;5 - Add More "interesting properties"
;3 - Create storage for learned properties.

91

15

52

;3 - Output format, add names
;3 - Separate "discovered" from old properties.

;33 Code:
siiiiiiiiiiiiiiiiiiiiiiisss Main Interface 555i5555iiiiiiiiiiiiiii

(define (all-observations figure-proc)
(require-majority
(Lambda () (analyze-figure (figure-proc)))
observation-equal?))

;33 Given a figure, report what's interesting
(define (analyze-figure figure)
(let*x ((points (figure-points figure))
(angles (figure-angles figure))
(implied-segments '() ; (point-pairs->segments (all-pairs
points))
)
(linear-elements (append
(figure-linear-elements figure)
implied-segments))
(segments (append (figure-segments figure)
implied-segments)))
(append
(extract-relationships points
(list concurrent-points-relationship
concentric-relationship
concentric-with-center-relationship))
(extract-relationships segments
(list equal-length-relationship))
(extract-relationships angles
(list equal-angle-relationship
supplementary-angles-relationship
complementary-angles-relationship))
(extract-relationships linear-elements
(list parallel-relationship
concurrent-relationship
perpendicular-relationship

)))))

(define (extract-relationships elements relationships)
(append-map (lambda (r)
(extract-relationship elements r))
relationships))

(define (extract-relationship elements relationship)
(map (lambda (tuple)
(make-observation relationship tuple))
(report-n-wise
(relationship-arity relationship)
(relationship-predicate relationship)
elements)))

65
66
67
68
69
70
71
72
73
74

102

110
111
112
113
114
115
116
117
118

(define (polygon-observations polygons)
(append-map (lambda (poly)
(map (lambda (term)

(make-observation
(make-polygon-term-relationship term)
(list poly)))

(examine poly)))

polygons))

(define (polygon-implied-observations polygons)
(append-map
(lambda (poly)
(append-map (lambda (term)
(observations-implied-by-term term poly))
(examine poly)))
polygons))

(define (interesting-observations figure-proc)
(set! xobvious-observationsx '())
(letx ((fig (figure-proc))
all-obs (analyze-figure fig))
a (pp "Done extracting all Observations"))
polygons (figure-polygons fig))
polygon-observations
(polygon-observations polygons))
(a (pp "Done determining polygon Observatsions"))
(polygon-implied-observations
(polygon-implied-observations polygons))
(b (pp "Done determining implied Observatsions")))
(set-difference (append all-obs
polygon-observations)
(append *obvious-observationsx*
polygon-implied-observations)
observation-equivalent?)))

(define *obvious-observations* #f)

(define (save-obvious-observation! obs)
(if *obvious-observationsx
(set! xobvious-observationsx*
(cons obs xobvious-observationsx))))

;33 General proceudres for generating pairs
(define (all-pairs elements)

(all-n-tuples 2 elements))
(define (all-n-tuples n elements)
(cond ((zero? n) '(()))
((< (length elements) n) '())
(else

Lyl

119

134

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

169
170
171
172

(let lp ((elements-1 elements))
(if (null? elements-1)
()
(let ((element-1 (car elements-1))
(n-minus-1-tuples
(all-n-tuples (- n 1) (cdr elements-1))))
(append
(map
(lambda (rest-tuple)
(cons element-1 rest-tuple))
n-minus-1-tuples)
(lp (cdr elements-1)))))))))

(define (segment-for-endpoint pl)
(let ((dep (element-dependency pl)))

(and dep
(or (and (eq? (car dep) 'segment-endpoint-1)
(cadr dep))
(and (eq? (car dep) 'segment-endpoint-2)
(

cadr dep))))))

(define (derived-from-same-segment? pl p2)
(and
(segment-for-endpoint pl)
(segment-for-endpoint p2)
(eq? (segment-for-endpoint pl)
(segment-for-endpoint p2))))

(define (polygon-for-point pl)
(let ((dep (element-dependency pl)))
(and dep
(and (eq? (car dep) 'polygon-point)
(cons (caddr dep)
(cadr dep))))))

(define (adjacent-in-same-polygon? pl p2)
(let ((polyl (polygon-for-point pl))
(poly2 (polygon-for-point p2)))
(and polyl poly2
(eq? (car polyl) (car poly2))
(or (= (abs (- (cdr polyl)
(cdr poly2)))

cdr polyl) 0)
cdr poly2) 3))
cdr polyl) 3)
cdr poly2) 0))))))

Q
=
o
n
—_~——~

(define (point-pairs->segments ppairs)
(filter (lambda (segment) segment)
(map (lambda (point-pair)
(let ((pl (car point-pair))

173
174
175
176
177
178
179

181
182
183
184
185
186
187
188
189
190
191
192

194
195
196
197
198
199
200
201
202
203
204
205
206

207
208
209
210
211

212
213
214
215
216
217
218
219
220
221
222
223
224

-

(p2 (cadr point-pair)))
(and (not (point-equal? pl p2))
(not (derived-from-same-segment? pl p2))
(not (adjacent-in-same-polygon? pl p2))
(make-auxiliary-segment
(car point-pair)
(cadr point-pair)))))
ppairs)))

;33 Check for pairwise equality
(define ((nary-predicate n predicate) tuple)
(apply predicate tuple))

;33 Merges "connected-components" of pairs
(define (merge-pair-groups elements pairs)
(let ((i 0)
(group-ids (make-key-weak-eq-hash-table))
(group-elements (make-key-weak-eq-hash-table))) ; Map from pair
(for-each (lambda (pair)
(let ((first (car pair))
(second (cadr pair)))
(let ((group-id-1 (hash-table/get group-ids first i))
(group-id-2 (hash-table/get group-ids second 1i)))
(cond ((and (= group-id-1 i)
(= group-id-2 1))
;3 Both new, new groups:
(hash-table/put! group-ids first group-id-1)
(hash-table/put! group-ids second group-id-1))
((= group-id-1 i)
(hash-table/put! group-ids first group-id-2))
((= group-id-2 i)
(hash-table/put! group-ids second
group-id-1)))
(set! i (+ 1 1)))))
pairs)
(for-each (lambda (elt)
(hash-table/append group-elements
(hash-table/get group-ids elt
'invalid)
elt))
elements)
(hash-table/remove! group-elements 'invalid)
(hash-table/datum-1list group-elements)))

(define (report-n-wise n predicate elements)
(let ((tuples (all-n-tuples n elements)))
(filter (nary-predicate n predicate) tuples)))

Siviaaaaasaiiiiiaaaiiaaaiiy Results: yguiiiiiiiiiiiiiiiiiiiiiiiiig

(define (make-analysis-collector)
(make-equal-hash-table))

871

225
226
227
228
229
230
231
232
233
234

o
H O © 0N O Ok W N

12

(define (save-results results data-table)
(hash-table/put! data-table results
(+ 1 (hash-table/get data-table results 0))))

(define (print-analysis-results data-table)
(hash-table/for-each
data-table
(lambda (k v)
(pprint (list v (cons 'discovered k))))))

Listing A.24: graphics/appearance.scm

(define (with-color color element)
(eq-put! element 'color color)
element)

(define default-element-color
(make-generic-operation 1
'default-element-color
(lambda (e) "black")))

(defhandler default-element-color (lambda (e) "blue") point?)
(defhandler default-element-color (lambda (e) "black") segment?)

(define (element-color element)
(or (eq-get element 'color)
(default-element-color element)))

Listing A.25: graphics/graphics.scm

;33 graphics.scm -- Graphics Commands
siiisiissaiiiiiisiiiiiiisss Main Interface ;555555 5555055555555550005

(define (draw-figure figure canvas)
(set-coordinates-for-figure figure canvas)
(clear-canvas canvas)

(for-each
(lambda (element)
(canvas-set-color canvas (element-color element))
((draw-element element) canvas))
(all-figure-elements figure))
(for-each
(lambda (element)
(canvas-set-color canvas (element-color element))
((draw-label element) canvas))
(all-figure-elements figure))
(graphics-flush (canvas-g canvas)))

(define (set-coordinates-for-figure figure canvas)
(Let*x ((bounds (scale-bounds (bounds->square (extract-bounds figure))

22
23
24

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

1.1)))
(graphics-set-coordinate-limits
(canvas-g canvas)
(bounds-xmin bounds)
(bounds-ymin bounds)
(bounds-xmax bounds)
(bounds-ymax bounds))))

(define draw-element
(make-generic-operation 1 'draw-element
(lambda (e) (lambda (c) 'done))))

(define draw-label

(make-generic-operation 1 'draw-label (lambda (e) (lambda (c) 'done))))

(define (add-to-draw-element! predicate handler)
(defhandler draw-element
(lambda (element)
(lambda (canvas)
(handler canvas element)))
predicate))

(define (add-to-draw-label! predicate handler)
(defhandler draw-label
(lambda (element)
(lambda (canvas)
(handler canvas element)))
predicate))

(define *point-radius* 0.02)
(define (draw-point canvas point)
(canvas-fill-circle canvas
(point-x point)
(point-y point)
*point-radiusx))
(define (draw-point-label canvas point)
(canvas-draw-text canvas
(+ (point-x point) *point-radiusx)
(+ (point-y point) x*point-radiusx)
(symbol->string (element-name point))))

(define (draw-segment canvas segment)
(let ((pl (segment-endpoint-1 segment))
(p2 (segment-endpoint-2 segment)))
(canvas-draw-1line canvas
(point-x pl)
(point-y pl)
(point-x p2)
(point-y p2))))
(define (draw-segment-label canvas segment)
(let ((v (vec-from-direction-distance (rotate-direction-90
(segment->direction segment))
(* 2 xpoint-radiusx*)))

671

76 (m (segment-midpoint segment))) 130 ;;; Canvas for x-graphics

77 (let ((label-point (add-to-point m v))) 131

78 (canvas-draw-text canvas 132 (define (x-graphics) (make-graphics-device 'x))
79 (point-x label-point) 133

80 (point-y label-point) 134 (define (canvas)

81 (symbol->string (element-name segment)))))) 135 (let ((g (x-graphics)))

82 136 (graphics-enable-buffering g)

83 (define (draw-line canvas line) 137 (list 'canvas g)))

84 (let ((pl (line-pl line))) 138

85 (let ((p2 (add-to-point 139 (define (canvas-g canvas)

86 pl 140 (cadr canvas))

87 (unit-vec-from-direction (line-direction line))))) 141

88 (draw-segment canvas (extend-to-max-segment pl p2))))) 142 (define (canvas? x)

89 143 (and (pair? x)

90 (define (draw-ray canvas ray) 144 (eq? (car x 'canvas))))

91 (let ((pl (ray-endpoint ray))) 145

92 (let ((p2 (add-to-point 146 (define (clear-canvas canvas)

93 pl 147 (graphics-clear (canvas-g canvas)))

94 (unit-vec-from-direction (ray-direction ray))))) 148

95 (draw-segment canvas (ray-extend-to-max-segment pl p2))))) 149 (define (canvas-draw-circle canvas x y radius)
96 150 (graphics-operation (canvas-g canvas)

97 (define (draw-circle canvas c) 151 'draw-circle

98 (let ((center (circle-center c)) 152 x y radius))

99 (radius (circle-radius c))) 153

100 (canvas-draw-circle canvas 154 (define (canvas-draw-text canvas x y text)

101 (point-x center) 155 (graphics-draw-text (canvas-g canvas) x y text))
102 (point-y center) 156

103 radius))) 157 (define (canvas-draw-arc canvas x y radius

104 158 angle-start angle-end)
105 (define *angle-mark-radiusx 0.05) 159 (let ((angle-sweep

106 (define (draw-angle canvas a) 160 (fix-angle-0-2pi (- angle-end

107 (letx ((vertex (angle-vertex a)) 161 angle-start))))
108 (d1 (angle-arm-1 a)) 162 (graphics-operation (canvas-g canvas)

109 (d2 (angle-arm-2 a)) 163 'draw-arc

110 (angle-start (direction-theta d2)) 164 x y radius radius

111 (angle-end (direction-theta dl))) 165 (rad->deg angle-start)
112 (canvas-draw-arc canvas 166 (rad->deg angle-sweep)
113 (point-x vertex) 167 #f)))

114 (point-y vertex) 168

115 *angle-mark-radiusx* 169 (define (canvas-fill-circle canvas x y radius)
116 angle-start 170 (graphics-operation (canvas-g canvas)

117 angle-end))) 171 "fill-circle

118 172 x y radius))

119 ;;; Add to generic operations 173

120 174 (define (canvas-draw-line canvas x1 yl x2 y2)
121 (add-to-draw-element! point? draw-point) 175 (graphics-draw-line (canvas-g canvas)

122 (add-to-draw-element! segment? draw-segment) 176 x1 yl

123 (add-to-draw-element! circle? draw-circle) 177 x2 y2))

124 (add-to-draw-element! angle? draw-angle) 178

125 (add-to-draw-element! line? draw-line) 179 (define (canvas-set-color canvas color)

126 (add-to-draw-element! ray? draw-ray) 180 (graphics-operation (canvas-g canvas) 'set-foreground-color color)
127 181)

128 (add-to-draw-label! point? draw-point-label)
129

0ST

Listing A.26: solver/linkages.scm

1 ;;; linkages.scm --- Bar/Joint propagators between directions and
coordinates

2

3 ;;; Commentary:

4

5 ;; Ideas:

6 ;; - Join "Identify" bars and joints to build mechanism

70 versions of diagrams

8 ;; - Use propagator system to deal with partial information

9 ;; - Used Regions for partial info about points,

10 ;; - Direction Intervals for partial info about joint directions.

11

12 ;; Future:

13 ;; - Other Linkages?

14 ;; - Draw partially assembled linkages

15

16 ;;; Example:

17

18 #|

19 (letx ((sl (m:make-bar))

20 (s2 (m:make-bar))

21 (j (m:make-joint)))

22 (m:instantiate (m:joint-theta j) (/ pi 2) 'theta)

23 (c:id (m:bar-length sl)

24 (m:bar-length s2))

25 (m:instantiate-point (m:bar-p2 sl1) 4 0 'bar-2-endpoint)

26 (m:instantiate-point (m:bar-pl sl) 2 -2 'bar-2-endpoint)

27 (m:identify-out-of-arm-1 j sl)

28 (m:identify-out-of-arm-2 j s2)

29 (run)

30 (m:examine-point (m:bar-p2 s2)))

31 |#

32

33 ;;; Code:

34

35 iiiisiiiiisiiiisiiiiiiiass TMS Interfaces ;iiiiiiiiiiiiiiiiiiiiiiiiig

36

37 (define (m:instantiate cell value premise)

38 (add-content cell

39 (make-tms (contingent value (list premise)))))
40

41 (define (m:examine-cell cell)

42 (let ((v (content cell)))

43 (cond ((nothing? v) v)

44 ((tms? v)

45 (contingent-info (tms-query v)))
46 (else v))))

a7

48 (defhandler print
49 (Llambda (cell) (print (m:examine-cell cell)))
50 cell?)

52
53
54
55

60
61
62
63
64
65

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

(define (m:contradictory? cell)
(contradictory? (m:examine-cell cell)))

(define m:reverse-direction
(make-generic-operation 1 'm:reverse-direction))

(defhandler m:reverse-direction
reverse-direction direction?)

(defhandler m:reverse-direction
reverse-direction-interval direction-interval?)

(propagatify m:reverse-direction)

(define (ce:reverse-direction input-cell)
(let-cells (output-cell)
(name! output-cell (symbol 'reverse- (name input-cell)))
(p:m:reverse-direction input-cell output-cell)
(p:m:reverse-direction output-cell input-cell)
output-cell))

(define (m:add-interval-to-direction d i)
(if (empty-interval? i)
(error "Cannot add empty interval to direction"))
(make-direction-interval-from-start-dir-and-size
(add-to-direction d (interval-low 1))
(- (interval-high i)
(interval-low i))))

(define (m:add-interval-to-standard-direction-interval di i)
(if (empty-interval? i)
(error "Cannot add empty interval to direction"))
(let ((di-size (direction-interval-size di))
(i-size (- (interval-high i)
(interval-low i)))
(di-start (direction-interval-start di)))
(make-direction-interval-from-start-dir-and-size
(add-to-direction di-start (interval-low i))
(+ di-size i-size))))

(define (m:add-interval-to-full-circle-direction-interval fcdi i)
(if (empty-interval? i)
(error "Cannot add empty interval to direction"))
fcdi)

(define (m:add-interval-to-invalid-direction-interval fcdi i)
(if (empty-interval? i)
(error "Cannot add empty interval to direction"))
(error "Cannot add to invalid direction in"))

(define m:add-to-direction
(make-generic-operation 2 'm:add-to-direction))

161

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

156
157
158
159

(defhandler m:add-to-direction
m:add-interval-to-direction direction? interval?)

(defhandler m:add-to-direction
add-to-direction direction? number?)

(defhandler m:add-to-direction
m:add-interval-to-standard-direction-interval
standard-direction-interval? interval?)

(defhandler m:add-to-direction
m:add-interval-to-full-circle-direction-interval
full-circle-direction-interval? interval?)

(defhandler m:add-to-direction
m:add-interval-to-invalid-direction-interval
invalid-direction-interval? interval?)

(defhandler m:add-to-direction
shift-direction-interval direction-interval? number?)

(propagatify m:add-to-direction)

(defhandler generic-negate
(Lambda (i) (mul-interval i -1)) %interval?)

(define (m:standard-direction-interval-minus-direction di d)
(if (within-direction-interval? d di)

(make-interval
0
(subtract-directions (direction-interval-end di) d))
(make-interval
(subtract-directions (direction-interval-start di) d)
(subtract-directions (direction-interval-end di) d))))

(define (m:full-circle-direction-interval-minus-direction di d)
(make-interval
0 (* 2 pi)))

(define (m:direction-minus-standard-direction-interval d di)
(if (within-direction-interval? d di)

(make-interval
0
(subtract-directions d (direction-interval-start di)))
(make-interval
(subtract-directions d (direction-interval-end di))
(subtract-directions d (direction-interval-start di)))))

(define (m:direction-minus-full-circle-direction-interval d di)
(make-interval
0 (x 2 pi)))

200
201
202
203
204
205
206
207
208
209
210
211
212
213

(define m:subtract-directions
(make-generic-operation 2 'm:subtract-directions))

(defhandler m:subtract-directions
subtract-directions direction? direction?)

(defhandler m:subtract-directions
(lambda (dil di2)
nothing)
direction-interval? direction-interval?)

(defhandler m:subtract-directions
m:standard-direction-interval-minus-direction
standard-direction-interval? direction?)

(defhandler m:subtract-directions
m:full-circle-direction-interval-minus-direction
full-circle-direction-interval? direction?)

(defhandler m:subtract-directions
m:direction-minus-standard-direction-interval
direction? standard-direction-interval?)

(defhandler m:subtract-directions
m:direction-minus-full-circle-direction-interval
direction? full-circle-direction-interval?)

(propagatify m:subtract-directions)

siasaaaaaiaaraasaasaiaaiaaraaiis VEC Suusaaiaaiiiiaaiiiiiiiiiiaiiiiiiig
(define-record-type <m:vec>

(% m:make-vec dx dy length direction)

m:vec?

(dx m:vec-dx)

(dy m:vec-dy)

(length m:vec-length)

(direction m:vec-direction))

;33 Allocate and wire up the cells in a vec
(define (m:make-vec vec-id)
(let-cells (dx dy length direction)
(name! dx (symbol vec-id '-dx))
(name! dy (symbol vec-id '-dy))
(name! length (symbol vec-id '-len))
(name! direction (symbol vec-id '-dir))

(p:make-direction
(e:atan2 dy dx) direction)
(p:sqrt (e:+ (e:square dx)
(e:square dy))
length)
(p:* length (e:direction-cos direction) dx)

¢Sl

237

(p:* length (e:direction-sin direction) dy)
(% m:make-vec dx dy length direction)))

(define (m:print-vec v)
“(m:vec (,(print (m:vec-dx v))
, (print (m:vec-dy v)))
,(print (m:vec-length v))
,(print (m:vec-direction v))))

(defhandler print m:print-vec m:vec?)

I I o3 £ L S I I I S S
(define-record-type <m:point>

(% m:make-point x y region)

m:point?

(x m:point-x)

(y m:point-y)

(region m:point-region))

;33 Allocate cells for a point
(define (m:make-point id)

(let-cells (x y region)

(name! x (symbol id '-x))

name! y (symbol id '-y))
name! region (symbol id '-region))
p:m:x-y->region x y region)
p:m:region->x region x)
p:m:region->y region y)
% m:make-point x y region)))

(define (m:x-y->region x y)
(m:make-singular-point-set (make-point x y)))

(propagatify m:x-y->region)

(define (m:region->x region)
(if (m:singular-point-set? region)
(point-x (m:singular-point-set-point region))
nothing))

(define (m:region->y region)
(if (m:singular-point-set? region)
(point-y (m:singular-point-set-point region))
nothing))

(propagatify m:region->x)
(propagatify m:region->y)

(define (m:instantiate-point p x y premise)
(m:instantiate (m:point-x p)
X premise)
(m:instantiate (m:point-y p)
y premise)
(m:instantiate (m:point-region p)

285

311

321

(m:make-singular-point-set (make-point x y))
premise))

(define (m:examine-point p)
(list 'm:point
(m:examine-cell (m:point-x p))
(m:examine-cell (m:point-y p))))

(define (m:print-point p)
“(m:point , (print (m:point-x p))
,(print (m:point-y p))
,(print (m:point-region p))))

(defhandler print m:print-point m:point?)

;33 Set pl and p2 to be equal
(define (m:identify-points pl p2)
(for-each (lambda (getter)
(c:id (getter pl)
(getter p2)))
(list m:point-x m:point-y m:point-region)))

Siiivaaaaasiiiiaaaaaaiiiiiaiiaas BaAr G

(define-record-type <m:bar>
(%m:make-bar pl p2 vec)
m:bar?

(pl m:bar-pl)
(p2 m:bar-p2)
(vec m:bar-vec))

(define (m:bar-direction bar)
(m:vec-direction (m:bar-vec bar)))

(define (m:bar-length bar)
(m:vec-length (m:bar-vec bar)))

(define (m:print-bar b)
“(m:bar
,(print (m:bar-name b))
,(print (m:bar-pl b))
(print (m:bar-p2 b))
,(print (m:bar-vec b)

’

)))
(defhandler print m:print-bar m:bar?)

;53 Allocate cells and wire up a bar
(define (m:make-bar bar-id)
(let ((bar-key (m:make-bar-name-key bar-id)))
(let ((pl (m:make-point (symbol bar-key '-pl)))
(p2 (m:make-point (symbol bar-key '-p2))))
(name! pl (symbol bar-key '-pl))
(name! p2 (symbol bar-key '-p2))
(let ((v (m:make-vec bar-key)))

€ql

322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

m:point-x pl)

m:vec-dx v)

m:point-x p2))

(c:+ (m:point-y pl)

m:vec-dy v)

m:point-y p2))

(let ((bar (% m:make-bar pl p2 v)))
(m:pl->p2-bar-propagator pl p2 bar)
(m:p2->pl-bar-propagator p2 pl bar)
bar)))))

(
(
(
(
(
(

(define (m:x-y-direction->region px py direction)
(if (direction? direction)
(let ((vertex (make-point px py)))
(m:make-ray vertex direction))
nothing))

(propagatify m:x-y-direction->region)

(define (m:x-y-length-di->region px py length dir-interval)
(if (direction-interval? dir-interval)
(let ((vertex (make-point px py)))
(m:make-arc vertex length dir-interval))
nothing))
(propagatify m:x-y-length-di->region)

(define (m:region-length-direction->region pr length dir)
(if (direction-interval? dir)
nothing
(m:translate-region
pr
(vec-from-direction-distance dir length))))
(propagatify m:region-length-direction->region)

(define (m:pl->p2-bar-propagator pl p2 bar)
(let ((plx (m:point-x pl))

(ply (m:point-y pl))

(plr (m:point-region pl))

(p2r (m:point-region p2))

(length (m:bar-length bar))

(dir (m:bar-direction bar)))
(p:m:x-y-direction->region plx ply dir p2r)
(p:m:x-y-length-di->region plx ply length dir p2r)
(p:m:region-length-direction->region plr length dir p2r)))

(define (m:p2->pl-bar-propagator p2 pl bar)

(let ((p2x (m:point-x p2))

(p2y (m:point-y p2))

(plr (m:point-region pl))

(p2r (m:point-region p2))

(length (m:bar-length bar))

(dir (m:bar-direction bar)))

(p:m:x-y-direction->region p2x p2y (ce:reverse-direction dir) plr)

376

377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428

(p:m:x-y-length-di->region p2x p2y length (ce:reverse-direction dir)
plr)

(p:m:region-length-direction->region

p2r length (ce:reverse-direction dir) p1lr)))

Ly Joint sy
;35 Direction-2 is counter-clockwise from direction-1 by theta
(define-record-type <m:joint>

(% m:make-joint vertex dir-1 dir-2 theta)

m:joint?

(vertex m:joint-vertex)

(dir-1 m:joint-dir-1)

(dir-2 m:joint-dir-2)

(theta m:joint-theta))

(define *max-joint-swingx pi)

(define (m:make-joint joint-id)
(let ((joint-key (m:make-joint-name-key joint-id)))
(let ((vertex (m:make-point (symbol joint-key '-vertex))))
(let-cells (dir-1 dir-2 theta)

(name! dir-1 (symbol joint-key '-dir-1))
name! dir-2 (symbol joint-key '-dir-2))
name! theta (symbol joint-key '-theta))
name! vertex (symbol joint-key '-vertex
p:m:add-to-direction
dir-1 theta dir-2)
(p:m:add-to-direction
dir-2 (e:negate theta) dir-1)
(p:m:subtract-directions
dir-2 dir-1
theta)

(m:instantiate theta (make-interval 0 *max-joint-swingx) 'theta)
(% m:make-joint vertex dir-1 dir-2 theta)))))

(
(
(
(

(define (m:print-joint j)

,(print (m:joint-name j))
(print (m:joint-dir-1 j))
,(print (m:joint-vertex j))
,(print (m:joint-dir-2 j))
, (print (m:joint-theta j))))
(defhandler print m:print-joint m:joint?)

(define (m:identify-out-of-arm-1 joint bar)
(m:set-endpoint-1 bar joint)
(m:set-joint-arm-1 joint bar)
(m:identify-points (m:joint-vertex joint)

(m:bar-pl bar))
(c:id (m:joint-dir-1 joint)
(m:bar-direction bar)))

(define (m:identify-out-of-arm-2 joint bar)

25!

429 (m:set-endpoint-1 bar joint) 483 (symbol 'm:bar:

430 (m:set-joint-arm-2 joint bar) 484 (m:bar-id-pl-name bar-id) '

431 (m:identify-points (m:joint-vertex joint) 485 (m:bar-id-p2-name bar-id)))

432 (m:bar-pl bar)) 486

433 (c:id (m:joint-dir-2 joint) 487 (define (m:make-joint-name-key joint-id)

434 (m:bar-direction bar))) 488 (symbol 'm:joint:

435 489 (m:joint-id-dir-1-name joint-id) '
436 (define (m:identify-into-arm-1 joint bar) 490 (m:joint-id-vertex-name joint-id) '
437 (m:set-endpoint-2 bar joint) 491 (m:joint-id-dir-2-name joint-id)))
438 (m:set-joint-arm-1 joint bar) 492

439 (m:identify-points (m:joint-vertex joint) 493 (define (m:name-element! element name)

440 (m:bar-p2 bar)) 494 (eq-put! element 'm:name name))

441 (c:id (ce:reverse-direction (m:joint-dir-1 joint)) 495

442 (m:bar-direction bar))) 496 (define (m:element-name element)

443 497 (or (eq-get element 'm:name)

444 (define (m:identify-into-arm-2 joint bar) 498 'sxunnamedx))

445 (m:set-endpoint-2 bar joint) 499

446 (m:set-joint-arm-2 joint bar) 500 (define (m:make-named-bar pl-name p2-name)

447 (m:identify-points (m:joint-vertex joint) 501 (let ((bar (m:make-bar (m:bar pl-name p2-name))))
448 (m:bar-p2 bar)) 502 (m:name-element! (m:bar-pl bar) pl-name)
449 (c:id (ce:reverse-direction (m:joint-dir-2 joint)) 503 (m:name-element! (m:bar-p2 bar) p2-name)
450 (m:bar-direction bar))) 504 bar))

451 505

452 5iaiaiaiaiaiaiaiarsssss Storing Adjacencies ;iiiiiiiiiiiiiiiiiiiiias 506 (define (m:bar-name bar)

453 507 (m:bar

454 (define (m:set-endpoint-1 bar joint) 508 (m:element-name (m:bar-pl bar))

455 (eq-append! bar 'm:bar-endpoints-1 joint)) 509 (m:element-name (m:bar-p2 bar))))

456 510

457 (define (m:bar-endpoints-1 bar) 511 (define (m:bars-name-equivalent? bar-1 bar-2)
458 (or (eq-get bar 'm:bar-endpoints-1) 512 (or (m:bar-id-equal?

459 ")) 513 (m:bar-name bar-1)

460 514 (m:bar-name bar-2))

461 (define (m:set-endpoint-2 bar joint) 515 (m:bar-id-equal?

462 (eg-append! bar 'm:bar-endpoints-2 joint)) 516 (m:bar-name bar-1)

463 517 (m:reverse-bar-id (m:bar-name bar-2)))))
464 (define (m:bar-endpoints-2 bar) 518

465 (or (eq-get bar 'm:bar-endpoints-2) 519 (define (m:bar-pl-name bar)

466 '())) 520 (m:element-name (m:bar-pl bar)))

467 521

468 (define (m:set-joint-arm-1 joint bar) 522 (define (m:bar-p2-name bar)

469 (eq-put! joint 'm:joint-arm-1 bar)) 523 (m:element-name (m:bar-p2 bar)))

470 524

471 (define (m:joint-arm-1 joint) 525 (define (m:make-named-joint arm-1l-name vertex-name arm-2-name)
472 (eq-get joint 'm:joint-arm-1)) 526 (let ((joint-id (m:joint arm-1-name

473 527 vertex-name

474 (define (m:set-joint-arm-2 joint bar) 528 arm-2-name)))

475 (eq-put! joint 'm:joint-arm-2 bar)) 529 (let ((joint (m:make-joint joint-id)))

476 530 (m:name-element! (m:joint-dir-1 joint) arm-1-name)
477 (define (m:joint-arm-2 joint) 531 (m:name-element! (m:joint-vertex joint) vertex-name)
478 (eg-get joint 'm:joint-arm-2)) 532 (m:name-element! (m:joint-dir-2 joint) arm-2-name)
479 533 joint)))

480 ;iiiiissaisasiisiiiiaiisyss Named Linkages ;iiiiiiiiiiiiiiiiiiiiiiig 534

481 535 (define (m:joint-name joint)

482 (define (m:make-bar-name-key bar-id) 536 (m:joint

Gaq1

537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590

(m:joint-dir-1-name joint)
(m:joint-vertex-name joint)
(m:joint-dir-2-name joint)))

(define (m:joint-vertex-name joint)
(m:element-name (m:joint-vertex joint)))

(define (m:joint-dir-1l-name joint)
(m:element-name (m:joint-dir-1 joint)))

(define (m:joint-dir-2-name joint)
(m:element-name (m:joint-dir-2 joint)))

;33 Maybe Move?

(define-record-type <m:bar-id>
(%m:make-bar-id pl-name p2-name)
m:bar-id?
(pl-name m:bar-id-pl-name)
(p2-name m:bar-id-p2-name))

(define (m:bar-id-equal? bar-id-1 bar-id-2)
(and (eq? (m:bar-id-pl-name bar-id-1)
m:bar-id-pl-name bar-id-2))
:bar-id-p2-name bar-id-1)
:bar-id-p2-name bar-id-2))))

(eq?

m
m

(define (m:bar pl-name p2-name)
(% m:make-bar-id pl-name p2-name))

(defhandler print m:make-bar-name-key m:bar-id?)

(define (m:reverse-bar-id bar-id)
(% m:make-bar-id (m:bar-id-p2-name bar-id)
(m:bar-id-pl-name bar-id)))

;55 Joints:

(define-record-type <m:joint-vertex-id>
(% m:make-joint-verex-id vertex-name)
m:joint-vertex-id?

(vertex-name m:joint-vertex-id-name))

(define-record-type <m:joint-id>
(% m:make-joint-id dir-1-name vertex-name dir-2-name)
m:joint-id?
(dir-1-name m:joint-id-dir-1-name)
(vertex-name m:joint-id-vertex-name)
(dir-2-name m:joint-id-dir-2-name))

(defhandler print m:make-joint-name-key m:joint-id?)

591
592
593
594
595
596
597

598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643

(define (m:joint argl . rest)
(cond ((null? rest)
(% m:make-joint-verex-id argl))
((= 2 (length rest))
(%m:make-joint-id argl (car rest) (cadr rest)))
(else
(error "m:joint was called with the wrong number of
arguments."))))

(define (m:make-bars-by-name-table bars)
(let ((table (make-key-weak-eqv-hash-table)))
(for-each (lambda (bar)
(let ((key (m:make-bar-name-key (m:bar-name bar))))
(if (hash-table/get table key #f)
(error "Bar key already in bar name table" key))
(hash-table/put! table key bar)))
bars)
table))

;33 Unordered
(define (m:find-bar-by-id table bar-id)
(or (hash-table/get table
(m:make-bar-name-key bar-id)
#T)
(hash-table/get table
(m:make-bar-name-key (m:reverse-bar-id bar-id))
#f)))

;53 Joints:

(define (m:make-joints-by-vertex-name-table joints)
(let ((table (make-key-weak-eq-hash-table)))
(for-each
(lambda (joint)
(let ((key (m:joint-vertex-name joint)))
(hash-table/put!

table key
(cons
joint (hash-table/get table
key
"()))))
joints)
table))

(define (m:find-joint-by-vertex-name table vertex-name)
(let ((joints (hash-table/get table
vertex-name
#f)))
(cond ((null? joints) #f)

((= (length joints) 1)

(car joints))

(else (error "Vertex name not unique among joints"

(map m:joint-name joints))))))

961

644
645
646
647
648
649

650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674

675
676
677
678
679
680
681

682
683
684
685
686
687
688
689
690
691
692
693
694

(define (m:make-joints-by-name-table joints)
(let ((table (make-key-weak-eq-hash-table)))
(for-each (lambda (joint)
(hash-table/put! table
(m:make-joint-name-key (m:joint-name
joint))
joint))
joints)
table))

;33 dir-2 is CCW from dir-1
(define (m:find-joint-by-id table joint-id)

(hash-table/get
table
(m:make-joint-name-key joint-id)
#f))
piiiiiiiiiiiiiiiiiiiiys Operations using Names ;5555555555555
(define (m:identify-joint-bar-by-name joint bar)
(Llet ((vertex-name (m:joint-vertex-name joint))
(dir-1-name (m:joint-dir-1-name joint))
(dir-2-name (m:joint-dir-2-name joint))
(bar-pl-name (m:bar-pl-name bar))
(bar-p2-name (m:bar-p2-name bar)))
(cond ((eq? vertex-name bar-pl-name)
(cond ((eq? dir-1-name bar-p2-name)
(m:identify-out-of-arm-1 joint bar))
((eq? dir-2-name bar-p2-name)
(m:identify-out-of-arm-2 joint bar))
(else (error "Bar can't be identified with joint - no
arm"
bar-p2-name))))
((eq? vertex-name bar-p2-name)
(cond ((eg? dir-1-name bar-pl-name)
(m:identify-into-arm-1 joint bar))
((eq? dir-2-name bar-pl-name)
(m:identify-into-arm-2 joint bar))
(else (error "Bar can't be identified with joint - no
arm"
bar-pl-name))))
(else (error "Bar can't be identified with joint - no vertex"
vertex-name)))))
siisiisisiisiiiiiiiieiss: Degrees of Freedom ;;iiiiiiiiiiiiiiiiiiiiig
(define (m:specified? cell #!optional predicate)

(Let ((v (m:examine-cell cell)))
(and
(not (nothing? v))
(or (default-object? predicate)
(predicate v)))))

695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748

(define (m:bar-length-specified? bar)
(m:specified? (m:bar-length bar)) number?)

(define (m:bar-direction-specified? bar)
(m:specified? (m:bar-direction bar)) direction?)

(define (m:joint-theta-specified? joint)
(m:specified? (m:joint-theta joint)) number?)

Piiiiiiiiiissiissiisiiis; Polint Predicates ;iiiiisiisiiisiisiiiiiiiii

(define (m:point-specified? p)
(and (m:specified? (m:point-x p) number?)
(m:specified? (m:point-y p) number?)))

(define (m:point-contradictory? p)
(or (m:contradictory? (m:point-x p))
(m:contradictory? (m:point-y p))
(m:contradictory? (m:point-region p))))

Piiisiiiiiiasiiiiiiiiiiiess Bar Predicates jiiiiiiiiiiiiiiiiiiiiiiiiii

(define (m:bar-pl-specified? bar)
(m:point-specified? (m:bar-pl bar)))

(define (m:bar-p2-specified? bar)
(m:point-specified? (m:bar-p2 bar)))

(define (m:bar-pl-contradictory? bar)
(m:point-contradictory? (m:bar-pl bar)))

(define (m:bar-p2-contradictory? bar)
(m:point-contradictory? (m:bar-p2 bar)))

(define (m:bar-anchored? bar)
(or (m:bar-pl-specified? bar)
(m:bar-p2-specified? bar)))

(define (m:bar-directioned? bar)
(and (m:bar-anchored? bar)
(m:specified? (m:bar-direction bar) direction?)))

(define (m:bar-direction-contradictory? bar)
(or (m:contradictory? (m:bar-direction bar))
(m:contradictory? (m:vec-dx (m:bar-vec bar)))
(m:contradictory? (m:vec-dy (m:bar-vec bar)))))

(define (m:bar-length-specified? bar)
(and (m:specified? (m:bar-length bar) number?)))

(define (m:bar-direction-specified? bar)
(and (m:specified? (m:bar-direction bar) number?)))

(define (m:bar-length-contradictory? bar)

LGT

749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
T
778
779

781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802

(m:contradictory? (m:bar-length bar)))

(define (m:bar-length-dir-specified? bar)
(and (m:bar-length-specified? bar)
(m:bar-direction-specified? bar)))

(define (m:bar-fully-specified? bar)
(and (m:bar-pl-specified? bar)
(m:bar-p2-specified? bar)))

(define (m:bar-contradictory? bar)

(or (m:bar-pl-contradictory? bar)
(m:bar-p2-contradictory? bar)
(m:bar-direction-contradictory? bar)
(m:bar-length-contradictory? bar)))

siiisiiassiiiiiisiiisiisy; Joint Predicates ;5555555055555

(define (m:joint-dir-1-specified? joint)
(m:specified? (m:joint-dir-1 joint) direction?))

(define (m:joint-dir-1-contradictory? joint)
(m:contradictory? (m:joint-dir-1 joint)))

(define (m:joint-dir-2-specified? joint)
(m:specified? (m:joint-dir-2 joint) direction?))

(define (m:joint-dir-2-contradictory? joint)
(m:contradictory? (m:joint-dir-2 joint)))

(define (m:joint-theta-contradictory? joint)
(m:contradictory? (m:joint-theta joint)))

(define (m:joint-anchored? joint)
(or (m:joint-dir-1-specified? joint)
(m:joint-dir-2-specified? joint)))

(define (m:joint-anchored-and-arm-lengths-specified? joint)
(and (m:joint-anchored? joint)
(m:bar-length-specified? (m:joint-arm-1 joint))
(m:bar-length-specified? (m:joint-arm-2 joint))))

(define (m:joint-specified? joint)
(m:specified? (m:joint-theta joint) number?))

(define (m:joint-dirs-specified? joint)
(and
(m:joint-dir-1-specified? joint)
(m:joint-dir-2-specified? joint)))

(define (m:joint-fully-specified? joint)
(and
(m:point-specified? (m:joint-vertex joint))
(m:joint-dir-1-specified? joint)

803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856

(m:joint-dir-2-specified? joint)))

(define (m:joint-contradictory? joint)
(or
(m:point-contradictory? (m:joint-vertex joint))
(m:joint-dir-1-contradictory? joint)
(m:joint-dir-2-contradictory? joint)
(m:joint-theta-contradictory? joint)))

(define (m:joint-theta-if-specified joint)
(let ((theta-v (m:examine-cell
(m:joint-theta joint))))
(if (number? theta-v) theta-v
0)))

(define (m:bar-max-inner-angle-sum bar)
(let ((el (m:bar-endpoints-1 bar))
(e2 (m:bar-endpoints-2 bar)))
(or (null? el)
(null? e2))

(if

(+ (apply max (map m:joint-theta-if-specified el))
(apply max (map m:joint-theta-if-specified e2))))))

(define (m:joint-bar-sums joint)
(let ((bl (m:joint-arm-1 joint))
(b2 (m:joint-arm-2 joint)))
(and (m:bar-length-specified? bl)
(m:bar-length-specified? b2)
(+ (m:examine-cell (m:bar-length bl))
(m:examine-cell (m:bar-length b2))))))

(define (m:random-theta-for-joint joint)
(let ((theta-range (m:examine-cell (m:joint-theta joint))))
(if (interval? theta-range)
(if (close-enuf? (interval-low theta-range)
(interval-high theta-range))
(interval-low theta-range)
(begin
(safe-internal-rand-range
(interval-low theta-range)
(interval-high theta-range))))
(error "Attempting to specify theta for joint"))))

(define (m:random-bar-length)
(internal-rand-range 0.2 1.5))

(define (m:initialize-bar bar)
(if (not (m:bar-anchored? bar))
(m:instantiate-point (m:bar-pl bar) 0 0 'initialize))
(let ((random-dir (random-direction)))
(m:instantiate (m:bar-direction bar)

86T

857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910

random-dir 'initialize)
(pp " (initializing-bar ,(print (m:bar-name bar))
, (print random-dir)))))

(define (m:initialize-joint joint)

(m:instantiate-point (m:joint-vertex joint) 0 0 'initialize)
(pp " (initializing-joint ,(print (m:joint-name joint)))))

(define (m:assemble-linkages bars joints)

(let ((bar-table (m:make-bars-by-name-table bars)))
(for-each
(lambda (joint)
(let ((vertex-name (m:joint-vertex-name joint))
(dir-1-name (m:joint-dir-1-name joint))
(dir-2-name (m:joint-dir-2-name joint)))
(for-each
(lambda (dir-name)
(let ((bar (m:find-bar-by-id
bar-table
(m:bar vertex-name
dir-name))))
(if (eq? bar #f)
(error "Could not find bar for" vertex-name dir-name))
(m:identify-joint-bar-by-name joint bar)))
(list dir-1-name dir-2-name))))
joints)))
#]
;3 Simple example of "solving for the third point"
(begin
(initialize-scheduler)
(let ((bl (m:make-named-bar 'a 'c))
(b2 (m:make-named-bar 'b 'c))
(b3 (m:make-named-bar 'a 'b))
(j1 (m:make-named-joint 'b 'a 'c))
(j2 (m:make-named-joint 'c 'b 'a))
(j3 (m:make-named-joint 'a 'c 'b)))
(m:assemble-linkages
(list bl b2 b3)
(list j2 j3 j1))
(m:initialize-joint j1)
(c:id (m:bar-length bl) (m:bar-length b2))
(m:instantiate (m:bar-length b3) 6 'b3-len)
(m:instantiate (m:bar-length bl) 5 'bl-len)
(run)
(m:examine-point (m:bar-p2 bl))))
;Value: (m:point 3 4)
| #

911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937

=
H O © 00 N O U W N

[R T g tr
I R R N R Y

(define (m
(if (not
(let

(m

(let

:point->figure-point m-point)

(m:point-specified? m-point))

((r (m:examine-cell (m:point-region m-point))))

:region->figure-elements r))

((p (make-point (m:examine-cell (m:point-x m-point))
(m:examine-cell (m:point-y m-point)))))

(set-element-name! p (m:element-name m-point))
p)))

(define (m

(if (not
#f

(let

:bar->figure-segment m-bar)
(m:bar-fully-specified? m-bar))

((pl (m:point->figure-point (m:bar-pl m-bar)))
(p2 (m:point->figure-point (m:bar-p2 m-bar))))

(and (point? pl)

(define (m
(if (not
#f

(point? p2)
(make-segment pl p2)))))

:joint->figure-angle m-joint)
(m:joint-fully-specified? m-joint))

(make-angle (m:examine-cell (m:joint-dir-2 m-joint))

(m:point->figure-point (m:joint-vertex m-joint))
(m:examine-cell (m:joint-dir-1 m-joint)))))

Listing A.27: solver/region.scm

;35 regions.scm --- Region Information

;53 Commentary:

;5 Ideas:

;3 - Points, Lines, Circles, Intersections
;3 - For now, semicircle (joints only go to 180deg to avoid
HH multiple solns.)

;3 Future:

;3 - Differentiate regions with 2 deg. of freedom
;3 - Improve contradiction objects

;33 Code:

rrrrrrraay

Siisiiiiaiiiiaiass Polnt Sets Siiiiiiiiiiiiiiiiiiiiiiiiiiig

(define-record-type <m:point-set>
(% m:make-point-set points)
m:point-set?

(points m:point-set-points))

(define (m

:make-point-set points)

69T

24
25
26
27
28
29
30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

(% m:make-point-set points))

(define (m:make-singular-point-set point)
(m:make-point-set (list point)))

(define (m:in-point-set? p point-set)
(pair? ((member-procedure point-equal?) p (m:point-set-points
point-set))))

(define (m:singular-point-set? x)
(and (m:point-set? x)
(=1 (length (m:point-set-points x)))))

(define (m:singular-point-set-point ps)
(if (not (m:singular-point-set? ps))
(error "Not a singular point set"))
(car (m:point-set-points ps)))

(define (m:point-sets-equivalent? psl ps2)
(define delp (delete-member-procedure list-deletor point-equal?))
(define memp (member-procedure point-equal?))
(Llet lp ((points-1 (m:point-set-points psl))
(points-2 (m:point-set-points ps2)))
(if (null? points-1)
(null? points-2)
(let ((pl (car points-1)))
(if (memp pl points-2)
(lp (cdr points-1)
(delp pl points-2))
#f)))))
(define (m:print-point-set ps)
(cons 'm:point-set
(map (lambda (p) (list 'point (point-x p) (point-y p)))
(m:point-set-points ps))))

(defhandler print
m:print-point-set m:point-set?)

(define-record-type <m:ray>
(% m:make-ray endpoint direction)
m:ray?
(endpoint m:ray-endpoint)
(direction m:ray-direction))

(define m:make-ray % m:make-ray)

(define (m:ray->figure-ray m-ray)
(with-color "red"
(make-ray (m:ray-endpoint m-ray)
(m:ray-direction m-ray))))

7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

107
108
109
110
111
112
113
114
115

116
117
118
119
120
121
122
123
124
125
126
127
128
129

(define (m:on-ray? p ray)
(let ((endpoint (m:ray-endpoint ray)))
(or (point-equal? p endpoint)
(let ((dir (direction-from-points endpoint p)))
(direction-equal? dir (m:ray-direction ray))))))
(define (m:p2-on-ray ray)

(add-to-point (m:ray-endpoint ray)
(unit-vec-from-direction (m:ray-direction ray))))

(define (m:rays-equivalent? rayl ray2)
(and (point-equal? (m:ray-endpoint rayl)
(m:ray-endpoint ray2))
(direction-equal? (m:ray-direction rayl)
(m:ray-direction ray2))))

(define (m:print-ray ray)
(let ((endpoint (m:ray-endpoint ray)))
“(m:ray (,(point-x endpoint)
, (point-y endpoint))
, (direction-theta (m:ray-direction ray)))))

(defhandler print
m:print-ray m:ray?)

Piiiiiaaaaisiiiiaaaaaiiiiiisiins ACCS iiiiiiaiiiiiiiiiiaiiiiiiiiiiiig

(define-record-type <m:arc>
(m:make-arc center-point radius dir-interval)
m:arc?
(center-point m:arc-center)
(radius m:arc-radius)
(dir-interval m:arc-dir-interval))

;35 Start direction + ccw pi radian
(define (m:make-semi-circle center radius start-direction)
(m:make-arc center radius
(make-direction-interval start-direction
(reverse-direction
start-direction))))

(define (m:on-arc? p arc)
(let ((center-point (m:arc-center arc))
(radius (m:arc-radius arc)))
(let ((distance (distance p center-point))
(dir (direction-from-points center-point p)))
(and (close-enuf? distance radius)
(within-direction-interval?
dir
(m:arc-dir-interval arc))))))
(define (m:arcs-equivalent? arcl arc2)

(and (point-equal? (m:arc-center arcl)
(m:arc-center arc2))

091

130
131
132
133
134
135
136
137
138

140
141
142
143
144
145
146
147
148
149

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

171
172
173
174
175
176
177
178

180
181
182
183

(close-enuf? (m:arc-radius arcl)

(m:arc-radius arc2))

(direction-interval-equal?

(define
(let (

(m:arc-dir-interval arcl)
(m:arc-dir-interval arc2))))

(m:print-arc arc)
(center-point (m:arc-center arc))
(dir-interval (m:arc-dir-interval arc)))

“(m:arc (,(point-x center-point)

, (point-y center-point))
,(m:arc-radius arc)
(,(direction-theta (direction-interval-start dir-interval))
, (direction-theta (direction-interval-end dir-interval))))))

(defhandler print
m:print-arc

m:arc?

)

(define-record-type <m:region-contradiction>
(m:make-region-contradiction error-regions)
m:region-contradiction?

(error-regions m:contradiction-error-regions))

;33 Maybe differeniate by error values?

(define

(define

(m:region-contradictions-equivalent? rcl rc2) #t)

(m:region-contradiction->figure-elements rc)

(map m:region->figure-elements (m:contradiction-error-regions rc)))

(define
(let (

(if

m:intersect-rays rayl ray2)
endpoint-1 (m:ray-endpoint rayl))
endpoint-2 (m:ray-endpoint ray2))
dir-1 (m:ray-direction rayl))
dir-2 (m:ray-direction ray2)))
direction-equal? dir-1 dir-2)
(cond ((m:on-ray? endpoint-1 ray2) rayl)
((m:on-ray? endpoint-2 rayl) ray2)
(else (m:make-region-contradiction (list rayl ray2))))
(let ((rayl-p2 (m:p2-on-ray rayl))
(ray2-p2 (m:p2-on-ray ray2)))
(let ((intersections
(intersect-lines-by-points endpoint-1 rayl-p2
endpoint-2 ray2-p2)))
(if (not (= 1 (length intersections)))
(m:make-region-contradiction (list rayl ray2))
(let ((intersection (car intersections)))
(if (and (m:on-ray? intersection rayl)
(m:on-ray? intersection ray2))
(m:make-point-set (list intersection))

184

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

231
232
233
234
235
236

(m:make-region-contradiction (list rayl
ray2))))))))))

m:intersect-arcs arcl arc2)
cl (m:arc-center arcl))
c2 (m:arc-center arc2)
rl (m:arc-radius arcl)
(r2 (m:arc-radius arc2)
(if (point-equal? cl c2)
(if (close-enuf? rl r2)
(m:make-arc cl rl
(intersect-direction-intervals
(m:arc-dir-interval arcl)
(m:arc-dir-interval arc2)))
(m:make-region-contradiction (list arcl arc2)))
(let ((intersections
(intersect-circles-by-centers-radii
clrl c2r2)))
(let ((points
(filter (lambda (p)
(and (m:on-arc? p arcl)
(m:on-arc? p arc2)))
intersections)))
(if (> (length points) 0)
(m:make-point-set points)
(m:make-region-contradiction (list arcl arc2))))))))

(define
(let (

(define (m:intersect-ray-arc ray arc)
(let ((center (m:arc-center arc))
(radius (m:arc-radius arc))
(endpoint (m:ray-endpoint ray))
(ray-p2 (m:p2-on-ray ray)))
(let ((intersections
(intersect-circle-line-by-points
center radius endpoint ray-p2)))
(let ((points
(filter (lambda (p)
(and (m:on-ray? p ray)
(m:on-arc? p arc)))
intersections)))
(if (> (length points) 0)
(m:make-point-set points)
(m:make-region-contradiction (list ray arc)))))))

(define (m:intersect-arc-ray arc ray)
(m:intersect-ray-arc ray arc))

(define m:in-region? (make-generic-operation 2 'm:in-region?))

(defhandler m:in-region? m:in-point-set? point? m:point-set?)
(defhandler m:in-region? m:on-ray? point? m:ray?)
(defhandler m:in-region? m:on-arc? point? m:arc?)

191

237

238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

261
262
263
264
265
266
267
268
269
270
271
272
273
274

276
277
278
279
280
281
282
283

284
285
286
287

(defhandler m:in-region? (lambda (p r) #f) point?
m:region-contradiction?)

(define (m:intersect-point-set-with-region psl region)
(let ((results
(let lp ((points-1 (m:point-set-points psl))
(point-intersections '()))
(if (null? points-1)
point-intersections
(let ((pl (car points-1)))
(if (m:in-region? pl region)
(lp (cdr points-1)
(cons pl point-intersections))
(lp (cdr points-1)
point-intersections)))))))
(if (> (length results) 0)
(m:make-point-set results)
(m:make-region-contradiction (list psl region)))))

(define (m:intersect-region-with-point-set region ps)
(m:intersect-point-set-with-region ps region))

(define m:translate-region (make-generic-operation 2
'm:translate-region))

(define (m:translate-point-set ps vec)
(m:make-point-set
(map (lambda (p) (add-to-point p vec))
(m:point-set-points ps))))
(defhandler m:translate-region m:translate-point-set m:point-set? vec?)

(define (m:translate-ray ray vec)
(m:make- ray
(add-to-point (m:ray-endpoint ray) vec)
(m:ray-direction ray)))
(defhandler m:translate-region m:translate-ray m:ray? vec?)

(define (m:translate-arc arc vec)
(m:make-arc
(add-to-point (m:arc-center arc) vec)
(m:arc-radius arc)
(m:arc-dir-interval arc)))
(defhandler m:translate-region m:translate-arc m:arc? vec?)

(define m:intersect-regions (make-generic-operation 2
'm:intersect-regions))

;33 Same Type
(defhandler m:intersect-regions
m:intersect-rays m:ray? m:ray?)

305

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339

(defhandler m:intersect-regions
m:intersect-arcs m:arc? m:arc?)

;33 Arc + Ray

(defhandler m:intersect-regions
m:intersect-ray-arc m:ray? m:arc?)

(defhandler m:intersect-regions
m:intersect-arc-ray m:arc? m:ray?)

;35 Point Sets

(defhandler m:intersect-regions
m:intersect-region-with-point-set any? m:point-set?)

(defhandler m:intersect-regions
m:intersect-point-set-with-region m:point-set? any?)

;35 Contradictions

(defhandler m:intersect-regions (lambda (a b) a) m:region-contradiction?
any?)

(defhandler m:intersect-regions (lambda (a b) b) any?
m:region-contradiction?)

(define m:region-equivalent?
(make-generic-operation 2 'm:region-equivalent? (lambda (a b) #f)))

(defhandler m:region-equivalent?
m:point-sets-equivalent? m:point-set? m:point-set?)

(defhandler m:region-equivalent?
m:rays-equivalent? m:ray? m:ray?)

(defhandler m:region-equivalent?
m:arcs-equivalent? m:arc? m:arc?)

(defhandler m:region-equivalent?
m:region-contradictions-equivalent?
m:region-contradiction?
m:region-contradiction?)

(define (m:region? x)
(or (m:point-set? x)
(m:ray? x)
(m:arc? x)
(m:region-contradiction? x)))

(defhandler equivalent? m:region-equivalent? m:region? m:region?)
(defhandler merge m:intersect-regions m:region? m:region?)

(defhandler contradictory? m:region-contradiction? m:region?)

91

340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380

© 00 N O U W N

#]
Simple Examples
(pp (let-cells (c)
(add-content c (m:make-arc (make-point 1 0) (sqrt 2)
(make-direction-interval
(make-direction (/ pi 8))
(make-direction (x 7 (/ pi 8))))))
(add-content c (m:make-ray (make-point -3 1) (make-direction 0)))
(add-content c (m:make-ray (make-point 1 2)
(make-direction (x 7 (/ pi 4)))))
(content c)))
(let ((a (make-point 0 0))
(b (make-point 1 0))
(c (make-point 0 1))
(d (make-point 1 1)))
(let-cells (cell)
(add-content cell
(make-tms
(contingent (m:make-point-set (list a b c))
'(a))))
(add-content cell
(make-tms
(contingent (m:make-point-set (list a d))
"(a))))
(pp (tms-query (content cell)))))
| #
siiisaasasaiiiiissaisasss To Figure elements ;555555555555555555555005

(define m:region->figure-elements
(make-generic-operation 1 'm:region->figure-elements (lambda (r) #f)))

(defhandler m:region->figure-elements
m:ray->figure-ray
m:ray?)

(defhandler m:region->figure-elements
m:region-contradiction->figure-elements
m:region-contradiction?)

Listing A.28: solver/constraints.scm

;33 constraints.scm --- Constraints for mechanisms
;35 Commentary:

;3 Ideas:

;3 - Abstraction for specifying constraints
;3 - Length, angle equality

;3 - Perpendicular / Parellel

10 ;; Future:
11 ;; - Constraints for other linkages?

12

13 ;;; Code:

14

15 5555555533555 555555555 Constraint Structure ;;55555555555555555555533
16

17 (define-record-type <m:constraint>

18 (m:make-constraint type args constraint-procedure)
19 m:constraint?

20 (type m:constraint-type)

21 (args m:constraint-args)

22 (constraint-procedure m:constraint-procedure))

23

25

26 (define (m:c-length-equal bar-id-1 bar-id-2)
27 (m:make-constraint

28 'm:c-length-equal

29 (list bar-id-1 bar-id-2)

30 (lambda (m)

31 (let ((bar-1 (m:lookup m bar-id-1))
32 (bar-2 (m:lookup m bar-id-2)))
33 (c:id (m:bar-length bar-1)

34 (m:bar-length bar-2))))))

35

36 (define (m:c-angle-equal joint-id-1 joint-id-2)
37 (m:make-constraint

38 'm:c-angle-equal

39 (list joint-id-1 joint-id-2)

40 (lambda (m)

41 (let ((joint-1 (m:lookup m joint-id-1))
42 (joint-2 (m:lookup m joint-id-2)))
43 (c:id (m:joint-theta joint-1)

44 (m:joint-theta joint-2))))))

45

46 (define (m:c-right-angle joint-id)
47 (m:make-constraint

48 'm:right-angle

49 (list joint-id)

50 (lambda (m)

51 (let ((joint (m:lookup m joint-id)))
52 (c:id

53 (m:joint-theta joint)

54 (/ pi 2))))))

55

56 ;;; p2 between pl p3 in a line
57 (define (m:c-line-order pl-id p2-id p3-id)

58 (list
59 (m:make-named-bar pl-id p2-id)
60 (m:make-named-bar p2-id p3-id)

61 (m:make-named-joint pl-id p2-id p3-id)
62 (m:c-full-angle (m:joint pl-id p2-id p3-id))))

€91

110
111
112
113
114
115
116
117

(define (m:c-full-angle joint-id)

(m:make-constraint

'm:full-angle

(list joint-id)

(Lambda (m)

(let ((joint (m:lookup m joint-id)))

(c:id
(m:joint-theta joint)
pi)))))

(define (m:equal-joints-in-sum equal-joint-ids
all-joint-ids
total-sum)
(m:make-constraint
'm:equal-joints-in-sum
all-joint-ids
(Lambda (m)
(let ((all-joints (m:multi-lookup m all-joint-ids))
(equal-joints (m:multi-lookup m equal-joint-ids)))
(let ((other-joints
(set-difference all-joints equal-joints eq?)))
(c:id (m:joint-theta (car equal-joints))
(ce:/
(ce:- total-sum
(ce:multi+ (map m:joint-theta other-joints)))
(length equal-joints))))))))

(define (n-gon-angle-sum n)
(*n (- pi (/ (x 2 pi) n))))

(define (m:polygon-sum-slice all-joint-ids)
(m:make-slice
(m:make-constraint 'm:joint-sum all-joint-ids
(Lambda (m)
(let ((all-joints (m:multi-lookup m all-joint-ids))
(total-sum (n-gon-angle-sum (length all-joint-ids))))
(m:joints-constrained-in-sum all-joints total-sum))))))

(define (m:constrained? element)
(not (null? (m:element-constraints element))))

(define (m:element-constraints element)
(or (eq-get element 'm:constraints)
"))

(define (m:set-element-constraints! element constraints)
(eg-put! element 'm:constraints constraints))

(define (m:mark-constraint element constraint)
(m:set-element-constraints!
element
(cons constraint

118
119

135

159
160

161
162
163
164

166

167
168

(m:element-constraints element))))

(define (m:apply-constraint m constraint)
(for-each (lambda (element-id)
(m:mark-constraint
(m:lookup m element-id)
constraint))
(m:constraint-args constraint))
((m:constraint-procedure constraint) m))

siiiiiiasiiiaaiiaaiiiiiiiiiaisy SULCeS yuiiiiiiiiiiiiiiiiiiiiiiiiiiig

;33 Slices are constraints that are processed after the normal
;35 constraints have been aplied.

(define-record-type <m:slice>
(m:make-slice constraint)
m:slice?

(constraint m:slice-constraint))

(define (m:apply-slice m slice)

(m:apply-constraint m (m:slice-constraint slice)))
siiisaaassaiiiiissasssasss Propagator Utils iiiiisiiiiiiiiiiiiiiiiiig
(define (ce:multi+ cells)

(cond ((null? cells) 0)

((null? (cdr cells)) (car cells))
(else
(ce:+ (car cells)
(ce:multi+ (cdr cells))))))
siiiiiiasiiiiaiisiiiiasss Slices (for sums) ;i55i5i5ii55iiiiiiiiiiiiig
(define (m:equal-values-in-sum equal-cells all-cells total-sum)

(let ((other-values (set-difference all-cells equal-cells eq?)))
(c:id (car equal-cells)
(ce:/ (ce:- total-sum (ce:multi+ other-values))
(length equal-cells)))))

(define (m:sum-slice elements cell-transformer equality-predicate
total-sum)
(let* ((equivalence-classes
(partition-into-equivalence-classes elements
equality-predicate))

(nonsingular-classes (filter nonsingular? equivalence-classes))

(all-cells (map cell-transformer elements)))
(cons (c:id total-sum (ce:multi+ all-cells))
(map (lambda (equiv-class)
(m:equal-values-in-sum
(map cell-transformer equiv-class) all-cells
total-sum))
equivalence-classes))))

791

169

173

182

186

189
190
191

= e
H O © 0N O U W N =

12

(define (nonsingular? equivalence-class)
(> (length equivalence-class) 1))

(define (angle-equal-constraint? c)
(eq? (m:constraint-type c) 'm:c-angle-equal))

(define (m:joints-constrained-equal-to-one-another? joint-1 joint-2)
(let ((joint-1-constraints
(filter angle-equal-constraint?
(m:element-constraints joint-1)))
(joint-2-constraints
(filter angle-equal-constraint?
(m:element-constraints joint-2))))
(not (null? (set-intersection joint-1l-constraints
joint-2-constraints
(member-procedure eq?))))))

(define (m:joints-constrained-in-sum all-joints total-sum)
(m:sum-slice
all-joints
m:joint-theta
m:joints-constrained-equal-to-one-another?
total-sum))

Listing A.29: solver/topology.scm

;1 topology.scm --- Helpers for establishing topology for mechanism
;5 Commentary:

;3 Ideas:
;3 - Simplify listing out all bar and joint orderings
;3 - Start with basic polygons, etc.

;3 Future:
;3 - Figure out making multi-in/out joints: (all pairs?)

;13 Code:

;33 CCW point names
(define (m:establish-polygon-topology .
(if (< (length point-names) 3)
(error "Min polygon size: 3"))
(let ((extended-point-names
(append point-names (list (car point-names) (cadr
point-names)))))
(let ((bars (map (lambda (pl-name p2-name)
(m:make-named-bar pl-name p2-name))
point-names
(cdr extended-point-names)))
(joints (map (lambda (pl-name vertex-name p2-name)

point-names)

27

28
29
30
31
32

=
= O © 00N O ke W=

W W W W W WK NNNDNDNDNDNDNDN = = o= e = e
Gk W N H O ©OWNNO U e WNHFHOO©OOWNO U B WN

36
37
38

39
40
41
42

(m:make-named-joint pl-name vertex-name
p2-name))
(cddr extended-point-names)
(cdr extended-point-names)
point-names)))
(append bars joints

(list (m:polygon-sum-slice (map m:joint-name joints)))))))

Listing A.30: solver /mechanism.scm

;33 mechanism.scm --- Group of Bars / Joints
;55 Commentary:

;3 Ideas:
;3 - Grouping of bars and joints
;3 - Integrate with establishing toplogy

;3 Future:
;3 - Also specify constraints with it
;5 - Convert to Diagram

;35 Code:

(define *xm:debug* #f)
(define (m:pp msg) (if *m:debugx (pp msg)))
iiisisisiiiiiiiiiiiiiis; Mechanism Structure ;i5i555555555i5i5iiii5000

(define-record-type <m:mechanism>
(% m:make-mechanism bars joints constraints slices
bar-table joint-table joint-by-vertex-table)
m:mechanism?
(bars m:mechanism-bars)
(joints m:mechanism-joints)
(constraints m:mechanism-constraints)
(slices m:mechanism-slices)
(bar-table m:mechanism-bar-table)
(joint-table m:mechanism-joint-table)
(joint-by-vertex-table m:mechanism-joint-by-vertex-table))
(define (
(let ((bar-table (m:make-bars-by-name-table bars))
(joint-table (m:make-joints-by-name-table joints))
(joint-by-vertex-table (m:make-joints-by-vertex-name-table
joints)))
(% m:make-mechanism bars joints constraints slices
bar-table joint-table joint-by-vertex-table)))

m:make-mechanism bars joints constraints slices)

(define (m:mechanism . args)

91

91

(let ((elements (flatten args)))
(let ((bars (m:dedupe-bars (filter m:bar? elements)))
(joints (filter m:joint? elements))
(constraints (filter m:constraint? elements))
(slices (filter m:slice? elements)))
(m:make-mechanism bars joints constraints slices))))

(define (m:print-mechanism m)
“((bars , (map print (m:mechanism-bars m)))
(joints , (map print (m:mechanism-joints m)))
(constraints , (map print (m:mechanism-constraints m)))))

(defhandler print m:print-mechanism m:mechanism?)

(define (m:dedupe-bars bars)
(dedupe (member-procedure m:bars-name-equivalent?) bars))

Sriiiiiiiisiiiiiiiiiiiisiiies ACCESSOrS iiiiiiiiiiiiiiiiiisiiiiiiiiig

(define (m:mechanism-joint-by-vertex-name m vertex-name)
(m:find-joint-by-vertex-name
(m:mechanism-joint-by-vertex-table m)
vertex-name))

(define (m:mechanism-joint-by-names m dir-1-name vertex-name dir-2-name)
(m:find-joint-by-names
(m:mechanism-joint-table m)
dir-1-name vertex-name dir-2-name))

(define (m:multi-lookup m ids)
(map (lambda (id) (m:lookup m id)) ids))

(define (m:lookup m id)
(cond ((m:bar-id? id) (m:find-bar-by-id
(m:mechanism-bar-table m)
id))
((m:joint-id? id) (m:find-joint-by-id
(m:mechanism-joint-table m)
id))
((m:joint-vertex-id? id) (m:find-joint-by-vertex-name
(m:mechanism-joint-by-vertex-table m)
(m:joint-vertex-id-name id)))))

(define (m:mechanism-fully-specified? mechanism)
(and (every m:bar-fully-specified? (m:mechanism-bars mechanism))
(every m:joint-fully-specified? (m:mechanism-joints mechanism))))

(define (m:mechanism-contradictory? mechanism)
(or (any m:bar-contradictory? (m:mechanism-bars mechanism))

97
98
99
100
101
102
103
104
105

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

138
139
140
141
142
143
144
145
146
147
148
149
150

(any m:joint-contradictory? (m:mechanism-joints mechanism))))

;35 Should these be in Linkages?

(define *any-dir-specified* #f)
(define *any-point-specified* #f)

(define (any-one 1)
(let ((i (random (length 1))))
(list-ref 1 1)))

(define (m:pick-bar bars)
(car (sort-by-key bars (negatep m:bar-max-inner-angle-sum))))

(define m:pick-joint-1 any-one)

(define (m:pick-joint joints)
(car
(append
(sort-by-key
(filter m:joint-bar-sums joints)
m:joint-bar-sums)
(filter (notp m:joint-bar-sums) joints))))

(define (m:specify-angle-if-first-time cell)
(if (not =xany-dir-specifiedx)
(let ((dir (random-direction)))
(set! xany-dir-specifiedx* #t)
(m:pp " (initializing-direction , (name cell) ,(print dir)))
(m:instantiate cell dir 'first-time-angle))))

(define (m:specify-point-if-first-time point)
(if (not *any-point-specifiedx)
(begin
(set! xany-point-specifiedx #t)
(m:pp " (initializing-point , (name point) (0 0)))
(m:instantiate-point point 0 0 'first-time-point))))

(define (m:specify-bar bar)
(let ((v (m:random-bar-length)))
(m:pp " (specifying-bar-length ,(print (m:bar-name bar)) ,v))
(m:instantiate (m:bar-length bar) v 'specify-bar)
(m:specify-angle-if-first-time (m:bar-direction bar))
(m:specify-point-if-first-time (m:bar-pl bar))))

(define (m:specify-joint joint)
(let ((v (m:random-theta-for-joint joint)))
(m:pp " (specifying-joint-angle , (print (m:joint-name joint)) ,v))
(m:instantiate (m:joint-theta joint) v 'specify-joint)
(m:specify-angle-if-first-time (m:joint-dir-1 joint))))

(define (m:initialize-joint-vertex joint)

991

151

154

165

185

202
203
204

(m:specify-point-if-first-time (m:joint-vertex joint)))

(define (m:initialize-joint-direction joint)
(m:specify-angle-if-first-time (m:joint-dir-1 joint)))

(define (m:initialize-bar-pl bar)
(m:specify-point-if-first-time (m:bar-pl bar)))

(define (m:specify-joint-if m predicate)
(let ((joints (filter (andp predicate (notp m:joint-specified?))
(m:mechanism-joints m))))
(and (not (null? joints))
(m:specify-joint (m:pick-joint joints)))))

(define (m:initialize-joint-if m predicate)
(let ((joints (filter (andp predicate (notp m:joint-specified?))
(m:mechanism-joints m))))
(and (not (null? joints))
(let ((j (m:pick-joint joints)))
(m:initialize-joint-direction j)))))

(define (m:specify-bar-if m predicate)
(let ((bars (filter (andp predicate (notp m:bar-length-specified?))
(m:mechanism-bars m))))
(and (not (null? bars))
(m:specify-bar (m:pick-bar bars)))))

(define (m:initialize-bar-if m predicate)
(let ((bars (filter (andp predicate (notp m:bar-length-specified?))
(m:mechanism-bars m))))
(and (not (null? bars))
(m:initialize-bar-pl (m:pick-bar bars)))))

(define (m:specify-something m)
(or
m:specify-bar-if m m:constrained?)
m:specify-joint-if m m:constrained?)
:specify-joint-if m m:joint-anchored-and-arm-lengths-specified?)
m
m

m
m:specify-joint-if m:joint-anchored?)
m:specify-bar-if m m:bar-directioned?)
m:specify-bar-if m m:bar-anchored?)
m:initialize-joint-if m m:joint-dirs-specified?)
m:initialize-bar-if m m:bar-length-dir-specified?)
m:initialize-bar-if m m:bar-direction-specified?)
m:initialize-bar-if m m:bar-length-specified?)
m:initialize-joint-if m m:joint-anchored?)
m:initialize-joint-if m true-proc)
m:initialize-bar-if m true-proc)))

(
(
(
(
(
(
(
(
(
(
(
(

(define (m:apply-mechanism-constraints m)
(for-each (lambda (c)
(m:apply-constraint m c))

205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

222
223
224
225
226
227
228
229
230
231
232

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

256
257

(m:mechanism-constraints m)))

(define (m:apply-slices m)
(for-each (lambda (s)
(m:apply-slice m s))
(m:mechanism-slices m)))

siiaaiaasaisasiiaaaiaaaaaranisy BULUd Guguaaaasaisiaiiiiiiiiiiiiiiiiig

(define (m:identify-vertices m)
(for-each (lambda (joints)
(let ((first-vertex (m:joint-vertex (car joints))))
(for-each (lambda (joint)
(m:identify-points first-vertex
(m:joint-vertex joint)))
(cdr joints))))
(hash-table/datum-1ist (m:mechanism-joint-by-vertex-table

m))))

(define (m:build-mechanism m)
(m:identify-vertices m)
(m:assemble-linkages (m:mechanism-bars m)
(m:mechanism-joints m))
(m:apply-mechanism-constraints m)
(m:apply-slices m))

(define (m:initialize-solve)
(set! xany-dir-specified* #f)
(set! *any-point-specifiedx #f))

(define xmx #f)
(define (m:solve-mechanism m)
(set! *mx m)
(m:initialize-solve)
(let 1p ()
(run)
(cond ((m:mechanism-contradictory? m)
(m:draw-mechanism m c)
#T)
((not (m:mechanism-fully-specified? m))
(if (m:specify-something m)
(lp)
(error "Couldn't find anything to specify.")))
(else 'mechanism-built))))

(define (m:solve-mechanism-new m)
(set! *mx m)
(m:initialize-solve))

(define (m:specify-something-new m fail)
(let ((linkages (append (m:mechanism-bars m)
(m:mechanism-joints m))))
(let 1p ((linkages (sort-linknages linkages)))
(if (null? linkages)

L91

267

(fail)
(let ((first-linkage (car linkages))
(other-linkages (cdr linkages)))
(m:specify-linkage m first-linkage
(lambda ()
(lp (cdr linkages)))))))))

#]
(begin
(initialize-scheduler)
(m:build-mechanism
(m:mechanism
(m:establish-polygon-topology 'a 'b 'c))))
| #

(define (m:joint->figure-point joint)
(m:point->figure-point (m:joint-vertex joint)))

(define (m:mechanism->figure m)
(let ((points (map m:joint->figure-point (m:mechanism-joints m)))
(segments (map m:bar->figure-segment (m:mechanism-bars m)))
(angles (map m:joint->figure-angle (m:mechanism-joints m))))
(apply figure (flatten (filter identity (append points segments
angles))))))

(define (m:draw-mechanism m c)
(draw-figure (m:mechanism->figure m) c))

#|
(let 1p ()
(initialize-scheduler)
(let ((m (m:mechanism
(m:establish-polygon-topology 'a 'b 'c 'd))))
(m:pp (m:joint-anchored? (car (m:mechanism-joints m))))
(m:build-mechanism m)
(m:solve-mechanism m)
(let ((f (m:mechanism->figure m)))
(draw-figure f c)
(m:pp (analyze-figure f)))))
| #

Listing A.31: solver/main.scm

;33 main.scm --- Main definitions and code for running the
;33 manipulation / mechanism-based code

;13 Examples

(define (arbitrary-triangle)
(m:mechanism

8
9
10

28
29
30
31
32
33
34
35
36
37
38

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

(m:establish-polygon-topology 'a 'b 'c)))

(define (arbitrary-right-triangle)
(m:mechanism
(m:establish-polygon-topology 'a 'b 'c)
(m:c-right-angle (m:joint 'a))))

(define (arbitrary-right-triangle-2)
(m:mechanism
(m:establish-polygon-topology 'a 'b 'c)
(m:c-right-angle (m:joint 'c))))

(define (quadrilateral-with-diagonals a b c d)
(list

(m:establish-polygon-topology a b c d)
(m:establish-polygon-topology a b c)
(m:establish-polygon-topology b c d)
(m:establish-polygon-topology c d a)
(m:establish-polygon-topology d a c)))

(define (quadrilateral-with-diagonals-intersection a b c d e)
(list

(quadrilateral-with-diagonals a b c d)
(m:establish-polygon-topology a b e)
(m:establish-polygon-topology b c e)
(m:establish-polygon-topology c d e)
(m:establish-polygon-topology d a e)

(m:c-line-order c e a)
(m:c-line-order b e d)))

(define (quad-diagonals)
(m:mechanism
;; Setup abcd with e in the middle:
; (quadrilateral-with-diagonals-intersection 'a 'b 'c 'd 'e)

(m:establish-polygon-topology 'a 'b 'e)
(m:establish-polygon-topology 'b 'c 'e)
(m:establish-polygon-topology 'c 'd 'e)
(m:establish-polygon-topology 'd 'a 'e)
(m:c-line-order 'c 'e 'a)
(m:c-line-order 'b 'e 'd)

;5 Right Angle in Center:
(m:c-right-angle (m:joint 'b 'e 'c))

;5 Diagonals Equal

;i (m:c-length-equal (m:bar 'c 'a) (m:bar 'b 'd))
(m:c-length-equal (m:bar 'c 'e) (m:bar 'a 'e))
;i (m:c-length-equal (m:bar 'b 'e) (m:bar 'd 'e))

;5 Make it a square:
;i (m:c-length-equal (m:bar 'c 'e) (m:bar 'b 'e))

))

891

62 ;;; Works: 116 (m:mechanism

63 (define (isosceles-triangle) 117 (m:establish-polygon-topology 'a 'b 'c 'd)
64 (m:mechanism 118 (m:c-length-equal (m:bar 'a 'b)

65 (m:establish-polygon-topology 'a 'b 'c) 119 (m:bar 'b 'c))
66 (m:c-length-equal (m:bar 'a 'b) 120 (m:c-length-equal (m:bar 'b 'c)

67 (m:bar 'b 'c)))) 121 (m:bar 'c 'd))
68 122 (m:c-length-equal (m:bar 'c 'd)

69 (define (isosceles-triangle-by-angles) 123 (m:bar 'a 'd))))
70 (m:mechanism 124

71 (m:establish-polygon-topology 'a 'b 'c) 125 (define (parallelogram-by-angles)

72 (m:c-angle-equal (m:joint 'a) 126 (m:mechanism

73 (m:joint 'b)) 127 (m:establish-polygon-topology 'a 'b 'c 'd)
74 (m:equal-joints-in-sum 128 (m:c-angle-equal (m:joint 'a)

75 (list (m:joint 'a) (m:joint 'b)) 129 (m:joint 'c))

76 (list (m:joint 'a) (m:joint 'b) (m:joint 'c)) 130 (m:c-angle-equal (m:joint 'b)

77 pi))) 131 (m:joint 'd))))
78 132

79 (define (isosceles-triangle-by-angles) 133 (define xmx)

80 (m:mechanism 134 (define (m:run-mechanism mechanism-proc)
81 (m:establish-polygon-topology 'a 'b 'c) 135 (initialize-scheduler)

82 (m:c-angle-equal (m:joint 'a) 136 (let ((m (mechanism-proc)))

83 (m:joint 'b)))) 137 (set! *mx m)

84 138 (m:build-mechanism m)

85 ;;; Often works: 139 (if (not (m:solve-mechanism m))
86 (define (arbitrary-quadrilateral) 140 (pp "Unsolvable!")

87 (m:mechanism 141 (let ((f (m:mechanism->figure m)))
88 (m:establish-polygon-topology 'a 'b 'c 'd))) 142 (draw-figure f c)

89 143 ;i (pp (analyze-figure f))
90 ;;; Always works: 144))))

91 (define (parallelogram-by-sides) 145

92 (m:mechanism 146 #|

93 (m:establish-polygon-topology 'a 'b 'c 'd) 147 (let 1p ()

94 (m:c-length-equal (m:bar 'a 'b) 148 (initialize-scheduler)

95 (m:bar 'c 'd)) 149 (pp 'start)

96 (m:c-length-equal (m:bar 'b 'c) 150 (m:run-mechanism

97 (m:bar 'd 'a)))) 151 (lambda ()

98 152 (m:mechanism

99 (define (kite-by-sides) 153 ;5 (m:establish-polygon-topology 'a 'b 'c)
100 (m:mechanism 154 (m:make-named-bar 'a 'b)

101 (m:establish-polygon-topology 'a 'b 'c 'd) 155 (m:make-named-bar 'b 'c)

102 (m:c-length-equal (m:bar 'a 'b) 156 (m:make-named-bar 'c 'a)

103 (m:bar 'b 'c)) 157 (m:make-named-joint 'c 'b 'a)
104 (m:c-length-equal (m:bar 'c 'd) 158 (m:make-named-joint 'a 'c 'b)
105 (m:bar 'd 'a)))) 159 (m:make-named-joint 'b 'a

106 160

107 (define (kite-by-angles-sides) 161 (m:make-named-bar 'a 'd)

108 (m:mechanism 162 (m:make-named-bar 'b 'd)

109 (m:establish-polygon-topology 'a 'b 'c 'd) 163 (m:make-named-joint 'd 'a 'b)
110 (m:c-length-equal (m:bar 'a 'b) 164 (m:make-named-joint 'a 'b 'd)
111 (m:bar 'a 'd)) 165 (m:make-named-joint 'b 'd 'a)
112 (m:c-angle-equal (m:joint 'b) 166

113 (m:joint 'd)))) 167 (m:make-named-bar 'c 'd)

114 168 (m:make-named-joint 'a 'd 'c)

115 (define (rhombus-by-sides) 169 (m:make-named-joint 'c 'a 'd)

691

170 (m:make-named-joint 'd 'c 'a)))) 14 (define (with-explanation thunk)

171 (lp)) 15 (fluid-let ((xexplainx #t))
172 16 (thunk)))
173 (let 1p () 17
174 (initialize-scheduler) 18
175 (let ((m (m:mechanism 19 555iiisssiiiiiiiiiiiiiiiss current Student ;55555iiiiiiiiiiiiiiiiiig
176 (m:establish-polygon-topology 'a 'b 'c 'd)))) 20
177 (m:build-mechanism m) 21 (define (lookup term)
178 (m:solve-mechanism m) 22 (or (lookup-definition term)
179 (let ((f (m:mechanism->figure m))) 23 (error "Term Unknown:" term)))
180 (draw-figure f c) 24
181 (pp (analyze-figure f))))) 25 (define (example-object term)
182 |# 26 ((definition-generator (lookup term))))
183 27
184 (define (rect-demo-1) 28 (define (more-specific? more-specific-term less-specific-term)
185 (m:mechanism 29 (let ((more-specific-obj (example-object more-specific-term))
186 (m:establish-polygon-topology 'a 'b 'c 'd) 30 (less-specific-obj (example-object less-specific-term)))
187 (m:c-length-equal (m:bar 'a 'b) 31 (is-a? less-specific-term more-specific-obj)))
188 (m:bar 'b 'c)) 32
189 (m:c-right-angle (m:joint 'd)))) 33 (define less-specific? (flip-args more-specific?))
190 34
191 (define (rect-demo-2) 35 (define (more-specific-nonrecursive?
192 (m:mechanism 36 more-specific-term less-specific-term)
193 (m:establish-polygon-topology 'a 'b 'c 'd) 37 (let ((more-specific-obj (example-object more-specific-term))
194 (m:c-length-equal (m:bar 'a 'd) 38 (less-specific-obj (example-object less-specific-term)))
195 (m:bar 'b 'c)) 39 (is-a-nonrecursive? less-specific-term more-specific-obj)))
196 (m:c-right-angle (m:joint 'd)) 40
197 (m:c-angle-equal (m:joint 'a) 41 (define less-specific-nonrecursive?
198 (m:joint 'c)))) 42 (flip-args more-specific-nonrecursive?))
199 43
200 (define (rect-demo-3) 44
201 (m:mechanism 45 Giiiiiissaasaiiiiiissss Definitions Interface 5i5iii5iiiiii00ii55000
202 (m:establish-polygon-topology 'a 'b 'c 'd) 46
203 (m:c-length-equal (m:bar 'a 'd) 47 (define (what-is term)
204 (m:bar 'b 'c)) 48 (if (not (term-known? term))
205 (m:c-right-angle (m:joint 'd)) 49 (pprint ‘'unknown)
206 (m:c-right-angle (m:joint 'b)))) 50 (pprint (lookup term))))
51

52 (define (show-example term)

Listing A.32: learning/interface.scm g8 (let ((def (lookup term)))

54 (show-element ((definition-generator def)))))
1 ;;; interface -- Main interface for learning module 55
2 56 (define (examine object)
3 ;;; Discussion: 57 (let ((satisfying-terms
4 58 (filter
5 ;; Ideas: 59 (lambda (term)
6 ;; - "What is" 60 (is-a? term object))
7 61 (known-terms))))
8 ::: Code: 62 (remove-supplanted more-specific? satisfying-terms)))
9 63
10 5555isiiiiiiiiisiiiiiiiissss Explanations ;iiiiiiiiisiisiisiisiiiiiigs 64 (define (examine-primitive object)
11 65 (let ((satisfying-terms
12 (define xexplainx #f) 66 (filter

67 (lambda (term)

[
w

0LT

68
69
70
71
72
73
74
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

(and (primitive-definition? (lookup term))
(is-a? term object)))
(known-terms))))
(pp satisfying-terms)
(remove-supplanted more-specific? satisfying-terms)))

(define (show-definition-lattice)
(show-lattice (definition-lattice)))

(define (show-definition-sublattice term)
(show-lattice-from-key (definition-lattice) term))

(define (analyze-element element)
(if (polygon? element)
(name-polygon element))
(let ((fig (figure (with-dependency '<premise> element))))
(show-figure fig)
(let ((obs-list (analyze-figure fig)))
(map observation-with-premises obs-list))))

(define (show-element element)
(if (polygon? element)
(name-polygon element))
(show-figure (figure element)))

(define (show-figure figure)
(draw-figure figure c))

(define (initialize-student)

(Llet ((s (make-student)))
(set! xcurrent-studentx s)
(provide-core-knowledge)))

Listing A.33: learning/lattice.scm

;33 lattice.scm -- code for general lattice
;1 Code:
I I | o To =Y e S S

(define-record-type <lattice-node>
(% make-lattice-node key content parents children)
lattice-node?
(key lattice-node-key)
(content lattice-node-content)
(parents lattice-node-parents set-lattice-node-parents!)

13

(children lattice-node-children set-lattice-node-children!))

(define (make-lattice-node key content)
(% make-lattice-node key content '() '()))

(define (add-lattice-node-parent! node parent-node)
(set-lattice-node-parents!
node
(cons parent-node (lattice-node-parents node))))

(define (add-lattice-node-child! node child-node)
(set-lattice-node-children!
node
(cons child-node (lattice-node-children node))))

(define (add-lattice-node-children! node children-nodes)
(for-each
(lambda (child)
(add-lattice-node-child! node child))
children-nodes))

(define
(list

(print-lattice-node node)

(lattice-node-key node)

(lattice-node-content node)

(map lattice-node-key (lattice-node-parents node))
(map lattice-node-key (lattice-node-children node))))

(defhandler print print-lattice-node lattice-node?)
sivaaiaaaaisaaiiaaaiiaiaiaasy Lattice gugiaasaisiaiiiiiiiiiiiiiiiiig

;35 Partial-order-proc is a procedure on keys that returns true if the
;53 first argument is a parent of "above" the second in the lattice

(define-record-type <lattice>
(% make-lattice partial-order-proc root node-index)
lattice?
(partial-order-proc lattice-partial-order-proc)
(root lattice-root)
(node-index lattice-node-index))

(define (make-lattice partial-order-proc root)
(define (node-partial-order-proc parent-node child-node)
(partial-order-proc
(lattice-node-content parent-node)
(lattice-node-content child-node)))
(let ((node-index (make-key-weak-eq-hash-table)))
(hash-table/put! node-index
(lattice-node-key root)
root)
(% make-lattice node-partial-order-proc root
node-index)))

1.1

95

110
111
112
113
114
115
116
117
118
119
120

(define (lattice-node-by-key lattice key)

(hash-table/get
(lattice-node-index lattice)
key
#f))

(define (lattice-keys lattice)

(hash-table/key-1list
(lattice-node-index lattice)))

(define (lattice-nodes lattice)

(hash-table/datum-list
(lattice-node-index lattice)))

;13 Sublattice downwards from node
(define (sublattice-nodes lattice start-key)

(sublattice-nodes-from-key-with-getter
lattice start-key lattice-node-children))

(define (sublattice-nodes-upwards lattice start-key)

(sublattice-nodes-from-key-with-getter
lattice start-key lattice-node-parents))

(define (sublattice-nodes-from-key-with-getter

lattice start-key next-nodes-getter)
(let ((visited '())
(start-node (lattice-node-by-key lattice start-key)))
(define (visited? node)
(memq (lattice-node-key node) visited))
(define (mark-visited node)
(set! visited (cons (lattice-node-key node) visited)))
(define (get-unvisited nodes)
(let ((unvisited-nodes
(filter (notp visited?)
nodes)))
(for-each mark-visited unvisited-nodes)
unvisited-nodes))
(mark-visited start-node)
(let lp ((agenda (list start-node))
(sublattice-nodes (list start-node)))
(if (null? agenda)
sublattice-nodes
(let ((node (car agenda)))
(let ((unvisited-nodes
(get-unvisited (next-nodes-getter node))))
(lp (append (cdr agenda) unvisited-nodes)

(append sublattice-nodes unvisited-nodes))))))))

121
122
123
124
125
126
127
128
129

131
132
133
134
135
136
137
138

140
141
142
143
144
145
146
147
148
149

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

171
172
173
174

(define (add-lattice-node lattice new-node)
(if (lattice-node-by-key lattice (lattice-node-key new-node))
'done
(let ((visited '()))

(hash-table/put!
(lattice-node-index lattice)
(lattice-node-key new-node)
new-node)
(define (visited? node)
(memg (lattice-node-key node) visited))
(define (mark-visited node)
(set! visited (cons (lattice-node-key node) visited)))
(define (ancestor-of-new-node? node)
((lattice-partial-order-proc lattice) node new-node))
(define (descendent-of-new-node? node)
((lattice-partial-order-proc lattice) new-node node))
(define (get-unvisited nodes)
(let ((unvisited-nodes
(filter (notp visited?) nodes)))
(for-each mark-visited unvisited-nodes)
unvisited-nodes))
(define (save-as-parent parent-node)
(add-lattice-node-parent! new-node parent-node)
(let 1p ((agenda (list parent-node)))
(if (null? agenda) 'done
(let ((node (car agenda)))
(let ((children (lattice-node-children node)))
(let ((descendent-children
(filter descendent-of-new-node?
children))
(nondescendent-children
(filter (notp descendent-of-new-node?)
children)))
(add-lattice-node-children!
new-node descendent-children)
(lp (append (cdr agenda)
(get-unvisited
nondescendent-children)))))))))
(let 1p ((agenda (list (lattice-root lattice))))
(if (null? agenda)
(update-parent-child-pointers lattice new-node)
(let ((node (car agenda)))
(let ((children (lattice-node-children node)))
(let ((ancestor-children
(filter ancestor-of-new-node?
children)))
(if (null? ancestor-children)
(begin (save-as-parent node)
(lp (cdr agenda)))
(lp (append (cdr agenda)
(get-unvisited
ancestor-children))))))))))))

(define (clean-children lattice node)

cL1

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

194
195
196
197
198
199
200
201
202
203
204
205

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

-

(let ((children (dedupe-by eq? (lattice-node-children node))))
(set-lattice-node-children!
node
(remove-supplanted
(lattice-partial-order-proc lattice)
children))))

(define (clean-parents lattice node)
(let ((parents (dedupe-by eq? (lattice-node-parents node))))
(set-lattice-node-parents!
node
(remove-supplanted
(flip-args (lattice-partial-order-proc lattice))
parents))))

(define (update-parent-child-pointers lattice new-node)
(let ((parents-of-new-node (lattice-node-parents new-node))
(children-of-new-node (lattice-node-children new-node)))
(for-each (lambda (parent-node)
(set-lattice-node-children!
parent-node
(set-difference
(cons new-node (lattice-node-children parent-node))
children-of-new-node
eq?))
(clean-children lattice parent-node))
parents-of-new-node)
(for-each (lambda (child-node)
(set-lattice-node-parents!
child-node
(set-difference
(cons new-node (lattice-node-parents child-node))
parents-of-new-node
eq?))
(clean-parents lattice child-node))
children-of-new-node)
(clean-children lattice new-node)
(clean-parents lattice new-node)))

(define (remove-lattice-node lattice node-key)
(let* ((node-to-remove (lattice-node-by-key lattice node-key))
(children-of-removed-node
(lattice-node-children node-to-remove))
(parents-of-removed-node
(lattice-node-parents node-to-remove)))
(hash-table/remove! (lattice-node-index lattice)
node-key)
(for-each (lambda (parent-node)
(set-lattice-node-children!
parent-node
(append
(delq node-to-remove
(lattice-node-children parent-node))
children-of-removed-node))

243
244
245
246
247
248
249
250
251
252
253
254
255
256
257

264

268

(clean-children lattice parent-node))
parents-of-removed-node)
(for-each (lambda (child-node)
(set-lattice-node-parents!
child-node
(append
(delq node-to-remove
(lattice-node-parents child-node))
parents-of-removed-node))
(clean-parents lattice child-node))
children-of-removed-node)))

sisiasaassaiisiiassssssss Dot Visualization 55555 55550000ii55555000

;3; Replace - with _
(define (dot-encode-symbol symbol)
(list->string
(map (lambda (char)
(if (char=? char #\-)
#_
char))
(string->list (symbol->string symbol)))))

(define (lattice-node->string node)
(let ((key (lattice-node-key node))
(content (lattice-node-content node)))
(string-append
(symbol->string key)
(if (not (eq? key content))
(with-output-to-string
(Lambda ()
(write-string "\n")
(write (print content))))
""))))

(define (lattice-nodes->dot-string lattice-nodes)
(string-append
"digraph G {"
(apply
string-append
(append-map
(lambda (node)
(let ((node-key (lattice-node-key node)))
(cons
(string-append
(dot-encode-symbol node-key)
"[label=\"" (lattice-node->string node) "\"];\n")
(map (lambda (child-node)
(string-append
(dot-encode-symbol node-key)
W ow
(dot-encode-symbol (lattice-node-key child-node))
“;\n"))
(lattice-node-children node)))))

€LT

283
284
285
286
287
288
289

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

(let* (

lattice-nodes))
“F\n"))

(define (show-lattice-nodes lattice-nodes)

(let ((dot-string (lattice-nodes->dot-string lattice-nodes)))
(call-with-output-file "/tmp/lattice.dot"”
(lambda (dot-file)
(write-string dot-string dot-file)))
(run-shell-command "rm /tmp/lattice.png")
(run-shell-command "dot -Tpng -o /tmp/lattice.png /tmp/lattice.dot")
(run-shell-command "open /tmp/lattice.png")))

(define (show-lattice lattice)

(show-lattice-nodes (lattice-nodes lattice)))

(define (show-lattice-from-key lattice key)

(show-lattice-nodes
(sublattice-nodes lattice key)))

;53 Example:

root (make-lattice-node 'root '()))

lattice (make-lattice eq-subset? root))

(
(
(a (make-lattice-node 'a '(1)))
(b (make-lattice-node 'b '(2)))
(c (make-lattice-node 'c '(3)))
(d (make-lattice-node 'd '(1 2)))
(e (make-lattice-node 'e '(1 3)))
(f (make-lattice-node 'f '(2 3 4)))
(g (make-lattice-node 'g '(1 2 3)))
(h (make-lattice-node 'h '(1 2 3 4))))
(add-lattice-node lattice root)
(add-lattice-node lattice c)
(add-lattice-node lattice h)
(add-lattice-node lattice f)
(add-lattice-node lattice e)
(add-lattice-node lattice g)
(add-lattice-node lattice a)
(add-lattice-node lattice d)
(add-lattice-node lattice b)
(pprint root)
(pprint a)
(pprint b)
(pprint c)
(pprint d)
(pprint e)
(pprint f)
(pprint g)
(pprint h)
(remove-lattice-node lattice 'd)
(show-lattice-from-key lattice 'root))

->

337
338
339
340
341
342
343
344
345
346

=
= O © 00 N O 0w N

W W W NN NNDNDNDNNDNDNDN = = = e = e
N = O © 00 1O Uk WKN=O©Oow-=Oo Ut W N

33

37

()

Listing A.34:

;33 definitions.scm --- representation and interaction with definitions

learning/definitions.scm

;55 Commentary:

;3 Ideas:
;5 - primitive definitions

;3 Future:
;3 - relationship-based definitions

;35 Code:
Sisiisaaiiiaiiiisiisiaiiss Basic Structure iiiiiiiiiiiiiiiiiiiiiii

(define-record-type <definition>
(% make-definition name
generator
predicate
primitive?
all-conjectures
classifications
specific-conjectures)
definition?
(name definition-name)
(generator definition-generator)
(predicate definition-predicate set-definition-predicate!)
(primitive? definition-primitive?)
(all-conjectures definition-conjectures set-definition-conjectures!)
(classifications definition-classifications
set-definition-classifications!)
(specific-conjectures definition-specific-conjectures
set-definition-specific-conjectures!))

(define (make-primitive-definition name predicate generator)
(% make-definition name generator predicate #t '() '() '()))

(define (primitive-definition? def)
(and (definition? def)
(definition-primitive? def)))

VLT

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

89
90

(define (definition-holds? def obj)
(let ((classifications (definition-classifications def))
(specific-conjectures (definition-specific-conjectures def)))
(and ((definition-predicate def) obj)
(every (lambda (classification-term)
(is-a? classification-term obj))
classifications)
(every (lambda (conjecture)
(satisfies-conjecture? conjecture (list obj)))
specific-conjectures))))

(define (definition-holds-nonrecursive? def obj)
(let ((all-conjectures (definition-conjectures def)))
(and ((definition-predicate def) obj)
(every (lambda (conjecture)
(satisfies-conjecture? conjecture (list obj)))
all-conjectures))))

(define (make-definition

name
generator
primitive-predicate
conjectures)
(% make-definition name
generator
primitive-predicate
#f
conjectures
()
"))
Siiisaasasaiiiiisaiisaiassyyy Formatting siiaiiiiiiiiiiiiiiiiiiiiiig
(define (print-definition def)
(list (definition-name def)
(definition-classifications def)
(map print (definition-specific-conjectures def))))
(defhandler print print-definition

definition?)

(define (print-primitive-definition def)
“(primitive-definition , (definition-name def)))

(defhandler print print-primitive-definition
primitive-definition?)

Listing A.35: learning/conjecture.scm

© 00N O U W N =

GOt O Ot O R R s R R R R R R W W W W W W W W W WNNNNNDNDNNDNDNE =R e
BW N O © 0O 0 WD O OO0 G R WNRO®©OWNO O WNROO©OW-NOO Wk WNR~O

; conjecture -- a proposed conjecture based on an observed relationship

;; Commentary

; Ideas:
; - Higher-level than raw observations reported by perception/analyzer

; Future:
;3 - More complicated premises
;3 - "Pattern-matching"

;3 Code:

(define-record-type <conjecture>
(make-conjecture construction-dependencies
construction-source-procedures
relationship)
conjecture?
(construction-dependencies conjecture-constructions)
(construction-source-procedures conjecture-construction-procedures)
(relationship conjecture-relationship))

(define (print-conjecture conj)
(cons
(print (conjecture-relationship conj))
(conjecture-constructions conj)))

(defhandler print print-conjecture conjecture?)

(define (conjecture-equal? conjl conj2)
(equal? (print conjl)
(print conj2)))

(define conjecture-equivalent? conjecture-equal?)

;53 Whether

(define (satisfies-conjecture? conj premise-instance)
(or (true? (observation-from-conjecture conj premise-instance))
(begin (if xexplainx (pprint °(failed-conjecture ,conj)))
#f)))

(define (conjecture-from-observation obs)
(make-conjecture
(map element-dependencies->list (observation-args obs))
(map element-source (observation-args obs))
(observation-relationship obs)))

(define (observation-from-conjecture conj premise-instance)
(let ((new-args

GLT

55 (map (lambda (construction-proc) 37 (define arg->linkage-id (make-generic-operation 1 'arg->linkage-id

56 (construction-proc premise-instance)) 38 false-proc))
57 (conjecture-construction-procedures conj))) 39
58 (rel (conjecture-relationship conj))) 40 (define (segment->bar-id segment)
59 (and (relationship-holds rel new-args) 41 (m:bar (element-name (segment-endpoint-1 segment))
60 (make-observation rel new-args)))) 42 (element-name (segment-endpoint-2 segment))))
61 43 (defhandler arg->linkage-id segment->bar-id segment?)
62 ;;; Removing redundant conjectures 44
63 45 (define (angle->joint-id angle)
64 (define (simplify-conjectures conjectures base-conjectures) 46 (m:joint (element-name (angle-vertex angle))))
65 (define memp (member-procedure conjecture-equal?)) 47 (defhandler arg->linkage-id angle->joint-id angle?)
66 (filter 48
67 (lambda (o) (not (memp o base-conjectures))) 49 (define (establish-polygon-topology-for-polygon polygon)
68 conjectures)) 50 (let* ((points (polygon-points polygon))
51 (vertex-names (map element-name points)))
52 (apply m:establish-polygon-topology vertex-names)))
“ 53

Listing A.36: learning/simplifier.scm 54 (define +nun->figure-trialss 20)
1 ;;; simplifier.scm --- simplifies definitions 55
9 56 (define (observations->figure topology observations)
3 ;:; Commentary: 57 (pprint (list 'testing observations))
4 58 (let lp ((trials-left *xnum->figure-trialsx))
5 ;; Ideas: 59 (if (zero? trials-left)
6 ;; - interfaces to manipulator 60 #f
7 61 (or (observations->figure-one-trial topology observations)
8 :: Future: 62 (lp (- trials-left 1))))))
9 ;; - Support more complex topologies. 63
10 64 (define (observations->figure-one-trial topology observations)
11 ;:: Code: 65 (initialize-scheduler)
12 66 (letx ((constraints (observations->constraints observations))
13 555isisisisiiiisiiiiiiiiiss Main Interface ;55555550iisisisisisisi504s 67 (m (m:mechanism topology constraints)))
14 68 (m:build-mechanism m)
15 (define (observations->constraints observations) 69 (if (mot (m:solve-mechanism m))
16 (filter identity (map observation->constraint observations))) 70 (begin (pp "Could not solve mechanism") #f)
17 71 (et ((f (m:mechanism->figure m)))
18 (define (observation->constraint obs) 2 (pp "Solved!")
19 (let ((rel (observation-relationship obs)) 73 (show-figure f)
20 (args (observation-args obs))) 74))))
21 (let ((constraint-proc (relationship->constraint rel)) 75 i .
22 (linkage-ids (args->linkage-ids args))) 76 (define (topology-for-object obj)
23 (and constraint-proc 77 (if (polygon? obj)
24 (every identity linkage-ids) 78 (establish-polygon-topology-for-polygon
25 (apply constraint-proc 79 obj)
26 (args->linkage-ids args)))))) 80 (error "Object isn't a polygon")))
o7 81
28 (define (relationship->constraint rel) 82 (define (polygon-from-new-figure point-names figure)
29 (case (relationship-name rel) 83 (letx ((all-points (figure-points figure))
30 ((equal-length) m:c-length-equal) 84 (polygon-points
31 ((equal-angle) m:c-angle-equal) 85 (map
39 (else #f))) 86 (lambda (point-name)
33 87 (find (lambda (p) (eq? (element-name p)
34 (define (args->linkage-ids args) 88 . point-name))
35 (map arg->linkage-id args)) 89 all-points))

36 90 point-names)))

9LT

102

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

(apply polygon-from-points polygon-points)))

(define (object-from-new-figure old-object figure)
(if (polygon? old-object)
(polygon-from-new-figure
(map element-name (polygon-points old-object))
figure)
(error "Object isn't a polygon")))

(define-record-type <simple-definitions-result>
(% make-simple-definitions-result sufficient insufficient unknown)
simple-definitions-result?
(sufficient simple-def-result-sufficient
set-simple-def-result-sufficient!)
(insufficient simple-def-result-insufficient
set-simple-def-result-insufficient!)
(unknown simple-def-result-unknown
set-simple-def-result-unknown!))

(define (make-simple-definitions-result)
(% make-simple-definitions-result '() '() '()))

(define (mark-unknown-simple-def! def-result obs-subset)
(set-simple-def-result-unknown! def-result
(cons obs-subset (simple-def-result-unknown def-result))))

(define (mark-insufficient-simple-def! def-result obs-subset)
(set-simple-def-result-insufficient! def-result
(cons obs-subset (simple-def-result-insufficient def-result))))

(define (mark-sufficient-simple-def! def-result obs-subset)
(set-simple-def-result-sufficient! def-result
(cons obs-subset (simple-def-result-sufficient def-result))))

(define (simplify-definitions-result! def-result)
(set-simple-def-result-sufficient! def-result
(remove-supplanted eq-subset?
(simple-def-result-sufficient def-result)))
(set-simple-def-result-insufficient! def-result
(remove-supplanted (flip-args eq-subset?)
(simple-def-result-insufficient def-result)))
;3 Subsets of any insufficient ones are insufficient
(set-simple-def-result-unknown! def-result
(set-difference (simple-def-result-unknown def-result)
(simple-def-result-insufficient def-result)
eq-subset?))
(set-simple-def-result-unknown! def-result
(set-difference (simple-def-result-unknown def-result)
(simple-def-result-sufficient def-result)
(flip-args eq-subset?))))

(define (print-simple-def-result def-result)

145

151

e
= O © 0N Ul W N

I I I R
N I R R R N T S

(list (list 'sufficient
(map print (simple-def-result-sufficient def-result)))
(list 'insufficient
(map print (simple-def-result-insufficient def-result)))
(list 'unknown
(map print (simple-def-result-unknown def-result)))))

(define (superset-of-known-sufficient? def-result obs-subset)
((member-procedure eq-subset?)
obs-subset
(simple-def-result-sufficient def-result)))

(define (subset-of-known-insufficient? def-result obs-subset)
((member-procedure (flip-args eq-subset?))
obs-subset
(simple-def-result-insufficient def-result)))

(define (simple-def-should-test? def-result obs-subset)
(and (not (superset-of-known-sufficient? def-result obs-subset))
(not (subset-of-known-insufficient? def-result obs-subset))))

(defhandler print
print-simple-def-result
simple-definitions-result?)

Listing A.37: learning/student.scm

;35 student.scm -- base model of a student's knowlege
;33 Commentary:

;3 Ideas:
;3 - Definitions, constructions, theorems

;3 Future:
;3 - Simplifiers of redudant / uninsteresting info
;3 - Propose own investigations?

;35 Code:
Piiiiiiiisiaaiaiiaaiisss Student Structure iiiiiiiiiiiiiiiiiiiiiii

(define-record-type <student>
(% make-student definition-dictionary
definition-lattice)
student?
(definition-dictionary student-definitions)
(definition-lattice student-definition-lattice))

(define (make-student)
(% make-student (make-key-weak-eq-hash-table)
(make-student-lattice)))

LLT

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
s
78
79

Siviaaaaasassarrraaaaaaasrrys Lattice Sugiiiaiiiiiiiiiiiiiiiiiiii

(define (make-student-lattice)
(make-lattice less-specific-nonrecursive?
(make-lattice-node 'object 'object)))

(define (student-lookup-definition s name)
(hash-table/get (student-definitions s) name #f))

(define (student-save-definition! s def)
(hash-table/put! (student-definitions s)
(definition-name def)
def))

(define (student-known-terms s)
(hash-table/key-1list
(student-definitions s)))

iiisiisisiiiiiiiiiis Public Versionns of student ;5555555 55555i5555005
(define xcurrent-studentx #f)

(define (lookup-definition term)
(student-lookup-definition *current-studentx term))

(define (save-definition! def)
(student-save-definition! *current-studentx* def))

(define (definition-lattice)
(student-definition-lattice *current-studentx))

(define (known-terms)
(student-known-terms xcurrent-studentx))

siiasaasasaisiiasassaasssyy Definitions iiaaaiiiiiiiiiiiiiiiii

(define (add-definition-lattice-node! term)
(add-lattice-node
(definition-lattice) (make-lattice-node term term))
(update-definitions-from-lattice
(cons term (child-terms term))))

(define (remove-definition-lattice-node! term)
(Llet ((old-parent-terms (parent-terms term))
(old-child-terms (child-terms term)))
(remove-lattice-node
(definition-lattice) term)
(update-definitions-from-lattice old-parent-terms)
(update-definitions-from-lattice old-child-terms)))

(define (add-definition! def)

80
81
82
83
84
85
86
87

101

104
105
106
107
108
109
110
111
112
113
114
115
116

(let ((term (definition-name def)))
(if (lookup-definition name)
(error "Definition already exists for" term))
(save-definition! def)
(add-definition-lattice-node! term)))

Siiiiiasiiiiisiiiiiiiiiis Student Interface ;iiiiiiiiiiiiiiiiiiiiiiiii

(define (term-known? term)

(lookup-definition term))

(define (is-a? term obj)

(let ((def (lookup term)))
(definition-holds? def obj)))

(define (is-a-nonrecursive? term obj)

(let ((def (lookup term)))
(definition-holds-nonrecursive? def obj)))

(define (learn-term term object-generator)

(if (term-known? term)
(error "Term already known:" term))
(let ((example (name-polygon (object-generator))))
(letx ((primitive-predicate (get-primitive-predicate example))
(fig (figure (as-premise example 0)))
(observations (analyze-figure fig))
(conjectures (map conjecture-from-observation observations)))
(pprint conjectures)
(let ((new-def
(make-definition term object-generator
primitive-predicate conjectures)))
(add-definition! new-def)
(check-new-def new-def)
‘done))))

117 (define (get-primitive-predicate object)

118
119
120
121
122
123
124
125
126
127
128

129

(let ((primitives (examine-primitive object)))
(definition-predicate (lookup (car primitives)))))

(define (check-new-def new-def)

(if (and (= 1 (length (definition-classifications new-def)))

(null? (definition-specific-conjectures new-def)))
(pp (string-append
"Warning: No new known properties for term: "
(symbol->string (definition-name new-def))
". Appears same as "
(symbol->string (car (definition-classifications
new-def)))))))

130 (define (all-conjectures-for-term term)

131
132

(letx ((ancestor-terms (ancestor-terms term))
(ancestor-defs (map lookup ancestor-terms))

8LT

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

(ancestor-conjectures
(append-map definition-specific-conjectures ancestor-defs)))
(append (definition-specific-conjectures (lookup term))
ancestor-conjectures)))

(define (update-definitions-from-lattice terms)
(for-each update-definition-from-lattice terms))

(define (update-definition-from-lattice term)
(Letx ((def (lookup term))
current-conjectures (definition-conjectures def))
parent-terms (parent-terms term))
ancestor-terms (ancestor-terms term))
ancestor-defs (map lookup ancestor-terms))
ancestor-conjectures
(append-map definition-conjectures ancestor-defs))
(new-conjectures
(set-difference current-conjectures
ancestor-conjectures
conjecture-equal?)))
(set-definition-classifications!
def
parent-terms)
(set-definition-specific-conjectures!
def
new-conjectures)))

(define (lattice-node-for-term term)
(lattice-node-by-key (definition-lattice) term))

(define (child-terms term)
(let* ((lattice-node (lattice-node-for-term term))
(child-nodes (lattice-node-children lattice-node)))
(map lattice-node-key child-nodes)))

(define (parent-terms term)
(let* ((lattice-node (lattice-node-for-term term))
(parent-nodes (lattice-node-parents lattice-node)))
(map lattice-node-key parent-nodes)))

(define (ancestor-terms term)
(let ((ancestor-nodes (sublattice-nodes-upwards
(definition-lattice)
term)))
(delg term (map lattice-node-key ancestor-nodes))))

(define (descendent-terms term)
(let ((descendent-nodes (sublattice-nodes
(definition-lattice)
term)))
(delg term (map lattice-node-key descendent-nodes))))

187 (define (observations-implied-by-term term object)
188 (let ((conjectures (all-conjectures-for-term term)))

189 (map (lambda (conjecture)

190 (observation-from-conjecture conjecture (list object)))

191 conjectures)))

192

193 5553iiiiiiiiiass0; Performing Investigations ;555555555 555555555555
194

195 5555555555555 Simplifying Definitions ;555555555 555555355005
196

197 (define (polygon-from-object-observations object obs-subset)
198 (let* ((topology (topology-for-object object))

199 (new-figure (observations->figure topology obs-subset)))
200 (and new-figure (object-from-new-figure object new-figure))))
201

202 (define (get-simple-definitions term)
203 (let ((def (lookup term))

204 (simple-def-result (make-simple-definitions-result)))

205 (letx ((object ((definition-generator def)))

206 (fig (figure (as-premise (name-polygon object) 0)))

207 (all-observations (analyze-figure fig))

208 (eligible-observations

209 (filter observation->constraint all-observations)))

210 (for-each

211 (lambda (obs-subset)

212 (if (simple-def-should-test? simple-def-result obs-subset)

213 (let ((polygon

214 (polygon-from-object-observations object
obs-subset)))

215 ((cond ((false? polygon) mark-unknown-simple-def!)

216 ((is-a? term polygon)

217 (begin (pp "=> Sufficient")

218 mark-sufficient-simple-def!))

219 (else (begin (pp "=> Insufficient")

220 mark-insufficient-simple-def!)))

221 simple-def-result obs-subset)

222 (simplify-definitions-result! simple-def-result))

223 (pprint " (skipping ,obs-subset))))

224 (shuffle (all-subsets eligible-observations)))

225 (pprint simple-def-result)

226 simple-def-result)))

227

228

229 (define (get-simple-definitions term)
230 (let ((def (lookup term))

231 (simple-def-result (make-simple-definitions-result)))
232 (letx ((object ((definition-generator def)))

233 (fig (figure (as-premise (name-polygon object) 0)))
234 (all-observations (analyze-figure fig))

235 (eligible-observations

236 (filter observation->constraint all-observations)))
237 (for-each

238 (lambda (obs-subset)

239 (if (simple-def-should-test? simple-def-result obs-subset)

6L1

240
241

242
243
244
245
246
247
248
249
250

D TR W N =

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

1
2

(let ((polygon
(polygon-from-object-observations object
obs-subset)))
((cond ((false? polygon) mark-unknown-simple-def!)
((is-a? term polygon) mark-sufficient-simple-def!)
(else mark-insufficient-simple-def!))
simple-def-result obs-subset)
(simplify-definitions-result! simple-def-result))
(pprint " (skipping ,obs-subset))))
(shuffle (all-subsets eligible-observations)))
(pprint simple-def-result)
simple-def-result)))

Listing A.38: learning/core-knowledge.scm

;33 core-knowledge.scm -- Core knowledge of a student
;i; Commentary:

;33 Code:

(define (provide-core-knowledge)
(for-each add-definition! primitive-definitions))

piiiiiiiiiiiiiiiiiiiisss Primitive definitions ;;i555555555555055050000

(define triangle? (ngon-predicate 3))
(define quadrilateral? (ngon-predicate 4))

(define primitive-definitions
(list
(make-primitive-definition 'object true-proc true-proc)
make-primitive-definition 'point point? random-point)
make-primitive-definition 'line line? random-line)
make-primitive-definition 'ray ray? random-ray)
make-primitive-definition 'segment segment? random-segment)
make-primitive-definition 'polygon polygon? random-polygon)
make-primitive-definition 'circle circle? random-circle)
make-primitive-definition 'angle angle? random-angle)
make-primitive-definition 'triangle triangle?
random-triangle)
(make-primitive-definition 'quadrilateral quadrilateral?
random-quadrilateral)))

(
(
(
(
(
(
(
(

(define primitive-terms (map definition-name primitive-definitions))

Listing A.39: learning/investigation.scm

;33 investigation.scm --- Investigation

3 ;;; Code:

4

5 ;;; Investigation Type

6

7 (define-record-type <investigation>

8 (make-investigation starting-premise figure-proc)
9 investigation?

10 (starting-premise investigation-starting-premise)
11 (figure-proc investigation-figure-procedure))
12

13

14 #|

15 Example:

16 |#

17

18 (define (diagonal-investigation)

19 (make-investigation

20 'quadrilateral

21 (lambda (premise)

22 (let-geox*

23 ((((a b cd)) premise)

24 (diag-1 (make-segment a c))

25 (diag-2 (make-segment b d)))

26 (figure premise diag-1 diag-2)))))

27

28 (define (midsegment-investigation)

29 (make-investigation

30 'quadrilateral

31 (lambda (premise)

32 (let-geox*

33 ((((a b cd)) premise)

34 (e (midpoint a b))

35 (f (midpoint b c))

36 (g (midpoint c d))

37 (h (midpoint d a))

38 (midsegment-1 (make-segment e g))
39 (midsegment-2 (make-segment f h)))
40 (figure premise midsegment-1 midsegment-2)))))
41

42 (define (consecutive-midpoints-investigation)
43 (make-investigation

44 'quadrilateral

45 (lambda (premise)

46 (let-geox*

47 ((((a b cd)) premise)

48 (e (midpoint a b))

49 (f (midpoint b c))

50 (g (midpoint c d))

51 (h (midpoint d a))

52 (p (polygon-from-points e f g h)))
53 (figure premise p)))))

54

55 (define (run-investigation investigation)

56 (letx ((starting-term

08T

57 (investigation-starting-premise investigation))) 5 ;; Ideas:

58 (for-each (lambda (descendent-term) 6 ;; - Separated out polygons from other system-centric random proceudres
59 (run-investigation-for-term 7 ;; - These can be thought of as "user-provided" instead of system
60 investigation descendent-term)) provided.
61 (cons starting-term 8
62 (descendent-terms starting-term))))) 9 ;; Future:
63 10 ;; - More polygon types
64 (define (run-investigation-for-term investigation premise-term) 11
65 (pprint " (investigating ,premise-term)) 12 ;;; Code:
66 (letx ((figure-proc 13
67 (investigation-figure-procedure investigation)) 14 ;55355355 iy Random Triangles ;5555555555555
68 (premise-def (lookup premise-term)) 15
69 (example (example-object premise-term))) 16 (define (random-equilateral-triangle)
70 (set-as-premise! example 0) 17 (letx ((s1l (random-segment))
71 (Letx ((all-obs (all-observations (lambda () (figure-proc example)))) 18 (s2 (rotate-about (segment-endpoint-1 s1)
72 (interesting-obs (interesting-observations (lambda () 19 (/ pi 3)
(figure-proc example)))) 20 sl)))
73 (investigation-conjectures 21 (polygon-from-points
74 (map conjecture-from-observation all-obs)) 22 (segment-endpoint-1 sl1)
75 (orig-conjectures (all-conjectures-for-term premise-term)) 23 (segment-endpoint-2 sl)
76 (new-conjectures (set-difference 24 (segment-endpoint-2 s2))))
7 investigation-conjectures 25
78 orig-conjectures 26 (define (random-right-triangle)
79 conjecture-equivalent?)) 27 (letx ((rl (random-ray))
80 (new-interesting-observations 28 (r2 (rotate-about (ray-endpoint rl)
81 (set-difference 29 (/ pi 2)
82 interesting-obs 30 rl))
83 (list 31 (pl (random-point-on-ray rl))
84 (make-observation 32 (p2 (random-point-on-ray r2)))
85 (make-polygon-term-relationship premise-term) 33 (polygon-from-points
86 (list example))) 34 (ray-endpoint rl) pl p2)))
87 observation-equivalent?))) 35
88 (pprint (make-observation 36 (define (random-isosceles-triangle)
89 (make-polygon-term-relationship premise-term) 37 (letx ((s1l (random-segment))
90 (list example))) 38 (base-angle (rand-angle-measure))
91 (set-definition-conjectures! 39 (s2 (rotate-about (segment-endpoint-1 sl)
92 premise-def 40 base-angle
93 (dedupe-by conjecture-equivalent? 41 sl)))
94 (append orig-conjectures 42 (polygon-from-points
95 investigation-conjectures))) 43 (segment-endpoint-1 sl)
96 (show-figure (figure-proc example)) 44 (segment-endpoint-2 sl1)
97 (if (not (memg premise-term primitive-terms)) 45 (segment-endpoint-2 s2))))
98 (begin (remove-definition-lattice-node! premise-term) 46
99 (add-definition-lattice-node! premise-term))) 47 (define (random-right-isosceles-triangle)
100 (pprint 48 (let* ((s1l (random-segment))
101 new-interesting-observations)))) 49 (s2 (rotate-about (segment-endpoint-1 s1)
50 (/7 pi 2)
51 sl)))
.. i 52 (polygon-from-points
Listing A.40: content/random-polygons.scm o (segnent -endpoint-1 s1)
1 ;;; random-polygons.scm --- Random creation of polygons 54 (segment-endpoint-2 s1)
2 55 (segment-endpoint-2 s2))))
3 ;;; Commentary: 56 ;iiiiiissiiiiiiiiiisss; Random Quadrilaterals ;;;55555555555555355505
4 57

181

58 (define (random-square) 112 (p2 (segment-endpoint-2 s1))

r
59 (let* ((sl (random-segment)) 113 (p4 (rotate-about pl (rand-angle-measure) p2))
60 (pl (segment-endpoint-1 s1)) 114 (p3 (add-to-point

61 (p2 (segment-endpoint-2 s1)) 115 p2

62 (p3 (rotate-about p2 116 (sub-points p4 pl))))

63 (- (/ pi 2)) 117 (polygon-from-points pl p2 p3 p4)))

64 pl)) 118

65 (p4 (rotate-about pl 119 (define (random-trapezoid)

66 (/ pi 2) 120 (letx ((rl (random-ray))

67 p2))) 121 (r2 (translate-randomly rl))

68 (polygon-from-points pl p2 p3 p4))) 122 (pl (ray-endpoint rl))

69 123 (p2 (random-point-on-ray rl))

70 (define (random-rectangle) 124 (p3 (random-point-on-ray r2))

71 (let* ((rl (random-ray)) 125 (p4 (ray-endpoint r2)))

72 (pl (ray-endpoint rl)) 126 (polygon-from-points pl p2 p3 p4)))

73 (r2 (rotate-about (ray-endpoint rl) 127

74 (/ pi 2) 128 (define (random-orthodiagonal-quadrilateral)

75 rl)) 129 (let* ((rl (random-ray))

76 (p2 (random-point-on-ray rl)) 130 (r2 (rotate-about

7 (p4 (random-point-on-ray r2)) 131 (ray-endpoint rl)

78 (p3 (add-to-point 132 (/ pi 2)

79 p2 133 rl))

80 (sub-points p4 pl)))) 134 (r3 (reverse-ray rl))

81 (polygon-from-points pl p2 p3 p4))) 135 (r4 (reverse-ray r2))

82 136 (a (random-point-on-ray rl))

83 (define (random-parallelogram) 137 (b (random-point-on-ray r2))

84 (let* ((rl (random-ray)) 138 (c (random-point-on-ray r3))

85 (pl (ray-endpoint rl)) 139 (d (random-point-on-ray r4)))

86 (r2 (rotate-about (ray-endpoint rl) 140 (polygon-from-points a b c d)))

87 (rand-angle-measure) 141

88 rl)) 142 (define (random-cyclic-quadrilateral)

89 (p2 (random-point-on-ray rl)) 143 (let ((cir (random-circle)))

90 (p4 (random-point-on-ray r2)) 144 (let 1p ()

91 (p3 (add-to-point 145 (let ((points (n-random-points-on-circle-ccw cir 4)))
92 p2 146 (if (points-non-overlapping? points)

93 (sub-points p4 pl)))) 147 (apply polygon-from-points points)

94 (polygon-from-points pl p2 p3 p4))) 148 (1p))))))

95 149

96 (define (random-kite) 150 (define (random-equidiagonal-quadrilateral)

97 (letx ((rl (random-ray)) 151 (letx ((s (random-segment))

98 (pl (ray-endpoint rl)) 152 (pl (random-point-on-segment s))

99 (r2 (rotate-about (ray-endpoint rl) 153 (s-rotated (rotate-randomly-about pl s))
100 (rand-obtuse-angle-measure) 154 (p2 (random-point-on-segment s-rotated))
101 rl)) 155 (s2 (translate-by

102 (p2 (random-point-on-ray rl)) 156 (sub-points pl p2)

103 (p4 (random-point-on-ray r2)) 157 s-rotated)))

104 (p3 (reflect-about-line 158 (polygon-from-points (segment-endpoint-1 s)
105 (line-from-points p2 p4) 159 (segment-endpoint-1 s2)
106 pl))) 160 (segment-endpoint-2 s)
107 (polygon-from-points pl p2 p3 p4))) 161 (segment-endpoint-2 s2))))
108 162

109 (define (random-rhombus) 163 (define (random-isosceles-trapezoid)

110 (letx ((sl (random-segment)) 164 (let* ((al (random-obtuse-angle))

111 (pl (segment-endpoint-1 s1)) 165 (pl (angle-vertex al))

¢81

166
167
168
169
170
171
172

174
175
176
177
178
179
180
181
182
183
184
185

ray-from-arm-1 al))
ray-from-arm-2 al))
random-point-on-ray r2))
random-point-on-ray rl))
(make-segment pl p2))
pb (perpendicular-bisector s))
(p3 (reflect-about-line pb p4)))
(polygon-from-points pl p2 p3 p4)))

(
(
(
(

(define (random-3-equal-trapezoid)
(letx ((al (random-obtuse-angle))
pl (angle-vertex al))
rl (ray-from-arm-1 al))
r2 (ray-from-arm-2 al))
p2 (random-point-on-ray rl))
p4 (measured-point-on-ray
r2 (distance pl p2)))
(s (make-segment pl p2))
(pb (perpendicular-bisector s))
(p3 (reflect-about-line pb p4)))
(polygon-from-points pl p2 p3 p4)))

r
(
(
(
(
(
(

Listing A.41: content /thesis-demos.scm

;33 thesis-demos.scm -- Examples for thesis demonstration chapter

;;; Code

(define (triangle-with-perp-bisectors)

(let-geox ((a (make-point 0 0))
b (make-point 1.5 0))
c (make-point 1 1))
t (polygon-from-points a b c))
pbl (perpendicular-bisector (make-segment a b)))
pb2 (perpendicular-bisector (make-segment b c)))
pb3 (perpendicular-bisector (make-segment c a))))
(figure t pbl pb2 pb3)))

(
(
(
(
(
(

(define (demo-figure-0)
(let-geox (((s (a b)) (random-segment))
(pb (perpendicular-bisector s))
(p (random-point-on-line pb)))
(figure s pb
(make-segment a p)
(make-segment b p))))

(define (incircle-circumcircle)
(let-geo*x (((t (a b c)) (random-triangle))
(((a-1 a-2 a-3)) (polygon-angles t))
(abl (angle-bisector a-1))
(ab2 (angle-bisector a-2))

30 ((radius-segment (center-point radius-point))
31 (perpendicular-to (make-segment a b)
32 (intersect-linear-elements abl ab2)))
33 (incircle (circle-from-points

34 center-point

35 radius-point))

36 (pbl (perpendicular-bisector

37 (make-segment a b)))

38 (pb2 (perpendicular-bisector

39 (make-segment b c)))

40 (pb-center (intersect-lines pbl pb2))
41 (circum-cir (circle-from-points

42 pb-center

43 a)))

44 (figure t a-1 a-2 a-3

45 pb-center

46 radius-segment

47 incircle

48 circum-cir)))

49

50

51 (define (is-this-a-rectangle-2)
52 (m:mechanism
53 (m:establish-polygon-topology 'a 'b 'c 'd)

54 (m:c-length-equal (m:bar 'a 'd)
55 (m:bar 'b 'c))
56 (m:c-right-angle (m:joint 'd))
57 (m:c-angle-equal (m:joint 'a)

58 (m:joint 'c))))
59

60 (define (random-triangle-with-perp-bisectors)
61 (let-geo* ((t (random-triangle))

62 (a (polygon-point-ref t 0))

63 (b (polygon-point-ref t 1))

64 (c (polygon-point-ref t 2))

65 (pbl (perpendicular-bisector (make-segment
66 (pb2 (perpendicular-bisector (make-segment
67 (pb3 (perpendicular-bisector (make-segment
68 (figure t pbl pb2 pb3)))

69

70 (define (random-triangle-with-perp-bisectors)
71 (let-geo* (((t (a b c)) (random-triangle))

b)))
c)))
a))))

72 (pbl (perpendicular-bisector (make-segment b)))
73 (pb2 (perpendicular-bisector (make-segment b c)))
74 (pb3 (perpendicular-bisector (make-segment c a))))
75 (figure t pbl pb2 pb3)))

76

77 (define (angle-bisector-distance)
78 (let-geo* (((a (r-1 v r-2)) (random-angle))

79 (ab (angle-bisector a))

80 (p (random-point-on-ray ab))

81 ((s-1 (p b)) (perpendicular-to r-1 p))
82 ((s-2 (p c)) (perpendicular-to r-2 p)))
83 (figure a r-1 r-2 ab p s-1 s-2)))

€81

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

w N

© 00 N O U

=
[=}

(define (simple-mechanism)
(m:mechanism

m:make-named-bar 'a 'b)

m:make-named-bar 'b 'c)

:make-named-joint 'a 'b 'c)

:c-right-angle (m:joint 'b))))

m
m

(define (parallelogram-figure)

(let-geox (((p (a b ¢ d)) (random-parallelogram)))
(figure p)))
(define (m:quadrilateral-with-intersecting-diagonals a b c d e)
(list (m:establish-polygon-topology a b e)
(m:establish-polygon-topology b c e)
(m:establish-polygon-topology c d e)
(m:establish-polygon-topology d a e)
(m:c-line-order c e a)
(m:c-line-order b e d)))
(define (kite-from-diagonals)

(m:mechanism

(m:quadrilateral-with-intersecting-diagonals 'a 'b 'c 'd 'e)
(m:c-right-angle (m:joint 'b 'e 'c)) ;; Right Angle in Center
(m:c-length-equal (m:bar 'c 'e) (m:bar 'a 'e))))

(define (isosceles-trapezoid-from-diagonals)
(m:mechanism
(m:quadrilateral-with-intersecting-diagonals 'a 'b 'c 'd 'e)

(m:c-length-equal (m:bar 'a 'e) (m:bar 'b 'e))
(m:c-length-equal (m:bar 'c 'e) (m:bar 'd 'e))))

(define (parallelogram-from-diagonals)
(m:mechanism
(m:quadrilateral-with-intersecting-diagonals 'a 'b 'c 'd 'e)

(m:c-length-equal (m:bar 'a 'e) (m:bar 'c 'e))
(m:c-length-equal (m:bar 'b 'e) (m:bar 'd 'e))))

Listing A.42: content/walkthrough.scm

;33 Sample walkthrough, also used as a sort of "system test"

;33 Starts with limited knowledge

(what-is 'square)
(what-is 'rhombus)

;33 Knows primitive objects

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

(what-is 'line)
(what-is 'point)
(what-is 'polygon)

;33 And some built-in non-primitives

(what-is 'triangle)
(what-is 'quadrilateral)

show-element (random-parallelogram))
is-a? 'polygon (random-square))

is-a? 'quadrilateral (random-square))
is-a? 'triangle (random-square))
is-a? 'segment (random-square))

is-a? 'line (random-line))

(
(
(
(
(
(

(what-is 'isosceles-triangle)

(learn-term 'isosceles-triangle random-isosceles-triangle)
(what-is 'isosceles-triangle)

(is-a? 'isosceles-triangle (random-isosceles-triangle))

(is-a? 'isosceles-triangle (random-equilateral-triangle))
(is-a? 'isosceles-triangle (random-triangle))

(learn-term 'equilateral-triangle random-equilateral-triangle)
(what-is 'equilateral-triangle)

(is-a? 'equilateral-triangle (random-isosceles-triangle))
(is-a? 'equilateral-triangle (random-equilateral-triangle))

(learn-term 'right-isosceles-triangle random-right-isosceles-triangle)
(learn-term 'right-triangle random-right-triangle)

;33 Notice Random Ordering:

(learn-term 'kite random-kite)
(what-is 'kite)

(learn-term 'rectangle random-rectangle)
(what-is 'rectangle)

(learn-term 'trapezoid random-trapezoid)
(what-is 'trapezoid)

(learn-term 'square random-square)
(what-is 'square)

(learn-term 'orthodiagonal random-orthodiagonal-quadrilateral)
(what-is 'orthodiagonal)

781

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

=
H O © 00 N O U W N =

e e
N oo W N

(learn-term 'parallelogram random-parallelogram)
(what-is 'parallelogram)

(learn-term 'rhombus random-rhombus)
(what-is 'rhombus)

(learn-term 'equidiagonal random-equidiagonal-quadrilateral)
(what-is 'equidiagonal)

(learn-term 'cyclic random-cyclic-quadrilateral)
(what-is 'cyclic)

(learn-term 'isosceles-trapezoid random-isosceles-trapezoid)
(what-is 'isosceles-trapezoid)

(learn-term 'three-equal-trapezoid random-3-equal-trapezoid)
(what-is 'three-equal-trapezoid)

;33 Invetigations to disambiguate equidiagonal / orthodiagonal

(run-investigation-for-term (diagonal-investigation) 'equidiagonal)
(run-investigation-for-term (diagonal-investigation) 'orthodiagonal)

;3 (run-investigation (diagonal-investigation))
;3 (run-investigation (midsegment-investigation))

sivisiiissaiiiiisiiiss Check definition-lattice ;5555555555555
(show-definition-lattice)

(get-simple-definitions 'isosceles-triangle)

Listing A.43: content/investigations.scm

;13 ilnvestigations.scm -- Some sample investigations and ideas that
;33 could be persued

;33 Linear Pair Conjecture
;33 Givens: Angles a-1 and a-2 form a linear pair
;33 Goal: m(a-1) + m(a-2) = 180 degrees
(define (linear-pair)
(let-geo* ((a (random-point))
(11 (random-line-through-point a))
(r (random-ray-from-point a))
(a-1 (smallest-angle-from 11 r))
(a-2 (smallest-angle-from r (flip 11))))
(figure a 11 r a-1 a-2)))

;33 Vertical Angles Conjecture
;33 Givens: Angles a-1 and a-2 are vertical angles
;33 Goal: m(a-1) = m(a-2)

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

69
70
71

(define (vertical-angles)
(let-geox ((11 (random-line))
(c (random-point-on-line 11))
(12 (rotate-randomly-about c 11))
(a-1 (smallest-angle-from 11 12))
(a-2 (smallest-angle-from (flip 11) (flip 12))))
(figure 11 c 12 a-1 a-2)))

;35 Corresponding Angles Conjecture

;33 Givens: - Lines 11 and 12 are parallel
HH - Line 13 is a transversal
HH - a-1 and a-2 are resulting corresponding angles

;35 Goal: m(a-1) = m(a-2)
(define (corresponding-angles)
(let-geo* ((11 (random-line))

(12 (translate-randomly 11))
(a (random-point-on-line 11))
(b (random-point-on-line 12))
(13 (line-from-points a b))
(a-1 (smallest-angle-from 13 12))
(a-2 (smallest-angle-from 13 11)))
(figure 11 12 a b 13 a-1 a-2)))

;33 Interior / alternate interior: ordering of angles and

;33 Converse of Parallel lines
;35 Givens: - m(a-1) = m(a-2)
HHH - a-1, a-2, are either CA, AIA, AEA, etc. of Lines 11, 12
;35 Goal: lines 11 and 12 are parallel
(define (parallel-lines-converse)
(let-geo* ((a-1 (random-angle))
(13 (line-from-arm-1 a-1))
(a-2 (translate-randomly-along-line 13 a-1))
(11 (line-from-arm-2 a-1))
(12 (line-from-arm-2 a-2)))
(figure a-1 a-2 11 12 13)))

;3 Perpendicular bisector conjecture
;53 Givens: - p is a point on perpendicular bisector of segment (a, b)
;35 Goal: p is equidistant from a and b
(define (perpendicular-bisector-equidistant)
(let-geo* (((s (a b)) (random-segment))
(11 (perpendicular-bisector s))
(p (random-point-on-line 11)))
(figure s 11 p)))

;33 Converse of perpendicular bisector conjecture
;73 Given: - a and b are equidistant from point p
;35 Goal: p is on the perpendicular bisector of a, b
(define (perpendicular-bisector-converse)
(let-geo* ((p (random-point))

(a (random-point))

(b (rotate-randomly-about p a))

(s (make-segment a b))

a1

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

1
2

(pb (perpendicular-bisector s)))
(figure p a b s pb)))

;33 Angle bisector conjecture

;33 Given: angle a-1 of rays r-1, r-2, point a on angle-bisector 11
;33 Goal: Distnace from a to r-1 = distance a to r-2

(define (angle-bisector-distance)
(let-geox (((a (r-1 v r-2)) (random-angle))
(ab (angle-bisector a))
(p (random-point-on-ray ab))
(

(s-1 (p b)) (perpendicular-to r-1 p))
((s-2 (p c)) (perpendicular-to r-2 p)))

(figure a r-1 r-2 ab p s-1 s-2)))

;33 Interesting, dependent on "shortest distance" from prior conjecture

;33 Angle bisector concurrency

;33 Given: Triangle abc with angle-bisectors 11, 12, 13

;33 Goal: 11, 12, 13 are concurrent
(define (angle-bisector-concurrency)
(let-geox (((tl (a b c)) (random-triangle))
(((a-1 a-2 a-3)) (polygon-angles t1))
(11 (polygon-angle-bisector tl1 a))
(12 (polygon-angle-bisector tl b))
(13 (polygon-angle-bisector tl c)))
(figure t1 11 12 13)))

;33 Perpendicular Bisector Concurrency

;33 Given: Triangle ABC with sides sl1, s2, s3, perpendicular bisectors

;e 11, 12, 13

;33 Goal: 11, 12, 13 are concurrent

(define (perpendicular-bisector-concurrency)
(let-geox (((t (a b c)) (random-triangle))

(11 (perpendicular-bisector (make-segment a
(12 (perpendicular-bisector (make-segment b
(13 (perpendicular-bisector (make-segment c

(figure t 11 12 13)))

;33 Altitude Concurrency

;33 Given: Triangle ABC with altituds alt-1, alt2, alt-3

;35 Goal: alt-1, alt-2, alt-3 are concurrent
(define (altitude-concurrency)
(let-geo*x (((t (a b c¢)) (random-triangle))

(alt-1 (perpendicular-line-to (make-segment
(alt-2 (perpendicular-line-to (make-segment
(alt-3 (perpendicular-line-to (make-segment
(figure t alt-1 alt-2 alt-3)))

L N T

b c) a))
ac) b))
ab)c)))

Listing A.44: content/initial-demo.scm

;53 Initial System Demo, Early Spring 2015

3 (define (i-t-figure)

41

51

(let-geo* (((t (a b c)) (random-isosceles-triangle)))

(figure t)))

(define (midpoint-figure)
(let-geox (((s (a b)) (random-segment))
(m (segment-midpoint s)))
(figure s m)))

(define (random-rhombus-figure)
(let-geox (((r (a b c d)) (random-rhombus)))
(figure r)))

;33 Other Examples:

(define (debug-figure)

(let-geo* (((r (a b c d)) (random-parallelogram))

(ml (midpoint a b))
(m2 (midpoint c d)))
(figure r ml m2 (make-segment ml m2))))

(define (demo-figure)

(let-geox (((t (a b c)) (random-isosceles-triangle))

(d (midpoint a b))
(e (midpoint a c))
(f (midpoint b c))

(11 (perpendicular (line-from-points a b) d))
(12 (perpendicular (line-from-points a c) e))
(13 (perpendicular (line-from-points b c) f))

(il (intersect-lines 11 12))
(i2 (intersect-lines 11 13))
(cir (circle-from-points il a)))

(figure

(make-segment a b) (make-segment b c) (make-segment a c)

abcll 12 13 cir il i2)))

(define (circle-line-intersect-test)
(let-geox ((cir (random-circle))

((rad (a b)) (random-circle-radius cir))

(p (random-point-on-segment rad))
(U (random-line-through-point p))
(cd (intersect-circle-line cir 1))
(c (car cd))
(d (cadr cd)))

(figure cir rad p 1 c d)))

(define (circle-test)
(let-geox ((a (random-point))
(b (random-point))
(d (distance a b))
(r (rand-range (x d 0.5) (x d 1)))
(cl (make-circle a r))
(c2 (make-circle b r))

981

99

101
102
103
104
105
106

108
109
110
111

(cd (intersect-circles cl c2))
(c (car cd))

(d (cadr cd)))
(figure (polygon-from-points a ¢ b d))))

(define (line-test)

(let-geo* ((a (random-point))
(b (random-point))
(c (random-point))
(d (random-point))
(11 (line-from-points a b))
(12 (line-from-points c d))
(e (intersect-lines 11 12))
(f (random-point-on-line 11))
(cir (circle-from-points e f)))

(figure a b cd 11 12 e f cir)))

(define (incircle-circumcircle)
(let-geox (((t (a b c)) (random-triangle))
(((a-1 a-2 a-3)) (polygon-angles t))
(abl (angle-bisector a-1))
(ab2 (angle-bisector a-2))
((radius-segment (center-point radius-point))
(perpendicular-to (make-segment a b)
(intersect-linear-elements abl ab2)))
(incircle (circle-from-points
center-point
radius-point))
(pbl (perpendicular-bisector
(make-segment a b)))
(pb2 (perpendicular-bisector
(make-segment b c)))
(pb-center (intersect-lines pbl pb2))
(circum-cir (circle-from-points
pb-center
a)))
(figure t a-1 a-2 a-3 pb-center radius-segment
incircle circum-cir)))

(define current-figure demo-figure)

(define c
(if (environment-bound? (the-environment) 'c)
c
(canvas)))

(define (close)
(ignore-errors (lambda () (graphics-close (canvas-g c)))))

(define xnum-inner-loop* 5)
(define *num-outer-loop* 5)

112
113
114
115
116
117
118
119
120
121
122
123
124
125

126
127
128
129
130
131
132
133

=
= O © 000 0k WwN

Jun
N

13
14
15

16

(define (run-figure current-figure-proc)
(let ((analysis-data (make-analysis-collector)))
(run-animation
(lambda ()
(let ((current-figure (current-figure-proc)))
(draw-figure current-figure c)
(let ((analysis-results (analyze-figure current-figure)))
(save-results (print analysis-results) analysis-data)))))
(display "--- Results ---\n")
(print-analysis-results analysis-data)))

(define interesting-figures

debug-figure parallel-lines-converse
perpendicular-bisector-equidistant

perpendicular-bisector-converse demo-figure linear-pair

vertical-angles corresponding-angles cyclic-quadrilateral))

(define (run-initial-demo)
(for-each (lambda (figure)

(run-figure figure))
interesting-figures)

Listing A.45: core/animation.scm

;55 animation.scm --- Animating and persisting values in figure
constructions

;53 Commentary:

- Animate a range
- persist randomly chosen values across frames

- Backtracking, etc.
- Save continuations?

17 (define xanimation-stepsx 15)

18
19

;3 ~30 Frames per second:

20 (define xanimation-sleep* 30)

21
22
23
24
25
26

(define xanimate-value-onlyx #f)

siiiasaassaiiiiiassssssss Internal Constants 5555555555555ii53355005
(define xis-animating?* #f)
(define *animation-valuex 0)

18T

27 (define *next-animation-indexx 0) 80 (if (not *is-animating?x)

28 (define *animating-indexx 0) 81 \

29 82 (letx ((my-index *next-value-indexx)

30 (define (run-animation f-with-animations) 83 (table-value (hash-table/get

31 (fluid-let ((*xis-animating?* #t) 84 *persistent-values-tablex

32 (xpersistent-values-tablex (make-key-weak-eq-hash-table))) 85 my-index

33 (let 1p ((animate-index 0)) 86 #f)))

34 (fluid-let 87 (set! xnext-value-indexx (+ *next-value-indexx 1))
35 ((*animating-index* animate-index)) 88 (or table-value

36 (let run-frame ((frame 0)) 89 (begin

37 (fluid-let ((*xnext-animation-indexx 0) 90 (hash-table/put! *persistent-values-tablex
38 (*next-value-indexx 0) 91 my-index

39 (*animation-valuex 92 V)

40 (/ frame (x 1.0 xanimation-stepsx)))) 93 v)))))

41 (f-with-animations)

42 (sleep-current-thread *animation-sleepx*)

43 (if (< frame *animation-stepsx) s .

- (run-frame (+ frame 1)) Listing A.46: core/macros.scm
45 (if (< *animating-index* (- *next-animation-indexx 1)) 1 ;;; macros.scm --- Macros for let-geo* to assign names and variables
46 (lp (+ animate-index 1)))))))))) 2 ;;; to elements

47 3

48 iiiiissasssaiiiiiississ Animating Functions ;i 4 ;;; Commentary:

49 5

50 ;;; T should be a function of one float argument in [0, 1] 6 ;: Ideas:

51 (define (animate f) 7 ;; - Basic naming

52 (if *animate-value-onlyx* 8 ;; - Multiple assignment

53 (f (random 1.0)) 9

54 (let ((my-index *next-animation-indexx)) 10 ;; Future:

55 (set! xnext-animation-indexx (+ *next-animation-indexx 1)) 11 ;: - Warn about more errors

56 (f (cond ((< *animating-indexx my-index) 0) 12 ;; - More efficient multiple-assignment for lists

57 ((= *animating-index* my-index) *animation-valuex) 13

58 ((> *animating-index* my-index) 1)))))) 14 :;; Code:

59 15

60 (define (animate-range min max) 16 5iii555iiisiiiiisiiiis5; Expanding Assignment ;i5i5555555555555i550005

61 (animate (lambda (v)

17
62 (+ min 18 (define *multiple-assignment-symbolx 'smultiple-assignment-resultx)
63 (* v (- max min)))))) 19
64)) 20 (define (expand-multiple-assignment lhs rhs)
65 ;iiiiiiiiiiiiiiiiiiss Selected Animation Frames ;;;5555555555555555505 21 (expand-compound-assignment
66 . 22 (list *multiple-assignment-symbol* lhs)
67 (define (n-random-frames n f) 23 rhs))
68 (fluid-let ((*xanimate-value-onlyx* #t) 24
69 (*is-animating?* #t) 25 (define (make-component-assignments key-name component-names)
70 (*persistent-values-tablex (make-key-weak-eq-hash-table)) 26 (map (lambda (name i)
71 (xanimation-valuex 0)) 27 (list name " (element-component ,key-name ,i)))
72 (map (lambda (x) (fluid-let ((*next-value-indexx 0)) (f))) (iota 28 component - names
n)))) 29 (iota (length component-names))))
73 30
T4 33iiisiiiiiiiiiiiiiiiiiiiii; Persistence ;iiiiiiiiiiiiiiiiiiiiiiiiiii 31 (define (expand-compound-assignment lhs rhs)
75 . . 32 (if (not (= 2 (length lhs)))
76 (def%ne *persistent-values-tablex #f) 33 (error "Malformed compound assignment LHS (needs 2 elements): "
77 (define *next-value-indexx 0) 1hs))
78 34 (let ((key-name (car lhs))

79 (define (persist-value v) 35 (component-names (cadr lhs)))

881

61

73
74

(if (not (list? component-names))
(error "Component names must be a list:" component-names))
(let ((main-assignment (list key-name rhs))
(component-assignments
(make-component-assignments key-name component-names)))

(cons

main-assignment

component-assignments))))

(define (expand-assignment assignment)
(if (not (= 2 (length assignment)))
(error "Assignment in letgeox must be of length 2, found:"

a

ssignment))

(let ((lhs (car assignment))
(rhs (cadr assignment)))
(if (list? 1lhs)

(if

(= (length lhs) 1)

(expand-multiple-assignment (car lhs) rhs)
(expand-compound-assignment lhs rhs))
(list assignment))))

(define (expand-assignments assignments)
(append-map expand-assignment assignments))

rrrrrrrrrrag

piiiiiiiass Extract Variable Names ;555555555 500500300050;

(define (variables-from-assignment assignment)
(flatten (list (car assignment))))

(define (variables-from-assignments assignments)
(append-map variables-from-assignment assignments))

(define (set-name-expressions symbols)
(map (lambda (s)

‘" (set-element-name!

symbols))

(define (args-from-premise args)
(map (lambda (arg)
“(from-new-premise p ,arg))

args)

)

,s (quote ,s)))

(define (set-dependency-expressions assignments)
(append-map

(lambda (
(let ((

(
(if (
(

a)

name (car a))
value (cadr a)))
list? value)

let ((proc (car value))
(args (cdr value)))

“((set-source!
,name (lambda (p)
(set-dependency!

(,proc ,@(args-from-premise args))))

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

0 N O Ul W N

©

10
11
12
13
14
15
16
17
18

,name (list (quote ,proc) ,@args))))
“((set-source! ,name (element-source ,value))
(set-dependency! ,name (element-dependency ,value))))))
assignments))

;35 Syntax for setting names for geometry objects declared via let-geo
(define-syntax let-geox
(sc-macro-transformer
(lambda (exp env)
(let ((assignments (cadr exp))
(body (cddr exp)))
(let ((new-assignments (expand-assignments assignments))
(variable-names (variables-from-assignments assignments)))
(let ((result " (letx
,new-assignments
,@(set-name-expressions variable-names)
,@(set-dependency-expressions new-assignments)
,@body)))
;3 (pp result) ;; Uncomment to debug macro expansion
(close-syntax result env)))))))

Listing A.47: core/print.scm

;35 print.scm --- Print things nicely

;3 Commentary:
;35 - Default printing is not very nice for many of our record structure

;35 Code:
R A R o L S R SR R R

(define print
(make-generic-operation 1 'print (lambda (x) x)))

(defhandler print
(lambda (p) (cons (print (car p))
(print (cdr p))))
pair?)

(defhandler print
(lambda (1) (map print 1))
list?)

(define (pprint x)
(pp (print x))
(display "\n"))

681

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

52

Listing A.48: core/utils.scm

(define (assert boolean error-message)
(if (not boolean) (error error-message)))

piiiiisiasaaiiiiiiiiiiiisyy List Utilities ;5555555555550000i0iiiii333

(define (sort-by-key 1 key)
(sort 1 (lambda (vl v2)
(< (key v1)
(key v2)))))

(define (index-of el list equality-predicate)
(let 1p ((i 0)
(1 list))
(cond ((null? 1) #f)
((equality-predicate (car 1) el)
i)
(else (lp (+ i 1) (cdr 1))))))

;13 Swaps the elements at indices i and j in the vector
(define (swap vec i j)
(let ((tmp (vector-ref vec 1i)))
(vector-set! vec i (vector-ref vec j))
(vector-set! vec j tmp)))

(define
(let (

shuffle alts)

alts-vec (list->vector alts))

num-alts (length alts)))

= num-alts 0)

alts

(let lp ((to-index (- num-alts 1)))

(cond

((= to-index 0) (vector->list alts-vec))

(else (let ((from-index

(random (+ 1 to-index))))

(swap alts-vec from-index to-index)
(lp (- to-index 1)))))))))

(if

(define (flatten list)
(cond ((null? list) '())
((list? (car list))
(append (flatten (car list))
(flatten (cdr list))))
(else (cons (car list) (flatten (cdr list))))))

siiisaaaasaiiiiiiiiisiiiiiiyy Predicates siiiiiiiiiiiiiiiiiiiiiiiiiig

(define ((notp predicate) x)
(not (predicate x)))

(define ((andp pl p2) x)
(and (pl x)
(p2 x)))

55

101

103
104
105
106

(define (true-proc .
(define (false-proc .

args) #t)
args) #f)

(define (identity x) x)

(define (true? x)
(1f x #t #f))

;35 psl \ ps2
(define (set-difference setl set2 equality-predicate)

(define delp (delete-member-procedure list-deletor equality-predicate))

(let lp ((setl setl)
(set2 set2))
(if (null? set2)
(dedupe-by equality-predicate setl)
(let ((e (car set2)))
(lp (delp e setl)
(cdr set2))))))
(define (subset? small-set big-set equality-predicate)
(let ((sd (set-difference small-set big-set equality-predicate)))
(null? sd)))

(define (set-equivalent? setl set2 equality-predicate)
(and (subset? setl set2 equality-predicate)
(subset? set2 setl equality-predicate)))

(define (set-equivalent-procedure equality-predicate)
(lambda (setl set2)
(set-equivalent? setl set2 equality-predicate)))

(define (eq-subset? small-set big-set)
(subset? small-set big-set eq?))

(define (set-intersection setl set2 member-predicate)
(let lp ((setl (dedupe member-predicate setl))
(intersection '()))
(if (null? setl)
intersection
(let ((e (car setl)))
(lp (cdr setl)
(if (member-predicate e set2)
(cons e intersection)
intersection))))))

(define (distinct? elements equality-predicate)
(= (length elements)
(length (set-intersection
elements elements
(member-procedure equality-predicate)))))

06T

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

150

159

(define (dedupe-eq elements)
(dedupe-by eq? elements))

(define (dedupe-by equality-predicate elements)
(dedupe (member-procedure equality-predicate) elements))

(define (dedupe member-predicate elements)
(cond ((null? elements) '())
(else
(let ((bl (car elements)))
(if (member-predicate bl (cdr elements))
(dedupe member-predicate (cdr elements))
(cons bl (dedupe member-predicate (cdr elements))))))))

;33 supplanted-by-prediate takes two args: an element under consideration
;55 and an existing element in the list. If true, the first element
;33 will be removed from the list.
(define (remove-supplanted supplants-predicate elements)
(define member-predicate (member-procedure
supplants-predicate))
(let lp ((elements-tail elements)
(elements-head '()))
(if (null? elements-tail)
elements-head
(let ((el (car elements-tail))
(new-tail (cdr elements-tail)))
(lp new-tail
(if (or (member-predicate el new-tail)
(member-predicate el elements-head))
elements-head
(cons el elements-head)))))))

(define (all-subsets elements)
(append-map
(lambda (n)
(all-n-tuples n elements))
(iota (+ (length elements) 1))))

(define (partition-into-equivalence-classes elements
equivalence-predicate)
(let lp ((equivalence-classes '())
(remaining-elements elements))
(if (null? remaining-elements)
equivalence-classes
(lp
(add-to-equivalence-classes
equivalence-classes
(car remaining-elements)
(member-procedure equivalence-predicate))
(cdr remaining-elements)))))

(define (add-to-equivalence-classes classes element memp)

211

(if (null? classes)
(list (list element))
(let ((first-class (car classes))
(remaining-classes (cdr classes)))
(if (memp element first-class)
(cons (cons element first-class)
remaining-classes)
(cons first-class
(add-to-equivalence-classes remaining-classes
element
memp))))))

;35 Runs procedure on random animation frames and checks that results
;35 appear in a majority of frames.

(define *majority-trials-totalx 3)
(define *majority-trials-requireds* 2)

(define (require-majority f equality-predicate)
(require-enough f *majority-trials-totalx *majority-trials-requiredsx*
equality-predicate))

(define (require-enough f total-trials num-required equality-predicate)
(let ((all-executions (n-random-frames total-trials f)))
(check-enough all-executions num-required equality-predicate)))

(define (check-enough execution-results num-required equality-predicate)
(let ((hash-table ((weak-hash-table/constructor
(lambda (a b) 1) equality-predicate))))
(for-each (lambda (execution-result)
(for-each (lambda (element)
(hash-table/append hash-table
element element))
execution-result))
execution-results)
(filter identity
(map (lambda (a-pair)
(and (>= (length (cdr a-pair)) num-required)
(car a-pair)))
(hash-table->alist hash-table)))))

Sivisivisiiiiiiaiiiaisass Function Utilities 5i5i555iiiiiiiiiiiiiiiis

(define ((negatep f) x)
(- (f x)))

(define ((flip-args f) x y)
(fy x))

(define (memoize-function f)
(let ((cache (make-key-weak-eq-hash-table)))
(lambda (arg)

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

161
o
H O © 0N O Ok W N

O e
S © N O U W N

21
22
23
24
25
26
27
28
29

(hash-table/intern!
cache

arg

(lambda () (f arg))))))

iiiiasiiiiiasiiiiiiiiiiss Other Utdldties 555555555500555500i5i5i4

(define (eq-append! element key val)
(eg-put! element key
(cons val
(or (eq-get element key) '()))))

;33 (nth-letter-symbol 1) => 'a , 2 => 'b, etc.
(define (nth-letter-symbol i)
(symbol (make-char (+ 96 i) 0)))

(define (hash-table/append table key element)
(hash-table/put! table
key
(cons element
(hash-table/get table key '()))))

Listing A.49: 1ib/close-enuf.scm

;13 close-enuf? floating point comparison from scmutils
;33 Origin: Gerald Jay Sussman

(define xmachine-epsilonx
(let loop ((e 1.0))
(if (= 1.0 (+ e 1.0))
(x 2 e)
(loop (/ e 2)))))

(define *sqrt-machine-epsilonx
(sqrt *machine-epsilonx))

#|
(define (close-enuf? hl h2 tolerance)
(<= (magnitude (- hl h2))
(* .5 (max tolerance *machine-epsilonx)
(+ (magnitude hl) (magnitude h2) 2.0))))
| #

(define (close-enuf? hl h2 #!optional tolerance scale)
(if (default-object? tolerance)
(set! tolerance (* 10 *machine-epsilonx)))
(if (default-object? scale)
(set! scale 1.0))
(<= (magnitude (- hl h2))
(* tolerance
(+ (x 0.5
(+ (magnitude hl) (magnitude h2)))
scale))))

30
31

=
H O © 00 N O 0w N

= e e
TR W N

16

31

;35 end GIS

Listing A.50: lib/eq-properties.scm

;355 Traditional LISP property lists
;35 extended to work on any kind of eq? data structure.

(declare (usual-integrations))

;35 Property lists are a way of creating data that looks like a record
;33 structure without commiting to the fields that will be used until
;55 run time. The use of such flexible structures is frowned upon by
;35 most computer scientists, because it is hard to statically

;35 determine the bounds of the behavior of a program written using
;35 this stuff. But it makes it easy to write programs that confuse
;35 such computer scientists. I personally find it difficult to write
;35 without such crutches. -- GJS

(define eq-properties (make-eq-hash-table))

(define (eq-put! node property value)
(let ((plist (hash-table/get eq-properties node #f)))
(if plist
(let ((vcell (assq property (cdr plist))))
(if vcell
(set-cdr! vcell value)
(set-cdr! plist
(cons (cons property value)
(cdr plist)))))
(hash-table/put! eq-properties node
(list node (cons property value)))))
'done)

(define (eq-adjoin! node property new)
(eq-put! node property
(eq-set/adjoin new
(or (eq-get node property) '())))
'done)

(define (eq-rem! node property)
(let ((plist (hash-table/get eq-properties node #f)))
(if plist
(let ((vcell (assq property (cdr plist))))
(if vcell
(hash-table/put! eq-properties node (delq! vcell
plist))))))
'done)

(define (eq-get node property)
(let ((plist (hash-table/get eq-properties node #f)))

¢61

48 (if plist 30 ;;; branch where the first argument is accepted if the

49 (let ((vcell (assq property (cdr plist)))) 31 ;;; second argument is rejected. Here backtracking is
50 (if vcell 32 ;;; implemented using #f as a failure return, requiring
51 (cdr vcell) 33 ;;; further search.
52 #f))
53 #f))) 34
54 35 (define (make-generic-operator arity
55 (define (eq-plist node) 36 #loptional name default-operation)
56 (hash-table/get eq-properties node #f)) 37 (let ((record (make-operator-record arity)))
38
57 39 (define (operator . arguments)
58 40 (if (not (acceptable-arglist? arguments arity))
59 (define (eq-path path) 41 (error:wrong-number-of-arguments
60 (define (1p node) 42 (if (default-object? name) operator name)
61 (if node 43 arity arguments))
62 (if (pair? path) 44 (apply (find-handler (operator-record-tree record)
63 (eq-get ((eg-path (cdr path)) node) 45 arguments)
64 (car path)) 46 arguments))
65 node) 47
66 #f)) 48 (set-operator-record! operator record)
67 1p) 49
50 (set! default-operation
51 (if (default-object? default-operation)
Tat] . : 52 (named-lambda (no-handler . arguments)
LlStlng A51 hb/ghelper'scm 53 (error "Generic operator inapplicable:"
1 54 (if (default-object? name) operator name)
2 (define make-generic-operation make-generic-operator) 55 arguments))
3 ;;; Propagators also provide this. The above makes the below a 56 default-operation))
4 ;;; compatible extension of that version 57 (if (not (default-object? name)) ; Operation by name
5 #| 58 (set-operator-record! name record))
[Most General Generic-Operator Dispatch 59
7 (declare (usual-integrations)) ; for compiler 60 (assign-operation operator default-operation)
8 61 operator))
9 ;;; Generic-operator dispatch is implemented here by a
10 ;;; discrimination list (a "trie", invented by Ed Fredkin), 62
11 ;;; where the arguments passed to the operator are examined 63 ;;; This is the essence of the search.
12 ;;; by predicates that are supplied at the point of 64
13 ;;; attachment of a handler. (Handlers are attached by 65 (define (find-handler tree args)
14 ;;; ASSIGN-OPERATION alias DEFHANDLER). 66 (if (null? args)
15 67 tree
16 ;;; The discrimination list has the following structure: it 68 (find-branch tree
17 ;;; 1s an improper alist whose "keys" are the predicates 69 (car args)
18 ;;; that are applicable to the first argument. If a 70 (lambda (result)
19 ;;; predicate matches the first argument, the cdr of that 71 (find-handler result
20 ;;; alist entry is a discrimination list for handling the 72 (cdr args))))))
21 ;;; rest of the arguments. Each discrimination list is 73
22 ;;; improper: the cdr at the end of the backbone of the 74 (define (find-branch tree arg next)
23 ;;; alist is the default handler to apply (all remaining 75 (let loop ((tree tree))
24 ;;; arguments are implicitly accepted). 76 (cond ((pair? tree)
25 7 (or (and ((caar tree) arg)
26 ;;; A successful match of an argument continues the search 78 (next (cdar tree))
27 ;;; on the next argument. To be the correct handler all 79 (Lloop (cdr tree))))
28 ;;; arguments must be accepted by the branch predicates, so 80 ((null? tree) #f)

29 ;;; this makes it necessary to backtrack to find another 81 (else tree))))

€61

82

84
85
86

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

(define (assign-operation operator handler

. argument-predicates)
(let ((record (get-operator-record operator))
(arity (length argument-predicates)))
(if record
(begin
(if (not (<= arity
(procedure-arity-min
(operator-record-arity record))))
(error "Incorrect operator arity:" operator))
(bind-in-tree argument-predicates
handler
(operator-record-tree record)
(lambda (new)
(set-operator-record-tree! record
new))))
(error "Undefined generic operator" operator)))
operator)

(define defhandler assign-operation)

(define (bind-in-tree keys handler tree replace!)

(let loop ((keys keys) (tree tree) (replace! replace!))
(cond ((pair? keys) ; more argument-predicates
(let find-key ((treex tree))
(if (pair? treex)
(if (eq? (caar treex) (car keys))
;3 There is already some discrimination

;; list keyed by this predicate: adjust it

;3 according to the remaining keys
(loop (cdr keys)
(cdar treex)
(lambda (new)
(set-cdr! (car treex) new)))
(find-key (cdr treex)))
(let ((better-tree
(cons (cons (car keys) '()) tree)))
;3 There was no entry for the key I was
;3 looking for. Create it at the head of
;5 the alist and try again.
(replace! better-tree)
(Loop keys better-tree replace!)))))
;5 cond continues on next page.

((pair? tree) ; no more argument predicates.
;3 There is more discrimination list here,
;3 because my predicate list is a proper prefix
;3 of the predicate list of some previous
;5 assign-operation. Insert the handler at the
;5 end, causing it to implicitly accept any
;3 arguments that fail all available tests.
(let ((p (last-pair tree)))
(if (not (null? (cdr p)))
(warn "Replacing a default handler:"
(cdr p) handler))
(set-cdr! p handler)))
(else
;3 There is no discrimination list here. This
;; handler becomes the discrimination list,
;3 accepting further arguments if any.
(if (not (null? tree))
(warn "Replacing a handler:" tree handler))
(replace! handler)))))

(define xgeneric-operator-tablex (make-eq-hash-table))

(define (get-operator-record operator)
(hash-table/get *generic-operator-tablex operator #f))

(define (set-operator-record! operator record)

(hash-table/put! xgeneric-operator-tablex operator
record))
(define (make-operator-record arity) (cons arity '()))
(define (operator-record-arity record) (car record))
(define (operator-record-tree record) (cdr record))
(define (set-operator-record-tree! record tree)
(set-cdr! record tree))
(define (acceptable-arglist? lst arity)

(let ((len (length 1lst)))
(and (fix:<= (procedure-arity-min arity) len)
(or (not (procedure-arity-max arity))
(fix:>= (procedure-arity-max arity) len)))))
| #

194

Appendix B

Bibliography

1]

2]

3]

4]

5]

[6]

7]

18]

19]

[10]

[11]

Dave Barker-Plummer, Richard Cox, and Nik Swoboda, editors. Diagrammatic
Representation and Inference, volume 4045 of Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg, 2006.

Xiaoyu Chen, Dan Song, and Dongming Wang. Automated generation of geo-
metric theorems from images of diagrams. CoRR, abs/1406.1638, 2014.

Shang-Ching Chou. Mechanical geometry theorem proving, volume 41. Springer
Science & Business Media, 1988.

Shang-Ching Chou, Xiao-Shan Gao, and Jing-Zhong Zhang. A deductive
database approach to automated geometry theorem proving and discovering.
Journal of Automated Reasoning, 25(3):219-246, 2000.

Tom Davis. Geometer dynamic geometry program. Software available at
http:/ /www.geometer.org/geometer /index.html, 2009.

Joran Elias. Automated geometric theorem proving: Wu’s method. The Montana
Mathematics Enthusiast, 3(1):3-50, 2006.

Anne Berit Fuglestad. Discovering geometry with a computer: using Cabri-
géometre. Chartwell-Yorke, 114 High Street, Belmont, Bolton, Lancashire, BL7
8AL, England, 1994.

Herbert Gelernter. Realization of a geometry theorem proving machine. In
Computers and Thought, pages 134-152, 1963.

Ira Goldstein. Elementary geometry theorem proving. AI Memo 280, Mas-
sachusetts Institute of Technology, 1973.

R Nicholas Jackiw and William F Finzer. The geometer’s sketchpad: program-
ming by geometry. In Watch what I do, pages 293-307. MIT Press, 1993.

Mateja Jamnik. Mathematical Reasoning with Diagrams. University of Chicago
Press, 2001.

195

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

20]

[21]

22]

23]

[24]

[25]

[26]

Robert Joan-Arinyo. Basics on geometric constraint solving. Proceedings of 13th
Encuentros de Geometrfa Computacional (EGC09), Zaragoza (Spain), 2009.

Keith Jones. Providing a foundation for deductive reasoning: Students’ interpre-
tations when using dynamic geometry software and their evolving mathematical
explanations. Educational Studies in Mathematics, 44(1-2):55-85, 2000.

Glenn A Kramer. Solving geometric constraint systems: a case study in kine-
matics. MIT press, 1992.

Mark Levi. The mathematical mechanic: using physical reasoning to solve prob-
lems. Princeton University Press, 2009.

Antonio Montes and Toméas Recio. Automatic discovery of geometry theorems
using minimal canonical comprehensive grobner systems. In Automated Deduc-
tion in Geometry, pages 113-138. Springer, 2007.

Julien Narboux. A graphical user interface for formal proofs in geometry. Journal
of Automated Reasoning, 39(2):161-180, 2007.

Arthur J Nevins. Plane geometry theorem proving using forward chaining. Ar-
tificial Intelligence, 6(1):1-23, 1975.

Stavroula Patsiomitou and Anastassios Emvalotis. Developing geometric think-
ing skills through dynamic diagram transformations. In 6th Mediterranean Con-
ference on Mathematics Education, pages 249-258, 2009.

Pavel Pech. Deriving geometry theorems by automated tools. In Proceedings
of the Sixteenth Asian Technology Conference in Mathematics. Mathematics and
Technology, LLC, 2011.

Alexey Radul. Propagation networks: A flexible and expressive substrate for
computation. PhD thesis, Massachusetts Institute of Technology, 2009.

Alexey Radul and Gerald Jay Sussman. The art of the propagator. Technical
report, Massachusetts Institute of Technology, 2009.

Min Joon Seo, Hannaneh Hajishirzi, Ali Farhadi, and Oren Etzioni. Diagram
understanding in geometry questions. In Proceedings of the Twenty-eighth AAAI
Conference on Artificial Intelligence, 2014.

Michael Serra. Discovering geometry: An investigative approach, volume 4. Key
Curriculum Press, 2003.

Gerald Jay Sussman. Slices: At the boundary between analysis and synthesis.
Massachusetts Institute of Technology AI Memo, 1977.

Gerald Jay Sussman et al. Scmutils library. MIT Scheme Mechanics Mathemat-
ics Library, http://groups.csail.mit.edu/mac/users/gjs/6946/linux-install.htm,
2014.

196

[27] Vladimir Andreevich Uspenskii, Halina Moss, and Tan N Sneddon. Some ap-

plications of mechanics to mathematics. Pergamon Press Oxford-London-New
York-Paris, 1961.

[28] Sean Wilson and Jacques D. Fleuriot. Combining dynamic geometry, automated
geometry theorem proving and diagrammatic proofs. In Proceedings of the Fu-
ropean Joint Conferences on Theory and Practice of Software (ETAPS) Satellite
Workshop on User Interfaces for Theorem Provers (UITP). Springer, 2005.

[29] Franz Winkler, editor. Automated Deduction in Geometry, volume 2930 of Lec-
ture Notes in Computer Science. Springer Berlin Heidelberg, 2004.

197

	Introduction
	Document Structure

	Motivation and Examples
	Manipulating Diagrams ``In the Mind's Eye''
	An Initial Example
	Diagrams, Figures, and Constraints

	Geometry Investigation
	Vertical Angles
	Elementary Results
	Nine Point Circle and Euler Segment

	Discussion

	Demonstration
	Imperative Figure Construction
	Perception and Observation
	Mechanism-based Declarative Constraint Solver
	Bars and Joints
	Geometry Examples

	Learning Module
	Final Example: Simplifying Definitions

	System Overview
	Goals
	Diagram Representations
	Steps in a Typical Interaction
	Interpreting Construction Instructions
	Creating Figures
	Noticing Interesting Properties
	Reporting and Simplifying Findings

	Imperative Construction System
	Overview
	Basic Structures
	Creating Elements
	Essential Math Utilities

	Higher-order Procedures and Structures
	Polygons and Figures

	Random Choices
	Backtracking

	Construction Language Support
	Multiple Component Assignment
	Names and Dependencies

	Graphics and Animation
	Discussion

	Perception Module
	Overview
	Relationships
	What is Interesting?

	Observations
	Numerical Accuracy

	Analysis Procedure
	Focusing on Interesting Observations
	Discussion and Extensions
	Auxiliary Segments
	Extracting Angles
	Merging Related Observations

	Declarative Geometry Constraint Solver
	Overview
	Mechanical Analogies
	Propagator System

	Example of Solving Geometric Constraints
	Partial Information Structures
	Regions
	Direction Intervals

	Bar and Joint Constraints
	Bar Structure and Constraints
	Joint Structure and Constraints

	User-specified Constraints
	Slice Constraints

	Assembling Mechanisms
	Solving Mechanisms
	Interfacing with imperative diagrams

	Discussion and Extensions
	Backtracking
	Improved Partial Information
	Basing Choices on Existing Values

	Learning Module
	Overview
	Learning Module Interface
	Querying
	Student Structure
	Definition Structure

	Testing Definitions
	Conjecture Structure

	Examining Objects
	Maintaining the Term Lattice
	Core Knowledge

	Learning new Terms and Conjectures
	Performing Investigations

	Simplifying Definitions
	Discussion

	Related Work
	Automated Geometry Proof
	Automated Geometry Discovery
	Geometry Constraint Solving and Mechanics
	Dynamic Geometry
	Software

	Conclusion
	Overview
	Limitations
	Probabilistic Approach
	Negative Relations and Definitions
	Generality of Theorems

	System-level Extensions
	Deductive Proof Systems
	Learning Constructions
	Self-directed Explorations

	Code Listings
	Bibliography

