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Single-Nanocrystal Photon Correlation:

A Versatile Tool for Elucidating Basic Physics and

Characterizing Applications-Relevant Properties

by

Andrew Paul Beyler

Submitted to the Department of Chemistry
on July 28, 2015, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Single-molecule spectroscopy has been a critical tool for the development and un-
derstanding of semiconductor nanocrystals because of their inherent heterogeneity
size-dependent properties. In the past two decades, researchers have developed a
diverse toolbox of single-nanocrystal techniques and analyses that is capable of elu-
cidating the complex physics of nanocrystal fluorescence and characterizing many of
the subtle but important optical properties of nanocrystal samples. This effort has
been enabled by the flexible and modular structure of the single-molecule microscope,
which offers a multitude of opportunities for shaping the information gained from
single-nanocrystal experiments and provides a convenient and powerful framework
for creativity in experimental design.

In this thesis, we present two investigations that illustrate the full range and
versatility of single-nanocrystal spectroscopy and, in particular, of photon correlation
analysis. In Part I, we use single-nanocrystal spectroscopy as a tool for elucidating
basic physics by investigating the rapid spectral diffusion of individual nanocrystals
at low temperature. We develop a technique capable of measuring spectral dynamics
over eight orders of magnitude in time ranging form microseconds to hundreds of
seconds, and show that we can extract previously unavailable information about the
spectral diffusion mechanism. In Part II, we use single-nanocrystal spectroscopy as
a tool for characterizing optical properties by devising an experiment to measure
the average biexciton quantum yield of nanocrystal samples. This experiment allows
us to measure the biexcitonic properties of underdeveloped materials and can serve
as a quick and reliable characterization technique to aid in synthetic optimization.
Finally, in Part III, we look to the future by highlighting several modifications of
existing experiments that could reveal new and exciting insight into nanocrystals.

Thesis Supervisor: Moungi G. Bawendi
Title: Lester Wolfe Professor of Chemistry
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Chapter 1

Introduction

1.1 What Is So Great About the Nanoscale?

In the past 35 years, the field of nanoscience has been transformed from an obscure

field of physics into one of the major areas of scientific publication. The website Stat-

Nano.com reports that approximately 9% of the total number of scientific articles

published in 2014 and indexed by the Web of Science database were nano-related. [1]

This staggering wave of publication and cross-citation, and the proliferations of ar-

ticles on the synthesis of whimsical materials such as organic nanofruit, [2] titanium

dioxide sea-anenome nano-assemblies, [3] and hybrid organic/iron oxide nanodisco

balls, [4] could lead the remaining 91% to label ‘nano’ a cynical buzzword used to

glorify otherwise insignificant science. However, nanoscale materials have several gen-

eral properties that make them unique compared to either their bulk or molecular

analogues, including their high surface-to-area ratios; subtle, predictable, and control-

lable tunability; and greater functional specificity and structural complexity. These

features have opened the door for tremendous scientific creativity and technological

problem solving, and make them worthy of such extensive investigation.

Higher surface-to-volume ratio. Many applications of bulk metals and semi-

conductors rely on activity on the surface of the crystal. For instance, heterogeneous

catalysts are often metallic crystals that promote reactions on specific surface atom or
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crystal face, and optoelectronic devices rely on the migration of carriers to and from

device interfaces. In both of these cases, decreasing the domain size or introducing

porosity can increase performance by either increasing the density of active sites per

unit catalyst [5] or decreasing the average diffusion length to the interface. [6, 7]

The nanoscale represents the smallest crystal size that can maintain the beneficial

structural properties of the bulk crystal.

The remarkably high surface-to-volume ratio of nanostructures can also give rise

to conceptually interesting new physics. The theoretical framework of solid state

physics is predicated on the idea that crystal lattices can be treated as infinitely

large. [8] Surface states in bulk semiconductors can be explained using the effective

mass theorem to confine the extent of the lattice, but they are not usually considered

to be a major contributor to the overall behavior of the crystal. Although conventional

tools such as the effective mass theorem or classical electromagnetic theory can be

used to rationalize the simple optical physics of nanostructures like the core states of

semiconductor nanocrystals [9] or the plasmon resonances of metallic nanoparticles,

[10] poorly understood surface effects become essential for capturing their optical and

electronic behavior as the size of crystals decrease. As we will discuss later, many of

the nanoscale phenomena of active interest to researchers today appear to be strongly

influenced by surface effects not captured by traditional theoretical paradigms.

Predictable, and controllable tunability. The nanoscale also offers an appealing

compromise between the macroscopic and molecular regimes in terms of the degree

of functional tunability. On one hand, the functional properties of molecular species

can be hugely affected by relatively minor structural changes. One of the major

causes of the widespread sucess and general applicability of Organic chemistry is

that minor functionalization can spell the difference between the toxic and the tonic

in small organic molecules. An additional methyl group can transform methanol

from a blinding poison into a popular and relatively safe recreational drug, and the

addition of a few fluorine groups to a prospective pharmaceutical compound can turn

a biologically inert failure into a blockbuster. [11] This feature of small molecules
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can unfortunately also make rational design extremely difficult. On the other hand,

altering the size and shape of bulk materials hardly has any effect on their functional

properties at all.

Nanostructures offer a compromise between these regimes by maintaining most of

the properties of their bulk analogues and introducing the opportunity for subtle size

and shape-dependent perturbation. In catalysis, the shape of catalytic nanoparticles

has become an additional degree of freedom for further increasing the surface-to-

area ratio of catalyst or by improving the accessiblity of various crystal faces. [12]

The aforementioned titanium dioxide sea-anenome nano-assemblies, [3] for example,

were shown to have higher catalytic activity of methylene blue degradation than

more traditional, commercially available titanium dioxide nanocrystals. Moreover, in

optical and electronic applications, the size and shape of nanostructures have been

used to introduce controllable tunability in the energies and wavefunctions of their

electronic states. Major electronic properties, such as the semiconductor band gap

and metallic plasmon resonanance, can be affected by particle size and morphology

on the nanoscale. [13, 14]

Greater functional specificity and structural complexity. Finally, scientists

have often admired the elegant biochemical processes found in nature. Life as we know

it is only possible if the chemical components of living cells have sufficient specificity

that many different processes can occur simultaneously and independently within the

cell. Nature accomplishes this using complicated nanoscale organic species (i.e. pro-

teins, lipid membranes, carbohydrate structures, and nucleic acid polymers) capable

of adopting highly specific conformations and often capable of multiple functional

roles depending on their environment. Nanoscience can present the opportunity for

humans to straight-forwardly and affordably design structures with similar complex-

ity and specificity. For example, nanoscience has been put forward as a natural solu-

tion for improving the specificity of heterogeneous catalysts. Modern organometallic

chemistry has achieved unparalleled catalytic specificity in metal ion catalysts like

Palladium by shaping their steric and electronic properties using bulky multiden-
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tate ligands. [15] Nanoparticle catalysts may be capable of similar specificity, while

maintaining the high purity conversion and recoverability of heterogeneous catalysts.

[16, 17]

Tremendous strides have also been made towards the development of complicated

multifunctional heterostructures, especially for biological applications. Several no-

table examples of this can be found in the work of our lab alone. We have pioneered

the development of effective and flexible bioimaging probes by assembling nanopar-

ticles using multiple components that are independently responsible for optimized

fluorescence, solubility, and targeting. [18] To add even more complex functionality,

we have explored the packaging of these fluorescence probes in micelles with mag-

netic nanoparticles to produce powerful, micron-scale, dual fluorescence/MRI probes.

[19] And, we have made significant progress on the design of biodegradable organic

nanparticles for multi-stage delivery strategies for cancer therapeutics. [20, 21] One

of the unique properties of tumors is their leaky peripheral vasculature and poorly

formed internal vasculature. Large degradable nanoparticles are being designed to

preferentially enter the leaky vasculature of tumors, to degrade in the vicinity of the

tumor, and to release small therapeutic molecules that can effectively diffuse into

the poorly-formed tumor vasculature. Such complex delivery mechanisms are only

possible because of the flexible, modular design strategies that are uniquely feasible

at the nanoscale.

As we have seen in this section, nanostructures can take many forms, from plas-

monic materials, like gold nanoparticles, to semiconductor nanocrystals, to catalytic

nanoparticles, to organic nanostructures like dendrimers or block co-polymers, to

complex crystalline structures like metal-organic frameworks or zeolites. Despite their

varied compositions and applications, they all benefit from a central set of properties

that are unique to the nanoscale. They all have high surface-to-area ratios, predictable

and controllable tunability, and the capacity for great functional specificity and struc-

tural complexity. In this thesis, we will focus on the semiconductor nanocrystal, one

of the simplest model systems of nanoscience, which helped initially reveal the unique

beneficial properties of the nanoscale and is, even now, emerging as a central player
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in the technological applications of nanoscience.

1.2 Semiconductor Nanocrystals are One of the Ma-

jor Model Systems of Nanoscience.

The history of semiconductor nanocrystals stretches back to the early 1970’s, when

researchers first began examining the physics of lower-dimensional semiconductor

crystals. [22] It was clear that improvements in electronic performance (i.e. Moore’s

Law [23]) were critically tied to shrinking the size of integrated circuits, and therefore

the size of their semiconductor device components. However, the size of semicon-

ductor crystals were clearly bounded by the atomic scale and band theory predicted

that semiconductor physics would begin to change even as their size approached the

nanoscale exciton Bohr radius of the semiconductor crystals. It was critical to under-

stand how confinement effects might affect semiconductor behavior, both to address

the challenges of shrinking traditional device technolgies and to determine whether

confinement might offer opportunities for novel applications.

The first investigations of quantum confinement were enabled by the develop-

ment of molecular beam epitaxy as a building tool for semiconductor heterostruc-

tures. Thin layers of semiconductor on the order of nanometers could be deposited

and sandwiched between two large bandgap substrates, producing a confined two-

dimensional semiconducting layer with a step function density of states well-predicted

by the well-established effective mass theorem (Figure 1-1(b)). [24–26] These “quan-

tum wells” were found to exhibit a tantalizingly large array of novel physics, including

thickness-tunable band gaps, highly-stabilized excitons, the quantum hall effect, and

resonant tunneling effects. [27] As quantum wells began to mature as a material

and find applications in lasers, optical modulators, and electronics in the 1980’s, [28]

improved fabrication techniques also enabled the creation of further confined sys-

tems, including two-dimensionally confined “quantum wires” and three-dimensionally

confined “quantum dots.”
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Figure 1-1: (a) The density of states of bulk semiconductors reflects the parabolic
structure of the bands near the band edge. The effective mass theorem accurately
captures the effect of quantum confinement in (b) one dimension, (c), two dimensions,
and (d) three dimensions on the density of states near the band edge.
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Early quantum dots took three major forms. Two of them were firmly rooted

in the previous history of confined semiconductors. First, quantum dots could be

fabricated by achieving three dimensional confinement via a fabrication-imposed po-

tential. When a potential was applied across a quantum well that has been etched

into a 10–25 nm island, Fermi-level pinning of the exposed walls of the quantum

well produced a parabolic potential in the lateral dimension confining the exciton to

the center of the well. [29] And second, quantum dots could also be produced via

Stranski-Krastanov growth. [30] In this type of quantum dot, nanoscale islands of

semiconductor spontaneously self-assembled upon deposition on a substrate because

of strained surface interactions between the semiconductor and substrate, similar to

how water droplets bead on the surface of a waxed car.1 These islands can be covered

with another insulating layer to stabilize and protect them, making them a highly

robust and clean system for the investigation of quantum confinement.

But even before the advent of either lithographed or self-assembled quantum dots,

a third synthetic technique had arisen out of the chemical community from the field of

colloid science. In 1981, Ekimov et al. [31] discovered that monodisperse crystallites

of CuCl could be precipitated in a glass matrix by heating a multicomponent silicate

glass doped with copper and chlorine above the melting point of CuCl and cooling the

glass after a well-defined period of time. When the average size of the CuCl particles

was above 10 nm, their absorption spectrum matched that of bulk CuCl. But as the

size of the particles decreased, their absorption features blue-shifted in accordance

with predictions by the effective mass theorem. Similarly and independently,2 Ros-

setti and Brus began investigating the size-dependent electronic properties of CdS

nanocrystals that were colloidally precipitated in water. [36–38] These CdS particles,

and other subsequently-developed II-VI nanocrystals such as CdSe and ZnS, imme-

1This is actually an example of Volmer-Weber growth where the sample’s intermolecular forces
clearly dominate surface adhesion. In practice, self-assembled quantum dots use Stranski-Krastanov
growth, an intermediate growth regime where a thin wetted layer of sample is left amidst the beaded
quantum dot structures.

2It is also worth noting the work of Henglein and co-workers in Germany, which also began in
the early 1980’s, focused on the synthesis and chemical investigation of novel and varied colloidal
systems (such as ZnS, Cd

3
P
2
, Zn

3
P
2
, and Cd

3
As

2
, among others, [32–35]) and eventually spawned

the modern-day groups of Horst Weller and Paul Mulvaney.
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diately attracted interest in the community because of their solution-phase synthesis

and tunable fluorescence. During the late 1980’s and early 1990’s, a flurry of syn-

thetic development improved sample monodispersity via confined colloidal growth in

reverse micelles and zeolites, [39–41] reduced surface effects and broadened solubility

via ligand surface passivation, [42] and eventually culminated in the high quality,

convenient, and reliable hot-injection synthesis proposed by Murray and Bawendi.

[43]

The first efforts to understand the fundamental physics of nanocrystals essentially

treated them exactly like the other two forms of quantum dots that were produced

in the physics community, which is to say, like a flawless semiconductor crystal sur-

rounded by an infinite potential barrier. In such a simple model representation, the

electronic properties of nanocrystals could be predicted by straight-forward applica-

tion of now-conventional solid state theory, including the effective mass theorem, [25]

Luttinger-Kohn Hamiltonian, [44] and the magnetic field treatments of Pidgeon and

Brown. [45] In fact, this line of theory turned out to be extraordinarily successful at

predicting the basic optical properties of nanocrystals. Throughout the late 1980’s

and 1990’s, the effective mass theorem treatment of semiconductor nanocrystals was

built from the basic confinement of a parabolic band, [46] to include treatments of

all of the semiconductor bands near the band gap, [47] and to account for shape

anisotropy, [48] polarized emission, [49] and electron-hole exchange interactions. [50–

52] This theory remains a mainstay of modern spectroscopic investigation today, and

has been experimentally validated time and again with increasing rigor.3 [53, 54]

But even from the beginning, it was understood experimentally that nanocrys-

tals had distinct physical and electronic properties compared to other quantum dots

and that they could not simply be treated as isolated chunks of perfect semiconduc-

tor. Due to a combination of their colloidal synthesis and small size compared to

other quantum dots, the optical properties of nanocrystals were found to be highly

defined by their surface structure and surface coordination. Fluorescence from the

nanocrystal band edge was particularly sensitive to surface treatments, and could be

3The effective mass treatment of nanocrystals is summarized in a helpful review by Efros. [9]

30



500 550 600 650 700 750 800
Wavelength (nm)

Fl
uo

re
sc

en
ce

 In
te

ns
ity

Band Edge

Surface Traps

Figure 1-2: Early nanocrystals exhibited two major fluorescence features: a narrow
feature caused by fluorescence from the core electronic states of the nanocrystal (i.e.
band edge emission), and a broad, red-shifted feature caused by fluorescence from
surface trap states.

greatly enhanced by the adsorption of certain weak bases such as tertiary amines to

the nanocrystal surface. [55] In addition to the band edge fluorescence, nanocrystals

also exhibited a strong, broad, red-shifted fluorescence feature attributed to intrinsic,

mid-gap electronic “trap” states localized on the surface of the nanocrystal (Figure 1-

2). [56–59] The poor quantum yield of trap fluorescence and anticorrelation with

band edge emission suggested that surface trapping processes were the primary loss

channel for quantum dot fluorescence. [60] Appropriate surface modification was es-

sential for enhancing the overall quantum yield of nanocrystal samples and improving

the suitability of nanocrystals for optoelectronic applications.

Later, when researchers began to investigate semiconductor nanocrystals using

single-molecule spectroscopy, they discovered even more subtle and confounding fluo-

rescence dynamics tied to surface effects. At the single-nanocrystal level, nanocrystal

fluorescence was found to dramatically fluctuate in both intensity (i.e. fluorescence

intermittancy or “blinking”) and spectral position (i.e. spectral diffusion) on timescale

ranging from milliseconds to sometimes hundreds of seconds. [61–64] These phenom-

ena suggested that the nanocrystal surface was far more mutable than researchers

had previously imagined and far more complex and important than existing micro-
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scopic theories were prepared to accomodate. Theoretical models for the blinking

phenomenon, for example, needed to hypothesize the existance of surface trap or mid-

gap states with properties unsubstantiated by effective mass theory. [65–69] Although

the fluorescence intermittancy and spectral diffusion of nanocrystal fluorescence have

been exhaustively characterized experimentally and described phenomenologically,

[70] the fundamental physics of nanocrystal surfaces and their core/surface interac-

tions remains poorly understood and is still a topic of considerable investigation.

Several atomistic theories have been invoked to better capture the whole picture

of nanocrystal photophysics. [71] Early atomistic models, including the tight-binding

and semiempirical pseudopotential methods, adapted existing solid state theories to

solve for nanocrystal electronic states given their precise atomic geometries (including

ligand passivation sites). In the conventional tight-binding model, an infinitely large

Hamiltonian matrix is (abstractly) assembled using a basis that is approximately

given by the valence atomic orbitals of the atoms in the unit cell. [8] This approach

can directly applied to nanocrystals by (actually) assembling a similar Hamiltonian

for the exactly configuration of the thousands of atoms in a prospective nanocrystal.

[72–75] Similarly, the semiempirical pseudopotential method of Wang and Zunger [76]

was adapted from the empirical pseudopotential method developed in the late 1950s

to account for the complicated potentials imposed on the valence electrons of bulk

crystals by their core electrons and nuclei. [77] Again, the solution for nanocrystals

was to build the exact same theoretical problem using a finite potential surface based

on an exact nanocrystal geometry instead of the periodic unit cell potential. Both

of these methods, especially the semiempirical pseudopotential method, have quan-

titatively improved on the theoretical results of the effective mass treatment, [78]

and enabled the study of certain surface effects using theory within the solid state

paradigm.

And finally, driven by improved computing resources in recent years, researchers

have begun to use ab initio electronic structure calculations such as density functional

theory to examine the finer electronic features of semiconductor nanocrystals. Modern

simulations can accomodate on the order of one thousand atoms, which is beginning
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to approach the size of the nanocrystals that are usually studied in the lab. It

is important to note the anecdotal nature of current investigations; divergence from

ideal atomic configurations (as undoubtedly occurs in actual polydisperse nanocrystal

samples) has tended to produce wild, unpredictable, and possibly unphysical results.4

But when the atomic geometry is careful chosen, density functional theory has been

able to reproduce confinement effects; [80, 81] to reveal the character of surface traps

and the energetic landscape of the surface ligands; [79, 82, 83] and even to provide

practical insight into dynamic phenomena such as fluorescence intermittency [84],

carrier transport, and other excited state processes. [85] As computing resources

continue to improve, ab initio methods will probably continue to play an expanding

role in the investigation of the basic physics of these nanoscale systems.

Despite the persistence of several deep, poorly understood phenomena, our cur-

rent level of conceptual understanding of semiconductor nanocrystals is still miles

ahead of what would have been thought possible when nanocrystals were first being

synthesized in the 1980’s. Early syntheses produced highly polydisperse samples with

poor optical properties and non-uniform morphology, which made it difficult to deter-

mine their intrinsic properties. In the next section, we discuss the vast improvements

in nanocrystal synthesis over recent decades and how they have produced modern

samples with dramatically improved size monodispersity, morphological regularity,

fluorescence quantum yield, and fluorescence resiliency. The result is an ideal model

system for probing nanoscale physics: a system that is easy to probe experimentally

via spectroscopy and that exhibits a broad array of physical phenomena that can be

manifested in more complicated or less synthetically optimized nanoscale systems.

4An example procedure for establishing a geometry is carefully explained in Ref. [79]
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1.3 The Simplicity and Flexibility of Nanocrystals

Also Make Them Desirable Fluorophores for Op-

toelectronic Applications.

Compared to other quantum-confined semiconductors, nanocrystals have shown unique

promise as fluorophores and electronic materials in many mainstream optoelectronic

applications. Their chemical synthesis is inexpensive, results in macroscopic quan-

tities of free nanocrystals (i.e. not bound to a deposition substrate), and could ul-

timately lend itself to production in conventional chemical reactors. Their band

alignments are highly tunable via quantum confinement, making them versatile com-

ponents in devices. And, they are high quality fluorophores with high quantum yields,

emission wavelengths across the visible and infrared (400–5000 nm), narrow fluores-

cence linewidths, and better fluorescence durability than competing organic fluo-

rophores. In this section, we will discuss the development of the modern nanocrystal

and the current outlook on the applications of nanocrystals.

1.3.1 The Modern Nanocrystal Architecture

Since the initial hot injection synthesis that introduced a straight-forward route to

monodisperse, high quality nanocrystal cores, several additional synthetic advance-

ments have shaped an architectural paradigm for semiconductor nanocrystals that

offers both high quality optical characteristics and flexible chemical and physical

properties. A schematic representation of the modern nanocrystal is shown in Fig-

ure 1-3. We begin by discussing the development of each of these components of the

nanocrystal architecture.

The core. The nanocrystal core is the architectural component that is primarily re-

sponsible for containing the exciton and for defining the major fluorescence properties

of the nanostructure. Modern core synthesis relies on the same strategy as the initial

hot injection procedure. A solution of metal precursor is prepared at high temper-
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Figure 1-3: Schematic representation of the modern semiconductor nanocrystal ar-
chitecture. Each component of the architecture can be tuned to shape the properties
of the heterostructure, improving its overall fluorescence performance and flexible
application.

ature in a solvent of long, coordinating aliphatic ligands. Then, the other precursor

is rapidly injected to create a supersaturated solution. These precursors decompose

to form monomer species, which nucleate at the time of injection to lower the so-

lution concentration below supersaturation and prevent further nucleation. During

the remainder of the synthesis, the existing particles continue to grow at roughly the

same rate using the remainder of the monomer species and thereby maintain sample

monodispersity. When the cores reach the desired size, the solution is cooled to arrest

growth.

In addition to refinements in precursor selection and reaction conditions to reduce

polydispersity, air-sensitivity, and reagent instability, toxicity, and pyrophoricity, [86]

several qualitative synthetic advancements have been introduced to further adapt

this general procedure. Major concerns have been raised concerning the scalability

and reproduceability of a hot injection/arrested growth scheme because it relies on a

small reaction volume that quickly homogenizes. Cao et al. [87] and Yang et al. [88]

have proposed the replacement of hot injection with temperature-controlled precursor

activation. In this way, a large solution of non-reactive precursors can be prepared

ahead of time and the reaction initiated by raising the solution temperature to a
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certain threshold. Similarly, Owen and coworkers [89, 90] have proposed replacing

arrested growth with precisely engineered reaction conditions. They found that reac-

tion conditions can be used to tune the total number of nucleated particles, resulting

in monodisperse nanocrystal samples of predefined size if the reaction is allowed to

proceed to completion. This innovation removes the guesswork of arrested growth

schemes.

However, the most important advancement in core synthesis has been the syn-

thetic development of a diverse array of material systems. Early synthetic efforts

focused on CdSe nanocrystals because they naturally exhibited superior optical and

physical properties and could be tuned to fluoresce across the visible (where obvious

applications existed and where high quality detector technologies were available for

characterization). Even now, the CdSe nanocrystal is by far the most-optimized syn-

thesis. Nevertheless, nanocrystal synthesis using other materials has the potential to

both reduce nanocrystal toxicity and broaden the range of fluorescence wavelengths.

CdS and ZnSe nanocrystals have been explored as possible UV emitters; [91, 92] InP

and Si nanocrystals have been explored as possible cadmium-free visible-emitting al-

ternatives to CdSe; [93, 94] PbSe, PbS, InAs, and Cd2As3 nanocrystals have been

explored as possible short-wave infrared-emitting phosphors between 1000–1500 nm;

[95–97] and HgTe nanocrystals have been explored as a possible mid-infrared emitting

phosphor between 3–12µm. [98]

Because growth paradigms tend to be slightly different in these systems, their

synthetic development has often required major changes to the synthetic procedure.

III-V materials such as InAs and InP have proven particularly difficult to syntheisize

with high monodispersity because the high reactivity of the available precursors makes

it extremely difficult to separate the nucleation and growth stages of nanocrystal

synthesis. [96, 99] Recent solutions have included engineering reagents with slowed

conversion into nanocrystal precursors, and the use of continuous injection techniques

to provide ample growth material without approaching precursor saturation. The

synthesis of high quality, monodisperse cores made from InAs and other emerging

materials remains an area of active research.
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The shell. After it was known in the mid-1990’s that surface trap states were

severely affecting the fluorescence quantum yield of nanocrystals, several groups be-

gan experimenting with epitaxial shells as a way of isolating the fluorescent core

electronic states from their environment. Early efforts focused on (Type I) wide-

bandgap heterostructures such as CdSe/ZnS and CdSe/ZnSe core/shell nanocrystals

to both block the carrier wavefunctions from penetrating to the nanocrystal surface

and to approximate the infinite barrier used in effective mass treatments. [100–103]

Although these heterostructures did indeed have dramatically better photostability

and quantum yield, ZnSe shells were still prone to oxidation [101] and the CdSe/ZnS

interface was subject to lattice strain that tended to produce imperfect epitaxial

growth at (and therefore incomplete passivation of) the core/shell interface. [104]

It became clear that the highest priority for shell material selection should be epi-

taxial compatibility (i.e. the core and shell materials should share the same crystal

structure and as close a lattice parameter as possible). For CdSe cores, the best epi-

taxial match was CdS. Visible (especially red) samples were quickly developed with

quantum yields above 50 %, [105] and by using a combination of high reaction tem-

peratures to anneal interfacial defects and unreactive precursors to slow shell growth,

a recent synthesis by Chen et al. [106] has been developed that can produce parti-

cles with high monodispersity and quantum yields approaching 97 %. Nevertheless,

one of the inherent problems associated with CdSe/CdS nanocrystals is that, un-

like CdSe/ZnS nanocrystals, they are quasi-Type II heterostructures. Whereas the

hole of the nanocrystal exciton is confined to the core, the closely-aligned conduc-

tion bands of CdSe and CdS allow the excited electron to delocalize throughout the

heterostructure. CdSe/CdS nanocrystals are therefore still prone to surface-related

fluorescence quenching mechanisms because their excited electrons still have access

to the shell/ligand interface.

Two classes of solutions have been proposed to improve the photostability of Cd-

Se/CdS heterostructures. First, special syntheses have been developed to grow CdS

shells so thick that the core excited electron wavefunction does not extend all of the

way to the surface. [107–109] These so-called “Giant” core/shell nanocrystals do not
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exhibit phenomena related to surface interactions (specifically blinking), but their

lack of electron confinement exclusively results in red-emitting particles and their

decreased electron-hole overlap increases their radiative lifetime. And second, an ad-

ditional thin ZnS shell has been grown on the surface of the CdS shell to block either

carrier from reaching the surface. Both the distinct and graded alloy forms of the

CdSe/CdS/ZnS heterostructure combine the beneficial interfacial properties of Cd-

Se/CdS nanocrystals with the beneficial electronic properties of CdSe/ZnS nanocrys-

tals. [110, 111]

Shell design for nanocrystal cores made from other materials has often been a

more challenging problem. Certain materials such as InAs/CdSe, which features a

Type I structure, identical crystal structure, and good matching of lattice parame-

ters, readily lend themselves to high quality synthesis. [112, 113] However, PbSe and

PbS nanocrystals in particular have been difficult materials for shell-growth syntheses

because their rock salt crystal structures are not compatible with typical shell mate-

rials. In lieu of an appropriate natural shell material, the solution for the synthesis

of core/shell materials has been to conduct partial cation exchange with cadmium to

convert the outer layers of the nanocrystal to either CdSe or CdS. [114] Even though

the rock salt crystal structure is not the most stable geometry for either of these shell

materials, they have been shown to retain the original crystal structure of the core.

The ligands. The layer of ligands on the surface of nanocrystals fulfills two major

roles: it passivates the surface of the nanocrystal, protecting it from oxidation and

aggregation, and it defines the solubility characteristics of the nanocrystal. During

synthesis, the nanocrystal surface is spontaneously coordinated by a combination of

the large aliphatic solvent used for the high temperature synthesis and the original

coordinating molecules of the metal precursors. Considerable research has been dedi-

cated to understanding how surface coordination chemistry affects particle synthesis,

characterizing the final native ligand surface, and understanding the connection be-

tween the physical surface coverage and the resulting optical passivation.

Early research on CdSe nanocrystal that were synthesized using technical grade
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trioctylphosphine (TOP) as a solvent suggested that the post-synthesis nanocrystal

surface was primarily passivated by a combination of TOP, which passivated the se-

lenium surface atoms, and TOP oxide, which passivated the cadmium surface sites.

[115] This appealing theory provided a clean explanation for the full passivation of

the nanocrystal surface and suggested that the ligand layer was occupied exclusively

with neutral L-type ligands that could be readily exchanged with different neutral

ligands by adding an excess of the new ligand via Le Chatelier’s principle. Neverthe-

less, problems with the conceptual picture quickly began to arise when theoretically

sound ligand exchange procedures could not fully remove native ligands [116] and

certain impurities in the (often old and/or degraded) technical grade TOP reagents

were found to provide critical nanocrystal surface interactions. [117] Since these ini-

tial studies, nanocrystal surface passivation has been found to require a complex

mixture of L-type ligands and X-type ligands, like phosphonic and phosphinic acids,

[118–121] which provide charge balance in non-stoichiometric nanocrystals and sta-

bilize the nanocrystal during synthesis. [122, 123] The judicious addition of differ-

ent surface-binding species, can dramatically improve the optical properties of the

nanocrystals, [124] and even tune the reactivity of different crystal faces to produce

different nanocrystal shapes. [117, 125]

But whatever the precise surface properties are at the end of synthesis, it is guar-

anteed that the resulting nanocrystals will be coated with a thick fatty ligand layer

that will increase interparticle spacing and restrict the nanocrystals to non-polar sol-

vents. Ligand exchange has become an important tool for shaping how nanocrystals

interact with their environment. For example, many optoelectronic devices require

their optical materials to exhibit high carrier mobility. In these applications, native

ligands are exchanged for much shorter ligands, such as ethylene dithiol, halides, or

inorganic coordinating species, [126–128] which improve carrier mobility by allowing

closer packing of nanocrystals in thick films and often decreasing the potential barrier

between nanocrystals. Conversely, bioimaging applications require nanocrystals to be

water soluble and non-toxic, and to exhibit stable fluorescence in aqueous environ-

ments. Here, native ligands are often exchanged by large multicoordinating polymers
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like polyethylene glycol that provide water stability and form a permanent barrier

between the semiconductor material and the biological environment. [129]

Despite the clear advances in ligand exchange, it remains a tricky and poorly-

understood process. Ligand exchange procedures must address the presence of both

L-type and X-type ligands, being careful to maintain charge balance on the nanocrys-

tal surface and to choose new ligands whose affinities are neither too weak nor too

strong. Ligand exchange with strictly neutral ligands such as amines or pyridines may

not be able to remove the X-type binders without maintaining charge balance, [130]

while strong or multidentate ligands like dihydrolipoic acid may cause etching of the

nanocrystal surface, diminishing their optical properties and making them suscep-

tible to degradation over time. [131] The development of broadly-applicable ligand

exchange procedures that do not damage the nanocrystal surface and can reliably

remove all of the different possible contributers to the native ligand shell remains an

active area of research. [122, 130, 131]

Additional ligand functionalization. In some cases, nanocrystal applications

can also benefit from even more specific environmental interactions. For example,

chemical reactivity can be straight-forwardly programmed into the nanocrystal archi-

tecture by functionalizing the ligand molecules bound to the surface. After nanocrys-

tal synthesis, these chemical handles can be used to attach the nanocrystal to other

functional species. Notable examples of conjugation targets from our lab have in-

cluded dye molecules to form nanocrystals capable of ratiometric pH-sensing via flu-

orescence resonance energy transfer, [132] and proteins to form fluorescent probes

capable of biological labeling. [133] Nevertheless, early examples of nanocrystal con-

jugation produced particles that were too large to be useful in biological applications,

relied on ligands with weak binding affinity to the nanocrystal surface, or were overly

specific in scope.

Much of the recent work on nanocrystal functionalization has been dedicated

to formulating general conjugation procedures that can be cleanly applied to any

biological problem. Two key examples from our group are the development of the
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polymeric imidazole ligand system (PIL) and the application of “click” chemistry in

conjugation reactions. The PIL ligand provides a compact, stable, and versatile ligand

surface by RAFT copolymerizing three types of monomer responsible for different

functional roles. [18] Imidazole monomers are used as chemically inert nanocrystal

binding sites, polyethylene glycol monomers are used to ensure aqueous solubility,

and primary amine-containing monomers are included as conjugation handles that

are unlikely to ineract with the nanocrystal surface. The ratios of these monomers

during co-polymerization can be used to tune the strength of nanocrystal binding and

the number of available amine groups. Then, “click” chemistry can provide a strategy

for selective conjugation using the primary amines. [134] Because dienes are relatively

rare in many natural compounts, converting the amine to norbornene, a Diels-Alder

substrate, selectively targets a presynthesized diene site for conjugation.

1.3.2 Select Applications of Semiconductor Nanocrystals

The modular design paradigm of modern nanocrystals grants them unmatched flexi-

bility to conform to the optical and electronic specifications of a wide array of different

applications. Here, we focus on three major areas where nanocrystals can provide an

advantage over established materials.

The first major area is in the field of semiconductor optoelectronic devices, where

nanocrystals are used in lieu of bulk semiconductor films in solar cells, photodetec-

tors, and light-emitting diodes. [135] In essence, the idea is that although nanocrystal

films will have considerably lower carrier mobilities and higher trap state densities

than bulk materials, they also feature several properties that may give their devices su-

perior versatility. Nanocrystal researchers have particularly emphasized the solution

processability of nanocrystals, which makes them compatible with inexpensive roll-

to-roll printing device fabrication; their tunable direct bandgaps over mid-infrared,

short-wave infrared, and visible wavelengths, which can produce devices with func-

tionality outside normal device ranges and devices with precisely optimized RGB

display properties; and their finely tunable band alignments that can be used to op-

timize device energetics. Among many examples, these properties have recently been
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used to develop research-grade mid-infrared detectors, [136–138] modest performance

research-grade solar cells (at 9.2 % power conversion efficiency), [139] and vivid and

relatively efficient visible and infrared LEDs. [140, 141]

As emphasized by the caveats in the previous section, the real weakness of nanocrys-

tals in optoelectronic devices has been their electronic properties. This is no surprise

given that the optical properties of nanocrystals are defined by the confinement of

the exciton. The second (and hugely successful) area of nanocrystal applications has

been to use them as optical sensistizers in existing optoelectronic devices. These ap-

plications rely on both high quality fluorescence properties and the fact nanocrystals

can absorb all light above their band edge. In this way, they can absorb any high

energy photon and downshift it to a predefined fluorescence wavelength. The high-

est profile manifestation of this strategy has been in the recent generation of liquid

crystal displays (LCDs). [142] LCDs work by illuminating the back of a screen with a

bright white light and blocking the light at the pixel level to transmit an image. The

image is projected in color by painting each pixel with an additional color filter that

only transmits red, green, or blue. In this paradigm, color quality is dependent on the

bandwidth of the color filter; if it is very narrow, it transmits a more vivid color with a

lower brightness, and if it is very broad, it transmits a washed out color with a higher

brightness. This tradeoff between brightness and color purity can be solved using

a nanocrystal backlight, where the blue is provided by a gallium nitride LED [143]

and the red and and green are provided by nanocrystals that downshift a fraction

of the blue light. This “white” backlight is now actually composed of three narrow

color bands that directly target the narrow color filters and allow for both high color

purity and brightness. Similar downshifting schemes have also been used to sensitize

infrared cameras to ultraviolet emission using infrared nanocrystals. [144–146]

The final major area of nanocrystal applications has been their use as fluorescent

imaging agents, particularly in biological systems. Fluorescence microscopy has be-

come a critical tool in modern biology because it is a zero to low background tool that

can easily be multiplexed to image several species with different biological targeting.

[147] As a result, a large library of visible fluorescent organic dyes and targeting strate-
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gies have been developed for different biological problems, from fluorescent protein

gene expression (the subject of the 2008 Nobel Prize in Chemistry) to direct attach-

ment of dyes to biological species. Even so, nanocrystals offer a unique complement

to this existing toolbox because, even though they are generally bulkier and exhibit

longer fluorescence lifetimes than organic dyes, they are particularly resistant to pho-

tobleaching, exhibit narrower fluorescence linewidths, and can be straight-forwardly

attached to biological species using the generalized strategy discussed in the previous

section. These properties make them particularly suited to certain experiments like

single-particle tracking that rely on stable and long-lasting fluorescence. [148]

But perhaps the greatest opportunity for nanocrystals in biological imaging is as

a short-wave infrared fluorophore. Infrared imaging could be a particularly powerful

tool for biology because the greater penetration depth of infrared light allows for

non-invasive access deep within tissue. [149] With the recent rise (and deregulation)

of sensitive InGaAs CCD cameras, it has finally become possible to implement this

technique in practice. The emerging hurdle has been finding a high quality fluorophore

in this wavelength regime. Infrared-emitting organic dyes are rare and have quantum

yields <0.1 %, [150] carbon nanotubes are bulky and have quantum yields of <1 %,

[151] and even small, high quality silver sulfide nanoparticles have quantum yields

below 5 %.5 [153, 154] With these fluorescence specifications, infrared fluorescence

spectroscopy cannot have the sensitivity and temporal resolution that biologists have

come to expect from visible fluorescence spectroscopy. However, using the modern

nanocrystal architectural paradigm, our group has been successful at translating most

of the high quality optical properties of visible-emitting nanocrystals into the infrared.

Current InAs/CdSe nanocrystals have quantum yields ≈30 %, narrow fluorescence

linewidths, and should eventually lend themselves to similar conjugation strategies as

those explored earlier. [155]

5Note that many of the numbers in the given references are inflated by as much as an order of
magnitude due to the controversy about the actual quantum yield of the organic dye IR-26, which
is used in many of the dye-comparison quantum yield measurements. [150, 152]
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1.4 Single-Molecule Spectroscopy Has Been a Cen-

tral Tool Characterizing the Fluorescence Prop-

erties of Nanocrystals and for Investigating their

Fundamental Photophysics.

Synthetic efforts to refine the optical properties of semiconductor nanocrystals for

the applications discussed in the previous section have relied heavily on both conve-

nient characterization techniques and an understanding of the underlying nanocrystal

physics. A textbook example of this symbiotic relationship between synthetic devel-

opment and basic physic research can be found in the low quantum yields of core-

only nanocrystals. It was quickly established by the mid-1990’s that the nanocrystal

surface was the dominant source of the non-radiative recombination pathways that

competed with fluorescence. The quantum yields of core-only nanocrystal samples

were limited to ≈10%, [43] but could be improved to up to 50% by overcoating

the cores with an epitaxial shell. [100–103] However, what was unclear at the time

was whether the low quantum yields of core-only nanocrystals were inherent to the

core-only nanocrystal architecture or whether they were caused by poor synthetic

procedure, which produced particles with a wide distribution of intrinsic quantum

yields. This was a critical question because if there were a sub-population of perfect

core-only nanocrystals in each sample, it might be possible to devise an improved

synthesis of these particles without resorting to heterostructure architectures at all.

This question was finally answered with the adoption of single-nanocrystal spec-

troscopy in the late 1990’s, when Nirmal et al. [61] observed that the quantum yield

of individual nanocrystals was universally dictated by time-dependent fluctuations

between bright, highly-emissive nanocrystal states (later found to have near-unity

quantum yield [156]) and dark, non-fluorescent states with near-zero quantum yield.

Their finding suggested that there was no such thing as a perfect core-only nanocrys-

tal with a permanent fully-passivated surface, and that perfect quantum yield samples

could only be produced by eliminating the blinking phenomenon entirely. This insight
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into the basic physics of nanocrystal fluorescence defined the nature of the problem

for synthetic chemists and spurred the development of core/shell heterostructures. In

fact, even today, when the publication of CdSe/CdS core/shell syntheses with near-

unity quantum yield is practically commonplace, [106, 109, 111] the basic physics

identified by single-nanocrystal spectroscopy still prevent the optimization of core-

only nanocrystals, and the best core-only nanocrystal syntheses still cannot routinely

produce samples with quantum yields above 50%. [86]

Since these early studies, single-nanocrystal spectroscopy has developed into a

versatile class of experiments that has been used to characterize and inform on a

broad array of nanocrystal properties. The reason for this versatility, much like the

architecture of the nanocrystal itself, can be found in the modular structure of single-

nanocrystal experiments. Figure 1-4 illustrates the experimental setup used in early

investigations of fluorescence intermittancy. A single nanocrystal isolated on a sub-

strate is illuminated with continuous wave excitation, and the resulting fluorescence

is collected and binned over a given integration time to reveal how the fluorescence

intensity changes over time. Despite the simplicity of this setup, it illustrates the

basic structure shared by all single-nanocrystal experiments. Each type of single-

molecule experiment must define an excitation type, microscope type, sample form,

photon manipulation process, detector type, and data analysis technique. At each

level, there are several options that can be used to shape and refine the type of in-

formation the experiment can reveal. In this section, we will briefly summarize the

available options for designing a single-nanocrystal setup and discuss what types of

information are accessible.6

Excitation Type. In addition to selecting an excitation wavelength well-matched

to the sample’s absorption spectrum and an excitation flux that will produce an

optimal rate of excitation, an experiment designer must decide what type of laser to

use for excitation.7 The two major options are pulsed lasers, which excite the sample
6This discussion is heavily influenced by our recent review paper on the development of the

single-nanocrystal spectroscopy toolbox. [157]
7In principle, excitation need not be strictly photoinduced. The sample could also be excited

electrically, as in LEDs. Nevertheless, even in this case, it is still necessary to choose both an
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Figure 1-4: The experimental setup of the single-molecule setup used to investigate
fluorescence intermittancy in single nanocrystals. This setup can be broken down
into several modular experimental design segments that affect the nature of the in-
formation the experiment probes.

during short regularly-spaced intervals, or continuous-wave lasers, which constantly

excites the sample with low intensity light. This decision usually hinges on whether it

is important to know the precise time when absorption occured. If the experimenter

is interested in measuring the time the nanocrystal spends in the excited state before

fluorescence, pulsed excitation must be used. If not, continuous-wave excitation is

preferable because its high duty cycle will provide a stronger fluorescence signal at a

given excitation flux.

Microscope Type. The next decision is what kind of microscope to use to to

deliver that excitation to the sample and collect the emission. Generally, single-

nanocrystal experiments use epifluorescence microscopes, where excitation and fluo-

rescence collection are accomplished by the same objective (as in Figure 1-4).8 This

electrical voltage for excitation and whether to use a pulsed or continuous electrical waveform.
8Occasionally this is not feasible. Jensen and Bawendi’s [158] nanocrystal optical trapping ex-

periments, for example, initially used a transmission geometry to deliver two counter-propagating
lasers: an infrared laser for optical trapping and a visible laser for optical excitation. This was ul-
timately found to be unneccesary because the two-photon cross section of the trapped nanocrystals
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makes alignment much easier, delivers a tightly focused excitation spot with high

excitation flux, and prevents the excitation of other nearby nanocrystals.

The two types of epifluorescence microscopes used in single-nanocrystal experi-

ments are the widefield microscope, where the excitation source is defocused to excite

a large area of the sample, and the confocal microscope, which excites a diffraction-

limited area of the sample and focuses the collected fluorescence through a pinhole to

ensure that the signal represents fluorescence from a single point on the sample. Wide-

field microscopy is generally used with a multi-element 2D array detector like a CCD

camera to image multiple nanocrystals simultaneously (Figure 1-5), whereas confo-

cal microscopy provides an ideal method for isolating the emission from an individual

nanocrystal with minimal background or contribution from neighboring nanocrystals.

As a side note, infrared confocal microscopes integrate elements from both types of

microscopes. [159] Chromatic aberration in typical objectives will cause the visible

excitation volume to be poorly overlapped with the infrared collection volume. These

volumes can be overlapped to provide ideal confocal excitation by precisely defocusing

the visible excitation source.

Sample Form. This is a relatively new parameter for single-nanocrystal exper-

iments. Conventionally, single-nanocrystal samples have been fabricated by spin-

coating a dilute solution of nanocrystals and polymer molecules (PMMA, etc.) on a

glass or quartz substrate. [61] The result is a thin film of supporting polymer matrix

embedded with a low concentration of spatially-distinguishable individual nanocrys-

tals (As imaged in Figure 1-5). Film samples remain the default sample type for

single-nanocrystal spectroscopy because they readily allow researchers to isolate flu-

orescence from a chosen nanocrystal on the film and to survey a large number of

individual nanocrystals per sample. Nevertheless, there is plenty of room for inno-

vation in thin film sample fabrication. Films may be embedded with electrodes or

placed within magnets for electric and magnetic field studies, the temperature of films

may be varied from 4–400 K for temperature-dependent studies, and films can even

was high enough to provide excitation with the infrared laser.
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Figure 1-5: A widefield image of single CdSe/CdS nanocrystals dispersed in a PMMA
film. The large blue oval is caused by film autofluorescence and/or laser scatter and
represents the excitation area.

be integrated into flow cells to study chemical dynamics like cation exchange. [160]

Our group has also begun experimenting in recent years with solution-phase sam-

ples. In this strategy, a confocal microscope is used to collect emission from a small

focal volume of a dilute solution of nanocrystals. Over the long term, the fluorescence

collected from this volume will reflect the nanocrystal ensemble as a whole because

of the free diffusion of particles into and out of the focal volume. But over the short

term (<10 ms), the signal collected from the focal volume reflects the behavior of the

relatively small number of nanocrystals in the focal volume at once. By analyzing

the differences in the structure of the photon stream over short and long timescales,

an experiment can be designed that measures the average properties of individual

nanocrystals in the ensemble. Later, we will discuss several examples of this type of

experiment that measure the average size of single nanocrystal, their average single-

nanocrystal linewidth, and their average multi-exciton quantum yields.
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Photon Manipulation. Once the fluorescence signal is collected by the micro-

scope, it can be further manipulated using a variety of optical components to extract

information about the photon stream emitted by the single or small collection of

fluorophores. Although the simple setup shown in Figure 1-4 does not include any

photonic signals processing, early experiments sometimes used linear polarizers to

measure the polarization of fluorescence transitions or spectrometers to resolve the

energy of each emitted photon. [161, 162] As single-molecule experiments have become

more complicated, they have also integrated beamsplitters to split the fluorescence

signal between multiple single-element detectors, and spectrally biased these channels

using filters, interferometers, and duel monochromator setups. [157] With improve-

ments in detector technologies, it has even become possible to split the photon stream

to conduct multiple single-nanocrystal experiments at once. The opportunities for

photonic signals processing in single-nanocrystal spectroscopy are endless, hampered

only by limits on the total integration time imposed by setup or fluorophore stability,

and human creativity and mathematical bravery.

Detector Type. There are two main types of detectors used for single-nanocrystal

experiments. The first are multi-element array detectors, such as CCD cameras, that

integrate a signal over a relatively long integration time (>50 ms). Their primary

virtue is their parallelized detection scheme. Because they detect a large number of

pixel values simultaneously, they can efficiently detect an image formed on the detec-

tor (like the widefield image in Figure 1-4) or a spectrum dispersed across the detec-

tor active area by a spectrometer, without the need for rastering or monochromator

scanning. Spectrometer/CCD camera schemes have been instrumental in studying

the fluorescence spectrum of single-nanocrystals, including their homogenoeous spec-

tral features caused by fine structure splitting, multi-exciton emission, and exciton-

vibrational coupling, and their spectral dynamics over timescales ranging from 50 ms

to >100 s. [53] Their primary drawback is their temporal resolution, limited to the

integration time of the frame. Photons detected during a frame’s integration time

are not time ordered, so spectral and intensity dynamics on timescales below the
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integration time are time-averaged and obfuscated.

The second main type of detector that has been used for single-nanocrystal ex-

periments is the Geiger mode single-element detector. These detectors, made from

silicon avalanche photodiodes (APDs) for visible detection and either InGaAs APDs or

superconducting nanowires single-photon detectors (SNSPDs) for infrared detection,

detect the timing of individual emitted photons from the sample with sub-nanosecond

precision. These detectors cannot inherently encode any spectral information about

the photon or anything about its spatial origin, and the generally suffer from a vari-

ety of detection artifacts such as dead times and afterpulsing, but they can be used

to time photon arrivals compared to laser excitation events and to investigate the

fundamental statistical structure of sample’s fluorescence via photon correlation. As

we will see, a simple list of all of the photon arrival times on a detector during an

experiment can be an incredibly insightful observable, especially when combined with

the photon manipulation options discussed earlier.

We also note two particularly intriguing developing types of detectors that may

prove exceptionally important for single-nanocrystal spectroscopy in years to come:

transition edge sensors and array single-photon counters. The SNSPD is an example

of a transition edge sensor run in Geiger mode. [163] A superconducting nanowire

is cooled to slightly below its superconducting threshold, such that when a photon

strikes it, it absorbs the heat from the photon and becomes resistive. The resistive

transition registers as a spike in the current through the wire, which is read as a photon

arrival if it surpasses a given threshold. However, in principle, the resistive spike could

be analyzed further to yield the precise energy of the detected photon in addition to

its arrival time. This strategy would produce a single-element detector with spectral

resolution. Conversely, several APD manufacturers are working on fabricating arrays

of APDs that could be used like a CCD camera in conjunction with a spectrometer.

This strategy would produce a multi-element detector with high temporal resolution.

Unfortunately, as of the time of writing, neither of these technologies have good

enough specifications for application in single-nanocrystal spectroscopy.9

9If they are available at the time of reading, we are all very jealous.
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Analysis Technique. After the fluorescence from the sample has been detected,

the final step in the experiment is to compile the results into a physically-relevant ob-

servable for further analysis. These observables can be broadly fit into two categories:

intensity-binned quantities and photon correlation functions.

Early work in single-nanocrystal spectroscopy focused on intensity-binning tech-

niques. [61, 63] To form an intensity-binned observable, researchers discretized time

into a series of integration periods and averaged the number of photon arrivals over

each integration time to yield a fluorescence intensity. Key examples of this strategy

are the blinking trace shown in Figure 1-4, the CCD camera image shown in Fig-

ure 1-5, and the single-nanocrystal spectrum shown in Figure 1-2. These observables

tend to be simple to measure experimentally,10 intuitive to interpret theoretically,

and convenient for measuring long timescale fluorescence dynamics such as blinking

and spectral diffusion (>100 ms).

Nevertheless, intensity-binning strategies suffer from two critical drawbacks. The

use of an integration time necessarily sacrifices the inherent temporal resolution of

the photon stream by averaging over many photon arrivals. Binning analyses have

been known to produce artifacts when there are fluorescence dynamics on timescales

faster than the integration time, including threshold artifacts in blinking traces and

artificially broadened fluorescence lines in single-nanocrystal spectra. [64, 164] And,

they cannot take advantage of the fact that single-photon detectors like APDs and

SNSPDs precisely time the arrival of photons. A wealth of information should, in

principle, be available by comparing the arrival times of photon to either the timing

of their parent excitation pulses or the arrivial times of other photons.

Researchers began to access this photon timing information in single-nanocrystal

experiments in the 2000’s to early 2010’s with two types of experiments. First, they

began probing the population dynamics of the nanocrystal band edge using time-

correlated single-photon counting (TCSPC). [156, 165] This experiment used the same

experimental setup as in Figure 1-4, with two key differences. The continuous-wave

10A single nanocrystal’s fluorescence intensity can usually be measure with an APD in approx-
imately 50ms, and its fluorescence spectrum can usually be measured using a CCD camera in
approximately 1 s.
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excitation was replaced with pulsed excitation to define the moment of absorption,

and instead of analyzing the fluorescence intensity of the single nanocrystal by binning

the photon arrivals over time, researchers compiled its photoluminescence (PL) decay

trace by histogramming the temporal separation between each excitation pulse and

the resulting fluorescence event (Figure 1-6(b)). Using TCSPC, researchers could di-

rectly measure the competition between non-radiative and radiative relaxation chan-

nels in single nanocrystals and characterize the variability and time-dependence in

the duration of their excited states. These experiments revealed that, although the

PL decay traces of nanocrystal samples were highly non-exponential,11 the radiative

rates were found to be surprisingly consistent within samples. The non-exponential

behavior was found to be caused by temporal fluctuations in the non-radiative rate

at the single-nanocrystal level, which were tied to single-nanocrystal blinking.

The second type of timing experiment was the biexciton quantum yield experi-

ment. [166] It was well known in the mid-2000’s that, like their bulk semiconductor

crystal analogues, nanocrystals could accomodate multiple electron-hole pairs, si-

multaneously. However, due to their close proximity, these multiexcitons tended to

recombine non-radiatively via Auger-like mechanisms rather than undergo multiple

fluorescence events. The biexcitonic state, for example, had a markedly lower flu-

orescence quantum yield than the single excitonic state, and the overall quantum

yield of a nanocrystal sample generally dropped precipitously when subjected to a

higher excitation flux. This phenomenon could be probed experimentally using single-

nanocrystal spectroscopy by histogramming the temporal separation 𝜏 between pairs

of photons emitted from a nanocrystal excited by low flux pulsed illumination.

The resulting “antibunching” histogram in Figure 1-6(c) consists of multiple peaks

spaced at the repetition rate of the laser because fluorescence events primarily occur

shortly following excitation. Most of these peaks have the same intensity because

they are caused by uncorrelated photon pairs produced by exciton fluorescence after

11Both radiative and non-radiative channels are regarded as first-order processes, which result
in exponential decay traces in a homogeneous samples. Non-exponential behavior indicates sub-
populations of nanocrystals caused by heterogeneity or time-dependence in the radiative or non-
radiative rates.
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Figure 1-6: There are three major ways of analyzing the fluorescence intensity of single
nanocrystals illuminated by pulsed excitation. Photon counts can be (a) binned over
time to measure blinking dynamics, (b) timed with respect to the excitation pulse to
measure the excited state dynamics, or (c) timed with respect to other photons to
measure the biexciton quantum yield. Data collected by T.S. Bischof.
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different excitation pulses. However, the center peak at 𝜏 = 0 has special physical

significance because it is necessarily caused by pairs of photons produced by the same

excitation pulse. In order to register a count in the center peak, the nanocrystal must

absorb two photons to form a biexciton and then undergo fluorescence twice, during

both biexciton and exciton relaxation. As we will see later in the thesis, the ratio

of the area center peak to the area of the side peaks directly reveal how much these

Auger-like mechanisms adversely affect fluorescence.

Both TCSPC PL decays and the antibunching traces are un-normalized examples

of the second-order cross-correlation function, defined by,

𝑔
(2)
𝑎/𝑏(𝜏) =

⟨𝐼𝑎(𝑡)𝐼𝑏(𝑡 + 𝜏)⟩
⟨𝐼𝑎(𝑡)⟩⟨𝐼𝑏(𝑡 + 𝜏)⟩ , (1.1)

where 𝐼𝑎/𝑏(𝑡) is the intensity on channels 𝑎 or 𝑏 at time 𝑡, respectively, and ⟨· · · ⟩
denotes a time average over the integration time of the experiment. In TCSPC,

one of the channels is the laser sync and one is the fluorescence signal, whereas in

antibunching traces, both channels are the fluorescence signal. For discrete signals

such as the photon stream or the excitation sync, Equation 1.1 is simply the histogram

of the time separation between pairs of detection events between channels, normalized

by the overall count rate on each channel. It is directly proportional to the conditional

probability of detecting a count on channel 𝑏 given that a count was already detected

some time 𝜏 before on channel 𝑎. A value of unity is consistent with a random,

uncorrelated stream of counts dictated by Poisson statistics. In contrast, a non-unity

value reflects correlated structure in the signal, which may be tied to a variety of

physical phenomena or experimental conditions.

A useful pedagogical example of correlation functions in action is fluorescence cor-

relation spectroscopy (FCS). [167] In FCS, a confocal microscope is used to excite a

small focal volume of fluorophores freely and rapidly diffusing in solution. Because

the exchange of particles in the focal volume is rapid, the fluorescence intensity from

the focal volume (at least over long timescales) appears to be steady and uninterest-

ing (Figure 1-7(a)). However, although this intensity trace appears to be Poissonian,
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we know that the underlying fluorophore diffusion physics ought to be encoded in the

photon steam collected from the focal volume. On fast timescales, the fluorescence

signal should consist of many rapid bursts of fluorescence as individual particles tra-

verse the focal volume. This becomes evident when we generate a photon counting

histogram (PCH) in Figure 1-7(b) using a very short integration time (on the order

of the particle dwell time). [168, 169] The PCH illustrates that the fluorescence sig-

nal indeed exhibits more bright periods than would be expected from a Poissonian

source,12 and suggests that the underlying diffusion physics ought to be accessible.

However, they do not appear to be encoded in the intensity-binned observable.

The answer is to analyze these short bursts of fluorescence using a correlation

function. If we detect a photon, we know that there is a fluorophore in the focal vol-

ume, which means that there will be an enhanced conditional probability of detecting

another photon for as long as the fluorophore remains in the focal volume. This point

is reflected in the second-order correlation function measured in FCS (Figure 1-7(c)).

FCS curves cleanly reveal several underlying sample parameters that are not obvious

in the intensity-binned picture. The plateau value is inversely proportional to the

average occupation of the focal volume, because if there are more particles in the

focal volume, the first photon’s revelation that there is at least one particle there is

less insightful. The decay constant reveals the average dwell time of fluorophores in

the focal volume, and can be tied to the fluorophore diffusion constant or hydrody-

namic radius. And, the fluorescence lifetime of the fluorophores are even encoded in

the FCS trace at short times in the form of an exponential rise from unity at 𝜏 = 0

to the plateau value. This is because single fluorophores require a finite period of

time to re-absorb and re-emit between fluorescence events. FCS illustrates the ease

with which correlation analyses can reveal fast fluorescence dynamics that cannot be

resolved using intensity-binning.

Unfortunately, correlation functions have the opposite drawback as intensity-

12This non-Poissonian distribution is actually caused by the shape of the focal volume. We sample
a Poissonian distribution of particles in the focal volume during the integration times, but the each
particle contributes a non-Poissonian distribution of photons depending on the possible trajectories
it may take through the focal volume.
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Figure 1-7: The fluorescence from a solution-phase focal volume can be analyzed
using many techniques, including intensity binning techniques such as (a) intensity
time series and (b) photon counting histograms (PCH). Nevertheless, only photon
correlation methods such as (c) fluorescence correlation spectroscopy (FCS) give us
direct access to both the particle occupation in the focal volume and the average
dwell time of individual particles in the focal volume.
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binning methods, in that their results can be obfuscated by long timescale dynamics.

We have already discussed how rapid fluctuation in the lifetime of nanocrystals cause

their PL decay to appear multi-exponential. [165] It has also been difficult to use in-

tensity correlation functions to study the power law-distributed blinking dynamics of

nanocrystals because they are strongly biased by long on- and off- events. [170] As a

general rule, non-ergodic behavior in the sample fluorescence will cause the measured

correlation function to be non-reproducible and difficult to analyze.

Several experiments have addressed this drawback by combining correlation and

intensity-binning analyses. The prototypical example is the fluorescence lifetime-

intensity distribution analysis used by Galland et al. [108, 171] to analyze blinking

dynamics. In this treatment, they choose an integration time shorter than blinking

dynamics, and use each integration time to simultaneously measure the fluorescence

intensity and perform a rapid TCSPC lifetime measurement. With this informa-

tion, they can clearly see how their correlation observable (the fluorescece lifetime)

changes over time and varies alongside their intensity observable. Hybrid analyses

such as these are now becoming commonplace in the literature as improving com-

puting resources have allowed researchers to record all of the photon arrivals during

an experiment in software for post-experimental analysis.13 We will rely on hybrid

analyses for most of the work presented here.

In this section, we have described the highly flexible modular structure of single-

nanocrystal experiments and discussed many (but not all!) of the possible options

that can be used to customize an experiment. These interchangeable experimental

parts can be combined to measure a wide variety of different optical properties, both

at the single nanocrystal level and averaged over the single nanocrystals in the sample.

In the next section, we will summarize the important properties of nanocrystals, the

basic physics that define them, and how they might be measured experimentally.

13Previously, poor computing resources often required observables to be compiled in hardware.
Intensity-binning was accomplished using a DAQ counter card or CCD camera, and correlation
functions were measured with dedicated correlation hardware or approximated with a start-stop
TCSPC module.
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1.5 Summary of the Properties of NCs and the Phys-

ical Effects at Play

Potential applications for semiconductor nanocrystals can have widely varying re-

quirements for optimal performance. For instance, many device applications require

the nanocrystal to be open and readily available to participate in carrier transport,

where purely fluorescence applications generally require nanocrystals to be as isolated

and protected from their environment as possible. Our ability to shape nanocrystals

for different applications depends on our ability to characterize and precisely tune

every aspect of nanocrystal performance. In this section, we review the important

optical, electronic, and physical properties of nanocrystals and summarize them at

the end in Table 1.1.

1.5.1 Basic Fluorescence Properties

Absorption Spectrum and Cross Section. The absorption spectrum of nanocrys-

tal samples take a very simple and consistent form. It is defined on its red edge by

the band gap energy, and increases with increasing absorption energy because of the

degeneracy of higher lying transitions. There may be a small Stokes shift between

the band-edge absorption and fluorescence, [172] and monodisperse samples may have

featured absorption spectra near the band edge due to the discrete nature of the elec-

tronic states. The magnitude of the absorption cross-section is generally understood

to scale with the amount of material in each nanocrystal, [173] and can be enhanced

further by introducing shell material with the desired absorption spectrum. For ex-

ample, an artificial Stokes shift has been introduced using thick-shelled CdSe/CdS

heterostructures, where the CdS shell provides the lionshare of absorption and the

CdSe core provides the fluorescence. [174]

The absorption spectrum of nanocrystals is generally characterized exclusively

at the ensemble level using a UV-Vis, or higher-resolution/wider bandwidth absorp-

tion instrument (e.g. a Cary 5000 high performance UV-Vis-NIR spectrophotome-
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ter). There has been some effort to measuring the absorption spectrum of single-

nanocrystals, but these have not yet reached fruition due to the small absorption

cross-section of individual nanocrystals. Without confining the excitation spot (using

plasmonics, etc.), single-nanocrystals will generally absorb on the order of one in a

million excitation photons.

Fluorescence Wavelength. The fluorescence wavelength of a nanocrystal sample

is defined by its core material and the extent of quantum confinement (i.e. core size

and the degree to which the band-edge wavefunction delocalizes into the shell). It is

measured directly at the ensemble level using a steady state spectrofluorometer (e.g.

a Horiba Fluoromax or infrared equivalent), and can be inferred from the absorption

spectrum or from the physical size of the nanocrystals in the sample as measured by

TEM and other sizing techniques. In principle, the fluorescence wavelength can be

measured by surveying the fluorescence spectra of individual particles using single-

nanocrystal spectroscopy, but this is a tedious and less accurate method for measuring

an inherently ensemble quantity.

Fluorescence Linewidth. The fluorescence linewidth of a nanocrystal sample is

a much easier quantity to measure than it is to understand. Whereas it is straight-

forwardly and accurately revealed in the ensemble fluorescence spectrum, it is defined

by a confluence of different physical effects that can be difficult to characterize indi-

vidually. The linewidth can be divided into four components: inhomogeneous broad-

ening, homogeneous broadening, high excitation broadening, and spectral diffusion.

The degree of inhomogeneous broadening is defined by the polydispersity of the

sample, which causes the consituent nanocrystals to have a distribution of different

fluorescence wavelengths. Traditionally, changes in the overall ensemble linewidth

during shell growth or in other contexts has been wholly attributed to changes in

polydispersity. [175] While recent findings have contradicted the view that it is the

sole effect at play, [176] it can be a significant source of line-broadening in poorly-

optimized syntheses. Size polydispersity has often been characterized using TEM
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and other sizing techniques, but single-nanocrystal spectroscopy provides a means

for directly quantifying inhomogeneous broadening. This can be accomplished by

surveying a large number of individual particles using conventional single-nanocrystal

spectroscopy, or by using our recently-developed solution-phase photon-correlation

Fourier spectroscopy (PCFS) measurement. [176, 177] The latter is a more convenient,

higher signal-to-noise approach with much better ensemble statistics.

The extent of homogeneous broadening, or the average single-nanocrystal linewidth,

has recently been identified as a major contributor to the ensemble linewidth that

can change dramatically from one sample to the next. At room temperature, it is

defined by a combination of the exciton fine structure, which determines the energy

spacing between the band-edge bright states, and the strength of exciton-phonon

coupling, which broadens the fluorescence linewidth from each of the bright state

transitions. The exciton fine structure is dependent on a number of parameters,

including the nanocrystal size (and electron-hole overlap), shape anisotropy, and

core crystal structure, and can be measured using low-temperature single-nanocrystal

spectroscopy. [53, 71] The exciton-phonon coupling strength also appears to depend

on a number of architectural parameters and can be measured using ultrafast, Ra-

man, or low-temperature single-nanocrystal spectroscopy. [176, 178] And, the average

single-nanocrystal linewidth as a whole can be characterized in the same fashion as

the degree of heterogeneous broadening, using either conventional single-nanocrystal

spectroscopy or solution-phase PCFS.

There are also two additional sources of ensemble line-broadening that may be

observed in specific circumstances. First, under very high excitation flux, nanocrys-

tals can form higher-order excitons that emit from higher electronic states. [109, 179]

This broadens the fluorescence lineshape, and has been used as an experimental han-

dle for observing multiexciton recombination using conventional single-nanocrystal

spectroscopy. And second, spectral diffusion and charging effects can cause power-

dependent broadening of the single-nanocrystal lineshape due to dynamic Stark shift-

ing of the band edge states and the red-shifted fluorescence of trion states, respec-

tively. Spectral diffusion does not appear to be a significant source of line-broadening
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in core/shell nanocrystals at room temperature, [177] but the large 5–25 meV binding

energy of trion states could introduce significant width in the time-averaged or ensem-

ble spectrum. [180–183] Both spectral diffusion and trion fluorescence have primarily

been investigated using low temperature single-nanocrystal spectroscopy.

Fluorescence Quantum Yield. The overall efficiency of fluorescence is expressed

by the quantum yield of the sample, given by the ratio of the number of photons emit-

ted to the total number of photons absorbed. Almost all applications of nanocrys-

tals require, or at least would benefit from, a high fluorescence quantum yield. It

is measured at the ensemble level using an integrating sphere, or sometimes a dye

comparison experiment. This is another observable where even though its ensemble

characterization is well-established (although perhaps not always well-implemented),

the actual physical story behind the observable is a bit unclear. At low excitation

flux, it has generally been understood to be defined by a combination of fluorescence

intermittancy (blinking) and the existence of a population of entirely non-fluorescent

particles, either produced by the sample synthesis or quenched afterwards by ox-

idation. [184, 185] This understanding was shaped primarily by single-nanocrystal

blinking experiments, which observed that the brightest blinking states of nanocrystal

samples had very mono-exponential fluorescence PL decay traces with very consistent

time constants, suggesting that these bright states had nearly unity quantum yield.

[156]

Nevertheless, this picture is complicated by several factors. First, it is not easy to

characterize the relative impacts of the blinking and non-emissive particles. Blinking

behavior is highly non-ergodic and so the average on-fraction of nanocrystals can

vary widely within samples, [185] and there is not a good characterization technique

for identifying the fraction of the sample that is non-emissive. Second, more recent

samples seem to indicate that more phenomena may be at play. Several groups have

reported thick-shelled CdSe/CdS nanocrystal syntheses that appear to produce non-

(or rarely-)blinking particles that have surprisingly low quantum yields (≈ 50%).

[107, 186] There is no clear reason why these syntheses should have a significant
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fraction of non-emissive particles, but their PL decays are still very mono-exponential.

And third, the quantum yield is highly excitation-flux dependent due to the power-

dependence of blinking, and to the low quantum yields of multiexcitonic states. [187]

It is usually not obvious, in practice, how a sample with a high quantum yield at

low excitation flux (as measured by an integrating sphere or dye comparison) will

perform under high flux conditions. We will discuss these effects in greater detail

when discussing fluorescence saturation.

Fluorescence Lifetime. The fluorescence lifetime of nanocrystals can be measured

by ensemble or single-nanocrystal time-correlated single-photon counting (TCSPC),

and is most critically defined by the core material of the nanocrystal. Visible samples

made from CdSe generally have lifetimes on the order of 30 ns, while infrared-emitting

materials have lifetimes that are one or two orders of magnitude longer. [156, 188, 189]

Once the core material is chosen, the lifetime of particles can be further increased by

the degree of electron-hole overlap (i.e. nanocrystal size, heterostruture, and polariz-

ability and susceptibility to local electric fields), but, apart from Type-II structures

that explicitly separate the electron and hole, these effects rarely affect the lifetime

by an order of magnitude. [190] The lifetime can have subtle effects on many areas

of nanocrystal performance. It dictates the susceptibility of nanocrystal fluorescence

to competing non-radiative pathways, can cause streaking effects in fast integration

time applications such as confocal imaging, and plays an important role in defining

the high-excitation flux properties of the sample.

Fluorescence Saturation. As we will discuss in more detail in Chapter 6, one of

the current weaknesses in the fluorescence of nanocrystals is their decreased brightness

under high flux excitation. This stems from a number of unrelated phenomena. First,

blinking is an (at least partially) photoinduced process, which causes the on-fraction of

nanocrystals to decrease with increasing excitation flux. [191] Second, nanocrystals

have longer fluorescence lifetimes than many other fluorophores like organic dyes.

This causes their single-exciton fluorescence to saturate at lower overall brightness.
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[192] And finally, their multiexciton quantum yield is often an order of magnitude

lower than their exciton quantum yield, which means that they are unable to reap

this possible source of additional fluorescence inaccesible to many other competing

fluorophores. [193]

Because of the confluence of these many physical phenomena, parsing the relative

contributions to the saturation properties of nanocrystal samples can be an involved

process. The total saturation properties of the sample can be measured by simply

measuring the fluorescence intensity of a sample as a function of excitation flux.

The effect of blinking on saturation can be measured by analyzing single-nanocrystal

blinking traces, or by performing ensemble statistical aging experiments (see next

section). The effect of the fluorescence lifetime can be measured using either single-

nanocrystal or ensemble TCSPC. And the effect of the multiexciton quantum yield

of saturation, the subject of Part II of this thesis, can be measured by a number

of techniques, including single-nanocrystal and solution-phase antibunching measure-

ments, single-nanocrystal saturation measurements, and transient PL and transient

absorption measurements.

Fluorescence Longevity/Stability. Finally, one of the strengths of nanocrystals

compared to other molecular and nanoscale fluorophores is their fluorescence longevity

and stability under harsh optical conditions. The use of an epitaxial shell can confer

optical stability to individual nanocrystals in air on the order of tens of minutes to

hours under single-molecule excitation fluxes. Nevertheless, even with a protecting

shell, nanocrystals are still prone to blinking and can still oxidize in air. Due to

its non-ergodic dynamics and unbalanced on- and off-time distributions, blinking

causes a photoinduced dimming of many nanocrystal samples on the order of hours

to days. [184, 185] This dimming process can be characterized with statistical aging

experiments, can be prevented by augmenting the blinking statistics of the sample,

and is otherwise accounted for by assuming the sample will eventually reach the long-

time equilibrium brightness. Oxidation has been harder to characterize because of its

irreversible and somewhat unpredictable behavior, but it can be easily prevented by
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packaging the nanocrystal sample in an air-free environment.

1.5.2 Inter-Nanocrystal and Device-Relevant Properties

So far, we have focused entirely on the optical properties of individual nanocrystals.

However, if they are going to be incorporated into optoelectronic devices such as

LEDs or solar cells, we also need to be concerned with how nanocrystals carriers will

enter and leave the nanocrystals and how they will diffuse through a thick nanocrystal

film. Several important characteristics of nanocrystal films have been identified as

particularly important for nanocrystal optoelectronic applications.

Carrier Mobility. The carrier mobility describes how quickly carriers can diffuse

through a nanocrystal film. Due to the quantum confinement of the carriers inside

the nanocrystal, carriers can not freely flow through a film as they would in a bulk

crystal. Instead, they must tunnel through the barrier between neighboring nanocrys-

tals and essentially “hop” through the film one nanocrystal at a time. If this process

is not efficient, carriers take longer to move through the film and become more sus-

ceptible to quenching mechanisms that lower device efficiency. The carrier mobility

has been one of the most studied electronic observables because nanocrystal films

have considerably lower mobility than most other electronic materials. It is generally

measured indirectly using either field-effect transistor measurements or directly using

time-of-flight measurements and is primarily dictated by nanocrystal parameters that

affect the tunneling barrier between nanocrystals. Carrier mobility can be increased

by decreasing the inter-nanocrystal spacing via shorter coordinating ligands, [194], by

using smaller nanocrystals to increase the leakage of electronic wavefunction into the

potential barrier, [195], or even by lowering the height of the potential barrier using

inorganic ligand systems such as Sn2S6
4–. [127, 196, 197] The mobility is also affected

by the longer range energetic properties of the film. Polydisperse or trap-rich films

can cause carriers to get stuck in energetic wells throughout the film and slow the

overall rate of carrier diffusion. [198]
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Band Alignment. Despite the challenges of engineering high mobility, low trap

density films, the flexibility of the nanocrystal architecture can allow for a careful

tailoring of the electronic properties of the film that far exceeds conventional semi-

conductor crystals. Not only can the bandgap of the film be continuously tuned

via the size of the constituent nanocrystals, but there is also some flexibility in af-

fecting the alignment of the band gap with respect to the vacuum energy. Both

ultraviolet photoelectron spectroscopy [199, 200] and voltammetry/scanning tunning

spectroscopy [201] have been used to show that ligand exchange could be used to per-

turb the interfacial dipole between the nanocrystal and its environment and shift the

absolute energy of the nanocrystal conduction and valance bands. This potential for

band engineering was recently leveraged by Chuang et al. [202] to achieve then-record

power conversion efficiencies for nanocrystal solar cells.

Majority Carrier and Carrier Density. Most current optoelectronic applica-

tions of nanocrystals simply use them as an absorption or emission layer in the device

architecture, which is sandwiched between other materials, if necessary, to facilitate

electron or hole injection/extraction. [203] In recent years, several groups have also

begun focusing on controlling the carrier density of nanocrystal films to increase their

conduction and controlling the identity of the majority carrier in the film for the fab-

rication of nanocrystal materials for p-n junctions. This effort has taken two forms.

First, driven by observations that environmental changes could turn ostensibly am-

bipolar films into n- or p-type materials, [126, 204] several investigations have focused

on using nanocrystal stoichiometry to intentionally fabricate inherently n- or p-type

materials. These efforts have shown that n-type films can be reliably fabricated by

increasing the ratio of cations in each nanocrystal, whereas p-type materials can be

reliably fabricated by increasing the ratio of anions. [205–207] Second, other investi-

gations have focused on incorporating heterovalent dopants into nanocrystals. [208]

The principle behind this approach is identical to that of bulk semiconductor doping:

by incorporating atoms with either more or fewer valance electrons into the crys-

tal lattice, you can create a (relatively large) extrinsic population of carriers in the
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conduction or valance bands. In fact, more broadly, advances in nanocrystal doping

techniques have begun to drive the development of many novel nanocrystal materials

with exotic electronic, [209] optical, [210] and magnetic properties. [211, 212]

Trap Density and Distribution. The trap state density is a particularly im-

portant property nanocrystal optoelectronic films because trap states provide deep

energetic wells that confine free carriers. This both decreases overall carrier mobil-

ity by preventing them from reaching the interfaces of the device, and introduces

sites for carrier recombination that directly impact the efficiency of the device. [213]

In fact, although surface trap states are the primary cause of the poor fluorescence

properties of core-only nanocrystals, they are even more destructive in close-packed

films because they not only quench carriers generated in their nanocrystal, but also

any carrier that diffuse through their nanocrystal on the way to a device interface.

Even the extremely high mobility films made using the early inorganic ligand system

by Kovalenko et al. [127] were susceptible to carrier quenching and did not produce

high quality devices. The reduction of carrier traps in nanocrystal films has been a

particularly difficult challenge because the reduction of carrier traps is, at least con-

ventionally, at odds with the enhancement of carrier mobility. Researchers have had

considerable success eliminating carrier trapping in nanocrystal samples for use as

optical materials because they can effectively remove detrimental surface interactions

using either thick or high-bandgap passivating shells. However, this approach cannot

be used in nanocrystal films for optoelectronic interactions because the elimination

of surface interactions inherently eliminates the ability for nanocrystal excitons and

free carriers to diffuse between nanocrystals.

Decreasing the effect of surface traps without dramatically lowering carrier mo-

bility has been a central area of research over the past five years. The trap profile

of a nanocrystal film can be measured using a number of specialized techniques. For

example, the total density of trapped carriers in a film can be measured using steady

state photocurrent measurements, [213, 214] and the energy distribution of empty

traps can be measured using time-resolved infrared spectroscopy, [128, 215] infrared
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photoluminescence and electroluminescence spectroscopy, [216] or surface photovolt-

age spectroscopy. [217] These techniques have been used to identify several effective

methods for reducing trap density that have actively improved the device performance

of nanocrystal solar cells. For example, the use of halide surface passivation instead of

previous inorganic ligand systems has been shown to both reduce the energetic depth

of deep trap states and improve carrier mobility, [128] and oxidative treatments of the

nanocrystal film has been shown to eliminate deep traps and increase the open-circuit

voltage of nanocrystal solar cells. [218] Nevertheless, understanding the basic physics

of carrier trapping and how it can affect carrier recombination and mobility, both

generally and in specific devices, is still an active area of research that is important

to the future prospects of nanocrystal optoelectronic devices. [219]

Multiple Exciton Generation. Finally, one of the major potential benefits of

nanocrystals that have driven their development in solar cells is their potential for

multiexciton generation. Conventional single-junction solar cells are theoretically lim-

ited to an efficiency of 30% because they rely on a single carrier extraction energy

given by the bandgap of the material. [220] This Shockley-Queisser limit represents

a tradeoff between absorption and energy extract, where a higher bandgap material

would absorb less of the solar spectrum but extract more energy from each absorbed

photon and a lower bandgap material would absorb more of the solar spectrum but

extract less energy from each absorbed photon. However, in a material capable of mul-

tiple exciton generation, a single hot exciton can be converted to two near-band-edge

excitons, thereby reducing thermalization losses and enabling theoretical efficiencies

as high as 45%. [221] Multiple exciton generation (or carrier multiplication) is a rare

event in bulk materials due to rapid thermalization and weak Coulomb interactions,

but early predictions suggested that nanocrystals might have slower thermalization

rates due to the lower density of phonon modes and enhanced Auger interactions due

to their quantum confinement.

Unfortunately, except in very specific cases where the nanocrystal architecture

is engineered to prevent thermalization, [222] nanocrystals thermalization rates have
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been found to be on par with the bulk because of additional Auger-like thermalization

pathways that can help excited carriers bridge electronic energy gaps without phonon-

coupling. [223, 224] As a result, when the multiple exciton generation efficiency has

been measured in nanocrystals by using transient photoluminescence or transient

absorption experiments to probe the magnitude of the biexciton feature as a function

of excitation wavelength (under stirred conditions),14 nanocrystals have exhibited

only modest improvements compared to their bulk analogues. [225, 226] The main

problem has been that even though the Auger interaction does increase with increasing

confinement, so does the excitonic band gap. This means that the absorbed photons

capable of generating multiple excitons are pushed to higher wavelengths that are less

represented by the solar spectrum and has led to only modest improvements in the

efficiency of nanocrystal devices. [227] Multiple exciton generation is still an active

area of research in some corners and may still ultimately be useful for increasing the

efficiency of nanocrystal solar cells, [228] but as Nair et al. [221] emphasizes, this

potential is mainly on the basis of identifying a new nanocrystal material whose bulk

crystal has a high carrier multiplication yield at solar-relevant wavelengths and a very

small bandgap that can be can be tuned via confinement to the optimal value. They

recommended InSb as such a prospective material.

1.5.3 Biologically-Relevant Properties

There are also several important properties regarding how nanocrystals physically

interact with their environment. These are particularly critical in biological applica-

tions of nanocrystals, where nanocrystals are required to be small, non-perturbative,

targetable probes both in vitro and in vivo, but many of these physical properties

will also be relevant in other nanocrystal applications (especially solubility).

14The multiple exciton generation efficiency could also be measured using a similar principle by
measuring center-to-side peak area ratio of an antibunching experiment as a function of excitation
wavelength. The generation of multiple excitons would break the absorption Poisson distribution
and cause the peak area to increase with excitation wavelength.
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Overall Size. The physical size of the individual nanocrystals, including their core,

shell, and ligands, can be an important parameter in many nanocrystal applications

because it determines the overall packing density of fluorophores in the physical sam-

ple. It takes on even more importance in biological applications because the size

of the particles also affects their ability to diffuse into confined spaces, [229] their

clearance in vivo, [230, 231] and the overall inertial perturbation that they have on

their labeled substrates. In solution-phase work (including biological applications),

the relevant size metric is the hydrodynamic radius, which can be measured using ei-

ther fluorescence correlation spectroscopy or dynamic light scattering, [232] and takes

into account both the size of the nanocrystal architecture and solvent interactions,

which can increase the effective size of nanocrystals. The hydrodynamic diameter

can be reduced by either reducing the core/shell/ligand footprint of the nanocrystals

or, more critically, by reducing solvent interactions by engineering neutral particles

using either neutral or zwitterionic ligands. [233] Choi et al. [230] reported that

serum proteins could adsorb to their charged nanocrystals in vivo, increasing their

hydrodynamic radius by almost 15 nm.

Solubility. Obviously, in all applications, it is important for nanocrystals to be sol-

uble in the solution used to produce the final nanocrystal component. But whereas

many device applications may use organic solvents that are inherently compatible

with nanocrystals such as toluene or hexanes to fabricate their nanocrystal films,

nanocrystals used for biological applications must be engineered to be soluble in aque-

ous media. This means that the native ligands of these nanocrystals must necessarily

be exchanged with some other ligand that can provide water solubility. Considerable

research has been dedicated to designing ligand exchange procedures that maintain

the optical properties of the nanocrystal, provide good biocompatibility, and enable

the binding specificity discussed in the next section. Successful ligand systems have

generally provided water solubility using either poly-(ethylene glycol) chains or zwit-

terionic functionalization, and provided stable anchoring to the nanocrystal surface

using multidentate coordinating structures such as dihydrolipoic acid or polyimidi-
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zoles. [18, 234–236]

Binding Specificity. Another important physical property for targeting applica-

tions is the binding specificity of the nanocrystal labels. This property can be broken

down into two distinct components: how well the labels bind to their targets and how

poorly the labels bind to anything else. Desirable binding affinity is usually built into

the nanocrystal architecture by incorporating conjugation sites in the ligand systems

discussed in the previous section. These conjugation groups, either simple functional

groups like amines, thiols, or carboxylic acids or more complicated groups like the

norbornene group with more reactive specificity and poor affinity for the nanocrystal

surface, [113, 134, 237] can be directly attached to biological species such as proteins.

[133] Low non-specific binding is achieved using the same strategies used to achieve

smaller properties, namely by ensuring that the surface of the nanocrystal is charge

neutral and not chemically reactive.

Cytotoxicity (and Toxicity). There has been very reasonable concern about the

toxicity of nanomaterials in general, and in particular of heavy metal-containing ma-

terials like most nanocrystals. [238] It is therefore very unlikely that nanocrystals will

be approved for use in humans in the near or intermediate future, and even outside

of human applications, toxicity can still play a major role in defining the suitability

of nanocrystals for various applications. In device applications, regulatory agencies

have been worried about the potential for human contact with the nanocrystal ma-

terials and the potential for heavy metal pollution after device disposal. Even if the

nanocrystal material is well-isolated, high tech trash has become a major source of

heavy metal contamination in developing countries. [239] As a result, display ap-

plications of the synthetically-mature cadmium-containing nanocrystals have had to

contend with possible regulation via the European RoHS directive that regulates the

use of hazardous substances in electronics. [240] In biological applications, because

the short-term nature of imaging experiments, the concern is simply to avoid the

possibility of acute toxicity or cytotoxicity that may interrupt experiments or per-
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Fluorescence Properties Relevant Physical Parameters and Phenomena
Absorption Spectrum Core size, shell absorption
Fluorescence Wavelength Core material and size, delocalization into shell
Fluorescence Linewidth Exciton-phonon coupling, exciton fine structure,

spectral diffusion/charging, polydispersity
Fluorescence Quantum Yield Blinking, fraction of non-fluorescent particles,

various non-radiative processes, multiexcitons
Fluorescence Lifetime Core material, electron-hole overlap
Fluorescence Saturation Fluorescence lifetime, multiexciton quantum yield

blinking
Fluorescence Stability Blinking, surface oxidation

Device Properties Relevant Physical Parameters and Phenomena
Carrier Mobility Inter-particle potential (shell thickness, ligand),

particle spacing, trap density
Film Trap Density Surface passivation
Majority Carrier/Carrier Density Dopant ions and concentration,

nanocrystal stoichiometry
Carrier Multiplication Yield core material, carrier confinement

Biological Properties Relevant Physical Parameters and Phenomena
Overall Size core/shell size, ligand bulk
Solubility ligand functionalization
Binding Specificity particle charge, ligand functionalization
Cytotoxicity core/shell isolation

Table 1.1: Summary of the optical, electronic, and phyical properties of nanocrystals
and the relevant parameters and phenomena that define them.

turb the biological activity being studied. The consensus suggests that nanocrystal

biocompatibility can be achieved regardless of core or shell material by ensuring that

the ligand coverage on the surface of the nanocrystal is permanent and as complete

as possible. [241] For example, Weilnau et al. [242] reported that their ZnS nanocrys-

tals were initially biologically compatible, but became progressively more cytotoxic

over time as their nanocrystals were kept in suspension in a phosphate-buffered saline

solution.

1.6 Thesis Overview

In this introductory chapter, we discussed how the scientific value of semiconductor

nanocrystals lies is two major directions, both as a historically important and con-
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ceptually critical model system for the investigation of the fundamental physics that

defines many nanoscale systems and as a well-optimized and highly flexible optical

and electronic material that may be useful for a broad spectrum of applications. We

also identified single-nanocrystal spectroscopy as a powerful and versatile tool for

both the elucidation of nanocrystal physics and the the characterization of many of

the poorly-understood properties critical for optimizing nanocrystals for applications.

This thesis will present two investigations that illustrate how single-nanocrystal spec-

troscopy can provide insight into practically any aspect of the optical behavior of

nanocrystals.

In Part I, we illustrate the power of single-nanocrystal spectroscopy as a tool for

the elucidation of basic physics by investigating the rapid spectral diffusion of indi-

vidual nanocrystals at cryogenic temperatures. This phenomenon has so far evaded

our understanding because of its widely variable behavior within nanocrystal samples

and its unique requirements for high spectral and temporal resolution. We will show

that photon-correlation Fourier spectroscopy (PCFS), a recently-developed single-

nanocrystal technique that combines interferometry with photon correlation analysis,

can give us all of the necessary tools to characterize these spectral dynamics and to

assemble a complete picture of the phenomenon in individual nanocrystals. In Chap-

ter 2, we review the current understanding of rapid spectral diffusion and discussing

its theoretical connection to our broader understanding of nanocrystals, we discuss

the experimental difficulties that have interfered with previous investigations of rapid

spectral diffusion, and we provide a conceptual explanation of how the PCFS experi-

ment works. In Chapters 3 and 4, we work through the theoretical and mathematical

details of PCFS, including possible artifacts and sources of systematic error, and how

PCFS can be combined with conventional single-nanocrystal spectroscopy to study

the full range of spectral dynamics. Then, in Chapter 5, we present the experimental

details of our investigation, our results, a discussion of what information can be ex-

tracted from these results, and their physical consequences. This part consists of the

work presented by Beyler et al. [243]

In Part II, we illustrate the power of single-nanocrystal spectroscopy as a tool
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for characterizing the optical properties of nanocrystals by devising a solution-phase

antibunching experiment to measure the ensemble-averaged biexciton quantum yield

of nanocrystal samples. As we discussed earlier, the low biexciton quantum yield

of nanocrystals is one of the primary characteristics that hinder their optical per-

formance under high excitation flux conditions. Our experiment provides a much-

needed tool for quickly and reliably assessing the results of synthesis that should aid

in the synthetic optimization of biexciton fluorescence. In Chapter 6, we present an

overview of previous experimental tools for measuring the biexciton quantum yield

of nanocrystal samples and provide a conceptual explanation of our experiment. In

Chapter 7, we derive the mathematical result of the experiment and discuss several

possible artifacts that may affect the measurement. Then, in Chapter 8, we present

the experimental details of our investigation, an experimental verification of the tech-

nique, and two small investigations that demonstrate the utility of the experiment.

This part consists of the work presented by Beyler et al. [244]

And finally, in Part III (Chapter 9), we illustrate the vast potential for the fu-

ture development of single-nanocrystal spectroscopy experiments by presenting three

possible modifications to the conventional PCFS experiment that could enhance the

capabilities of our current single-nanocrystal toolbox. For each variant, we will dis-

cuss the potential need for innovation, derive the experimental result, and present my

personal opinion and outlook with regards to the experiment.
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Investigating the Local Environment
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Chapter 2

Background on Spectral Diffusion in

Nanocrystals at Low Temperature

One of the most fundamental and enduring challenges in the elucidation of basic

nanocrystal physics has been how to conceptualize the surface and immediate local

environment of the nanocrystal. In Chapter 1, we discussed how uncertainties about

how to treat the nanocrystal surface have complicated the development of accurate

and insightful electronic structure models for these systems. It has been equally

tricky to understand the chemistry and dynamics of the surface. Many dynamic

processes, including ligand exchange, carrier trapping, and oxidation, have real and

tangible effects on the optical properties of the nanocrystal, and control over surface

chemistry and passivation is necessary for the synthesis of high quality nanocrys-

tals. The ongoing challenge underlying the study of many of these problems has

been that it is difficult to study the nanocrystal surface directly. Surface electronic

states are not readily addressable using spectroscopy because of their low oscillator

strength transitions compared to the core states, the concentration of surface atoms

and surface-bound ligands is usually very low in the overall nanocrystal sample, and

the nanocrystal surface itself is heterogeneous and varies between nanocrystals. Nev-

ertheless, recent innovations in experimental techniques have allowed researchers to

begin to tackle many of the myriad of surface-related processes.

Electron-mediated characterization techniques such as transmission electron mi-

77



croscopy (TEM) have been the experimental workhorse for investigating the structure

of the semiconductor portion of the nanocrystal because they have the superior spa-

tial resolution required to resolve the shape of nanoscale objects. Although TEM

has been used for decades to characterize the degree of shape and size polydispersity

in nanocrystal samples, [43] recent advances in high resolution TEM have achieved

atomic-level resolution and opened the door for in-depth investigations of the physical

structures of nanocrystals. In the last four or five years, TEM investigations have di-

rectly measured the lattice strain caused by overcoating individual CdSe nanocrystals

with ZnS, [245] mapped the shape of the core/shell interface in PbSe/CdSe nanocrys-

tals synthesized using partial cation exchange, [246, 247] conclusively demonstrated

the oriented attachment of specific PbSe crystal faces to form ordered superlattices,

[248] proven the atomic flatness of CdSe nanoplatelets and identified the physical

origin of their helical folded structure, [249, 250] revealed the surprisingly transient

structure of photoexcited CdS clusters, [251] and even directly observed in real time

the growth of individual platinum nanocrystals in a graphene liquid cell. [252] These

atomic-level investigations have brought clarity and unprecedented concreteness to

the actual structure and physical behavior of nanocrystals.

Unfortunately, TEM-based techniques suffer from two critical blindspots. First,

because organic molecules have poor TEM contrast, TEM cannot be used to inves-

tigate the ligand shell of the nanocrystal. To investigate the structure and dynamics

of the passivating layer of nanocrystals, researchers have relied on techniques such

as NMR [253] and x-ray photoelectron spectroscopy [254, 255] that measure the av-

erage structural connectivity of the nanocrystals in a sample. These techniques are

sensitive to organic and metal-organic bonds, can distinguish between bound and

unbound ligands in a nanocrystal solution, and can be used to identify the lability

of surface-bound ligands and to identify the chemical transformation enacted during

ligand exchanges. [256] The second blind spot is that none of the aforementioned

structural techniques can report on the connection between the physical state of the

system and the optical properties of the system. TEM may report that the lattice

strain between a CdSe core and its ZnS shell has caused severe distortions in the
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equilibrium position of the interfacial atoms, but it cannot reveal whether (or how)

the observed strain will adversely affect the fluorescence from the CdSe core electronic

states. Surface techniques such as NMR may be able to quantify the presence of many

ligand species on the surface of the nanocrystal, but they cannot directly report on

how this physical surface passivation affects optical behavior.

The unclear connection between the structural and optical properties of nanocrys-

tals has interfered with the investigation of many different types of interactions be-

tween the nanocrystal surface and core excitons. Using purely optical techniques in-

cluding transient photoluminescence and transient absorption, researchers have iden-

tified the important role of the nanocrystal surface in determining the dominant

mechanisms of hot carrier relaxation, dictating the rate of carrier trapping, and caus-

ing the highly detrimental effects of biexciton formation on nanocrystal fluorescence.

[224, 257, 258] These phenomena profoundly affect the fluorescence properties of the

nanocrystals for applications, but have generally only been treated theoretically on a

phenomenological basis. There is clear need to begin to build a more concrete con-

nection between the optical behavior and structural characteristics of nanocrystals to

clarify the structural goals of high quality nanocrystal syntheses.

Single-nanocrystal spectroscopy may be an important tool for bridging this gap

between our understanding of the chemistry and structural physics of nanocrystals

and our understanding of their optical behavior. The time-dependent optical prop-

erties of individual nanocrystals have been found to reflect many of the transient

surface phenomena that have been tricky to measure through other means. More-

over, single nanocrystal spectroscopy gives us a way of correlating many different

optical observables produced by a single nanocrystal configuration and gives us a way

of characterizing the distribution of optical properties produced by the heterogene-

ity in surface structure within a sample. In fact, correlated TEM/single-nanocrystal

blinking investigations have already been used to identify certain structural features

that appear to be correlated with blinking behavior. [259]

In this Chapter, we will take a closer look at the investigation of a poorly-

understood single-nanocrystal optical phenomenon that may provide unique insight
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into carrier trapping and other surface effects: the spectral diffusion of single nanocrys-

tals at low temperature. This observable has been found to report on the peripheral

dynamics of the nanocrystal via fluctuations in the local electric field and therefore

can provide an optical/spectroscopic probe of surface phenomena with a degree of

spatial resolution. We begin with a review of the previous literature on nanocrys-

tal spectral dynamics. We will then discuss the major experimental problems that

have been associated with measuring these spectral dynamics and several possible

solutions. Finally, we conclude with an overview of the solution explored here, a

technique called photon-correlation Fourier spectroscopy.

2.1 WhatWe Know about Spectral Diffusion in Semi-

conductor Nanocrystals

Spectral diffusion was first observed by Empedocles and Bawendi [63] when they

looked to study the quantum-confined Stark effect at the single-nanocrystal level. In

their experiments, they measured the fluorescence spectrum of individual core-only

and ZnS-shelled CdSe nanocrystals at 10 K and demonstrated that the emission wave-

length could be shifted by the application of an electric field. The field-dependence

of the center wavelength revealed a large excited state polarization, consistent with

the core states being delocalized over the entire nanocrystal, and a non-zero excited

state dipole, which due to the spherical symmetry of nanocrystals, was interpreted as

the existence of a local electric field. They observed two distinct, but related types of

spectral dynamics. First, during their experiments, the fluorescence spectrum occa-

sionally underwent large, spontaneous spectral shifts on the order of 10 meV, which

were accompanied by a change in the excited state dipole of the nanocrystal. The

magnitude of these spectral shifts was estimated to be consistent with the change

in electric field caused by the addition or removal of carrier from the nanocrystal

surface. And second, the low temperature spectrum did not exhibit a lifetime-limited

linewidth. Instead, its linewidth was around 1–3 meV and could be broadened fur-
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ther by applying an electric field. This linewidth behavior was consistent with a

rapidly varying local electric field on timescales faster than the integration time of

the experiment.

Several later investigations have clarified the nature of both of these types of

spectral dynamics. Neuhauser et al. [260] identified a connection between the large

spectral shifts and fluorescence intermittancy events. They found that large spectral

shifts were statistically more likely to occur during blinking events. In the con-

text of the charging model of blinking, this suggested that the large spectral shifts

may be induced during the carrier trapping and detrapping processes involved with

nanocrystal core charging and neutralization. Furthermore, when nanocrystals were

synthesized with fluorescent trion states, an additional mechanism of spectral diffusion

directly associated with trion formation was also identified. During trion formation

and neutralization, the fluorescence spectrum has been observed to red- or blue-shift

by the trion binding energy of the core states (∼20 meV for the postive trion in CdSe

core/shell particles, and ∼5 meV for the negative trion).1 [181–183]

There have also been several clever investigations of the rapid form of spectral dy-

namics, even though conventional experiments do not have the temporal resolution

to resolve them. Gomez et al. [261] found that the room temperature fluorescence

linewidth, which they claimed was defined by rapid spectral dynamics,2 was indepen-

dent of dielectric environment, suggesting that it was caused by dynamics within the

core/shell/ligand architecture. Empedocles et al. [64] identified the rapid spectral

dynamics as a photoinduced, but thermally assisted process at tempertures between

10 K and 40 K, enabled using the excess energy from hot carrier thermalization in the

fluorescence cycle. Fernée et al. [262, 263] provided additional statistical evidence for

the discrete, photoinduced character of rapid spectral dynamics, but also observed in-

stances of spontaneous spectral shifts they identified as energetically downhill events.

1To my knowledge, no one has reproduced the analysis of Neuhauser et al. using samples with
trion emission to confirm that core charging was responsible for the blinking events that were cor-
related with large spectral dynamics.

2This is contrary to our more recent understanding that ties the room temperature linewidth to
the extent of exciton-phonon coupling and to the nanocrystal fine structure. Nevertheless, they do
still show that the spectral dynamics they observe on camera timescales at room temperature are
also independent of the dielectric environment.
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And, Plakhotnik et al. [264] modeled the rapid spectral dynamics as a diffusion pro-

cess and found that its probability distribution function broadened according to a

sub-diffusion power law with widely variable exponent.3

And finally, in a somewhat contentious pair of reports, Müller et al. [265, 266]

drew a causal connection between rapid spectral dynamics and the large spectral shifts

by studying the spectral dynamics of CdSe/CdS seeded rods. They found that the

fluorescence linewidth defined by rapid spectral dynamics was strongly correlated with

the average spectral position defined by the large spectral shifts. On this evidence,

they suggested a unified model of spectral diffusion, where large spectral jumps were

caused by the hopping of trapped charges along the length of the seeded rod, and

the rapid spectral dynamics were caused by small jitter in the exact position of the

trapped charges. The spectral position was therefore defined by the distance between

the trapped charge and the CdSe seed and the spectral linewidth was defined by the

total magnitude of the dynamic electric field fluctuations caused by the rapid jitter of

the charge at its given physical position. However, Gómez et al. [261] have noted that

the same behavior is manifested in spherically-symmetric core/shell nanocrystals. The

correlation between spectral position and linewidth could simply be a result of the

second-order nature of the Stark effect. Just as Empedocles and Bawendi were able

to modulate the linewidth using an applied electric field, the magnitude of the rapid

spectral dynamics may simply be responding to a change in the overall static local

electric field. Whether rapid spectral jitter is caused by the same physical process

as the discrete spectral jumps or simply scaled by the magnitude of the local electric

field is still not entirely clear.

At present, there are two major theories that have been proposed to explain

the rapid spectral dynamics of nanocrystals at low temperature. The first is the

charge-trapping model, originally proposed by Empedocles and Bawendi [63, 64] and

supported by Müller et al. [265, 266], where the large discrete spectral jumps are

caused by the trapping and de-trapping of carriers on the surface of the nanocrystal

3Unlike in blinking statistics, a power law is not a strange or surprising result in diffusion physics.
One-dimensional Brownian motion produces a probability distribution function that broadens as a
power law with an exponent of 0.5.
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and the rapid spectral dynamics are caused by the diffusion of the carriers through the

manifold of available trap sites on the surface of the nanocrystal. The second is the

ligand-perturbation model, recently suggested by Fernée et al. [263], which suggests

that the rapid form of spectral dynamics may not be related to charge-trapping at all.

Instead, they propose that rapid spectral diffusion events occur when the relaxation

of hot carriers dumps energy into specific vibrational modes on the surface of the

nanocrystal, which are capable of inducing minor reorganizations of ligands on the

surface of the nanocrystal. The cause of the dynamic Stark shift is therefore the

fluctuation in the local electric field in the nanocrystal caused by the reorganization

of the surface dipoles. One of our major goals for this project has been to try to

identify ways of experimentally distinguishing between these two physical pictures,

which ultimately requires a better way of measuring and characterizing rapid spectral

dynamics.

It is also important to note a related line of investigation aimed at identifying the

intrinsic linewidth hidden underneath the rapid spectral dynamics. In addition to

being a physically interesting observable in and of itself, the intrinsic linewidth is also

important for determining the overall magnitude of rapid spectral dynamics. Conven-

tional single-nanocrystal spectroscopy has not been used to measure a linewidth less

than 120µeV because of rapid spectral dynamics. [64] However, narrower linewidths

have been measured using other techniques like spectral hole burning, [267, 268] ul-

trafast spectroscopy, [269, 270] resonant photoluminescence excitation experiments

that measure the linewidth quickly and without allowing hot carrier thermalization,

[271, 272] and photon-correlation and/or interferometry. [273–275] The consensus

seems to place the intrinsic linewidth of single nanocrystals at low temperatures be-

tween 1–30µeV, but also suggests that it is probably a sample-dependent quantity.

Processes like spin-flip dephasing may be a major source of line-broadening in Cd-

Se/CdS nanocrystals and would be affected by architectural parameters such as shell

thickness. [269, 270]

To summarize, three sources of spectral dynamics have been observed in the flu-

orescence spectra of single nanocrystals at low temperature (Figure 2-1). Large and
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Figure 2-1: A time series of integrated spectra illustrating three types of spectral
dynamics in single nanocrystals at low temperatures (4 K): large, discrete binary
shifts due to trion formation and neutralization, smaller discrete shifts attributed to
carrier trapping, and rapid diffusion over a small energy range.

very infrequent binary switching in spectral location have been observed and tied

to trion formation. Large, but variable, spectral shifts have been observed and tied

to the trapping or detrapping of carriers in the in periphery of otherwise neutral

nanocrystals. And small but rapid spectral jitter has been observed and tied to ei-

ther the diffusion of carriers within the trap manifold or to ligand rearrangement on

the surface of the nanocrystal. A thorough understanding of these three mechanisms

could yield important insight into the salient features of nanocrystal surface structure

and its connection to their optical properties.

2.2 The Problem

The study of nanocrystal spectral dynamics has been strongly limited by the temporal

resolution of conventional single-nanocrystal spectroscopic techniques. Ideally, the

single-nanocrystal spectrum could be entirely studied using a setup similar to that

shown in Figure 2-2. In this setup, a single nanocrystal is confocally excited on a

substrate in a cryostat, the fluorescence emission is collected and frequency-resolved

with a spectrometer, and the spectrum is detected by imaging the frequency-dispersed

signal using a CCD camera. This experimental procedure is easy to implement, can
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Figure 2-2: A schematic of a conventional single-nanocrystal spectroscopy setup.
Fluorescence from a single-nanocrystal in confocal microscope is spectrally resolved
with a spectrometer and integrated on a CCD camera.

yield a single-nanocrystal spectrum in less than a second, and can measure a spectrum

with arbitrary resolution depending on the chosen gratings and spectrometer path

length. Moreover, the resulting time series of spectra generated by taking a series of

spectral integrating times is easy to interpret and straight-forwardly reveals spectral

time-dependence. This setup is therefore the ideal tool for studying spectral dynamics

that are both slow and large in magnitude, including the infrequent spectral jumps

caused by trion formation or charge trapping.

Nevertheless, this experiment suffers from the inherent temporal limitations of

intensity-binning techniques (Figure 2-3). In order to resolve the shape of a spec-

trum, a large number of fluorescence counts must be collected and binned. This

creates a trade-off between the spectral resolution, given by the bin spacing in the

spectral domain (i.e. the number of bins receiving the counts), the temporal reso-

lution, given by the integration time (i.e. the number of total counts received), and

the signal-to-noise of the spectrum (i.e. the number of counts per bin). The tradeoff

is exacerbated when you consider that standard cryostat setups using low-numerical

aperture air objectives tend to have overall collection/detection efficiencies below 5%.

Over 25,000 fluorescence events must be allowed to occur to measure a spectrum with

only 500 counts, and this requires even more absorption events if the quantum yield

of the emitter is less than unity. This is a serious problem for investigating spectral

fluctuations that are small and fast like the rapid spectral diffusion of nanocrystals,

because resolving individual spectral diffusion events simultaneously requires high
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Figure 2-3: Conventional single-nanocrystal spectroscopy is limited by an inherent
tradeoff between spectral resolution, temporal resolution, and signal-to-noise ratio.

temporal resolution, high spectral resolution, and high signal-to-noise to pinpoint

very small changes in the center wavelength of a spectrum.

2.3 Improving Temporal Resolution Using Photon

Correlation

Photon correlation provides an elegant strategy for bypassing the inherent temporal

limitations of conventional single-molecule spectroscopy. Although intensity correla-

tion functions themselves have no inherent spectral resolution, spectral discrimination

can be added into a photon correlation experiment by introducing spectral bias into

the detection channels using bandpass filters, monochromators, or interferometers.

One of the first examples of spectrally-biased correlation measurements in single-

nanocrystal spectroscopy was presented by Fisher et al. [276] They added spectral

filtering to the standard single-nanocrystal antibunching experiment to demonstrate

that a blue-shifted spectral feature in the high-excitation flux nanocrystal spectrum

was caused by the 1P-1P nanocrystal fluorescence of triexcitons. By correlating the

photon arrivals from the blue-shifted fluorescence with the photon arrivals in the
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main peak produced by biexcitons and excitons, they showed that the blue-shifted

feature exhibited ordered-emission characteristic of multiexcitons (i.e. triexcitons de-

cay to form biexcitons, which decay to form excitons). A similar filtering scheme

was recently used by Galland et al. [277] to independently investigate the antibunch-

ing behavior of spectrally-resolved fluorescence from different parts of a CdSe/CdS

“dot-in-bulk” heterostructure.

Several spectrally-resolved correlation experiments have also been used to inves-

tigate spectral diffusion in a variety of nanostructures. The earliest example we will

discuss here is the photon-correlation Fourier spectroscopy technique described in the

next section that was developed by Brokmann et al. [278] and first implemented by

Coolen et al. [273, 279], but there are a couple of simple later examples worth men-

tioning. The first key example used a dual monochromator setup instead of bandpass

filters to precisely tune the spectral profiles of two detection channels and isolate the

red or blue side of a epitaxial quantum dot fluorescence spectrum that was broadened

by spectral diffusion (Figure 2-4). [280–282] The intensity correlation function of

the spectrally-biased channels exhibited additional photon-bunching that was absent

from the intensity correlation function of the entire fluorescence spectrum because of

the periods of time the spectrum spent outside the channel’s spectral window during

spectral diffusion. By comparing the overall intensity correlation function of the emit-

ter to the intensity correlation of the signal within the spectral window, it was possible

to identify both the timescale of spectral dynamics and the underlying homogeneous

linewidth of the fluorescence.

Another key example was recently used by Wolters et al. [283] to investigate

the spectral dynamics of nitrogen vacancies in diamond.4 In this system, a narrow

intrinsic fluorescence spectrum has been found to discretely and randomly samples

a broad time-averaged spectrum. To directly measure the kinetics of this sampling

process, they spectrally biased their detection channels using an interferometer whose

path-length difference was being scanned in the region between the coherence lengths

of the intrinsic and time-averaged spectra (Figure 2-5). If a diffusion event had

4Also note the related experiment of Abbarchi et al. [284]
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Figure 2-4: By spectrally biasing the channels of a correlation experiment using a dual
monochromator setup, rapid spectral dynamics are manifested as difference between
the intensity-cross correlation function and the total intensity autocorrelation function
of the emitter.
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occured between two photon arrivals, the interferometer would not influence their

likelihood to be detected on a given detection channel because, on average, their

spectra would reflect the time-averaged spectrum. However, if a diffusion event had

not occured between two photon arrivals, the enhanced spectral coherence between

the photon pairs would cause them to be mapped to the same interferometer arm.

This manifests as an anticorrelation feature in the cross-correlation function between

the detection channels because these coherent photon pairs tend to map to either one

detector or the other, depending on the exact spectral position of the given intrinsic

spectrum within the time-averaged spectrum and the precise path-length difference of

the interferometer during the scan. The decay constant of this anticorrelation feature

in the intensity cross-correlation of the two interferometer arms is directly related to

the kinetics of the underlying discrete spectral diffusion process.

These two correlation experiments are valuable for investigating rapid spectral dy-

namics with relatively simple physics because they can reveal information on timescales

inaccessible to conventional single-molecule spectroscopy, they are conceptually intu-

itive and straight-forward to interpret, and they are experimentally easy to implement

with high signal-to-noise. Nevertheless, they are single-point correlation measure-

ments that rely on a presupposed physical model for the spectral dynamics. In both

cases, experimenters assumed that the intrinsic spectrum had a Lorentzian lineshape

and discretely sampled the time-averaged spectrum via uncorrelated spectral jumps.

Their experiment provided no means for measuring the underlying homogeneous line-

shape (or even linewidth, in the case of the interferometer-based measurement), or

any means for testing the mechanism of the spectral dynamics. Either experiment

could just as easily have been analyzed in the context of a more complex stochastic

process or even a continuous diffusion process.5

In cases where the diffusion physics is unknown or more complicated, or the un-

derlying shape of the intrinsic fluorescence spectrum is of interest, a more powerful

technique is required. In the next section, we provide an experimental and theoretical

5That they measured a simple exponential decay in their correlation functions is strong evidence
that the story is not more complicated in these systems.
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Figure 2-5: Simple spectral dynamics can be measured by cross-correlating the out-
puts of an interferometer whose path-length difference is positioned between the co-
herence lengths of the intrinsic and time-averaged spectra. Photon pairs across spec-
tral jumps are unbiased by the interferometer, whereas photon pairs arriving between
spectral jumps are mapped to the same detector and cause an anti-correlation in the
intensity cross-correlation.
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overview of photon-correlation Fourier spectroscopy (PCFS), a technique that can be

used to directly analyze the mechanistic details of rapid spectral dynamics and can

reveal the underlying homogeneous lineshape of single emitters.

2.4 Overview of Photon-Correlation Fourier Spec-

troscopy

The idea behind PCFS is very similar to the simple interferometry experiment re-

ported by Wolters et al. [283] An interferometer can be used to probe the spectral

coherence between pairs of photons as a function of their temporal separation, thereby

revealing spectral features and dynamics on the timescales of photon timing rather

than relying on an integration-based technique. As a result, the experimental setup

of PCFS is identical to that of Figure 2-5. A single emitter isolated on a substrate is

illuminated with continuous-wave excitation in a confocal microscope. The emission

is sent into a two-output Michelson interferometer, detected on two single-photon-

counting avalanche photodiodes, and analyzed using correlation hardware.

However, there are three key differences between the experiment of Wolters et

al. [283] and PCFS. First, because nanocrystals are known to exhibit intensity fluc-

tuations in addition to spectral fluctuations, the intensity cross-correlation between

the interferometer outputs will contain features caused by total signal fluctuations in

addition to the desired features caused by spectral fluctuations. We will account for

this by also measuring the intensity autocorrelation of the total signal that passes

through the interferometer, to correct for intensity-related features. Second, rather

than scanning the interferometer path-length difference through an arbitrary region

between the coherence lengths of the intrinsic and time-averaged spectra, we will pick

a specific path-length difference and introduce a small dither over a few interference

fringes about that path-length difference. The importance of the dither will be dis-

cussed in detail later, but the idea is that the photon pair coherence we measure

will be closely representative of that at the given average path-length difference and

91



not averaged over a large range of path-length differences. Finally, and most impor-

tantly, we will measure the photon pair coherence via the intensity cross-correlation

as a function of both temporal separation and interferometer path-length difference.

This is the key that PCFS uses to unlock lineshape information about the intrinsic

single-emitter spectrum and its dynamics.

To understand how PCFS works, it is important to first understand how an inter-

ferometer transforms spectral information into intensity information. When a signal

enters an interferometer, it is split into two paths, allowed to propagate over two dif-

ferent path lengths, and recombined to give a final signal. Because of the path-length

difference between the two beam paths, a phase shift is introduced between the two

halves of the signal, which causes either constructive or destructive interference on

one of the interferometer outputs (Output A) and the opposite effect on the other

(Output B) to conserve energy.6

The extent of constructive or destructive intereference depends on two factors: the

path-length difference between the halves of the signal and the spectrum of the signal.

When monochromatic light at a wavelength of 600 nm is sent through an interferom-

eter (Figure 2-6), complete constructive interference is observed on Output A when

the path-length difference is given by an integer number of wavelengths (e.g. 0, 600,

1200 nm) and destructive interference is observed when the path-length difference is

given by a half-integer number of wavelengths (e.g. -300, 300, 900 nm). However, if

the light is polychromatic, each fraction of the signal will have its own points of con-

structive and destructive interference at slightly different path-length differences. All

of the signal is necessarily in phase and undergoing complete constructive/destructive

interference at zero path-length difference (the so-called white fringe), but over longer

path-length-differences, the dispersion in the points of constructive and destructive

interference will cause the total degree of interference to decrease and eventually aver-

age away. The broader the spectrum of the signal, the faster this decoherence occurs

with increasing path-length difference, and the narrower the spectrum, the slower this

6An additional 𝜋 phase shift is introduced on one of the outputs on the basis of the number of
reflections that are required to direct the beam into that output.
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Figure 2-6: When Poissonian, monochromatic light is aligned into an interferometer,
the interferometer outputs can be subject to complete constructive or destructive
interference, depending on the relative phases introduced by the two arms of the
interferometer. The spacing between the regions of constructive and destructive in-
terference depends on the wavelength of the monochromatic light.

decoherence occurs.

As a result, the intensities of the outputs of an interferometer are closely related

to the Fourier transform of signal’s spectrum. For a potentially dynamic spectrum

𝑠(𝜔, 𝑡) with a constant fluorescence intensity, the intensities of the interferometer

outputs 𝐼𝐴/𝐵(𝛿, 𝑡) are given by,

𝐼𝐴/𝐵(𝛿, 𝑡) =
1

2
(1 ± 𝐹𝑇𝑐𝑜𝑠[𝑠(𝜔, 𝑡)]𝜔→𝛿) , (2.1)

where 𝛿 is the path-length difference of the interferometer and 𝐹𝑇𝑐𝑜𝑠[· · · ]𝜔→𝛿 denotes

the real part of the Fourier transform with respect to 𝜔. From this equation, we

can see that measuring the intensities of the interferometer outputs as a function of

path-length difference can give us the shape of the spectrum, but how does this work

for their intensity cross-corelation?

We will begin by determining what we would see if we measured the intensity cross-

correlation between outputs 𝐴 and 𝐵 for a constant signal with no intensity or spectral

fluctuations. Consider the Gaussian spectrum in Figure 2-7(a), characterized by

center frequency 𝜔0 and linewidth 𝜎. Its intensity interferogram is given by its Fourier
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Figure 2-7: The (a) spectrum and (b) corresponding intensity interferogram of a
Gaussian spectrum with center freqency 𝜔0 and linewidth 𝜎. The interferogram has a
carrier frequency proportional to 𝜔0 and a linewidth inversely proportional to 𝜎. (c)
The corresponding spectral correlation is a Gaussian function centered on zero with
linewidth given by

√
2𝜎.

transform (Figure 2-7(b)), which is a Gaussian lineshape with a width proportional

to 1
𝜎
and a carrier frequency proportional to 𝜔0.7

Our goal is to measure the intensity cross-correlation function between the output

channels, so what happens if we evaluate Equation 1.1 for 𝜏 = 0 at some arbitrary

path-length difference 𝛿0, which happens to correspond to a fringe maximum in the

carrier frequency of the spectrum? The result is worked out in Figure 2-8(a), and we

cannot be very pleased with it. Remember that intensity correlation functions are

constructed to identify fluctuations in a signal. Even though our intensity outputs

clearly reflect some spectral information about the signal (in their uneven intensities),

because the signal is constant, the numerator and the denominator are equal and we

measure an uninteresting Poissonian correlation function.

The solution is to introduce a controlled oscillation into the path-length differ-

ence we call a dither, which will convert the uneven output intensities into intensity

fluctuations. In Figure 2-8(b), we show what happens if we calculate the intensity

cross-correlation while we simply scan the interferometer path-length difference over

7Units can be tricky in energy-based Fourier transforms and require careful attention, so we are
being intentionally vague here instead.
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Evaluating the PCFS Cross-Correlation at δ0 
(for a Poissonian emitter with a static spectrum)
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Figure 2-8: Worksheet evaluating the PCFS cross-correlation at 𝜏 = 0 for a static,
Poissonian spectrum with and without scanning the interferogram. (a) Without scan-
ning the interferometer, there are no intensity fluctuations in the signal and the nu-
merator and the denominator of the cross-correlation function cancel. (b) When the
interferometer is scanned over several fringes, intensity fluctuations are introduced to
the two interferometer outputs proportional to the average coherence of the signal.
Now, the product of the interferometer outputs deviates from the square of the aver-
age signal and the spectral coherence is mapped into the cross-correlation function.
Note that 𝑐 represents the magnitude of the fringes in the intensity interferogram at
a given path length difference (e.g. from Figure 2-7(b)), so by measuring the cross-
correlation of the interferometer outpus as a function of path-length difference, we
are measuring the square of the envelope of the Fourier transform of the spectrum.
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an integer number of carrier frequency periods.8 If we evaluate the cross-correlation

at 𝜏 = 0, our result suddenly reflects the spectral coherence of the signal!

So, now that we can encode spectral information in our intensity cross-correlation,

we can take a closer look at what spectral information we are actually collecting. This

requires a bit of mathematical gymnastics. For the sake of argument, let’s consider

the general case where we have a spectrum 𝑠(𝜔) whose Fourier transform can be

recast as a product of a carrier frequency term 𝑒𝑖𝜔0𝛿, which conveys the average

emission wavelength, and a real and positive envelope function 𝐹𝑇 [𝑠𝑒𝑛𝑣(𝜔)], which

contains the lineshape information. The Gaussian spectrum from Figure 2-7 is a

perfect example. In the previous paragraph, we showed that the anticorrelation in

𝑔(𝜏 = 0, 𝛿) after dithering is given by one half the square of the envelope of the

spectrum’s interferogram (i.e., the quantity 1
2
𝑐2). Thus,

𝑔(𝜏 = 0, 𝛿) = 1 − 1

2
𝐹𝑇 [𝑠𝑒𝑛𝑣(𝜔)]2 (2.2)

= 1 − 1

2

(︀
𝑒𝑖𝜔0𝛿𝐹𝑇 [𝑠𝑒𝑛𝑣(𝜔)]

)︀ (︀
𝑒−𝑖𝜔0𝛿𝐹𝑇 [𝑠𝑒𝑛𝑣(𝜔)]

)︀
(2.3)

= 1 − 1

2
𝐹𝑇 [𝑠(𝜔)]𝐹𝑇 [𝑠(𝜔)]* (2.4)

= 1 − 1

2
𝐹𝑇 [𝑝(𝜁)], (2.5)

where * denotes a complex conjugate, and where in the final step, we have merged

the product of two Fourier transforms using the autocorrelation theorem of Fourier

transforms. The resulting quantity 𝑝(𝜁) is the spectral correlation or autocorrelation

of the spectrum. And, in fact, due to certain experimental details we will explore

in Chapter 3, this expression will hold for all 𝜏 much shorter than the time it takes

to scan from one fringe to the next. When the 𝜏 -dependance is reintroduced to the

equation, the spectral correlation is defined by,

𝑝(𝜁, 𝜏) =

⟨∫︁ ∞

−∞
𝑠(𝜔, 𝑡)𝑠(𝜔 + 𝜁, 𝑡 + 𝜏) d𝜔

⟩
, (2.6)

8This simple picture assumes a narrow spectrum where the envelope of the interferogram does
not vary over a small number of interference fringes.
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where ⟨· · · ⟩ is the time-average over the integration time of the experiment. This

simple demonstration shows that using PCFS, we can sketch out the spectral corre-

lation of a signal measured on timescales approaching 𝜏 = 0, presumably much faster

than the integration time of conventional single-nanocrystal spectroscopy. But the

questions remain, what is the meaning of the spectral correlation and how does it

handle the rapid spectral dynamics that obfuscate conventional measurements?

The spectral correlation represents the histogram of energy differences between

pairs of signal photons as a function of their temporal separation. This can be un-

derstood on the basis of how we compile it experimentally during PCFS. As with

all single-nanocrystal cross-correlation measurements, we compile the intensity cross-

correlation at each path-length difference by histogramming the temporal separations

between all pairs of photons we detect across the interferometer outputs. The anti-

correlation feature we analyze in PCFS, as shown by Figure 2-8, is produced by the

spectral coherence between these pairs of photons, which causes them to map to the

same output rather than opposite outputs. In this way, we are only probing the rel-

ative spectral coherence between the photon pairs, rather than the absolute spectral

coherence of the entire signal. We only care how the pairs of photons map with respect

to each other, not how they map to other photon pairs. This is how we can measure

spectral information without waiting long enough to probe the entire signal. Whereas

in Fourier transform spectroscopy, measuring the output intensities as a function of

path-length difference reveals the Fourier transform of the time-averaged spectrum,

in PCFS, measuring the cross-correlation of the output intensities as a function of

path-length difference reveals the Fourier transform of the distribution of energy sep-

arations between pairs of photons. In Figure 2-9 we show how this conceptual picture

of the spectral correlation connects to the mathematical expression in Equation 2.6.

2.5 How We Use the Spectral Correlation

The primary benefit of the spectral correlation is its temporal resolution. We can

determine the average spectral relationship between pairs of photons that are spaced
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Joint probability of detecting one photon at time t with energy ω, and
another photon at time t+τ with energy ω+ζ : 
(considering the probability density functions of photon energies (i.e. spectra) at each time)

Probability of detecting two photons at times t and t+τ, respectively,
whose energy di�erence is ζ :
(considering all possible energies of the �rst photon)

Overall probability that any two photons temporally separated by τ
are also spectrally separated by ζ :
(considering that with ergodicity, the time average samples all possible results)
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P(γt = ω)

P(γt+τ = ω+ζ)

Spectrum at time t (S(ω,t)) Spectrum at 
time t+τ (S(ω,t+τ))

Spectral Di�usion!

ζ

= P(γt = ω) × P(γt+τ = ω+ζ)

= S(ω,t) × S(ω+ζ,t+τ) 

= ∫ S(ω,t) × S(ω+ζ,t+τ) dω

= 〈 ∫ S(ω,t) × S(ω+ζ,t+τ) dω〉 ≡ p(ζ,τ)

Figure 2-9: Worksheet building the mathematical definition of the spectral correlation
in Equation 2.6 using our conceptual interpretation of the spectral correlation.

98



much closer in time than the integration time required to resolve the spectrum overall.

This property allows us to pick out the average single-nanocrystal linewidth from a

solution-phase PCFS (S-PCFS) measurement by comparing how the spectral correla-

tion evolves in concert with the FCS trace. [176, 177, 285] Single emitters in solution

are free to diffuse into and out of the focal volume during the measurement. In a

conventional spectroscopy measurement, this rapid particle exhange in the focal vol-

ume is much faster than viable integration times, resulting in the mesurement of an

ensemble spectrum. Even with arbitrarily fast spectral integration times, you would

still have to contend with the fact that there are often multiple particles in the focal

volume at once.

However, FCS demonstrates our ability to use correlation methods to identify the

fraction of a signal caused by single emitters as they enter and leave the focal volume.

By using S-PCFS to compare the spectral correlation produced by photon pairs at

long 𝜏 , when photon pairs are necessarily from different particles, to the spectral corre-

lation at short 𝜏 when FCS suggests that photon pairs may be from the same particle,

we can tease out the average spectral correlation of single particles within the ensem-

ble. This technique has been used to precisely and conveniently characterize spectral

polydispersity in nanocrystal samples and to investigate how different synthetic pro-

cedures and nanocrystal architectures affect the single-nanocrystal linewidth. It is

described in detail in J. Cui’s thesis. [286]

But more importantly for this thesis, the spectral correlation also allows us to

take a closer look at the rapid spectral dynamics of single-emitters isolated on a

substrate and their underlying intrinsic fluorescence linewidth. Consider a single

emitter undergoing rapid spectral dynamics. Again, if we tried to measure the in-

tegrated spectrum using conventional single-nanocrystal spectroscopy, these rapid

spectral dynamics would occur much faster than a viable integration time and our

spectrum would be artificially broad. Instead, using PCFS, we can choose to focus

on photon pairs that were emitted by the nanocrystal very closely together in time.

These photon pairs will be more spectrally coherent than the time-averaged spectrum

because very little spectral diffusion was allowed to occur during such a short time. In
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fact, by waiting only for photon pairs 𝜏 much less than the timescale of spectral dy-

namics, we can systematically compile the autocorrelation of the underlying intrinsic

spectrum.9

Then, once we have identified the underlying intrinsic linewidth, we can slowly

increase 𝜏 to see how the spectrum diffuses over time. As we’ll see when we do the

math in the next Chapter, the spectral correlation is given by the convolution of the

autocorrelation of the intrinsic spectrum with the probability density function of the

spectral dynamics. That is, the probability distribution of how far a spectrum is liable

to move from an arbitrary starting point in a given period of time. The probability

density function is one of the canonical observables of diffusion processes and can

give us key insight into the mechanism of spectral dynamics. Whereas distinguishing

between discrete and continuous rapid spectral diffusion mechanisms, for example, is

impossible using single-point correlation experiments and requires complicated sta-

tistical inference using spectrum-based experiments, these types of spectral diffusion

each have their own distinct qualitative footprint in the spectral correlation.

In Figure 2-10, we show modeled spectral correlation functions for three possi-

ble types of spectral dynamics. In all three cases, the single emitter’s fluorescence

spectrum is characterized by a 20 meV Lorentzian intrinsic lineshape that is subject

to millisecond timescale spectral dynamics. Nevertheless, each spectral correlation

exhibits distinct qualitative features tied to the character of the given spectral diffu-

sion process. Figure 2-10(a) shows the temporal evolution of the spectral correlation

of a spectrum diffusing according to a Wiener process (i.e., Brownian motion). The

well-known probability density function for this continuous process is simply a single

Gaussian function whose full-width at half-max (FWHM) broadens as 𝜏 0.5.

In contrast, Figure 2-10(b) shows the spectral correlation for a spectrum diffusing

according to the simple discrete model assumed by Sallen et al. [280] and Wolters et

al. [283], where the intrinsic spectrum randomly samples the time-averaged spectrum

9It is worth noting that depending on our integration time, we can even afford to wait for photon
pairs spaced orders of magnitude in time closer than are generally observed based on the average
count rate. In this work, our signal intensities are on the order of 10 kcps, or one count every 100 µs,
but in some cases, we still have the signal-to-noise to measure the spectral correlation using photon
pairs emitted a microsecond apart.
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Figure 2-10: The spectral correlation of a single-nanocrystal will be qualitatively
different if its spectral diffusion proceeds according to (a) continuous diffusion, (b) the
random sampling of a fixed distribution, or (c) discrete diffusion. Discrete diffusion
mechanisms can be identified by the existence of multiple distinct distributions of
energy shifts corresponding to zero, one, and many spectral diffusion events. (d) This
creates a unique evolution of the FWHM of the spectral correlation over time and,
specifically, introduces an inflection feature that can serve as evidence for discrete
diffusion (see arrow).
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according to Poisson statistics. The discrete nature of this model manifests itself

in the spectral correlation as a population transfer between two subpopulations of

photon pairs. At short 𝜏 , the spectral correlation is dominated by the population

of photon pairs without a diffusion event between them, which contribute a narrow

“nondiffused” distribution (i.e. the autocorrelation of the intrinsic spectrum). Then,

as 𝜏 increases, probability density is transferred to the population of photon pairs

with one or more diffusion event between them. These contribute a constant broad

“diffused” distribution given by the autocorrelation of the time-averaged spectrum.

The relative weights of these two distributions with 𝜏 is closely related to the kinetics

of the discrete spectral dynamics, and can be used to extract the time constant of the

discrete Poissonian process.

Figure 2-10(c) shows the spectral correlation for a more complicated discrete mech-

anism, where the spectrum diffuses according to a discrete Gaussian random walk

model also governed by Poisson statistics. At short 𝜏 , its spectral correlation closely

resembles that of the discrete sampling model, characterized by a population transfer

from a narrow nondiffused distribution to a broad, Gaussian diffused distribution.

However, at intermediate 𝜏 , it becomes possible for multiple diffusion events to occur

between photon arrivals. Because multiple diffusion events in this mechanism allow

the spectrum to move further from its starting point, the diffused distribution begins

to broaden and become non-Gaussian.10 And finally, as the probability of not having

a diffusion event vanishes and the probability of many diffusion events increases, the

central limit theorem causes the spectral correlation to become Gaussian again and

broaden continuously as 𝜏 0.5.11

There are two key features of this analysis that are important to keep in mind.

First, in practice, subtle changes in the shape of the spectral correlation such as the

population transfer feature of discrete mechanisms may not necessarily be as obvious

as in Fig. 1(b), especially if the diffused and non-diffused distributions have similar

linewidths or the measurement has a poor signal-to-noise ratio. Even in these cases,

10It is given by a Poissonian distribution of Gaussian functions, which is not a Gaussian function.
11Now, it is given by a Gaussian distribution of Gaussian functions, which is a Gaussian function.
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some information can be gained from analyzing the evolving FWHM of the spectral

correlation (Figure 2-10(d)). Random walk models like the Wiener and Discrete

Poisson model will feature a constant broadening of the spectral correlation over many

orders of magnitude in time, whereas discrete models like the Discrete Sampling and

Discrete Poisson models will feature characteristic inflection points in the FWHM of

the spectral correlation on the timescale of the diffusion process. The latter occurs as

the FWHM transitions from being defined by the width of the nondiffused distribution

to being defined by the width of diffused distribution.

Second, it is important to emphasize that over the long timescales accessible by

conventional methods, it is impossible to distinguish between the continuous and

discrete random walk models, and it is impossible to distinguish between the discrete

sampling model and a particularly broad intrinsic linewidth. Only by measuring

spectral dynamics on the actual timescales of the prospective discrete diffusion events

using PCFS can we clearly resolve these different spectral diffusion mechanisms.

2.6 The Mission

In this Chapter, we have discussed how the low temperature spectral dynamics of

nanocrystals may serve as a useful phenomenon for understanding the subtle physics

of nanocrystal surface dynamics. These dynamics fall into three distinct physical

categories: charging events that produced large binary shifts in the fluorescence spec-

trum, trapping events that produced infrequent discrete spectral jumps of variable

magnitude, and poorly-understood surface dynamics that produce small spectral jit-

ter. We have been able to infer that the rapid spectral jitter is probably composed

of many rapid discrete shifts on millisecond timescales, faster than the integration

time required to compile a spectrum using conventional single-molecule spectroscopy,

and we have been able to track the correlated effects of these discrete dynamics as

they form quasi-continuous subdiffusion of the spectrum over hundreds and thousands

of seconds. However, our ability to study this phenomenon in depth has been hin-

dered by the lack of suitable spectroscopic techniques for clearly resolving individual
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diffusion events.

There are two primary objectives of Part I of this thesis. First, we will use PCFS

to directly observe whether rapid spectral diffusion occurs through the hypothesized

discrete mechanism. This effort will demonstrate the practical utility of PCFS in

revealing the mechanistic details of subsecond processes in heterogeneous systems.

Second, we will combine PCFS with conventional single-molecule spectroscopy to

form a single-molecule experiment that can simultaneously measure spectral dynam-

ics across eight orders of magnitude in time ranging from microseconds to hundreds

of seconds. We will use this technique to observe the rapid spectral diffusion process

of nanocrystals across its discrete and quasicontinuous regimes, forming a unified de-

scription of this phenomenon. This work serves as a proof-of-concept for the wholesale

characterization of spectral dynamics in individual nanocrystals, and presents the ex-

perimental and theoretical tools necessary for a more exhaustive investigation of the

effects of nanocrystal architecture on rapid spectral dynamics.

The remainder of this Part is split into three Chapters. Chapter 3 provides a

detailed and rigourous derivation of the PCFS experiment as it is implemented in

our lab, giving special attention to the role of the dither in PCFS and the known

sources of systematic error in PCFS. Chapter 4 provides a quick theoretical look at

the connection between the spectral correlation measured by PCFS and the time series

of integrated spectra measured by conventional single-nanocrystal spectroscopy. And

finally, in Chapter 5, we provide the practical details of our experimental parameters

and setup, present our experimental results, and discuss the conceptual consequences

of our findings.
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Chapter 3

Theory Behind Photon-Correlation

Fourier Spectroscopy

Now that we have discussed the need for photon-correlation Fourier spectroscopy

(PCFS) and presented a conceptual overview of the technique, we will work through

the mathematical details of the experiment and discuss several finer conceptual details

important for the reliable and responsible application of PCFS. We begin with a

new derivation of the experiment that accurately captures our implementation of

the experiment. Then, we conclude with several short discussions on the choice of

dither waveform, artifacts and inherent instrument functions in PCFS, correcting

for detector dark counts, how to handle possible correlations between spectral and

intensity fluctuations, extracting information about the spectral diffusion behavior

from the spectral correlation, and understanding the connection between the spectral

autocorrelation and the intrinsic spectrum.

3.1 Derivation of Photon-Correlation Fourier Spec-

troscopy

The derivation of PCFS has developed over time to account for several changes in

the experimental procedure and the properties of the samples being measured. The

105



original derivation by Brokmann et al. [278] derives PCFS using a scanning inter-

ferometer and assumes a very narrow spectrum. This derivation was later extended

to solution-phase samples by Brokmann et al. [285] and rephrased intuitively in

L. F. Marshall’s thesis. [287] Marshall’s thesis also used the intuition gained from

the solution-phase derivation to design a correction for intensity fluctuations that

bias the intensity cross-correlation function analyzed in PCFS. More recently, Cui

[286] derived the solution-phase PCFS experiment classically considering the diffu-

sion of an underlying spectrum 𝑠(𝜔, 𝑡) rather than a stream of discrete photons with

stochastically-determined energies. This allows us to rephrase the PCFS spectral

correlation as a convolution of the autocorrelation of the underlying homogeneous

spectrum and the probability distribution function of spectral and/or physical diffu-

sion.

In this derivation, we will explicitly account for the dithering procedure used in

current PCFS implementations. Although this change significantly complicates the

derivation, it allows us to carefully analyze the theoretical requirements for the dither

waveform and to explain some of the artifacts that may affect PCFS results.

3.1.1 Notation

For the purposes of this derivation,

∙
⟨︀
· · ·
⟩︀
denotes a time average over the integration time of a correlation mea-

surement.

∙ ℱ [𝑓(𝜔)]𝑔(𝑡) denotes a Fourier transform of 𝑓(𝜔) from energy 𝜔 to interferometer
path-length difference 𝛿,1 and evaluated at path-length difference 𝑔(𝑡).

∙ ℱ [𝑓(𝜔)]*𝑔(𝑡) : the complex conjugate of ℱ [𝑓(𝜔)]𝑔(𝑡).

∙ 𝑓(𝜔) ∘ 𝑔(𝜔) denotes an energy cross-correlation (with respect to 𝜔, not time).

∙ 𝑓(𝜔) ⊗ 𝑔(𝜔) denotes an energy convolution.

The single emitter analyzed by PCFS will be defined by its :

∙ 𝑆(𝜔, 𝑡) : time-dependent spectrum.

1Interferometer path-length difference is a proxy for time via the speed of light in the inter-
ferometer. This conversion is accounted for with appropriate choice of energy/distance units (i.e.
wavenumbers and centimeters, respectively).
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∙ 𝐼(𝑡) =
∫︀
𝑆(𝜔, 𝑡) d𝜔 : time-dependent intensity.

∙ 𝑠(𝜔, 𝑡) = 𝑆(𝜔, 𝑡)/
∫︀
𝑆(𝜔, 𝑡) d𝜔 : normalized spectrum.

∙ 𝜔0(𝑡) =
∫︀
𝜔𝑠(𝜔, 𝑡) d𝜔 : average fluorescence energy.

∙ Fluorescence lineshape 𝑠(𝜔), such that : 𝑠(𝜔, 𝑡) = 𝛿(𝜔 − 𝜔0(𝑡)) ⊗ 𝑠(𝜔).

∙ 𝑃 (𝜁, 𝜏) =
⟨︀ ∫︀

𝑆(𝜔, 𝑡)𝑆(𝜔+𝜁, 𝑡+𝜏) d𝜔
⟩︀
: spectral correlation of the unnormalized

spectrum.

∙ 𝑃 (𝜁, 𝜏) = 𝑃 (𝜁,𝜏)
⟨𝐼(𝑡)𝐼(𝑡+𝜏)⟩ : normalized spectral correlation of the unnormalized spec-

trum.

∙ 𝑝(𝜁, 𝜏) =
⟨︀ ∫︀

𝑠(𝜔, 𝑡)𝑠(𝜔 + 𝜁, 𝑡 + 𝜏) d𝜔
⟩︀
: spectral correlation of the normalized

spectrum.

∙ 𝑔(𝜏) = ⟨𝐼(𝑡)𝐼(𝑡+𝜏)⟩
⟨𝐼(𝑡)⟩⟨𝐼(𝑡+𝜏)⟩ : autocorrelation of the fluorescence intensity.

And, the PCFS experiment itself will be defined by its :

∙ 𝛿0 : average path-length difference for a correlation measurement.

∙ 𝑇 : integration time of each correlation function.

∙ 𝑥(𝑡) : periodic dither form2 with period 𝑇 .

∙ 𝛿(𝑡) = 𝛿0 + 𝑥(𝑡) : time-dependent path-length difference.

∙ 𝐼𝑎/𝑏(𝑡) = 1
2
𝐼(𝑡)(1 ± ℱcos[𝑠(𝜔, 𝑡)]𝛿(𝑡)) : time-dependent interferometer output in-

tensities.

∙ 𝑔×(𝛿0, 𝜏) = ⟨𝐼𝑎(𝑡)𝐼𝑏(𝑡+𝜏)⟩
⟨𝐼𝑎(𝑡)⟩⟨𝐼𝑏(𝑡+𝜏)⟩ : intensity cross-correlation of the interferometer out-

puts.

∙ 𝑐(𝜏) = 1

𝑇

∫︀ 𝑇

0
𝑐𝑜𝑠
(︀
⟨𝜔0(𝑡)⟩(𝑥(𝑡) − 𝑥(𝑡 + 𝜏))

)︀
d𝑡 : dither contribution to cosine

transform of the spectral correlation.

∙ 𝑑(𝜏) = 1

𝑇

∫︀ 𝑇

0
𝑠𝑖𝑛
(︀
⟨𝜔0(𝑡)⟩(𝑥(𝑡) − 𝑥(𝑡 + 𝜏))

)︀
d𝑡 : dither contribution to sine trans-

form of the spectral correlation..

2A non-periodic waveform can be captured by setting 𝑇 equal to 𝑇 .
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3.1.2 Assumptions

We will rely on three key assumptions concerning the behavior of the studied single-

emitter:

1. The linewidth of the time-averaged spectrum
⟨︀
𝑆(𝜔, 𝑡)

⟩︀
is narrow com-

pared to the average fluorescence energy
⟨︀
𝜔0

⟩︀
.

This assumption is necessary to rephrase the interferogram of the average spectrum as

a broad envelope function modulated by a rapid carrier frequency given by
⟨︀
𝜔0

⟩︀
, and

to assert that the envelope magnitude does not vary over a small number of carrier

oscillations. If the envelope is slowly modulated compared to the carrier frequency,

the average intensity of the interferogram over several fringes will be rigorously zero.

This mathematical assertion will be required for several simplifications throughout

the derivation.

Nevertheless, in practice and especially in room temperature samples, the enve-

lope of the time-averaged intensity interferogram may vary slightly over a carrier

period. There are two major consequences that may stem from this result: 1) terms

proportional to the average of the intensity interferogram may not formally go to zero

(producing an artifact that is not yet well-understood), and 2) terms proportional to

the envelope will be averaged over the dither, broadening the measured interferogram.

The effect of the this second consequence is revealed in this derivation and will be

discussed in more detail later.

2. The observed spectral dynamics of the emitter are ergodic.3

There are two major reasons why ergodicity is required in the spectral dynamics of

the emitter. First, the PCFS interferogram is compiled by sequentially measuring
3For the purposes of this thesis, we use ergodicity to mean that the evolution of the system

samples the system’s phase space over the integration time of the experiment, rather than over all
time. In this way, a system is considered ergodic if many subsequent correlation measurements will
all return approximately the same result. I apologize if this usage offends the more rigorous-minded
members of the audience.
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correlation functions at a variety of interferometer path-length differences. If each of

these correlation functions do not report on the same behavior, the PCFS interfer-

ogram may be distorted and unpredictable shape artifacts may be introduced into

the spectral correlation after inverse Fourier transform. Second, non-ergodic spectral

diffusion may cause
⟨︀
𝜔0

⟩︀
to change from measurement to measurement, changing the

ideal dither amplitude over time. The latter effect is generally not significant in the

case of nanocrystal spectral dynamics because of their relatively small magnitude (a

20 meV shift about an average emission wavelength of 600 nm only changes the fringe

spacing by about 1%).

The ergodicity assumption is particularly relevant in nanocrystals at low temper-

atures, which exhibit several different types of spectral dynamics. In Figure 6-5 of L.

F. Marshall’s Thesis, [287] she demonstrates how infrequent, large spectral shifts on

the order of ∼10 meV can result in qualitative changes in the fast timescale spectral

dynamics and result in segmented, often non-sensical PCFS interferograms. To avoid

this effect, PCFS interferograms must be assembled using only emission from distinct

spectral positions with similar spectral behavior.

3. The spectral dynamics of the emitter are independent from the fluo-

rescence intensity fluctuations of the emitter.

This final assumption concerning the behavior of the studied emitter is really just

a notational and conceptual convenience that allows us to mathematically separate

integrals containing both spectral and intensity information. Later in the chapter, we

will rework the derivation without this assumption and discuss the interpretation of

the resulting observable.

We will also rely on three assumptions about the experimental conditions used to

study the emitter:
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4. The total magnitude of the dither waveform is small compared to the

envelope of the single-emitter’s average interferogram.

Assumption 1 allows us to assert that the average of the intensity interferogram over

a small number of carrier frequency cycles is zero. Here, we assert that we are using

a dither waveform that actually takes advantage of this. If this is the case, then the

dither can be taken to be sampling a sinusoid with magnitude given by the spectral

coherence at path-length difference 𝛿0.

As with Assumption 1, it may not be possible to thoroughly meet this criterion in

room temperature samples. This will introduce the same artifacts as a failure to meet

Assumption 1, and may be mitigated by dithering over as few fringes as possible.

5. For the chosen dither waveform: 1

𝑇

∫︀ 𝑇

0
cos(

⟨︀
𝜔0(𝑡)

⟩︀
𝛿(𝑡)) d𝑡 = 0.

If all of the other assumptions are satisfied, then the dither is sampling a sinusoidal in-

terferogram. This assumption simply mandates that the time average over the dither

causes all terms proportional to the interferogram to vanish. The simplest dither form

that satisfies this mathematical condition is a triangle wave with a magnitude given

by an integer number of fringes – this is the waveform that we have traditionally used

in our group. However, any dither form that satisfies the above equation should pro-

duce an accurate PCFS interferogram. In contrast to the earlier assumptions, errors

caused by not precisely choosing the correct dither magnitude can be mitigated by

dithering over as many fringes as possible.

6. The integration time of each correlation measurement 𝑇 is an integer

multiple of the dither period 𝑇 .

And finally, we require that each correlation measurement sample an integer num-

ber of dither periods to ensure that the equation given in Assumption 5 also holds for

averages over the integration time of each correlation measurement. This condition

should be easy to meet experimentally with a high degree of precision.
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3.1.3 Derivation

Consider the case where the fluorescence signal from a single emitter is sent through

an interferometer with time-varying path-length difference 𝛿(𝑡) = 𝛿0 + 𝑥(𝑡). The

intensity cross-correlation of the interferometer outputs as a function of 𝜏 and 𝛿0 is

given by,

𝑔×(𝛿0, 𝜏) =

⟨︀
𝐼𝑎(𝑡)𝐼𝑏(𝑡 + 𝜏)

⟩︀
⟨︀
𝐼𝑎(𝑡)

⟩︀⟨︀
𝐼𝑏(𝑡 + 𝜏)

⟩︀ . (3.1)

The intensities of the two outputs of the interferometer are given by the total intensity

of the emitter and the Fourier transform of the spectrum at the given time and path-

length difference according to the well-known interferometry result,

𝐼𝑎/𝑏(𝑡) =
1

2
𝐼(𝑡)(1 ±ℱcos[𝑠(𝜔, 𝑡)]𝛿(𝑡)). (3.2)

Inserting Equation 3.2 into Equation 3.1 yields,

𝑔×(𝛿0, 𝜏) =

⟨︀
𝐼(𝑡)𝐼(𝑡 + 𝜏)

(︀
1 + ℱcos[𝑠(𝜔, 𝑡)]𝛿(𝑡)

)︀ (︀
1 −ℱcos[𝑠(𝜔, 𝑡 + 𝜏)]𝛿(𝑡+𝜏)

)︀ ⟩︀
⟨︀
𝐼(𝑡)

(︀
1 + ℱcos[𝑠(𝜔, 𝑡)]𝛿(𝑡)

)︀ ⟩︀⟨︀
𝐼(𝑡 + 𝜏)

(︀
1 −ℱcos[𝑠(𝜔, 𝑡 + 𝜏)]𝛿(𝑡+𝜏)

)︀ ⟩︀ .

(3.3)

The denominator can be immediately simplified by noting that the time-dependence

of the path-length difference, given by the dither form 𝑥(𝑡) has been chosen to av-

erage equally over the interference fringes of the time-averaged spectrum. Thus, the

denominator is given by,

=
⟨︀
𝐼(𝑡)

(︀
1 + ℱcos[𝑠(𝜔, 𝑡)]𝛿(𝑡)

)︀ ⟩︀⟨︀
𝐼(𝑡 + 𝜏)

(︀
1 −ℱcos[𝑠(𝜔, 𝑡 + 𝜏)]𝛿(𝑡+𝜏)

)︀ ⟩︀
(3.4)

=
⟨︀
𝐼(𝑡)

⟩︀⟨︀
𝐼(𝑡 + 𝜏)

⟩︀
. (3.5)

Similarly, the numerator can be expanded by taking advantage of the fact that

averages are distributive, yielding,
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=
⟨︀
𝐼(𝑡)𝐼(𝑡 + 𝜏)

⟩︀
+
⟨︀
𝐼(𝑡)ℱcos[𝑠(𝜔, 𝑡)]𝛿(𝑡)

⟩︀
−
⟨︀
𝐼(𝑡 + 𝜏)ℱcos[𝑠(𝜔, 𝑡 + 𝜏)]𝛿(𝑡+𝜏)

⟩︀

−
⟨︀
𝐼(𝑡)𝐼(𝑡 + 𝜏)ℱcos[𝑠(𝜔, 𝑡)]𝛿(𝑡)ℱcos[𝑠(𝜔, 𝑡 + 𝜏)]𝛿(𝑡+𝜏)

⟩︀
. (3.6)

This expanded numerator contains two cross terms that are also first order in the

Fourier transform of the spectrum and are averaged to zero by the dither form. More-

over, if the spectral and intensity fluctuations in the emitter are uncorrelated, we can

separate the averages of the spectral and intensity terms by noting that the average of

the product of two uncorrelated variables is the product of their averages. Applying

these two simplifications and reassembling the complete cross-correlation,

𝑔×(𝛿0, 𝜏) =

⟨︀
𝐼(𝑡)𝐼(𝑡 + 𝜏)

⟩︀
−
⟨︀
𝐼(𝑡)𝐼(𝑡 + 𝜏)ℱcos[𝑠(𝜔, 𝑡)]𝛿(𝑡)ℱcos[𝑠(𝜔, 𝑡 + 𝜏)]𝛿(𝑡+𝜏)

⟩︀
⟨︀
𝐼(𝑡)

⟩︀⟨︀
𝐼(𝑡 + 𝜏)

⟩︀

(3.7)

=

⟨︀
𝐼(𝑡)𝐼(𝑡 + 𝜏)

⟩︀
⟨︀
𝐼(𝑡)

⟩︀⟨︀
𝐼(𝑡 + 𝜏)

⟩︀
(︁

1 −
⟨︀
ℱcos[𝑠(𝜔, 𝑡+)]𝛿(𝑡)ℱcos[𝑠(𝜔, 𝑡 + 𝜏)]𝛿(𝑡+𝜏)

⟩︀)︁
(3.8)

= 𝑔(𝜏)
(︀
1 −

⟨︀
ℱcos[𝑠(𝜔, 𝑡)]𝛿(𝑡)ℱcos[𝑠(𝜔, 𝑡 + 𝜏)]𝛿(𝑡+𝜏)

⟩︀)︀
(3.9)

Equation 3.9 emphasizes that the cross-correlation of the interferometer outputs

measured by PCFS reflects not only the spectral information we desire (contained

in the product of the cosine transforms), but also information about the intensity

fluctuations of the emitter. Without knowing the intensity dynamics of the emit-

ter, it will not be possible to determine whether changes in the cross-correlation are

caused by changes in the spectral coherence or whether they are caused by intensity

fluctuations like fluorescence intermittancy or microscope drift. Luckily, intensity

fluctuations have a simple effect on the cross-correlation, which can be removed as

long as we know the intensity autocorrelation of the overall fluorescence signal. The

total intensity autocorrelation of the signal can be simultaneously monitored along-
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side the cross-correlation by also measuring the autocorrelation of the sum signal of

the two outputs 𝑔𝑎+𝑏/𝑎+𝑏(𝜏). That is, as long as the detectors are well-balanced,

𝐼𝑎+𝑏(𝑡) =
1

2
𝐼(𝑡)(1 + ℱcos[𝑠(𝜔, 𝑡)]𝛿(𝑡)) +

1

2
𝐼(𝑡)(1 −ℱcos[𝑠(𝜔, 𝑡)]𝛿(𝑡)) (3.10)

= 𝐼(𝑡), (3.11)

And,

𝑔𝑎+𝑏/𝑎+𝑏(𝜏) = 𝑔(𝜏). (3.12)

To summarize, the spectral contribution to the cross-correlation of the interfer-

ometer outputs can be isolated from intensity fluctuations by calculating the ratio of

the intensity cross-correlation to the the autocorrelation of the sum signal of the two

outputs at each path-length difference 𝛿0:

1 − 𝑔×(𝛿0, 𝜏)

𝑔(𝜏)
=
⟨︀
ℱcos[𝑠(𝜔, 𝑡)]𝛿(𝑡)ℱcos[𝑠(𝜔, 𝑡 + 𝜏)]𝛿(𝑡+𝜏)

⟩︀
(3.13)

We now turn to evaluating the significance of the spectral contribution to the

cross-correlation, given by the right side of Equation 3.13. It would be tempting

to immediately try to apply the convolution theorem to combine the product of the

two Fourier transforms, but there are two major problems with this approach. First

of all, strictly, they are cosine transforms, which will require a more complicated

version of the convolution theorem. But second, and more importantly, because the

dither changes the path-length difference of the interferometer between time 𝑡 and

time 𝑡 + 𝜏 , these cosine transforms are actually being evaluated at different points

on the interferogram and cannot be simply combined. Our goal is to remove the

time-dependence from the evaluation of the cosine tranform and to convert the cosine

transforms to Fourier transforms, so that we can combine the Fourier transforms

according to the convolution (or cross-correlation) theorem.
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To do this, we need to dig inside the cosine transforms themselves. When we take

a look at the integral representation of the first cosine transform, it becomes clear

that we can move the dither into the integrand of the cosine transform using the angle

sum trigonometric identity,

cos(𝑎 + 𝑏) = cos(𝑎) cos(𝑏) − sin(𝑎) sin(𝑏). (3.14)

Doing so yields,

ℱcos[𝑠(𝜔, 𝑡)]𝛿(𝑡) =

∫︁ ∞

−∞
𝑠(𝜔, 𝑡) cos(𝜔𝛿(𝑡)) d𝜔 (3.15)

=

∫︁ ∞

−∞
𝑠(𝜔, 𝑡) cos(𝜔(𝛿0 + 𝑥(𝑡))) d𝜔 (3.16)

=

∫︁ ∞

−∞
𝑠(𝜔, 𝑡)

(︀
cos(𝜔𝛿0) cos(𝜔𝑥(𝑡)) − sin(𝜔𝛿0) sin(𝜔𝑥(𝑡))

)︀
d𝜔 (3.17)

=

∫︁ ∞

−∞
[𝑠(𝜔, 𝑡) cos(𝜔𝑥(𝑡))] cos(𝜔𝛿0) d𝜔

−
∫︁ ∞

−∞
[𝑠(𝜔, 𝑡) sin(𝜔𝑥(𝑡))] sin(𝜔𝛿0) d𝜔 (3.18)

=ℱcos[𝑠(𝜔, 𝑡) cos(𝜔𝑥(𝑡))]𝛿0 −ℱsin[𝑠(𝜔, 𝑡) sin(𝜔𝑥(𝑡))]𝛿0 . (3.19)

Similar treatment of the second cosine tranform yields:

ℱcos[𝑠(𝜔, 𝑡 + 𝜏)]𝛿(𝑡+𝜏) =ℱcos[𝑠(𝜔, 𝑡 + 𝜏) cos(𝜔𝑥(𝑡 + 𝜏))]𝛿0

−ℱsin[𝑠(𝜔, 𝑡 + 𝜏) sin(𝜔𝑥(𝑡 + 𝜏))]𝛿0 . (3.20)

This “simplification” has turned one term into four terms, but now the sine and

cosine transforms in all four terms are evaluated at the same static path-length differ-

ence 𝛿0. Next, we rephrase all of the cosine and sine transforms as Fourier transforms

by noting that the cosine transform is the real part of the Fourier transform and the

sine transform in the imaginary part. This will turn four terms into sixteen terms, so
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a bit of shorthand is required. We will drop the evaluation of the Fourier transforms

at the common value 𝛿0, set the integrands of the cosine terms to 𝐴 and 𝐵, respec-

tively, and set the integrands of the sine terms to 𝐶/𝐷, respectively. The left side of

Equation 3.13 becomes,

=(ℱcos [𝐴] −ℱsin [𝐵])(ℱcos [𝐶] −ℱsin [𝐷]) (3.21)

=

(︃
ℱ [𝐴] + ℱ [𝐴]*

2
− ℱ [𝐵] −ℱ [𝐵]*

2𝑖

)︃(︃
ℱ [𝐶] + ℱ [𝐶]*

2
− ℱ [𝐷] −ℱ [𝐷]*

2𝑖

)︃
.

(3.22)

This can be expanded and regrouped to form terms that represent the real and imag-

inary parts of the Fourier products:

=
(ℱ [𝐴]ℱ [𝐶]) + (ℱ [𝐴]ℱ [𝐶])*

4
+

(ℱ [𝐴]ℱ [𝐶]*) + (ℱ [𝐴]ℱ [𝐶]*)*
4

− (ℱ [𝐵]ℱ [𝐷]) + (ℱ [𝐵]ℱ [𝐷])*
4

+
(ℱ [𝐵]ℱ [𝐷]*) + (ℱ [𝐵]ℱ [𝐷]*)*

4

− (ℱ [𝐴]ℱ [𝐷]) − (ℱ [𝐴]ℱ [𝐷])*
4𝑖

+
(ℱ [𝐴]ℱ [𝐷]*) − (ℱ [𝐴]ℱ [𝐷]*)*

4𝑖

− (ℱ [𝐵]ℱ [𝐶]) − (ℱ [𝐵]ℱ [𝐶])*
4𝑖

− (ℱ [𝐵]ℱ [𝐶]*) − (ℱ [𝐵]ℱ [𝐶]*)*
4𝑖

. (3.23)

Now that all of the terms have been recast as products of Fourier transforms eval-

uated at 𝛿0, we can combine the product terms using either the convolution theorem

(for the left terms) or the cross-correlation theorem (for the right terms):

=
1

2

(︁
ℱcos [𝐴⊗ 𝐶] + ℱcos [𝐴 ∘ 𝐶] −ℱcos [𝐵 ⊗𝐷] + ℱcos [𝐵 ∘𝐷]

−ℱsin [𝐴⊗𝐷] + ℱsin [𝐴 ∘𝐷] −ℱsin [𝐵 ⊗ 𝐶] −ℱsin [𝐵 ∘ 𝐶]
)︁
. (3.24)

Before proceding with the derivation, it is important to a step back from our

115



shorthand and note that the use of the convolution and cross-correlation theorems

has introduced an additional variable into our mathematics. The cross correlation is

defined as,

𝐴(𝜔) ⊗ 𝐶(𝜔)[𝜁] =

∫︁ ∞

−∞
𝐴*(𝜔)𝐶(𝜔 + 𝜁) d𝜔 (3.25)

Before combining the products of the Fourier transforms, we had only one energy

variable 𝜔, which was the independent variable of both terms in the product, e.g.

ℱ [𝐴(𝜔)]ℱ [𝐵(𝜔)]. Now, by introducing the cross-correlation, we have two energy

variables: an absolute energy variable 𝜔, which is integrated over all space inside the

operation and does not persist after evaluating the cross-correlation, and a relative

energy variable 𝜁, which is the independent variable of the cross-correlation. As an

energy variable, 𝜁 is treated in the same fashion as 𝜔 and is the independent energy

variable in any Fourier transform of a energy cross-correlation or convolution.

Equation 3.24 can be condensed in three steps. First, we can combine pairs

of these terms by reversing the angle sum trigonometric identity used to produce

Equations 3.19 and 3.20. For example, the first and third terms can be combined via,

𝐴⊗ 𝐶 −𝐵 ⊗𝐷 = (𝑠(𝜔, 𝑡) cos(𝜔𝑥(𝑡))) ⊗ (𝑠(𝜔, 𝑡 + 𝜏) cos(𝜔𝑥(𝑡 + 𝜏)))

− (𝑠(𝜔, 𝑡) sin(𝜔𝑥(𝑡))) ⊗ (𝑠(𝜔, 𝑡 + 𝜏) sin(𝜔𝑥(𝑡 + 𝜏))) (3.26)

=

∫︁ ∞

−∞
𝑠(𝜔, 𝑡)𝑠(𝜁 − 𝜔, 𝑡 + 𝜏) cos(𝜔𝑥(𝑡)) cos ((𝜁 − 𝜔)𝑥(𝑡 + 𝜏)) d𝜔

−
∫︁ ∞

−∞
𝑠(𝜔, 𝑡)𝑠(𝜁 − 𝜔, 𝑡 + 𝜏) sin(𝜔𝑥(𝑡)) (3.27)

𝑠𝑖𝑛 ((𝜁 − 𝜔)𝑥(𝑡 + 𝜏)) d𝜔 (3.28)

=

∫︁ ∞

−∞
𝑠(𝜔, 𝑡)𝑠(𝜁 − 𝜔, 𝑡 + 𝜏) cos

(︁
𝜔𝑥(𝑡) + (𝜁 − 𝜔)𝑥(𝑡 + 𝜏)

)︁
d𝜔.

(3.29)

After combining the other three pairs of terms in a similar fashion, Equation 3.24
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becomes,

=
1

2

(︁
ℱcos

[︂∫︁ ∞

−∞
𝑠(𝜔, 𝑡)𝑠(𝜁 − 𝜔, 𝑡 + 𝜏) cos(𝜔𝑥(𝑡) + (𝜁 − 𝜔)𝑥(𝑡 + 𝜏)) d𝜔

]︂

+ ℱcos

[︂∫︁ ∞

−∞
𝑠(𝜔, 𝑡)𝑠(𝜔 + 𝜁, 𝑡 + 𝜏) cos(𝜔𝑥(𝑡) − (𝜔 + 𝜁)𝑥(𝑡 + 𝜏)) d𝜔

]︂

−ℱsin

[︂∫︁ ∞

−∞
𝑠(𝜔, 𝑡)𝑠(𝜁 − 𝜔, 𝑡 + 𝜏) sin(𝜔𝑥(𝑡) + (𝜁 − 𝜔)𝑥(𝑡 + 𝜏)) d𝜔

]︂

+ ℱsin

[︂∫︁ ∞

−∞
𝑠(𝜔, 𝑡)𝑠(𝜔 + 𝜁, 𝑡 + 𝜏) sin(𝜔𝑥(𝑡) − (𝜔 + 𝜁)𝑥(𝑡 + 𝜏)) d𝜔

]︂)︁
. (3.30)

Second, we can distribute the time-average from Equation 3.13 and simplify each

integral with respect to 𝜔. Because the spectral fluctuations are independent from

the dither, we can decouple the time averages of the spectral and dither contributions

to the integrand, yielding,

=
1

2

(︁
ℱcos

[︂∫︁ ∞

−∞

⟨︀
𝑠(𝜔, 𝑡)𝑠(𝜁 − 𝜔, 𝑡 + 𝜏)

⟩︀⟨︀
cos(𝜔𝑥(𝑡) + (𝜁 − 𝜔)𝑥(𝑡 + 𝜏))

⟩︀
d𝜔

]︂

+ ℱcos

[︂∫︁ ∞

−∞

⟨︀
𝑠(𝜔, 𝑡)𝑠(𝜔 + 𝜁, 𝑡 + 𝜏)

⟩︀⟨︀
cos(𝜔𝑥(𝑡) − (𝜔 + 𝜁)𝑥(𝑡 + 𝜏))

⟩︀
d𝜔

]︂

−ℱsin

[︂∫︁ ∞

−∞

⟨︀
𝑠(𝜔, 𝑡)𝑠(𝜁 − 𝜔, 𝑡 + 𝜏)

⟩︀⟨︀
sin(𝜔𝑥(𝑡) + (𝜁 − 𝜔)𝑥(𝑡 + 𝜏))

⟩︀
d𝜔

]︂

+ ℱsin

[︂∫︁ ∞

−∞

⟨︀
𝑠(𝜔, 𝑡)𝑠(𝜔 + 𝜁, 𝑡 + 𝜏)

⟩︀⟨︀
sin(𝜔𝑥(𝑡) − (𝜔 + 𝜁)𝑥(𝑡 + 𝜏))

⟩︀
d𝜔

]︂)︁
. (3.31)

Then, because the time-averaged spectrum of the emitter is narrow (that is, its inter-

ferogram is broad compared to the dither magnitude), the spectral time-average will

only be non-zero in a narrow region of 𝜔. This selects out a very narrow region of

the dither component, where 𝜔 ≈
⟨︀
𝜔0(𝑡)

⟩︀
, and eliminates everything else.4 We can

therefore substitute
⟨︀
𝜔0(𝑡)

⟩︀
for 𝜔 in the dither component and pull it outside of the

the convolution/correlation integral. For example, the dither component of the the

4In essence, we are saying that from the perspective of the dither, the time-averaged spectrum is
approximated by a Dirac 𝛿-function. This is consistent with the idea that the interferogram can be
approximated by a cosine over the travel of the dither.
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first term becomes,

cos(𝜔𝑥(𝑡) + (𝜁 − 𝜔)𝑥(𝑡 + 𝜏)) ≈ cos
(︀⟨︀
𝜔0(𝑡)

⟩︀
𝑥(𝑡) + (𝜁 −

⟨︀
𝜔0(𝑡)

⟩︀
)𝑥(𝑡 + 𝜏)

)︀
(3.32)

≈ cos
(︀
𝜁𝑥(𝑡 + 𝜏) +

⟨︀
𝜔0(𝑡)

⟩︀
(𝑥(𝑡) − 𝑥(𝑡 + 𝜏))

)︀
. (3.33)

Assembling the full expression yields,

=
1

2
ℱcos

[︂⟨∫︁ ∞

−∞
𝑠(𝜔, 𝑡)𝑠(𝜁 − 𝜔, 𝑡 + 𝜏) d𝜔

⟩⟨︀
cos(𝜁𝑥(𝑡 + 𝜏) +

⟨︀
𝜔0(𝑡)

⟩︀
(𝑥(𝑡) − 𝑥(𝑡 + 𝜏)))

⟩︀]︂

+
1

2
ℱcos

[︂⟨∫︁ ∞

−∞
𝑠(𝜔, 𝑡)𝑠(𝜔 + 𝜁, 𝑡 + 𝜏) d𝜔

⟩⟨︀
cos(𝜁𝑥(𝑡 + 𝜏) −

⟨︀
𝜔0(𝑡)

⟩︀
(𝑥(𝑡) − 𝑥(𝑡 + 𝜏)))

⟩︀]︂

− 1

2
ℱsin

[︂⟨∫︁ ∞

−∞
𝑠(𝜔, 𝑡)𝑠(𝜁 − 𝜔, 𝑡 + 𝜏) d𝜔

⟩⟨︀
sin(𝜁𝑥(𝑡 + 𝜏) +

⟨︀
𝜔0(𝑡)

⟩︀
(𝑥(𝑡) − 𝑥(𝑡 + 𝜏)))

⟩︀]︂

− 1

2
ℱsin

[︂⟨∫︁ ∞

−∞
𝑠(𝜔, 𝑡)𝑠(𝜔 + 𝜁, 𝑡 + 𝜏) d𝜔

⟩⟨︀
sin(𝜁𝑥(𝑡 + 𝜏) −

⟨︀
𝜔0(𝑡)

⟩︀
(𝑥(𝑡) − 𝑥(𝑡 + 𝜏)))

⟩︀]︂

(3.34)

Third, we take a closer look at the spectral integrals themselves. The second and

fourth terms are the spectral correlation term 𝑝(𝜁, 𝜏) we have been looking for. The

first and third terms are slightly different beasts that we will call spectral convolutions,

𝑞(𝜁, 𝜏). Not only do the spectral convolutions and spectral correlations generally

have different lineshapes, but they also have different center 𝜁. Whereas the spectral

correlation is centered on zero, the spectral convolution will be centered on
⟨︀
2𝜔0(𝑡)

⟩︀
.

This different center-frequency will cause them to interact differently with the dither.

To see this clearly, we can shift the time-dependence back into the evaluation

space of the Fourier transform. The difference of the first and third terms can be

expanded using the sum angle formula:
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=ℱcos

[︀
𝑞(𝜁, 𝜏)

⟨︀
cos(𝜁𝑥(𝑡 + 𝜏) +

⟨︀
𝜔0(𝑡)

⟩︀
(𝑥(𝑡) − 𝑥(𝑡 + 𝜏)))

⟩︀]︀

−ℱsin

[︀
𝑞(𝜁, 𝜏)

⟨︀
sin(𝜁𝑥(𝑡 + 𝜏) +

⟨︀
𝜔0(𝑡)

⟩︀
(𝑥(𝑡) − 𝑥(𝑡 + 𝜏)))

⟩︀]︀
(3.35)

=
⟨︀
ℱcos

[︀
𝑞(𝜁, 𝜏) cos(𝜁𝑥(𝑡 + 𝜏)) cos(

⟨︀
𝜔0(𝑡)

⟩︀
(𝑥(𝑡) − 𝑥(𝑡 + 𝜏)))

]︀ ⟩︀

−
⟨︀
ℱcos

[︀
𝑞(𝜁, 𝜏) sin(𝜁𝑥(𝑡 + 𝜏)) sin(

⟨︀
𝜔0(𝑡)

⟩︀
(𝑥(𝑡) − 𝑥(𝑡 + 𝜏)))

]︀ ⟩︀

−
⟨︀
ℱsin

[︀
𝑞(𝜁, 𝜏) sin(𝜁𝑥(𝑡 + 𝜏)) cos(

⟨︀
𝜔0(𝑡)

⟩︀
(𝑥(𝑡) − 𝑥(𝑡 + 𝜏)))

]︀ ⟩︀

−
⟨︀
ℱsin

[︀
𝑞(𝜁, 𝜏) cos(𝜁𝑥(𝑡 + 𝜏)) sin(

⟨︀
𝜔0(𝑡)

⟩︀
(𝑥(𝑡) − 𝑥(𝑡 + 𝜏)))

]︀ ⟩︀
,

(3.36)

and because the second trigonometric factor of each term is now independent of 𝜁, it

can be pulled out of the Fourier transform, yielding,

=
⟨

cos(
⟨︀
𝜔0(𝑡)

⟩︀
(𝑥(𝑡) − 𝑥(𝑡 + 𝜏)))

×
∫︁ ∞

−∞
𝑞(𝜁, 𝜏)

(︁
cos(𝜁𝑥(𝑡 + 𝜏) cos(𝜁𝛿0) − sin(𝜁𝑥(𝑡 + 𝜏)) sin(𝜁𝛿0)

)︁
d𝜁
⟩

−
⟨

sin(
⟨︀
𝜔0(𝑡)

⟩︀
(𝑥(𝑡) − 𝑥(𝑡 + 𝜏)))

×
∫︁ ∞

−∞
𝑞(𝜁, 𝜏)

(︁
sin(𝜁𝑥(𝑡 + 𝜏) cos(𝜁𝛿0) + cos(𝜁𝑥(𝑡 + 𝜏)) sin(𝜁𝛿0)

)︁
d𝜁
⟩
. (3.37)

Finally, contracting the dither contribution to the integrand using the sum angle

formula reforms the Fourier transforms with a time-dependent evaluation,

=
⟨

cos(
⟨︀
𝜔0(𝑡)

⟩︀
(𝑥(𝑡) − 𝑥(𝑡 + 𝜏)))

∫︁ ∞

−∞
𝑞(𝜁, 𝜏) cos

(︁
𝜁(𝛿0 + 𝑥(𝑡 + 𝜏))

)︁
d𝜁
⟩

−
⟨

sin(
⟨︀
𝜔0(𝑡)

⟩︀
(𝑥(𝑡) − 𝑥(𝑡 + 𝜏)))

∫︁ ∞

−∞
𝑞(𝜁, 𝜏) sin

(︁
𝜁(𝛿0 + 𝑥(𝑡 + 𝜏))

)︁
d𝜁
⟩

(3.38)

=
⟨

cos(
⟨︀
𝜔0(𝑡)

⟩︀
(𝑥(𝑡) − 𝑥(𝑡 + 𝜏)))ℱcos[𝑞(𝜁, 𝜏)]𝛿0+𝑥(𝑡+𝜏)

⟩

−
⟨

sin(
⟨︀
𝜔0(𝑡)

⟩︀
(𝑥(𝑡) − 𝑥(𝑡 + 𝜏)))ℱsin[𝑞(𝜁, 𝜏)]𝛿0+𝑥(𝑡+𝜏)

⟩
. (3.39)
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Having removed the dither contribution from the integrand of the Fourier transform,

we can use the properties of the emitter to remove the time-dependence from the

Fourier transform. Let the spectral convolution be given by the convolution of a

𝛿-function carrying its average value and a lineshape term 𝑞(𝜁, 𝜏). Once again, we

can assert that the Fourier transform of the spectral component’s lineshape is broad

compared to the dither form to segregate the effect of the dither from the spectral

quantity:5

=
⟨

cos(
⟨︀
𝜔0(𝑡)

⟩︀
(𝑥(𝑡) − 𝑥(𝑡 + 𝜏)))ℱcos[𝑞(𝜁, 𝜏) ⊗ 𝛿(𝜁 −

⟨︀
2𝜔0(𝑡)

⟩︀
)]𝛿0+𝑥(𝑡+𝜏)

⟩

−
⟨

sin(
⟨︀
𝜔0(𝑡)

⟩︀
(𝑥(𝑡) − 𝑥(𝑡 + 𝜏)))ℱsin[𝑞(𝜁, 𝜏) ⊗ 𝛿(𝜁 −

⟨︀
2𝜔0(𝑡)

⟩︀
)]𝛿0+𝑥(𝑡+𝜏)

⟩
(3.40)

=
⟨

cos(
⟨︀
𝜔0(𝑡)

⟩︀
(𝑥(𝑡) − 𝑥(𝑡 + 𝜏))) cos(

⟨︀
2𝜔0(𝑡)

⟩︀
(𝛿0 + 𝑥(𝑡 + 𝜏)))

⟩⟨
ℱcos[𝑞(𝜁, 𝜏)]𝛿0+𝑥(𝑡+𝜏)

⟩

−
⟨

sin(
⟨︀
𝜔0(𝑡)

⟩︀
(𝑥(𝑡) − 𝑥(𝑡 + 𝜏))) sin(

⟨︀
2𝜔0(𝑡)

⟩︀
(𝛿0 + 𝑥(𝑡 + 𝜏)))

⟩⟨
ℱsin[𝑞(𝜁, 𝜏)]𝛿0+𝑥(𝑡+𝜏)

⟩
.

(3.41)

Identical treatment of the correlation terms yields the same result, but with a minor

sign change and without the 𝛿-function shift, i.e.,

=
⟨

cos(
⟨︀
𝜔0(𝑡)

⟩︀
(𝑥(𝑡) − 𝑥(𝑡 + 𝜏)))

⟩⟨
ℱcos[𝑝(𝜁, 𝜏)]𝛿0+𝑥(𝑡+𝜏)

⟩

+
⟨

sin(
⟨︀
𝜔0(𝑡)

⟩︀
(𝑥(𝑡) − 𝑥(𝑡 + 𝜏)))

⟩⟨
ℱsin[𝑝(𝜁, 𝜏)]𝛿0+𝑥(𝑡+𝜏)

⟩
. (3.42)

Ultimately, we would prefer to focus on the spectral correlation for two reasons. First,

it is not modulated by the additional high-frequency (co)sine term, which we suspect

will either vanish or behave erratically if the dither is not tightly controlled. And

second, unlike the spectral convolution, it will generally be entirely symmetric and

5If this were strictly true, the Fourier transform of 𝑞(𝜁, 𝜏) or 𝑝(𝜁, 𝜏) would be explicitly time-
independent over its evaluation at 𝛿0 + 𝑥(𝑡 + 𝜏). Here, we allow for subtle time-dependence by
splitting the time averages, and assuming that higher-order effects due to coupling between the time
averages are negligible.

120



therefore captured entirely by the cosine transform term.6

Therefore, if we want to measure only the spectral correlation terms, we must make

sure that the convolution terms rigorously average to zero. Unfortunately, whether

the addition of the carrier frequency in the spectral convolution necessarily causes it

to vanish over the course of the experiment is not obvious to me. Taking a closer

look at the dither average from Equation 3.41, where we will rewrite
⟨︀
𝜔0(𝑡)

⟩︀
as 𝜔0

for convenience and drop the arbitrary phase shift term 𝛿0,

=
⟨

cos(𝜔0(𝑥(𝑡) − 𝑥(𝑡 + 𝜏))) cos(2𝜔0𝑥(𝑡 + 𝜏))
⟩

(3.43)

It is obvious from Assumption 5, that the second term will average to zero over

the course of a dither period, but it is not obvious without knowledge of the exact

dither form whether there could be interactions between the first and second term

that could produce an overall non-zero average. As such, we will simply institute a

seventh assumption to cover our bases, namely,

7. 1

𝑇

∫︀ 𝑇

0
cos(

⟨︀
𝜔0(𝑡)

⟩︀
(𝑥(𝑡) − 𝑥(𝑡 + 𝜏))) cos(

⟨︀
2𝜔0(𝑡)

⟩︀
(𝛿0 + 𝑥(𝑡 + 𝜏))) d𝑡 = 0, and

1

𝑇

∫︀ 𝑇

0
sin(

⟨︀
𝜔0(𝑡)

⟩︀
(𝑥(𝑡) − 𝑥(𝑡 + 𝜏))) sin(

⟨︀
2𝜔0(𝑡)

⟩︀
(𝛿0 + 𝑥(𝑡 + 𝜏))) d𝑡 = 0.

This assumption will probably follow from the earlier ones with reasonable choice of

dither form, but it never hurts to double-check. With this restriction, the convolution

terms strictly vanish, and we can reassemble the entire Equation 3.13 to get:

1 − 𝑔×(𝛿0, 𝜏)

𝑔(𝜏)
=

1

2
𝑐(𝜏)

⟨
ℱcos[𝑝(𝜁, 𝜏)]𝛿0+𝑥(𝑡+𝜏)

⟩
− 1

2
𝑑(𝜏)

⟨
ℱsin[𝑝(𝜁, 𝜏)]𝛿0+𝑥(𝑡+𝜏)

⟩
, (3.44)

6The spectral autocorrelation of the intrinsic spectrum will be rigorously symmetric, the only
question is whether the probability distribution function of the spectral dynamics is symmetric.
Most simple models feature symmetric probability distribution functions, but we will discuss later
how we could deal with asymmetry.
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where 𝑐(𝜏) is defined as the dither contribution to the cosine term,

𝑐(𝜏) =
1

𝑇

∫︁ 𝑇

0

cos
(︀
⟨𝜔0(𝑡)⟩(𝑥(𝑡) − 𝑥(𝑡 + 𝜏))

)︀
d𝑡, (3.45)

and where 𝑑(𝜏) is defined as the dither contribution to the sine term,

𝑑(𝜏) =
1

𝑇

∫︁ 𝑇

0

𝑠𝑖𝑛
(︀
⟨𝜔0(𝑡)⟩(𝑥(𝑡) − 𝑥(𝑡 + 𝜏))

)︀
d𝑡. (3.46)

For the sake of general cleanliness, if we consider a time-averaged spectrum whose

interferogram is much broader than the dither magnitude, the time-averages on the

spectral correlation vanish, yielding,

1 − 𝑔×(𝛿0, 𝜏)

𝑔(𝜏)
=

1

2
𝑐(𝜏)ℱcos[𝑝(𝜁, 𝜏)]𝛿0 −

1

2
𝑑(𝜏)ℱsin[𝑝(𝜁, 𝜏)]𝛿0 , (3.47)

This final expression closely resembles the results of previous derivations, but still

feature a couple notable differences due to our general treatment of the dither form.

In the next sections, we will highlight several conceptual points that have been raised

over the course of this derivation, and discuss their consequences for the practical

application of PCFS.

3.2 Chosing a Dither Waveform

One of the more notable features of this result is that it predicts the dither con-

tribution to the measured cross-correlation function. This is important because the

spectral-dependence of the cross-correlation is scaled by the total dither contrast; if

𝑐(𝜏) or 𝑑(𝜏) is zero, the corresponding transform of the spectral correlation will not

even be represented in the cross-correlation. We begin our discussion of the effect of

the dither on PCFS by evaluating 𝑐(𝜏) and 𝑑(𝜏) for three possible dither forms.
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3.2.1 Several Dither Examples

Scanning Dither. The first implementations of PCFS did not use a dither wave-

form at all. [273, 279] Instead, they took correlation measurements while continuously

scanning the interferometer. As we will see in the next section, a scanning procedure

can have a negative impact on the resolution of the experiment by introducing an

unneccessary interdependence between integration time, instrument function, and

resolution. Nevertheless, scanning is a very convenient way to introduce a reliable

and reproducible modulation into the interferometer path-length difference. Here, we

capture the scanning result by considering a periodic linear increase in the path-length

difference with period given by the integration time of the experiment (i.e. 𝑇 = 𝑇 ),

such that over the integration time, the path-length difference is given by,

𝑥(𝑡) = 𝑣0𝑡. (3.48)

Inserting this expression into Equation 3.45 yields,

𝑐(𝜏) =
1

𝑇

∫︁ 𝑇

0

cos(
⟨︀
𝜔0(𝑡)

⟩︀
(𝑥(𝑡) − 𝑥(𝑡 + 𝜏))) d𝑡 (3.49)

=
1

𝑇

∫︁ 𝑇

0

cos(
⟨︀
𝜔0(𝑡)

⟩︀
(𝑣0𝑡− 𝑣0(𝑡 + 𝜏))) d𝑡 (3.50)

=
1

𝑇

∫︁ 𝑇

0

cos(
⟨︀
− 𝜔0(𝑡)

⟩︀
𝑣0𝜏) d𝑡 = cos(

⟨︀
𝜔0(𝑡)

⟩︀
𝑣0𝜏), (3.51)

and inserting it into Equation 3.46 yields,

𝑑(𝜏) =
1

𝑇

∫︁ 𝑇

0

sin(
⟨︀
𝜔0(𝑡)

⟩︀
(𝑥(𝑡) − 𝑥(𝑡 + 𝜏))) d𝑡 (3.52)

=
1

𝑇

∫︁ 𝑇

0

sin(−
⟨︀
𝜔0(𝑡)

⟩︀
𝑣0𝜏) d𝑡 (3.53)

= − sin(
⟨︀
𝜔0(𝑡)

⟩︀
𝑣0𝜏), (3.54)
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which gives the final PCFS solution,

1 − 𝑔×(𝛿0, 𝜏)

𝑔(𝜏)
=

1

2
cos(

⟨︀
𝜔0(𝑡)

⟩︀
𝑣0𝜏)ℱcos[𝑝(𝜁, 𝜏)]𝛿0 +

1

2
sin(

⟨︀
𝜔0(𝑡)

⟩︀
𝑣0𝜏)ℱsin[𝑝(𝜁, 𝜏)]𝛿0 .

(3.55)

Two features are worthy of particular attention. First, the cosine transform term

perfectly agrees with the result derived by Brokmann et al. [278], and we maintain a

sine transform term where Brokmann et al. did not, simply because we acknowledge

the possibility of an asymmetric spectral correlation (which will be discussed later).

Second, this sine term appears to be pathological due to the odd-character of the sine

prefactor. After all, intensity correlation functions should be symmetric in time and

sines are not. However, the sine prefactor does actually make sense in the context of

an asymmetric spectral correlation because it serves to counteract the time-inversion

properties of the sine transform itself. Negating 𝜏 not only introduces a sign flip into

the prefactor, but it also reflects the spectral correlation across the y-axis because

the spectrum is now traveling in the opposite direction (which flips the sign of the

sine transform). The product of the sine transform and sine prefector gives us a

correlation feature that is symmetric in 𝜏 .7

Triangle Dither. Once we invented the concept of dithering in PCFS, the dither

form we began using was the triangle dither. Instead of a continuous scan, we simply

scanned the interferometer back and forth over a narrow path-length difference region,

according to the waveform,

𝑥(𝑡) = 𝐴

(︂
2𝑡

𝑇
− 1 −

⌊︂
2𝑡

𝑇

⌋︂)︂
(−1)⌊ 2𝑡

𝑇
⌋, (3.56)

7There is considerable subtlety in the sign of the correlation feature itself. But, we will not get
into this here because we are going to avoid the issue of resolving asymmetric spectral correlations
entirely.
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where ⌊· · · ⌋ denotes the floor function, and 𝐴 is half the total path-length difference

traveled during the dither. In fact, this is still the dither waveform used for the work

in this thesis because it is easy to understand conceptually, its amplitude is easy to

measure and calibrate at the white fringe, and it yields approximately the same result

as the scanning version of the experiment.

To see this mathematically, we will consider a 𝜏 less than the dither period 𝑇 , and

break up the integral expressions for 𝑐(𝜏) and 𝑑(𝜏) into the four piecewise units where

the waveform at times 𝑡 and 𝑡 + 𝜏 evaluate to regions of either positive or negative

slope. That is,

𝑐(𝜏) =
1

𝑇

∫︁ 𝑇

0

cos(
⟨︀
𝜔0(𝑡)

⟩︀
(𝑥(𝑡) − 𝑥(𝑡 + 𝜏))) d𝑡 (3.57)

=
1

𝑇

(︁∫︁ 𝑇/2−𝜏

0

cos

(︂
𝐴
⟨︀
𝜔0(𝑡)

⟩︀(︂[︂2𝑡

𝑇
− 1

]︂
−
[︂

2(𝑡 + 𝜏)

𝑇
− 1

]︂)︂)︂
d𝑡

+

∫︁ 𝑇/2

𝑇/2−𝜏

cos

(︂
𝐴
⟨︀
𝜔0(𝑡)

⟩︀(︂[︂2𝑡

𝑇
− 1

]︂
−
[︂
−2(𝑡 + 𝜏)

𝑇
+ 2

]︂)︂)︂
d𝑡

+

∫︁ 𝑇−𝜏

𝑇/2

cos

(︂
𝐴
⟨︀
𝜔0(𝑡)

⟩︀(︂[︂
−2𝑡

𝑇
+ 2

]︂
−
[︂
−2(𝑡 + 𝜏)

𝑇
+ 2

]︂)︂)︂
d𝑡

+

∫︁ 𝑇

𝑇−𝜏

cos

(︂
𝐴
⟨︀
𝜔0(𝑡)

⟩︀(︂[︂
−2𝑡

𝑇
+ 2

]︂
−
[︂

2(𝑡 + 𝜏)

𝑇
− 3

]︂)︂)︂
d𝑡
)︁
, (3.58)

where the first and third terms and second and fourth terms are identical because

cosines are even functions. Thus, using a little bit of variable substitution,

=
2

𝑇

(︁∫︁ 𝑇/2−𝜏

0

cos

(︃
2𝐴
⟨︀
𝜔0(𝑡)

⟩︀
𝜏

𝑇

)︃
d𝑡

+

∫︁ 𝑇/2

𝑇/2−𝜏

cos

(︂
𝐴
⟨︀
𝜔0(𝑡)

⟩︀(︂4𝑡

𝑇
+

[︂
2𝜏

𝑇
− 3

]︂)︂)︂
d𝑡
)︁

(3.59)

=
2

𝑇

(︁∫︁ 𝑇/2−𝜏

0

cos

(︃
2𝐴
⟨︀
𝜔0(𝑡)

⟩︀
𝜏

𝑇

)︃
d𝑡

+

∫︁ 𝜏

0

cos

(︂
𝐴
⟨︀
𝜔0(𝑡)

⟩︀(︂4𝑡

𝑇
−
[︂

2𝜏

𝑇
+ 1

]︂)︂)︂
d𝑡
)︁

(3.60)
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=(1 − 2𝜏

𝑇
) cos

(︃
2𝐴
⟨︀
𝜔0(𝑡)

⟩︀
𝜏

𝑇

)︃

+
2

𝑇
cos

(︂
𝐴
⟨︀
𝜔0(𝑡)

⟩︀(︂2𝜏

𝑇
+ 1

)︂)︂∫︁ 𝜏

0

cos

(︃
4𝐴
⟨︀
𝜔0(𝑡)

⟩︀
𝑡

𝑇

)︃
d𝑡

− 2

𝑇
sin

(︂
𝐴
⟨︀
𝜔0(𝑡)

⟩︀(︂2𝜏

𝑇
+ 1

)︂)︂∫︁ 𝜏

0

sin

(︃
4𝐴
⟨︀
𝜔0(𝑡)

⟩︀
𝑡

𝑇

)︃
d𝑡 (3.61)

=(1 − 2𝜏

𝑇
) cos

(︃
2𝐴
⟨︀
𝜔0(𝑡)

⟩︀
𝜏

𝑇

)︃

+
1

2𝐴
⟨︀
𝜔0(𝑡)

⟩︀ cos

(︂
𝐴
⟨︀
𝜔0(𝑡)

⟩︀(︂2𝜏

𝑇
+ 1

)︂)︂
sin

(︃
4𝐴
⟨︀
𝜔0(𝑡)

⟩︀
𝜏

𝑇

)︃

+
1

2𝐴
⟨︀
𝜔0(𝑡)

⟩︀ sin

(︂
𝐴
⟨︀
𝜔0(𝑡)

⟩︀(︂2𝜏

𝑇
+ 1

)︂)︂(︃
1 − cos

(︃
4𝐴
⟨︀
𝜔0(𝑡)

⟩︀
𝜏

𝑇

)︃)︃
. (3.62)

The reverse sweep of the triangle wave clearly adds complexity to the cosine dither

contribution, but only when 𝜏 approaches the timescale of the dither period. This is

due to the regions of time when the dither is scanning in one direction at time 𝑡, but

the other direction at time 𝑡 + 𝜏 . When 𝜏 ≪ 𝑇 , the final two terms vanish and the

first term reduces to the scanning dither result.

The reverse sweep also has a huge impact on the sine dither contribution. If we

follow the same procedure to find 𝑑(𝜏), we would get the same four piecewise terms

from Equation 3.58 with sines instead of cosines. However, because sines are odd

instead of even, the corresponding terms cancel instead of add, yielding,

𝑑(𝜏) = 0. (3.63)

In general, we expect the asymmetric component of the spectral correlation to vanish

for any dither waveform with a reverse sweep identical to its forward sweep.8

8If you are interested in maintaining the asymmetric component of the spectral correlation, the
triangle wave can be substituted with a sawtooth wave (or asymmetric triangle wave). The math is
largely the same, but the sine terms will no longer cancel.
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Sine Dither. Finally, there has also been some interest in our group in using a

sinusoidal dither. It can be easier to implement using linear stages, and because it is

wholly continuous and differentiable, it can be implemented with higher fidelity and

reproducibility.9 Consider the dither waveform given by 𝑥(𝑡) = 𝐴
2

sin(2𝜋𝑡
𝑇

). Like the

triangle wave, it is a symmetric dither, so,

𝑑(𝜏) = 0. (3.64)

Its cosine dither contribution is given by,

𝑐(𝜏) =
1

𝑇

∫︁ 𝑇

0

cos(
⟨︀
𝜔0(𝑡)

⟩︀
(𝑥(𝑡) − 𝑥(𝑡 + 𝜏))) d𝑡 (3.65)

=
1

𝑇

∫︁ 𝑇

0

cos

(︃
𝐴
⟨︀
𝜔0(𝑡)

⟩︀

2

(︂
sin(

2𝜋𝑡

𝑇
) − sin(

2𝜋(𝑡 + 𝜏)

𝑇

)︂)︃
d𝑡 (3.66)

=
1

𝑇

∫︁ 𝑇

0

cos

(︃
𝐴
⟨︀
𝜔0(𝑡)

⟩︀

2

(︂
sin(

2𝜋𝑡

𝑇
) − sin(

2𝜋𝑡

𝑇
) cos(

2𝜋𝜏

𝑇
) − cos(

2𝜋𝑡

𝑇
) sin(

2𝜋𝜏

𝑇
)

)︂)︃
d𝑡

(3.67)

=
1

𝑇

∫︁ 𝑇

0

cos

(︃
𝐴
⟨︀
𝜔0(𝑡)

⟩︀

2

(︂[︂
(1 − cos(

2𝜋𝜏

𝑇
))

]︂
sin(

2𝜋𝑡

𝑇
) −

[︂
sin(

2𝜋𝜏

𝑇
)

]︂
cos(

2𝜋𝑡

𝑇
)

)︂)︃
d𝑡

(3.68)

This expression looks like a mess, but it turns out that it is the definition of a zeroeth-

order Bessel function of the first kind,

∫︁ 2𝜋

0

cos(𝐴 sin(𝑥) −𝐵 cos(𝑥))𝑑𝑥 = 2𝜋𝐽0(
√
𝐴2 + 𝐵2), (3.69)

which is better known as a sinc function. Applying this formula,

9That said, using a sine dither can also be a little theoretically concerning because it does
not equally sample all path-difference points along the dither travel. Even if the time-averaged
interferogram in the vicinity of the dither is well-approximated by a sine function, the dither may
not strictly average away the terms that are first-order in the Fourier transform. Special attention
should be paid to whether the sine dither obeys Assumptions 5 and 7.
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𝑐(𝜏) =𝐽0

⎛
⎝𝐴

⟨︀
𝜔0(𝑡)

⟩︀

2

√︃[︂
(1 − cos(

2𝜋𝜏

𝑇
))

]︂2
+

[︂
sin(

2𝜋𝜏

𝑇
)

]︂2
⎞
⎠ (3.70)

=𝐽0

(︃
𝐴
⟨︀
𝜔0(𝑡)

⟩︀
√

2

√︂
1 − cos(

2𝜋𝜏

𝑇
)

)︃
(3.71)

This dither contribution behaves similarly to that of the triangle dither, except there

will be an additional modulation of the overall magnitude over 𝜏 beyond the oscillation

feature because of the Bessel function decay.

3.2.2 Properties of the Ideal Dither

All three of the dither waveforms explored here are valid options for implementing

PCFS. Nevertheless, there are several concerns that must be taken into account when

selecting parameters for the dither waveform, such as amplitude and period. There

are four major properties that an ideal dither waveform should exhibit.

First, it obviously should satisfy the assumptions stated in the derivation that

cause the
⟨︀
𝜔0

⟩︀
and

⟨︀
2𝜔0

⟩︀
terms to vanish. In the case of the

⟨︀
𝜔0

⟩︀
terms, at least, this

is simply a matter of ensuring that each interferometer output equally samples the

peaks and troughs of the time-averaged interferogram. And luckily, the satifaction

of this requirement can be easily verified experimentally by measuring the countrate

on the two detection channels over the course of a correlation measurement. If the

average countrate on each channel is equal to the average countrate that would have

been measured outside of the sample’s interferometric coherence length, the
⟨︀
𝜔0

⟩︀

terms will have vanished.

Second, the dither waveform should have the appropriate parity. This is a minor

consideration only pertinent in certain irregular cases. We have shown that dither

waveforms that scan only in one direction are capable of measuring an antisymmetric

128



component of the spectral correlation, whereas dither waveforms that equally sample

scans in both directions entirely supress the anti-symmetric component. Therefore,

if there is a possibility that a spectral diffusion mechanism has an asymmetric prob-

ability distribution function, this may be evaluated by comparing the PCFS results

using a symmetric and an antisymmetric dither waveform.10 My impression is that

under normal circumstances, a symmetric waveform should be chosen because they

are easy to reliably implement experimentally and because they may minimize the

effects of minor non-ergodicity by suppressing the anti-symmetric component of the

spectral correlation.

Third, the dither waveform should be slow. The above derivations demonstrate

two important points concerning the choice of dither: each waveform has a unique

functional contribution to the intensity cross-correlation, but they all contain oscil-

lating features at the timescale it takes to move across an interference fringe. These

oscillations can hamper the measurement of the spectral correlation because they in-

troduce wide variations in the total interferometric contrast. All information about

the spectral correlation is lost at the nodes 𝑐(𝜏) and 𝑑(𝜏), and the magnitude of the

spectral feature is dramatically dimininished in their vicinity. In principle, our goal

is to maximize the spectral correlation signal throughout the timescales of interest.

This can be accomplished by choosing a dither waveform that is slow compared to

the timescales of interest in the PCFS experiment.

Consider the case where 𝑥(𝑡) ≈ 𝑥(𝑡 + 𝜏) for all 𝑡 during the dither period and for

all 𝜏 being measured for PCFS. In this case,

10Note that an antisymmetric dither will have to be rapid in order to capture the antisymmetric
component of the spectral correlation because its sine prefactor vanishes as 𝜏 → 0.
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𝑐(𝜏) =
1

𝑇

∫︁ 𝑇

0

cos(
⟨︀
𝜔0(𝑡)

⟩︀
(𝑥(𝑡) − 𝑥(𝑡 + 𝜏))) d𝑡 (3.72)

≈ 1

𝑇

∫︁ 𝑇

0

cos(0) d𝑡 (3.73)

≈1, (3.74)

and,

𝑑(𝜏) =
1

𝑇

∫︁ 𝑇

0

sin(
⟨︀
𝜔0(𝑡)

⟩︀
(𝑥(𝑡) − 𝑥(𝑡 + 𝜏))) d𝑡 (3.75)

≈ 1

𝑇

∫︁ 𝑇

0

sin(0) d𝑡 (3.76)

≈0. (3.77)

Given that 𝑐(𝜏) and 𝑑(𝜏) are averages of sines and cosines, these conditions yield the

maximum amplification of the symmetric component of the spectral correlation and

the complete elimination of the antisymmetric component, even for antisymmetric

dither waveforms. This is the optimal result for a conventional PCFS experiment,

and it can be achieved in a slow dither without the need for precise engineering of

the dither waveform.

Fourth, for the reasons discussed in the next section, the three previous properties

should be achieved using a dither waveform with the smallest amplitude possible.

This will minimize the PCFS instrument function introduced by the dither waveform

itself, which affects the investigation of samples with particularly broad fluorescence

spectra.
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3.3 Artifacts and Instrument Functions in PCFS

In practice, the spectral correlation measured by PCFS is susceptible to a wide variety

of different artifacts and sources of distortion. Here, we enumerate and discuss the

major examples that we have identified and have attempted to mitigate.

Transmission Profile of Setup. Before even considering the details of PCFS,

the single emitter signal analyzed by the PCFS experiment can be biased by the

transmission profile of the setup. Special care should, of course, be taken to ensure

that emission filters, mirrors, and other optics are fully compatible with the spectral

profile of the signal. Edgepass artifacts can be produced when the signal is at the

edge of the spectral range of the optical components, and will artificially narrow the

detected spectral correlations. Interference artifacts may also be possible when using

optics like pellicles, which may introduce small oscillations into the spectral correla-

tion. When the signal’s time averaged spectrum is particularly broad, correction for

the spectral response of the detectors may also be required.

Usually, transmission artifacts can be identified by measuring the ensemble fluo-

rescence spectrum of the sample using an independent instrument, such as the Fluo-

romax, and ensuring that the published specifications of all optics provide high, fea-

tureless transmission in that spectral region. It may also be helpful when conducting

solution-phase experiments to compare the spectral correlation of the ensemble to the

autocorrelation of the spectrum as measured by the Fluoromax or other conventional

spectroscopic experiment.

Interferometer Alignment and Calibration/Drift. Once the signal is passed

into the interferometer, its behavior is also highly dependent on the alignment of the

interferometer. In our derivation, we have assumed a perfectly aligned interferometer

with perfect spatial overlap of the recombined signals over all path-length differences.
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This ideal interferometer offers perfect constructive/destructive interference at zero

path-length difference and accurately represents the decay of spectral coherence of

the emitter as the path-length difference is increased. Unfortunately, real-life inter-

ferometers may not be perfectly aligned.

There are two major types of interferometer misalignment. First, the recombined

signals may not be perfectly spatially overlapped at zero path-length difference. This

will lead to a decrease in the total interferometric contrast, which adversely affects the

signal-to-noise of the measured spectral correlation. Whereas the spectral component

of an ideal PCFS intensity cross-correlation at zero path-length difference will have a

total magnitude of (negative) 0.5, poor white fringe overlap will result in a correlation

feature with magnitude less than 0.5. Control experiments have suggested to us that

as long as the PCFS contrast at zero path-length difference is above 0.3, the shape

of the PCFS interferogram will generally be unaffected by this type of misalignment.

However, maximized interferometer contrast is still desiriable for maximized signal-

to-noise ratios under similar experimental conditions.

Second, the propagation vector of the variable path length arm may not be co-

linear with the stage propagation vector. This source of misalignment causes the

spatial overlap of the recombined signals to change with path-length difference. If

the signals are perfectly overlapped at zero path-length difference, the spectral co-

herence measured by the interferometer will decay artificially quickly with increasing

path-length difference because of the increasingly poor spatial overlap (rather than an

actual loss of spectral coherence). This results in an artificially narrow measured in-

terferogram and an artificially broad measured spectrum. To avoid this misalignment

effect, the interferometer should be aligned by centering the interference fringes both

at the white fringe and at a path-length difference exceeding the coherence length

of the sample. These alignments can be enacted by adjusting the spatial position of

the interferometer retroreflectors to optimize white fringe overlap, and by adjusting
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the input vector of the signal into the interferometer to optimize large path-length

difference overlap.11

Poor white fringe overlap and non-colinearity can combine to produce a dazzling

array of strange artifacts, including asymmetric spectral correlations (even when us-

ing a symmetric dither waveform) and even dips in the PCFS contrast in the vicinity

of the white fringe. Many of these artifacts are poorly understood, but all are un-

desirable. In order to confirm proper alignment, certain control experiments should

be performed after each interferometer alignment. If the PCFS setup will be used to

measure a narrow signal such as the low temperature zero phonon line of nanocrystal

fluorescence, PCFS should be performed on a known narrow signal, such as a laser,

to gauge the white fringe contrast and to place an upper bound on the extent of

non-colinearity.12 If the PCFS setup will be used to measure a broad signal such as

room temperature spectra, PCFS should be performed on a known and well-behaved

nanocrystal sample, to gauge white fringe contrast, confirm spectral correlation sym-

metry, and to verify the measured lineshape of the known sample especially near the

white fringe.

Finally, the measured PCFS interferogram may also be distorted by errors in stage

positioning or by interferometer drift, which may cause systematic error in the actual

path-length difference of each correlation measurement. Modern stages should have

adequate positioning uncertainty and calibration for homodyne measurements like

PCFS that do not need to resolve the carrier frequency of the fluorescence, but our

setups have been seen to drift on the order of half a micron over hours of experimental

time. To mitigate this effect, PCFS experiments should generally be conducted in

a single sweep of the list of desired path-length differences for correlation measure-

11These are not decoupled degrees of freedom, so interferometer alignment becomes an iterative
process much like a beam walk through a pair of irises.

12If the sample exhibits a linewidth narrower than the laser source, we will not know if that
linewidth is physical or representative of the interferometer instrument function.
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ments.13 For particularly long experiments, multiple sweeps with shorter correlation

integration times may be used, but each of these sweeps should be processed inde-

pendently and only averaged after calculating the spectral correlation. Interferometer

drift between scans may shift the white fringe over time and produce an artificially

broad PCFS interferogram.

Dither Magnitude. Whereas poor interferometer alignment may limit the ability

for PCFS to measure exceptionally narrow linewidths, the dither waveform places

some limitations on how broad a linewidth PCFS can measure. Our assumptions

posit that the time-averaged linewidth of the sample is narrow compared to its center

frequency and that the dither waveform has a smaller magnitude than the curvature

of the envelope of the time-averaged interferogram. But, what happens when we

begin to push these assumptions a little bit?

The answer is contained in the time averages of Equation 3.44. Consider the

cosine average,

⟨
ℱcos[𝑝(𝜁, 𝜏)]𝛿0+𝑥(𝑡+𝜏)

⟩
=

1

𝑇

∫︁ 𝑇

0

∫︁ ∞

−∞
𝑝(𝜁, 𝜏) cos(𝜁(𝛿0 + 𝑥(𝑡 + 𝜏))) d𝜁 d𝑡. (3.78)

This expression essentially notes that because of the dither waveform, we are not

simply evaluating the Fourier transform of 𝑝(𝜁, 𝜏) at a single point, but actually

measuring a weighted-average of this Fourier transform over the time spent at each

path-length difference 𝛿0 + 𝑥(𝑡 + 𝜏). In other words,

⟨
ℱcos[𝑝(𝜁, 𝜏)]𝛿0+𝑥(𝑡+𝜏)

⟩
=

∫︁ ∞

−∞
𝜌(𝑥)ℱcos[𝑝(𝜁, 𝜏)]𝛿0+𝑥 d𝑥, (3.79)

where 𝜌(𝑥) is the probability distribution function of finding the dither waveform

at the given path-length difference during the integration time of the correlation

13Older stages had inadequate positioning precision, so we previously used a three-scan procedure
to average over positioning uncertainty. This is no longer necessary.
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measurement. The calculation of 𝜌(𝑥) depends highly on the dither waveform being

used. The triangle wave, for example, has a probability distribution function of,

𝜌(𝑥)triangle =
1

2𝐴
rect(2𝐴𝑥), (3.80)

where rect(· · · ) represents a rectangular function, because each position on the dither

is equally sampled during the forward and reverse sweeps.

Furthermore, Equation 3.79 can actually be seen as a cross-correlation in path-

length difference, i.e.,

⟨
ℱcos[𝑝(𝜁, 𝜏)]𝛿0+𝑥(𝑡+𝜏)

⟩
= 𝜌(𝑥) ∘ ℱcos[𝑝(𝜁, 𝜏)]𝑥, (3.81)

where 𝛿0 is the independent variable of the correlation and 𝑥 is the integrated vari-

able. In essence, the measured PCFS interferogram is the convolution of the actual

PCFS interferogram and an instrument function given by 𝜌(𝑥). To measure a spec-

trally broad sample with a very narrow interferogram, it will be important to choose

the smallest dither amplitude possible in order to decrease the width of the dither

probability distribution function.

The interferometer alignment and dither waveform combine to form a Fourier

transform conjugate pair of instrument functions for the PCFS experiment that limit

the range of energy spacings that can be probed by the experiment. This is illustrated

in Figure 3-1. The narrowest possible feature that can be resolved is given by the

interferometer alignment, which is a multiplicative bandwidth feature in path-length

difference and a convolution feature in energy. The broadest possible feature that

can be resolved is given by the dither waveform, which is a convolution feature in

path-length difference and multiplicative bandwidth feature in energy. Depending on

the spectral characteristics of the sample, either or both of these PCFS instrument

functions must be noted and characterized.
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Figure 3-1: The interferogram measured by a PCFS experiment has been convolved
with an instrument function defined defined by the dither and multiplied by a band-
width profile defined by the interferometer alignment. After Fourier transform, the
dither defines the bandwidth of the measured spectral correlation and the alignment
defines the instrument function.

Afterpulsing. There are also two important sources of error for measuring the

autocorrelation of the sum signal 𝑔(𝜏). The first is detector afterpulsing. When a

photon is detected using an avalanche photodiode, it triggers the generation of a large

number of excited electron-hole pairs on the active area of the detector. These carriers

are sometimes trapped, and may trigger a second detection event when they de-trap.

[288] This effect introduces a multi-exponential feature into intensity autocorrelation

functions on the timescale of hundreds of nanoseconds (Figure 3-2), which is inversely

proportional to the signal intensity in intensity correlation functions. For particularly

weak signals on the order of thousands of counts per second, this decay feature can

bleed into the microsecond-to-millisecond timescales investigated using PCFS.

The result of afterpulsing is an artificially increased autocorrelation of the sum

signal that inflates the percieved anticorrelation between the detection channels. Be-

cause this feature is not dependent on path-length difference, it manifests in the PCFS

interferogram as a constant offset value at short 𝜏 , which increases the 𝜁 = 0 value

of the spectral correlation. This artifact may be obvious if the PCFS interferogram
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Figure 3-2: (a) Afterpulsing introduces a multiexponential decay into the autocorre-
lation of the sum signal. (b) the shape of this feature is remarkably consistent, but
its magnitude scales inversely with signal intensity.

is measured far beyond the coherence length of the signal. But if not, the offset

may cause the spectral correlation to appear artificially narrow and to exhibit false

dynamics as the afterpulsing signature decays to zero (Figure 3-3).

There are two ways of handling afterpulsing artifacts. First, the precise functional

form of the afterpulsing signature is a property of a given detector. Its shape (and

magnitude) can be carefully characterized using a Poissonian source like a laser, and it

can be reliably subtracted in post-processing. Second, many samples do not exhibit

intensity fluctuations on sub-millisecond timescales. In these cases, the intensity

correlation function used for PCFS analysis can be treated as flat in the temporal

regions affected by afterpulsing.

It is also worth noting a second type of afterpulsing effect that manifests itself

in intensity cross-correlations. The avalanche breakdown in a detector is often ac-

companied by the emission of above-bandgap light from the detector as the large

number of hot carriers on the active area find each other and annihilate. This light

can be recollimated by the detection optics, reverse-propagate through the setup, re-

flect off an optic, and reach the other detector, creating an instance of cross-detector
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Figure 3-3: Afterpulsing introduces a 𝛿-independent offset in the PCFS interferogram
at short 𝜏 that artificially increases the magnitude of the 𝜁 = 0 data point. This can
cause the spectral correlation to artificially narrow with decreasing 𝜏 as the magnitude
of the afterpulsing feature increases.

afterpulsing. Unlike same-detector afterpulsing, it happens nearly immediately upon

detection and manifests itself as a sharp peak in the cross correlation at the time it

takes for the light to propagate through the setup (∼ns) (Figure 3-4). Cross-detector

afterpulsing occurs on timescales faster than those of interest to PCFS, but can be

eliminated by spectrally filtering the near-bandgap photons.

Unbalanced Detectors. The expressions for the interferometer outputs that we

used in the derivation assumed that the average countrate on each detector would

be the same (i.e. the detectors are balanced). This may not strictly be the case

in practice due to asymmetry in the interferometer beamsplitter or differences in

detector quantum efficiency. Luckily, detector imbalance should have either no effect

on the intensity cross-correlation, or in the case of asymmetric beamsplitting, only

cause a predictable and uniform decrease in the maximum interferometric contrast.

Unfortunately, unbalanced detectors do affect our ability to measure the intensity

autocorrelation of the emitter. With unbalanced detectors, the intensity of the sum
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Figure 3-4: Near-infrared emission from the detector during an avalanche event can
propagate through the setup and reach the other detector, generating a sub-10 ns
cross-detector afterpulsing signature. This artifact does not affect either correlation
function at PCFS-relevent 𝜏 .

signal is given by,

𝐼𝑎+𝑏(𝑡) =
𝐴

2
𝐼(𝑡)(1 + ℱcos[𝑠(𝜔, 𝑡)]𝛿(𝑡)) +

𝐵

2
𝐼(𝑡)(1 −ℱcos[𝑠(𝜔, 𝑡)]𝛿(𝑡)) (3.82)

=
𝐴 + 𝐵

2
𝐼(𝑡) +

𝐴−𝐵

2
ℱcos[𝑠(𝜔, 𝑡)]𝛿(𝑡)) (3.83)

̸= 𝐼(𝑡). (3.84)

The spectral component is not canceled out for unbalanced detectors and a dither

feature is introduced to the autocorrelation of the sum signal proportional to the

spectral coherence of the time-averaged spectrum.

This can probably be accounted for with precise knowledge of the time-averaged

spectrum, but the best way of handling this artifact is to avoid it. Detector balance

can be enforced by reducing the signal intensity of the more intense channel, or if the

intensity dynamics of the sample are consistent, an autocorrelation function measured

beyond the coherence length of the sample can be used to intensity-correct the entire

interferogram.
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3.4 A Correction for Detector Dark Counts

In addition to registering additional counts due to afterpulsing artifacts, detectors also

introduce a fixed number of uncorrelated dark counts per second. At first, it may

seem as though the addition of an uncorrelated signal to the true single-emitter signal

should not affect the resulting intensity correlation functions. However, dark counts

decrease the magnitude of correlation features in both the intensity cross-correlation

and the autocorrelation of the sum signal. If there are intensity fluctuations in the

single-emitter signal or drift in the microscope that affects the total count rate over

correlation measurements, the overall effect of dark counts may vary from correlation

measurement to correlation measurement. This should be a minor effect, but it is an

easy one to correct for in all of the measured correlation functions.

Consider an arbitrary pair of channel 𝐴 and 𝐵 with intensities given by 𝐼𝑀𝐴/𝐵(𝑡) =

𝐼𝐴/𝐵(𝑡) + 𝜂𝐴/𝐵(𝑡). Here, 𝐼𝑀𝐴/𝐵(𝑡) represent the total measured intensities, 𝐼𝐴/𝐵(𝑡)

represent the “true” signals from the single emitter, and 𝜂𝐴/𝐵(𝑡) represent the uncor-

related dark counts on each channel. The measured cross correlation of 𝐴 and 𝐵 is

given by,

𝑔𝑀𝐴/𝐵(𝜏) =

⟨︀
𝐼𝑀𝐴 (𝑡)𝐼𝑀𝐵 (𝑡 + 𝜏)

⟩︀
⟨︀
𝐼𝑀𝐴 (𝑡)

⟩︀⟨︀
𝐼𝑀𝐵 (𝑡 + 𝜏)

⟩︀ (3.85)

=

⟨︀
(𝐼𝐴(𝑡) + 𝜂𝐴(𝑡)) (𝐼𝐵(𝑡 + 𝜏) + 𝜂𝐵(𝑡 + 𝜏))

⟩︀
⟨︀
𝐼𝐴(𝑡) + 𝜂𝐴(𝑡)

⟩︀⟨︀
𝐼𝐵(𝑡 + 𝜏) + 𝜂𝐵(𝑡 + 𝜏)

⟩︀ . (3.86)

Because the dark counts are uncorrelated with the actual single-emitter signal, we

can distribute the time averages of their products. i.e.,

𝑔𝑀𝐴/𝐵(𝜏) =

⟨︀
𝐼𝐴(𝑡)𝐼𝐵(𝑡 + 𝜏)

⟩︀
+
⟨︀
𝐼𝐵(𝑡 + 𝜏)

⟩︀⟨︀
𝜂𝐴(𝑡)

⟩︀
+
⟨︀
𝐼𝐴(𝑡)

⟩︀⟨︀
𝜂𝐵(𝑡 + 𝜏)

⟩︀
⟨︀
𝐼𝐴(𝑡)

⟩︀⟨︀
𝐼𝐵(𝑡 + 𝜏)

⟩︀
+
⟨︀
𝐼𝐵(𝑡 + 𝜏)

⟩︀⟨︀
𝜂𝐴(𝑡)

⟩︀
+
⟨︀
𝐼𝐴(𝑡)

⟩︀⟨︀
𝜂𝐵(𝑡 + 𝜏)

⟩︀ (3.87)

=

⟨︀
𝐼𝐴(𝑡)𝐼𝐵(𝑡 + 𝜏)

⟩︀
−
⟨︀
𝐼𝐴(𝑡)

⟩︀⟨︀
𝐼𝐵(𝑡 + 𝜏)

⟩︀
⟨︀
𝐼𝑀𝐴 (𝑡)

⟩︀⟨︀
𝐼𝑀𝐵 (𝑡 + 𝜏)

⟩︀ + 1 (3.88)
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=

⟨︀
𝐼𝐴(𝑡)

⟩︀⟨︀
𝐼𝐵(𝑡 + 𝜏)

⟩︀
⟨︀
𝐼𝑀𝐴 (𝑡)

⟩︀⟨︀
𝐼𝑀𝐵 (𝑡 + 𝜏)

⟩︀ (︀𝑔𝐴/𝐵(𝜏) − 1
)︀

+ 1, (3.89)

where 𝑔𝐴/𝐵(𝜏) is the cross correlaton of the actual single-emitter signal and where,

generally, 𝑔(𝜏)− 1 is the infinity-corrected version of a correlation function measured

by some correlators such as the ALV correlator we use in this work.

Inversion of this expression yields the general scaling correction factor for any

correlation function subject to a known average dark count rate,

𝑔𝐴/𝐵(𝜏) =

⟨︀
𝐼𝑀𝐴 (𝑡)

⟩︀⟨︀
𝐼𝑀𝐵 (𝑡 + 𝜏)

⟩︀
(︀⟨︀
𝐼𝑀𝐴 (𝑡)

⟩︀
−
⟨︀
𝜂𝐴(𝑡)

⟩︀)︀ (︀⟨︀
𝐼𝑀𝐵 (𝑡 + 𝜏)

⟩︀
−
⟨︀
𝜂𝐵(𝑡 + 𝜏)

⟩︀)︀ (︀𝑔𝑀𝐴/𝐵(𝜏) − 1
)︀

+ 1.

(3.90)

3.5 What if the Emitter has Correlated Spectral and

Intensity Fluctuations?

One of the first assertions we made about the signal was that its spectral and inten-

sity fluctuations were uncorrelated. We used this property to separate the intensity

and spectral components of the time average in Equation 3.7 in order to form an

uncorrelated product of the spectral component and the overall intensity correlation

function of the emitter. This step simplified the interpretation of the spectral cor-

relation, and has been regarded as reasonable, given that there are rarely intensity

fluctuations on the timescale of the rapid spectral dynamics we want to use PCFS to

study. But more generally, there may be a correlation between fluorescence intensity

and spectrum. Here, we rework Equations 3.7–3.9 for the case of correlated spectral

and intensity fluctuations and discuss the interpretation of the result.

First, we note that correlated fluctuations does not preclude us from forming the

intensity correlation function. We can simply pull the intensity product time-average

out of the numerator, leaving a copy in the denominator of the spectral component:
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𝑔×(𝛿0, 𝜏) =

⟨︀
𝐼(𝑡)𝐼(𝑡 + 𝜏)

⟩︀
−
⟨︀
𝐼(𝑡)𝐼(𝑡 + 𝜏)ℱcos[𝑠(𝜔, 𝑡)]𝛿(𝑡)ℱcos[𝑠(𝜔, 𝑡 + 𝜏)]𝛿(𝑡+𝜏)

⟩︀
⟨︀
𝐼(𝑡)

⟩︀⟨︀
𝐼(𝑡 + 𝜏)

⟩︀

(3.91)

=𝑔(𝜏)

(︃
1 −

⟨︀
𝐼(𝑡)𝐼(𝑡 + 𝜏)ℱcos[𝑠(𝜔, 𝑡)]𝛿(𝑡)ℱcos[𝑠(𝜔, 𝑡 + 𝜏)]𝛿(𝑡+𝜏)

⟩︀
⟨︀
𝐼(𝑡)𝐼(𝑡 + 𝜏)

⟩︀
)︃
. (3.92)

Then, we can pull the intensity factors into the Fourier transforms to form the un-

normalized time-dependent spectra,

= 𝑔(𝜏)

(︃
1 −

⟨︀
ℱcos[𝑆(𝜔, 𝑡)]𝛿(𝑡)ℱcos[𝑆(𝜔, 𝑡 + 𝜏)]𝛿(𝑡+𝜏)

⟩︀
⟨︀
𝐼(𝑡)𝐼(𝑡 + 𝜏)

⟩︀
)︃
. (3.93)

This new expression can be manipulated exactly like the old one from Equation 3.13.

The intensity product time-average will remain undisturbed in the denominator as

we form the spectral correlation, and the unnormalized spectra can be manipulated

exactly like the normalized spectra because there is no correlation between the inten-

sity fluctuations of the emitter and the intensity fluctuations from the dither. When

Equation 3.93 is fed into the rest of the PCFS derivation, Equation 3.47 becomes,

1 − 𝑔×(𝛿0, 𝜏)

𝑔(𝜏)
=

𝑐(𝜏)

2
⟨︀
𝐼(𝑡)𝐼(𝑡 + 𝜏)

⟩︀ℱcos[𝑃 (𝜁, 𝜏)]𝛿0 −
𝑑(𝜏)

2
⟨︀
𝐼(𝑡)𝐼(𝑡 + 𝜏)

⟩︀ℱsin[𝑃 (𝜁, 𝜏)]𝛿0 ,

(3.94)

where 𝑃 (𝜁, 𝜏) is the spectral correlation of the unnormalized spectrum. Now, we can

pull the intensity product time-average into the Fourier transforms to form what we

will call the intensity-averaged spectral correlation 𝑃 (𝜁, 𝜏). The interpretation of this

quantity can be seen by presenting it in its integral representation,

𝑃 (𝜁, 𝜏) =
𝑃 (𝜁, 𝜏)⟨︀

𝐼(𝑡)𝐼(𝑡 + 𝜏)
⟩︀ (3.95)
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=

⟨︀ ∫︀∞
−∞ 𝑆(𝜔, 𝑡)𝑆(𝜔 + 𝜁, 𝑡 + 𝜏) d𝜔

⟩︀
⟨︀
𝐼(𝑡)𝐼(𝑡 + 𝜏)

⟩︀ (3.96)

=

∫︀ 𝑇

0

∫︀∞
−∞ 𝑆(𝜔, 𝑡)𝑆(𝜔 + 𝜁, 𝑡 + 𝜏) d𝜔 d𝑡

∫︀ 𝑇

0
𝐼(𝑡)𝐼(𝑡 + 𝜏) d𝑡

, (3.97)

and switching the order of integration,

=

∫︁ ∞

−∞

∫︀ 𝑇

0
𝑆(𝜔, 𝑡)𝑆(𝜔 + 𝜁, 𝑡 + 𝜏) d𝑡
∫︀ 𝑇

0
𝐼(𝑡)𝐼(𝑡 + 𝜏) d𝑡

d𝜔 (3.98)

=

∫︁ ∞

−∞

⟨︀
[𝐼(𝑡)𝐼(𝑡 + 𝜏)] 𝑠(𝜔, 𝑡)𝑠(𝜔 + 𝜁, 𝑡 + 𝜏)

⟩︀
⟨︀

[𝐼(𝑡)𝐼(𝑡 + 𝜏)]
⟩︀ d𝜔 (3.99)

=

⟨︀
[𝐼(𝑡)𝐼(𝑡 + 𝜏)] 𝑠(𝜔, 𝑡) ∘ 𝑠(𝜔 + 𝜁, 𝑡 + 𝜏)

⟩︀
⟨︀

[𝐼(𝑡)𝐼(𝑡 + 𝜏)]
⟩︀ . (3.100)

From Equation 3.100, we can see that 𝑃 (𝜁, 𝜏) is simply a weighted average of the spec-

tral correlation by the intensities of the spectra at 𝑡 and at 𝑡 + 𝜏 . Brighter spectral

positions will contribute more heavily to the intensity-averaged spectral correlation

because they produce more photons to be counted by our detectors. This is a prop-

erty of all photon-counting experiments from PL decay traces to photon-correlation,

and indeed of most integrated experiments, including conventional single-molecule

spectroscopy. If there are intensity fluctuations that occur during spectral dynamics,

they will need to be accounted for during the modeling of the spectral correlation.

3.6 Interpreting the Spectral Correlation

Finally, we conclude this PCFS theory chapter with a discussion of the interpreta-

tion of the spectral correlation, both in regard to spectral diffusion processes and

with respect to the underlying spectral lineshape. To understand the significance

of the spectral correlation, we can analyze a relatively simple model for the time-

dependent fluorescence spectrum. Consider a fluorescence spectrum given by 𝑠(𝜔, 𝑡) =

𝛿(𝜔 − 𝜔0(𝑡)) ⊗ 𝑠(𝜔), where 𝑠(𝜔) is a constant, underlying spectral lineshape, and it
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is convolved with spectral diffusion process described by 𝛿(𝜔 − 𝜔0(𝑡)). The spectral

correlation will be given by,

𝑝(𝜁, 𝜏) =
⟨︀ ∫︁ ∞

−∞
𝑠(𝜔, 𝑡)𝑠(𝜔 + 𝜁, 𝑡 + 𝜏) d𝜔

⟩︀
(3.101)

=
⟨∫︁ ∞

−∞

[︂∫︁ ∞

−∞
𝛿(𝜔′ − 𝜔0(𝑡))𝑠(𝜔 − 𝜔′) d𝜔′

]︂
(3.102)

×
[︂∫︁ ∞

−∞
𝛿(𝜔′′ − 𝜔0(𝑡 + 𝜏))𝑠(𝜔 + 𝜁 − 𝜔′′) d𝜔′′

]︂
d𝜔
⟩

(3.103)

=
⟨︀ ∫︁ ∞

−∞
𝑠(𝜔 − 𝜔0(𝑡))𝑠(𝜔 − 𝜔0(𝑡 + 𝜏) + 𝜁) d𝜔

⟩︀
(3.104)

=
⟨︀ ∫︁ ∞

−∞
𝑠(𝜔)𝑠(𝜔 + 𝜁 − (𝜔0(𝑡 + 𝜏) − 𝜔0(𝑡))) d𝜔

⟩︀
(3.105)

=
⟨︀
𝑠(𝜔) ∘ 𝑠(𝜔) [𝜁 − (𝜔0(𝑡 + 𝜏) − 𝜔0(𝑡))]

⟩︀
, (3.106)

where the notation in the last equation signifies the evaluation of the autocorrelation

of the intrinsic spectral lineshape at 𝜁− (𝜔0(𝑡+ 𝜏)−𝜔0(𝑡)). As 𝜏 → 0, the evaluation

quantity evaluates to 𝜁, and the spectral correlation reduces to the autocorrelation of

the intrinsic spectral lineshape. And, the 𝜏 -dependence can be isolated by rephrasing

the spectral correlation as a convolution of this constant intrinsic lineshape term with

a spectral diffusion term. i.e.,

𝑝(𝜁, 𝜏) =
⟨︀
𝛿(𝜁 ′ − (𝜔0(𝑡 + 𝜏) − 𝜔0(𝑡))) ⊗ 𝑝(𝜁 ′, 𝜏 → 0)

⟩︀
(3.107)

=
⟨︀
𝛿(𝜁 ′ − (𝜔0(𝑡 + 𝜏) − 𝜔0(𝑡)))

⟩︀
⊗ 𝑝(𝜁 ′, 𝜏 → 0). (3.108)

The time-dependent term is simply the time-averaged distribution of the spectral

shift between the spectrum at time 𝑡 and the spectrum some 𝜏 later, which in the

case of ergodic spectral dynamics, is the probability density function of the spectral

diffusion process. Thus, in the case where there are no spectral dynamics, the spectral

correlation is simply the autocorrelation of the fluorescence spectrum, and in the case

where the intrinsic spectrum is arbitrarily narrow, the spectral correlation is the
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probability density function of the spectral dynamics.14

In this work, we will generally operate more towards the latter regime. We will

show that the intrinsic spectral lineshape of our low temperature CdSe/CdS nanocrys-

tals is ∼20µeV, whereas the spectral dynamics these nanocrystals undergo is in the

range of hundreds of µeV. This will produce a spectral correlation that resembles the

probability density function of the spectral dynamics, but is slightly broadened and

blurred by the small but finite intrinsic linewidth. In the remainder of this section, we

will present the two models of spectral dynamics that will be used to demonstrate the

qualitative features of discrete and continuous spectral diffusion mechanisms mani-

fested in the spectral correlation 𝑝(𝜁, 𝜏). We will describe each model, derive its

corresponding 𝑝(𝜁, 𝜏), and explain the physical significance of its model parameters.

3.6.1 The Wiener Model

Continuous spectral diffusion mechanisms will be represented by the one-dimensional

Wiener process, the mathematical representation of Brownian motion. Its sole model

parameter is the spectral diffusivity coefficient 𝛼, which characterizes the extent to

which the spectrum is predisposed to diffuse. The 𝑝(𝜁, 𝜏) for this process is well known

[289]; it is the probability density function for a particle diffusing in one-dimension

and starting at position 𝜁 = 0,

𝑝(𝜁, 𝜏) =
1√

2𝜋𝛼2𝜏
exp

(︂ −𝜁2

2𝛼2𝜏

)︂
. (3.109)

As evident from the expression, the FWHM of this 𝑝(𝜁, 𝜏) increases according to a

𝜏 0.5 power law with prefactor proportional to the diffusivity constant. For the case of

a finite intrinsic linewidth, the FWHM of the spectral correlation will reach a plateau

at short 𝜏 depending on the width of the underlying spectrum.

14In practice, the autocorrelation of the intrinsic spectrum may be an averaged quantity, if there
are temporal fluctuations in the fluorescence lineshape.
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3.6.2 The Poisson Model

Discrete spectral diffusion mechanisms will be represented by a standard one-dimensional

Poisson process. In this model, spectral diffusion occurs by discrete instantaneous

events that occur temporally according to Poisson statistics (i.e. first-order jump

kinetics) and induce energy shifts that sample a Gaussian jump distribution. This

model is defined by two parameters: the standard deviation of the jump distribution

𝜎 and the first-order rate constant of the jump kinetics 𝑟.

The calculation of 𝑝(𝜁, 𝜏) for a given 𝜏 is not straight-forward because it is con-

structed from multiple sub-populations of photon pairs. Each subpopulation of pho-

ton pairs is defined by the number of diffusion events 𝑛 that occur between their

photon arrivals. As in a standard Gaussian random walk, 𝑝𝑛(𝜁), the contribution to

𝑝(𝜁, 𝜏) from the 𝑛th sub-population, is given by convolving 𝑛 jump distributions (in

this case Gaussian distributions with standard deviation 𝜎, i.e.

𝑝𝑛(𝜁) =
1√

2𝜋𝑛𝜎2
exp

(︂ −𝜁2

2𝑛𝜎2

)︂
. (3.110)

Since the jump kinetics are Poissonian, the probability of a given photon pair belong-

ing to the sub-population with 𝑛 spectral diffusion events is dictated by the Poisson

distribution,

𝑃 (𝑛, 𝜏) =
(𝑟𝜏)𝑛

𝑛!
𝑒−𝑟𝜏 . (3.111)

Thus, we can express 𝑝(𝜁, 𝜏) as

𝑝(𝜁, 𝜏) =
∞∑︁

𝑛=0

𝑃 (𝑛, 𝜏)𝑝𝑛(𝜁) (3.112)

=
∞∑︁

𝑛=0

(𝑟𝜏)𝑛

𝑛!
𝑒−𝑟𝜏 1√

2𝜋𝑛𝜎2
exp

(︂ −𝜁2

2𝑛𝜎2

)︂
. (3.113)

This sum has no obvious closed-form solution, but its Fourier transform does:
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𝐹𝑇 [𝑝(𝜁, 𝜏)]𝜁→𝛿 = 𝐹𝑇

[︃
∞∑︁

𝑛=0

(𝑟𝜏)𝑛

𝑛!
𝑒−𝑟𝜏 1√

2𝜋𝑛𝜎2
exp

(︂ −𝜁2

2𝑛𝜎2

)︂]︃

𝜁→𝛿

(3.114)

=
∞∑︁

𝑛=0

(𝑟𝜏)𝑛

𝑛!
𝑒−𝑟𝜏 exp(−2𝜋2𝑛𝜎2𝛿2) (3.115)

= 𝑒−𝑟𝜏

∞∑︁

𝑛=0

(𝑟𝜏 exp(−2𝜋2𝜎2𝛿2))
𝑛

𝑛!
(3.116)

= 𝑒−𝑟𝜏 exp
[︀
𝑟𝜏 exp(−2𝜋2𝜎2𝛿2)

]︀
(3.117)

= exp
[︀
−𝑟𝜏

(︀
1 − exp(−2𝜋2𝜎2𝛿2)

)︀]︀
. (3.118)

This expression is not easily inverse Fourier transformed analytically, but can be eval-

uated numerically. The result is a linear combination of an arbitrarily sharp distri-

bution representing non-diffused photon pairs and a broad distribution representing

the combination of all diffused photon pairs. The non-diffused distribution decays

according to first-order kinetics, transferring probability density to the diffused dis-

tribution. We note that as 𝜏 → 0, this diffused distribution approaches 𝑝1(𝜁, 𝜏) and

as 𝜏 → ∞, this distribution approaches the 𝑝(𝜁, 𝜏) predicted by the Wiener model

where 𝛼 = 𝜎
√
𝑟. In the intermediate regime, the diffused distribution is not Gaussian,

as it is given by a linear combination of Gaussians with Poissonian weights.

The FWHM of this 𝑝(𝜁, 𝜏) also has no obvious closed-form solution. However,

in the quasi-continuous region at long 𝜏 , where it reduces to the Wiener 𝑝(𝜁, 𝜏), its

FWHM is given by a 𝜏 0.5 power law with prefactor proportional to 𝜎
√
𝑟 (we take

this product as the effective diffusion constant). And finally, in the event of a finite

intrinsic linewidth, the width of the non-diffused distribution will be given by the

autocorrelation of the intrinsic spectrum, and the diffused distribution will be slightly

broadened in the same fashion as the Wiener 𝑝(𝜁, 𝜏).
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Time Between Subseqent 
Spectral Di�usion Events

Arrival Times of Two Photon Pairs
(colors do not indicate photon energy)

Figure 3-5: The spectral correlation reveals the fraction of photon pairs that arrive
without a diffusion event between them. This is conceptually distinct from the waiting
time distribution of spectral diffusion events that we would prefer to measure.

3.6.3 Extracting Spectral Jump Kinetics

The form of the Poisson model spectral correlation suggests that we should have

a handle for measuring the kinetics of the discrete spectra jumps in the form of the

integrated area of the non-diffused distribution. After all, this quantity represents the

probability that a spectral diffusion event has not occured between photon arrivals

as a function of their temporal separation, and must be connected to the distribution

of times between diffusion events. Unfortunately, they are not one and the same.

Consider the case where a spectral jump occurs every 1 s. We would like to know that

the distribution of times between spectral diffusion events is given by an arbitrarily

sharp peak at 𝑇 = 1 s. However, our observable gives us a slightly different piece of

information: the probability that an arbitrary pair of photons with temporal spacing

𝜏 does not bridge across a spectral diffusion event.

The cartoon shown in Figure 3-5 gives two examples of photon pairs that do

not bridge spectral diffusion events. What should be clear from the cartoon is that

they did not a priori have equal probabilities of being counted in the non-diffused

distribution. For the green pair to be counted in the non-diffused distribution, its
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first photon had to arrive shortly after the previous diffusion event so that its second

photon could arrive before the next diffusion event. In contrast, the first photon of

the red distribution could have arrived anytime during the space between diffusion

events except the small fraction of time at the very end of the window. In general,

the probability of a given photon pair being counted in the non-diffused distribution

𝑓(𝜏) for the regularly spaced diffusion event case is proportional to the size of the

window for the first photon arrival, or,

𝑓(𝜏) =

⎧
⎪⎨
⎪⎩

1 − 𝜏
𝑇

: 𝜏 < 𝑇

0 : 𝜏 ≥ 𝑇 ,
(3.119)

where 𝑇 is the regular spacing between subsequent diffusion events.

As long as the fluorescence intensity of the emitter is independent of the times of

the spectral diffusion events, this expression can be generalized for any distribution

of times between subsequent diffusion events 𝑔(𝑇 ) as,

𝑓(𝜏) ∝
∫︁ ∞

𝜏

(1 − 𝜏

𝑇
)(𝑇𝑔(𝑇 )) d𝑇 (3.120)

∝
∫︁ ∞

𝜏

(𝑇 − 𝜏)(𝑔(𝑇 ))𝑑𝑇 . (3.121)

This equation is the product of the probability that the first photon falls in a time

between diffusion events of length 𝑇 (given by 𝑇𝑔(𝑇 )) times the probability that the

second photon is not pushed over into the next window (given by 1− 𝜏
𝑇
). At its heart,

this is essentially a convolution of the jump kinetics with a falling triangle edge.

Deconvolution processes are a bit tricky, so I have not had a lot of luck inverting

this equation to give us a way of directly calculating the spectral jump kinetics from

the area of the non-diffused distribution. But, there are a couple things we can do on

this front. In simple cases, this expression can be simplified. For example, the area

of the non-diffused distribution under the first-order kinetics of the Poisson model is
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Figure 3-6: Equation 3.121 correctly predicts the amplitude of the non-diffused dis-
tribution for three different types of spectral diffusion kinetics.

given by,

𝑓(𝜏) ∝
∫︁ ∞

𝜏

(𝑇 − 𝜏)(𝑘𝑒−𝑘𝑇 ) d𝑇 (3.122)

∝
∫︁ ∞

𝜏

𝑘𝑇𝑒−𝑘𝑇𝑑𝑇 − 𝜏

∫︁ ∞

𝜏

𝑘𝑒−𝑘𝑇 d𝑇 (3.123)

∝
[︂
−
(︂
𝑇 +

1

𝑘

)︂
𝑒−𝑘𝑇 + 𝜏𝑒−𝑘𝑇

]︂∞

𝜏

(3.124)

∝𝑒−𝑘𝑇 . (3.125)

Thus, for the special case of first-order kinetics, the area of the non-diffused distri-

bution as a function of 𝜏 is the kinetics of the spectral diffusion process. This is, by

the way, borne out in the math behind the Poisson model spectral correlation in the

previous section.

For more complicated kinetics, we can predict the form of the area of the non-

diffused distribution using a simulation. For example, in Figure 3-6, we show the

results of three simulations of simple kinetics models, including the regularly-spaced

model, the Poisson model, and kinetics assembled by randomly choosing between a

uniform short wait time 𝑇1 and a uniform long wait time 𝑇2. All three simulations

verify the result from Equation 3.121.
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3.7 Interpreting the Spectral Autocorrelation

In this work, we will not focus on the linewidth or lineshape of the underlying intrinsic

nanocrystal spectrum. When considering the underlying spectrum, we will assume

a Lorentzian lineshape (which is consistent with the measured data), and therefore

quote a linewidth that is half of the spectral correlation as 𝜏 → 0.15 However, in our

room temperature solution-phase measurements (and possibly in future low temper-

ature measurements) we have been directly interested in measuring and modeling the

underlying intrinsic single-nanocrystal spectrum measured by PCFS via the spectral

correlation. This effort has been met with a particularly insidious challenge that is

worth discussing here.

The conventional wisdom regarding PCFS has been that we measure the spectral

correlation instead of the spectrum, thus sacrificng the absolute emission energy of the

spectrum for the superior temporal resolution of the spectral correlation. In truth, it

is certainly the case that the the spectral correlation can be measured with superior

temporal resolution because it only concerns the spectral relationship between pairs

of photons that can be detected very closely together in time. It is also the case that

because we have eschewed any absolute energy measure, we do not have access to

the carrier frequency of the interferogram, and therefore the absolute emission energy

of the spectrum. However, the more fundamental tradeoff that we have accepted by

using a homodyne energy measure such as the spectral correlation is that we have

sacrificed critical phase information about the intrinsic fluorescence lineshape.

To understand the consequences of this tradeoff, consider the case where we have

measured the spectral correlation in a 𝜏 regime where it represents the autocorrelation

of the intrinsic single-nanocrystal spectrum. The ultimate task at hand is to use this

15The autocorrelation of a Lorentzian lineshape is another Lorenzian with twice the FWHM. If
the spectrum were Gaussian, the spectral correlation would be a Gaussian with a standard deviation
that is

√
2 larger than that of the spectrum. Assuming a Gaussian lineshape would therefore slightly

increase the measured intrinsic linewidth.
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spectral autocorrelation to back out the single-nanocrystal lineshape itself, so that

we can begin to understand the basic physics that defines it. The math we would be

tempted to use is the following:

ℱ [𝑝(𝜁, 𝜏 → 0)]𝛿 = ℱ [𝑠(𝜔) ∘ 𝑠(𝜔)]𝛿 (3.126)

= ℱ [𝑠(𝜔)]*𝛿 ℱ [𝑠(𝜔)]𝛿 (3.127)

= |ℱ [𝑠(𝜔)]𝛿|2. (3.128)

This suggests that maybe we could get the spectral lineshape by simply inverting this

equation. i.e,

𝑠(𝜔) = ℱ−1
[︁√︀

ℱ [𝑝(𝜁, 𝜏 → 0)]
]︁
. (3.129)

But at a basic level, this is the problem. We cannot do that! Hopefully, there is

a ghost of a childhood math teacher in your mind raising the alarm: “The square

root of 4 is plus or minus 2!” This is the phase information we have lost about the

fluorescence lineshape. In fact, because we are dealing with Fourier transforms and

complex conjugates, the square root of 4 is actually 2(𝑎 + 𝑏𝑖), for all 𝑎 and 𝑏 where

𝑎2 + 𝑏2 = 1. Moreover, we actually lack this phase information for all values of 𝛿.

Thus, the true expression for the spectral lineshape is actually,

𝑠(𝜔) = ℱ−1
[︁
(𝑎(𝛿) + 𝑏(𝛿)𝑖)

√︀
ℱ [𝑝(𝜁, 𝜏 → 0)]

]︁
, (3.130)

for any real 𝑎(𝛿) and 𝑏(𝛿) that produce a real and postive lineshape and satisfy the

equation,

𝑎(𝛿)2 + 𝑏(𝛿)2 = 1. (3.131)

From a mathematical perspective, the moment we took the absolute value of

ℱ [𝑠(𝜔)] back in Equation 3.128, we lost the phase of the Fourier transform of the
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spectrum in the complex plane.16 This introduces ambiguity in our search for a

unique solution, because we do not know what part of the integrand of the inverse

Fourier transform ought to be handled by the cosine transform responsible for the

even component of the spectrum and what part ought to be handled by the sine

transform. Ultimately, any distribution of even- or oddness that produces a real and

positive spectrum is consistent with the measured spectral correlation and could be

the correct answer, and this possible solution space is captured by the set of all 𝑎(𝛿)

and 𝑏(𝛿).

In essence, what has happened is that by measuring a fundamentally symmetric

spectral quantity, we have lost all information about the even- or oddness of the

underlying spectrum. There are an infinite number of possible lineshapes with varying

degrees of asymmetry that can produce a measured spectral correlation and we cannot

identify, a priori, which one of them is the correct one. We emphasize this point with

three examples in Figure 3-7.

This leaves us in a difficult position with respect to our ultimate goal of recovering

and analyzing the intrinsic single-nanocrystal lineshape. We cannot reliably reproduce

the intrinsic spectrum, but surely we can extract something of value from the spectral

autocorrelation. We have taken the analysis of the spectral autocorrelation in three

distinct directions. First, in cases where we are looking for a trend in the behavior of

the intrinsic linshape as a function of some synthetic parameter such as core size or

shell thickness, we can simply consider the evolution of the spectral autocorrelation

itself. Changes in the width and shape of the spectral autocorrelation will track with

changes in the underlying spectra’s width and shape. In this way, we can identify

qualitative trends in linewidth without the need for modeling. This was the strategy

primarily used by Cui et al. [176]

Second, we can make certain assumptions or approximations about the form of

16This also, by the way, eliminated any possibility of recovering any 𝑒−𝑖𝜔0𝛿 term that could have
told us the absolute emission energy of the spectrum.
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Figure 3-7: While the spectral correlation measured by PCFS is unique and exact, it
does not contain enough information to precisely reconstruct the intrinsic spectrum
of the emitter. The spectral correlation is consistent with an infinite set of possible
spectra, including the symmetric solution (the effective spectral lineshape), the actual
spectrum, and its reflection.
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the underlying spectrum. For example, in this work, the spectral autocorrelation is

closely Lorentzian. Although any number of lineshapes could, in principle, produce

a Lorentzian spectral autocorrelation, a Lorentzian spectral lineshape seems to be a

good, physically relevant guess. Similarly, conventional measurements have suggested

that the room temperature lineshape is relatively symmetric. We can therefore make

a reasonable estimation of the underlying spectral linewidth by finding the entirely

symmetric solution to the spectrum that satisfies the measured spectral correlation.

This is simply a matter of setting 𝑎(𝛿) = 1 and solving Equation 3.129. The symmetric

solution for the fluorescence spectrum, which we have named the effective spectral

lineshape, is uniquely given by the spectral autocorrelation, and even though it is

probably not the true underlying spectral lineshape, it should have a very similar

linewidth. Thus, even though a lot of the shape information about the underlying

spectrum may be lost in the spectral autocorrelation, it can still be a reliable and

quantitative tool for characterizing single-nanocrystal linewidths.

Third, if we have our heart set on trying to extract shape information from the

spectral correlation, we can directly model the spectral correlation itself using the

underlying physics that define the spectral lineshape. For example, much like con-

ventional lineshape modeling can predict the spectrum produced by a given vibra-

tional spectral density, we have experimented with modeling our room temperature

spectral autocorrelations using a physically-realistic phonon spectral density func-

tion. This has allowed us to directly connect the spectral autocorrelation to the basic

exciton-phonon coupling physics that is understood to define the room temperature

fluorescence spectrum. The task of extracting reliable estimates for the Huang-Rhys

parameters of the spectral density is a complicated and subtle process, but it is at

least mathematically possible.

In this Chapter, we have derived the PCFS experiment using a dither waveform,

and discussed many of the theoretical complications and sources of artifacts that may
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affect PCFS experiments. In the next Chapter, we will discuss one of the major

practical complications that has hindered the application of PCFS: the requirement

for ergodic spectral dynamics.
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Chapter 4

Combining PCFS with Conventional

Spectroscopy

Even though we need the temporal resolution of PCFS to resolve the rapid spectral

dynamics of single nanocrystal at low temperatures, Figure 2-1 illustrates that these

rapid dynamics still produce correlated spectral diffusion on the slower timescales

accessible to conventional CCD spectroscopy. Any experiment aiming to capture

the full range of rapid spectral dynamics must be capable of measuring both the

basic dynamics at fast timescales and their correlated effects over longer timescales.

Unfortunately, PCFS is not well suited for measuring long timescale dynamics. In

this chapter, we will discuss the temporal limitations of PCFS and show that the full

range of spectral dynamics can be captured by combining PCFS with conventional

CCD spectroscopy.

4.1 Temporal Limitations of PCFS

Previously, we emphasized that the temporal resolution of correlation methods were

fundamentally limited at fast timescales by the precision of photon timing. On the

setup used for this work, photon timing is limited by the correlation hardware to
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3.125 ns, but silicon APDs can be capable of timing as precisely as tens of picosec-

onds. Of course, on these fast timescales, the true limitation is not resolution so much

as detecting enough photon pairs close enough together in time to actually sample

the spectral coherence at such small 𝜏 with high enough signal-to-noise. A Poisso-

nian source producing 5, 000 counts per second will only produce a photon pair with

temporal spacing 𝜏 = 4 ± 4ns on average every five seconds. This may be okay for

a single-point correlation measurement like an antibunching experiment, which can

integrate signals for hours or as long as the nanocrystal remains optically active,1

but in PCFS, we must collect a large number of correlation measurments at differ-

ent path-length differences to resolve the spectral correlation. Taking 40 correlation

measurements over the course of 40 minutes leaves only a minute per correlation

measurement (which is good for only a dozen correlation counts at 𝜏 = 4 ± 4ns).

What may be less immediately obvious is that the short integration times for

each correlation measurement also places significant upper bounds on the spectral

dynamics that can be probed with PCFS. It will clearly never be possible to probe

spectral dynamics on timescales longer than the integration time of the correlation

measurement. This limits us to spectral dynamics on timescales less than 60 s in our

hypothetical PCFS measurement. However, we are even more significantly limited

in our temporal resolution by the assumptions we needed in the derivation of the

PCFS experiment. First, we require investigated spectral dynamics to be ergodic

so that each correlation measurement measures the same spectral behavior. Spec-

tral dynamics over tens of seconds will not produce representative behavior over a

60 s integration time. And second, we instituted dither requirements that introduce

dither nodes that interfere with the investigation of long timescale dynamics. A con-

servatively chosen triangle dither waveform, which completes three full periods over

1Especially under vacuum, nanocrystals will tend to bleach on the timescale of tens of min-
utes (this number is highly dependent on sample properties and varies widely from nanocrystal to
nanocrystal).
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five interference fringes during a 60 s integration time, will introduce a dither node

at approximately 𝜏 = 1s. Our ability to measure spectral dynamics on timescales

greater than around half a second will be periodically interrupted by dither nodes

(and, it should be noted, possibly corrupted by inconsistencies in the dither form).

Although we may be able to marginally increase this upper bound on the timescales

accessible by PCFS by selecting a more daring dither waveform, accessing spectral

dynamics on timescales greater than seconds will simply not be possible with such

short integration times.

Notable improvements in the temporal resolution at both long and short timescales

can only really be achieved by increasing the integration time of each correlation mea-

surement by either using fewer correlation measurements in the PCFS interferogram

or by increasing the overall duration of the experiment. The former negatively impacts

either the spectral window or spectral resolution of our experiment,2 and the latter

has not been feasible with the fluorescence stability of samples we have investigated

so far. Practically, in this work, we are limited to using PCFS to investigate spectral

dynamics on timescales ranging from microseconds to hundreds of millseconds.

4.2 Deeper Problems Measuring Multi-Timescale Dy-

namics

If our inability to capture the full range of rapid spectral dynamics using PCFS were

not bad enough, we also have to cope with the existence of the other two forms of

spectral dynamics, which can introduce infrequent changes in the spectrum probed in

individual correlation measurements. These larger spectral shifts would not produce

major artifacts in the spectral correlation measured for short 𝜏 as long as they did

2We will need a large spectral window and high spectral resolution for this work, but they may
not be necessary for all investigations.
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not cause changes in the behavior of the rapid spectral dynamics or the underlying

intrinsic fluorescence lineshape. After all, as 𝜏 → 0, the fraction of photon pairs

arriving on either side of the infrequent spectral shifts should vanish. However, in

L. F. Marshall’s thesis, [287] she showed preliminary data demonstrating that the

spectral correlation undergoes significant changes when large spectral jumps occur.

This result stands in agreement with the work of Empedocles and Bawendi, [63]

which found that the integrated spectrum of single nanocrystals depended strongly

on spectral position and was often notably broadened as the spectrum was red-shifted

by tens of meV.

The upshot is that the charging and large jump forms of spectral diffusion may

cause significant changes in the rapid spectral dynamics undergone by a single nanocrys-

tal, and that in order to compile an artifact-free spectral correlation for a set of rapid

spectral dynamics, a complete PCFS interferogram must be measured at a single large

spectral jump position or charging state. This places even more significant limitations

on how long a prospective PCFS experiment can last, depending on how likely large

spectral shifts or charging events are to occur in a given sample, and requires that we

have a strategy in place to identify spectral shifts and ensure that we are compiling

a consistent PCFS inferferogram.

4.3 A Compound Experiment Can Reveal the Entire

Range of Rapid Spectral Dynamics.

The solution to both capturing the full range of rapid spectral dynamics and en-

suring that we are compiling a consistent PCFS interferogram is to split the single-

nanocrystal signal and simultaneously perform PCFS and conventional single-molecule

spectroscopy. Although splitting the signal will decrease the signal-to-noise ratio of

both experiments, it grants us better oversight over the signal being analyzed by
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PCFS and it provides a means for tracking spectral dynamics over longer timescales

than an individual PCFS correlation measurement.

An example of a compound PCFS/Camera data set, which we will analyze in

the next Chapter, is shown in Figure 4-1. Using both the intensity traces of the

PCFS experiment and the time-series of integrated spectra from the CCD camera,

we can see that the spectral position of the emitter changes halfway through the first

PCFS measurement and switches back halfway through the second measurement.

We can therefore stitch together the PCFS data from the two runs to construct two

full and consistent PCFS interferograms. Furthermore, in addition to the PCFS

interferograms, we also have hundreds of seconds of uninterrupted camera data about

the trajectory of rapid spectral dynamics in each spectral position, which can report

on how the spectra evolves over hundreds of milliseconds to hundreds of seconds and,

if it is in agreement with the PCFS data, can further validate the consistency of our

PCFS interferograms.

4.4 Determining the Spectral Correlation from a Time

Series of Integrated Spectra

The only question that remains is how to resolve the disparate types of spectral data

collected by PCFS and conventional spectroscopy. On one hand, we discussed in the

previous Chapter that it is impossible to recover the spectrum from the PCFS spec-

tral correlation. On the other hand, the spectral data measured by the CCD camera

is averaged over the integration time of each frame, broadened by the spectrometer

instrument function, and also contains broader spectral features like phonon side-

bands that may not be captured in the narrow spectral window measured by PCFS.

By choosing a narrow spectral window in PCFS, we can isolate the spectral diffu-

sion of the narrow zero-phonon line (ZPL) and measure a spectral correlation that
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Figure 4-1: Two PCFS scans with camera data. The large spectral shift in the
middle of each scan is evident from changes in the camera spectrum, the fluorescence
intensity, and in the PCFS contrast at short 𝜏 . We can stitch together two consistent
PCFS experiments by combining the similar data from each scan.There is an offset
between the camera and PCFS data in the first run due by experimenter error.
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approximates the probability density function of the spectral dynamics. In contrast,

the spectral correlation directly calculated from the camera data will necessarily be

broadened by the acoustic phonon side-band (and by the instrument function of the

spectrometer). The solution is to use the spectral diffusion trajectories of the peak

emission wavelength of the nanocrystal to isolate the behavior of the ZPL in the cam-

era data and to measure the same spectral correlation quantity investigated by PCFS

at fast timescales. This process, worked out in the next several sections, is heavily

inspired by previous theoretical work by Plakhotnik and Walser. [290]

We first show that, without the confounding effects of the spectrometer instrument

function or any incidental broad spectral features, the time series of integrated spectra

can be used to approximate the spectral correlation on timescales greater than the

integration time of each spectral frame. Then, we show that we can isolate the ZPL

contribution, as we will do in PCFS, by constructing the spectral correlation using

the histogram of energy shifts between frames.

4.4.1 Approximating the Spectral Correlation From the Aver-

age Correlation of Integrated Spectral Frames

Consider a series of 𝑁 time-ordered spectra 𝑠𝑇 (𝜔, 𝑡), each integrated for time 𝑇 and

referenced such that the 𝑗th frame in the series is given by 𝑠𝑇 (𝜔, 𝑗𝑇 ). The average

spectral correlation of two integrated spectral frames separated by 𝑛 frames 𝐶(𝜁, 𝑛𝑇 )

is given by,

𝐶(𝜁, 𝑛𝑇 ) =
1

𝑁 − 𝑛

𝑁−𝑛−1∑︁

𝑗=0

𝑠𝑇 (𝜔, 𝑗𝑇 ) ∘ 𝑠𝑇 (𝜔, (𝑗 + 𝑛)𝑇 ) (4.1)

Each of these correlation terms can be rewritten in terms of 𝑠(𝜔, 𝑡), the homogeneous

spectrum evaluated instantaneously at time 𝑡, as:
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[𝑠𝑇 (𝜔, 𝑗𝑇 )∘𝑠𝑇 (𝜔, (𝑗 + 𝑛)𝑇 )](𝜁)

=

∫︁ ∞

−∞
𝑠𝑇 (𝜔, 𝑗𝑇 )𝑠𝑇 (𝜔 + 𝜁, (𝑗 + 𝑛)𝑇 ) d𝜔 (4.2)

=

∫︁ ∞

−∞

[︂∫︁ 𝑇

0

𝑠(𝜔, 𝑗𝑇 + 𝑡′) d𝑡′
]︂ [︂∫︁ 𝑇

0

𝑠(𝜔 + 𝜁, (𝑗 + 𝑛)𝑇 + 𝑡′′) d𝑡′′
]︂

d𝜔

(4.3)

=

∫︁ 𝑇

0

∫︁ 𝑇

0

[︂∫︁ ∞

−∞
𝑠(𝜔, 𝑗𝑇 + 𝑡′)𝑠(𝜔 + 𝜁, (𝑗 + 𝑛)𝑇 + 𝑡′′) d𝜔

]︂
d𝑡′′ d𝑡′, (4.4)

For simplicity, we define 𝒯1 = 𝑗𝑇+𝑡′ and 𝒯2 = (𝑗+𝑛)𝑇+𝑡′′. Further deconstructing

the integrand by expressing the spectrum as the product of the fluorescence intensity

𝐼(𝑡) and the normalized spectrum 𝑠(𝜔, 𝑡), we get

=

∫︁ (𝑗+1)𝑇

𝑗𝑇

∫︁ (𝑗+𝑛+1)𝑇

(𝑗+𝑛)𝑇

∫︁ ∞

−∞
𝐼(𝒯1)𝑠(𝜔, 𝒯1)𝐼(𝒯2)𝑠(𝜔 + 𝜁, 𝒯2) d𝜔 d𝒯2 d𝒯1 (4.5)

=

∫︁ (𝑗+1)𝑇

𝑗𝑇

∫︁ (𝑗+𝑛+1)𝑇

(𝑗+𝑛)𝑇

𝐼(𝒯1)𝐼(𝒯2)

∫︁ ∞

−∞
𝑠(𝜔, 𝒯1)𝑠(𝜔 + 𝜁, 𝒯2) d𝜔 d𝒯2 d𝒯1 (4.6)

=

∫︁ (𝑗+1)𝑇

𝑗𝑇

∫︁ (𝑗+𝑛+1)𝑇

(𝑗+𝑛)𝑇

[𝐼(𝒯1)𝐼(𝒯2)] [𝑠(𝜔, 𝒯1) ∘ 𝑠(𝜔, 𝒯2)] d𝒯2 d𝒯1. (4.7)

Taken individually, the integrand of each term in the sum from Eqn. 4.1 is highly

specific to the spectral diffusion trajectory reflected in that term. However, if the

observed spectral diffusion over 𝑛𝑇 is ergodic with respect to the total duration of the

time series, then the average of all of these terms will reflect the ensemble of diffusion

trajectories. Since the spectral diffusion of the single dot will be uncorrelated with

the time and duration of the integration periods,

𝐶(𝜁, 𝑛𝑇 ) =

⟨∫︁ (𝑗+1)𝑇

𝑗𝑇

∫︁ (𝑗+𝑛+1)𝑇

(𝑗+𝑛)𝑇

[𝐼(𝒯1)𝐼(𝒯2)] [𝑠(𝜔, 𝒯1) * 𝑠(𝜔, 𝒯2)] d𝒯2 d𝒯1

⟩
(4.8)

164



=

∫︁ (𝑗+1)𝑇

𝑗𝑇

∫︁ (𝑗+𝑛+1)𝑇

(𝑗+𝑛)𝑇

⟨
[𝐼(𝒯1)𝐼(𝒯2)] [𝑠(𝜔, 𝒯1) * 𝑠(𝜔, 𝒯2)]

⟩
d𝒯2 d𝒯1 (4.9)

=

∫︁ (𝑗+1)𝑇

𝑗𝑇

∫︁ (𝑗+𝑛+1)𝑇

(𝑗+𝑛)𝑇

[︂
⟨𝐼(𝒯1)⟩⟨𝐼(𝒯2)⟩ ×

⟨𝐼(𝒯1)𝐼(𝒯2)⟩
⟨𝐼(𝒯1)⟩⟨𝐼(𝒯2)⟩

×

⟨
[𝐼(𝒯1)𝐼(𝒯2)] [𝑠(𝜔, 𝒯1) * 𝑠(𝜔, 𝒯2)]

⟩

⟨𝐼(𝒯1)𝐼(𝒯2)⟩

]︂
d𝒯2 d𝒯1 (4.10)

The first factor is the square of the average intensity of the emitter, which is just

a constant factor. Because the overall magnitude of 𝐶(𝜁, 𝑛𝑇 ) has no physical signif-

icance, being dictated by the count rate on the CCD, we will remove this factor by

normalizing 𝐶(𝜁, 𝑛𝑇 ) to form 𝑐(𝜁, 𝑛𝑇 ). The second factor is the intensity autocor-

relation of the total signal 𝑔(𝒯2 − 𝒯1). And, finally, the third factor is the ensemble

average of the spectral correlation 𝑝(𝜁, 𝒯2 −𝒯1) that we measure in PCFS. Note that

it is weighted by the intensities of the two spectral frames, just as the PCFS spectral

correlation is weighted by the instantaneous fluorescence intensity. Thus,

𝑐(𝜁, 𝑛𝑇 ) =

∫︀ (𝑗+1)𝑇

𝑗𝑇

∫︀ (𝑗+𝑛+1)𝑇

(𝑗+𝑛)𝑇
𝑔(𝒯2 − 𝒯1)𝑝(𝜁, 𝒯2 − 𝒯1) d𝒯2 d𝒯1

∫︀ (𝑗+1)𝑇

𝑗𝑇

∫︀ (𝑗+𝑛+1)𝑇

(𝑗+𝑛)𝑇
𝑔(𝒯2 − 𝒯1) d𝒯2 d𝒯1

(4.11)

Finally, all of the above terms are related to 𝒯2−𝒯1. We can transform the double

integral into an integral over 𝑡′ (the time of the first spectral term) and an integral

over 𝜏 = 𝒯2 − 𝒯1 (the difference between the two spectral terms).

𝑐(𝜁, 𝑛𝑇 ) =

∫︀ 𝑛𝑇

(𝑛−1)𝑇

∫︀ 𝑇

𝑛𝑇−𝜏
𝑔(𝜁, 𝜏)𝑝(𝜁, 𝜏) d𝑡′ d𝜏

𝑇 2
∫︀ 𝑛𝑇

(𝑛−1)𝑇

∫︀ 𝑇

𝑛𝑇−𝜏
𝑔(𝜁, 𝜏) d𝑡′ d𝜏

+

∫︀ (𝑛+1)𝑇

𝑛𝑇

∫︀ 𝑛𝑇−𝜏

0
𝑔(𝜁, 𝜏)𝑝(𝜁, 𝜏) d𝑡′ d𝜏

𝑇 2
∫︀ (𝑛+1)𝑇

𝑛𝑇

∫︀ 𝑛𝑇−𝜏

0
𝑔(𝜁, 𝜏) d𝑡′ d𝜏

(4.12)

=

∫︀ (𝑛+1)𝑇

(𝑛−1)𝑇

(︁
1 − |𝜏−𝑛𝑇 |

𝑇

)︁
𝑔(𝜁, 𝜏)𝑝(𝜁, 𝜏) d𝜏

∫︀ (𝑛+1)𝑇

(𝑛−1)𝑇

(︁
1 − |𝜏−𝑛𝑇 |

𝑇

)︁
𝑔(𝜁, 𝜏) d𝜏

(4.13)

As is so often the case, Equation 4.13 may look complicated, but it is simply a
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bit of a strange weighted average of 𝑝(𝜁, 𝜏) about 𝜏 = 𝑛𝑇 . When 𝑛 ≪ 1, 𝑐(𝜁, 𝑛𝑇 ) →

𝑝(𝜁, 𝑛𝑇 ). This limit will also hold as 𝑛 → 1 as long as 𝑝(𝜁, 𝜏) and 𝑔(𝜏) have little

curvature in 𝜏 over 2𝑇 .

4.4.2 Approximating the Spectral Correlation From the His-

togram of Energy Shifts Between Frames

An alternative method for calculating the spectral correlation from the camera data

is to use the peak positions of the integrated spectra rather than their overall line-

shape. Even with poor signal-to-noise, curve fitting procedures should be able to

very precisely determine the center position of a spectrum, and allow us to identify

spectral shifts that are even smaller than the camera instrument function. Towards

that end, we will show that 𝐶(𝜁, 𝑛𝑇 ) can be expressed as the convolution of 𝑎(𝜁 ′, 𝑇 ),

the autocorrelation of the average spectral frame integrated for time 𝑇 , and ℎ(𝜁 ′, 𝑛𝑇 ),

the histogram of the energy shifts between all pairs of frames separated by 𝑛 frames.

If 𝑎(𝜁 ′, 𝑇 ) can be calculated via PCFS, we can remove broadening of the camera spec-

tral correlation from the spectrometer instrument function and the phonon side-bands

that are not considered in the PCFS 𝑝(𝜁, 𝜏).

The integrated spectra used to construct 𝑝(𝜁, 𝜏) in our data have roughly uniform

fluorescence intensity and integrated spectral lineshape for a given large jump position

because of the ergodicity on the timescale of seconds of most of the rapid diffusion

dynamics. Therefore, we can ignore the intensity fluctuation considerations we treated

in the previous section and represent a typical frame as

𝑠𝑇 (𝜔, 𝑗𝑇 ) = 𝛿(𝜔′ − 𝜔0(𝑗𝑇 )) ⊗ 𝜎(𝜔′, 𝑇 ), (4.14)

where 𝜔0(𝑗𝑇 ) is the spectral position of the peak value of the frame and 𝜎(𝜔′) is

the typical spectral lineshape over integration time 𝑇 centered at 𝜔0 = 0. The
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autocorrelation of a pair of frames is therefore

𝑠𝑇 (𝜔, 𝑗𝑇 ) ∘ 𝑠𝑇 (𝜔, (𝑗 + 𝑛)𝑇 )

= [𝛿(𝜔′ − 𝜔0(𝑗𝑇 )) ⊗ 𝜎(𝜔′, 𝑇 )] ∘ [𝛿(𝜔′ − 𝜔0((𝑗 + 𝑛)𝑇 )) ⊗ 𝜎(𝜔′, 𝑇 )] (4.15)

= [𝛿(𝜔′ − 𝜔0(𝑗𝑇 )) ∘ 𝛿(𝜔′ − 𝜔0((𝑗 + 𝑛)𝑇 ))] ⊗ 𝑎(𝜁 ′, 𝑇 ), (4.16)

where 𝑎(𝜁 ′, 𝑇 ) is the autocorrelation of 𝜎(𝜔′, 𝑇 ). The bracketed correlation represents

a single contribution to a histogram of peak-value energy shifts ℎ(𝜁 ′, 𝑛𝑇 ), so averaging

over all frames separated by 𝑛𝑇 yields

𝐶(𝜁, 𝑛𝑇 ) ≃ 1

𝑁 − 𝑛
𝑎(𝜁 ′, 𝑇 ) ⊗ ℎ(𝜁 ′, 𝑛𝑇 ). (4.17)

Since both quantities are real and symmetric, the correlation and the convolution

of these quantities are functionally identical.Therefore, because we showed in the

previous section that 𝑝(𝜁, 𝜏) ∝ 𝐶(𝜁, 𝑛𝑇 ), we can also conclude that 𝑝(𝜁, 𝜏) ∝ 𝑎(𝜁 ′, 𝑇 )*

ℎ(𝜁 ′, 𝑛𝑇 ).

Finally, we demonstrate that the contribution to 𝑎(𝜁 ′, 𝑇 ) from the ZPL can be

isolated by calculating it from the PCFS data, where all other features contribute

a fixed offset. To do this, we can note that 𝑎(𝜁 ′, 𝑇 ) is equivalent to 𝑐(𝜁, 𝑛𝑇 ) from

Eqn. 4.13 when 𝑛 = 0. Here, however, the fluorescence intensity will not necessarily

be uniform on sub-camera timecales, so 𝑔(𝜏) cannot be disregarded. But luckily, it is

measured directly during the PCFS experiment. So,

𝑎(𝜁 ′, 𝑇 ) =

∫︀ 𝑇

−𝑇
(1 − |𝑡|

𝑇
)𝑔(𝜁 ′, 𝑡)𝑝(𝜁 ′, 𝑡) d𝑡

∫︀ 𝑇

−𝑇
𝑔(𝜁 ′, 𝑡) d𝑡

(4.18)

= 2

∫︀ 𝑇

0
(1 − 𝑡

𝑇
)𝑔(𝜁 ′, 𝑡)𝑝(𝜁 ′, 𝑡) d𝑡

∫︀ 𝑇

0
𝑔(𝜁 ′, 𝑡) d𝑡

(4.19)

It should be noted that the spectral correlation that is calculated on the camera
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will still likely be broader than that measured by PCFS because of uncertainty in the

fitting of the center-point of the spectrum. Part of our validation of this compound

PCFS/Camera experiment will be to show that the trend of the width of the spectral

correlation with 𝜏 across the PCFS and camera regimes, but that their magnitudes

are offset by the uncertainty of the camera peak fit.

To summarize, the long timescale spectral dynamics of low temperature single

nanocrystals threaten the ergodicity requirements needed to assemble a consistent

PCFS interferogram. In this chapter, we have shown that combining PCFS and

conventional CCD spectroscopy, we can avoid the detrimental effects of irreversible

changes in nanocrystal spectral dynamics and we can simultaneously measure rapid

spectral dynamics over as many as nine orders of magnitude in time ranging from

microseconds to hundreds of seconds.
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Chapter 5

Investigation of Rapid Spectral

Diffusion in Semiconductor

Nanocrystals

In the previous chapters, we summarized the current state of our understanding

of rapid spectral dynamics in semiconductor nanocrystals and established the the-

oretical foundations of our experimental technique that combines photon-correlation

Fourier spectroscopy (PCFS) and conventional single-nanocrystal spectroscopy. We

now present the progress we have made using this technique to characterize and un-

derstand spectral dynamics. This chapter describes the results published by Beyler

et al. [243] and will be divided into four parts. First, we will describe the techni-

cal details of our experimental setup and data analysis procedure. Second, we will

present our major results and explain the tangible insight they provide concerning

rapid spectral diffusion. Third, we will discuss the implications of these results for our

conceptual understanding of spectral diffusion. And finally, we discuss possible fu-

ture directions for investigating the spectral diffusion of low temperature nanocrystals

using single-molecule techniques.
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Figure 5-1: Schematic representation of the low temperature PCFS setup. The signal
from a confocal microscope is split to simultaneously conduct PCFS and conventional
single-molecule spectroscopy.

5.1 Experimental Setup and Data Analysis

5.1.1 Optical Setup

The experimental setup used for this investigation is shown schematically in Fig. 5-1.

A thin-film sample at single-nanocrystal dilution was fabricated on a 5 mm × 5 mm

× 1 mm single-crystal quartz substrate, mounted using Apiezon N cryogenic vacuum

grease to the cold finger of a Janis ST-500 cryostat, and cooled to ∼4 K.1 The sample

was excited using 514 nm continuous wave radiation from a Coherent 70C-Spectrum

Argon/Krypton-ion gas laser via a home-built epifluorescence confocal microscope,

equipped with a 550 nm long-pass dichroic beamsplitter, a long working distance air

objective (Nikon, 0.7 NA),2 and silver galvomirrors to scan the excitation spot over

1Apiezon N vacuum grease exhibits broadband visible fluorescence that can interfere with single-
nanocrystal experiments. The cold finger we used was shaped like a washer, with a hole in the
center where the excitation was focused. This assured good thermal contact between the sample and
coldfinger without allowing for direct excitation of the vacuum grease. Nevertheless, the fluorescence
linewidth of the vacuum grease is sufficiently broad that it only causes a constant background in
both the spectral correlation and conventional spectral traces.

2The objective was mounted onto a piezoactuator to provide fine-tuning of the z-position of the
objective.
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the substrate. Collected fluorescence from a single nanocrystal on the sample was

recollimated, passed through the dichroic beamsplitter, and spatially filtered using a

pinhole (10 cm focal length focusing optic, 10µm pinhole, 4 cm recollimating optic)

to remove laser scatter and background grease and film autofluorescence.

Once the single-emitter fluorescence was isolated using the pinhole, the signal

was split using an 10/85 (R:T) wedged beam splitter to simultaneously conduct the

PCFS and conventional spectroscopy experiments. Ten percent of the signal was

directed into the conventional spectroscopy setup, where the signal was spectrally-

resolved using a Jobin Yvon Triax 320 spectrometer with 1200 l/mm grating, the

spectrum was detected using a Princeton Instruments ProEM 512B CCD camera,

and the experiment was managed in software by Princeton Instrument’s WinSpec

program. Five percent of the signal was lost due to reflection off of the back interface

of the wedge. And, the remaining 85 % of the signal was directed into a two-output

Michelson interferometer for the PCFS experiment.

The PCFS interferometer was constructed using a visible-wavelength two inch

50:50 (R:T) non-polarizing beamsplitting cube (Newport) and two two inch visible-

wavelength total internal reflection retroreflectors (Thorlabs). The position for each

correlation function was set by mounting one of the retroreflectors on a Newport

DC servo linear translation stage (ILS100CC) with 1 µm unidirectional repeatability

and 10 cm travel range.3 The white fringe corresponded to an approximate position

of −3.5 cm, offering 1.5 cm of symmetric travel across the white fringe and 8.5 cm

asymetric travel away from the white fringe. The dither was introduced to the inter-

ferometer by mounting the corner of the other, stationary retroreflector to a piezo-

electric actuator and driving the actuator with a waveform generator. The actuator

introduced a small-angle tilt into the corner of the retroreflector that modulated the

3This stage precision is not strictly good enough for room temperature measurements, but cer-
tainly good enough for this work. Until we bought a non-contact ultra-precision linear stage, we
performed room temperature measurements by scanning the interferogram three times and averaging
the result to achieve sub-micron overall precision.
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overall path-length of the interferometer arm.4

Once the interferometer paths were recombined, the two outputs of the interfer-

ometer were focused using 7.5 cm focal length achromatic doublets onto two Excelitas

(formerly Perkins-Elmer) AQRH-16 single-photon counting modules (made using sil-

icon avalanche photodiodes) with sub-50 cps dark counts and minimized afterpulsing

(<1%). The resulting electronic signals from the detectors were split to yield two

copies of the photon-counting signal. One of the electronic signals was counted by a

DAQ to provide real-time intensity data for the confocal microscopy program, which

controlled the galvomirrors, was used to select the single emitter before the experi-

ment, and was monitored during the measurement to correct for cryostat drift during

the measurement. The other electronic signal was sent to an ALV-7004/FAST real-

time multiple-tau correlator to generate log-scale correlation functions in hardware.5

The correlator was used to record both the 0+1 autocorrelation function (i.e. the

autocorrelation of the sum signal of the interferometer outputs), and both the 0/1

and 1/0 interferometer cross-correlations.

5.1.2 The Sample

Because our goal was to measure the full spectral correlation reporting on rapid spec-

tral dynamics without the obfuscating effects of charging or large spectral jumps, we

required a nanocrystal sample that could be continuously excited for tens of min-

utes without bleaching or undergoing unwanted spectral dynamics. This is generally

uncommon for most nanocrystal samples under vacuum at low temperature. As a

result, we selected our nanocrystal sample for its superior optical properties rather

than its underlying physics.

4One might worry that the retroreflector tilt could cause the interferometer paths to drift into
and out of overlap. However, we observed no evidence for this in the intensities of the interferometer
outputs using micron-scale dither waveforms. It would certainly be more reliable to introduce the
dither waveform using the linear stage, but the stage used in this work was not precise enough.

5This correlator is generally used to perform FCS or DLS-style experiments.
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The best available nanocrystals at the time of this work were CdSe/CdS core/shell

nanocrystals with CdSe core synthesized according to Chen et al. [86] and epitaxial

CdS shell grown according to Chen et al. [106] These nanocrystals were highly uniform

and exhibited far less fluorescence intermittancy than previous nanocrystal samples

at analogous shell thickness. The thicker-shell examples, in particular, exhibited very

little fluorescence intermittancy under low flux excitation at room temperature and

did not exhibit statistical aging over tens of thousands of seconds.6 The sample used

in this work was synthesized according to this synthetic procedure to yield particles

that emitted at 640 nm at room temperature, with a 5.4nm diameter zinc blende

CdSe core and a relatively thick, 8 monolayer CdS shells (∼2.7 nm).

To further improve the fluorescence stability of this sample, single-nanocrystal

films were fabricated using a poly(methyl methacrylate) polymer matrix and passi-

vated at single-nanocrystal dilution with excess cadmium oleate. First, a cadmium

oleate solution was synthesized by combining 1.25 mL cadmium oleate in octadecene

and oleic acid (melted with a heat gun), 100µL decylamine, and 8.75 mL toluene. The

single-nanocrystal sample was synthesized by mixing 0.5 mL of 4% w/v of 100 kDa

PMMA in toluene and 10µL of the cadmium oleate solution, and dipping a pipet tip

briefly into a transparent, golden crashed out nanocrystal solution and dipping that

pipet briefly into the PMMA solution.7 Then, this film was spin cast on the quartz

substrate by fully covering the substrate with solution and spin casting the substrate

at 1000 rpm for one minute.

In practice, however, it must be noted that these nanocrystals only barely exhib-

ited the required fluorescence stability under vacuum at low temperature to perform

6Unlike giant-shell nanocrystals, fluorescence intermittancy in these samples was suppressed by
reducing the frequency and duration of off-events, rather than eliminating the fluorescence quenching
of the so-called dark state. This suggests superior surface properties that should lend themselves to
reduced charging and fewer large spectral jumps at low temperature.

7While this procedure is not exactly rigorous, we were not overly concerned with controlling
the exact nanocrystal concentration. We chose this procedure because it could regularly produce a
solution with an average occupancy of 2−5 in FCS without the need for serial dilution (which could
strip the nanocrystals of labile ligands).
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the full PCFS/Camera experiment. We were able to eventually measure the data

presented here, but a more exhaustive survey of the variability of rapid spectral dif-

fusion properties would not have been possible by using the full experiment to study

this sample. After the publication of this work, Mulvaney et al. [111] noted that

although CdSe/CdS nanocrystals usually exhibit high optical properties, they are

still strongly susceptible to oxidation under vacuum. They showed that the benefi-

cial optical properties of CdSe/CdS particles could be maintained under vacuum by

growing an additional thin layer of ZnS over the CdS shell. Future investigations of

spectral dynamics using PCFS should be much more feasible and straight-forward by

either using the full experiment to study CdSe/CdS/ZnS nanocrystals, or by using

a less-comprehensive, shorter PCFS experiment to study less synthetically optimized

systems.

5.1.3 Experimental Parameters and Data Collection

The experimental conditions used to collect our data were required to balance many

competing concerns. For instance, we chose to excite the sample with an excitation

flux of ∼750 W/cm2 to balance signal-to-noise with biexciton formation. On one

hand, exciting the sample with a high excitation flux is highly desirable because the

count rate of correlation functions scale quadratically with signal intensity. How-

ever, on the other hand, increasing the excitation flux also increases rate of biexciton

formation, which may lead to fluorescence instability and biexcitonic fluorescence

features. We estimate that our excitation flux generated a photon on average every

∼900 ns, yielding a manageable count rate of between 5–10 thousand counts per sec-

ond per detector.8 We observed no evidence for significant biexciton fluorescence in

our conventional spectral traces during our experiments.

8The overall system detection efficiency of the APD channels of our setup is around 1% because
of the low collection efficiency of long working distance air objectives and because we split our signal
over three detection channels.
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The parameters of the conventional spectroscopy experiment were optimized for

both the general surveillance of the single-nanocrystal spectrum and for the measure-

ment of the long-timescale dynamics of the zero-phonon line (ZPL). On one hand,

we required high enough spectral resolution to detect changes in the position of the

ZPL during the progress of rapid spectra diffusion. On the other hand, the spectral

window of the camera had to be wide enough that large spectral jumps or charging

events would not cause the spectrum to leave the spectral window. Moreover, higher

spectral resolution causes the spectrum to be dispersed over more pixels, thereby re-

ducing the signal-to-noise of each integrated spectrum. It was imperative that we be

able to pinpoint the position of the spectrum using an integration time accessible to

PCFS in order to connect the data from the two experiments. During the entirety

of the PCFS experiment, we collected a time series of integrated spectra with 250 ms

integration time, 58 meV spectral window, 0.11 meV pixel resolution, and a 0.4 meV

instrument function.9

Finally, the parameters of the PCFS experiment were chosen to balance our re-

quirements for high signal-to-noise, high spectral resolution, wide spectral window,

and finite experimental time. Forty-one correlation measurments were made stepping

from zero path-length difference to a path-length difference of 4 cm. After discrete

Fourier transform, this yielded a spectral window of 1.24 meV and a spectral reso-

lution of 15.5 µeV in the measured spectral correlation. If the nanocrystal did not

survive the entire set of 41 measurments, the interferogram could still be assem-

bled with lower spectral resolution, and if the nanocrystal remained optically active

after the entire series of correlation measurements, it could be repeated until the

nanocrystal bleached to achieve higher signal-to-noise. This spectral resolution was

high enough to approximately resolve the width of the ZPL in this sample,10 and the

9The width of the ZPL was resolution-limited, but could be fit to identify the position of the
spectrum with sub-pixel resolution.

10Note that if we measure a Lorentzian linewidth of ∼15 µeV, it will be manifested as a ∼30 µeV
spectral correlation, which is well within our spectral resolution.
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spectral window was broad enough to capture the full width of rapid dynamics, but

narrow enough to avoid aliasing effects from the other, non-ZPL features in the low

temperature spectrum.

Each correlation measurement was optimized to balance the desired temporal res-

olution of the experiment with the finite duration of the experiment. A triangle dither

waveform over ∼4 µm in path-length difference was adopted to ensure satisfaction of

the requirements for PCFS. Such a large dither form was ideal because it ensured

that the interferogram would be averaged over many fringes, but its length scale was

not even close to infringing on the very narrow (∼1 meV) spectral features measured

in this work. For experiments that only used the PCFS interferogram to measure

the spectral correlation, the integration time of each correlation measurement was

20 s and the dither period was 1 s. These conditions ensured clear satisfaction of the

PCFS requirements and used a short integration time in order to complete the scan

of 41 correlation measurements as fast as possible. However, they introduced a dither

node at ∼40 ms that prevented the connection with camera timescales. For compound

PCFS/Camera measurements, the dither period was slowed to 20 s and integration

time increased to 40 s. These adjustments shifted the dither node to around ∼800 ms,

and allowed for considerable overlap between the PCFS and camera timescales.

5.1.4 Data Analysis

The collected data was imported into Matlab for data analysis. Before the PCFS

interferogram could be assembled, each correlation measurement was analyzed using

the corresponding camera data and intensity traces to determine that it reflects a

consistent spectral position (See Figure 4-1). Then, each correlation function was

corrected for dark counts, according to the formula given in Section 3.4, each au-

tocorrelation of the sum signal was afterpulse corrected, each cross-correlation was

intensity-corrected using its corresponding corrected autocorrelation function, accord-
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ing to Equation 3.47, and then then the corrected cross-correlations corresponding

to the same path-length difference were averaged to produce a final set of unique,

self-consistent PCFS interferogram measurements. For this work, afterpulse correc-

tion was implemented by measuring the afterpulsing signal in a high signal-to-noise

measurement of a Poissonian laser. The afterpulsing feature was then removed from

each correlation measurement by fitting the short-𝜏 region of the autocorrelation with

the afterpulsing signature plus a baseline term, and subtracting the properly scaled

afterpulsing signature.

In order to apply the fast Fourier transform algorithm to the spectral correlation,

the PCFS interferogram must be represented by a linear array of evenly spaced data

points symmetrically distributed about zero path-length difference. This was achieved

by reflecting the positive path-length difference data collected experimentally across

the white fringe to approximate the negative path-length difference data (which is

physically identical),11 and linearly interpolating any (rare) gaps in the interferogram

due to brief large spectral jumps or fluorescence intermittancy. Once the complete

interferogram was assembled, each 𝜏 -slice was fast Fourier transformed to yield the

corresponding slice of the spectral correlation.

The spectral correlation cross-section plots were generated by averaging the 𝜏

cross sections of the measured spectral correlation in the vicinity of the noted 𝜏 -value

to improve the signal-to-noise of each cross sections. The linewidth of the spectral

correlation with 𝜏 was determined by fitting each interferogram cross-section with a

linear combination of exponential decays (i.e. Lorentzian peaks), Fourier transforming

the fit, and calculating its FWHM via linear interpolation. And finally, this spectral

correlation was used to approximate the autocorrelation of the integrated spectrum for

11In essence, we are enforcing that the spectral correlation is perfectly symmetric. There are other
ways of doing this, including measuring both sides of the interferogram or taking the absolute value
of the Fourier transform of the positive side of the interferogram. The former is not possible with
our white fringe position (and a wasteful prospect, besides), and the latter eliminates the possibility
of negative data points, which we need to accurately represent the interferogram baseline.
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a camera frame by calculating the weighted average of the PCFS spectral correlation

according to Equation 4.19. Additional analyses will be described as necessary, but no

smoothing of the data in 𝜏 -space was ever used except in the generation the spectral

correlation cross-section plots.

Finally, the camera data was analyzed by isolating the spectra frames correspond-

ing to the desired spectral position, fitting each frame with a Gaussian function to

determine the center-point of the spectrum over time, and calculating by brute force

the histogram of shifts between center values as a function of frame separation. This

histogram was convolved with the autocorrelation of the integrated spectrum as cal-

culated by PCFS, and its FWHM was determined by linear interpolation.

It is worth noting that both the PCFS and Camera spectral correlations often

exhibit small cross peaks that are not in keeping with our simple models of diffusion.

In the camera data, this is generally caused by the occasional large, non-ergodic

spectral shift. In the PCFS data, this may also be caused by non-ergodic effects,

rapid switching between two preferred spectral positions (responsible for the blue-

shifted side peaks in the integrated spectra shown in Figure 5-9), or aliasing of discrete

acoustic side-peaks. Either way, the small intensity of these features cause them to

have little effect on the FWHM of the spectral correlation.

5.2 Results and Discussion

We now present the results of our investigation and examine their important features.

This section will rely heavily on the the theory introduced in Section 2.5, and in

particular on the predicted behavior of the continuous Wiener model and discrete

Poisson model presented in Figures 2-10. These figures have been reproduced in

Figure 5-2 for convenience.
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Figure 5-2: Reproduction of the Wiener and Poisson diffusion model results from
Figure 2-10. Note the existence of two distinct distributions of photon pairs in the
shape of the Poisson spectral correlation and the inflection feature in its FWHM,
both of which are evidence of discrete behavior.
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Figure 5-3: A spectral correlation of a low temperature nanocrystal exhibiting discrete
spectral diffusion. The spectral correlation is (a) normalized by area as a probabil-
ity density function, and (b) baseline-subtracted and normalized by amplitude to
emphasize changes in shape.

5.2.1 Rapid Spectral Dynamics Are a Discrete Process.

One of the important features of rapid spectral diffusion that has been established in

the literature is that it is a photo-assisted, and therefore presumably discrete process.

In fact, several investigations have presented either statistical or anecdotal evidence

that the spectral diffusion trajectories caused by rapid spectral dynamics are indeed

composed of small discrete spectral jumps and periods of spectral stability. We begin

by confirming this result, and showing that the discrete character of rapid spectral

dynamics in semiconductor nanocrystals can be directly and clearly resolved in the

spectral correlation measured by PCFS.

The PCFS spectral correlation of a single nanocrystal at 4 K is shown in Figure 5-

3, normalized by area as a probability density function and baseline-subtracted and

rescaled to emphasize changes in shape. Like in the Poisson model, the evolution of the

spectral correlation exhibits two distinct temporal regimes corresponding to discrete

and quasi-continuous behavior (see arrows). For 𝜏 ≤ 2ms, the evolution of the spectral

correlation is characterized by a population transfer from a narrow peak representing

the 𝜏 intervals over which no spectral dynamics have occured, and a broad peak
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representing the 𝜏 intervals over which at least one discrete spectral diffusion event

has occurred. The “non-diffused” contribution is given by the autocorrelation of the

intrinsic spectrum of the nanocrystal, and is consistent with a ∼20µeV Lorentzian

homogeneous lineshape.12 Then, for 𝜏 ≥ 5ms, the probability of not having a diffusion

event in the 𝜏 interval has vanished and it becomes more and more likely that multiple

diffusion events have occurred. This causes the spectral correlation to be manifested

as a single distribution, which broadens and becomes more Gaussian as the average

number of discrete jump events increases.

The transition between discrete and quasi-continuous diffusion in this nanocrystal

occured at millisecond timescales, far faster than the temporal resolution of conven-

tional single-molecule spectroscopy, but clearly resolved using PCFS.

5.2.2 The Discrete Spectral Jumps Exhibit Correlated Effects

Over Several Orders of Magnitude in Time.

We can also follow the progress of progress of rapid spectral diffusion through its quasi-

continuous regime by incorporating the conventional camera data. The time series

of integrated spectra collected during a PCFS experiment on another nanocrystal is

shown in Figure 5-4. Here, we see a startling array of different types of dynamics, in-

cluding charging events causing the spectrum to shift between 1.975 eV and 1.995 eV,

many smaller spectral jumps that may be accompanied by intensity fluctuations, and

the small spectral jitter caused by rapid spectral dynamics. In order to assemble a

spectra correlation that reports on a consistent set of rapid spectral dynamics, we only

consider the behavior of the nanocrystal during its bright fluorescence at 1.975 eV (see

12It sort of looks like the non-diffused contribution is resolution-limited. It is not, but the second
data point away from zero energy separation falls in line with the straight line connecting the peak
to the baseline, so it appears to be hidden. This data point is actually about halfway up the peak,
and significantly above the baseline noise.
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Figure 5-4: The time series of integrated spectra of a low temperature nanocrystal
collected during PCFS. The nanocrystal exhibits several different types of spectal dy-
namics, which may change their dynamic behavior. We compile our PCFS data using
only correlation measurements reporting on the bright fluescence state at 1.975 eV
(see black arrow). The colored arrows indicate the times of the integrated spectra in
Figure 5-9.

black arrow).13

The corresponding spectral correlations measured by PCFS and calculated from

the camera data are shown in Figure 5-5. Unfortunately, the qualitative signature of

discrete spectral diffusion is not as clearly evident in this data, due to a combination

of the lower spectral resolution of this experiment and a slight narrower diffused dis-

tribution in the discrete regime. Nevertheless, at short 𝜏 , the spectral correlation for

this nanocrystal is also consistent with a ∼20µeV Lorentzian homogeneous lineshape,

and the evolution of the linewidth of the spectral correlation in Figure 5-5(c) closely

resembles the qualitative behavior of the Poissonian model show in Figure 5-2(c).14

Both linewidth curves reach a plateau at the linewidth of the autocorrelation of the

13We will allow for discrete jumps as long as they do not affect the overall intensity, because they
don’t appear to have a large affect on the rapid spectral dynamics and because we strictly do not
know whether they are a different phenomonon or simply extremely large instances of rapid spectral
dynamics.

14There is a 91 µeV gap between the linewidths predicted by PCFS and the camera data, which is
entirely consistent with the uncertainty we would predict from our integrated spectrum peak-fitting
process. When that is accounted for, the two data sets are in complete agreement.
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intrinsic spectrum at short 𝜏 , increase and undergo a point of inflection in the discrete

regime where the diffused and non-diffused distributions have equal amplitude, and

then adopt a power law broadening behavior during the quasi-continuous regime at

long 𝜏 .

In this nanocrystal, the transition between discrete and quasicontinuous diffusion

actually appears to occur on the timescale of tens or hundreds of milliseconds, meaning

that conventional single-molecule spectroscopy should have the temporal resolution

to observe some instances of discrete behavior. Nevertheless, the small magnitude of

these spectral jumps compared to the spectral resolution of our conventional setup

would generally obfuscate this behavior.15 In Figure 5-6, we take a closer look at a

stretch of the conventional time series data to look for discrete behavior, and come up

relatively empty. However, by combining PCFS and conventional spectroscopy, we

can measure the evolution of the spectral correlation over eight orders of magnitude

in time, and reveal that its functional behavior is fully consistent with a discrete

Poisson-like mechanism.

5.2.3 Salient Features of Rapid Spectral Diffusion Revealed

by the Spectral Correlation

Our previous results illustrated that the evolution of the spectral correlation over

eight orders of magnitude in time can be explained by a single physical process with

a discrete spectral diffusion mechanism. Using the Poisson model as a guide, there

are three major pieces of information that should define the diffusion process: the

kinetics of the discrete spectral jumps, which are first-order in the Poisson model; the

discrete jump distribution, which is a Gaussian distribution in the Poisson model;

and the quasi-continuous power law exponent at long 𝜏 , which is 0.5 in the Pois-

15Achieving higher spectral resolution would cost us either signal-to-noise or temporal resolution.
Neither of these would be acceptable.
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Figure 5-5: Compound PCFS/Camera data from the experiment conducted during
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Figure 5-6: The rapid spectral dynamics from the data in Figure 5-5 are clearly seen
in the conventional camera data, but their discrete spectral jumps are too small to
be unambiguously resolved.

son model. All three pieces of information are simulaneously accessible using the

compound PCFS/Camera experiment. In this section, we will discuss how they are

manifest in the spectral correlation and what our results tell us about them.

Discrete Jump Kinetics The most important and fundamental piece of informa-

tion about rapid diffusion that the spectral correlation gives us access to is the kinetics

of the discrete spectral diffusion process. As we discussed in Section 3.6.3, the kinetics

of spectral diffusion events are intimately tied to the 𝜏 -dependence of the area of the

non-diffused distribution. Because the linewidth of the non-diffused distribution does

not change in 𝜏 , the area of the non-diffused distribution is equivalent to its ampli-

tude. In Figure 5-7, we show the spectral correlation for a different nanocrystal with

particularly distinct diffused and non-diffused distributions. By normalizing the spec-

tral correlation by area and plotting the amplitude of the non-diffused distribution,

we can extract information about its diffusion kinetics.

Unlike in the Poisson model, the fraction of non-diffused photon pairs in this

nanocrystal is well-captured by a stretched exponential with 0.5 ms time constant.

This finding is consistent with the stretched-out point of inflection we observed in the
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Figure 5-7: (a) PCFS spectral correlation for a low temperature nanocrystal exhibit-
ing a clearly resolved diffused and non-diffused distribution. (b) Time-dependence
of the amplitude of the non-diffused distribution, which appears to fit a stretched
exponential with significant dispersion.

linewidth trace of the spectral correlation in Figure 5-5. There is something deeply

baffling about this result. Not only is the stretched exponential a generally unphysical

functional form for kinetics, but the quantity that we are considering is also not even

the jump kinetics itself. As we determined back in Section 3.6.3, it is actually the

spectra jump kinetics convolved with a falling edge.

The formulation of a kinetic model that functionally fits a stretched exponential

in the fraction of undiffused photon pairs remains an unsolved problem, but there

are three important qualitative points that we can draw from these results. First,

stretched exponentials can sometimes arise in heterogeneous systems. It is likely that

the multi-timescale kinetics we have observed in rapid spectral diffusion are caused

by temporal variations in the rate of spectral dynamics. These temporal variations

may, in fact, be intimately tied to the temporal variations in carrier trapping, which

are understood to give rise to the power law kinetics of nanocrystal fluorescence

intermittancy. Second, these kinetics results appear to be quite reproducible. In

Figure 5-8, we show the jump kinetics that I have managed to extract from several of

our available data sets. All of them show long-tail kinetic behavior that can be more
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Figure 5-8: The time-dependence of the non-diffused distribution amplitude for sev-
eral low temperature nanocrystals. Most of this data is very rough, but seems to
suggest wide variability in spectral diffusion kinetics from nanocrystal to nanocrystal
and even over time in individual nanocrystals.

or less captured by stretched exponentials. But third, the actual numerical values for

the parameters of the stretched exponential seem to vary widely from nanocrystal to

nanocrystal, even in this relatively homogeneous sample.

This is the first time that the kinetics of the discrete rapid spectral jumps have

been measured, in part because PCFS remains the only technique with high enough

temporal and spectral resolution to directly resolve jump events without arresting the

diffusion process (for example, via resonant PLE).

Discrete Jump Distribution The distribution of spectral shifts produced by in-

dividual spectral diffusion events are also encoded in the diffused contribution to the

spectral correlation. As we saw in Section 3.6.2 with the Poisson model, the diffused

distribution broadens over time as multiple diffusion events occur over the time be-

tween photon arrivals and enable the spectrum to move even further from its starting

point. Therefore, we can identify the jump distribution of a single event by measur-

ing the lineshape of the diffused distribution as 𝜏 → 0, because, in this limit, the
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likelihood of there being more than one diffusion event vanishes.

The lineshape of the diffused distribution as 𝜏 → 0 can be tricky to determine

in practice because its overall amplitude goes to zero. However, it is an important

physically-relevant parameter that is impossible to measure using a technique that

cannot resolve individual spectral diffusion events because it speaks to the overall

magnitude of individual spectral jumps. In the data we have collected for this sample,

the diffused distribution appears to vary in the vicinity of 50–500µeV. As we will

discuss later, this approximate value can place critical constraints on what underlying

physics could be responsible for rapid spectral diffusion.

Quasi-Continuous Diffusion Exponent Finally, using the camera data, we can

also track rapid spectral dynamics throughout its quasicontinuous regime. In the

Poisson model, each of the discrete spectral jump is uncorrelated, leading to a boring

Gaussian quasicontinuous spectral correlation that necessarily broadens according to a

𝜏 0.5 power law and whose width prefactor is solely defined by its discrete jump kinetics

and jump distribution. Our results corroborate previous findings that nanocrystal

rapid spectral dynamics are subdiffusive over long 𝜏 , and diffuse according to a power

law with an exponent that widely varies between 0.1 and 0.35, even in an otherwise

homogeneous sample.

This subdiffusion necessarily indicates that there is some form of correlation be-

tween spectral diffusion events. It is important to note that this correlation may

take many different forms. Correlation is often captured using autoregressive models,

which add either frictional or self-correcting forces to diffusion trajectories. Fernee’s

observations of spontaneous “relaxation” of nanocrystals to previous spectral posi-

tions after photoexcitation may suggest a self-correcting character to rapid spectral

dynamics. However, it is much more likely that the subdiffusion we observe here is

caused by a confinement force rather than some jump-to-jump memory effect. In
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practice, there will be an upper bound to the magnitude of the electric field that the

environment can impose on the core states of the nanocrystal. This constrains the

overall distance that a rapid spectral diffusion trajectory can travel from the zero-field

transition energy and will introduce correlated subdiffusive effects into the measured

spectral correlation.16

Although the quasi-continuous diffusion exponent can easily be measured using

conventional spectroscopy (as we do here), there is a certain benefit to simultaneously

measuring the exponent along with the discrete diffusion parameters that are mani-

fested at short 𝜏 . It may not be that surprising that the quasi-continuous behavior

is subdiffusive, but it is not clear why it should still be captured by a power law (as

opposed to, say, the Ornstein-Uhlenbeck broadening profile of diffusion in a harmonic

well) and why it should vary so widely from nanocrystal to nanocrystal. A more

comprehensive study of the correlation between jump kinetics, jump distribution,

and quasi-continuous exponent may shed some light on these issues.

5.2.4 The Intricate Interplay Between Spectral Diffusion Mech-

anisms

One of the striking results in the low temperature single-nanocrystal literature has

been the strong dependence of the optical properties of the nanocrystals on their time-

dependent fluorescence wavelength. For example, Empedocles and Bawendi [63] ob-

served that both the strength of exciton-phonon coupling and the integrated linewidth

defined by rapid spectral diffusion varied by a factor of four with spectral position in

their core-only CdSe nanocrystals. In Figure 5-9, we show three integrated spectra

16In their spontaneous spectral diffusion paper, Fernee et al. [263] couch their findings in terms
of an autoregressive model on the basis of the conditional probability data in their Figure 1. In
fact, almost any subdiffusive model, whether frictional, self-correcting, or confined, can potentially
reproduce the data in those figures. For instance, drawing random numbers between 0 and 1 will
produce the same “memory” effects because if you draw 0.99, you know you have a very good chance
of your next draw being less than the previous one.
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Figure 5-9: (a) Three integrated spectra from the time series in Figure 5-4, (b) shifted
in absolute energy and normalized to emphasize changes in shape. The three spectra
have different fluorescence intensities and rapid spectral dynamics. Note that the
intensities of the side peaks on the blue side of the main ZPL are anticorrelated in
time with the main ZPL peak. This suggests they are not features of the underlying
intrinsic spectrum, but that they are caused by rapid switching between two distinct
ZPL positions.

taken from the time series in Figure 5-4. These integrated spectra may not clearly

have different exciton-phonon coupling strengths in this case, but they do clearly have

different fluorescence intensities and rapid spectral diffusion magnitudes.

In fact, the variability in the linewidths of the integrated spectra in Figure 5-9

raises an important question about the wide variability in spectral diffusion parame-

ters we observed earlier among nanocrystals in our supposedly homogeneous sample.

Does this data suggest that the architectural properties of the nanocrystal that de-

fine their rapid spectral dynamics are subtle and not easily characterizable via other

techniques, or that all nanocrystals are capable of adopting a wide variety of spec-

tral diffusion behaviors, depending on the exact transient details of their surface

structure? In our final experiment, we address this question by comparing the rapid

spectral diffusion behavior of a single nanocrystal in two different discrete spectral

positions.

Figure 5-10(a) shows the time series of integrated spectra for a single nanocrystal

at low temperature. It exhibits all three types of spectral dynamics we have discussed.
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Figure 5-10: (a) Time series of integrated spectra for a single nanocrystal. (b)/(c)
PCFS spectral correlations corresponding to spectral positions I and II. (d) Time-
dependence of the FWHM of the spectral correlation of I and the diffused distribution
of II across both the PCFS and camera data.
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Charging causes an infrequent switching between the neutral, very bright state at

∼2.005 eV, and the comparitively dimmer, trion state at ∼1.985 eV.17 Additional

carrier trapping effects cause smaller discrete spectral jumps, which in this case,

bridge two spectral positions separated by ∼7 meV.18 And, rapid spectral dynamic

cause clear spectral jitter in both of the long-lived spectral positions over time on the

order of ∼1 meV.

The fluorscence from these different spectral positions exhibit different fluores-

cence properties, including different fluorescence intensities, acoustic exciton-phonon

coupling strengths, and integrated linewidths.19 All three of these parameters could

track together without any more complicated microscopic physics if the local elec-

tric field on the nanocrystal was allowed to change with spectral position (as might

be expected to occur during charging, or that certainly does occur during a sponta-

neous Stark-shifting event.) However, the spectral correlations corresponding to these

spectral positions reveal a much deeper story. The spectral correlations of the two

long-lived spectral positions, I and II, are shown in Figure 5-10(b,c). The linewidth

of the spectral correlation of I, and the linewidth of the diffused distribution of the

spectral correlation of II, are plotted across the PCFS and camera timescales in Fig-

ure 5-10(d).

Both spectral correlations exhibit the hallmarks of the discrete spectral diffusion

behavior we observed in earlier nanocrystals. The shape of the spectral correlation

of II during PCFS timescales clearly reflects the population transfer between a nar-

row, non-diffused distribution (corresponding to a nearly resolution-limited ∼15µeV

Lorentzian linewidth) and a broad diffused distribution, and the linewidth evolution

17This assignment is made on the basis of recent investigations that have reported stable trion
emission in low-temperature CdSe/CdS samples, with a binding energy of ∼20meV.

18It would be tempting to consider these the two trion states, but in CdSe/CdS samples, the other
trion state has been reported to have a much lower binding energy of ∼5meV, [181] which would
put it at around ∼2.00 eV.

19There is also a faint, blue-shifted feature that seems to roughly, but not completely track with
the spectral position of the ZPL. I am not going to read anything into that feature here.
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of the spectral correlation of I reaches a plateau at short 𝜏 (again, corresponding

to a ∼15µeV Lorentzian linewidth) and exhibits the characteristic point-of-inflection

feature of discrete diffusion at around 𝜏 = 5 ms (see arrow). Furthermore, the non-

diffused distributions in both spectral correlations seem to persist for orders of mag-

ntidue in time after the first appearance of diffusion behavior, corroborating previ-

ous observations of long-tail kinetics, and when the spectral correlations reach their

respective quasi-continuous regimes, they broaden continuously according to sub-

diffusion power laws.

Nevertheless, within the qualitative confines of this discrete subdiffusion model

with long-tail kinetics, the behaviors of the rapid spectral dynamics at these two

spectral positions could not be more different. In spectral position II, the emit-

ter undergoes fast, discrete sampling of a relatively fixed spectral distribution. By

𝜏 = 100 µs, the integrated area of the non-diffused distribution has already almost

vanished, yielding to a broad ∼300µeV diffused distribution whose width does not

increase further throughout PCFS timescales. Even in camera timescales, the diffused

distribution only undergoes minor broadening to ∼700µeV, in keeping with the sub-

tle long timescale wiggles seen in the camera data. In contrast, the spectral dynamics

of the emitter at position I are slower and more diffusive in character. The spectral

correlation of I does not appear to change notably until almost 1 ms, and when it

does, the discrete population transfer signature is almost impossible to distinguish

because of a narrow diffused distribution with a width ∼50µeV. But, once discrete

diffusion events begin to occur in I, they undergo much more correlated behavior,

which broadens the diffused distribution of I at a much more rapid rate (the quasi-

continuous exponent of I is 0.24, compared to 0.11 for II). In the end, by 𝜏 = 100 s,

the two spectral correlations appear to reach very similar linewidths, but the discrete

spectral jumps that produce this broadening are very different in character.

This experiment demonstrates that much, if not most, of the variability we observe
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in the rapid spectral dynamics of our sample, could be explained by the variability of

rapid spectral diffusion over time in individual nanocrystals due to the perturbative

effects of charging and other surface-trapping processes. The strong interplay between

charging, surface-trapping, and rapid spectral dynamics must be captured in any

legitimate microscopic model of rapid spectral diffusion.

5.3 Summary of the Properties of Rapid Spectral

Dynamics and Implications for its Physical In-

terpretation

Prior to this investigation, it was known that rapid spectral dynamics were caused by

second-order Stark interactions between the core states responsible for fluorescence

and fluctuating local electric fields. [63] These fluctuations were understood to be

discrete, photo-induced events at low temperature, usually enabled by the <100 meV

of energy released when the hot exciton relaxes to the band edge. [64, 262, 263]

And, these fluctuations were found to induce overall spectral variations on the order

of 1−10 meV in core-only or thin-shell nanocrystals, but only variations of <meV in

thicker-shell samples. [64, 262, 263] These properties are consistent with two proposed

physical models for spectral diffusion. In the first model, rapid spectral diffusion is

caused by the diffusion of surface-trapped carriers, generated during large spectral

jump events, through a manifold of trap states on the surface of the nanocrystal.

[64, 265, 266] In the second model, rapid spectral diffusion is simply a manifestation

of ligand dynamics on the surface of the nanocrystal, whose overall Stark effect on

the core states is modulated by the total local field defined by the aforementioned

trapped carriers. [263]

Our results make several important contributions to this base of knowledge. First
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of all, we have confirmed the discrete character of the rapid spectral dynamics and

showed that its correlated behavior over eight orders of magnitude in time is consistent

with a single underlying physical mechanism. Our direct observation of this discrete

process on timescales faster than those accessible by conventional single-nanocrystal

spectroscopy, has allowed us to access, for the first time, the kinetics and spectal

jump distributions of individual spectral diffusion events. The kinetics consistently

exhibit multi-timescale behavior, suggesting temporal variations in the rate of rapid

spectral diffusion that may be tied to the power law distribution of fluoresence inter-

mittancy, and the magnitudes of discrete spectral diffusion events were found to vary

in the vicinity of 50−300µeV in our CdSe/(8ML)CdS sample. Finally, we identified

fundamental differences in the character of rapid spectral diffusion between different

spectral positions in low temperature single nanocrystal fluorescence. This result rep-

resents a fundamental interplay between rapid spectral dynamics and carrier trapping

beyond the simple modulation of the overall spectral jump magnitude with overall

local electric field caused by the second-order nature of the Stark effect.

It is not obvious that a ligand-only model of rapid spectral diffusion should be

able to accomodate these additional findings. Although the structural similarities

between the disordered ligand shell and polymers could potentially rationalize the

multi-timescale kinetics of rapid spectral dynamics and the power law subdiffusion

over long timescales, our high sample homogeneity and statistically large number of

ligands surrounding each nanocrystal should not allow for order-of-magnitude vari-

ations in the spectral diffusion kinetics. There is also no clear reason why carrier

trapping or charging events should cause fundamental changes in behavior of the lig-

and dynamics. It is possible that carrier rearrangments may modify the relaxation

processes of the core excited state, thus changing the way that heat is dissipated to

the periphery of the nanocrystal and therefore the perturbation of surface ligands.

After all, the change in fluorescence intensity between positions I and II in Fig. 5-10

195



does clearly indicates a change in the non-radiative relaxation processes that compete

with fluorescence. However, more evidence will be required to substantiate a ligand

perturbation model.

On the other hand, little is known about the manifold of trap states on the surface

of the nanocrystal, whether trapped carriers are actually free to diffuse through the

manifold, or whether it features the correct heterogeneity in the radial distribution of

probability density to cause the appropriate magnitude of Stark shift during a spectral

diffusion event. The trapped carrier model is simply a phenomenological model with

only weak ties to known nanocrystal surface physics. Nevertheless, it does cleanly

rationalize (at a qualitative level) practically all of the properties we have described

here. The heterogeneous character of the manifold could explain the multi-timescale

kinetics and wide variability in spectral diffusion parameters, whereas the addition or

subtraction of diffusing carriers from the surface of the nanocrystal could explain the

severe, qualitative differences between rapid spectral dynamics across different spec-

tral positions. In light of these considerations, we suggest the possibility of a hybrid

model, where spectral dynamics are caused by the perturbation of trapped carriers

on the surface of the nanocrystal by ligand rearrangment. This model combines the

attractive features of both the ligand and carrier diffusion models.

Our discussion of the possible physical causes of rapid spectral diffusion should

be punctuated with two notes of concern. First, recent evidence may have reopened

the possiblity that rapid spectral dynamics are caused by charge trapping effects

outside the nanocrystal architecture. Previous work by Gomez et al. [71] excluded

this possiblity by examining the correlation between spectral position and spectral

linewidth in room temperature samples. They observed large spectral shifts over

around 15 meV attributed to carrier trapping effects, and saw a clear correlation

between linewidth and spectral position, which suggested that the room temperature

linewidth was being defined (or at least affected by) by rapid spectral dynamics.
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In this context, their findings that the linewidth behavior was unaffected by the

dielectric matrix indicate that the source of rapid spectral dynamics is inside the

nanocrystal architecture. However, it is also known that the application of an electric

field can dramatically increase the extent of exciton-phonon coupling, especially to

LO phonon modes. Our recent work with solution-phase PCFS indicates that exciton-

phonon coupling is one the major effects defining the room temperature linewidths,

and that failure to passivate the surface of nanocrystals can dramatically broaden

their room temperature linewidth. The results of Gomez et al. may actually reflect

the enhancement of phonon coupling with applied field, rather than comment on the

physical origin of rapid spectral diffusion.

Finally, although our results are entirely consistent with a single physical mecha-

nism of spectral diffusion, they do not necessarily preclude the possibility of multiple

mechanisms. Specifically, because most of our data draws a relatively clear distinc-

tion between the timescales of discrete and quasi-continuous diffusion, our data could

also be consistent with a combination of two distinct diffusion mechanisms. At fast

timescales, spectral dynamics could be governed by a discrete process that randomly

samples a fixed distribution (with multi-timescale kinetics and the fixed distribu-

tion given by the diffused distribution as 𝜏 → 0). This mechanism would produce

a constant broadened spectrum at long timescales, which could then undergo a sec-

ond, continuous diffusion process to produce the so-called quasicontinous behavior

observed over camera timescales. This second process could be identified because it

would necessarily broaden the non-diffused distribution if there was any probability

that the first discrete process had not occured on the timescale of continuous dif-

fusion. So far, we have not identified any clear evidence that two distinct physical

mechanisms are required.
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5.3.1 What to Do with the Magnitude of Discrete Spectral

Jumps

So far, we have done very little with the average magnitude of discrete spectral jumps

that we measured via the width of the non-diffused distribution in the spectral cor-

relation. In principle, this should be a very insightful observable because it should

be able to tell us something about either the magnitude of the charge redistributions

responsible for rapid spectral diffusion or their proximity to the core of the nanocrys-

tal. In this section, we present some rudimentary modeling designed to shed light on

the possible sources of spectral dynamics.

In a basic model of a neat nanocrystal, both the band-edge excited state and the

ground state are spherically symmetric and do not have a net dipole moment. Never-

theless, real nanocrystals may have surfaces with partial charges and trapped carriers

that impose a local electric field on the core of the nanocrystal. This (quasi-) perma-

nent field interacts with the polarizability of the excited state to induce an excited

state dipole moment and red-shift the fluorescence wavelength of the nanocrystal.

Following the treatment of Empedocles and Bawendi, [63]

∆𝐸 = 𝛼𝜉2, (5.1)

where 𝛼 is the polarizability of the excited state and 𝜉 is the local electric field at the

core of the nanocrystal. Thus, if we layer the electric field fluctuations responsible for

rapid spectral diffusion 𝜉(𝑡) over the quasi-permanent sources of local electric field 𝜉0,

noting that these permanent sources generally have a much larger magnitude than

the rapid field fluctuations, the Stark response appears to be pseudo-first-order in the

fluctuating electric field, i.e.,
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∆𝐸(𝑡) =𝛼𝜉2 (5.2)

=𝛼(𝜉0 + 𝜉(𝑡))2 (5.3)

=(𝛼𝜉20) + (2𝛼𝜉0)𝜉(𝑡) + (𝛼)𝜉(𝑡)2 (5.4)

≈(𝛼𝜉20) + (2𝛼𝜉0)𝜉(𝑡). (5.5)

This fact is important to recognize because even though the electric field from point

sources or dipoles tend to decay very quickly with distance, their resulting Stark

shift on the core states of a nanocrystal can be amplified if there is already a large

permanent electric field imposed on the nanocrystal.

With this in mind, we can estimate the overall magnitude of spectral shifts pre-

dicted for the models we discussed earlier. We will the use the following approxima-

tions: a core radius of 2.7 nm, a shell thickness of 2.7 nm, a total crystal diameter

of 5.4 nm, a polarizability of 300 nm3,20 a core/shell dielectric constant of 9, and,

where applicable, a coordinating ligand dipole moment of ∼ 1 D. We begin by deter-

mining the effect produced by trapping a carrier at radius 𝑟 from the center of the

nanocrystal. The Stark shift induced by such a trapped carrier is given by,

∆𝐸[𝑒V] = 1.29𝑒

[︂
nm2

V

]︂(︂
𝜉0

[︂
V
nm

]︂
+

1.44[Vnm]

𝑟2

)︂2

− 1.29𝜉0[𝑒V]. (5.6)

The results of Equation 5.6 are shown in Figure 5-11, for the case where the trap-

ping event occurs in a neat nanocrystal with no internal electric field and for the case

where a carrier of one charge is trapped directly opposite a previously trapped charge

with opposite charge (i.e. a second trapping event whose field is aligned with the

first trapped charge). The model predicts that a trapped charge on the surface of our

20This is the polarizability measured by Empedocles and Bawendi [63] for a CdSe particle with a
3 nm radius. The actual polarizability is probably slightly higher because of delocalization into the
CdS shell
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Figure 5-11: Predicted Stark shift induced by trapping either the first or second
charge on the periphery of the nanocrystal. This toy model suggests that a first
trapping event should induce a spectral shift around 3 meV and spectral shifts as
high as 10meV in subsequent trapping events, depending on the geometry of the
trapped charges.

CdSe/CdS nanocrystals would induce a spectral shift on the order of 3 meV (second

charge up to 10 meV), which is consistent with our experimental results (especially

given the back-of-the-envelope nature of our calculations). Next, to estimate the

magnitude of rapid spectral dynamics we would expect in the charge trapping model,

we calculate the change in field caused in both of these two cases by moving one of

the charges 0.25 nm away from the surface of the nanocrystal (Figure 5-12). These

results suggest that trapped carrier dynamics could, in principle, induce electric field

fluctuation on the order of hundreds of microelectronvolts or millielectronvolts in our

sample, as long as we are able to rationalize a 0.25 nm perturbation of surface charges.

The picture could potentially be rather different for the ligand model; it all de-

pends on the nature of the ligand. If the ligand is a charged species like oleic acid, and

the ligand dynamics responsible for rapid spectral diffusion is the pulling away of the

ligand from the surface, the calculation can be quite similar to the charge-trapping
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Figure 5-12: Spectral shifts predicted by perturbing the position of one of the trapped
charges by about a Cd-S bond length. This charge trapping model for rapid spectral
diffusion suggests discrete spectral jumps of around an meV, which is consistent with
our data given the rough character of the model.
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Figure 5-13: Spectral shifts predicted by rotating a ligand dipole 90∘ on the surface of
the nanocrystal (as a function of a prospective surface radius). This model predicts a
maximum discrete spectral shift of 0.1 µeV for a neat nanocrystal, and shifts as high
as 100µeV if there is a significant local electric field on the nanocrystal. Note that
this is the most extreme case. Minor reorganization of the surface structure that only
slightly perturbs the coordination bond vector will result in an even smaller spectral
shift.

model (although you may, or may not expect the coordination site to pull 0.25 nm

from the surface of the nanocrystal). However, if the ligand motion is more torsional,

the effect on the core state fluorescence may be more like the rotation of a dipole

electric field. The Stark shift caused by an extreme, 90∘ rotation of a ligand dipole,

is given by,

∆𝐸[𝑒V] = 1.29𝑒

[︂
nm2

V

]︂(︂
𝜉0

[︂
V
nm

]︂
+

5.9 × 10−2[Vnm2]

𝑟3

)︂2

− 1.29𝑒𝜉0[𝑒V]. (5.7)

and plotted in Figure 5-13, for a neat nanocrystal and a nanocrystal with one charge

trapped on its surface. This model shows that if rapid spectral diffusion is caused by

ligand dynamics on the surface of the nanocrystal, there must be a significant local

electric field on the nanocrystal that strongly polarizes the nanocrystal exciton. This
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field could either be caused by trapped charges or the distribution of Cd and Se atoms

(or charged ligands) on the surface of the nanocrystal. Either way, with additional

experimentation and more careful theoretical modeling, the average magnitude of the

discrete spectral shifts should ultimately be an important observable for determining

the physical cause of rapid spectral dynamics.

5.4 Future Directions

The full compound PCFS/Camera experiment we have used here to capture the full

shape of the spectral correlation has been particularly valuable in these preliminary

investigations because it has allowed us to piece together a unified and self-consistent

picture of rapid spectral dynamics over eight order of magnitude in time. However,

it would be impractical to try to use such a time-intensive experiment to characterize

the full range of spectral behavior exhibited by a given sample, and even less practical

to use it to tease out the subtle differences between samples. Not only would this

endeavor be emotionally taxing, but it would also be severely prone to selection bias

because it is only possible to probe nanocrystals and spectral positions that are stable

for tens of minutes.

There are two obvious easier and faster versions of our experiment that we can use

to study less stable behavior and to more quickly survey larger numbers of nanocrys-

tals. For instance, by choosing fewer correlation measurements spaced further apart

in path-length difference, we can explicitly target the narrow non-diffused contribu-

tion to the spectral correlation and measure its decay in amplitude as a function of

𝜏 . This experiment reveals the discrete jump kinetics with a shorter integration time,

higher-signal-to-noise ratio, or both. Similarly, if the associated camera setup had

much higher resolution (albeit a concerningly narrow spectral window), it could be

possible to calculate the spectral correlation of the camera data directly from the
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time series of integrated spectra, rather than relying on peak fitting and the PCFS

connection. The peak fitting process we have used here gives us superior precision

with our relatively low-resolution setup, but it sacrifices signal-to-noise because each

frame, with its hundreds of photon counts, is reduced to a single histogram count.

Direct calculation of the spectral correlation from the camera data would reveal the

long timescale behavior with a much shorter total integration time.

Using these shorter versions of our compound experiment, it should be possible

to characterize the average parameters of rapid spectral diffusion of a sample and

determine their variability. This would enable us to determine the effect of nanocrystal

architecture on rapid spectral dynamics, and by varying parameters such as core size,

shell thickness, ligand passivation, and host matrix, it should be possible to determine

the physical cause of rapid spectral dynamics once-and-for-all. For the record, due

to the wide variability of rapid spectral dynamics we see in our monodisperse sample

of CdSe/CdS nanocrystals, I advocate the use of single-nanocrystal sampling over an

averaging experiment like solution-phase PCFS (or its substrate analogue that we will

discuss later) for the elucidation of basic physics. Averaging over many different types

of diffusion behavior will wash out any distinctive features of the spectral correlation.

After all, the average of a bunch of power laws with different exponents is not a power

law.

There are also three, less related directions that I have been interested in but

unable to follow through on. The first, now that we can regularly determine the

linewidth of the non-diffused distribution of the spectral correlation, is to use PCFS

to study the homogeneous linewidth of the ZPL emission at low-temperature. Other

groups have argued about the intrinsic linewidth of nanocrystals, and specifically

about why CdSe/CdS nanocrystals should have a broader intrinsic linewidth than

other nanocrystals. We can directly address these questions using PCFS. The second,

is to take a closer look at the long-timescale “rapid” spectral dynamics of nanocrystals.
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In this work, we only followed 𝜏 to 100 s, but the spectral correlation was still clearly

broadening further. At some point, we anticipate that the spectral correlation will

reach a plateau width representing the maximum electric field that the rapid spectral

dynamics can impose on the nanocrystal. It might be interesting to confirm this

idea experimentally and to know what governs that upper limit. Third, we have

exclusively studied rapid spectral dynamics at 4 K. Other investigations have found

that increasing the temperature causes the spectral dynamics to increase in magnitude

and to occur on faster timescales. However, our room temperature work with S-

PCFS does not reveal any phenomenon that resembles rapid spectral diffusion at

room temperature. There is an intriguing opportunity to do some conceptual bridge-

building between the conceptual pictures of spectral diffusion at low temperature at

room temperature.21

And, finally, I personally think it would be interesting, now that single-nanocrystal

spectroscopy technology has improved so dramatically, to revisit the Stark-effect style

measurements of Empedocles and Bawendi. [63] For one thing, our ability to draw

insight from the average magnitude of spectral jumps is hindered by the fact that we

do not actually know what the magnitude of the local electric field around our single

nanocrystals are. By combining PCFS and/or camera measurements with Stark-effect

measurements, we may be able to better pinpoint the location of the rapid spectral

dynamics. And for another thing, our better camera technology should allow us to

dramatically increase the temporal resolution of a Stark-effect measurement. Empe-

docles and Bawendi presented a telling figure where they could see a spontaneous

change in the local electric field around the nanocrystal by sweeping an applied field.

Today, it could be possible to resolve the local electric field around nanocrystals with

a temporal resolution of a second, allowing for real-time measurement of the evolution

21For example, if low temperature spectral diffusion is caused by the diffusion of carriers through
a trap manifold, maybe there should not be any spectral diffusion at room temperature because
these carriers can easily thermally de-trap.
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of the local field.
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Investigating the Biexciton Quantum

Yield of Semiconductor Nanocrystals

at the Ensemble Level
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Chapter 6

Background on the Biexciton

Quantum Yield of Semiconductor

Nanocrystals

The recent developments in synthesis that we discussed in the Introduction have

addressed (or at least begun to address) many of the sub-optimal properties of semi-

conductor nanocrystals. The current arsenal of nanocrystal materials feature particles

that can emit throughout the visible and short-wave infrared; exhibit high or even

near-unity quantum yield, compact geometries, and surface functionalizability; and

can event be free of toxic materials such as cadmium, arsenic, and lead (although it is

not yet possible to have all of these properties in one). One of the properties that has

proven to be a bit tricky to address has been their performance under high-excitation

flux conditions. This is particularly problematic in device applications like LEDs,

where it is often desirable to minimize the active area of the diode, and biological ap-

plications like confocal imaging, where high excitation flux is used to achieve shorter

integration times and therefore higher temporal resolution.

Fundamentally, the problem that nanocrystals face is their long fluorescence life-
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Figure 6-1: At low excitation fluxes, nanocrystals exhibit greater brightness than
many organic dyes due to their higher absorption cross section. However, at high
excitation flux, nanocrystal exciton fluorescence reaches saturation at much lower
brightness than organic dyes due to their longer fluorescence lifetime. [192] This
drawback could be overcome by efficient multiexciton fluorescence. Data from model
developed by T.S. Bischof.

times, which can range from tens of nanoseconds for visible-emitting samples to hun-

dreds of nanoseconds or microseconds for infrared-emitting samples. [156, 188, 189]

If nanocrystals are relegated to behaving as single-photon emitters like organic dyes,

their long radiative lifetimes will cause their fluorescence to reach saturation at or-

ders of magnitude lower excitation flux and produce many fewer total photons. [192]

Instead, we would prefer to think about nanocrystals as multi-photon sources, ca-

pable of sustaining multiple excitations simultaneously. This would, in principle, al-

low nanocrystals to overcome fluorescence saturation and dramatically improve their

brightness under high-flux excitation. Figure 6-1 illustrates how efficient biexciton

fluorescence alone could increase the high-flux brightness of nanocrystals by a factor

of four due to the faster radiative rate of the biexcitonic state.
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From a practical perspective, however, for most of their history, nanocrystals

have not been multi-photon emitters. Even though it has been possible to generate

multiexcitons in nanocrystals, their close proximity in the core of the nanocrystal

enhances the probability of Auger-like and other non-radiative recombination chan-

nels that compete with biexciton fluorescence. [193, 291, 292] The quantum yield of

biexciton fluorescence has routinely been between one and two orders of magnitude

lower than the quantum yield of exciton fluorescence, making its contribution to the

total fluorescence output of the nanocrystal almost negligible, even at high excitation

flux. Moreover, the ability to generate multiexcitons is a double-edged sword because

it also means that the rate of absorption in the nanocrystal does not saturate with the

fluorescence. Under high-flux conditions, these practically non-radiative biexcitonic

states are constantly being formed and dumping energy into their local environment,

enhancing the probability of blinking events or photodamage. High-excitation flux

applications of nanocrystals require better control of multiexciton fluorescence, not

only to enhance their overall brightness, but also to prevent the detrimental effects

of multiexcitons on their fluorescence stablity.

6.1 What DoWe Know About Auger-Like Processes?

Auger-like non-radiative recombination in nanocrystals has been a topic of consider-

able study in the spectroscopy literature over the last 15 years. Early investigations

were particularly interested in this process because of the role that nanocrystal charg-

ing was understood to play in blinking dynamics.1 [66] As nanocrystals continued

to mature synthetically and blinking effects were reduced, the role of Auger-like pro-

cesses have continued to be addressed in the literature in the context of promoting

1The original charging model of blinking has been called into question, [293, 294] and that story
has become a bit more complicated since these original papers. [108, 171] But, it is certainly still
the case that a charged nanocrystal will generally have a lower quantum yield because of Auger-like
interactions between the exciton and the free charge.
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multiple exciton generation (the reverse process that generates two excitons from one

high energy exciton) and multiexciton fluorescence (our motivation here).

In broad strokes, the rate of Auger recombination is governed by two factors:

the strength of the Coulomb interactions between the three carriers (i.e. their prox-

imity) and the momentum-matching condition that couples the initial three-particle

wavefunction to the final, high-curvature excited state. [295] Any architectural change

that affects either the proximity of the carriers or the curvature of their wavefunctions

should be tied to a change in the Auger rate. The Auger rate has been dramatically

decreased in several investigations by decreasing the Coulomb interaction between

the carriers, including by increasing particle volume [296, 297] and by decreasing

the electron/hole overlap in type-II and quasi-type-II heterstructures. [298, 299] In

fact, these investigations have reported increases in the Auger lifetime by orders of

magnitude. Nevertheless, these approaches have been found to be somewhat sub-

optimal because of the wider implications attached to the magnitude of the Coulomb

interaction. Nanocrystal size impacts the Coulomb interaction responsible for Auger

recombination, but it also defines the emission wavelength; the electron/hole overlap

impacts the Coulomb interaction responsible for Auger recombination, but it also

defines the rate of single exciton fluorescence.

Cragg and Efros [300] have suggested decreasing the rate of Auger recombina-

tion via the momentum-matching constraint instead. It is well-known that other-

wise monodisperse nanocrystal samples generally have highly heterogeneous Auger

rates, which result in multiexponential PL decay curves and wide variability in the

biexciton/exciton quantum yield ratio from dot-to-dot. [187, 193] This variability is

probably due the poorly-controlled interfacial properties of nanocrystals, which can

introduce abrupt potential boundaries that introduce curvature into the band-edge

wavefunctions and provide better momentum-matching between the initial and final

states of the Auger process. [300, 301] The existence of a small minority of nanocrys-
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tals with nearly unity biexciton quantum yield suggests that better synthetic control

of the nanocrystal surface properties could significantly improve the multiexciton flu-

orescence quantum yield of samples. A recent investigation has put this principle into

practice, demonstrating that the biexciton quantum yield of CdSe/CdS nanocrystals

could be both increased and made more homogeneous within the sample, by insert-

ing an intentionally alloyed CdSeS layer between the core and pure CdS shell. [186]

The optimization of nanocrystal syntheses with superior interfacial properties could

therefore result in nanocrystals with very efficient multiexciton fluorescence and high

suitability for high-excitation flux applications.

6.2 How DoWeMeasure Multiexciton Fluorescence?

One of the major reasons why the optimization of the multiexciton quantum yield has

not received more attention in the synthetic literature is because it is a subtle observ-

able that is relatively difficult to measure. It has generally been measured using one

of three approaches, all of which require special spectroscopy expertise and/or consid-

erable time on the part of the experimenter. The inherent difficulty of characterizing

multiexciton behavior has relegated the study and optimization of multiexciton flu-

orescence to the relatively small number of nanocrystal research groups who have

expertise in both synthesis and spectroscopy.

The first method for characterizing multiexciton dynamics is to use transient pho-

toluminescence or transient absorption experiments to measure the average popula-

tion lifetime of the biexcitonic state. [292, 296, 301, 302] In this strategy, the PL

decay trace or ground state bleach is measured under low excitation flux to measure

the population dynamics of the excitonic state. Then, the excitation flux is increased

to determine how the decay or bleach is affected by the addition of multiexcitons. By

comparing the high- and low-flux data, it is possible to isolate the population decay
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of the biexcitonic state and calculate its Auger lifetime and quantum yield. This ap-

proach directly measures the population dynamics of multiexcitonic states, the more

physically-relevant observable, and, as an ensemble technique, it can immediately

speak to the average behavior of multiexcitons within a given sample. However, it

relies on the careful modeling of multiexponential decay traces, requires ultrafast ca-

pabilities, and is prone to charging and other high excitation flux artifacts. [303] The

accuracy of the analysis is fundamentally based on the idea that the excitonic behav-

ior of the sample is consistent at low and high excitation flux, even though high flux

excitation is known to cause photodamage, increased blinking, and other effects that

may change the functional form of the excitonic population dynamics.2 Moreover,

translating the often highly multiexponential population dynamics of the biexcitonic

state into a precise measurement of the biexciton quantum yield of the sample is a

difficult prospect, at best.

The second method for characterizing the multexciton dynamics of a sample is

to model its fluorescence intensity saturation as a function of excitation flux (as in

Figure 6-1). [187] This strategy can be applied to a thick film or concentrated solu-

tion of nanocrystals to measure the average sample properties or it can be applied

to individual nanocrystals. As an ensemble method, saturation modeling directly ad-

dresses the essential applications-oriented question, namely, how bright we can make

the nanocrystal sample, using a very simple and inexpensive optical setup. However,

saturation models will generally need to parameterize the absorption cross-sections

and quantum yields of higher multiexcitons in order to capture the data, generating

a many-variable fit with little quantitative precision in any given parameter, and, as

a high-flux ensemble technique, it may also conflate the multiexciton information we

desire with excitonic effects such as photodamage, charging, and blinking. Fluores-

2For instance, the excitonic baseline of the Transient PL data presented by Bae et al. [186]
appears to notably change with excitation flux, even though they stir their sample. This may be
actually be caused by long-lived biexcitons, but it is difficult to know for sure.
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cence saturation can also be performed on single nanocrystals in a single-nanocrystal

microscope. [187] This strategy is more resilient to blinking and other excitonic ef-

fects and allows the experimenter to monitor variability within the sample, but it

also uses a more complicated optical setup, requires the experimenter to measure a

large number of nanocrystals to achieve statistical significance, and is still prone to

uncertainty in its many-variable fits.

The final method for characterizing multiexciton dynamics is to use single-nano-

crystal photon-correlation experiments (SNC-𝑔(2)) to measure the fluorescence quan-

tum yield of the biexcitonic state in individual nanocrystals. [166] As discussed in

the introduction, SNC-𝑔(2) experiments excite a single nanocrystal with pulsed ex-

citation and measure the relative probability of detecting either two photons after

a single excitation pulse, caused by fluorescence from both the biexcitonic and ex-

citonic states, or detecting single photons in two subsequent excitation pulses, both

from excitonic states. As long as the absorption by the nanocrystal during each ex-

citation pulse is Poissonian, the ratio of these probabilities is equivalent of the ratio

of the quantum yields of the biexciton and exciton. This experiment directly mea-

sures the most purely biexcitonic, applications-relevant observable without the need

for modeling, namely, how much biexciton fluorescence suffers due to the compet-

ing many-body non-radiative channels, and it does so under low excitation flux with

high resilience to excitonic effects.3 Nevertheless, the SNC-𝑔(2) experiment requires

a single-photon correlation setup, and it is a relatively long experiment to perform

(∼5–30 min, depending on the blinking dynamics of the nanocrystal and the required

signal-to-noise). The long duration of the experiment introduces a concerning av-

enue for selection bias effects, because studied nanocrystals must remain optically

active long enough to complete the experiment, and it also makes the process of

measuring the average quantum yield ratio of a sample extremely time consuming,

3As long as only the photon pairs drawn from the bright state are considered.
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because of the wide variability of biexciton quantum yield within nanocrystal samples.

[187, 193, 304]

All of these techniques have clear benefits and drawbacks that can make each

one of them the appropriate tool for a given type of investigation. However, none of

them offer a straight-forward, plug-and-play means for characterizing the biexcitonic

behavior resulting from a given synthesis, with high accuracy and precision. Such

a tool would be extremely helpful and convenient for any efficient sythetic effort

to optimize the surface properties of nanocrystal samples for ideal multiexcitonic

fluorescence.

6.3 The Plan

Our goal is to develop a convenient and reliable experiment for measuring the average

biexciton fluorescence quantum yield of a sample of nanocrystals. This experiment

should combine the beneficial features of the SNC-𝑔(2) experiment, including the direct

measurement of the biexciton/exciton quantum yield ratio, low excitation flux condi-

tions, resilience to artifacts, and the use of a single-nanocrystal microscope that can

also be used to measure a variety of other sample properties, with the beneficial fea-

tures of ensemble measurements, including high sample statistics, short experimental

time, and the lack of user selection bias. Furthermore, to aid in synthetic optimiza-

tion, our experiment should be capable of measuring the sample-averaged quantum

yield ratio with high precision to identify subtle changes from sample to sample, and

be capable of measuring the biexcitonic properties of synthetically underdeveloped

materials. As we will demonstrate, all of these properties can be achieved in a single

experiment by using the conceptual framework of SNC-𝑔(2) to study a dilute solution

of nanocrystals.
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6.4 Conceptual Summary of the Solution-Phase 𝑔(2)

Measurement

Photon-antibunching measurements were initially used in the 1970’s to confirm the

quantum nature of light. In their investigation of gas-phase sodium atoms, Kimble et

al. [305] showed that when they excited a dilute atomic beam using a CW dye laser,

the autocorrelation function of the emission decreased towards 𝑔(2)(𝜏) = 0 as 𝜏 → 0.

This finding was inconsistent with a classical result, which would predict a maximum

in the autocorrelation function as 𝜏 → 0, and instead consistent with quantum theory

both with regards to the single atomic emitter and the quantized radiation field. The

idea was that the detection of a first photon collapses the emitter wavefunction into

the ground state, rendering it non-emissive until it can be re-excited. As a result,

quantum mechanics predicts that, for a single-quantum emitter, 𝑔(2)(0) = 0, and that

𝑔(2)(𝜏) should then increase with 𝜏 according to the PL decay of the emitter.

The experimental manifestation of antibunching was made more conceptually ex-

plicit using pulsed excitation. [306, 307] Here, the single-quantum emitter is excited

at distinct temporal intervals. According to quantum theory, an individual two-level

emitter should only be able to absorb a single photon per pulse and emit a single

photon in the period of time following excitation. The resulting autocorrelation of

the emitted signal should therefore be captured by a series of peaks spaced at the

repetition period of the laser, with each peak being defined by the autocorrelation of

the PL decay. But in the case of a single-quantum emitter, there should not be a

peak at 𝜏 = 0 because it is impossible for multiple excitation-emission cycles to occur

following a single excitation pulse.4 The pulsed and continuous-wave excitation forms

of the antibunching experiment are functionally very similar, but the pulsed version

4This assumes that the excitation pulse is much shorter than the PL decay. If it is not, there
may be a small peak at 𝜏 = 0 corresponding to the case where the emitter fluorescences during the
excitation pulse and still has an opportunity to be re-excited.
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offers a quantitative advantage because antibunching is measured by comparing the

magnitudes of the center and side peaks rather than functionally fitting a continuous

antibunching signature.

With the rise of single-molecule spectroscopy, the antibunching experiment be-

came an important tool for spectroscopists to demonstrate that they were indeed

studying an individual single-quantum emitter, rather than an aggregate, or to iden-

tify how many single-quantum emitters were being investigated. Figure 6-2 illustrates

that, even if there are multiple single-quantum emitters in the focal volume, there

is a distinctive difference in the number of recombination pathways that can provide

correlation counts in the center and side peaks of the autocorrelation function. In

fact, if the emitters have uniform brightness, the ratio of the magnitudes of the center

peak 𝑔
(2)
0 and side peak 𝑔

(2)
𝑇𝑟𝑒𝑝

is simply given by,

𝑔
(2)
0

𝑔
(2)
𝑇𝑟𝑒𝑝

= 1 − 1

𝑛
, (6.1)

where 𝑛 is the number of single-quantum emitters in the focal volume.

Nair et al. [166] later adapted this antibunching measurement to investigate the

biexciton quantum yield of individual nanocrystals by noting that the multiexciton

emission of individual nanocrystals was actally fairly similar to having multiple emit-

ters in the focal volume. After all, in the event that a nanocrystal could indepen-

dently absorb and emit arbitrarily large numbers of photons, the fluorescence from

the nanocrystal should not exhibit any antibunching at all.5 In the low excitation flux

limit, where the nanocrystal is never excited more than twice in a single pulse, this

idea could be used to compare the relative brightness of the nanocrystal biexciton

5Note that because the biexciton and exciton are not independent emitters, the number of path-
ways for each correlation peak is different from the independent emitter case in Figure 6-2. Under
low flux excitation, a nanocrystal with unity biexciton/exciton quantum yield and no higher multiex-
citon emission will exhibit no antibunching, rather than the two-independent-emitter behavior. You
can rationalize this by noting that the higher multiexcitons are never created during the experiment,
so their low quantum yield is never reported.
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Figure 6-2: (a) Number of pathways that produce two photons from two single-
photon emitters after a single excitation pulse and in subsequent excitation pulses.
(b) General mathematical expression for the peak area ratio with either two or 𝑛
single-photon emitters.
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Figure 6-3: (a) Number of pathways that produce two photons from a two-photon
emitter after a single excitation pulse and in subsequent excitation pulses. (b) Math-
ematical expression for the peak area ratio for one two-photon emitter under low
excitation flux.

and excition (Figure 6-3). Nair et al. showed that if the absorption cross-sections

of the biexcitonic and excitonic states were the same, a comparison of their relative

brightness simply reduced to a comparison of their quantum yields, i.e.,

𝑔
(2)
0

𝑔
(2)
𝑇𝑟𝑒𝑝

=

⟨︀
𝛾𝑥𝛾𝑏𝑥

⟩︀
⟨︀
𝛾𝑥𝛾𝑥

⟩︀ ∼ 𝛾𝑏𝑥
𝛾𝑥

, (6.2)

where 𝛾𝑥 represents the quantum yield of the excitonic state, 𝛾𝑏𝑥 represents the quan-

tum yield of the biexcitonic state, and
⟨︀
· · ·
⟩︀
represents the time average over the

integration time of the experiment, taking into account intensity fluctuations due to

blinking and other effects.

The analysis of Nair et al. [166] requires that there be only a single nanocrystal in

the focal volume. There is little ambiguity in the regime typical of nanocrystals, where

the biexciton quantum yield is much less than the exciton quantum yield. Based on

Equation 6.1, multiple particles of similar brightness cannot produce an antibunch-

220



ing ratio less than 0.5, and the observation of a < 0.5 peak area ratio can serve as

both confirmation of the single-nanocrystal identity and an accurate measure of the

quantum yield ratio.6 Unfortunately, if the peak area ratio is greater than 0.5, low

excitation flux measurements cannot be used to determine if the antibunching feature

has been eroded by the existence of multiple particles in the focal volume or by effi-

cient biexciton fluorescence. In this case, some other experimental method would be

required to confirm that the sample is a single particle and that the biexciton/exciton

quantum yield ratio is indeed greater than 50%.7

Nevertheless, if we know, through whatever means, how many particles are in the

focal volume, it is straightforward to parse the sources of eroded antibunching from

multiple particles and from multi-photon emission. In Figure 6-4, we visually derive

the significance of the peak area ratio for the case of two (identical) two-quantum

emitters in the focal volume. The cruicial point is that the peak area ratio is broken

up into two parts: the first part representing contributions to the center peak from

different particles and the second part representing the average antibunching behavior

expected for each of the individual particles in the focal volume. All that we need to

know to back out the average quantum yield ratio is the fraction of the total number

of photon pairs in each peak that originate from the same particle, which is directly

related to the number of particles in the focal volume.

This fact is essential for understanding the antibunching feature produced by a

solution-phase sample where particles are free to diffuse through the focal volume.

Even though we may not know at any given moment how many particles are in the

focal volume, autocorrelation analysis can tell us what the average occupation of the

6It should be kept in mind that a sub-0.5 peak area ratio can be produced by two particles with
very different brightnesses. A good example would be if there were a second nanocrystal on the
periphery of the excitation spot. Luckily, such a second particle would be spatially-resolved in a
confocal scan.

7The good news is that the antibunching feature of a single particle with high biexciton quantum
yield should have a different excitation-flux-scaling than two particles with low biexciton quantum
yield. This is discussed in T.S. Bischof’s thesis.
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Figure 6-4: (a) Number of pathways that produce two photons from two two-photon
emitter after a single excitation pulse and in subsequent excitation pulses. (b) General
mathematical expression for the peak area ratio with 𝑛 two-photon emitters under
low excitation flux.
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focal volume is. Figure 6-5 shows the continuous-wave FCS curve from Figure 1-

7(c), annotated with its important characteristics. As we discussed in the Chapter

1, the FCS curve is proportional to the conditional probability of detecting a second

photon given that some particle in the focal volume had emitted a photon some time

𝜏 before. At all times, there is a constant, uncorrelated probability of detecting a

photon from a different particle, regardless of the optical behavior of the particle

that emitted the first photon. This fixed probability is captured by the Poissonian

background of the FCS autocorrelation function. However, there is an additional

correlated probability that the same particle will emit a second photon, which is

governed by the physics of that emitter. This correlated probability is given by the

amplitude of the FCS autocorrelation function above the Poisson background, which

vanishes at short 𝜏 because of antibunching, vanishes at long 𝜏 because of particle

diffusion, and has an overall magnitude at intermediate 𝜏 given by the inverse of the

average occupation of the focal volume. [167] Furthermore, just as the fixed sample

antibunching feature does not reach zero in the case of multiple independent emitters,

several investigations have been able to tie incomplete solution-phase antibunching

to dye and/or nanocrystal aggregation. [308, 309]

FCS therefore gives us exactly the information we need to know in order to unpack

the peak area ratio of a solution-phase sample. The total fraction of photon pairs that

are contributed to the center and side peaks of a pulsed-excitation autocorrelation

function from different particles in the focal volume is given by the area of side peaks

at 𝜏 beyond the diffusion time of the fluorophores in the sample, and the average

quantum yield ratio of fluorophores in the sample is given by the peak area ratio after

this constant background is subtracted from the center and side peak magnitudes.

That is, ⟨︀
𝛾𝑥𝛾𝑏𝑥

⟩︀
⟨︀
𝛾𝑥𝛾𝑥

⟩︀ =
𝑔
(2)
0 − 𝑔

(2)
𝜏→∞

𝑔
(2)
𝑇𝑟𝑒𝑝

− 𝑔
(2)
𝜏→∞

, (6.3)

where, in the normalized version of the autocorrelation function, the Poissonian back-
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Figure 6-5: FCS trace from Figure 1-7(c), annotated with the physical information
that can be extracted from it.

ground 𝑔
(2)
𝜏→∞ is unity. We can further relate this expression to that derived in Fig-

ure 6-4 by noting that the in the normalized form of the autocorrelation function the

area of the side peak is given in FCS as 1 + 1
⟨𝑛⟩ , and rearranging this expression to

yield,
𝑔
(2)
0

𝑔
(2)
𝑇𝑟𝑒𝑝

=

⟨︀
𝑛
⟩︀

⟨︀
𝑛
⟩︀

+ 1
+

1⟨︀
𝑛
⟩︀

+ 1

⟨︀
𝛾𝑥𝛾𝑏𝑥

⟩︀
⟨︀
𝛾𝑥𝛾𝑥

⟩︀ . (6.4)

This equation does not quite match the fixed particle case from Figure 6-4 because

FCS features a Poisson distribution of emitters in the focal volume, not a fixed num-

ber.8 But, the deeper difference between the fixed and diffusing cases is that whereas

the average of the quantum yield terms in the fixed particle case is simply the average

of the properties of the 𝑛 particles in the focal volume, the diffusing case averages

the quantum yield values of all of the particles that diffuse through the focal vol-

ume during the measurement. Not only does a solution-phase 𝑔(2) approach give us

the quantitative precision of a 𝑔(2) measurement, but it also gives us the large and

representative sample size of solution-phase or ensemble measurements.

In the next Chapter, we will extend the formalism of Nair et al. [166] to show that

8This will be evident in the math in the next Chapter.
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their quantum yield ratio result used to study biexciton fluorescence in nanocrystals

can be cleanly and predictably translated to a solution-phase sample.
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Chapter 7

Theory Behind the Solution-Phase

𝑔(2) Experiment

We now describe the theoretical details of the solution-phase 𝑔(2) experiment. We will

begin with a derivation of the significance of the center to side peak area ratio of the

pulsed-excitation autocorrelation function of the fluorescence from a focal volume of

emitters freely diffusing in solution. Then, we will discuss several topics relating to

the practical application of the experiment, including how to calculate the uncertainty

in the measured quantum yield ratio, considerations that dictate the choice of average

occupation, some tricks for making long measurements, and how to handle samples

with particularly long radiative lifetimes. This chapter is heavily influenced by, and

sometimes directly copied from, the supplemental material in Beyler et al. [244]

7.1 Derivation of the Solution-Phase 𝑔(2) Experiment

7.1.1 Notation

Consider a solution-phase sample composed of particles that are each defined by the

following properties:
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∙ �⃗� = (𝑎1, 𝑎2, ..., 𝑎𝑛, ...) : the absorption cross sections of their (𝑛−1)X multiexci-

tonic state for absorbing a photon and transitioning to their 𝑛X multiexcitonic

state. All of them will be considered uniform and constant in time at value 𝑎.

∙ �⃗� = (𝛾1, 𝛾2, ..., 𝛾𝑛, ...) : the quantum yields of their 𝑛X multiexcitonic state for

emitting a photon while relaxing to their (𝑛− 1)X multiexcitonic state.

∙ 𝑝(𝑡) : the time-dependent rate of excitation, based on �⃗� and the diffusion tra-

jectory of the particle.

The sample itself and our microscope will be defined by the following experimental

parameters:

∙ 𝑉0 : the arbitrarily large reference volume defined for the purposes of the deriva-

tion.

∙ 𝑃𝑆𝐹 (�⃗�) : the point spread function of excitation flux in the microscope.

∙ 𝑁0 : an instantaneous number of particles in the reference volume.

∙ 𝜑(𝑡) = 𝛾1𝑝(𝑡) : the FCS detectivity function.

∙ 𝑉 : the focal volume of the microscope, defined in Equation 7.64.

∙
⟨︀
𝑛
⟩︀
: the average occupancy in the focal volume.

We will also be interested in several correlation observables, including:

∙ 𝑃𝑖(𝑛, 𝑝(𝑡)) : the probability that the 𝑖th nanocrystal in the focal volume will

generate 𝑛 photons after a given excitation pulse, given its average excitation

rate 𝑝(𝑡).

∙ 𝑃𝑇 (𝑛,𝑁0, {𝑝𝑖(𝑡)}) : the total probability that the 𝑁0 particles in the reference

volume will generate 𝑛 photons after a given excitation pulse, given their average

excitation rates {𝑝𝑖(𝑡)}.
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∙ 𝐺(2)(𝑇, 𝑡) : the probability of generating a correlation count in the peak at

𝜏 = 𝑇 after the excitation pulse (or pair of pulses) at time 𝑡.

∙ 𝐺(2)(𝑇 ) : the average probability over the integration time of the experiment of

generating a correlation count in the peak at 𝜏 = 𝑇 . i.e. 𝐺(2)(𝑇 ) =
⟨︀
𝐺(2)(𝑇, 𝑡)

⟩︀
.

∙ 𝑔
(2)
𝜏 : the integrated area of the normalized autocorrelation function over the

correlation peak at 𝜏 . This is given by 𝑔
(2)
𝜏 = 𝐺(2)(𝜏)

𝐺(2)(𝑇→∞)
.

Furthermore, for the purposes of this derivation,

∙ Poi(𝑚, 𝑝) : the Poisson distribution, evaluated at 𝑚 with an average value of 𝑝.

∙
⟨︀
· · ·
⟩︀
: time average over the integration time of the experiment.

7.1.2 Assumptions and Requirements

Four assumptions and requirements are needed to satisfy the mathematical approxi-

mations used for our derivation.

1. The experiment must be performed under low excitation flux.

Each excitation pulse is required to induce many fewer than one excitation both in

each particle and in the focal volume as a whole, where the threshold conventionally

used for this requirement is approximately one excitation per ten excitation pulses.1

The limit is strictly required to hold for each particle to eliminate the existence of

higher order excitions and to enable straightforward simplification of the Poisson

distribution. With this condition, we can discard terms that are higher than second-

order in excitation flux and arrive at a fixed result that is independent of the precise

excitation flux used. This is critical because particles will diffuse through the focal

1An average excitation rate of one tenth is regarded as a strong and safe threshold. In practice,
and especially with low quantum yield samples, experimental deviation from the low flux limit is
sometimes not observed until the excitation flux approaches the order of one excitation per pulse.
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volume and experience wide variations in their excitation flux. If the contribution

that each particle makes to the peak area ratio fluctuates with excitation flux, the

interpretation of the peak area ratio will be strongly contingent on both the shape of

the focal volume and the total excitation flux through it. We do not want that.

The requirement that low flux excitation be maintained for the focal volume as

a whole may not be strictly necessary; we will later show that high occupancies do

not appear to cause measurable experimental deviation from our theoretical results.

However, it is a very convenient requirement from a mathematical perspective, and I

have not been very interested in playing with it further. As we will find later, there

is no reason to conduct the experiment at high average occupancy unless the signal

is very weak, so both low flux requirements will generally be satisfied under similar

conditions.

2. All relevant nX states have the same, time-independent absorption

cross section.

This assumption ensures that a Poisson distribution of excitons will be produced

by individual excitation pulses. On its face, it may seem like a strange claim. However,

in the low flux limit, it really only needs to apply to the excitonic and biexcitonic

states, and it can be easily achieved in nanocrystals by using excitation photons with

energy much greater than the nanocrystal band gap. I suspect that breaking this

requirement simply adds some sort of relative absorption prefactor to each quantum

yield term. If you can carefully characterize the relative absorption, you can probably

correct for non-Poissonian absorption. We also require that the absorption cross

sections be time-independent because we have no evidence for large fluctuation in

absorption, and honestly, that would be a huge pain. This will probably become

obvious when we start to consider fluctuations in the excitation flux due to particle

diffusion.
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3. The laser repetition period is much longer than the emitter lifetime

but much shorter than the emitter dwell time.

The requirement that the repetition period be much longer than the emitter life-

time is taken directly from the SNC-𝑔(2) theory. Essentially, we want to ensure that

each particle reaches the ground state before the next excitation pulse to avoid cross-

pulse multiexciton formation. This sort of effect would disrupt our Poissonian distri-

bution of excitations from the previous assumption by converting some of the exciton

population into biexcitons. Our second requirement that the laser repetition period

be shorter than the emitter dwell time is needed because if diffusion is allowed to

occur between subsequent excitation pulses, the particle may leave the focal volume

before the second pulse and decrease the overall magnitude of the side peak. This

would cause an overestimate of the quantum yield ratio. We will discuss later how to

handle cases where both of these requirements cannot be met simultaneously.

4. There is no sample aggregation and the occupation of the focal volume

is therefore Poissonian.

We require the diffusion of particles in the focal volume to be uncorrelated and er-

godic so that cross-particle photon pairs always contribute to the Poisson background

and can be cleanly subtracted. Aggregation will cause correlation between the fluores-

cence behavior of different particles, causing them to masquerade as single particles

with very high multiexciton quantum yield and to inflate the measured quantum yield

ratio in the exact same fashion as having multiple particles in the focal volume of

a fixed-sample correlation measurement. Aggregation can be identified by the large

spikes in fluorescence intensity they produce as they diffuse through the focal volume,

or more rigorously by using photon-counting histogram. We will later confirm that

our sample preparation does not generally cause aggregation by demonstrating that
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serial dilution does not affect our measured peak area ratio,2 and by demonstrating

that we can measure a quantum yield ratio of approximately zero in certain samples.3

7.1.3 Derivation

Our strategy will be to calculate the peak-integrated 𝑔(2)(𝜏) based on the average

result from a single excitation pulse or pair of excitation pulses. In essence, since

𝑔(2)(𝜏) =
⟨𝐼(𝑡)𝐼(𝑡 + 𝜏)⟩
⟨𝐼(𝑡)⟩⟨𝐼(𝑡 + 𝜏)⟩ , (7.1)

the area of the center peak of 𝑔(2)(𝜏), 𝑔(2)0 , will be equal to the average number of

correlation counts generated during a given single pulse 𝐺(2)(𝜏 = 0) divided by the

square of the average number of photons produced during a single pulse. Similarly,

the area of the side peak of 𝑔(2)(𝜏), 𝑔(2)𝑇𝑟𝑒𝑝
, will be equal to the average number of

correlation counts generated across two successive excitation pulses 𝐺(2)(𝜏 = 𝑇𝑟𝑒𝑝)

divided by the square of the average number of photons produced after a single pulse.

We note that the denominator term in both of these quantities is the average number

of correlation counts you would expect to occur across two pulses if the behavior of

the focal volume were uncorrelated between pulses (as will occur in solution as 𝜏 → ∞

because of particle diffusion). Thus,

𝑔
(2)
0 =

𝐺(2)(0)

𝐺(2)(𝜏 → ∞)
, (7.2)

and,

𝑔
(2)
𝑇𝑟𝑒𝑝

=
𝐺(2)(𝑇𝑟𝑒𝑝)

𝐺(2)(𝜏 → ∞)
. (7.3)

2Serial dilution has often been tied to aggregation and other types of sample degradation because
it can reduce the availability of labile ligands for surface passivation.

3This test obviously only works if the sample itself has no biexciton emission. If aggregation were
adversely affecting our results, it would be impossible to measure a zero biexciton quantum yield
because of the correlated photon pairs produced by aggregated particles. [308]
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We begin by deriving the values of 𝐺(2)(0), 𝐺(2)(𝑇𝑟𝑒𝑝), and 𝐺(2)(𝜏 → ∞) for a single

particle fixed inside the focal volume, reproducing the results presented elsewhere,[166]

and then use these results to derive their values for a single particle diffusing through

the focal volume, and finally, for a Poisson distribution of particles in the focal volume.

A Fixed Single Particle

Consider a single fluorophore fixed at a given position in the focal volume and de-

fined by its excitonic absorption cross-section vector at the given excitation wave-

length �⃗� = (𝑎1, 𝑎2, ..., 𝑎𝑛, ...), which represents the absorption cross section of the

(𝑛− 1)X multiexcitonic state for absorbing another photon to form an 𝑛X state, and

its quantum yield vector �⃗� = (𝛾1, 𝛾2, ..., 𝛾𝑛, ...), which expresses the probabilities that

the fluorophore emits a photon when relaxing from its 𝑛X multiexcitonic state to its

(𝑛− 1)X state. We have assume that the absorption cross section vector is approxi-

mately constant and uniformly given by the parameter 𝑎. But, we do not make any

assumptions about the value or time-dependence of the quantum yield vector. In

fact, we suspect that it may be time-dependent due to the intensity fluctuations that

nanocrystals tend to exhibit. The probability that this fluorophore emits 𝑛 photons

following an excitation pulse at time 𝑡 will generally take the form,

𝑃 (𝑛) =
∞∑︁

𝑚=0

𝐴(𝑚)𝐸(𝑛,𝑚), (7.4)

where 𝐴(𝑚) represents the probability that the emitter absorbs exactly 𝑚 photons,

given �⃗� and the excitation flux at its position in the focal volume, and where 𝐸(𝑛,𝑚)

represents the probability that these 𝑚 excitons result in the emission of 𝑛 photons.

The absorption component of this expression takes a simple form given our assump-

tion that the absorption cross sections of all multiexcitonic states are the same. Under

these conditions, the formation of multiple excitons in the nanocrystal are indepen-
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dent and 𝐴(𝑚) can be approximated by a Poisson distribution whose average excita-

tion rate 𝑝 is dependent on the absorption cross section 𝑎 and the excitation flux at

its positions 𝑃𝑆𝐹 (�⃗�), i.e.,

𝐴(𝑚) = Poi(𝑚, 𝑝) =
𝑝𝑚𝑒−𝑝

𝑚!
. (7.5)

Furthermore, because the experiment is conducted in the low excitation flux regime,

we can discard any terms that are third-order in 𝑝 or above, including all terms

involving 𝐴(𝑚 > 2).

The emission component of Equation 7.4 is simply dictated by combinatorics and

can be constructed by enumerating the probabilities of all possible exciton relaxation

pathways. For example, there are two relaxation pathways that result in a biexci-

ton producing exactly one photon: either a photon is emitted during the biexciton

relaxation but not during the exciton relaxation (with probability 𝛾2(1 − 𝛾1)) or a

photon is emitted during the exciton relaxation but not during the biexciton relax-

ation (with probability 𝛾1(1−𝛾2)). Combining this rationale with Equation 7.5 yields

the probability of getting certain numbers of photons from a particular pulse, given

𝑝,

𝑃 (0, 𝑝) = Poi(0, 𝑝) + Poi(1, 𝑝)(1 − 𝛾1) + Poi(2, 𝑝)(1 − 𝛾2)(1 − 𝛾1), (7.6)

𝑃 (1, 𝑝) = Poi(1, 𝑝)(𝛾1) + Poi(2, 𝑝) [𝛾1(1 − 𝛾2) + 𝛾2(1 − 𝛾1)] , (7.7)

𝑃 (2, 𝑝) = Poi(2, 𝑝)𝛾1𝛾2, (7.8)

𝑃 (𝑛 ≥ 3, 𝑝) = 0, (7.9)
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or expanded to second-order in 𝑝:

𝑃 (0, 𝑝) = 1 − 𝛾1𝑝 +

[︂
1

2
(𝛾1 − 𝛾2) +

1

2
𝛾1𝛾2

]︂
𝑝2, (7.10)

𝑃 (1, 𝑝) = 𝛾1𝑝 +

[︂
1

2
(𝛾2 − 𝛾1) − 𝛾1𝛾2

]︂
𝑝2, (7.11)

𝑃 (2, 𝑝) =
1

2
𝛾1𝛾2𝑝

2, (7.12)

𝑃 (𝑛 ≥ 3, 𝑝) = 0. (7.13)

These expressions give us the means for calculating the contributions to 𝐺(2)(0),

𝐺(2)(𝑇𝑟𝑒𝑝), and 𝐺(2)(𝜏 → ∞) from the excitation pulse at time 𝑡 (assuming that the

immediately preceding excitation pulse produce roughly the same behavior). Under

low excitation flux, the only way to produce center peak correlation counts is to get

two photons from a single excitation pulse. This result will actually produce two

correlation counts in the peak-integrated correlation function (one at positive and

one at negative time separation). Thus,

𝐺(2)(0, 𝑡) = 2 × 𝑃 (2, 𝑝) (7.14)

= 2 ×
[︂

1

2
𝛾1𝛾2𝑝

2

]︂
(7.15)

= 𝛾1𝛾2𝑝
2. (7.16)

Similarly, the only way to produce side peak correlation counts that is less than

third-order in 𝑝 is to produce a single photon in two subsequent excitation pulses.

This process only produces a single correlation count because the positive and negative
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time separation counts occupy distinct correlation peaks. Thus,

𝐺(2)(𝑇𝑟𝑒𝑝, 𝑡) = 𝑃 (1, 𝑝) × 𝑃 (1, 𝑝) (7.17)

=

(︂
𝛾1𝑝 +

[︂
1

2
(𝛾2 − 𝛾1) − 𝛾1𝛾2

]︂
𝑝2
)︂2

(7.18)

≈ 𝛾1𝛾1𝑝
2. (7.19)

Both of these expressions can be averaged over the integration time of the experi-

ment by noting that only the quantum yield parameters are time-dependent and they

may vary in a correlated fashion. This average is therefore given by,

𝐺(2)(0) = ⟨𝐺(2)(0, 𝑡)⟩ (7.20)

= ⟨𝛾1𝛾2⟩𝑝2, (7.21)

and,

𝐺(2)(𝑇𝑟𝑒𝑝) = ⟨𝐺(2)(𝑇𝑟𝑒𝑝, 𝑡)⟩ (7.22)

= ⟨𝛾1𝛾1⟩𝑝2. (7.23)

Furthermore, although not necessary for calculating the peak area ratio, we can

also calculate the denominator of the correlation function:

𝐺(2)(𝜏 → ∞) = ⟨𝐼(𝑡)⟩2 (7.24)

= ⟨0 × 𝑃 (0, 𝑝) + 1 × 𝑃 (1, 𝑝) + 2 × 𝑃 (2, 𝑝)⟩2 (7.25)

=

⟨(︂
𝛾1𝑝 +

[︂
1

2
(𝛾2 − 𝛾1)

]︂
𝑝2
)︂⟩2

(7.26)

≈ ⟨𝛾1𝑝⟩2 (7.27)

= ⟨𝛾1⟩2𝑝2. (7.28)
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The peak area ratio in a fixed single-molecule 𝑔(2) experiment is therefore,

𝑔
(2)
0

𝑔
(2)
𝑇𝑟𝑒𝑝

=
⟨𝛾1𝛾2⟩
⟨𝛾1𝛾1⟩

, (7.29)

which is the result derived by Nair et al. [166]

A Single Diffusing Particle

Few changes are required to consider a solution-phase focal volume containing strictly

one particle at a time diffusing in solution. Correlation counts still always originate

from the same particle excited with low flux excitation, but now the actual excitation

flux is allowed to vary over time, sampling the point spread function of the focal

volume as the particle diffuses. Moreover, if we allow for particle exchange in the

focal volume, any time average over the integration time of the experiment becomes

an average over all possible intensity states of a single particle and over all of the

particles in the ensemble.

To treat this case mathematically, we use the reference volume strategy applied

in solution-phase experiments such as photon counting histogram analysis. [168, 169]

Consider a reference volume 𝑉0, encompassing the focal volume of the microscope and

sufficiently large that all emitted photons will be from within the reference volume.

If a single particle is confined to the reference volume, it will experience a time-

dependent excitation flux given by the excitation point spread function 𝑃𝑆𝐹 (�⃗�) at

its position at time 𝑡 and therefore a time-dependent excitation rate 𝑝(𝑡). During a

sufficiently long experiment, the particle will uniformly sample all of 𝑉0, experiencing

an average excitation rate of

⟨𝑝(𝑡)⟩ =
1

𝑉0

∫︁

𝑉0

𝑎× 𝑃𝑆𝐹 (�⃗�) d�⃗�. (7.30)

To calculate the peak area ratio produced by these circumstances, we express
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the contributions to 𝐺(2)(0) and 𝐺(2)(𝑇𝑟𝑒𝑝) from a single pulse (or pair of subsequent

pulses) in terms of the instantaneous excitation flux experienced by the particle at

that time 𝑡, and then average this result over the entire reference volume the particle

is allowed to sample.

Modifying Equation 7.16 and Equation 7.19, the contributions to the center and

side correlation peaks from a single pulse or pair of pulses at time 𝑡 are given by,

𝐺(2)(0, 𝑡) = 𝛾1𝛾2𝑝(𝑡)2, (7.31)

and,

𝐺(2)(𝑇𝑟𝑒𝑝, 𝑡) = 𝛾1𝛾1𝑝(𝑡)2, (7.32)

and because the fluorescence properties of the particle are independent of its position

in the reference volume, the overall correlation signal measured during the experiment

is,

𝐺(2)(0) = ⟨𝛾1𝛾2𝑝(𝑡)2⟩ (7.33)

= ⟨𝛾1𝛾2⟩⟨𝑝(𝑡)2⟩, (7.34)

and,

𝐺(2)(𝑇𝑟𝑒𝑝) = ⟨𝛾1𝛾1𝑝(𝑡)2⟩ (7.35)

= ⟨𝛾1𝛾1⟩⟨𝑝(𝑡)2⟩. (7.36)

When the peak area ratio is calculated, the excitation flux terms cancel, yielding the

same result as in the fixed single-molecule case. This cancelation is strictly contingent

on being in the low flux limit at all points in the excitation point spread function.
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𝑁0 Diffusing Particles

To derive the value for the peak area ratio in an actual solution-phase experiment, we

must address the possibility that more than one particle will be in the reference volume

at once. Consider the case where there are exactly𝑁0 emitters in the reference volume,

but the identities of these emitters may change over the duration of the experiment.

Each particle is characterized by its own independent position and absorption cross

section vector (i.e., its own independent 𝑝𝑖(𝑡)), and its own independent quantum

yield vector �⃗�(𝑖). The probability of 𝑛 photons being emitted from the entire reference

volume after a given pulse or pair of pulses at time 𝑡 can be compiled based on the

independent probabilities that each of the 𝑁0 fluorophores emits 0, 1, or 2 photons.

In the low flux limit where many fewer than one excitons are created on average in

the entire reference volume, we only need to consider the probabilities that two or

fewer photons are emitted. These probabilities 𝑃𝑇 (𝑛,𝑁0, {𝑝𝑖(𝑡)}) are given by:

𝑃𝑇 (0, 𝑁0, {𝑝𝑖(𝑡)}) =

𝑁0∏︁

𝑖=1

𝑃𝑖(0, 𝑝𝑖(𝑡)), (7.37)

which is simply the probability that none of the emitters emit a photon,

𝑃𝑇 (1, 𝑁0, {𝑝𝑖(𝑡)}) =

𝑁0∑︁

𝑖=1

[︃
𝑃𝑖(1, 𝑝𝑖(𝑡))

𝑁0∏︁

𝑗 ̸=𝑖

𝑃𝑗(0, 𝑝𝑗(𝑡))

]︃
, (7.38)

which is the sum of the probabilities that one of the particles emits a photon, but

none of the other ones do,

𝑃𝑇 (2, 𝑁0, {𝑝𝑖(𝑡)}) =

𝑁0∑︁

𝑖=1

[︃
𝑃𝑖(2, 𝑝𝑖(𝑡))

𝑁0∏︁

𝑗 ̸=𝑖

𝑃𝑗(0, 𝑝𝑗(𝑡))

]︃

+

𝑁0−1∑︁

𝑖=1

𝑁0∑︁

𝑗=𝑖+1

[︃
𝑃𝑖(1, 𝑝𝑖(𝑡))𝑃𝑗(1, 𝑝𝑗(𝑡))

𝑁0∏︁

𝑘 ̸=𝑖,𝑗

𝑃𝑘(0, 𝑝𝑘(𝑡))

]︃
, (7.39)
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which is the sum of the probabilities of two distinct cases: the case where a single

particle emits two photons and all of the other particles emit zero photons, and the

case where two particles emit one photon and all of the other particles emit zero

photons, and,

𝑃𝑇 (𝑛 ≥ 3, 𝑁0, {𝑝𝑖(𝑡)}) = 0. (7.40)

Although these expressions are clearly more complicated than their single-nanocrystal

analogues in Equations 7.10-7.13, they can be used in the same fashion to calculate the

average number of correlation counts for an average pulse or pair of pulses for a refer-

ence volume containing𝑁0 particles, 𝐺(2)(0, 𝑁0), 𝐺(2)(𝑇𝑟𝑒𝑝, 𝑁0), and𝐺(2)(𝜏 → ∞, 𝑁0).

We still assume a low flux limit where many fewer than one excitation is generated

in the focal volume during each pulse, so the only way of generating a center peak

correlation count is to generate two photons from the reference volume after a single

excitation pulse and the only way of generating a side peak correlation count is to

generate one photon from the reference volume on two subsequent excitation pulses.

Moreover, we extensively use the independence of the behavior of different particles:

the average of a product of two terms involving different particles is the product of

the averages of the two terms. Thus, the average center peak correlation signal is

given by,

𝐺(2)(0, 𝑁0) =2 ×
⟨

𝑁0∑︁

𝑖=1

[︃
𝑃𝑖(2, 𝑝𝑖(𝑡))

𝑁0∏︁

𝑗 ̸=𝑖

𝑃𝑗(0, 𝑝𝑗(𝑡))

]︃

+

𝑁0−1∑︁

𝑖=1

𝑁0∑︁

𝑗=𝑖+1

[︃
𝑃𝑖(1, 𝑝𝑖(𝑡))𝑃𝑗(1, 𝑝𝑗(𝑡))

𝑁0∏︁

𝑘 ̸=𝑖,𝑗

𝑃𝑘(0, 𝑝𝑘(𝑡))

]︃⟩
(7.41)

=2 ×
𝑁0∑︁

𝑖=1

[︃
⟨𝑃𝑖(2, 𝑝𝑖(𝑡))⟩

𝑁0∏︁

𝑗 ̸=𝑖

⟨𝑃𝑗(0, 𝑝𝑗(𝑡))⟩
]︃

+ 2 ×
𝑁0−1∑︁

𝑖=1

𝑁0∑︁

𝑗=𝑖+1

[︃
⟨𝑃𝑖(1, 𝑝𝑖(𝑡))⟩⟨𝑃𝑗(1, 𝑝𝑗(𝑡))⟩

𝑁0∏︁

𝑘 ̸=𝑖,𝑗

⟨𝑃𝑘(0, 𝑝𝑘(𝑡))⟩
]︃

(7.42)

=2𝑁0 × ⟨𝑃 (2, 𝑝(𝑡))⟩⟨𝑃 (0, 𝑝(𝑡))⟩𝑁0−1
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+ (𝑁0)(𝑁0 − 1)⟨𝑃 (1, 𝑝(𝑡))⟩2⟨𝑃 (0, 𝑝(𝑡))⟩𝑁0−2, (7.43)

where ⟨𝑃 (𝑛, 𝑝(𝑡))⟩ denotes the average probability that a single particle emits 𝑛

photons, averaged over all particle identities and all positions in the reference volume

(note that because of ergodicity and particle exchange, the identity of the 𝑖th particle

changes over time and ⟨𝑃𝑖(𝑛, 𝑝(𝑡))⟩ is rigorously equivalent to ⟨𝑃𝑗(𝑛, 𝑝(𝑡))⟩). Similarly,

the average side peak correlation signal is given by,

𝐺(2)(𝑇𝑟𝑒𝑝, 𝑁0) =

⟨[︃
𝑁0∑︁

𝑖=1

𝑃𝑖(1, 𝑝𝑖(𝑡))

𝑁0∏︁

𝑗 ̸=𝑖

𝑃𝑗(0, 𝑝𝑗(𝑡))

]︃[︃
𝑁0∑︁

𝑖=1

𝑃𝑖(1, 𝑝𝑖(𝑡))

𝑁0∏︁

𝑗 ̸=𝑖

𝑃𝑗(0, 𝑝𝑗(𝑡))

]︃⟩

(7.44)

=

𝑁0∑︁

𝑖=1

[︃
⟨𝑃𝑖(1, 𝑝𝑖(𝑡))

2⟩
𝑁0∏︁

𝑗 ̸=𝑖

⟨𝑃𝑗(0, 𝑝𝑗(𝑡))
2⟩
]︃

+

𝑁0∑︁

𝑖=1

𝑁0∑︁

𝑗 ̸=𝑖

[︃
⟨𝑃𝑖(1, 𝑝𝑖(𝑡))𝑃𝑖(0, 𝑝𝑖(𝑡))⟩⟨𝑃𝑗(1, 𝑝𝑗(𝑡))𝑃𝑖(0, 𝑝𝑗(𝑡))⟩

𝑁0∏︁

𝑘 ̸=𝑖,𝑗

⟨𝑃𝑘(0, 𝑝𝑘(𝑡))2⟩
]︃

(7.45)

=𝑁0 × ⟨𝑃 (1, 𝑝(𝑡))2⟩⟨𝑃 (0, 𝑝(𝑡))2⟩𝑁0−1

+ (𝑁0)(𝑁0 − 1)⟨𝑃 (1, 𝑝(𝑡))𝑃 (0, 𝑝(𝑡))⟩2⟨𝑃 (0, 𝑝(𝑡))2⟩𝑁0−2, (7.46)

where ⟨𝑃 (𝑛, 𝑝(𝑡))2⟩ denotes the average probability that a single particle emits 𝑛

photons in two subsequent pulses, again averaged over all particle identities and all

positions in the reference volume. The two terms in Equation 7.46 correspond to the

possibilities that the two photons produced by the reference volume in subsequent

pulses came (1) from the the same particle, or (2) from different particles. Finally,
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the square of the average intensity following a single excitation pulse is given by,

𝐺(2)(𝜏 → ∞, 𝑁0) =

⟨
𝑁0∑︁

𝑖=1

[︃
𝑃𝑖(1, 𝑝𝑖(𝑡))

𝑁0∏︁

𝑗 ̸=𝑖

𝑃𝑗(0, 𝑝𝑗(𝑡))

]︃⟩2

(7.47)

=𝑁2
0 × ⟨𝑃 (1, 𝑝(𝑡))⟩2⟨𝑃 (0, 𝑝(𝑡))⟩2𝑁0−2. (7.48)

Note that Equations 7.43, 7.46, and 7.48 all reduce to their single-nanocrystal

analogues from the previous section.

A Poisson Distribution of Diffusing Particles (Real Life)

We can now construct the results from a realistic reference volume, composed of a

Poisson distribution of particles freely and independently diffusing in solution. To

do this, we average Equations 7.43, 7.46, and the total intensity from Equation 7.48

over the Poisson distribution describing the number of particles that will occupy

the reference volume over the course of the measurement. In this way, the average

probability of registering a correlation count in the center peak region over an entire

solution experiment, given an average occupancy of the reference volume ⟨𝑁0⟩, is

𝐺(2)(0, ⟨𝑁0⟩) =
∞∑︁

𝑛=0

Poi(𝑛, ⟨𝑁0⟩) ×𝐺(2)(0, 𝑛) (7.49)

=
[︀
2⟨𝑁0⟩⟨𝑃 (2, 𝑝(𝑡))⟩ + ⟨𝑁0⟩2⟨𝑃 (1, 𝑝(𝑡))⟩2

]︀
𝑒−(1−⟨𝑃 (0,𝑝(𝑡))⟩)⟨𝑁0⟩, (7.50)

the average probability of registering a correlation count in the side peak region is,

𝐺(2)(𝑇𝑟𝑒𝑝, ⟨𝑁0⟩) =
∞∑︁

𝑛=0

Poi(𝑛, ⟨𝑁0⟩) ×𝐺(2)(𝑇𝑟𝑒𝑝, 𝑛) (7.51)

=
[︀
⟨𝑁0⟩⟨𝑃 (1, 𝑝(𝑡))2⟩ + ⟨𝑁0⟩2⟨𝑃 (1, 𝑝(𝑡))𝑃 (0, 𝑝(𝑡))⟩2

]︀
𝑒−(1−⟨𝑃 (0,𝑝(𝑡))2⟩)⟨𝑁0⟩,

(7.52)
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and the denominator term of the correlation function, or the square of the average of

the intensity truncated to first-order, is given by,

𝐺(2)(𝜏 → ∞, ⟨𝑁0⟩) =

[︃
∞∑︁

𝑛=0

Poi(𝑛, ⟨𝑁0⟩) ×
(︀
𝑛⟨𝑃 (1, 𝑝(𝑡))⟩⟨𝑃 (0, 𝑝(𝑡))⟩𝑛−1

)︀
]︃2

(7.53)

=⟨𝑁0⟩2⟨𝑃 (1, 𝑝(𝑡))⟩2𝑒−2(1−⟨𝑃 (0,𝑝(𝑡))2⟩)⟨𝑁0⟩. (7.54)

Finally, we insert the average single-particle fluorescence probabilities derived from

our earlier results and truncate to lowest order in 𝑝 to arrive at the simplified low

excitation flux expressions for 𝐺(2)(0, ⟨𝑁0⟩), 𝐺(2)(𝑇𝑟𝑒𝑝, ⟨𝑁0⟩), and 𝐺(2)(𝜏 → ∞, ⟨𝑁0⟩),

𝐺(2)(0, ⟨𝑁0⟩) = ⟨𝑁0⟩⟨𝛾1𝛾2⟩⟨𝑝(𝑡)2⟩ + ⟨𝑁0⟩2⟨𝛾1⟩2⟨𝑝(𝑡)⟩2, (7.55)

𝐺(2)(𝑇𝑟𝑒𝑝, ⟨𝑁0⟩) = ⟨𝑁0⟩⟨𝛾1𝛾1⟩⟨𝑝(𝑡)2⟩ + ⟨𝑁0⟩2⟨𝛾1⟩2⟨𝑝(𝑡)⟩2, and (7.56)

𝐺(2)(𝜏 → ∞, ⟨𝑁0⟩) = ⟨𝑁0⟩2⟨𝛾1⟩2⟨𝑝(𝑡)⟩2, (7.57)

and use these expressions to calculate the center and side peak correlation values for

the solution-phase 𝑔(2) experiment:

𝑔(2)(0) = 1 +
1

⟨𝑁0⟩
⟨𝛾1𝛾2⟩⟨𝑝(𝑡)2⟩
⟨𝛾1⟩2⟨𝑝(𝑡)⟩2 (7.58)

and,

𝑔(2)(𝑇𝑟𝑒𝑝) = 1 +
1

⟨𝑁0⟩
⟨𝛾2

1⟩⟨𝑝(𝑡)2⟩
⟨𝛾1⟩2⟨𝑝(𝑡)⟩2 . (7.59)

Although these expressions are considerably simplified, they are still formed in terms

of the arbitrarily defined reference volume from our derivation. To remove this de-

pendence, we rephase our result in terms of the FCS detectivity function 𝜑(𝑡), which

expresses the probability that if a spatial fluctuation occurs, it is reported in the

experiment. [167] It is given here by the probability that a photon is produced by

a given particle, i.e. the product of the exciton quantum yield of the particle and
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the excitation probability. Recombining several of the averages in the second term of

𝑔(2)(𝑇𝑟𝑒𝑝), and using Equation 15.5 from Webb[167]:

⟨𝛾2
1⟩⟨𝑝(𝑡)2⟩

⟨𝛾1⟩2⟨𝑝(𝑡)⟩2 =
⟨𝛾2

1𝑝(𝑡)2⟩
⟨𝛾1𝑝(𝑡)⟩2 (7.60)

=
⟨𝜑(𝑡)2⟩
⟨𝜑(𝑡)⟩2 (7.61)

=
1
𝑉0

∫︀
𝑉0
𝜑(�⃗�)2𝑑�⃗�

[︁
1
𝑉0

∫︀
𝑉0
𝜑(�⃗�)𝑑�⃗�

]︁2 (7.62)

≈ 𝑉0

∫︀
𝜑(�⃗�)2𝑑�⃗�

[︀∫︀
𝜑(�⃗�)𝑑�⃗�

]︀2 (7.63)

=
𝑉0

𝑉
, (7.64)

where 𝑉0 is the reference volume from earlier and 𝑉 is defined as the focal volume of

the experiment. Now, we rephrase our correlation function in terms of the occupancy

of the focal volume ⟨𝑛⟩, which references the detectivity of the experiment, rather than

the occupancy of the arbitrary reference volume. Noting that the average occupancy

of the focal volume is given by the product of the average particle concentration ⟨𝑁0⟩
𝑉0

and the focal volume 𝑉 ,

𝑔(2)(𝑇𝑟𝑒𝑝) = 1 +
1

⟨𝑁0⟩
𝑉0

𝑉
(7.65)

= 1 +
1

⟨𝑛⟩ , (7.66)

and,

𝑔(2)(0) = 1 +
1

⟨𝑁0⟩
𝑉0

𝑉

⟨𝛾1𝛾2⟩
⟨𝛾1𝛾1⟩

(7.67)

= 1 +
1

⟨𝑛⟩
⟨𝛾1𝛾2⟩
⟨𝛾1𝛾1⟩

. (7.68)

If the biexciton quantum yield is set to zero, these results perfectly recover the con-
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ventional FCS result that the antibunching feature should approach unity. [310] But,

in the event of biexciton fluorescence, the peak area ratio is given by:

𝑔(2)(0)

𝑔(2)(𝑇𝑟𝑒𝑝)
=

1 + 1
⟨𝑛⟩

⟨𝛾1𝛾2⟩
⟨𝛾1𝛾1⟩

1 + 1
⟨𝑛⟩

(7.69)

=
⟨𝑛⟩ + ⟨𝛾1𝛾2⟩

⟨𝛾1𝛾1⟩

⟨𝑛⟩ + 1
(7.70)

=
⟨𝑛⟩

⟨𝑛⟩ + 1
+

1

⟨𝑛⟩ + 1

⟨𝛾1𝛾2⟩
⟨𝛾1𝛾1⟩

, (7.71)

which is Equation 6.4 in the previous Chapter, and the quantum yield ratio can be

isolated from the correlation function values via,

𝑔(2)(0) − 1

𝑔(2)(𝑇𝑟𝑒𝑝) − 1
=

1
⟨𝑛⟩

⟨𝛾1𝛾2⟩
⟨𝛾1𝛾1⟩
1
⟨𝑛⟩

(7.72)

=
⟨𝛾1𝛾2⟩
⟨𝛾1𝛾1⟩

, (7.73)

which is Equation 6.3 from the previous Chapter.

The observable in Equation 7.73 can be interpreted as the ratio of the brightness-

weighted average of the biexciton quantum yield to the brightness-weighted average of

the exciton quantum yield because, under low excitation flux, the brightness of emit-

ters is given by the product of their uniform absorption cross section and their exciton

quantum yield. Our observable is intrinsically weighted towards brighter nanocrystals

because non-emissive particles and dark blinking states will not contribute counts to

either the center or side peaks of the correlation function, and simply pass through the

focal volume unobserved. Pretty much all spectroscopy experiments are brightness-

weighted in this fashion, but in this case, it is particularly important to keep in mind

because it means that you cannot necessarily calculate the average biexciton quantum

yield by multiplying the quantum yield ratio by the average exciton quantum yield

of the sample.
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On a side note, it is also important to recognize the helpful significance of sub-

tracting the Poissonian background in Equation 7.72. We previously regarded the

Poissonian background as only being composed of inter-particle photon pairs, and

considered the existence of these inter-particle pairs as being a minor, but neces-

sary, hassle on our way to calculating the average quantum yield ratio. However,

there are other sources of Poisson background that will manifest themselves in our

experiment, including dark count correlations and classical sources of background aut-

ofluorescence, which also affect single-nanocrystal measurements.4 In the SNC-𝑔(2)

experiment, these sources must be accounted for and subtracted from each correla-

tion peak area to measure an accurate quantum yield ratio, but in the solution-phase

experiment, they are automatically folded into the Poisson background and do not

bias our average quantum yield ratio. They simply cause a minor increase in the

measured average occupancy, which may interfere with the experimenter’s excitation

flux estimation.

7.2 Calculating the Uncertainty in the Measured Quan-

tum Yield Ratio

If the assumption and requirements we used for the derivation in the previous section

are satisfied, then we now have the means to precisely and accurately measure the

average biexciton/exciton quantum yield ratio of a sample of nanocrystals. In fact,

because our measurement uses a solution-phase focal volume, we have the freedom to

use arbitrarily long integration times to achieve high signal-to-noise ratio measure-

ments, while well within the excitation flux and repetition rate requirements of the

experiment. The responsible application of a solution-phase 𝑔(2) measurement should

4By classical sources of autofluorescence, we are speaking of dim, but high-concentration emitters
such as glass impurities or event solvent molecules, which (due to their high concentration) will not
exhibit antibunching.
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have a systematic error well within the shot-noise uncertainty of the measurement,

so it is worth taking a moment to derive the shot-noise uncertainty of the average

quantum yield ratio.

Consider a measurement that registers 𝑁0 correlation counts in the center peak,

𝑁𝑇𝑟𝑒𝑝 counts in the first side peak, and 𝑁∞ correlation counts in a peak beyond

the diffusion time of the emitters. The simplest method of calculating the average

quantum yield ratio is,
⟨𝛾1𝛾2⟩
⟨𝛾1𝛾1⟩

=
𝑁0 −𝑁∞

𝑁𝑇𝑟𝑒𝑝 −𝑁∞
. (7.74)

Each of these peak area values is a Poissonian measurement with a shot noise standard

deviation of
√
𝑁 , so, using standard error propagation, the numerator is given by,

𝑁𝑛𝑢𝑚 = (𝑁0 −𝑁∞) ±
√︀

𝑁0 + 𝑁∞ (7.75)

the denominator is given by,

𝑁𝑑𝑒𝑛𝑜𝑚 = (𝑁𝑇𝑟𝑒𝑝 −𝑁∞) ±
√︁

𝑁𝑇𝑟𝑒𝑝 + 𝑁∞ (7.76)

and the average quantum yield ratio is given by,

⟨𝛾1𝛾2⟩
⟨𝛾1𝛾1⟩

=
𝑁0 −𝑁∞

𝑁𝑇𝑟𝑒𝑝 −𝑁∞
± 𝑁0 −𝑁∞

𝑁𝑇𝑟𝑒𝑝 −𝑁∞

√︃
𝑁0 + 𝑁∞

(𝑁0 −𝑁∞)2
+

𝑁𝑇𝑟𝑒𝑝 + 𝑁∞

(𝑁𝑇𝑟𝑒𝑝 −𝑁∞)2
. (7.77)

We can do better than this by noting that, even though the center peak is neces-

sarily a single-point shot-noise measurement, we have much more information about

the correct values of the side peaks because their areas should fit an FCS curve with

𝜏 . Instead of simply using their values, we can fit the side peak areas with an FCS

curve and use the fit values instead of the measured values to eliminate the shot noise

uncertainty for 𝑁𝑇𝑟𝑒𝑝 and 𝑁∞. Unless drift is a serious problem in the measurement

(see Section 7.4), we should be able to know 𝑁∞ with vanishing uncertainty and we
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should be able to dramatically reduce our uncertainty in 𝑁𝑇𝑟𝑒𝑝 .
5 By fitting the side

peak values, the only source of shot noise is 𝑁0, and our shot noise uncertainty is

given by,

⟨𝛾1𝛾2⟩
⟨𝛾1𝛾1⟩

=
𝑁0 −𝑁∞

𝑁𝑇𝑟𝑒𝑝 −𝑁∞
± 𝑁0 −𝑁∞

𝑁𝑇𝑟𝑒𝑝 −𝑁∞

√︃
𝑁0

(𝑁0 −𝑁∞)2
(7.78)

=
𝑁0 −𝑁∞

𝑁𝑇𝑟𝑒𝑝 −𝑁∞
±
√︃

𝑁0

(𝑁𝑇𝑟𝑒𝑝 −𝑁∞)2
(7.79)

=
𝑁0 −𝑁∞

𝑁𝑇𝑟𝑒𝑝 −𝑁∞
±
⎯⎸⎸⎷

𝑁0(︁
𝑁0

⟨𝑛⟩

)︁2 (7.80)

=
𝑁0 −𝑁∞

𝑁𝑇𝑟𝑒𝑝 −𝑁∞
±
√︃

⟨𝑛⟩2
𝑁0

. (7.81)

This expression for the uncertainty originates from the fact that the center peak is

composed of two populations: the intraparticle signal we are trying to isolate and the

interparticle Poisson background that we are trying to eliminate. Even though, in

principle, we know the exact average magnitude of the Poisson background from the

FCS curve, its actual number of correlation counts in the center peak is still dictated

by shot noise. For example, a slightly larger than average number of inter-particle

photon pairs would yield a slightly inflated quantum yield ratio after Poisson subtrac-

tion. The magnitude of this effect is proportional to the relative signal strength of

intra-particle photon pairs compared to inter-particle photon pairs, which is dictated

by the average occupancy of the focal volume.

5Accurately measuring the plateau value of the FCS trace (i.e. 𝑁𝑇𝑟𝑒𝑝
) requires a well-formed focal

volume and a monodisperse sample to yield an accurate fit to the ideal FCS model. In practice, it is
proper to consider the uncertainty in the FCS fit and use that as the uncertainty in 𝑁𝑇𝑟𝑒𝑝 . Here, for
simplicity, we assume the fit is quite good and that any uncertainty in the plateau value is negligible
compared to shot noise. That was the case for most of my measurements.
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7.3 Balancing Average Occupation and Signal Inten-

sity

Equation 7.81 begs the question, if the uncertainty is (explicitly) directly proportional

to the average occupation, how should the experimenter design a solution-phase 𝑔(2)

measurement in cases where the absolute signal intensity from each emitter is very

weak? Should we increase the average occupancy to measure a high total signal from

the focal volume, or should we decrease the average occupancy to emphasize the

fraction of the signal that represents what we actually want to measure? Because

𝑁0 represents the total number of correlation counts in the center peak, it turns out

that the average occupancy does not actually (intrinsically) affect the uncertainty of

the quantum yield ratio. The probability of generating a correlation count in a given

peak will be proportional to the square of the total signal intensity (the probability of

getting a first photon times the probability of getting a second photon) and directly

proportional to the total integration time (the number of opportunities in time to

make a correlation count). Since the total signal intensity is directly proportional to

the number of particles in the focal volume, 𝑁0 is proportional to the square of the

average occupancy and the average occupancy of the focal volume vanishes in the

uncertainty expression. Although it is generally a good idea to choose an average

occupancy high enough that the total signal is much greater than the detector dark

counts (or other sources of background), the parameters that truly affect the signal-to-

noise ratio of the measurement are integration time, emitter brightness, and detection

efficiency.
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7.4 Long Measurements and How to Make Them

One of the major claims that our derivation hinges on is that the arrival of pho-

ton pairs from different particles is indeed Poissonian. This allows us to estimate

their contribution to the center and side correlation peaks by measuring the area

of correlation peaks well beyond the diffusion time of the emitters. Nevertheless,

long timescale fluctuations in the total excitation rate, collection efficiency, or sam-

ple concentration may introduce non-Poissonian character into the arrival of other-

wise uncorrelated phenomena. For instance, if there is drift in the detection arm of

the setup, we may be equally likely to generate photons from uncorrelated emitters

throughout the course of the experiment, but their arrival at the detector is biased

towards early times in the experiment, and therefore towards shorter 𝜏 spacing. Drift

in the total fluorescence signal from the focal volume over time will generally intro-

duce a monotonically decreasing feature in the physically uncorrelated component

of the correlation function, cause its contribution to the center peak to be greater

than the area of correlation peaks as 𝜏 → ∞, and cause our analysis to over-estimate

the quantum yield ratio.6 This effect is exceedingly likely to occur during very long

measurements. Figure 7-1 illustrates an example of such a measurement, where a

monotonic decrease in fluorescence intensity over time distorts the correlation func-

tion and can lead to an erroneously high 25.8% quantum yield ratio measurement

(the more carefully measured value is 13.2%).

To account for drift in the total fluorescence intensity of the signal, we can break

the total measurement down into a large number of shorter measurements whose

integration time is shorter than the timescale of intensity drift. Each of these mea-

surements will be free of drift-related artifacts and yield an independent, poor signal-

to-noise measurement of the quantum yield ratio. We can then use this time-series

6This effect can often be identified by a poor FCS fit. In general, a poor FCS fit is a bad sign for
the accuracy of the measurement (at least when you believe you have a well-formed focal volume at
the outset of the experiment).
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Figure 7-1: Long timescale intensity fluctuations caused by sample degradation or
microscope drift can cause an offset between the Poisson-normalized baseline of the
correlation function and the actual inter-particle background given by the FCS fit
of the correlation function at short 𝜏 . If the Poisson background according to the
correlation function is used to subtract the inter-particle contribution, it will result
in an artificially high quantum yield ratio.

of correlation measurements to determine why the fluorescence intensity is decreas-

ing over time and to calculate an overall high signal-to-noise value of the quantum

yield ratio from the entire measurement that is free of correlation function distortion.

Figure 7-2 show how several experimental parameters in the solution-phase 𝑔(2) mea-

surement vary over the course of the experiment from Figure 7-1. By suppressing the

distortion of the FCS trace from drift, we measure a much more accurate 10.9% quan-

tum yield ratio for the sample (down from 14.0%). Furthermore, by analyzing the

time-dependence of our experimental parameters, we can conclude that the intensity

is slowly dropping during the course of the measurement because of corresponding

decreases in the sample concentration.7 A decrease in the sample concentration could

be a cause for concern if it is accompanied by aggregation or a drift in the quantum

yield ratio over time. But, since we see no corresponding trend in the quantum yield

ratio over time, we can conclude that our measurement is reliable.

7The average occupancy of the focal volume is decreasing without a corresponding change in the
diffusion time of the emitters.
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Figure 7-2: Long experiments can be analyzed without long-timescale artifacts by
breaking up the integration time into several shorter integration times with low signal-
to-noise, treating each sub-measurement individually, and averaging the resulting
peak area ratios to improve the overall signal-to-noise. Here, we show the evolution
of several experimental parameters over a long integration time. The intensity drift
of the focal volume is consistent with a change in the total occupancy of the focal
volume over time, suggesting some sample instability.
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7.5 Coping with Long Radiative Lifetimes

Finally, the third requirement in our derivation was that the laser repetition period

be much longer than the lifetime of the emitters but much shorter than their dif-

fusion time. This is sometimes impossible to implement for particles with lifetimes

of hundreds of nanoseconds but diffusion times of hundreds of milliseconds. Even

though these two timescales are three orders of magnitude apart, chosing a repetition

period on the order of microseconds to prevent inter-pulse excitation may still allow

for some particle diffusion between subsequent pulses. This will cause the side peak to

be artificially small and produce an inflated quantum yield ratio. The solution in this

case is to err on the side of a long repetition period to ensure a Poisson distribution

of excitations and use an FCS fit of the side peaks to determine what the amplitude

of the side peak would have been if particle diffusion had not occurred (i.e. use the

y-intercept of the FCS curve in lieu of the actual, diminished side peak amplitude).8

In Figure 7-3, we show how accounting for particle diffusion can yield a more accurate

quantum yield ratio.

8If the FCS fit is poor and clearly yields an incorrect plateau value at short 𝜏 , it could be
preferable to use an empirical fit of the twenty or so data points on one side of the center peak
instead of trying to capture the full FCS decay curve over many orders of magnitude in time. In
the data I will show, we use both methods and they generally agree within the shot noise of the
measurement.
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Figure 7-3: Using an FCS or phenomenological fit in long-repetition rate experiments
can account for the minor curvature of the correlation function caused by diffusion
between excitation pulses. This fit also removes the uncertainty in the value of the side
peak due to shot noise, which can slightly improve the precision of the measurement.
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Chapter 8

Measuring the Sample-Averaged

Biexciton/Exciton Quantum Yield

Ratio Using the Solution-Phase 𝑔(2)

Experiment

Now that we have fleshed out the theory behind the solution-phase 𝑔(2) experiment,

in this Chapter, we will demonstrate its implementation. We will begin by describing

our experimental setup and the data analysis procedure we will follow to produce

our experimental results. Second, we will show that our results are consistent with

the theoretical predictions from the previous Chapter. Third, we will present two

short investigations that demonstrate the flexibility, precision, and convenience of

the solution-phase experiment, including a brief survey of materials that are not

usually studied using single-nanocrystal spectroscopy and the characterization of a

new CdSe/CdS shell growth procedure. Finally, we will summarize our results and

discuss possible future directions for this technique. The results presented in this

Chapter were published by Beyler et al. [244]
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8.1 Experimental Setup and Data Analysis

8.1.1 Optical Setup and Data Collection

A schematic of the optical setup is shown in Figure 8-1(a).

The solution-phase sample was mounted on a fixed, inverted epifluorescence mi-

croscope equiped with a water immersion objective (Nikon, Plan Apo VC 60× WI,

NA 1.2) and coupled to the excitation and emission paths via a 10:90 (R:T) visible-

wavelength, non-polarizing beamsplitting cube (Thorlabs, BS025). The sample was

excited using a 532 nm pulsed laser (Picoquant, LDH-P-FA-530-B) that was operated

at the lasing threshold to suppress the double-pulse artifact in the temporal profile

of the pulse and to achieve an optimal 50 ps pulse duration. The laser was operated

at a repetition rate of 2.5 MHz for typical samples, or driven with an external sync

to achieve repetition rates between 500–1000 kHz for samples with long radiative life-

times. Once the emission from the focal volume passed through the beamsplitter into

the detection arm of the setup, it was spatially filtered with a pinhole to form a well-

defined focal volume (100 mm focusing lens, 50µm pinhole, and 50 mm recollimating

lens), and spectrally filtered with a 532/10 nm notch filter (Chroma, ZET532/10×)

to remove laser scatter. Then, the signal was split using the interferometer setup from

Chapter 5, with the path-length difference set well beyond the coherence length of

the emission, and focused with two 7.5 cm focal length achromatic doublets onto two

single-photon avalanche photodiodes (Excelitas, SPCM-AQRH-16). The selection of

a path-length difference beyond the coherence length caused the interferometer to

behave in the same fashion as the Hanbury Brown and Twiss geometry often used for

photon correlation. [311] Two 700 or 800 nm shortpass filters (Thorlabs, FESH0700

or FES0800) were mounted to the front of the detector focusing optics to pass all of

the signal to the detectors, but to prevent cross-detector afterpulsing artifacts (See

Section 3.3).
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Before the experiment was conducted, the signal was analyzed using a real time

digital correlator (ALV, 7004/FAST) to confirm proper alignment (i.e. a well-formed

focal volume with a good FCS fit) and to confirm sample stability (i.e. no large

intensity spikes that would suggest aggregation). Then, the signal from the detectors

was rerouted through an attenuator/inverter (Picoquant, SIA400) to a Hydraharp

400 time-correlated single photon counting module (Picoquant, one detection module

for two input channels). To conduct the experiment, the Hydraharp was run in time-

tagged time-resolved mode to record all of the photon arrival times in memory. The T3

setting was used to time all photons arrivals relative to the numbered sync pulse from

the laser. It was therefore possible to directly count the number of photon arrivals

after each pulse, and because we knew the repetition rate of the laser, to place each

photon arrival on the absolute timeline of the experiment. Integration times varied

between 1–5 h, depending on the repetition rate of the laser and quantum yield of

the sample. For longer measurements, the total integration time was broken up into

several sub-intervals to reconfirm alignment and to refresh the immersion water.

8.1.2 Sample Preparation

Solution-phase samples were prepared so as to avoid aggregation. Except for the serial

dilution experiment, all samples were made in a single dilution step to avoid stripping

ligands off of the nanocrystal surface. Furthermore, all samples were freshly prepared

directly before each measurement, and they were further stabilized by the addition

of several drops of a cadmium oleate/decylamine solution to passivate surface sites

that were vacated by labile ligands during dilution. This solution was the same as

that described in Chapter 5, synthesized by combining 1.25 mL cadmium oleate in

octadecene and oleic acid (melted with a heat gun), 100µL decylamine, and 8.75 mL

toluene.

Each sample was prepared by adding between 0.5 and 20 µL of visibly colored,
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concentrated nanocrystal/hexane solution to a solution composed of 0.5 mL of hexanes

and several drops of the cadmium oleate solution, to produce an average occupation

in the focal volume between 1 and 3 (unless otherwise specified). Then, this solution

was wicked into a rectangular capillary (VitroCom, 0.10 × 2.00 mm i.d.) and sealed

with capillary tube sealant to prevent evaporation.

8.1.3 Data Analysis

After data collection, we are left with a file essentially containing all of the photon

arrivals on both of the detection channels. Our goal is to determine the autocorrela-

tion of the overall signal. However, due to detector artifacts, namely their dead time

after registering a photon arrival, it is not possible to resolve the autocorrelation of

the signal as 𝜏 → 0 using only one detector. The solution, as is the standard in

the literature, is to use the cross-correlation of the detection channels in lieu of the

autocorrelation of either channel or the sum signal.1 This cross correlation is func-

tionally identical to the autocorrelation of the total signal because the two channels

are unbiased and both statistically represent the behavior of the overall signal.

T3 data files were correlated in software after the measurement using the correla-

tion software developed by T.S. Bischof and the pulse-resolved analysis described in

the Supplemental of Bischof et al. [312] A typical correlation analysis was generated

using the following shell command:

picoquant --file-in Sample_1.ht3 |

photon_gn --mode t3 --order 2 --channels 2

--pulse -40000,80001,40000 --time -400000,1,400000

--file-out Sample_1 &

The routine picoquant parsed the Hydraharp data file, and the routine photon_gn

1Remember that we did not have to do this in PCFS because we were interested in timescales
much longer than the detector dead time.
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was responsible for calculating a pulsewise correlation function out to at least 𝜏 = 15 ms.2

The time-resolved correlation function from Figure 8-1 was calculated using the shell

command:

picoquant --file-in Sample_1.ht3 |

photon_gn --mode t3 --order 2 --channels 2

--pulse -100.5,201,100.5 --time -400000,800,400000

--file-out Sample_1_HighRes &

which generated a hybrid pulsewise/𝜏 -resolved correlation function that could be

converted to an exclusively time-resolved correlation function in Matlab. And finally,

long integration time measurements were broken up into several analysis sub-intervals

using the shell command:

picoquant --file-in Sample_1.ht3 |

photon_gn --mode t3 --order 2 --channels 2

--pulse -25000.5,50001,25000.5

--time -400000,1,400000

--window-width 3000000000 --file-out Sample_1_td &

After the correlation function was calculated, the output files from the correlation

routine were imported into Matlab for further analysis. Each correlation measurement

(i.e. for each sub-interval) was analyzed independently. They were each normalized

using Equation 1.1 and the associated intensity information provided in the auxillary

files of the correlation routine, fit using a 2D Gaussian focal volume FCS model, and

plotted to confirm that the fit appropriately captured the plateau values of the FCS

curve at long and short 𝜏 (Figure 7-3). Then, the biexciton/exciton quantum yield

ratio was calculated from Equation 7.73 (with uncertainty given by Equation 7.81)
2A pulsewise correlation function histograms photons by their excitation pulse separation instead

of their temporal separation, explicitly isolating photon pairs produced after the same excitation
pulse in the center peak. Otherwise, photon pairs produced late in one excitation cycle and early in
the next may be counted in the center peak. The rationale behind this type of analysis is provided
in the Supporting Information of Bischof et al. [312]
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using the center peak value from the correlation function and the y-intercept of the

FCS fit. The experimental parameters from each sub-interval were graphed to confirm

sample and optical setup stability (as shown in Figure 7-2). Finally, the peak area

ratios for each sub-interval were averaged and the final uncertainty calculated using

additive error propagation.

8.2 Results and Discussion

8.2.1 Experimental Verification of the Technique

Our first goal is to verify the theoretical results of our derivation at beginning of Chap-

ter 7. A typical histogram of correlation counts for a solution-phase pulsed-excitation

measurement (i.e. the unnormalized cross-correlation of the two detection channels)

is shown in Figure 8-1(b). As in the SNC-𝑔(2) experiment, the cross-correlation of

the solution-phase 𝑔(2) is characterized by a series of peaks at the repetition period

of the excitation laser. However, in solution, the integrated areas of these peaks are

modulated by the diffusion physics of the sample. The center peak at 𝜏 = 0 exhibits

an increased area compared to a single-nanocrystal measurement due to the detection

of photon pairs from different particles, and the integrated areas of the other correla-

tion peaks decay on the time scale of particle diffusion. This point is emphasized in

Figure 8-1(c), which shows that when the pulsewise autocorrelation is calculated by

integrating the correlation histogram over each correlation peak and normalizing the

result according to Equation 1.1, it reproduces the FCS correlation function of the

solution-phase sample and informs on both the average occupation of particles in the

focal volume and their average dwell time.

Furthermore, as our theory predicted, the ability for nanocrystals to sustain and

emit from multiexcitonic states has caused the normalized area of the center peak

to be slightly higher than the Poisson background caused by inter-particle photon
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Figure 8-1: (a) Schematic representation of the solution-phase 𝑔(2) experiment. (b)
Peak-resolved correlation function illustrating that the amplitudes of the correlation
peaks are modulated by diffusion physics. (c) Peak-integrated correlation function
illustrating that the side-peak areas sample the FCS trace measured by continuous-
wave excitation. In both representations, the center peak at 𝜏 = 0 is diminished due
to antibunching, but may extend above the Poissonian inter-particle background if
there is finite probability of multi-photon emission.
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pairs. The pulsewise autocorrelation function does not exhibit full antibunching, and

the erosion of the antibunching feature can be directly tied to the sample-averaged

biexciton/exciton quantum yield ratio. To demonstrate the reproducibility of this

incomplete antibunching feature and to confirm the accuracy of Equations 6.3 and

6.4, we perform the solution-phase 𝑔(2) experiment on a single batch of CdSe/CdS

core/shell nanocrystals that has undergone serial dilution to create a series of samples

with varying nanocrystal concentration. If the results of the derivation from Chapter

7 hold, the peak area ratio should increase with increasing concentration according to

Equation 6.4, and the peak area ratio after Poisson background-subtraction should

be constant with varying concentration, as predicted by Equation 6.3.

The peak area ratio as a function of particle concentration is shown in Figure 8-

2(a) and the corresponding quantum yield ratios are shown in Figure 8-2(b). The

degree of single-nanocrystal antibunching is clearly reproduced across all particle

concentrations, yielding an extremely uniform measurement of the biexciton/exciton

quantum yield ratio of 7.5% ± 1%. This result is consistent with our expectations

from previous single-nanocrystal investigations, [187, 193] but offers precision far

exceeding that of other available techniques. Moreover, this experiment demonstrates

the success of our sample preparation outlined in Section 8.1.2. This sample was able

to undergo five serial dilutions (with the addition of cadmium oleate solution during

each dilution) without any sign of aggregation or sample degradation.

8.2.2 Measuring the Quantum Yield Ratio of Several Synthet-

ically-Underdeveloped Materials

We now present two small investigations that highlight the primary benefits of the

solution-phase 𝑔(2) experiment. One of the limitations of the SNC-𝑔(2) experiment

is that it requires samples to be optimized for single-molecule spectroscopy. Studied

emitters must have high quantum yields to provide a strong single-molecule fluores-

262



0 2 4 6 8 10
0

2

4

6

8

10

Average Occupancy in Focal Volume (<n>)

BX
/X

 Q
Y 

Ra
tio

 (%
)

(b)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Average Occupancy in Focal Volume (<n>)

Ce
nt

er
/S

id
e 

Pe
ak

 A
re

a 
Ra

tio

 

Data
Theory: 0% BX/X QY Ratio
Theory: 7.5% BX/X QY Ratio
Theory: 20% BX/X QY Ratio

(a)

7.5% BX/X QY Ratio

g(2)(τ = Trep)  Peak Area

g(2)(τ = 0)  Peak Area

0-Trep Trep

Figure 8-2: As predicted by the theory in the previous Chapter, (a) the peak area
ratio increases towards unity with increasing average occupancy, and (b) the cor-
responding quantum yield ratio remains constant under serial dilution. This data
confirms the theoretical results from the previous Chapter and demonstrates that our
sample preparation does not induce aggregation.
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Figure 8-3: Quantum yield ratios measured for (a) CdSe cores, (b) InP/ZnS core/shell
nanocrystals, and (c) small, visible-emitting InAs/ZnS core/shell nanocrystals.

cence signal under low excitation flux, and they must have fluorescence stability on

the order of tens of minutes to measure the quantum yield ratio with precision near

1%. These requirements are further exacerbated when measuring samples with long

fluorescence lifetimes because longer laser repetition periods further reduce photon

count rate. In contrast, solution-phase 𝑔(2) measurements do not require fluores-

cence stability because of the rapid exchange of particles in the focal volume, and the

duration of the experiment can be extended arbitrarily to compensate for the weak

fluorescence signals produced by samples with low quantum yields or long fluorescence

lifetimes.

In Figure 8-3, we show the pulsewise solution-phase autocorrelations for three

types of nanocrystal samples that are not generally suitable for single-nanocrystal

𝑔(2) experiments: CdSe cores, which are normally overcoated for improved quantum
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yield and fluorescence stability; InP/ZnS core/shell nanocrystals, which are a less

synthetically-explored, cadmium-free alternative to CdSe nanocrystals; and visible-

emitting InAs/ZnS NCs, which are a promising infrared-emitting material at larger

core sizes. The biexciton quantum yields of all three samples are very low. The

measurement of our InAs/ZnS sample sets an upper bound on the quantum yield

ratio of 0.8% percent, in agreement with transient absorption measurements reporting

biexciton lifetimes under 100 ps. [313] This result is also consistent with a recent

SNC-𝑔(2) investigation of larger, infrared-emitting InAs/CdZnS nanocrystals, which

reported a wide distribution of quantum yield ratios with most particles exhibiting

ratios below 5% and a few outliers exhibiting significantly larger values. [312] The

biexciton/exciton quantum yield ratio of our sample was expected to be even lower

than those reported by Bischof et al. [312] due to the increased quantum confinement

in our visible-emitting sample.

These results also reveals that, even with an epitaxial shell to enhance their fluores-

cence properties, current InP samples do not appear to offer a multiexciton advantage

over CdSe cores. This finding is consistent with the recent report from Mangum et al.,

[314] which found quantum yield ratios of less than 5% in type II InP/CdS core/shell

NCs. Deliberate synthetic design with the biexciton quantum yield in mind will be

required to optimize InP nanocrystals for high-flux applications.

8.2.3 Evaluating the Biexcitonic Properties Produced by a

CdSe/CdS Shell Growth Procedure

The other major feature of the solution-phase 𝑔(2) experiment is that it is a precise

method for characterizing the average biexcitonic properties of entire nanocrystal

samples. In Figure 8-2, we showed how the measurement can routinely measure the

quantum yield ratio of high quality samples with 1% uncertainty. With this degree of

resolution in the quantum yield ratio, this technique can be used to cleanly identify
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differences in the biexcitonic fluorescence properties produced by different synthetic

procedures or modifications to the nanocrystal architecture.

In our second investigation, we use the solution-phase 𝑔(2) experiment to charac-

terize the effect of our recent CdSe/CdS shell growth procedure. As we discussed

in Chapter 1, multi-day SILAR shell growth procedures have been found to produce

particles with anomalously low Auger rates [107, 301, 315] and quantum yield ratios

approaching 40% in 19-monolayer samples. [187] Klimov and coworkers later hy-

pothesized that these low Auger rates were caused by core/shell alloying due to the

extended duration of the shell growth. [186, 304] They introduced a rapid shell growth

procedure that was presumably resistant to core/shell alloying and found that it re-

sulted in extremely low biexciton quantum yields unless an intentional alloy region was

introduced by dual precursor injection. Although their finding conclusively demon-

strates the importance of the core/shell interface in controlling biexciton fluorescence,

it is still unclear whether the only difference between their intentionally alloyed and

reference samples was a smoother potential boundary. Other proposed sources of

Auger enhancement, including the existence of increased local electric fields via car-

rier trapping [316] or by trap-mediated Auger pathways, [317, 318] could also have

been affected by their alloying procedure, especially given that the exciton quantum

yields of both their reference and alloyed nanocrystals dipped below 50% in thicker

shell samples. [304]

Our recent CdSe/CdS shell growth procedure published by Coropceanu et al.

[174] is also a rapid shell growth that uses relatively nonreactive precursors and high

reaction temperatures. These reaction conditions should result in nanocrystals with

similar interfacial alloying as the non-intentionally alloyed reference samples mea-

sured by Park et al. [304] However, nanocrystals produced by our synthesis have

higher exciton quantum yields, exceeding 85% for shells as thick as 5.0 nm (14 mono-

layers). In Figure 8-4, we show the biexciton/exciton quantum yield ratios measured
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Figure 8-4: Quantum yield ratios of CdSe nanocrystals undergoing a rapid CdS shell
growth. The biexciton quantum yield continues to increase with shell growth even
though they have not been intentionally annealed either by dual precursor injection
or extended growth period.

by solution-phase 𝑔(2) for a shell series of particles made by our optimized synthesis.

Their quantum yield ratios, which roughly approximate the actual biexciton quan-

tum yields due to their high exciton quantum yields, increase monotonically with shell

growth in a fashion consistent with the multiday SILAR shell growth. These results

show that intentional alloying is not required to increase the biexciton quantum yield

of CdSe nanocrystals using a rapid CdS shell growth. Unless rapid shell growths are

capable of producing the considerable core/shell alloying that has been hypothesized

to occur in multiday SILAR procedures, other sources of Auger enhancement must

play an active role in defining the biexciton quantum yield of CdSe/CdS core/shell

samples.

8.3 Summary and Future Directions

In this Chapter, we have demonstrated that the solution-phase 𝑔(2) experiment is a

convenient, reliable, and precise method for measuring the average biexciton/exciton
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quantum yield ratio of an entire sample without user selection bias. Going forward, we

have shown that it can be an ideal tool for investigating the multiexcitonic properties

of materials that are not optimized for single-nanocrystal spectroscopy, a routine

characterization technique for gauging the effect of a synthetic procedure on the

biexciton quantum yield of samples, and a technique that should be easily extended

to the investigation of short-wave infrared-emitting samples, for which single-photon

sensitive detectors remain an immature technology. [159]

This technique may also find useful applications as a new addition to the grow-

ing toolbox of single-nanocrystal spectroscopic methods. Single-nanocrystal correla-

tion experiments must remain the workhorse for the elucidation of basic nanocrystal

physics because they allow the experimenter to correlate many observables from the

same nanocrystal and to assemble a self-consistent physical picture for each nanocrys-

tal. Nevertheless, as single-nanocrystal techniques have become more complicated and

required longer integration times, it has become harder and harder to achieve high

sample statistics using these techniques (the low temperature PCFS experiments in

Part I are a textbook example). Solution-phase measurments like the one presented

here can be useful complementary methods, which can easily and reliably gauge the

average properties of the sample to identify selection bias in single-nanocrystal sur-

veys. Furthermore, they may be helpful for extending the physical insight gained

from in-depth single-nanocrystal investigations of highly-optimized samples to phys-

ical systems with poorer optical properties, for which in-depth single-nanocrystal

investigations are not possible.
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Part III

Developing Advanced Photon

Correlation Experiments
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Chapter 9

Three Photon-Correlation Fourier

Spectroscopy-Based Techniques

Although Photon-Correlation Fourier Spectroscopy (PCFS) is one of the more com-

plicated and conceptually difficult methods in our single-nanocrystal toolbox, its de-

velopment is just as much the beginning of a new experimental paradigm as it is as

a culmination of years of progress in single-photon counting analysis. The experi-

mental parameters of the experiment can be tuned to focus on a variety of different

phenomena under a spectrum of different experimental conditions and constraints.

In Section 5.4, we discussed some of the ways that PCFS experiments can be tuned

and modified to further elucidate the physics of single nanocrystals at low temper-

ature, but the potential for spectrally-resolved photon-correlation methods does not

stop there. In this Chapter, we will discuss three variants of the original PCFS ex-

periment that may be useful in future investigations. For each experiment, we will

discuss the motivation behind its development, how it would be (or has been) exper-

imentally implemented, how the standard PCFS theory is modified to address their

experimental modifications, and my personal outlook on their possible utility.
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9.1 Raster-Scanned Photon-Correlation Fourier Spec-

troscopy

9.1.1 Motivation and Background

One of the biggest problems that we have had with the standard single-nanocrystal

PCFS experiment is its long integration time, which limits the use of PCFS to highly-

optimized samples, introduces the potential for selection bias, and makes the process

of characterizing the properties of an entire sample extremely time-consuming. This

issue has been addressed in room temperature investigations by the development

of solution-phase PCFS. Solution-phase PCFS does everything for PCFS that the

solution-phase 𝑔(2) experiment described in Part II does for single-nanocrystal 𝑔(2)

experiments.1 It can be used to measure the sample-averaged single-nanocrystal

spectral correlation with high sample statistics, no user selection bias, a high signal-

to-noise ratio, and using a bright and stable solution-phase sample with no inherent

limitation on integration time and resistance to photodamage (because of the constant

diffusion of particles into and out of the focal volume).

In fact, solution-phase PCFS has already been used in two investigations to deter-

mine that the room temperature linewidth of nanocrystals is not generally broadened

by rapid spectral diffusion processes under low flux conditions, to show that the single-

nanocrystal linewidth is an active parameter in defining the ensemble linewidth that

can be greatly affected by nanocrystal architecture, and to easily and reliably char-

acterize the degree of spectral polydispersity in nanocrystal samples. [176] However,

its application is strictly limited to experimental conditions where a solution-phase

sample is viable. At low temperatures, for example, nanocrystal solvents freeze and

the only viable sample preparations are dilute films like the one we described in

Section 5.1.2. Instead of using a solution-phase sample, here we consider the idea of

1It is actually where we got the idea for the solution-phase 𝑔(2) experiment in the first place.
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measuring the average single-nanocrystal spectral correlation of a sample by rastering

the focal volume of the microscope over a single-nanocrystal film, thereby simulating

the diffusion of particles in a solution-phase sample. This experiment would not gen-

erally have sample statistics quite as high as a true solution-phase measurement and

it would be more finicky to accurately implement, but it would be compatible with

the low-temperature conditions where rapid spectral dynamics are manifested.

9.1.2 Experimental

Raster-scanned PCFS can be readily performed on any single-nanocrystal PCFS

setup, including the one described in Section 5.1.1. In the implementation used

for the preliminary measurements, the normal confocal spectroscopy program used to

identify the position of nanocrystals on the substrate was used to set up a rectangu-

lar array of discrete raster positions. This vertices of this array were spaced widely

enough such that there was not focal volume overlap between neighboring vertices;

the total size of the array was large enough to encompass a statistically large number

of vertices for sampling, but small enough such that there would not be severe focal

volume distortion on the edges of the array from the angular deflection of the scan-

ning galvomirrors; and the integration time at each raster position was set to ∼ 50 ms,

which was long enough to resolve the average single-nanocrystal spectral correlation

at relevant 𝜏 (in this case, <10 ms) and short enough to sample the ensemble spectral

correlation and to reduce nanocrystal photodamage. Then, the confocal program was

set to continuously raster scan the array while the normal low temperature PCFS

experiment from Chapter 5 was conducted (i.e. with the same dither conditions and

stage positions2). No effort was made to synchronize the raster scanning with the

integration time of each correlation measurement, but a large number of raster posi-

tions were required for each correlation measurement to ensure statistical equivalency
2Longer correlation function integration times were used, which was okay because of the small

duty cycle of each raster position.
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between the correlation measurements.

Particular attention should be paid to sample preparation. The film should be

more concentrated than a usual single-nanocrystal film, preferably containing on the

order of one nanocrystal per arbitrarily chosen focal volume. This ensures that most

raster positions will have at least one nanocrystal and that the experiment will not

waste time looking at places on the sample where there is no signal. However, more

critical than particle concentration is to ensure that the sample preparation produces

a uniform, well-dispersed film with a Poisson distribution of particles in any given

focal volume. Aggregation of nanocrystals in thin films is a fairly common occurrence

that will conflate the single-nanocrystal and ensemble contributions to the spectral

correlation. Other sample preparations using glass matrices or other polymers than

PMMA may be preferable for achieving a high quality raster-scanned PCFS film.

9.1.3 Theory

The theory behind the raster-scanned PCFS experiment is essentially identical to

those of solution-phase PCFS presented elsewhere, but instead of measuring fluctu-

ations in the behavior of the focal volume due to particle diffusion, we induce our

own fluctuations by moving the focal volume itself in a well-defined, predetermined

fashion. In the following section, we present a derivation to aid in the identifica-

tion of possible artifacts of the measurement. The derivation will follow the notation

presented in Section 3.1.1, except where new terms are introduced in-line.

Derivation. Consider the case where a PCFS experiment is conducted on a focal

volume that is rastered across the surface of a dilute film, but otherwise using the

same experimental procedure as was assumed in the derivation given in Section 3.1.

Here, the distribution of particles in the film is assumed to exhibit no spatial cor-

relation, such that arbitrarily chosen focal volumes have a Poisson distribution of
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particles with average occupation
⟨︀
𝑛
⟩︀
, and the raster scan is assumed to regularly

and instantaneously shift between uncorrelated positions on the film every 𝑇 seconds.

Furthermore, we require that we sample a statistically large number of raster posi-

tions per correlation measurement, and we assume that the particles we have sampled

over the large number of raster positions is representative of the overall sample. This

experiment no longer yields the spectral correlation of an individual nanocrystal, but

its cross-correlation is still given by,

𝑔×(𝛿0, 𝜏) = 𝑔𝑓𝑣(𝜏)

(︂
1 − 1

2
𝑐(𝜏)ℱcos[𝑃𝑓𝑣(𝜁, 𝜏)]𝛿0 −

1

2
𝑑(𝜏)ℱsin[𝑃𝑓𝑣(𝜁, 𝜏)]𝛿0

)︂
, (9.1)

where we have used the correlated spectral and intensity fluctuation formulation from

Section 3.5, because each change in raster position will induce a change in both the

spectrum and intensity from the focal volume, and where 𝑔𝑓𝑣(𝜏) and 𝑃𝑓𝑣(𝜁, 𝜏) are

now defined as the autocorrelation and spectral correlation of the entire focal volume

over the course of the measurement. Our goal is to relate these two focal volume

quantities to the ensemble and average single-nanocrystal properties of the sample at

large.

To accomplish this goal, we will consider the contribution to the focal volume

correlation functions from photon pairs whose first photon arrives during an average

raster position whose focal volume contains 𝑛 particles, and then we will average this

contribution over a Poisson distribution of particle occupancies. In general, raster

positions are defined by their time-dependent intensity,

𝐼𝑓𝑣(𝑡) =
𝑛∑︁

𝑖=1

𝐼𝑖(𝑡), (9.2)

where 𝐼𝑖(𝑡) is the intensity of the 𝑖th particle in the focal volume, and their time-

dependent spectrum,
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𝑆𝑓𝑣(𝜔, 𝑡) =
𝑛∑︁

𝑖=1

𝐼𝑖(𝑡)𝑠𝑖(𝜔, 𝑡), (9.3)

where 𝑠𝑖(𝜔, 𝑡) is the normalized spectrum of the 𝑖th particle in the focal volume.

To compose the contribution from a single raster position, it is helpful to note that

both correlation functions exhibit two distinct temporal regimes: where 𝜏 < 𝑇 and

where 𝜏 > 𝑇 . For 𝜏 > 𝑇 , the second photon must necessarily come from a different,

uncorrelated raster position with 𝑚 particles. Thus, the average contribution that a

pair of frames with occupancies 𝑛 and 𝑚, respectively, will make to the numerator of

the focal volume autocorrelation is,3

⟨︀
𝐼𝑛𝑓𝑣(𝑡)𝐼

𝑚
𝑓𝑣(𝑡 + 𝜏)

⟩︀
=
⟨︀ 𝑛∑︁

𝑖=1

𝐼𝑖(𝑡)
𝑚∑︁

𝑗=1

𝐼𝑗(𝑡 + 𝜏)
⟩︀

(9.4)

=
⟨︀ 𝑛∑︁

𝑖=1

𝐼𝑖(𝑡)
⟩︀⟨︀ 𝑚∑︁

𝑗=1

𝐼𝑗(𝑡 + 𝜏)
⟩︀

(9.5)

= 𝑛𝑚
⟨︀
𝐼(𝑡)

⟩︀2
, (9.6)

where
⟨︀
𝐼(𝑡)

⟩︀
is the average intensity of a single particle. Similarly, the average con-

tributions to the denominator time averages in the focal volume autocorrelation are

given by,

⟨︀
𝐼𝑛𝑓𝑣(𝑡)

⟩︀
=
⟨︀ 𝑛∑︁

𝑖=1

𝐼𝑖(𝑡)
⟩︀

(9.7)

=𝑛
⟨︀
𝐼(𝑡)

⟩︀
, (9.8)

and,

⟨︀
𝐼𝑚𝑓𝑣(𝑡 + 𝜏)

⟩︀
=
⟨︀ 𝑚∑︁

𝑖=1

𝐼𝑖(𝑡 + 𝜏)
⟩︀

= 𝑚
⟨︀
𝐼(𝑡)

⟩︀
. (9.9)

3The notation is a little sloppy here. In the inter-raster-position case, 𝑖 and 𝑗 index different
particles whose behavior is uncorrelated.
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Independently calculating the Poisson average of these time averages over 𝑛 and 𝑚,4

and assembling the final focal volume autocorrelation yields, for 𝜏 > 𝑇 ,

𝑔𝑓𝑣(𝜏) =

⟨︀
𝑛
⟩︀2⟨︀

𝐼(𝑡)
⟩︀2

(︀⟨︀
𝑛
⟩︀⟨︀
𝐼(𝑡)

⟩︀)︀ (︀⟨︀
𝑛
⟩︀⟨︀
𝐼(𝑡)

⟩︀)︀ (9.10)

=1. (9.11)

We calculate the average contribution that these frames make to the focal volume

spectral correlation 𝑃 𝑛,𝑚
𝑓𝑣 (𝜁, 𝜏) using a slightly different method. Using a slightly

modified version of Equation 3.98,

𝑃 𝑛,𝑚
𝑓𝑣 (𝜁, 𝜏) =

⟨︀
𝑆𝑓𝑣(𝜔, 𝑡) ∘ 𝑆𝑓𝑣(𝜔 + 𝜁, 𝑡 + 𝜏)

⟩︀
⟨︀

[𝐼𝑓𝑣(𝑡)𝐼𝑓𝑣(𝑡 + 𝜏)]
⟩︀ (9.12)

=

⟨︀∑︀𝑛
𝑖=1

∑︀𝑚
𝑗=1 𝐼𝑖(𝑡)𝐼𝑗(𝑡 + 𝜏) [𝑠𝑖(𝜔, 𝑡) ∘ 𝑠𝑗(𝜔, 𝑡 + 𝜏)]

⟩︀
⟨︀∑︀𝑛

𝑖=1

∑︀𝑚
𝑗=1 𝐼𝑖(𝑡)𝐼𝑗(𝑡 + 𝜏)

⟩︀ (9.13)

=𝑝𝑒𝑛𝑠(𝜁), (9.14)

where 𝑝𝑒𝑛𝑠(𝜁) is the spectral autocorrelation of the ensemble spectrum.5 This ex-

pression is trivially averaged over a Poisson distribution of occupancies to yield, for

𝜏 > 𝑇 ,

𝑃𝑓𝑣(𝜁, 𝜏) = 𝑝𝑒𝑛𝑠(𝜁). (9.15)

Neither of these are surprising results because we asserted at the beginning that there

should be no correlation in the behaviors between different raster positions. Things

get much more interesting when we begin to consider the values of the focal volume

correlation functions for 𝜏 < 𝑇 . There is still a region of time in this regime when

the first photon is in the raster position of interest and the second photon spills into

the next raster position (namely, when 𝑡 > 𝑇 − 𝜏) and the average contribution is

4Both variables have an average value of
⟨︀
𝑛
⟩︀
.

5Remember that the spectral autocorrelation is, by its nature, an intensity-weighted quantity
because the ensemble spectrum is an intensity-weighted quantity.
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still given by the previous, uncorrelated result, but now there is also a region of time

where both photons originate from the the same raster position (when 𝑡 < 𝑇 − 𝜏).

This is where we may detect photon pairs from the same particle.

The average intra-raster-frame contribution from a raster position with 𝑛 particles

to the numerator of the focal volume autocorrelation is given by,6

⟨︀
𝐼𝑛𝑓𝑣(𝑡)𝐼

𝑛
𝑓𝑣(𝑡 + 𝜏)

⟩︀
=
⟨︀ 𝑛∑︁

𝑖=1

𝐼𝑖(𝑡)
𝑛∑︁

𝑗=1

𝐼𝑗(𝑡 + 𝜏)
⟩︀

(9.16)

=(𝑛2 − 𝑛)
⟨︀
𝐼(𝑡)

⟩︀2
+ 𝑛
⟨︀
𝐼(𝑡)𝐼(𝑡 + 𝜏)

⟩︀
. (9.17)

This can be combined with the inter-raster position contribution from Equation 9.6

to yield a total position average of,

⟨︀
𝐼𝑛𝑓𝑣(𝑡)𝐼

𝑛/𝑚
𝑓𝑣 (𝑡 + 𝜏)

⟩︀
=
(︁

1 − 𝜏

𝑇

)︁ [︁
(𝑛2 − 𝑛)

⟨︀
𝐼(𝑡)

⟩︀2
+ 𝑛
⟨︀
𝐼(𝑡)𝐼(𝑡 + 𝜏)

⟩︀]︁

+
𝜏

𝑇

[︁
𝑛𝑚
⟨︀
𝐼(𝑡)

⟩︀2]︁
, (9.18)

and a resulting Poisson-average for the numerator of,

⟨︀
𝐼𝑓𝑣(𝑡)𝐼𝑓𝑣(𝑡 + 𝜏)

⟩︀
=
⟨︀
𝑛
⟩︀2⟨︀

𝐼(𝑡)
⟩︀2

+
(︁

1 − 𝜏

𝑇

)︁ ⟨︀
𝑛
⟩︀⟨︀
𝐼(𝑡)𝐼(𝑡 + 𝜏)

⟩︀
. (9.19)

The denominator terms are treated exactly in the same fashion as in the purely

inter-raster position case, yielding a final focal volume autocorrelation for 𝜏 < 𝑇

𝑔𝑓𝑣(𝜏) =

⟨︀
𝑛
⟩︀2⟨︀

𝐼(𝑡)
⟩︀2

+
(︀
1 − 𝜏

𝑇

)︀ ⟨︀
𝑛
⟩︀⟨︀
𝐼(𝑡)𝐼(𝑡 + 𝜏)

⟩︀
⟨︀
𝑛
⟩︀2⟨︀

𝐼(𝑡)
⟩︀2 (9.20)

=1 +
(︁

1 − 𝜏

𝑇

)︁ 1⟨︀
𝑛
⟩︀⟨︀𝑔(𝜏)

⟩︀
, (9.21)

where
⟨︀
𝑔(𝜏)

⟩︀
is the average intensity autocorrelation of single particles within the

6Now, we are in the intra-raster-frame case, where 𝑖 and 𝑗 index the same particle when 𝑖 = 𝑗.
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sample. In the case where blinking effects are minimal,
⟨︀
𝑔(𝜏)

⟩︀
≈ 1 and the focal

volume autocorrelation takes a simple, known functional form. This can be used as a

control to evaluate whether or not the experiment is conforming to the assumptions

used in this derivation. Deviation from a triangular intensity autocorrelation may

suggest severe blinking dynamics (especially deviations for 𝜏 < 𝑇 ), poor particle

dispersion (especially deviations for 𝜏 > 𝑇 ), or other experimental effects such as

drift or focal volume distortion over the raster grid.

The same general procedure is used to calculate the focal volume spectral correla-

tion for 𝜏 < 𝑇 . The average intra-raster-position contribution from a raster position

with 𝑛 particles to the numerator of Equation 9.12 is given by,

𝑃 𝑛
𝑓𝑣(𝜁, 𝜏) =

⟨︀ 𝑛∑︁

𝑖=1

𝑚∑︁

𝑗=1

𝐼𝑖(𝑡)𝐼𝑗(𝑡 + 𝜏) [𝑠𝑖(𝜔, 𝑡) ∘ 𝑠𝑗(𝜔, 𝑡 + 𝜏)]
⟩︀

(9.22)

=(𝑛2 − 𝑛)
⟨︀
𝐼(𝑡)

⟩︀2
𝑝𝑒𝑛𝑠(𝜁) + 𝑛

⟨︀
𝐼(𝑡)𝐼(𝑡 + 𝜏)

⟩︀⟨︀
𝑝(𝜁, 𝜏)

⟩︀
, (9.23)

where
⟨︀
𝑝(𝜁, 𝜏)

⟩︀
is the average single-emitter spectral correlation of the sample. This

leads to a whole-position contribution to the numerator of,

𝑃
𝑛,𝑛/𝑚
𝑓𝑣 (𝜁, 𝜏) =

(︁
1 − 𝜏

𝑇

)︁ [︁
(𝑛2 − 𝑛)

⟨︀
𝐼(𝑡)

⟩︀2
𝑝𝑒𝑛𝑠(𝜁) + 𝑛

⟨︀
𝐼(𝑡)𝐼(𝑡 + 𝜏)

⟩︀⟨︀
𝑝(𝜁, 𝜏)

⟩︀]︁

+
𝜏

𝑇

[︁
𝑛𝑚
⟨︀
𝐼(𝑡)

⟩︀2
𝑝𝑒𝑛𝑠(𝜁)

]︁
, (9.24)

and a resulting Poisson-average for the numerator of,

𝑃𝑓𝑣(𝜁, 𝜏) =
⟨︀
𝑛
⟩︀2⟨︀

𝐼(𝑡)
⟩︀2
𝑝𝑒𝑛𝑠(𝜁) +

(︁
1 − 𝜏

𝑇

)︁ ⟨︀
𝑛
⟩︀⟨︀
𝐼(𝑡)𝐼(𝑡 + 𝜏)

⟩︀⟨︀
𝑝(𝜁, 𝜏)

⟩︀
. (9.25)

The denominator of the focal volume spectral correlation for 𝜏 < 𝑇 is given by

Equation 9.19. Thus,
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𝑃𝑓𝑣(𝜁, 𝜏) =

⟨︀
𝑛
⟩︀2⟨︀

𝐼(𝑡)
⟩︀2
𝑝𝑒𝑛𝑠(𝜁) +

(︀
1 − 𝜏

𝑇

)︀ ⟨︀
𝑛
⟩︀⟨︀
𝐼(𝑡)𝐼(𝑡 + 𝜏)

⟩︀⟨︀
𝑝(𝜁, 𝜏)

⟩︀
⟨︀
𝑛
⟩︀2⟨︀

𝐼(𝑡)
⟩︀2

+
(︀
1 − 𝜏

𝑇

)︀ ⟨︀
𝑛
⟩︀⟨︀
𝐼(𝑡)𝐼(𝑡 + 𝜏)

⟩︀ (9.26)

=
𝑝𝑒𝑛𝑠(𝜁) + (𝑔𝑓𝑣(𝜏) − 1)

⟨︀
𝑝(𝜁, 𝜏)

⟩︀

𝑔𝑓𝑣(𝜏)
, (9.27)

and Equation 9.1 can be rewritten to yield the dithered PCFS analog of Equation 9

of Brokmann et al., [285]

𝑔×(𝛿0, 𝜏) =𝑔𝑓𝑣(𝜏) − 1

2
𝑐(𝜏)ℱcos[𝑝𝑒𝑛𝑠(𝜁) + (𝑔𝑓𝑣(𝜏) − 1)

⟨︀
𝑝(𝜁, 𝜏)

⟩︀
]𝛿0

− 1

2
𝑑(𝜏)ℱsin[𝑝𝑒𝑛𝑠(𝜁) + (𝑔𝑓𝑣(𝜏) − 1)

⟨︀
𝑝(𝜁, 𝜏)

⟩︀
]𝛿0 , (9.28)

which is their final result for the interpretation of the solution-phase PCFS experi-

ment. However, in this case, the overall intensity autocorrelation of the signal is not

given by the FCS curve of a solution-phase focal volume, but instead is given by,

𝑔𝑓𝑣(𝜏) = 1 +
(︁

1 − 𝜏

𝑇

)︁ 1⟨︀
𝑛
⟩︀⟨︀𝑔(𝜏)

⟩︀
. (9.29)

9.1.4 Outlook

My preliminary work shows that it is fairly straightforward to implement raster-

scanned PCFS in practice and to use it to measure the average single-emitter spectral

correlation of a sample of nanocrystals deposited on a substrate. However, there are

two critical drawbacks of the experiment that dissuaded me from further developing

the technique. First, because we are responsible for manually inducing the fluctua-

tions in focal volume occupancy, the results of the scanning measurement will be inher-

ently less accurate and precise than its solution-phase analogue. Not only will it have

lower sample statistics and be more prone to drift and other focal volume artifacts

due to the active sampling process, but the focal volume occupancy will also be more
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susceptible to breakdowns in the Poisson distribution. If this occurs, it is no longer

possible to make the essential Poisson simplication that
⟨︀
𝑛2
⟩︀
−
⟨︀
𝑛
⟩︀

=
⟨︀
𝑛
⟩︀2
, and we can

no longer accurately parse the single and ensemble contributions to the spectral corre-

lation when 𝜏 < 𝑇 . With a sample preparation, the latter concern can be minimized,

but small-number fluctuations will still introduce noise into the spectral correlation.

Raster-scanned PCFS gives us the ability to extend room-temperature measurements

of the single-nanocrystal linewidth to lower temperatures, but we should not expect

as clean and precise a result.

Second, although raster-scanned PCFS will not be affected by the same severly-

limiting fluorescence stability considerations as single-nanocrystal PCFS, its sample-

averaged observable is less useful for measuring highly variable phenomena such as

rapid spectral diffusion. By averaging over the spectral correlations of many par-

ticles with very different spectral diffusion kinetics, jump distributions, and quasi-

continuous broadening exponents, the qualitative features of the discrete spectral

correlation profile are obfuscated and it is impossible to tease out the average dif-

fusion parameters of the sample. It may still be possible to compare the overall

magnitudes of the spectral dynamics between samples, but the significance of such a

comparions would not necessarily be immediately obvious. One area where the raster-

scanned PCFS experiment may be useful is in determining the physics behind the

linewidth of the zero-phonon line (ZPL) of nanocrystals at low temperatures. This

observable is not expected to vary widely within samples, but long integration times

are generally required to resolve the spectral correlation of the ZPL on timescales

faster than rapid spectral dynamics. Raster-scanned PCFS may provide a means

for reliably measuring the effect of nanocrystal architecture on the nanocrystal ZPL

linewidth, even in poorly optimized (but physically interesting) samples that could

not be investigated using single-nanocrystal PCFS.
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9.2 Pulsed-Excitation Photon-Correlation Fourier Spec-

troscopy

9.2.1 Motivation and Background

Another PCFS experiment we have considered is combining PCFS with the solution-

phase 𝑔(2) experiment to measure the sample-averaged biexciton binding energy of

nanocrystal samples. The biexciton binding energy is an important nanocrystal pa-

rameter because it is related to the strength of the Coulomb interaction between

multiexcitonic states that mediates their many-body interactions, it plays a major

role in mediating absorption and stimulated emission in nanocrystal lasers, and it

is a factor that controls the spectral purity of nanocrystal fluorescence under high

excitation flux. [319] Nevertheless, it can be a tricky parameter to measure experi-

mentally. Several investigations have reported biexciton binding energies on the order

of 15 meV at low temperatures, where the nanocrystal spectrum becomes very nar-

row, but such a small binding energy can be very difficult to resolve compared to

the ∼60 meV excitonic spectrum of nanocrystals at room temperature. [320, 321]

Because of the low biexciton quantum yields of nanocrystals, extremely high excita-

tion flux is required to generate a high enough biexciton fluorescence signal that it

can be detected next to the nearly saturated exciton fluorescence using traditional

spectroscopies. Under these conditions, the excitonic spectrum may also undergo

charging and spectral diffusion processes that broaden the single-exciton spectrum

and obfuscate the biexcitonic spectral feature.

Pulsed-excitation photon-correlation Fourier spectroscopy is an interesting alter-

native for measuring the biexciton binding energy because it both temporally and

spectrally resolves biexcitonic emission. It can be conducted at lower excitation fluxes

to prevent photodamage and it resolves the relative energies of the biexciton and ex-

citon on timescales faster than charging and spectral diffusion effects.
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9.2.2 Experimental

Pulsed-excitation PCFS can be readily implemented using the solution-phase 𝑔(2)

setup described in Section 8.1.1. But now, instead of measuring photon arrivals on

the two detection channels at an interferometer path-length difference well beyond

the coherence length of the emission, the goal is to record the photon arrivals on both

detectors during a series of integration times at a set of evenly-spaced of path-length

differences, as we would in PCFS. Once this data has been collected, it can be used to

generate pulsewise correlation functions of the cross-correlation and autocorrelation

of the sum signals,7 which are discrete samples of their analogous continuous-wave

correlation functions (see Figure 8-1). These pulsewise correlation functions can be

immediately analyzed without adulteration using the solution-phase PCFS equation

(Equation 9.28) to calculate the ensemble spectral autocorrelation and the average

single-molecule spectral correlation.

9.2.3 Theory

As with the solution-phase 𝑔(2) measurement, pulsed-excitation PCFS provides the

exact same information as its continuous-wave analogue, except with one important

caveat: the correlation counts in the center peak correspond to a distinct physical

process from the correlation counts in the side peaks. Whereas the single-nanocrystal

contributions to the side peaks are dominated by fluorescence from single-exciton

emission, the single-nanocrystal contribution to the center peak is exclusively com-

posed of one biexciton photon and one exciton photon. Therefore, we can use the

difference between the single-nanocrystal spectral correlations calculated from the

7Because of dead time and afterpulsing, it will not be possible to calculate the autocorrelation of
the sum signal at timescales faster than ∼1µs. If there is no drift in the FCS curve as a function of
time, the baseline cross-correlation measurements beyond the coherence length of the emission can be
used in lieu of the intensity autocorrelation (just as we do in the solution-phase 𝑔(2)). Otherwise, we
can use an FCS fit of the autocorrelation of the sum signal to extrapolate the intensity autocorrelation
to 𝜏 = 0 in order to actively correct for changes in average occupancy over the course of the
measurement.
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center and side peaks to extract the average biexciton binding energy of the sample.

In fact, as we will now show, it may be possible to extract the biexciton binding

energy from the pulsed-excitation single-nanocrystal spectral correlation without the

need for quantitative modeling of the homogeneous fluorescence lineshape by using

a couple of well-defined assumptions and approximations. The concern that we have

at the outset of our analysis is that, although we have an experimental handle on the

homogeneous lineshape of exciton fluorescence via its spectral autocorrelation (i.e.

the spectral correlation of the first side peak), we do not have a very good theo-

retical handle on what the homogeneous lineshape of biexciton fluorescence should

be. Specifically, we (or at least, I) do not know how the extent of exciton-phonon

coupling should be affected by the presence of a second exciton. In the uninteresting

case where the second exciton does not affect the homogeneous lineshape of biexci-

ton fluorescence, the math linking the center peak autocorrelation to the biexciton

binding energy is very straightforward (and reminiscent of that in Section 3.6).

Consider a sample that may be very polydisperse, but that exhibits a relatively

consistent single-nanocrystal lineshape 𝑠(𝜔′) and biexciton binding energy ∆. If the

biexciton lineshape is identical to the exciton lineshape, then a single particle in the

ensemble is characterized by its (potentially time-dependent) average exciton emission

energy 𝜔0(𝑡), its homogeneous exciton spectrum 𝑠𝑥(𝜔, 𝑡) = 𝛿(𝜔−𝜔0(𝑡))⊗𝑠(𝜔) and its

homogeneous biexciton spectrum 𝑠𝑏𝑥(𝜔, 𝑡) = 𝛿(𝜔 − 𝜔0(𝑡) − ∆) ⊗ 𝑠(𝜔). In the average

single-nanocrystal spectral correlation derived from the first side peak 𝑝(𝜁, 𝑇𝑟𝑒𝑝), both

photons are drawn from the excitonic spectrum of the same nanocrystal before and

spectral dynamics can occur, and its value is given by,

𝑝(𝜁, 𝑇𝑟𝑒𝑝) = [𝛿(𝜔 − 𝜔0(𝑡)) ⊗ 𝑠(𝜔)] ∘ [𝛿(𝜔 − 𝜔0(𝑡)) ⊗ 𝑠(𝜔)] (9.30)

=𝑠(𝜔) ∘ 𝑠(𝜔). (9.31)
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In contrast, the average single-nanocrystal spectral correlation derived from the center

peak 𝑝(𝜁, 0) is still composed of photons pairs drawn from the same nanocrystal before

spectral dynamics can occur, but now one of the photons is drawn from the biexcitonic

spectrum and the other is drawn from the excitonic spectrum. The photon arrivals

are time-ordered such that the biexciton photon arrives first, but there is no bias in

which detector they arrive at and we integrate the value of the cross-correlation over

both the positive and negative 𝜏 sides of the center peak. Therefore, the value of the

center peak spectral correlation is given by,

𝑝(𝜁, 0) =
1

2
(𝑠𝑥(𝜔, 𝑡) ∘ 𝑠𝑏𝑥(𝜔, 𝑡) + 𝑠𝑏𝑥(𝜔, 𝑡) ∘ 𝑠𝑥(𝜔, 𝑡)) (9.32)

=
1

2
[𝛿(𝜔 − 𝜔0(𝑡)) ⊗ 𝑠(𝜔)] ∘ [𝛿(𝜔 − 𝜔0(𝑡) − ∆) ⊗ 𝑠(𝜔)]

+
1

2
[𝛿(𝜔 − 𝜔0(𝑡) − ∆) ⊗ 𝑠(𝜔)] ∘ [𝛿(𝜔 − 𝜔0(𝑡)) ⊗ 𝑠(𝜔)] (9.33)

=
1

2

[︂
𝛿

(︂
𝜔 − ∆

2

)︂
+ 𝛿

(︂
𝜔 +

∆

2

)︂]︂
∘ [𝑠(𝜔) ∘ 𝑠(𝜔)] (9.34)

=
1

2

[︂
𝛿

(︂
𝜔 − ∆

2

)︂
+ 𝛿

(︂
𝜔 +

∆

2

)︂]︂
∘ 𝑝(𝜁, 𝑇𝑟𝑒𝑝). (9.35)

In the case where the fluorescence lineshape is unaffected by biexciton formation,

the spectral correlations of the center and side peaks are related by a single free

parameter, which is the average biexciton binding energy we desire. And, because

this parameter is closely linked to the difference in spectral correlation linewidth, it

can be suprisingly easy to pick out the influence of the binding energy. In Figure 9-

1, we show the center and side peak spectral correlations of a hypothetical sample

with a 60 meV FWHM Gaussian linewidth and a 15 meV biexcitonic binding energy.

Although harsh experimental conditions may make it difficult to pick out the shoulder

of the spectrum at high flux caused by biexciton emission, the effect of the binding

energy on the center peak spectral correlation is clear.

This model also gives us a starting point in the search for novel physics because
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Figure 9-1: Spectral correlations corresponding to biexciton-exciton emission (center
peak) and purely exciton emission (side peak) for a nanocrystal with a 60 meV FWHM
Gaussian lineshape and a 15 meV biexcitonic binding energy. The biexciton binding
energy causes the center peak spectral correlation to be 10% broader than the side-
peak spectral correlation.

it has a clear failure condition. If this single free parameter is not enough to link the

two spectral correlations (or if the binding energy is decidedly unphysical), something

more complicated must be going on. For example if the one-parameter fit cannot

capture the shape, it may suggest that there is variability in the biexciton binding

energy between particles in the sample, and if center peak spectral correlation is

narrower than the side peak spectral correlation (or it yields a suspiciously large

binding energy), it may suggest that the lineshape of the biexciton is not the same as

the exciton. By correlating the results of pulsed-excitation PCFS with temperature-

dependent single-nanocrystal measurements of the biexciton binding energy, it should

be possible to accurately determine the average biexciton binding energy of a sample

at room temperature and to gain new insight into the subtle physics of biexciton

fluorescence.
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9.2.4 Outlook

The major drawback of this method is that it takes a very long time to measure the

center and side peak spectral correlations with high signal-to-noise ratios. The basis

experiment for the pulsed-excitation PCFS technique is the solution-phase 𝑔(2). In

Figure 8-2, an hour-long solution-phase 𝑔(2) measurement on a well-behaved sample

was used to measure a quantum yield ratio of 7.5% ± 1%. On an absolute scale,

an uncertainty of 1% is fantastic, and exactly what we need to carefully evaluate

small differences in the quantum yield ratio between samples. However, the goal of

the pulsed-excitation PCFS experiment is to resolve the lineshape of the spectral

correlation from the center peak, whose total signal magnitude is proportional to

the quantum yield ratio of the sample. We are therefore more concerned with the

relative uncertainty in the center peak value, which in these measurments, is over 10%

and just barely enough to resolve the shape of the center peak spectral correlation.

Not only will we require many of these hour-long integration times to sketch out the

PCFS interferogram, but its value manifests as an anticorrelation feature within the

coherence length of the emission. This means that our signal is actually a decrease

in the number of correlation counts in the center peak, which in turn, means that we

require even longer integration times to achieve high signal-to-noise ratios.

Certain provisions may be made to practically implement this technique. First,

we could mainly focus on samples with relatively high biexciton quantum yields.

Whereas the signal amplitude of solution-phase PCFS is only limited by the average

occupancy of the focal volume and the quality of the interferometer alignment, the

signal amplitude of the center peak spectral correlation (i.e. the piece of information

we are particularly interested in) in pulsed-excitation PCFS is further modulated by

the quantum yield. Samples with inherently high quantum yield rations like semi-

conductor nanoplatelets or CdSe/CdS heterostructures will be significantly easier to

investigate. Second, we could use higher excitation flux. In pulsed-excitation PCFS,
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we are no longer concerned about the absolute magnitude of the peak area ratio, so

increased excitation flux may be used to violate our low-flux approximations and gen-

erate more biexciton photons. The main concerns are that we are no longer operating

in the asymptotic regime, so our result will vary with excitation flux and we must

maintain a very uniform excitation flux over the measurement, and the increased exci-

tation flux may also generate signficant numbers of triexciton photons and cause sig-

nificant biexciton bleed-through in the side peaks spectral correlations.8 Ultimately,

other techniques such as conventional single-nanocrystal spectroscopy (or even con-

ventional spectroscopy in monodisperse samples), the spectrally-resolved transient

approach of Cihan et al., [322] or the amplified spontaneous emission approach of

Kelestemur et al. [323] may be more convenient techniques for measuring the average

biexciton quantum yield.

9.3 Heterodyne-Detection Photon-Correlation Fourier

Spectroscopy

9.3.1 Motivation and Background

In Section 3.7, we discussed that even though the spectral correlation may be the

ideal and natural observable for studying spectral diffusion processes, it is a sub-

optimal observable for measuring the underlying intrinsic spectrum of the emitter (or

dilute solution of emitters). This is because critical phase information is lost when

calculating the autocorrelation of the spectrum that would normally inform on the

symmetry of the spectrum. There are an infinite set of spectra with roughly similar

8This will occur when the biexciton contribution to the total fluorescence spectrum becomes
significant. If these conditions are required, conventional spectroscopy should be able to resolve
the biexciton contribution, but pulsed-PCFS may still be a superior approach because its higher
temporal resolution should suppress spectral diffusion effects. Modeling will be required to account
for the influence of biexciton-exciton photon pairs in the side peak spectral correlation.
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linewidths but varying lineshape asymmetry that are fully consistent with any given

measured spectral autocorrelation, and it is mathematically impossible to determine

a priori which of them is correct. Fundamentally, the problem is that PCFS is a

homodyne measurement that compares the relative energy spacing between pairs of

signal photons. PCFS can tell us that two signal photons are 15 meV apart, but it

cannot tell us which one is higher energy nor can it tell us whether the pair of photons

is more red or blue than usual. The solution is to design a PCFS experiment that

relies on a heterodyne detection scheme, where the energies of photon pairs are not

only measured with respect to each other, but also with respect to some external

reference source with an arbitrarily narrow and constant spectrum.

9.3.2 Experimental

The observable of a heterodyne-detection PCFS experiment will have five indepen-

dent variables: the energy separation between a reference photon and the first signal

photon, the energy separation between the reference photon and the second signal

photon, the temporal separation between the two signal photons, and the temporal

separation between the two signal photons and their corresponding reference photons

(which should be uninteresting on short timescales where there are no dither effects).

The need for two independent spectral variables and three independent temporal

variables requires that our measured quantity be a fourth-order correlation function

of output channels from two interferometers. This will therefore be a much more

complicated optical setup than that used for a standard PCFS experiment.

A schematic representation of a possible experimental setup (and the setup as-

sumed for the derivation below) is shown in Figure 9-2. The signal is created using the

same type of microscope as is used for the typical single-nanocrystal or solution-phase

PCFS experiment. Then, the signal is split, fed through two different two-output in-

terferometers, and incident on four detectors. Two of these channels are spectrally
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Figure 9-2: Schematic representation of the homodyne-PCFS experimental setup.
Two nested interferometers are used to spectrally-resolve the energy shifts between
the first and second, and second and third photons of three-photon arrival events in
the third-order cross-correlation function.
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filtered to accept only signal photons, while the other two channels are spectrally

filtered to accept only reference photons (for convenience, in this case, we use the

excitation source as the heterodyne reference). The experiment is carried out much

in the same fashion as a standard PCFS experiment. The path-length differences of

the interferometers are dithered over several fringes of both the reference and sig-

nal spectra to average over terms that are odd-order in the Fourier transform of

their respective spectra. In order to maintain the phase relationship between the

signal channels on the different interferometers, the dithers are synchronized such

that the cross-correlation of any two channels can be accurately interpreted as a

standard PCFS experiment. Then, the photon arrival times on all four channels are

measured during a series of integration times that sample a discrete, evenly spaced

two-dimensional array of the two interferometer path-length differences. This array is

centered on the white fringes of the two interferometers with a path-length difference

spacing small enough to resolve the beat frequency between the reference and signal,

and an overall path-length difference range long enought to achieve the desired resolu-

tion after discrete Fourier transform. These photon arrivals are then used to calculate

the corresponding fourth-order cross correlations and total signal autocorrelations in

software.9

9.3.3 Theory

In this Section, we will present a prospective derivation of the heterodyne PCFS ex-

periment for the setup described in Figure 9-2. This derivation will not address many

of the finer details of implementing and interpreting such an experiment, but it will

attempt to convey the broader picture of how such an experiment would theoretically

work.

We begin by constructing expressions for the output intensity for the four outputs
9Some ingenuity will be required to measure the autocorrelations because we can no longer get

an unbiased signal by adding the intensities on multiple channels.
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of the pair of interferometers. If channels 𝐴 and 𝐶 are filtered to accept the signal and

channels 𝐵 and 𝐷 are filtered to accept the laser for heterodyne detection, according

to established interferometer theory,

𝐼𝐴(𝛿1(𝑡), 𝑡) =𝐼(𝑡)
(︀
1 + ℱcos[𝑠(𝜔, 𝑡)]𝛿1(𝑡)

)︀
(9.36)

𝐼𝐵(𝛿1(𝑡), 𝑡) =𝐼𝐿(𝑡) (1 − cos(𝜔𝐿𝛿1(𝑡))) (9.37)

𝐼𝐶(𝛿2(𝑡), 𝑡) =𝐼(𝑡)
(︀
1 + ℱcos[𝑠(𝜔, 𝑡)]𝛿2(𝑡)

)︀
(9.38)

𝐼𝐷(𝛿2(𝑡), 𝑡) =𝐼𝐿(𝑡) (1 − cos(𝜔𝐿𝛿2(𝑡))) , (9.39)

where the signal is given by the intensity 𝐼(𝑡) and normalized spectrum 𝑠(𝜔, 𝑡) and

the laser is given by the hopefully constant intensity 𝐼𝐿(𝑡) and the laser energy 𝜔𝐿.

Using these intensity expressions, we can assemble a fourth-order cross-correlation

function that will relate the energies of pairs of photons, each with respect to the

constant laser energy. The ABCD cross-correlation is given by,

𝑔
(4)
𝐴𝐵𝐶𝐷(𝛿01, 𝛿02, 𝜏1, 𝜏2, 𝜏3) =
⟨︀
𝐼𝐴(𝛿1(𝑡), 𝑡)𝐼𝐵(𝛿1(𝑡 + 𝜏1), 𝑡 + 𝜏1)𝐼𝐶(𝛿2(𝑡 + 𝜏2), 𝑡 + 𝜏2)𝐼𝐷(𝛿2(𝑡 + 𝜏3), 𝑡 + 𝜏3)

⟩︀
⟨︀
𝐼𝐴(𝛿1(𝑡), 𝑡)

⟩︀⟨︀
𝐼𝐵(𝛿1(𝑡 + 𝜏1), 𝑡 + 𝜏1)

⟩︀⟨︀
𝐼𝐶(𝛿2(𝑡 + 𝜏2), 𝑡 + 𝜏2)

⟩︀⟨︀
𝐼𝐷(𝛿2(𝑡 + 𝜏3), 𝑡 + 𝜏3)

⟩︀

(9.40)

This will clearly turn into a huge mess very quickly as we begin to insert the

expressions from Equations 9.36-9.39 into Equation 9.40. Nevertheless, the math-

ematical steps we will follow are directly analogous to those used in the standard

PCFS derivation in Chapter 3. First, we note that under the standard PCFS dither

conditions, the denominator terms reduce to their respective average signal intensi-

ties, and because the spectral and intensity dynamics of the signal are presumed to

be independent, we can separate the intensity component of the numerator average

to isolate the effect of intensity fluctuations. This total intensity contribution is given
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by,

=

⟨︀
𝐼(𝑡)𝐼𝐿(𝑡 + 𝜏1)𝐼(𝑡 + 𝜏2)𝐼𝐿(𝑡 + 𝜏3)

⟩︀
⟨︀
𝐼(𝑡)

⟩︀⟨︀
𝐼𝐿(𝑡 + 𝜏1)

⟩︀⟨︀
𝐼(𝑡 + 𝜏2)

⟩︀⟨︀
𝐼𝐿(𝑡 + 𝜏3)

⟩︀ , (9.41)

which can be simplified if the laser signal is Poissonian and does not drift over time

to,

=

⟨︀
𝐼(𝑡)𝐼(𝑡 + 𝜏2)

⟩︀⟨︀
𝐼𝐿(𝑡 + 𝜏1)

⟩︀⟨︀
𝐼𝐿(𝑡 + 𝜏3)

⟩︀
⟨︀
𝐼(𝑡)

⟩︀⟨︀
𝐼𝐿(𝑡 + 𝜏1)

⟩︀⟨︀
𝐼(𝑡 + 𝜏2)

⟩︀⟨︀
𝐼𝐿(𝑡 + 𝜏3)

⟩︀ (9.42)

= 𝑔(2)(𝜏2), (9.43)

where 𝑔(2)(𝜏) is the second-order correlation function of the signal intensity from the

sample. As in the derivation of standard PCFS, after the intensity-component is

removed, the remainder is a product of purely-spectral terms from each of the output

channels with the form 1 + ℱcos[𝑠(𝜔, 𝑡 + 𝜏)]𝛿(𝑡). When the product is expanded, all

terms with odd numbers of spectral products average to zero due to the dither, leaving

a constant term, six second-order terms, and one fourth-order term. That is,

𝑔
(4)
𝐴𝐵𝐶𝐷(𝛿01, 𝛿02, 𝜏1, 𝜏2, 𝜏3) =

𝑔(2)(𝜏2)
⟨

1 − cos(𝜔𝐿𝛿1(𝑡 + 𝜏1))ℱcos[𝑠(𝜔, 𝑡)]𝛿1(𝑡) + ℱcos[𝑠(𝜔, 𝑡)]𝛿1(𝑡)ℱcos[𝑠(𝜔, 𝑡 + 𝜏2)]𝛿2(𝑡+𝜏2)

− cos(𝜔𝐿𝛿2(𝑡 + 𝜏3))ℱcos[𝑠(𝜔, 𝑡)]𝛿1(𝑡) − cos(𝜔𝐿𝛿1(𝑡 + 𝜏1))ℱcos[𝑠(𝜔, 𝑡 + 𝜏2)]𝛿2(𝑡+𝜏2)

+ cos(𝜔𝐿𝛿1(𝑡 + 𝜏1)) cos(𝜔𝐿𝛿2(𝑡 + 𝜏3)) − cos(𝜔𝐿𝛿2(𝑡 + 𝜏3))ℱcos[𝑠(𝜔, 𝑡)]𝛿2(𝑡+𝜏2)

+ cos(𝜔𝐿𝛿1(𝑡 + 𝜏1)) cos(𝜔𝐿𝛿2(𝑡 + 𝜏3))ℱcos[𝑠(𝜔, 𝑡)]𝛿1(𝑡)ℱcos[𝑠(𝜔, 𝑡 + 𝜏2)]𝛿2(𝑡+𝜏2)

⟩
.

(9.44)

We are interested in isolating and interpreting the fourth-order term, which con-

tains the heterodyned spectral correlation we desire. The second-order terms can be

accounted for by noting that because of the synchronized dither, cross-correlating

any pair of channels on either interferometer should be equivalent to conducting a

standard PCFS experiment. Each product of two spectral terms can be recast in
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terms of the cross-correlation of their respective channels according to Equation 3.13

(noting that when both channels are sample signal, the autocorrelation of the sum

signal may not be non-unity and must be accounted for). This process yields,

𝑔
(4)
𝐴𝐵𝐶𝐷(𝛿01, 𝛿02, 𝜏1, 𝜏2, 𝜏3) =

𝑔(2)(𝜏2)
(︁
− 1 + 𝑔

(2)
𝐴𝐵(𝛿01, 𝛿02, 𝜏1) −

𝑔
(2)
𝐴𝐶(𝛿01, 𝛿02, 𝜏2)

𝑔(2)(𝜏2)
+ 𝑔

(2)
𝐴𝐷(𝛿01, 𝛿02, 𝜏3)

+ 𝑔
(2)
𝐵𝐶(𝛿01, 𝛿02, 𝜏2 − 𝜏1) − 𝑔

(2)
𝐵𝐷(𝛿01, 𝛿02, 𝜏3 − 𝜏1) + 𝑔

(2)
𝐶𝐷(𝛿01, 𝛿02, 𝜏3 − 𝜏2)

+
⟨

cos(𝜔𝐿𝛿1(𝑡 + 𝜏1)) cos(𝜔𝐿𝛿2(𝑡 + 𝜏3))ℱcos[𝑠(𝜔, 𝑡)]𝛿1(𝑡)ℱcos[𝑠(𝜔, 𝑡 + 𝜏2)]𝛿2(𝑡+𝜏2)

⟩)︁
,

(9.45)

and gives us a way of calculating the value of the fourth-order term from the fourth-

order intensity cross-cross-correlation, the second-order autocorrelation of the sample

signal, and several output cross-correlations that can be simultaneously calculated

alongside the fourth-order cross-correlation.

Our final order of buisiness is to unpack the fourth-order term. If we try to

keep track of the dither as we did in the formal derivation of the standard PCFS

experiment, this will become very complicated very fast. To keep this treatment on a

higher level, we will take cues from the derivation in Chapter 3 and rephrase the cosine

terms as cosine transforms of Dirac delta functions (notated by 𝐿(𝜔𝐿 − 𝜔) because

we already have too many 𝛿 floating around). This yields the following expression,

(4𝑡ℎ) =
⟨
ℱcos[𝐿(𝜔𝐿 − 𝜔)]𝛿1(𝑡+𝜏1)ℱcos[𝐿(𝜔𝐿 − 𝜔)]𝛿2(𝑡+𝜏3)

×ℱcos[𝑠(𝜔, 𝑡)]𝛿1(𝑡)ℱcos[𝑠(𝜔, 𝑡 + 𝜏2)]𝛿2(𝑡+𝜏2)

⟩
, (9.46)

which is a product of two products of Fourier transforms, where each product is

analogous to the right side of Equation 3.13 for its respective path-length difference

variable (either 𝛿1(𝑡) or 𝛿2(𝑡)). The two products are not independent because the
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dithers of the two interferometers are synchronized,10 but as long as we do not eval-

uate the time-average, we are still free to manipulate each product independently

in the fashion of the derivation in Chapter 3. This time without involving the time

average, we shift the dither into the integrand of the cosine transforms, rephrase each

transform as sums or differences of the real and imaginary parts of Fourier transforms,

combine the products with the convolution or cross-correlation theorems, merge terms

by reforming the (co)sine transforms, and discard the spectral convolution terms as

dithered away, yielding,

=
⟨(︁

ℱcos[

∫︁ ∞

−∞
𝐿(𝜔𝐿 − 𝜔)𝑠(𝜔 + 𝜁, 𝑡) cos(𝜔𝑥(𝑡) − (𝜔 + 𝜁)𝑥(𝑡 + 𝜏1)) d𝜔]𝛿01

+ ℱsin[

∫︁ ∞

−∞
𝐿(𝜔𝐿 − 𝜔)𝑠(𝜔 + 𝜁, 𝑡) sin(𝜔𝑥(𝑡) − (𝜔 + 𝜁)𝑥(𝑡 + 𝜏1)) d𝜔]𝛿01

)︁

×
(︁
ℱcos[

∫︁ ∞

−∞
𝐿(𝜔𝐿 − 𝜔)𝑠(𝜔 + 𝜁, 𝑡 + 𝜏2) cos(𝜔𝑥(𝑡 + 𝜏2) − (𝜔 + 𝜁)𝑥(𝑡 + 𝜏3)) d𝜔]𝛿02

+ ℱsin[

∫︁ ∞

−∞
𝐿(𝜔𝐿 − 𝜔)𝑠(𝜔 + 𝜁, 𝑡 + 𝜏2) sin(𝜔𝑥(𝑡 + 𝜏2) − (𝜔 + 𝜁)𝑥(𝑡 + 𝜏3)) d𝜔]𝛿02

)︁⟩
.

(9.47)

If we paid careful attention to the dither component of the integrand, it would be

possible to determine the values for 𝑐(𝜏) and 𝑑(𝜏) like we did in Chapter 3. However,

guided by our discussion of the ideal dither in Section 3.2.2, we will simply assume

that the relevant 𝜏 of interest are much faster than the dither and let 𝛿(𝑡+ 𝜏) ≈ 𝛿(𝑡).

As long as the average energies of the laser and signal are much greater than the

linewidth of the spectral correlation of the laser and the signal (i.e. the laser and

signal are relatively close together in energy), the cosine terms will reduce to unity

and the sine terms will vanish (as they did in Section 3.2.2), leaving,

10This is important, because otherwise the time average could be distributed, yielding ensemble
(or time-averaged) spectra.
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(4𝑡ℎ) =
⟨
ℱcos[

∫︁ ∞

−∞
𝐿(𝜔𝐿 − 𝜔)𝑠(𝜔 + 𝜁, 𝑡) d𝜔]𝛿01

×ℱcos[

∫︁ ∞

−∞
𝐿(𝜔𝐿 − 𝜔)𝑠(𝜔 + 𝜁, 𝑡 + 𝜏2) d𝜔]𝛿02

⟩
(9.48)

=
⟨
ℱcos[𝐿(𝜔𝐿 − 𝜔) ∘ 𝑠(𝜔, 𝑡)]𝛿01ℱcos[𝐿(𝜔𝐿 − 𝜔) ∘ 𝑠(𝜔, 𝑡 + 𝜏2)]𝛿02

⟩
(9.49)

=

∫︁ ∞

−∞

∫︁ ∞

−∞

⟨
𝑝𝐿(𝜁1, 𝑡)𝑝𝐿(𝜁2, 𝑡 + 𝜏2)

⟩
cos(𝜁1𝛿01) cos(𝜁2𝛿02) d𝜁1 d𝜁2, (9.50)

where 𝑝𝐿(𝜁1, 𝜏) represents the spectral correlation of each signal photon on channel A

with the laser reference (integrated over all laser-signal photon pair 𝜏 much less than

the dither because the laser reference is static) and where 𝑝𝐿(𝜁2, 𝜏) represents the

heterodyned spectral correlation of each signal photon on channel C with the laser

reference (integrated over all laser-signal photon pair 𝜏 much less than the dither

because the laser reference is static), for all signal photons that arrived 𝜏2 after the

corresponding count on channel A.

Equation 9.50 represents the double cosine transform of the heterodyned spectral

correlation,

𝑝𝐻(𝜁1, 𝜁2, 𝜏2) = 𝑝𝐿(𝜁1, 𝑡)𝑝𝐿(𝜁2, 𝑡 + 𝜏2), (9.51)

which represents the probability distribution function that if a pair of signal photons

arrive with temporal spacing 𝜏2, then the first photon has energy 𝜁1 with respect to the

laser reference and the second photon has energy 𝜁2 with respect to the laser reference.

Because we know the absolute energy of the laser reference, this two dimensional

probability distribution gives us an absolute energy mapping for the spectrum before

and after a given waiting 𝜏2 that can be interpreted in a fashion very similar to

data produced by 2D ultrafast spectroscopies. Broadening along the diagonal is

related to the degree of inhomogeneous broadening (or the width of the time-averaged

spectrum), broadening along the antidiagonal is related to homogeneous broadening,

296



and the evolution of the contour map with waiting time is related to spectral diffusion

on that timescale.

There are a couple of details that we have skimmed over, which are particularly

worth emphasizing. First, note that although the fourth-order correlation function

has three temporal variables corresponding to the temporal separations between the

four photon arrival events in a coincidence count, the physical observable only has one

temporal variable corresponding to the temporal separation between the two signal

photons. This is a critical point because as T.S. Bischof has noted in his higher-

order correlation work, even with relatively healthy signal intensities, four-photon

coincidence events are quite rare and difficult to collect with good signal-to-noise.

We benefit in this experiment from the fact that because the laser reference is static,

the correlation function should be constant over temporal variables relating the signal

and reference photon arrivals. Without loss of information, we can integrate over a

wide range of those 𝜏 to improve our signal-to-noise and to effectively reduce the

dimensionality of the measured correlation function. Second, as long as we have

arbitrarily large electronic storage space, we are free to improve the signal-to-noise

ratio of the experiment by increasing the count rate on the reference channels. In fact,

it is worth pointing out that the main role of the reference channels in the mathemetics

of the derivation is to report on the absolute path-length-difference at any given signal

photon arrival. With some experimental and mathematical cleverness, it may be

possible to replace the reference channels with absolute stage-positioning information,

thereby reducing the observable to a manageable second-order correlation function.

Third, it is important to keep in mind that the heterodyne PCFS experiment is

subject to the same instrument function concerns as the standard PCFS experiment.

The bandwidth of the heterodyned spectral correlation is defined by the dither, and

if the reference wavelength is too far from the signal wavelength, it will be distorted

or averaged away by the dither. And finally, this heterodyne experiment is entirely
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compatible with the ensemble-averaged, solution-phase treatment we have required

in order to implement long integration time experiments.

9.3.4 Outlook

The heterodyne PCFS experiment is a remarkably more complicated and difficult

experiment than we are currently implementing in our group right now, both from

a conceptual and experimental standpoint. However, there are two major reasons

why it might be worth pursuing in future work. It addresses the major drawback of

the standard PCFS experiment, namely that the PCFS spectral correlation does not

contain the phase information necessary to extract the lineshape or asymmetry of the

intrinsic spectrum or probability distribution function of spectral dynamics. And, it

provides a useful conceptual bridge between the the current state of photon correla-

tion experiments and the ongoing development and application of multi-dimensional

ultrafast spectroscopies. If there is a system with particularly asymmetric spectral dy-

namics or for which an absolute measurement of the underlying spectrum is essential,

heterodyne PCFS may very well be the ideal tool.
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