
Engineering Strong-Field Phenomena: From
Attosecond Pulse Characterization to Nanostructured

Electron Emitters

by

Phillip D. Keathley

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2015

c○ Massachusetts Institute of Technology 2015. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

August 27, 2015

Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Franz X. Kärtner

Adjunct Professor
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Leslie A. Kolodziejski

Chair, Department Committee on Graduate Students



2



Engineering Strong-Field Phenomena: From Attosecond Pulse

Characterization to Nanostructured Electron Emitters

by

Phillip D. Keathley

Submitted to the Department of Electrical Engineering and Computer Science
on August 27, 2015, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Strong-field phenomena are a driving force behind the latest innovations in ul-
trafast science. As ultrafast laser sources improve in terms of peak pulse energy
and wavelength tunability, applications that utilize high peak electromagnetic field
strengths to generate attosecond pulses of both photons and electrons are becom-
ing readily available. Furthermore, through the coupling of these optical fields to
nanostructures that further enhance peak field strengths, a new generation of elec-
tron emitters and “light-speed” electronics are now emerging. This thesis explores
two such areas in detail: the generation and characterization of attosecond pulses
of light, and strong-field photoemission from nanostructures.
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B-2 Schematic of relevant energy levels for both a metal and a semiconductor.

In each, the barrier at the material/vacuum interface has been idealized as

a step-potential. The shaded region shows a typical Fermi-Dirac distribu-

tion of Equation (B.18). Due to the bandgap, the distribution of available

electrons is different within a semiconductor as compared to a metal. . . . 139
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Chapter 1

Introduction

Research into strong-field (SF) driven electron dynamics has grown rapidly in the

last two to three decades as laser sources producing peak electric fields capable of

directly tunnel-ionizing atomic gases have become readily available. A key tech-

nology stemming from this work is the generation and control of attosecond pulses

of extreme ultraviolet (EUV) light [1–9]. As stroboscopic light sources enabled the

study of mechanical motion not directly observable by the naked eye, such technol-

ogy enables the direct observation of electron motion within atoms and molecules.

While attosecond science and SF phenomena have traditionally been studied in

the realm of atomic and molecular systems, with growing advances and interest

in nanotechnology, recent developments have emerged in the area of SF-driven

electron emission from nanostructuress [10–16]. Such systems utilize the field-

enhancement properties of nanostructures to achieve optical tunneling before the

onset of structural damage due to peak average power.

This thesis presents two main contributions of the author: the development of

the Volkov Transform Generalized Projections Algorithm (VTGPA), a new algo-

rithm for attosecond EUV pulse characterization, and a thorough characterization

of SF photoemission from nanostructured silicon cathodes. As both draw heavily

from the use of the strong-field approximation (SFA) in quantum mechanics, it is

discussed in detail in Chapter 2. Chapters 3-5 then go on to present the authors

contributions to the fields of attosecond pulse characterization and SF emission
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from nanostructures. To provide the reader with historical context, sections 1.1

and 1.2 below provide a more detailed introduction to each area. Finally, the thesis

is concluded and outlook provided in Chapter 6.

1.1 The Attosecond Pulse

The first steps toward the development of attosecond pulses were taken with the

discovery of high harmonic generation (HHG) of EUV light in rare gases over two

decades ago [17–20]. While it was clear for many years that the physics predicted

that the HHG process was generating trains of pulses just attoseconds in dura-

tion, it was necessary to develop new and improved temporal characterization

techniques having the ability to measure such pulse durations before it could be

confirmed experimentally. The best candidates for the characterization of such op-

tical pulses came in the form of an electron streaking apparatus [2, 21–25]. As the

photoionization process from a well defined initial state, such as that found in an

atom, is coherent with respect to the ionizing EUV pulse, the magnitude and phase

information of the EUV pulse is preserved during ionization. If ionization occurs

within the presence of a long-wavelength, e.g. infrared (IR), pulse, the electron

phase becomes modulated depending on its birth time within the IR pulse. Thus,

by collecting spectra as a function of delay between the IR and EUV pulses, form-

ing what is known as a spectrogram, one has enough information to completely

reconstruct the original EUV pulse in time.

Such a measurement necessitates a precision optical delay-line coupled with a

vacuum apparatus for the generation of EUV and measurement of electron spectra.

A standard attosecond metrology setup is shown in Figure 1-1 below, and the de-

sign implemented in the Kärtner group at MIT is discussed in detail in Section 3.4.

Both designs share key aspects of any attosecond metrology station:

∘ HHG generation chamber with gas cell. This chamber needs to withstand

high gas flow from the HHG target.
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∘ Delay line allowing for in-vacuum propagation of EUV pulses as they are

readily absorbed at atmospheric pressures.

∘ Differential pumping to isolate spectroscopy chamber from HHG gas. This

reduces background when the HHG gas differs from the target gas, and pro-

tects the sensitive microchannel plate detectors in the electron spectrometer

from ion-induced arcing.

∘ Fine delay control for streaking. In Figure 1-1, it is a piezo that drives the

central portion of the split mirror.

∘ Electron spectrometer (e.g. time of flight, velocity map imager (VMI), etc.).

∘ EUV spectrometer for diagnostics and calibration.

Figure 1-1: Schematic of a typical attosecond metrology station. Image adapted from [4]

An example of an experimentally measured spectrogram for an isolated at-

tosecond pulse is shown in Figure 1-2. While there is enough information within

the spectrogram to characterize both the EUV and IR streaking pulses, care has

to be taken in the techniques and assumptions used to retrieve it. One attractive

method combines a technique from ultrafast laser physics, known as frequency

resolved optical gating (FROG), with the SF formulation of ionization and streak-

ing of the electron, known as FROG for the complete retrieval of attosecond bursts

(FROG-CRAB) [21, 23]. In the community, this technique is popular as it enables
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the simultaneous characterization of both the IR and EUV pulses. While powerful,

in its current form there is still much room for improvement. For instance, magni-

tude and phase changes during the ionization step are typically ignored, and the

algorithm itself suffers from a reliance on Fourier transforms, which poorly models

the physical process of streaking.

Figure 1-2: Example of an experimentally retreived spectrogram. Measured (a) and re-
trieved (b) spectrograms. Retrieved pulse form with phase (c), measured spectrum with
phase (d). Image adapted from [3].

Others have investigated solutions to this problem by requiring relatively long

and weak streaking pulses, ensuring that the process falls within the regime of a

single EUV photon absorption followed by single IR photon absorption/emission [24,

25]. In this regime, the attosecond pulse can be retrieved by analyzing the magni-

tude and phase of oscillations in the spectrogram at the frequency of the streak

pulse, hence the name phase retrieval by omega oscillation filtering (PROOF).

While attractive for its speed and simplicity, it does not offer a solution that can

simultaneously solve for the kinds of ultra-broadband, complex waveforms that
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often accompany SF physics experiments, as well as the EUV pulse. In chapter 3 of

this proposal, the VTGPA is presented, which completely solves the pulse retrieval

problem within the context of the SF approximation without any further assump-

tions. Beyond its application to the problem of attosecond pulse retrieval, the gen-

eral approach of the algorithm should prove useful for analyzing experimental re-

sults from SF driven pump-probe measurements that obey similar physics. Also,

as it can be used at weaker streaking intensities, much can be learned about the

general applicability of the SF approximation in describing attosecond streaking

measurements versus perturbation theory by comparing the results to other meth-

ods such as iPROOF [24] or RABBITT [2]. This makes the VTGPA a potentially

useful tool for studying and improving common assumptions used in SF physics.

1.2 Strong-Field Emission From Nanostructures

Aside from attosecond pulses of light, another area of rapidly growing interest

is the formation of high-yield, ultrafast electron bursts from nanostructured cath-

odes [10–15, 26]. While the optical tunneling process utilized in HHG and above

threshold ionization (ATI) from atoms [27, 28] is not limited to gaseous targets, it

is not typically observed in solids due to the onset of material damage and/or a

space-charge induced virtual cathode. However, field-driven electron oscillations

and bunching within nanostructures cause the incident electric field from an op-

tical pulse to be enhanced upwards of (10 − 50)×. Given that the maximum field

enhancement observable from a planar substrate is just 2×, if we assume a field

enhancement factor of 20× for a nanostructure, an increased peak local intensity

of 100I0, where I0 is peak input intensity, is induced, avoiding damage from high

average power absorption. Furthermore, due to the localization of the emission

and laser acceleration from a curved emission site, average current density is re-

duced and the transverse electron energy spread is increased, thereby preventing

the formation of a space-charge-induced virtual cathode [29].

Chapter 5 compares theoretical and experimental results of electron emission
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from nanostructures in the presence of strong optical fields (i.e. exceeding 109 V/m).

At low peak intensities, the electron emission follows the trend of multiphoton

emission from planar surfaces, having a current yield that scales with the Nth

power of peak intensity, whereN is the required number of photons needed to pro-

mote an electron to the vacuum. However, at higher peak intensities the electron

sees an increased potential barrier due to the enhanced field on the outer surface of

the emitter equal to the ponderamotive potential, Up, of the enhanced laser field.

This leads to a sharp kink in the electron emission rate, and the emitter then starts

to enter the tunneling, or SF regime of photoemission. Expressed in a time do-

main picture, this is when the tunneling time, Tt =
√

2mφ/(eF), is shorter than one

optical cycle of the incident pulse [30]. In the expression for Tt, m is the electron

mass, φ the material work function, e the electron charge and F the peak electric

field. Beyond the total yield, the effects of laser acceleration and rescattering on the

emitted electron energy spectra are discussed in the context of both a semi-classical

quantum model and its relation to purely classical trajectories.

In Chapter 5, a complete theoretical framework describing SF emission from

nanostructures is covered, and a full experimental characterization presented. In

section 5.3, experimental measurements that characterize electron yield and spec-

tra as a function of input intensity from arrays of nano-sharp Si tips are presented.

These results strongly support the observation of SF emission from the nanostruc-

tures, as both the kink in electron yield and broad energy plateaus due to rescat-

tering from the tip are observed. To further demonstrate that the emission is truly

a field-driven process, two-color measurements are presented which demonstrate

how the electron energy spectra can be significantly altered due to a change in

form of the electric field waveform and confirm the ultrafast nature of the emis-

sion process.
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Chapter 2

Theoretical Methods

In order to deal with the emission and subsequent propagation of an electron in a

“strong”, oscillating electric field, it is advantageous to introduce the fundamental

solutions to the Schrödinger equation under such a condition. In section 2.1, the

dipole Gordon-Volkov solution to the wave function in the presence of oscillating

electric fields is presented. In section 2.2, SF perturbation theory is introduced

and used to solve for electron emission, subsequent acceleration, and interaction

with the coulomb potential in a uniform laser field. Section 2.2.2 then concludes

the chapter with a discussion of the saddle point approximation and how it can

be used to simplify the calculation of the integrals presented in section 2.2. These

results will be continued in later chapters to develop models for EUV ionization

and streaking, as well as SF photoemission from nanostructures.

2.1 Dipole Gordon-Volkov Solutions

The dipole Gordon-Volkov solution to the Schrödinger equation was developed

almost a century ago by Gordon [31] and Volkov [32] to give a quantum mechani-

cal description of a charged particle within an oscillating electric field. To start this

derivation, we first make the dipole approximation, which assumes that the elec-

tric field is infinite in extent with no spatial distribution (i.e. it is only a function of

time). From there, we can write the general Hamiltonian of an electron in such a
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system as

H =
1

2m
(p + qA(t))2 − qφ(r, t), (2.1)

where A(t) is the magnetic vector potential, φ(r, t) the scalar potential, p the mo-

mentum vector, q the absolute value of the electron charge, and m the mass of the

electron. Choosing to set A(t) = 0, it can be easily shown that φ(r, t) = −r · F(t),

where F(t) is the electric field as a function of time. This yields the Hamiltonian in

what is called the length gauge.

Hl =
1

2m
p2 + qr · F(t) (2.2)

If, however, it is solved by setting φ = 0, one has the Hamiltonian in what is called

the velocity gauge,

Hv =
1

2m
(p + qA(t))2, (2.3)

where the electric field is given as F(t) = −∂A(t)/∂t. One can then move back and

forth between solutions in either gauge by using the unitary gauge transformation,

ψl(r, t) = ψv(r, t) eiqr·A(t)/ h . (2.4)

The reader may be curious at this point why an oscillating magnetic field, B,

which would likely accompany any oscillating electric field, has yet to be men-

tioned. By enacting the dipole approximation, we have already eliminated the

magnetic field. Since B = ∇× A, and A is assumed to depend explicitly on time,

there can be no magnetic field. In Appendix A it is shown that this approxima-

tion is justified unless relativistic energies are achieved during acceleration by the

electric field.

It is easiest to solve for the Gordon-Volkov solution in the velocity guage. In

the momentum domain, the Schrödinger equation can be written as

i h
∂

∂t
ψ̃(p, t) =

1
2m

(p+ qA(t))2ψ̃(p, t), (2.5)
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which has the solution

ψ̃(p, t) = exp
{

−i

2 hm

∫ t
dτ
(
p + qA(τ)

)2
}

. (2.6)

The action term,

Sp(t) =
1

2m

∫ t
dτ (p + qA(τ))2 , (2.7)

in equation (2.6) accounts for the accumulated phase of the electron as it is acceler-

ated in the electric field. This solution is then used to develop a complete basis [33]

such that any wave packet in an oscillating electric field can be described as a sum-

mation of momentum components with coefficients B̃(p) as

ψ(r, t) =
∫

d3pB̃(p)ψVvp (r, t), (2.8)

where

ψVvp (r, t) = (2π)−3/2 exp
{
i
 h

p · r −
i
 h
Sp(t)

}
(2.9)

is the Gordon-Volkov solution for a plane wave in the velocity gauge. One can

simply use the gauge transformation in equation (2.4) to switch to the length gauge

form.

If the electric field is turned off by setting A(t) = 0, ψVvp simply reduces to

the plane wave solution for the case of no external potential. When A(t) is weak,

i.e. when the electric field strength is small and/or the photon energy,  hω, large,

as it is for many SF applications, one can treat the electric field as a perturbation

during the emission process and use a summation of field-free plane waves as the

basis set to describe the emitted wave packet in the continuum. However, the

Gordon-Volkov wave becomes a valuable tool when modeling processes driven

by long-wavelength fields where the electric field is often relatively large. In this

case, it is not efficient to express the wave packet as a summation of field-free plane

waves. This can be mathematically demonstrated by taking A(t) = A0 cos(ωt) and

expanding the Volkov wave solution above as a series of field-free plain waves,
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which yields [34]

ψVvp (r, t) =(2π)−3/2 eip·r/ h
∞∑

n=−∞ e−i[(p
2+Up)/(2 hm)+nω]t (2.10)

× Jn

(
qA0 · p
( hmω)

,
Up

(2ω h)

)
,

where Jn(u, v) are the generalized Bessel functions, and Up = q2F2
0/(4mω

2) is the

average kinetic drift energy of the electron over one cycle of a continuous wave

electric field given a peak field strength F0, also referred to as the ponderomotive

potential. As the ratio of A0/ω, and thus the excursion length of the electron, in-

creases, more and more field-free plane waves need to be used to express the infor-

mation contained in just one Volkov wave (see Figure 2-1). When this is the case, it

becomes advantageous to set up a perturbation theory solution to the Schödinger

equation using the Volkov states as the unperturbed basis set. This is discussed in

Section 2.2.

2.2 Strong-Field Perturbation Theory

A typical approach to using the Gordon-Volkov solution to solve real-world prob-

lems is known as SF perturbation theory. Perturbation theory normally treats the

states of the system as the unperturbed basis set and the oscillating electric field

as a perturbation. For instance, the typical derivation of a single-photon absorp-

tion leading to the photoelectric effect is derived in this manner. On the other

hand, SF perturbation theory treats the binding potential and/or laser interaction

potential as a perturbation and the states of the oscillating electric field, i.e. the

Gordon-Volkov solutions, as the unperturbed basis set. Some basic concepts of

this approach are derived below. If the reader has further interest in the topic, he

or she is directed to an excellent review by Becker et al. [27], book by Joachain et

al. [35], or the PhD thesis of Bhardwaj [36].
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Figure 2-1: Calculation of Re(ψVvp ) using the Volkov wave solution (solid grey), and also
the series expansion (dashed black) with (a) only the zeroth order term included, (b) the
−1 6 n 6 1 terms included, and (c) the −2 6 n 6 2 terms included. The calculation was
performed using a central wavelength of 800 nm, a peak electric field strength of 5 GeV/m,
and an average electron energy of p2/2m = 1 eV.

2.2.1 General Solution

To determine the probability amplitude, Mp, of an electron transition to a final

state
∣∣ψp(t)

〉
from an unexcited state, |ψ0(t0)⟩, one can propagate the unexcited

state to time t and then project it onto the final state. This is expressed mathemati-

cally as

Mp =
〈
ψp(t)

∣∣U(t, t0) |ψ0(t0)⟩ , (2.11)
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where U(t, t0) is the time propagator for the full system. In most cases, and in

the following examples, only the initial state of the most weakly bound electron is

considered since it contributes the most to the final transition probability. This is

often referred to as the single active electron (SAE) approximation.

For the case of a system with a binding potential described by V exposed to

a uniform, oscillating electric field potential VF(t) = qr · F(t), we have the total

Hamiltonian, in the length gauge, as being

HT (t) = K+ V + VF(t), (2.12)

where K = − h2

2m ∇2. The choice of gauge is important as an approximation to the

full solution of the Schrödinger equation will be made shortly, thus breaking gauge

invariance. It has been shown elsewhere that the length gauge best encapsulates

the physics of ionization and acceleration in a strong field [35, 37]. If we treat the

laser as the interaction Hamiltonian, the time evolution operator of the system,

U(t, t0), can be written as,

U(t, t0) = UV(t, t0) −
i
 h

∫ t
t0

UV(t, t0)VF(τ)U(τ, t0)dτ (2.13)

where UV(t, t0) is the time evolution operator of the ground state system without

the laser field. However, we can also write an equivalent expression, only this time

treating the binding potential as the perturbation,

U(t, t0) = UF(t, t0) −
i
 h

∫ t
t0

UF(t, t0)VF(τ)U(τ, t0)dτ, (2.14)

where

UF(t, t0) =
1
 h

∫
d3p

∣∣∣ψVvp (t)
〉〈
ψVvp (t0)

∣∣∣ (2.15)

is the time evolution operator of the laser field alone. While equations (2.13)

and (2.14) are complete, they are not trivial to solve. The method often employed

is to use both expressions to generate a Dyson series of nested integrals that can be
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truncated. Performing this up to a second order approximation yields

U(2)(t, t0) = UV(t, t0) −
i
 h

∫ t
t0

dτUF(t, τ)VF(τ)UV(τ, t0) (2.16)

−
1
 h2

∫ t
t0

dτ

∫ t
τ
dτ ′UF(t, τ ′)VUF(τ ′, τ)VF(τ)UV(τ, t0).

From here, the final state
∣∣ψp(t)

〉
is taken to be a Gordon-Volkov wave in the

length gauge,
∣∣∣ψVlp (t)

〉
, and the approximation in equation (2.16) is combined with

equations (2.11) and (2.15) to yield the following second order approximation to

Mp for a linearly polarized electric field F(t) = (F(t), 0, 0),

Mp =M
(1)
p +M

(2)
p (2.17)

M
(1)
p = −

i
 h

∫∞
−∞ dτexp{i(Sp(τ) +W0τ)/ h}qF(τ)d(p+qA(τ)) (2.18)

M
(2)
p = −

1
 h2

∫∞
−∞ dτqF(τ)eiW0τ/ h

∫∞
τ

dτ ′exp{iSp(τ
′)/ h}

× 1
 h3

∫∞
−∞ d3k

〈
p + qA(τ ′)

∣∣V ∣∣k + qA(τ ′)
〉

× exp
{ i

 h

[
Sk(τ) − Sk(τ

′)
]}
d(k+qA(τ)).

(2.19)

The term dp = ⟨p| x |ψ0⟩ is the dipole transition matrix element from the ground

state to an excited state with final momentum p after the field vanishes, and W0 is

the ground state energy of the system.

While the expression seems complicated, it has a simple physical explanation.

For the first order term, an electron is born at time τ after which it is accelerated by

the laser field in the continuum, achieving a final momentum p. The total proba-

bility is then given by integrating over all possible birth times τ. Electrons emitted

in this manner are refered to as “direct” electrons since they do not interact with

the coulomb potential. For the second order term, an electron is born at time τ

to a state that would have a final momentum k if it were not to interact with the

coulomb potential. However, an interaction with the coulomb potential, V , at time

τ ′ occurs, after which the electron transitions to a new state with final momentum
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p. The total probability is then given by integrating over all possible birth times

τ, initial state momentum values k, and interaction times τ ′. One can of course

continue the perturbation theory expansion to even higher terms, each describing

yet another interaction with the coulomb potential.

The computational expense of calculating Mp as written in equations (2.17)-

(2.19) is reduced significantly for few-cycle optical pulses as the integral only needs

to be calculated over a very narrow region of time. For pulses with a large number

of cycles, it suffices to approximate the pulse as a CW field where one can quantize

the absorption/emission process using the generalized Bessel function expansion

demonstrated in equation (2.10), thus reducing the integration bounds to only one

temporal cycle of the electric field.

2.2.2 The Saddle Point Approximation

The saddle point approximation is often employed in the calculation of the inte-

grals in equations (2.18) and (2.19). The results of this approach demonstrate the

deep relationship between the quantum and classical physics during the ioniza-

tion and subsequent acceleration of an electron wave packet driven by a strong

electric field. The saddle point approximation, often referred to as the stationary

phase approximation in optics, simply takes advantage of the fact that the domi-

nant contributions to an integral of a function with an oscillating phase are from

regions when the phase is stationary with respect to the variable being integrated.

Likewise, regions where the phase varies rapidly make negligible contributinos to

the total integral.

For example, consider a function of the form

Γ =

∫∞
−∞ f(x) eig(x) dx. (2.20)

If f(x) varies slowly with respect to eig(x), we can isolate a location x0 where g(x)
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is stationary by using the condition

∂g(x)

∂x

∣∣∣∣∣
x0

= 0. (2.21)

Expanding g(x) around x0 yields

g(x) ≈ g(x0) +
∂2g(x)

∂x2

∣∣∣∣∣
x0

(x− x0)
2

2
(2.22)

and we can place this back into the integral. Since f(x) varies slowly with respect

to the phase, we can assume f(x) ≈ f(x0) near x0, requiring that∫∞
−∞ exp

{
i
∂2g(x)

∂x2

∣∣∣∣∣
x0

(x− x0)
2

2

}
dx =

√√√√ 2πi
∂2g(x)
∂x2

∣∣∣
x0

(2.23)

converges rapidly around x0. Thus, if the above mentioned conditions all hold, we

have the following approximation to Γ if there is only one stationary point, x0

Γ ≈ f(x0) eig(x0)

√√√√ 2πi
∂2g(x)
∂x2

∣∣∣
x0

. (2.24)

If there are multiple stationary points in g(x), then the approximation to Γ becomes

a sum of this result for each stationary point in g(x).

For a strong enough electric field strength such that the Keldysh parameter [30],

γ =
√
W0/(2Up), is less than unity [20, 27, 30], it is natural to employ the saddle

point method to approximate Mp [20, 27, 28]. For instance, the stationary phase

points ofM(2)
p require the following conditions:

[k + qA(τ)]2

2m
= −W0, (2.25)∫τ

τ ′
dt ′

[k + qA(t ′)]

m
= 0, (2.26)

[p + qA(τ ′)]2

2m
=

[k + qA(τ ′)]2

2m
. (2.27)
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Solving this system yields saddle points at τ0, τ ′0 and k0. The first condition

requires energy conservation at the time of emission. The second requires that af-

ter emission, the total excursion distance is 0, i.e. the electron returns to its “birth”

location. The third requires that the interaction with the parent system is an elastic

scattering, as the incoming kinetic energy is equal to the outgoing kinetic energy.

Thus, the dominant contributions describe a particle having some probability of

being injected into the continuum at a distinct time τ0, following the classical tra-

jectory in the laser field, returning to the parent system at some time τ ′0 with mo-

mentum k0, elastically scattering from the parent system and then following the

classical trajectory again away from the parent system. The same method can be

used to approximate M(1)
p , which yields saddle points fulfilling the condition in

equation (2.25), and simply describes an emission event at some distinct time τ0

followed by the classical trajectory in the laser field.

The saddle point approximation yields an emission probability that matches

well with a time-averaged quasi-static tunneling model [30, 38]. This provides the

motivation behind semi-classical models such as the Simpleman approach [13–15,

27] where, aside from the initial tunneling emission, the electron is treated as a

classical particle during the laser acceleration and rescattering process. Quantum

interferences can be accounted for by including the appropriate action phase con-

tribution for every classical trajectory [15]. Thus, for the case of the Simpleman

model, the portion of the electron spectrum due to rescattered electrons, Pscat(W),

can be expressed mathematically as

Pscat(W) =

∣∣∣∣∣∑
j

{√
J(τ

(j)
0 )R(τ ′

(j)
0 ) exp

(
iθ(τ

(j)
0 , τ ′(j)0

)}∣∣∣∣∣
2

(2.28)

where W is the final kinetic energy, J(t) is the tunneling rate for the laser field at

time t, R(t) is the reflection probability (which can be complex, and a function of

time/energy), and θ(t0, t1) is the phase accumulated in the laser field from time

t0 to time t1. The summation is over all all classical trajectories that lead to a fi-

nal kinetic energy W. A similar term can be created to describe the portion of the
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spectrum due to the direct electrons that do not rescatter. If the phase information

is ignored (i.e. θ = 0), the calculation is purely classical aside from the tunnel-

ing event, and Pscat(W) then describes the envelope of the spectrum when θ is

included.

2.2.3 The Coulomb-Volkov State

As we have truncated our expansion to just the first or second order, it is of course

an incomplete description of the ionization process. This is especially true for low

energy electrons that interact more with the system potential during ionization

and subsequent acceleration. An example of this is near threshold emission from

atomic systems [39]. A technique often employed in the calculation ofMp such that

more information about the atomic potential is included, especially for low-energy

electrons, is to replace the spatial component of the outgoing Gordon-Volkov state

with that of the continuum eigenstate of the atom. This new “Coulomb-Volkov”

wave is expressed as

ψCVlp (r, t) = ψCp+qA(t)(r) e−iSp(t) , (2.29)

where ψCVlp is the Coulomb-Volkov wave in the length gauge, and ψCp (r) is the

spatial component of the atomic continuum eigenstate. This has the desired condi-

tion that in the limit of no electric field, it simply describes the atomic continuum

eigenstate. However, if the coulomb field is turned off, it simply describes the

Gordon-Volkov solution in the length gauge.

Others have shown substantial improvement in describing near threshold ion-

ization and streaking by substituting ψCVlp in place of the pure Gordon-Volkov

solution when solving for SF driven processes, such as those used to calculate Mp

above [36, 39, 40]. This approximation will be used extensively in Chapter 4 to im-

prove the characterization of attosecond pulses in the low energy regime, where it

is crucial to accurately account for the atomic phase shifts induced onto the elec-

tron wave packet when transitioning from the ground state to the continuum.
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Chapter 3

Methods for Attosecond Pulse

Characterization

Since the advent of HHG in the early 1990s, it was clear that sub-cycle pulses of

EUV light were likely being generated. However, experimental techniques able to

verify the temporal profile of the attosecond pulses were not available until the

early 2000s. At this time, techniques were developed which were able to use a

portion of the laser which generated the EUV pulses to provide a timing reference.

In analogy with the streak camera approach for measuring electron bunches from

photocathodes, the EUV pulses could ionize an atom to generate an electron packet

in the presence of the long-wavelength pulse. Depending on the time at which the

electron is then injected into the long-wavelength pulse, it will experience spectral

broadening and/or a ponderomotive shift [41]. The spectral broadening is sen-

sitive to the duration and chirp of the attosecond pusle, and can thus be used to

measure it. Such a technique was used as the first verification of the sub-cycle

nature of an isolated attosecond pulse generated with HHG [9].

For weaker streak fields, one can describe the change in spectrum by including

the absorption of the EUV pulse and subsequent absorption/emission of a photon

of the long-wavelength pulse. In this regime, a technique was developed for the

characterization of attosecond pulse trains exhibiting odd harmonics entitled RA-

BITT (reconstruction of attosecond beating by interference of two- photon transi-

39



tions) [2]. This set the stage for the next breakthrough in attosecond pulse retrieval:

FROG-CRAB.

It was just over a decade ago that Mairesse and Quéré [21, 23] demonstrated

how the physical process of emission by an attosecond EUV pulse and subse-

quent streaking by a long-wavelength pulse could be combined with frequency

resolved optical gating (FROG), under certain constraints, to retrieve a general

EUV pulse envelope. This technique is generally referred to as FROG-CRAB (fre-

quency resolved optical gating for the complete retrieval of attosecond bursts).

While RABITT and the attosecond streak camera could be used for the specific

cases of pulse trains exhibiting odd harmonics and isolated pulses respectively,

FROG-CRAB demonstrated that the amount of information contained within an

electron streaking spectrogram was enough to simultaneously solve for both an

arbitrary streaking waveform and attosecond pulse envelope. The method was

far from perfect, being bandwidth limited and not allowing for the inclusion of the

dipole transition matrix element describing the transition from the photon pulse to

an electron wavepacket. Nonetheless, it paved the way for the future development

of techniques able to reconstruct general EUV pulse forms.

In this chapter, the basics of attosecond pulse retrieval will be reviewed. This

includes both theoretical and experimental approaches. In Section 3.1 the physics

of attosecond pulse generation using HHG in gases is discussed. In Section 3.2, the

physics of streaking and concepts such as the electron spectrogram are introduced.

Section 3.3 then continues this discussion to give a basic review of reconstruction

methods, with an emphasis on the FROG-CRAB approach. Finally, the chapter is

concluded with Section 3.4 which discusses experimental approaches to building

an attosecond streaking apparatus, including a detailed description of the streak-

ing apparatus developed at MIT.
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3.1 High Harmonic Generation in Gases

Before discussing the measurement of an attosecond pulse, it is necessary to spend

some time discussing how such pulses are generated. While we discussed SF per-

turbation theory in the context of electron emission in Section 2.2, its relation to

high haromonic generation is transparent. For instance, starting with the expres-

sion in Equation (2.18) but changing the upper integration bound in time to t, it

would describe the amplitude of |ψVlp ⟩ at time t of an electron packet where the

ground state potential has been neglected after emission to time t. This ampli-

tude can then be used to calculate an approximation of the emitted wave packet

at time t by integrating over all outgoing momenta p, and projecting it again onto

the ground state to determine the recombination amplitude. For a more formal

derivation of this procedure, see Lewenstein et al. [20]. By applying a saddle point

approximation, one sees a similar physical description as used to describe electron

emission and rescattering. An electron is emitted at some time τwith a probability

amplitude given by the dipole transition matrix element. It then propagates in the

field where it is accelerated, but does not interact with the atomic potential. Then

at time t, the electron returns to the parent ion, and recombines with a probability

described by the recombination amplitude, when it emits an outgoing photon.

Energy conservation demands that the emitted photon has the energy

 hω =
(p + A(t))2

2m
+ Ip, (3.1)

where Ip is the ionization potential of the atom. It has been discussed in Sec-

tion 2.2.2 how, at high field strengths when the Keldysh parameter γ ≪ 1, the

ionization is well described by quasistatic tunneling [30]. This means that the ion-

ization is restricted to a narrow region of time near the peak of the electric field.

Furthermore, the saddle point approximation tells us that the greatest contribution

to the final recombination amplitude occurs for those electrons described by clas-

sical trajectories that return to the parent ion. By combining these observations,

classical trajectories that return to and recombine with the parent ion are isolated
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and weighted with their corresponding tunneling probability. This describes the

emission of a chirped outgoing photon generated over a sub-cycle period of time

after the ionization event. For long drive pulses, this happens at each half-cycle of

the electric field, and, for a linear driving pulse, there is a π phase shift for each

emitted pulse due to the inversion symmetry of the process. Thus, only odd har-

monics are generated by longer drive pulses which are well described by a slowly

varying envelope and monochromatic carrier wave.

Figure 3-1: Demonstration of HHG trajectories that lead to recombination in the semi-
classical description. Note that all of the trajectories originate over a very narrow window
near the electric field peak. After laser acceleration, there is a spread of recombination
times a little more than a half-cycle later over a sub-cycle window in time. The recombina-
tion energy is described by the shade of the trajectory. Note that for short trajectories, the
energetic electrons (outgoing photons) recombine (are emitted) at later times, and the less
energetic electrons (outgoing photons) recombine (are emitted) at later times. In reality,
the short trajectories dominate in experimental observations as they have a much smaller
divergence angle compared to the long trajectories. Image taken from [42].

The half-cycle anti-symmetry of the EUV pulses can be broken by the inclusion

of a pulse centered at the second harmonic of the drive pulse. At low intensities,

the second harmonic pulse changes the action phase accumulated during the elec-

tron excursion before recombination. More importantly, the change in phase is

different for each consecutive half-cycle, breaking the strict π phase offset between

adjacent harmonics. For a uniform pulse train (i.e. each half-cycle has the same
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pulse envelope, only differeng by a phase offset), if this phase offset is reduced to

π/2, odd and even harmonics are generated in equal strength. However, as the

second harmonic field is increased significantly, and the delay chosen appropri-

ately, every other half cycle of the fundamental pulse will be enhanced while the

others are reduced in strength due to the difference in ionization probability. If the

second harmonic is strong enough, pulses are only generated once per cycle.

Since electron recombination requires that the emitted electron return to the

parent ion, the HHG emission probability is quite sensitive to the drive pulse’s el-

lipticity. For instance, an ellipticity of just 20% is sufficient to reduce the HHG yield

by up to an order of magnitude at typical driving field strengths in Ar [43]. Thus,

it is possible to develop a pulse that has an ellipticity over a certain threshold, ξ,

for the majority of its duration, and below this threshold over a brief window. This

window is referred to as the gate width as it is the only region of the pulse where

HHG has a high probability of being generated. If the gate window is sufficiently

shorter than half of a cycle, T0/2, it is possible to generate an isolated attosecond

pulse. This can be combined with the addition of a strong second harmonic pulse

to relax the maximum gate window to one cycle [44].

Polarization gating (PG) is typically implemented using a combination of cus-

tom and commercial waveplates in order to achieve the appropriate polarization

profile for gating. In a PG setup’s simplest form, a multi-order (MO) quarter-wave

plate is used separate an input pulse into two linearly polarized pulses, one polar-

ized along the ordinary axis, the other along the extraordinary axis, with a central

region where the two overlap having a circular polarization. This is then sent

through a zero order or achromatic quarter-wave plate at the correct orientation

such that the outside linear portions of the waveform are transformed to a circular

polarization, and the central portion is transformed back to a linear polarization.

The dispersion of each wave plate must also be compensated to ensure the mini-

mum pulse duration at the output.

Consider a simple polarization gating setup as shown in Figure 3-2. For a Gaus-

sian drive pulse at 800 nm with a duration of 8 fs FWHM, a custom multi-order
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quartz quarter wave plate 337 µm thick (3.75λ) is used to separate the input pulse

into two orthoganally polarized pulses with a central region that is circularly po-

larized. Then, a zero-order quarter-wave plate (based off of design specifications

from Thorlabs Inc.) is used to convert the circular portion to linear polarization,

and the linear portions to circular polarization. Another zero-order or achromatic

waveplate could then be used afterward for complete control of the outgoing po-

larization direction.

To Streak

To HHG

Fixed λ/4
(Achromat)

λ/4 (MO)

Optional λ/2 
(Achromat)

PG Setup

Glass for 
compensation.

Input Pulse

Figure 3-2: A simple PG setup. The second quarter-wave plate and final half-wave plate
can be either achromatic or zeroth order depending on how short the input pulse is.

In the conventional configuration, for an input pulse that is linearly polarized

along the x-axis, the first quarter-wave plate’s fast axis is oriented at an angle of

45∘, while the second quarter-wave plate is oriented at an angle of 90∘ (relative to

the x-axis). This results in the ellipticity and field profile as shown in Figure 3-3.
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(a)

(b)

Figure 3-3: Output ellipticity (a) and field profile (b) of a conventional PG setup with
input Gaussian pulse width of 8 fs. The dispersion of all the quartz wave plate elements
has been compensated up to the second order. An ellipticity threshold of ξ = .15 is used
leading to a gate window of 1.1 fs.
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Alternate configurations may be desired, especially for longer input pulses.

This is due to the fact that it is necessary to have a large separation between the two

linearly polarized pulses from the initial MO wave plate in order to reduce the gate

window. The drawback to this is that the linearly polarized region is preceeded by

an intense circularly polarized pulse that creates an ionized plasma. This leads to

two undesired scenarios: the plasma is dense enough to break the pulse up before

the linear portion can produce HHG, or the ground state is completely depleted

before the linear portion reaches the gas. Generalized double optical gating tack-

les this issue, allowing polarization gating techniques to be used for pulses up to

28 fs in duration. However, even the simple setup in Figure 3-2 can be tweaked to

achieve a similar result. For instance, by detuning the first waveplate to 30∘ and

the second to 80∘, it is possible to reduce the field strength of the leading edge of

the pulse allowing a more adiabatic increase in field strength, while maintaining

an adequate gate window of just 1.14 fs. These results are shown in Figure 3-4.

3.2 Streaking

The techniques used to generate both isolated attosecond pulses and attosecond

pulse trains discussed in Section 3.1 would be of no value if there were no way

to validate them experimentally. As of the writing of this thesis, the only exper-

imentally viable method of measuring an attosecond EUV pulse is via electron

streaking. While various reconstruction methods exist, many of which will be dis-

cussed in the next section, the streaking process itself remains essentially the same.

In fact, any pulse retrieval method requires the following fundamental elements.

1. A reference pulse

2. An interaction medium

3. A stable and accurate delay line

4. A detector

46



(a)

(b)

Figure 3-4: Output ellipticity (a) and field profile (b) of a detuned PG setup with input
Gaussian pulse width of 8 fs. The dispersion of all the quartz wave plate elements has been
compensated up to the second order. An ellipticity threshold of ξ = .15 is used leading to
a gate window of 1.14 fs.
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For instance, in the optical implementation of second harmonic generation (SHG)

FROG, the reference pulse is a copy of the pulse to be measured, the interaction

medium is a crystal where the second harmonic is produced, and the detector is a

spectrometer which measures the second harmonic spectrum as a function of de-

lay. It would be convenient to just use a nonlinear medium to implement an all

optical FROG in the EUV domain, or even just an interferometric autocorrelator

for that matter, but the absorption in crystals and low intensity of the EUV pulses

prohibit the use of such techniques.

However, the EUV spectrum can be mapped onto an electron via single photon

absorption and readily measured with an electron spectrometer. A copy of the

long-wavelength drive pulse can then be used as a reference, and the interaction

occurs between the electron and electric field of the long-wavelength laser. By

recording electron spectra as a function of delay, adjacent energies in the electron

spectra are coupled via the long-wavelength field, and their interference provides

the necessary phase information to reconstruct the attosecond pulse. To see how

this is achieved, it is helpful to first set up a model for the physical process.

The expression for the probability amplitude describing the transition of an

electron from an initial state to a continuum Gordon-Volkov state was given in

Equation (2.18). For the case of streaking, there are optical pulses which describe

the electric field F(t)

F(t) = FX(t− τ) + FL(t), (3.2)

where FX(t) is the EUV pulse, and FL(t) is the long wavelength streaking pulse,

and τ is the controllable delay. For the sake of simplicity, we are dropping vector

notation here and assuming that we are working with all field polarizations and

electron momenta in the z-axis. This is justified as later we will be detecting only

those electrons that are emitted along the polarization of the streaking field. Also,

from this point forward, atomic units will be used explicitly, thus factors such as

q,m and  h will be dropped from the equations for simplicity.

Upon substitution into Equation (2.18), two observations are apparent.
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1. The ponderomotive energy of the EUV pulse is negligible in comparison with

that of the IR pulse. Thus, it is not included in the calculation of Sp(t).

2. The two separate pulses lead to two separate integrals: the first describing

ionization due to the EUV pulse, the second describing ionization due to

the long wavelength pulse. Since the emission probability due to the long

wavelength pulse is kept low (i.e. the field strength is kept well below the

ionization threshold), the second integral is neglected.

This leads to the following expression describing EUV ionization and the subse-

quent streaking of the electron in the long wavelength laser field

Mk(τ) = −i

∫∞
−∞dtdk+A(t)F̃X(t− τ)

× exp
{
i

(
Ipt+ k

2t/2 −

∫∞
t

dt ′
[
kAL(t

′) +A2
L(t

′)/2
])}

,
(3.3)

where Ip is the first ionization potential of the atom used for streaking, the tilde in

F̃X(t) indicates the complex description of the EUV field is used (i.e. only momen-

tum components in the direction of the detector matter). A spectrogram is then

formed by measuring |Mk(τ)|
2 for a range of delay values.

As long as the ionizing EUV field has sufficient energy, the emitted electron will

escape the atom at a high enough velocity that, despite the force of the streaking

field, it will never return to the atom. This justifies the inclusion of just the low-

est order term from the SF perturbation theory expansion. If FL(t) is a long pulse,

the outgoing state is well approximated using the generalized Bessel function ex-

pansion as in Equation (2.10). If only the −1 6 n 6 1 terms in the expansion are

kept, the amplitude for a transition to any final momentum k at any delay τ has

three contributions. Of course, higher order terms can also be included, but the

calculation is restricted to three terms here for simplicity. The first is from a single

photon absorption of the EUV to the final state. The second is from a single photon

absorption of the EUV to a final state with energy k2/2−ωL, whereωL is the angu-

lar frquency of the long wavelength field, followed by a single photon absorption
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of ωL. The third is from a single photon absorption of the EUV to a final state of

energy k2/2 +ωL followed by a single photon emission ofωL. Thus, the inclusion

of the long wavelength pulse results in the interference of different portions of the

electron energy spectrum leading to a reshaped output spectrum.

By shifting the delay and retaking the spectrum, the relative phases of each

transition are shifted. By then noting how the spectrum has changed in intensity

at each output energy value as a function of delay, one can determine the relative

phase shift between each outgoing energy component of the electron spectrum.

Since there is a direct correspondence between the electron energy spectrum phase

and the input EUV spectrum phase, all information necessary to reconstruct the

initual EUV pulse is present within the spectrogram.

3.3 Reconstruction Methods

The landscape of attosecond pulse retrieval techniques can be broken down into

two basic appraoches: generalized projections algorithms (GPA, FROG-CRAB [22,

23]), and frequency domain interferometric methods (e.g.RABITT [2], PROOF [25],

or iPROOF [24]). FROG-CRAB utilizes the fact that P(k, τ) = |Mk(τ)|
2 can, upon a

few basic approximations, be recast as a FROG spectrogram

S(ω, τ) =
∣∣∣∣ ∫∞

−∞ dtẼP(t− τ)ẼG(t)eiωt
∣∣∣∣2, (3.4)

where ẼP and ẼG are complex pulse and gate functions respectively. To do this re-

quires that the non-separable functions of momentum and time be removed from

the integral. This is achievable when the DTME is not dispersive with energy,

and the bandwidth of the EUV pulse is narrow enough to approximate the kAL(t)

term as kcAL(t), where kc is the central momentum. If both of these approxima-

tions are satisfied, it is relatively straightforward to use a standard FROG retrieval

approach, such as PCGPA (Principle Components Generalized Projections Algo-

rithm) [45], or a more customized approach, such as LSGPA (Least Squares Gen-
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eralized Projections Algorithm) [22], which better accounts for specific issues with

FROG-CRAB spectrograms (such as not requiring the spectrogram to be periodic

in delay, and allowing a relaxed energy/time sampling constraint).

On the other hand, frequency domain interferometric techniques work directly

from the principle described at the end of Section 3.2. After reducing the streak

pulse intensity to the limit that each final energy component only has contributions

from three transitions, changes in the spectrum at each energy level are monitored

as a function of delay. The relative phase between each final energy component in

the electron, and thus EUV, spectrum, is then calculated based on this analysis. For

instance, RABITT utilizes the fact that typical attosecond pulse trains have no even

harmonic contributions in the final spectrum. Thus, the even beat notes that arise

in the spectrogram come from transitions to an odd harmonic, and then either a

±ωL transition to an adjacent even harmonic. This reduces the complexity of the

problem, and gives a direct way to visualize the relative phases of the original odd

harmonics. Figure 3-5 demonstrates the basics of this technique.

Figure 3-5: Demonstration of the RABITT technique. (a) The electron transitions without
IR and (b) with IR present. In (c) an example spectrogram of odd harmonics is shown.
Note the phase shift between the spectral peaks in each band as a function of harmonic
order. This is used to determine the phase shift between adjacent harmonics. Adapted
from [46].
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The intensity of the nth even sideband in Figure 3-5c is simply described by a

cosine in τ of the form

Af = 2 cos(2ωLτ+φn−1 +φn+1 +∆φ
f
atomic), (3.5)

where φn is the phase of the nth EUV harmonic, and ∆φfatomic is the phase due to

the transition in the presence of the atomic potential, and is well known from prior

measurements. This provides a relatively straightforward procedure for determin-

ing all φn in the original EUV spectrum.

The PROOF method [25] extends the RABITT technique for use with contin-

uous spectra by including all three possible transitions contributing to each final

energy level. As a modification to PROOF, the iPROOF [24] method completes a

full generalization of the RABITT technique for an arbitrary spectrum (i.e. con-

tinuum or pulse train) by also incorporating physics of the photionization process.

The benefit of frequency domain interferometric techniques is that they offer a very

direct means of fitting the relative phase of the EUV spectrum without the need of

a blind minimization algorithm to compute both the long-wavelength and EUV

pulses. However, they limit the types of long-wavelength pulses that can be used.

To ensure a single ωL transition after EUV absorption, the long-wavelength

pulse must be weak and have a well defined photon energy. This is prohibitive if

one wishes to simultaneously characterize a broadband, complex waveform along

with the EUV pulse (for example [47, 48]). For this reason, an extended FROG-

CRAB algorithm, entitled the VTGPA (“Volkov” Transform Generalized Projec-

tions Algorithm) was developed by the author and is discussed in detail in Chap-

ter 4. The VTGPA seeks to maintain the general nature of FROG-CRAB, such as

allowing more intense and complex streaking fields, while alleviating drawbacks,

such as the central momentum approximation and inclusion of the DTME.
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3.4 Experimental Methods

This section focuses on experimental techniques used for characterizing attosec-

ond pulses, with an emphasis on the experimental apparatus built in the Ultrafast

Optics and X-Rays Group at MIT. Section 3.4.1 gives a broad overview of the appa-

ratus layout in the laboratory. Section 3.4.2 discusses the design of a custom delay

locking and control system. Section 3.4.3 then discusses key aspects of a time of

flight electron spectrometer for attosecond pulse characterization.

3.4.1 Overall Apparatus Layout

As discussed earlier in the text, the typical EUV energies produced from HHG are

readily absorbed in air, necessitating that from the generation point forward, the

optical path is housed inside of a vacuum chamber unit. While the streak arm

does not need to be routed through the vacuum, housing both paths inside of the

vacuum apparatus reduces pointing and delay fluctuations due to air currents and

acoustic sources. As stability was of prime concern for accurate pulse retrieval,

the entirety of the delay line is housed in vacuum in the MIT apparatus, shown in

Figure 3-6.

The input window is a 3 mm thick CaF2 window which ensures minimal dis-

persion and broadband transmission for the incoming drive pulse. After this point,

the drive pulse is split using a partially transmissive Au mirror. A partially trans-

missive metalic film is advantageous as very broad spectral ranges can be achieved.

For instance, a 30 nm thick gold film on fused silica has a relatively flat reflectiv-

ity and transmission from 800 nm to beyond 2 µm, which is ideal for the range of

sources typically used for generating HHG. The dispersion is also minimal, and

confirmed to be dominated by the substrate used. This can be compensated for in

the drive arm if a sufficiently short pulse is used.

From this point on, only Ag mirrors are used to minimmize dispersion and

maintain flexibility in choosing the drive source wavelength. A curved Ag mirror

is used to focus the drive pulse into a gas cell. The gas cell is simply a hollow
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Figure 3-6: Schematic of the streaking apparatus at MIT. DM - drilled mirror, PD - photo-
diode, Cam - camera.

capillary filled with a fixed pressure of a particular gas species. In order to allow

the HHG to escape from the glass, the capillary is drilled by the drive beam itself by

turning up the intensity beyond its damage threshold. It was found that the choice

of glass is key, as the damage threshold should be higher than the intensity used

to generate harmonics so that the hole is not enlarged during EUV generation,

but less than the peak intensity available from the laser. Alternatively, the glass

capillary could be replaced by different geometries for improved HHG conversion

efficiency or increased gas pressure.

From this point, the EUV pulses co-propagate through the chamber with the

drive pulse, until it reaches an assembly for holding suspended metallic filters.

These filters are made from suspended thin films of various metals, such as Sn, Al

or Zr, that absorb/reflect the drive pulse while transmitting the EUV pulse. To pre-

54



Figure 3-7: Power reflected (R), transmitted (T) and lost from a 30 nm thick film of Au
on a 1 mm fused silica substrate at 45◦. The reflection and transmission are quite flat from
800 nm to beyond 2 µm.

vent a complete absorption of the HHG, they are just hundreds of nm thick. How-

ever, for most films, the minimum practical thickness is on the order of 100 nm to

prevent thermal damage and tearing. By careful selection of filter thickness and

type, the EUV spectrum can also be reshaped.

To focus the EUV, a Au coated toroidal mirror (TM) is used. Since the EUV

absorption from bulk Au is quite high at low angles of incidence, the Au surface

must be used at a grazing angle. This requires that a curved mirror have two

radii of curvature to prevent astigmatism. For instance, in the saggital plane f =

RS/(2 cos(θ)), and in the tangential plane f = RT cos(θ)/2 where f is the focal length

of the optic, θ the incident angle, and RS and RT the saggital and tangential radii

of curvature respectively. This adds complication to the alignment as there is only

one angle at which the two planes come to a focus at the same focal length. To

enable all degrees of freedom for alignment, the TM stage has the possibility to

translate in z, tip, and tilt. A goniometer is used to adjust the pitch. The radii

of curvature were chosen such that the focus in the HHG gas cell is imaged to

the location just in front of the electron spectrometer interaction region with an
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incident angle of 84∘ on the TM.

For alignment purposes, a pick-off mirror is used to divert the beam to a lo-

cation outside of the chamber (translucent optics/beams in Figure 3-6) where a

camera is positioned the same distance from the electron spectrometer focus. The

optimal beam profile achieved is shown in Figure 3-8. The beam has side-lobes in

the x direction as it is clipped on the TM. This, however, is not an issue for the HHG

as the drive beam was measured to be roughly 3 times larger than the HHG beam

at the entrance of the TM (∼ 1 cm vs. ∼ 3 mm). When using an aperture to reduce

the size of the 800 nm beam such that it fits withing the clear aperture of the TM,

it was confirmed that the side lobes disappear and the beam is well approximated

by a Gaussian profile at focus.
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Figure 3-8: Image of the drive beam (800 nm) at focus (without the DM in place). The
FWHM is roughly 90 µm in x and 83 µm in y.

For the streak path, a delay stage housing a gold coated corner cube retroreflec-

tor is used for coarse delay control, while a piezo with a maximum displacement of

40 µm is used for fine delay control. The outside portion of the beam which reflects

off of the DM is then focused onto the interaction region of the electron spectrom-

eter using a CaF2 lens. This is aligned to the same spot as the drive beam using
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the same camera. A typical streak beam focus at 800 nm is shown in Figure 3-9.

Since only the annular portion of the beam is focused, it produces a mixture of a

Gaussian and Bessel beam. If the streaking beam is clipped before the DM, higher

order rings from the Bessel function start to appear as the Gaussian envelope ex-

pands. However, the central lobe stays relatively fixed in width as it is dominated

by width of the main Bessel lobe, which is in turn dictated by the DM hole size.
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Figure 3-9: Image of the streak beam (800 nm) at focus (reflected from the DM). The
FWHM is roughly 75 µm in x and y.

To assist in finding the temporal overlap between the streak and EUV beam,

part of the alignment beam is diverted to a beta barium borate (BBO) crystal, fol-

lowed by a photodiode with a bandpass filter that passes only the second har-

monic of the drive pulse. By pulling the EUV filter assembly out, the drive beam

and streak beam are both allowed to pass through the BBO, and a spike in sec-

ond harmonic efficiency is observed when they are temporally overlapped. From

there, the delay can be finely tuned by watching the two beams linearly interfere

on the camera. This is also helpful for checking that the two beams are collinear,

as the interference fringes appear to move left, right up or down if there were any

difference in angle between the two beams.
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3.4.2 Delay Locking and Control

Typical measurement times for compiling a spectrogram are between 10 min to

1 hour. Also, a typical delay step size used is on the order of 1/10 of the long-

wavelength cycle. To minimize drift and improve the delay precision of the sys-

tem, a custom “optical screw” was developed.

The idea behind such a system was inspired by the work of Wehner et al. [49],

where they utilized the fact that, for equal intensity orthogonally polarized con-

tinuous wave (CW) beams with a variable delay, a quarter waveplate positioned

at 45∘ will convert the output to linear polarization, with the angle of polarization

dependent on the relative delay between the two arms. Thus, by setting a desired

output polarization angle, you are in essence setting the delay. Furthermore, if

that polarization angle is continuously rotated, the delay moves continuously in

one direction, making, in essence, an optical screw.

While beautiful in its conception, there are some practical issues with this sim-

ple design. First of all, the intensity of each arm has to be identical. If this is not

satisfied, the output is no longer linearly polarized, and this hurts the temporal

resolution of the device. Secondly, it does not incorporate any form of balanced

detection in the original scheme, making the delay sensitive to intensity fluctua-

tions of the CW laser source.

To fix both of these issues, the entire design of the system reconfigured as

shown in Figure 3-10. The major design change is the phase advancer element

which is comprised of two quarter-wave plates at ±45∘ sandwiching a half-wave

plate which can be arbitrarily rotated to angle θ. The Jones matrix of this system is

found to be

J(θ) =

 0 e−j2θ

ej2θ 0

 . (3.6)

Thus, for an x-polarized linear input beam, the output is y-polarized with a posi-

tive delay shift of 2θ.

After the phase advancer, the two paths are recombined with a polarizing beam

splitter. This is important as it removes any components at an undesired polariza-
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Figure 3-10: Schematic of the improved optical screw design.

tion from both arms, and ensures that they are both orthogonal at the output. From

there, the two beams are rotated by 45∘ and split into two arms using a polarizing

beam splitter. These two arms are then input to a set of balanced photodiodes,

referred to as PD1 and PD2 respectively.

Given that the CW beam that travels through the top path has a field amplitude

FT , and that going through the bottom path amplitude FB, the signal in PD1 and

PD2, V1 and V2, can be written as

V1 =G

(
F2
T

2
+
F2
B

2
+ FTFB cos(δ)

)
(3.7)

V2 =G

(
F2
T

2
+
F2
B

2
− FTFB cos(δ)

)
, (3.8)

where G is a constant factor, and δ = 2π∆L/λCW + 2θ is the combined phase of the
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delay and phase advancer, with λCW the wavelength of the CW beam. Thus, the

output of the subtraction of the two diode signals, which is used for feedback, is

given as

Vdiff = 2GFTFB cos(δ). (3.9)

If a proportional-integral-differential (PID) feedback system is used to lockVdiff

to zero, the delay line is stabilized. The delay jitter is insensitive to fluctuations in

the CW beam intensity as the zero crossing only depends on the cosine term. For

high resolution control of the beam delay, the user can set the half-wave plate to

a new θ value. As the half-wave plate is rotated, the piezo is dragged with it to

cancel out any induced phase difference between the two arms. If the wave-plate is

continuously rotated, this phase accumulates and drags the piezo in one direction,

limited only by the range of the piezo stack. Thus, the CW wave is used as a ruler,

preventing errors in delay due to hysteresis or a mis-calibrated piezo.

The system is also flexible as the output signal has the same cosine dependence

on delay no matter how different the intensity is in each arm. Even if polariza-

tion altering optics, such as the polarization gating setup shown in Figure 3-2, are

placed into the drive path (i.e. the path not containing the phase advancer) the

system still works as the polarizing beam splitter only selects the “correct” polar-

ization when recombining the two arms.

Since the piezo has to control a relatively large mirror to support a ∼ 1 cm

FWHM streaking beam, the upper limit of the feedback frequency is just a few

tens of Hz due to the lowered resonance frequency of the piezo mount. Therefore,

the locking system is primarily to prevent low-frequency drift, while good engi-

neering practice was used to reduce jitter on the order of the repetition frequency

of the laser. All of the rough vacuum pumps were fitted with vibration isolating

supports, and the vacuum lines were routed through a heavy concrete block to

dampen any residual vibrational noise. For the large turbo pump on the main

HHG chamber, a flexible bellows with a rubber sheath was used to dampen any

high frequency noise from its magnetic bearing.
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As expected, the HeNe signal from the balanced PD exhibited the same noise

floor when locked and unlocked, indicating that the residual high-frequency noise

is out of the range of the feedback system. A measurement of this noise indicates

that the fast mechanical vibrations were limited to less than 65 as RMS for day to

day operation.

To characterize the long term drift of the entire system, an out of loop measure-

ment was performed with the optical screw both locked and unlocked. The out of

loop signal was provided by the second harmonic generation from the BBO crys-

tal, which is periodic with one cycle of the drive beam, which was 800 nm in this

measurement. The results of the delay drift for each case are shown in Figure 3-11.
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Figure 3-11: Out of loop drift of the system over a period of roughly 30 min.

Due to the well engineered, in-vacuum design, even the unlocked performance

is quite stable, having a peak to peak drift of just 350 as. However, if monitoring

this signal for several hours, it was observed that peaks such as that observed for

the unlocked signal in Figure 3-11 occur at roughly a 30 min period. This was

then correlated to the heating and cooling system in the laboratory indicating a
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temperature dependent oscillation. When locking the optical screw these spikes

were completely removed, leaving only a very slow drift, likely from the remaining

unlocked section of the delay line. In the future, if better performance is desired,

the HeNe path could be extended to cover this unlocked portion. However, this

would require further engineering to allow the HeNe to circumvent the metallic

filter assembly and toroidal mirror, and places strict alignment constraints on the

CW interferometer relative to the main delay line. Thus, the best compromise

would be to extend the current arrangement such that more path is covered, and

the remaining path difference as similar as possible.

One final issue that can arise when using the optical screw is due to misalign-

ment of any of the polarization optics. Due to the rotational symmetry of the half-

wave plate in the phase advancer, any error has to be periodic with a θ = θ0 + 2π

rotation. Typically, the only residual error remaining is well described by the in-

clusion of a first order sinusoidal correction. For instance, the time delay induced

by a rotation of the half-wave plate should be linear with respect to θ, but if there

is a non-negligible misalignment, it is better described by

∆tdelay =
θTCW
π

+B cos(θ+β), (3.10)

where ∆tdelay is the time delay induced by the waveplate rotation after locking,

and TCW is the duration of one period of the HeNe source.

Again, the SHG signal from the drive and streak beam can be used as a refer-

ence standard. By measuring the interference signal as function of θ and plotting

the result in the frequency domain, distinct side lobes appear at the modulation

frequency 1/(2π). Thus, B and β can be calibrated by determining the appropriate

values to remove the side lobes (see Figure 3-12).

3.4.3 Time of Flight Electron Spectroscopy

There exist many techniques for measuring the photoemitted electron spectrum for

performing an attosecond streaking measurement, the most commonly used being
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Figure 3-12: Signal used for calibrating the optical screw. (a) The direct SHG signal as
a function of the waveplate angle θ (relative to some constant offset). (b) The frequency
response of this signal. There are clear harmonics related to the fundamental interference
at 800 nm and its second harmonic at 400 nm. The small sidelobes are at a frequency re-
lated to the waveplate rotation of θ = 2π. These can be removed by fitting B and β in
Equation (3.10).

velocity map imaging (VMI), and time of flight (TOF) electron spectroscopy. While

the VMI is used in such a way as to give information of both the initial kinetic en-

ergy and the angular distribution of emitted electrons, attosecond reconstruction
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methods typically only use those electrons emitted along the axis of the EUV po-

larization. Thus, a TOF electron spectrometer with a reduced acceptance angle can

be used for improved energy resolution.

The basic principles behind TOF spectroscopy are simple. An electron is emit-

ted at time t0 + δ relative to an incident ionizing pulse. It then travels through

a tube, which is often magnetically shielded to reduce interference from external

magnetic fields, where it freely travels to a detector and creates an electronic im-

pulse at some arrival time tf. If this travel is purely kinetic (i.e. there are no external

electromagnetic fields) then the initial velocity along the direction of the detector

is given simply as

v =
D

tf − (t0 + δ)
, (3.11)

where D is the distance from the ionization region to the detector. If the incident

pulse duration is much shorter than the mean time of flight tf − t0, then δ can be

ignored, and we have the following expression for the initial kinetic energy of the

electron

W =
1
2
mv2 =

mD2

2(tf − t0)2 . (3.12)

In practice, the exact time of flight to energy relationship is more complicated

than this, as the effects of magnetic fields can never be completely neglected (es-

pecially for low kinetic energies), and electrostatic lenses and acceleration stages

needed for electron detection affect the total flight time for a given input energy.

However, despite these effects, the time-energy curve can be well approximated

with a polynomial fit between 1/W and the time of flight. Thus, one can easily

calibrate the time-energy relationship using an array of spectral peaks with known

energy separation (or, ideally, known absolute energy). For the case of high har-

monic generation, such a comb is easily formed by using a relatively long drive

pulse (in our case 35 fs) to create well defined odd harmonics of the driver fre-

quency. The raw time of flight spectrum and calibrated energy spectrum are shown

in Figure 3-13. Note, in calibrating the spectrum, care has been taken to ensure the

proper normalization such that the total amount of collected charge is conserved
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between the time of flight and energy form, i.e.

Q =

∫∞
0
P(W)dW =

∫∞
0
I(t)dt, (3.13)

which implies

P(W) = −I(t(W))
dt(W)

dW
. (3.14)

In the above expressions, Q is the total collected charge in one spectrum, P is the

spectrum intensity, I(t) is the detector current at time of flight t, and t(W) ex-

presses the functional relationship between time of flight and energy.

The next calibration issue concerns the amplitude of the measured electron

spectrum. A reference optical spectrum and the photoionization cross section can

be used to account for the TOF spectrometer transfer function. To show this, imag-

ine an ionizing EUV field polarized along the TOF axis with the streaking field

turned off. The probability of a single-photon absorption as a function of momen-

tum is then expressed by

|Mp|
2 = |F̂X(p

2/2 + Ip)|
2|dp|

2, (3.15)

where the hat notation represents the Fourier transform of a function. We then

assume that the time of flight spectrometer is sampling over a small enough solid

angle such that it can be approximated by the diffential cross section, dJ
dΩ , in the

direction of the TOF spectrometer

dJ
dΩ

= p2|F̂X(p
2/2 + Ip)|

2|dp|
2. (3.16)

This is of course still momentum normalized, however the spectrum we have cali-

brated thus far, P(W), is in the energy domain. To switch normalizations requires

a change of variable, and thus adds a factor of
√

2W to the expression, yielding the

energy normalized differential cross section

dJ
dΩ

= |F̂X(W + Ip)|
2|dp(W)|

2
√

2W. (3.17)
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Figure 3-13: (a) The raw TOF spectrum plotting number of counts in each channel of
the discriminator card. The second harmonic was superimposed onto the fundamental
achieving both odd and even harmonics. The channel width was 250 ps. (b) The chan-
nel position of each peak plotted against its corresponding electron energy (calculated by
using the harmonic number times the fundamental photon energy and subtracting the ion-
ization potential of Ar, 15.7596 eV. The dashed line is obtained by finding a second-order
polynomial fit to 1/W, which provides the calibration curve. (c) The converted electron
energy spectrum. Note how the harmonics are now evenly spaced and have similar band-
width as one would expect.

This is the emitted spectrum that, for the case of an ideal spectrometer, would be

directly measured to within a constant multiplicative factor. However, in any real-

istic scenario we must account for the possibility of an energy dependent collection
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efficiency, T(W), thus making the measured spectrum

P(W) ∝ dJ
dΩ

T(W). (3.18)

There is of course a constant multiplicative factor, depending on the density of

atoms in the interaction region and solid angle of collection, that we are dropping

as only the spectral shape is important for all of the applications discussed. We

can easily calibrate T(W) using the EUV optical spectrometer to measure |F̂X(W +

Ip)|
2, and taking a calculated, or experimentally measured, DTME magnitude. One

has to be careful to ensure that the cross section is not already in the differential

form, otherwise the factor of p2 will be twice accounted for. Figure 3-14 plots a

measurement of T(W) for the TOF spectrometer installed in the apparatus at MIT.

The lens voltage settings were optimized to center the acceptance bandwidth of

the spectrometer around the peak of the electron spectrum. The DTME used was

calculated according to the method discussed in [37].
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Figure 3-14: Measured TOF transfer function, T(W), for spectrum shown in Figure 3-13.
The measured points correspond to the harmonic peaks.

To this point, all aspects of creating a stable attosecond metrology setup have
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been covered: HHG generation, creating a stable EUV/IR interferometer and elec-

tron spectroscopy methods with an emphasis on TOF spectroscopy. Experimental

results will be shown in Chapter 4 after the VTGPA is introduced.
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Chapter 4

The “Volkov-Transform” Generalized

Projections Algorithm

4.1 Why Another Algorithm

The future of attosecond science depends on improvements in the control and char-

acterization of the attosecond pulse itself. Many experiments have explored how

attosecond pulses can be use to seed or probe electron dynamics on the attosecond

time scale [50–53]. To gain more understanding in the analysis of such experi-

ments, it is of vital importance to continue in the development of both flexible and

accurate techniques for characterizing the attosecond pulse itself, the backbone of

all such measurements.

As stated in Section 3.3, the FROG-CRAB technique, while able to fit both a

complex streaking pulse along with an attosecond EUV pulse, has the limitation

that the central momentum approximation must be satisfied. The root cause of the

central momentum approximation in the FROG-CRAB technique is its reliance on

the use of Fourier transforms. This Chapter introduces a generalized projections

algorithm based on a least-squares minimization approach can be used in such a

way that there is no use of Fourier transforms in the retrieval process. This al-

lows one to fit the full form of the SFA without the need for the central momentum
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approximation, and provides a straightforward way to incorporate the dipole tran-

sition matrix element into the fitting procedure. Furthermore, it does not require

that the data be interpolated in the energy domain in order to satisfy constraints of

a fast Fourier transform (FFT).

Unlike PROOF and iPROOF, this approach does not assume that the photon

energy of the IR streaking pulse is well defined, nor that the field strength is suf-

ficiently weak such that two-photon absorption of IR does not occur, making it

suitable for simultaneously retrieving both the broadband attosecond pulse along

with complex IR waveforms. An in situ characterization of both pulses proves ad-

vantageous when analyzing experiments that depend equally on both pulse forms,

such as in [53–55]. Furthermore, with modification such an approach should prove

to be generally applicable to problems in strong-field physics beyond attosecond

pulse reconstruction, such as the reconstruction of attosecond processes in atoms

and molecules in the presence of strong fields.

As near-single-cycle field transients are becoming available [3, 47, 48], it will

clearly be advantageous to use one measurement to simultaneously characterize

both a complex IR pulse, that might not satisfy the above approximations, along

with a broadband EUV pulse.

4.2 Algorithm Design

In order to solve for the attosecond pulse without the need of a Fourier Transform,

a least squares (LS) minimization is performed directly in the frequency domain.

A figure of merit,M, is defined as

M =

NW−1∑
l=0

∆W[l]

Nτ−1∑
m=0

∆τ
∣∣∣ã[l,m] − ã ′[l,m]

∣∣∣2. (4.1)

70



The bracket notation indicates a sampled form of the corresponding continuous

function. The matrix ã[l,m] is calculated by numerically integrating equation (3.3)

ã[l,m] = −i∆t

NE−1∑
n=0

d̃(k[l]+A[n+Lm])ẼX[n] exp
{
i
(
Ip + k[l]

2/2
)
n∆t
}

× exp
{
− i∆t

NA−1∑
b=n+Lm

Φ[l,b]
}

, (4.2)

whereNE is the number of points comprising EX[n], and the action induced energy

shift, Φ[l,n], is given as

Φ[l,n] = k[l]A[n] +A[n]2/2. (4.3)

As with the least squares generalized projection algorithm (LSGPA) [22], the time

resolution of Ẽx[n] andA[n] is set to be∆t = ∆τ/L, and the reader is referred to [22]

for a more detailed explanation of how the delay step is implemented. While here

we assume a uniform L as a function of delay for simplicity, non-uniform delay

steps could easily be accounted for by making L a function of delay [22]. Also,

as with LSGPA, using such a delay approach assumes no periodicity in delay of

the spectrogram. The matrix ã ′ is formed by taking the current ẼX[n] and A[n],

calculating ã[l,m], and then the projecting the measured amplitude onto it. This is

expressed as

ã ′[l,m] =
√
P[l,m] exp

{
i arg(ã[l,m])

}
. (4.4)

The initial squared error in equation (4.1) is then simply due to any difference

between the square root of the measured spectrogram,
√
P[l,m], and |ã[l,m]| cal-

culated using the current EX[n] and A[n]. The error is summed across all Nτ delay

points andNW energy points. The calculation in equation (4.2) is more related to a

discrete Fourier transform of a non-periodic function in time as opposed to a fast

Fourier transform (FFT). This removes the strict relationship between the energy

and time sampling of an FFT, and removes the need to interpolate the measured

spectrogram. To accommodate for a nonlinear energy spacing in the figure of merit
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calculation, the energy resolution at each l, ∆W[l], is included. The discrete inte-

gral in equation (4.2) is however different from a discrete Fourier transform as the

outgoing state is described by a Volkov wave [33] rather than a plane wave. Thus,

since we are preserving the Volkov wave basis set in this algorithm, it is called the

“Volkov transform” generalized projection algorithm (VTGPA). At this point, all

of the components are in place to set up a minimization routine for determining

the next update of ẼX. We perform a LS minimization using the figure of merit by

writing Ẽx[n] = αneiφn , and solving for each term αn, φn such that

∂M

∂αn
= 0 (4.5)

∂M

∂φn
= 0. (4.6)

The solutions of this system of equations are then combined to yield

ẼX[n] =
−
(
Γ̃ [n] + β̃[n]

)*
NW−1∑
l=0

∆W[l]
Nτ−1∑
m=0

∆τ
∣∣d̃k[l]+A[n+Lm]

∣∣2 , (4.7)

where

Γ̃ [c] =

NW−1∑
l=0

∆W[l]

Nτ−1∑
m=0

∆τ
∑

{n∈Z|06n<NE,n̸=c}

∆t2d̃k[l]+A[c+Lm]d̃
*
k[l]+A[n+Lm]Ẽ

*
X[n]

× exp
{
i(Ip + k[l]

2/2)∆t(c−n)
}

× exp
{
i∆t

NA−1∑
b=n+Lm

Φ[l,b]
}

× exp
{
− i∆t

NA−1∑
b=c+Lm

Φ[l,b]
}

, (4.8)
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and

β̃[c] = i

NW−1∑
l=0

∆W[l]

Nτ−1∑
m=0

∆τ∆td̃k[l]+A[c+Lm] exp
{
i(Ip + k[l]

2/2)c∆t
}

× exp
{
− i∆t

NA−1∑
b=c+Lm

Φ[l,b]
}
ã ′*[l,m]. (4.9)

At each iteration step, the current Ẽx and A vectors are used to form ã ′, and

the updated value of ẼX[n] is calculated using equation (4.7). This term is then

loaded into the ẼX vector, and the process repeated with the next term. The al-

gorithm worked best when moving sequentially from term 0 to term NE − 1, and

then moving backwards from term NE − 1 down to term 0 to achieve a balance in

how the first and last half of the vector are calculated. For instance, when moving

strictly from term 0 to termNE− 1, an asymmetry forms between the left and right

half of the retrieved EUV pulse creating an instability that grows as the algorithm

progresses.

While EX[n] can be solved using a LS approach, solving for A[n] in this manner

is not as straightforward. However, a more direct solution exists as much more

experimental information is typically known about A[n]. For streak pulses, the

precise central wavelength, bandwidth, peak intensity, and, often, pulse duration

are known to within reasonable bounds, making a bounded minimization routine

possible. Rather than letting each sample in A[n] be fit independently as in other

routines, the vector potential can be broken down into a few key terms describ-

ing the envelope and carrier portions of the wave. The envelope, A[n], can be

described as a cubic spline between J points, and the carrier wave using K coeffi-

cients as cos(α0 +α1t+ ...+αK−1t
K−1). Thus, only J+K terms are used to describe

A[n]. As an example, for a pulse with a central wavelength of 800 nm and dura-

tion of 10 fs, typically only one to two points per cycle are necessary to describe

the envelope. Even if one uses up to six α terms to describe the chirp, this gives

just 14 terms to fit. It is straightforward in this case to directly minimize the figure
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of merit for each term, given by

MA =

NW−1∑
l=0

∆W[l]

Nτ−1∑
m=0

∆τ

∣∣∣∣∣∣ã[l,m]
∣∣−√P[l,m]

∣∣∣∣2. (4.10)

To minimize each term, Brent’s method was used [56,57]. In order to speed up the

minimization, the bounds on each term were adaptively reduced as the algorithm

converged. This can be further extended to synthesized pulses, where one could

create A[n] by summing multiple pulses, each having its own envelope and car-

rier components. An example demonstration of an A[n] calculation is shown in

figure 4-1a, and the entire algorithm is outlined in figure 4-1b (a similar flowchart

of other FROG-CRAB algorithms can be found in [22] for comparison). An added

benefit of reducing the amount of terms used to fit A[n] is that less data is neces-

sary to fit the both the IR and XUV pulses. In fact, in most cases using spectrogram

data from just on cycle of the streak pulse was more than enough to get a full fit of

the EUV pulse. Thus, for a full experimental trace, multiple retrievals of the EUV

pulse could be performed to obtain statistics. It was found in practice that the

fit for A[n] converges much faster than the fit of ẼX, meaning that the algorithm

could be sped up further by minimizing A[n] less and less often as the algorithm

progresses, rather than every cycle as performed here.

4.3 Results

4.3.1 Modeling

The VTGPA was tested and compared to LSGPA using a simulated spectrogram.

The spectrogram was created using an attosecond pulse having a cosine squared

profile in the energy domain with a bandwidth of 120 eV and a group delay dis-

persion of −2.17 × 10−3 fs2. To this pulse, a small side-lobe was added having the

same profile, but with a bandwidth of 100 eV, the same chirp, a time separation

of 100 as, and roughly 1/4 peak electric field magnitude. The IR streaking pulse
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Figure 4-1: (a) Plot demonstrating how A is formed from a carrier and envelope function.
The circles represent the amplitude handles used to create a spline-fit. In this plot, a fourth
order polynomial was used to represent the carrier wave underneath, making for a total of
13 terms. To fit the same function with a time resolution of 50 as using LSGPA or PCGPA
would require 400 terms. (b) A flowchart of the modified algorithm. The flowchart has
fewer elements than other GPA approaches, but more computation is being performed in
the minimization step. The key is that no FFTs are used, and the minimization is performed
directly in the frequency domain.

had a center wavelength of 800 nm, an envelope duration of 10 fs full width at

half maximum (FWHM), a linear chirp of 25.5 × 10−3 fs−2, and a peak intensity of

1 × 1012 W/cm2. Argon was used as a target gas in the simulation. The dipole

transition matrix element used for simulating the spectrogram was calculated us-

ing the method described in [37]. The resulting spectrogram is shown in figure 4-2.

Each algorithm was configured to stop after reaching a convergence criterion,

which was set to be when the percent difference between the current figure of merit

value, as defined by MA, and previous figure of merit, M ′
A, is less than 1 × 10−5,

i.e.
2(MA −M ′

A)

MA +M ′
A

< 1 × 10−5. (4.11)

Comparisons of the results are shown in figure 4-3.

While the VTGPA result retrieves the exact pulse envelope and phase, LSGPA

suffers significant error. In fact, it appears as if the LSGPA simply retrieves a near

transform-limited pulse with a duration roughly half that of the actual pulse. To
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Figure 4-2: Simulated spectrogram used for testing the reconstruction.

verify the fundamental source of the error, the retrieval was performed on a spec-

trogram using the same input pulses, only this time assuming a flat DTME. The

retrieved pulse in this case had an almost identical error, indicating that the cen-

tral momentum approximation in the action term was the dominant source of dis-

crepancy. For the streaking pulse, the LSGPA algorithm underestimates the peak

field amplitude, and has the addition of extra, unphysical noise due to the differ-

entiation step when converting from Φ(t). This is not an issue in VTGPA as the

peak amplitude is fitted correctly, and there is no additional noise as it is con-

strained to a smooth function. With regard to the streak intensity, it has been

shown that algorithms such as the principle components generalized projection

algorithm (PCGPA) and LSGPA are even less effective if the streaking energy is re-

duced below 1 × 1013 W/cm2 for EUV pulses of such large bandwidth [25]. How-

ever, using the same EUV input pulse as above, VTGPA was tested down to a

streak intensity of 1 × 1011 W/cm2 without any loss in accuracy. Furthermore, for

pulse trains, VTGPA successfully retrieved pulses with streaking intensities as low

as 1 × 109 W/cm2. This is advantageous for avoiding such phenomena as Stark

shifts and background electron contamination from ATI during measurement.

Any actual measurement will of course have noise, and to give a proper com-

parison of each algorithm’s performance under more realistic conditions, Poisson
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Figure 4-3: (a) LSGPA retrieval of ẼX. As others have observed [25], the algorithm re-
trieves a pulse much shorter than the actual value, in this case roughly 50% of the ac-
tual FWHM. While the sidelobe location is correct, the sidelobe intensity is incorrectly
retrieved. (b) VTGPA retrieval of ẼX. (c) Comparison of the IR field retrieval using both al-
gorithms. While LSGPA correctly retrives the shape of the IR field, the peak field strength
is underestimated, as noted in [22]. Also, since it retrieves a fit to

∫∞
t Φ(t ′)dt ′, not EIR(t)

directly, it also increases the noise of the fit due to differentiation. On the other hand, the
VTGPA routine forces A(t), and thus EIR(t), to be described by a smooth function which
does not introduce extra noise into the fit, and the field magnitude is correctly retrieved.

noise was added to the spectrogram in figure 4-2. The magnitude of the noise re-

sulted in the spectrogram having a signal to noise ratio of SNR ≈ 7.7, where SNR

is defined as

SNR =

√∑
l,m
P[l,m]2√∑

l,m
N[l,m]2

, (4.12)

77



and N[l,m] is the noise amplitude at each pixel location. The resultant spectro-

gram after adding noise is shown in figure 4-4, and the results of the two retrieval

algorithms are shown in figure 4-5.
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Figure 4-4: The spectrogram after the addition of Poisson noise.

The LSGPA algorithm fared significantly worse in the presence of noise, again

retrieving a main pulse shorter than the actual duration, with an added pedestal

at earlier times that extends out to roughly twice the width of the actual pulse.

Furthermore, while it does retrieve a side lobe after the main pulse, the side lobe’s

intensity and location are retrieved incorrectly. On the other hand, the VTGPA

algorithm retrieved a pulse that matches much better to the original pulse shape,

having a duration that is slightly shorter. More importantly, the side lobe location

and intensity are both accurately retrieved. For the VTGPA retrieval shown in

figure 4-3b, only a single cycle of the streak pulse near the center of the spectrogram

was necessary to fit the EUV pulse, while in the presence of noise this was extended

to roughly four cycles to make the system more overdetermined and improve the

fit. However, in all cases, the LSGPA was performed using the entire delay range

of the spectrogram.

The streaking pulse retrieval results shown in figue 4-5c demonstrate how the

noise in the LSGPA result gets further magnified due to the differentiation step

necessary for converting the streaking phase result into the streaking electric field
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Figure 4-5: (a) The LSGPA results after the addition of Poisson noise to the spectrogram.
Again the pulse width is underestimated, but now there is the development of a long
pedestal, and neither the sidelobe location and intensity are retrieved accurately. (b) The
VTGPA results. While there is a slight amount of error introduced, the overall pulse shape,
width and sidelobe are all quite accurately retrieved. (c) Comparison of retrieval results for
the IR streaking pulse using both algorithms. There is no loss of accuracy for the VTGPA
routine, while the LSGPA results suffers considerably due to the differentiation step.

waveform. Again, the VTGPA algorithm does not suffer this issue as it is fitting a

smooth envelope and carrier function that is not allowed to have unphysical jumps

in electric field from one time sample to the next.

4.3.2 Experimental

To put the VTGPA algorithm to practice, it was used to reconstruct an experimen-

tally collected spectrogram. The spectrogram was collected over a range of photon
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energies (roughly 18-40 eV) where the DTME of the target gas, in this case Ar, is

highly dispersive [37]. While the LSGPA or PCGPA could be used to retrieve a

pulse in this range, their inability to fully account for the DTME means that the

result could not be trusted.

The HHG was generated using a commercial, regeneratively amplified 800 nm

pulsed laser system with a pulse duration of 35 fs. The pulse was split into two

arms, one for driving the HHG process, the other for streaking the photoelectrons.

In the drive arm, the beam was focused into a glass capillary filled with Ar gas

using a curved mirror with a focal distance of 25 cm, achieving peak intensities

on the order of 1 × 1014 to 1 × 1015 W/cm2. In order to add complexity to the

HHG pulse, a 200 µm thick beta barium borate (BBO) crystal was placed before the

curved mirror to generate the second harmonic of the 800 nm light, resulting in the

generation of both odd and even harmonics. Furthermore, a half-waveplate was

used before the BBO to slightly detune the polarization of the input pulse relative

to the BBO crystal. Input pulse energy, beam aperture size and the half-waveplate

angle were tuned for optimum even-harmonic flux. After the capillary, the IR pulse

was removed, and the EUV pulse was spectrally filtered using a 500 nm thick,

suspended Al foil. The EUV pulse was then focused at the target region in front of

the spectrometer using a Au coated toroidal mirror.

The streaking pulse was sent through a piezo-controlled delay line, followed

by an iris and a focusing lens. The EUV and streak beams were then recombined

using a drilled mirror having a roughly 2 mm aperture. The intensity of the streak

beam was controlled by adjusting the opening size of the iris in the streak arm. In

this case, a relatively weak streak intensity was used, having a peak intensity of just

1.6 × 109 W/cm2 according to the VTGPA fit. The electron spectra were collected

using a time-of-flight electron spectrometer. In order to calibrate the electron spec-

tra, a Rowland circle EUV spectrometer was used to simultaneously measure the

EUV spectrum. The measured streaking spectrogram and fit results are combined

in figure 4-6.

The spectrogram retrieved by the VTGPA matches very well with the measured
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Figure 4-6: (a) The experimentally measured spectrogram. (b) The fitted spectrogram
using VTGPA, accounting here for both the dipole transition matrix element and the trans-
fer function of the TOF spectrometer to properly match the measured spectrogram in (a).
(c) Retrieved XUV pulse intensity profile showing both the instantaneous field intensity,
(Re(ẼX))2, and envelope intensty, |ẼX|2. The inset shows a zoom around the largest peak
and first two side-lobes. Note that an arbitrary carrier envelope phase has been chosen, as
the algorithm can only resolve the pulse down to a constant phase factor.

spectrogram. As with the results reported in [24], the attosecond pulse train has

contributions from each half-cycle. The even harmonics thus arise mostly due

to a non-π phase shift between each EUV pulse in time, which breaks the anti-

symmetry necessary for the generation of only odd harmonics. The fact that the
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phase shift between consecutive harmonics in the plateau region is close to π/2

also explains why the beat notes generated there form the observed checkerboard-

like pattern (i.e. the beat note maximum of each harmonic is lined up with the beat

note minimum of an adjacent harmonic). As discussed briefly in [58], an infinite

pulse train with identical pulse envelopes, but an alternating phase of Θ will have

harmonics having complex amplitudes given by

d̃N = F̃N{1 + (−1)N eiΘ}, (4.13)

where F̃N is a complex constant depending on the harmonic number N, and the

phase offset from one half-cycle to the next is given by Θ. For example, single-

color HHG yields odd harmonics since Θ = π. However, even a very mild second

harmonic breaks this relationship, whether aligned purely parallel, orthogonal, or

a mixture of both, as in our experimental arrangement. It is worth noting that

a phase shift of Θ ≈ π/2 in the action phase alone is achievable with a perpen-

dicular second harmonic component of just 0.25% of a fundamental intensity of

4 × 1014 W/cm2 according to the semiclassical three-step model. While our exper-

imental conditions are not this simple, with both a stronger parallel and slight

perpendicular components to the second harmonic and a non-infinite series of

non-identical EUV pulses, it is clear that such phases are easily attainable with

second harmonic fields that would not strongly influence the ionization rate and

recombination energy of harmonics in subsequent half-cycles. The experimentally

retrieved phase shifts between harmonics in both the time and frequency domain

are shown in figure 4-7 for comparison.

4.4 Conclusion

A new algorithm, entitled VTGPA or “Volkov Transform” gernalized projections

algorithm, has been introduced. This method fully accounts for the complex ac-

tion phase and DTME of the ionization process as dictated by the SFA without any
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Figure 4-7: (a) The absolute phase retrieved for each harmonic throughout the HHG
plateau. (b) The absolute phase retrieved at the center of each pulse in the time domain.

further approximations. Furthermore, it has been compared with the current state-

of-the-art algorithm for FROG-CRAB, the least squares generalized projections al-

gorithm, clearly demonstrating how it is not susceptible to errors introduced by the

central momentum approximation and incorporation of the target atom’s DTME.

Furthermore, due to the nature of how the minimization routine is set up, there

is no need to interpolate the experimental data as a nonlinearly sampled energy

axis in the spectrogram is allowed. In all other respects, it has the advantage of

any FROG-CRAB algorithm in that it also does not place any strong limitations on

the IR streaking field, making it useful as an in-situ characterization tool for both

a complex IR field and an attosecond pulse.

Since VTGPA is able to accurately retrieve attosecond EUV pulses with very

low peak streaking intensities, tested down to 1×1011 W/cm2 for an isolated pulse

with ∼ 100 eV bandwidth and 1 × 109 W/cm2 for a pulse train with ∼ 30 eV band-

width, interfering processes such as ATI and Stark shifting can be avoided. Also, at

these intensities it will provide a tool for investigating and comparing results with

methods such as iPROOF, which is based on perturbation theory not the strong-

field approximation, to gain a better understanding of both approximations and

improve theoretical methods for approximating the complex DTMEs used in the
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SFA.

With future work, the minimization steps could be further improved and op-

timized for speed, perhaps using techniques that have already been employed in

FFT algorithms for efficiency improvements in the computation of discrete Fourier

transforms. While the VTGPA was presented here in the context of attosecond

pulse retrieval, it is felt that the overall approach should find further application

in other strong-field physics studies after slight modifications.
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Chapter 5

Strong-Field Emission From

Nanostructures

5.1 Why Nanostructures?

Strong-field (SF) emission from nanostructures has gained much interest in recent

years as it is an enabling technology for the generation of structured, ultrafast elec-

tron bunches. Such electron arrays have potential applications in diffractive elec-

tron imaging [59] and novel, compact free-electron X-ray sources [60]. State of the

art ultrafast cathodes are typically planar cathodes that utilize highly reactive low

work function materials in conjunction with an ultrafast (tens to hundreds of fs in

duration), ultraviolet (UV) pulse that emits electrons via one-photon absorption.

There are two major issues with such a cathode design. First, there is no clear

means of providing spatial structure with high resolution. Second, the materials

used to achieve low work functions for high efficiency are difficult to fabricate, suf-

fer from poor lifetime, and necessitate ultra-high vacuum (∼ 10−10 mbar or better).

Utilizing near-field enhancement and a multiphoton emission process, nanostru-

cuted cathodes driven by ultrafast, long-wavelength (i.e. near-IR or longer) drive

sources present a solution to all of these issues.

Since nanostructures can interact with incident light to produce very high peak
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intensities (> 1 × 1012 W/cm2) over a very small volume, spatial structuring of

the emitted electron beam is a natural consequence. For instance, since the elec-

tron affinity of Si is 4.05 eV, the absorption of three photons at 800 nm is required

to liberate an electron. This implies a charge scaling of I3, where I is the peak

intensity of the laser pulse on the surface of Si. If the local field enhancement is

20 for a nanostructure as opposed to 2 for a planar surface, then the probability

of emission near the localized region of field enhancement is a factor of 1 × 106

greater than the planar region. Furthermore, the SF, or tunneling, regime of emis-

sion can be achieved before the onset of material damage. As discussed earlier

in the text in the context of attosecond pulse generation and characterization, in

the SF regime electron emission occurs over durations shorter than just one half-

cycle of the drive laser. At 800 nm this implies the formation of a train of electron

pulses less than 1.33 fs in duration spaced by 2.66 fs when driven fully into the

tunneling regime. Thus, nanostructured cathodes hold the potential of creating

high-brightness electron sources with unprecedented spatial and temporal reso-

lution. Due to the advancements in the field of nanofabrication, they can also be

created from abundant, robust materials with relatively high damage thresholds

(for instance Si, or Au) that do not require ultra-high vacuum during operation.

Hallmarks of such emission have recently been observed for single-tip emitters

of Au and W [15,16]. In this chapter the author will discuss his observations of the

SF emission process from large arrays of Si tips [11, 26]. Fundamental concepts of

SF electron emission from solids will be reviewed, including a discussion of both

the multiphoton and tunneling regimes, as well as classical electron trajectories,

rescattering and effects of electric field decay away from the tip surface. Space

charge effects will also be briefly discussed. In Section 5.3, experimental results

and analysis that demonstrate SF emission from arrays of silicon tips are shown.

These results include intensity scaling of electron yield, space-charge and DC bias

effects, electron energy spectra, polarization dependence, oxide effects and a brief

study of two-color driven electron emission. These results all indicate that a SF

driven multiphoton/tunneling process is the dominant emission mechanism from
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the tip surface.

5.2 Fundamental Concepts

5.2.1 Emission Mechanisms

In order to discuss the dominant emission mechanisms expected from a nanstruc-

tured emitter, a simple model of the system is needed. To within a reasonable

approximation, the potential well of a metal or semiconductor looks like a step

potential at the surface/vacuum interface. In all cases that follow, we consider

an excitation field that is polarized along the surface normal. As only metals and

doped semiconductors will be considered in the analysis, it is also safe to assume

from Maxwell’s equations that, for reasonably long wavelengths, the electric field

inside of the material is negligible when compared to the field in the vacuum half-

space. With this picture in mind, we arrive at a system as sketched in Figure 5-1.

The time dependent potential of the optical pulse’s oscillating electric field pro-

vides a means of perturbatively coupling the bound portion of the ground state

in the vacuum half space to outgoing electron wavepackets. Since we are dealing

with longer wavelength drive sources of relatively high field strength, it is impor-

tant, as discussed in Chapter 2, to include the effect of the strong electric field into

the calculation of the outgoing wavepacket. Only the electric field of the laser ex-

ists outside of the tip material, so representing the outgoing wavepacket as a sum

of Gordon-Volkov waves is again the preferred approach.

To start, consider that the incoming wave is a CW field with period T in time

that is suddenly turned on at time t = 0. Also assume that it is a one dimensional

problem. For the case of minimal electron rescattering, Equation (2.18) can be used

to calculate an approximation ofMp,

Mp ≈M(1)
p =

−i
 h

∫ t
0

dτg(τ,p)ei
(
p2/(2m)+q2A2

0/(4m)+W0

)
t/ h, (5.1)

where A0 is the magnitude of the vector potential, and W0 is the ground state
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Figure 5-1: Schematic showing model system for conductive emitter. A bound electron
inside of the emitter has an evanescently decaying component in the vacuum half space.
This portion of the wave function is perturbatively coupled to outgoing states through the
oscillating potential on the outside created by the incident optical pulse.

energy. The expression g(t,p) is simply a collection of all of the pre-factor terms,

and is periodic in time with period T . Due to its periodic nature, it can be rewritten

as

g(t,p) =
∑
n

fn(p)e
−inω0t, (5.2)

whereω0 = 2π/T is the fundamental angular frequency, and

fn =
1
T

∫T/2

−T/2
dtg(t,p)einω0t. (5.3)

After rearranging the terms,Mp becomes

Mp =
−it
 h

∑
n

fn(p)e
iX(p)t/(2 h) sinc

(
X(p)t

2 h

)
, (5.4)

where X(p) = p2/(2m) + q2A2
0/(4m) +W0 − n hω0. Notice that as the exposure
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time t increases, the sinc function becomes more and more peaked. Eventually, as

t→∞, the sinc function approaches a δ, and only one momentum value, pn, falls

underneath the main peak for each given n such that X(pn) = 0. For the calculation

of total electron yield, the more relevant term is |Mp|
2, which becomes

|Mpn |
2 =

2π
 h2 |fn(pn)|

2tδ

(
X(pn)

 h

)
, (5.5)

where we have made use of the fact that

lim
t→∞ t sinc2

(
X(p)t

2 h

)
= 2πδ

(
X(p)

 h

)
. (5.6)

To then calculate the total emission for this one dimensional problem, one simply

integrates

Γ ∝
∫∞

0
|Mp|

2dp ∝
∑

n>nmin

1
pn

|fn(pn)|
2, (5.7)

where Γ is the electron emission rate, and nmin is the minimum photon absorption

necessary to make the outgoing momentum pn real.

This has many parallels to a more traditional approach to perturbation theory,

with one major difference. First, as time goes to infinity, the outgoing momenta

become peaked around discrete harmonics. These are positioned such that the

electron energy spectrum forms a train of harmonics spaced by the fundamental

photon energy. Thus, it is describing a multi-photon absorption process. Second,

the total ougoing charge grows linearly with time, i.e. at a constant rate. However,

the major difference is a result of a non-negligible ponderomotive potential, Up,

which adds to the potential barrier of the boundary. As the intensity is increased,

the electrons must absorb enough photons to surpass not just the work function,

but also the ponderomotive potential of the laser field. For most multiphoton ab-

sorption processes in solids, the material damage and short wavelengths prevent

an observation of this effect. However, this is not the case for nanostructures with

high field enhancements and driven with long wavelengths.

As the the intensity, and, consequently, Up, is increased, there is the possibil-
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ity that a previously “open” photon channel becomes “closed”. Take for example

a material with a work function of 5.0 eV. In this case, the step barrier an elec-

tron has to overcome would require the absorption of 4 photons given a photon

energy of 1.55 eV. At low intensities, four-photon absorption dominates the emis-

sion process, and the charge yield scales as I4. However, if Up exceeds 0.6 eV, the

four-photon channel closes, and only channels > 5 remain open. This leads to a

kink in the charge yield as a function of input intensity, which is the hallmark of

strong-field emission [16, 26] (see Figure 5-2).

Figure 5-2: Charge yield as a function of increasing field strength for a CW drive beam.
The central photon energy used was 1.55 eV. The work function of the material was taken
to be W0 = 5.0 eV. Each channel contribution is shown (solid curves), along with the
total sum of all contributions (blue squares). For reference, the WKB tunneling rate is
shown (black dashed). The minimum channel number possible is the four-photon channel.
After this channel closes, a kink forms, and successive channels close afterwards creating
a smoother and smoother line, which approaches the WKB rate at high intensities. This is
the so-called SF or tunneling regime.

After the kink forms due to the onset of channel closing, successive channels

close leading to an average rate that approaches that of the WKB approximation

for tunneling. In fact, this is seen by taking the saddle point approximation of Mp

as discussed in Section 2.2.2, which was performed in detail in [38]. In this regime,

the physical picture is the same as for attosecond pulse generation using HHG,
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only this time we are primarily concerned with electrons that escape rather than

those that recombine and emit a photon. The potential barrier is bent down in the

vacuum half-space creating a triangular barrier. When the complex tunneling time

is then shorter than one optical cycle, the electron has a high probability of tunnel-

ing directly through the barrier. Once in the vacuum, the dominant trajectories are

those described by classical mechanics, which will be discussed in the following

section.

While this calculation has been described in only one dimension for CW driver,

any nanostructured tip clearly exists in three dimensions, and there is more in-

terest in using drive pulses that are just fs in duration. Methods to include the

area of the tip emitter and solve for the total emission for an arbitrary pulse shape

and ground state distribution of the cathode are described in detail in Appendix B.

With regard to the size of the emitter, it is shown that the overall emission rate

scales in direct proportion to the one dimensional calculation with a pre-factor that

depends on the area of the emitter. Thus, to within a good approximation, the one

dimensional calculation suffices when discussing the emission rate alone. How-

ever, it can dramatically affect the spatial momentum distribution of the outgoing

electrons, primarily due to the uncertainty principle, which dictates that as the tip

emitter is scaled to smaller sizes, the momentum distribution must conversely be

more spread out in space. Again, the interested reader is directed to Appendix B

for a more thorough discussion.

Equation (B.11) can be used for an arbitrary electric field pulse and compared

against the results for a CW pulse for a given emitter. The results of such a compar-

ison are shown in Figure 5-3. For this study, the ground state energy was chosen to

beW0 = 4.05 eV, which corresponds to the electron affinity of silicon. The incident

photon energy was again taken to be 1.55 eV. The inclusion of a pulse envelope

necessitates that the photon energy no longer be perfectly defined, which results

in smoothed-over channel closings. This effect gets more dramatic as the envelope

is shortened, and/or the wavelength increased. Furthermore, if the pulse energy is

weakened to a great extent, the slope reduces (not shown in the figure). This is due
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to the fact that, while most of the pulse energy is contained in the spectral region

near the central wavelength, for a broadband pulse there do exist very high energy

photons. At very low intensities, the cross section for a lower-order absorption of

these photons makes up for their reduction in number, thus causing a change in

the power scaling.

Figure 5-3: Intensity scaling of charge yield for various pulse durations for a silicon emit-
ter (W0 = 4.05 eV), with an incident photon energy of 1.55 eV. For all cases the first main
channel closing is prevalent. However, while the channel closings are instantaneous for
the CW input, the transitions are smoothed for short drive pulses. This is due to the fact
that for a pulse, the input photon energy is less and less well defined as the pulse duration
is shortened. From 60 fs down to 10 fs there is no significant difference in the overall shape
of the curve.

5.2.2 Classical Trajectories and Rescattering

As stated in Section 2.2.2, when driven fully into the tunneling regime, the elec-

trons follow mostly classical trajectories, and the emission rate is well described

by the WKB approximation. This makes the Fowler-Nordheim static tunneling

rate a useful tool in approximating the instantaneous tunneling probability when
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considering contributions from the entire ground state distribution [38, 61]. Thus,

by combining the Fowler-Nordheim emission rate with a calculation of classical

trajectories, it is then easy to approximate the electron energy distribution in the

tunneling regime.

For the calculation of electron emission in Section 5.2.1, it was assumed that the

dipole approximation still holds, i.e. that over the excursion length of the electron,

the electric field is relatively constant in magnitude. However, at the strong field

strengths present in the tunneling regime, this begins to break down. While it only

slightly perturbs the calculation of the emission rate, the decay of the electric field

can greatly alter the electron energy distribution. It was shown in [13] that the

electron excursion can become much larger than the field decay length, leading

to a quenching of the electron quiver motion in the laser field. This is especially

important for rescattered electrons that would otherwise gain up to 10Up inside of

the field [27]. Thus, for all of the calculations of electron energy spectra, the shape

of the electric field profile must be considered.

As an example of how the electron energy spectrum is calculated, take a dipolar

electric field profile given by

F(z, t) = F0(t)

[
(ξ− 1)

(
β

z+β

)3

+ exp
{
−2 log(2)z2

4w2
0

}]
, (5.8)

where F(z, t) is the electric field along the z axis away from the tip, F0(t) is the un-

enhanced on-axis field component, ξ is the field enhancement factor, β is the tip

radius of curvature and w0 gives the unenhanced field waist for a focused Gaus-

sian beam. The spectrum is then formed by the following procedure. First, the

emission rate is found as a function of time using the Fowler-Nordheim equation

J = Θ(F0(t))
q3|F(t)|2

16π2 hχSi

(
m*

m

)
exp

(
4
√

2m
3q h|F(t)|

χ
3/2
Si

)
, (5.9)

where J is the current density, Θ is the Heaviside function, F0(t) is the electric field

in vacuum, m* is the effective electron mass in Si, and χSi is the electron affinity
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of Si. Only the negative half-cycles of the electric field contribute to emission, as

a positive field just serves to drive the electrons back into the tip. Next, for each

possible emission time, an electron at rest is assumed to suddenly appear at the

tunnel exit of the triangular barrier formed at the emission time. Finally, once in

the vacuum, the spatial electric field distribution is used to calculate the electron

trajectory using classical mechanics. For a homogeneous field, the analytic solution

can be used, however, for a general field profile, a Runge-Kutta method is used to

solve for the electron trajectories. If the electron returns to the tip, it is assumed to

reflect with some probability R. Using this trajectory, the final electron energy is

calculated after the driving pulse has already passed. Each final electron energy is

then weighted by the probability of emission at its birth time to form an electron

energy spectrum. This general approach is known as the Simpleman Model [13,

27]. The model is shown schematically with example spectra in Figure 5-4.

There are always two major contributions to each spectrum. First are the elec-

trons that directly escape the boundary, referred to as “direct” electrons. These

electrons can only pick up a maximum of 2Up from the drive laser field, and form

the high intensity low energy peak in the spectrum. Second are those electrons that

return to and rescatter from the tip. As mentioned earlier, these electrons can pick

up significantly more energy in the oscillating field (the classical limit being 10Up

for an electron starting at rest from the surface in the dipole approximation) due to

the sudden momentum reversal, and thus make up the extended plateau feature

in each spectrum. As intensity is increased, the plateau extends outward rapidly,

up to 10 eV for a relatively modest pulse energy of 600 nJ.

In order to see the effect of a rapidly decaying electric field magnitude away

from the tip surface, an analysis of cutoff scaling can be performed. The cutoff

is defined here as being at the energy W that satisfies the expression P(W) =

0.1P(W/2), where P is the spectral intensity. In Figure 5-5 the cutoff scaling is

shown for three electric field profiles: a homogeneous field, a simulated field de-

cay from finite element modeling of a 5 nm radius of curvature Si tip (see methods

of [11]), and a dipolar field with β = 5 nm. In all cases the material was taken to be
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Figure 5-4: Calculation of energy spectra. The left panel shows how the simpleman pro-
cedure works. The top left plot shows the FN emission rate as a function of time (black
curve) alongside the electric field (red curve). Notice that the emission window is much
shorter than a full cycle in this example. The lower left plot shows the final energy values
after calculating the electron trajectories in the dipolar field as a function of birth time. The
dashed curves show how the weight value is found (magenta, vertical dashed line) for
each final energy value (green, horizontal dashed line). For a long pulse, there would be
many intersections to include for each energy value. The right plot shows compiled spec-
tra for a Si tip (χSi = 4.05eV) using a 35 fs pulse centered at 800 nm with a beam waist of
80 µm for various pulse energies. An enhancement factor of 12 was used in the calculation,
and the rescattering probability was taken to be ∼ 0.3. Finally, the tip radius of curvature
was taken to be β = 7.5 nm.

Si, and the field enhancement to be ξ = 10.5. As expected, for the Homogeneous

case the cutoff scaling approaches 10Up at the highest field strengths, however the

modeled and dipolar field profiles are significantly less. This is explained by an

increased electron excursion as field strength increases, in which case the electron

escapes the field before it can gain more ponderomotive energy.

5.2.3 Comparison with Quantum Spectral Calculations

In this section the Simpleman model for the case of an homogenous electric field

(i.e. fully within the dipole approximation) is compared to the second order per-

turbation theory calculation of the electron spectra for the case of a step potential.
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Figure 5-5: Cutoff scaling of the rescattered electrons as a function of input intensity for
a homogeneous field profile (solid red curve), a modeled profile from a Si tip having a
5 nm radius of curvature (dashed green curve), and a dipolar field profile with β = 5 nm
(dash-dot blue curve). In each case the Fowler-Nordheim rate and tunnel exit calculation
from Si was used, and the field enhancement was taken to be ξ = 10.5.

This serves to demonstrate key similarities and differences between the classical

model and one which incorporates more quantum effects. To start, the second

order SF perturbation theory calculation must be described.

Recall that the full expresssion for the expansion of Mp up to the second order

is shown in Equations (2.17-2.19). The calculation of M(1)
p is rather straightfor-

ward, but the that ofM(2)
p would require significant computational resources, even

for very short pulses. However, it can be greatly simplified with just a few ap-

proximations. First, we assume a one dimensional problem. As before, this is a

direct analog to the 3D solution for the case of a large area tip (to within a constant

pre-factor), where the transverse momentum is conserved from the ground state

distribution (again see Appendix B for an explanation). Second, the rescattering

matrix element is approximated by using a low-frequency approximation. Finally,

the innermost integral over k is approximated using the saddle point method. This

reduces the problem to a summation of two integrals, where the number of terms
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in the summation depends on the number of saddle points.

The first and third approximations are rather straightforward, but the second

requires a more in-depth discussion. We start by rearranging the integral expres-

sion ofMp as follows

M
(2)
p =

−1
 h2

∫∞
−∞dτqF(τ)eiW0τ/ h

1
 h

∫∞
−∞ dkd(k+qA(τ)) exp{iSk(τ)/ h}

×
∫∞
τ

dτ ′ exp{i[Sp(τ ′) − Sk(τ ′)]/ h}
〈
p+ qA(τ ′)

∣∣V ∣∣k+ qA(τ ′)〉 ,

(5.10)

where we have already switched to the convention of a one-dimensional calcula-

tion where k and p are simply scalars. When written this way, it is clear that the

final matrix element is simply that for rescattering in the context of the first Born

approximation (see [34]). The difficulty of this integral is that it requires knowl-

edge of the state inside of the step potential. However, this is not trivial, as inside

of the step boundary the laser field is weak. If the interaction takes place only

near the step-down boundary, and a long-wavelength driver is being used, we can

assume that the incoming wave looks sufficiently like a plane wave with instanta-

neous momentum k ′ = k+ qA(τ ′). For a plane wave incident on the step-down

boundary representing the emitter, the scattering matrix element is simply

γ = −T
〈
p ′∣∣U ∣∣k ′〉 , (5.11)

where p ′ = p + qA(τ ′), and U is the potential barrier height. The transmission

coefficient T then represents the transmission through a step down potential for an

incoming momentum k ′, which is

T =


2k ′

2k ′+∆ , if k ′ < 0

0, otherwise
(5.12)

where the ∆ is the extra momentum needed for energy conservation upon trans-
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mission, and is found to be

∆ =

(
k ′

2
+ 2mU

)1/2

− k ′. (5.13)

Carrying this out yields

γ = −UT

∫0

−∞ dzei(k
′+∆−p ′)z/ h

=


2iUk ′ h

(2k ′+∆)(k−p+∆) , if k ′ < 0

0, otherwise
(5.14)

where we have made use of the fact that k ′ − p ′ = k − p. The integral is only

taken over the negative half-space in z as the potential is identically zero elsewhere.

This expression can now replace the rescattering matrix element in Equation (5.10),

which yields

M
(2)
p =

−1
 h2

∫∞
−∞dτqF(τ)eiW0τ/ h

1
 h

∫∞
−∞ dkd(k+qA(τ)) exp{iSk(τ)/ h}

×
∫∞
τ

dτ ′ exp{i[Sp(τ ′) − Sk(τ ′)]/ h}γ(k,p, τ ′). (5.15)

The saddle point approximation is only applied across the integral over k. This

has already been discussed briefly in Section 2.2.2. We can then separate out only

the integral over k from Equation (5.15). This yields

Γ =

∫∞
−∞ dkd(k+qA(τ))γ(k,p, τ ′) exp {i[Sk(τ) − Sk(τ

′)]/ h}. (5.16)

In the context of the saddle point approximation, the saddle points are at ks(τ, τ ′),

where we have

ks(τ, τ ′) =
q

 h(τ− τ ′)

∫τ ′
τ

dtA(t). (5.17)

This implies only those trajectories where a classical electron would return to the

surface are included in the calculation. Trajectories that do not satisfy this con-

straint are not included. Furthermore, we assume that ks must be negative (i.e.
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approaching the surface) at the scattering time τ ′, or else we also discard it. Using

this result we find that

Γ ≈

√
2πim

 h(τ− τ ′)
d(ks+qA(τ))γ(ks,p, τ ′) exp {i[Sks(τ) − Sks(τ

′)]/ h}, (5.18)

reducing the integral over all k to a functional expression of only τ and τ ′.

With this, the computational requirements have been reduced sufficiently to

make the computation of M(2)
p possible within a reasonable amount of time. The

author has found that with proper parallelized computation, the entire amplitude

up to the second order can be calculated with 0.1 eV resolution up to 100 eV within

minutes for input pulses being tens of fs in duration. This calculation has also

been used to verify that while an accurate calculation of the spectrum requires one

to determine M(2)
p , it makes a negligible impact on the total yield calculation. This

has been described at length in [28]. The bulk of the electron emission is described

by the direct electrons, i.e. those represented by M(1)
p . While some electrons may

interact with the surface potential and rescatter, as described byM(2)
p , these are few

in number and are still largely emitted as detectable electrons. Thus, M(2)
p does

not epresent “new” electrons as such, but only a “correction factor” to the direct

electrons to accommodate for the few that are emitted but then scatter from the

boundary. Thus, M(2)
p is used to model experimental studies of electron spectra,

but not for experimental studies of total electron yield.

We can now compare the quantum rescattering model using the modified SF

perturbation theory approach described above to the Simpleman approach. Fig-

ure 5-6 compares both models for the case of a Si structure, where we assume all

of the electrons are emitted from a ground state located just near the conduction

band, i.e. W0 = χSi = 4.05 eV. The incident pulse is centered around 1000 nm

with a pulse duration of 8 fs. As expected, the quantum calculation has the char-

acteristic energy peaks having a separation of  hω ≈ 1.24 eV, while the Simpleman

approach shows a smooth spectrum as it is a purely classical calculation. Both

show an intense low energy peak from electrons that are directly emitted, with
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an extended plateau due to rescattering from the step boundary and subsequent

ponderamotive acceleration. In both spectra the plateau extends to roughly 13 eV

before beginning to fall off. However, while the classical calculation shows a very

steep cutoff, the quantum calculation shows a much more gradual decay in the

spectrum as there is a quantum energy spread not accounted for in the classical

model.

Figure 5-6: Comparison of spectra using the Simpleman model (red dashed) and second
order SF perturbation theory. Notice that the cutoff of the plateau region in each spectra
starts at roughly the same energy (around 15 eV). While the classical analysis predicts
a steep cutoff as there is a hard energy limit, the quantum analysis shows a much more
gradual decay in energy spectrum. The direct component, M(1)

p , is also shown (green
dash-dot).

With such short pulses, we can also expect a CEP dependence of the outgoing

energy spectrum. The results of such an analysis are shown in Figures 5-7 and 5-8

for the Simpleman and quantum models respectively. In each plot, bounds were

placed on the colorscale to highlight the behavior of the spectra just near the spec-

tral cutoff. The modulation of the cutoff point is seen to match in phase between

the two models, however the quantum model shows a more interesting interfer-

ence behavior that cannot be observed in the classical calculation. As the CEP is
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changed, the emission is dominated by one half cycle at certain delays, and by two

at others. This leads to a characteristic change in the modulation depth of the elec-

tron spectra. Similar results have been characterized experimentally with short

pulses and single-tip emitters in tungsten [15]. This behavior is better observed

in the full pseudocolor plot of the quantum model results, where no bounds are

used on the colorscale, as shown in Figure 5-9. Furthermore, the effect of cutoff

energy modulation, as seen more clearly in the Simpleman calculation, has also

been experimentally observed from a single gold tip [10].

Figure 5-7: Pseudocolor plot of simulated spectra using the Simpleman model. The col-
orscale represents log10 of the yield. The simulation assumed a step function correspond-
ing to χSi = 4.05 eV with a ground state distribution peaked just above the conduction
band. A reflection coefficient of R = 0.3 was used to simulate electron rescattering from
the boundary. Bounds were placed on the color scale to focus on the behavior of the cutoff
region of the spectrum.
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Figure 5-8: Pseudocolor plot of simulated spectra using second order perturbation the-
ory. The colorscale represents log10 of the yield. The simulation assumed a step function
corresponding to χSi = 4.05 eV with a ground state distribution peaked just above the
conduction band. Bounds were placed on the color scale to focus on the behavior of the
cutoff region of the spectrum.

5.3 Experimental Results

This section highlights results obtained from nanostructured cathodes in Si. While

other cathode materials, such as Au and W, have been investigated for strong-

field emission [12, 15, 16], Si offers several key advantages. First, there exist well

understood processes for producing repeatable, high-throughput nanostrucuted

surfaces in Si thanks to the electronics industry. While W has a high melting point

(3422∘ C), and subsequently high damage threshold, it has been observed that it

can be rather sensitive to vacuum and environmental conditions, and the proper-

ties of the tip can change over time necessitating an extra anneal step [15]. By con-

trast, our own experimental observations have indicated that Si is rather robust in

high vacuum conditions (≈ 1 × 10−7 Torr) readily achievable with a turbomolec-

ular pump, with no apparent degradation of performance over tens of hours of
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Figure 5-9: Psuedocolor plot of the full intensity range for the case of the second order
perturbation theory calculation. Notice how at the highest energies, for certain CEP values
the spectrom is completely smooth. This indicates only a single pulse in time contributes
to this spectral region.

use. While Au is also robust to vacuum conditions, being rather non-reactive, it

has a relatively low melting point (1064∘ C compared to 1414∘ C for Si), and tends

to change shape and pool when irradiated with high-energy, femtosecond laser

pulses [62].

In the following subsections, a complete experimental characterization of elec-

tron emission from nanostructured pillars of Si driven by long-wavelength opti-

cal sources (> 800 nm) is presented. These structures were fabricated from n-Si

(≈ 5Ω-cm) wafers. Concentric disks of silicon nitride and silicon dioxide were

patterned on the surface using projection lithography. A dry etch process formed

the tips under the oxide/nitride disks. The pillars were then formed by deep

reactive-ion etching. A thermal oxidation step sharpened the tip to its final form

and narrowed the pillars. Tips were formed with radii of curvatured (ROC) down

to 5 nm. For a more thorough discussion of the fabrication process, the reader is
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referred to [63].

Figure 5-10: The process flow for fabricating the nanosharp silicon pillars. (a) Layers
of SiO2 are formed on the surface of n-Si. (b) Photoresist (PR) is then deposited on the
surface and patterned using projection lithography. (c) An etch processes create disks of
the oxide/nitride layers, and (d) a dry-etch process forms a tip structure under the disks.
(e) The PR/disks are then removed, followed by thermal oxidation and subsequent oxide
removal for final shaping of the tips and thinning of the pillars. Image taken from [63].

5.3.1 Enhanced Multiphoton Emission

Finite element modeling of the electric fields surrounding the tip show an approx-

imate field enhancement of roughly 10× compared to the incident field for pulses

centered at 800 nm at a grazing incidence of 84∘ polarized along the tip axis. Un-

like plasmonic resonators, the field enhancment is due to a lightning-rod effect,

where charges are displaced from the tip shaft and driven into the tip apex. As

such, there is no phase retardation between the incident and enhanced field on the

surface, as would be typical for a resonant structure. The most profound impact

of this enhancement can be observed by comparing total electron yield from a pla-

nar surface of silicon and the nanostructured surface for the same incident pulse.
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With an incident pulse energy of 5 µJ centered at 800 nm having a focal spot size

of 90 µm FWHM at a repetition rate of 3 kHz and a grazing incidence angle of 86∘,

there was a gain of three orders of magnitude from the structured cathode hav-

ing tips spaced on a 5 µm pitch as opposed to a planar cathode under the same

conditions (1 fC total charge yield per pulse versus 1 pC).

It is important to bear in mind that this increased efficiency is observed despite

the fact that the overall active area is significantly reduced. This is because much

of the space is shadowed by the high aspect ratio tips (note that each tip has a

height of roughly 40 µm). Considering a tip pillar diameter of 900 nm, a rough

estimate shows that the total illuminated surface area is in fact reduced by more

than an order of magnitude relative to a planar cathode at a grazing incidence

angle of 86∘. This was experimentally confirmed by using an extreme ultraviolet

(EUV) source to drive the photocathode. Since there is not a significant field en-

hancement at EUV wavelengths near the tip, and the emission is driven mostly by

one-photon absorption inside of the bulk of the material, one expects a decrease

in photoemitted electrons with a decrease in exposed surface area. It was experi-

mentally confirmed that for an EUV source, the total current yield was reduced by

more than a factor of 2 when incident on the structured portion of the cathode as

opposed to a planar region. A likely reason the yield was not further decreased as

our simple analysis of surface area would suggest is the incident angle on the ma-

terial surfaces. The absorption coefficient increases at lower incident angles, thus

increasing the absorption cross section on the sidewalls of the tip structures.

5.3.2 Intensity Scaling

While the increase in overall efficiency is a strong indicator of the enhanced field

on the surface leading to an enhanced multiphoton emission from the cathode, a

careful study of how the charge yield scales with incident pulse energy/intensity

can yield much more information about the underlying physical process at play.

Using the same pulse form and incident geometry as described above, the energy
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was scaled from tens of nJ to almost 10 µJ while collecting all of the emitted current

into a metal anode. Furthermore, this scaling was repeated at various bias voltages

to study any potential space charge effects due to the emitted charge bunch inter-

acting with the image charge on the cathode surface. To better understand the

physical layout of the experiment, a schematic is shown in Figure 5-11, and an im-

age of the sample-holder arrangement in front of the TOF spectrometer is shown

in Figure 5-12.

Figure 5-11: Scanning electron microscope images of the structured cathode (a) and tip
apex (b). In (c), a schematic of the experimental arrangement is drawn. The incoming
pulse is at a grazing incidence. The tip substrate and metal anode are separated by a gap
of roughly 3 mm. A bias is applied between the cathode and anode to sweep the electrons
off of the surface. By adjusting the bias, effects from any space-charge induced virtual
cathode are studied. The numbers in the plot indicate typical experimental parameters for
reference.

All of the data is compiled in Figure 5-13, and an inset shows the calculated

quantum efficiency QE as a function of incident energy, calculated simply as the

number of electrons per photon. Due to the nonlinear nature of the emission pro-

cess, the QE is a function of incident intensity. While the quantum efficiency peaks

at a value just less than 1 × 10−6, remember that much of the cathode is not uti-

lized. It is predicted that the QE could be further increased by nearly an order of

magnitude by further reducing the tip spacing.

For each bias setting, the current yield has a distinct kink at the same input

pulse energy. If this kink were due to a virtual cathode, one would expect it to
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Figure 5-12: Image of sample-holder arrangement in front of the TOF spectrometer orifice.
The red arrow indicates the laser path.

shift right and vertically with increased bias. This means that is not related to

a space-charge saturation often observed in metallic photocathodes [29]. Thus,

we can safely assume that the kink arises from a physical mechanism. Assuming

that the emission is dominated by the SF emission at the tip surface, we compare

the experimental intensity scaling to the SF perturbation model discussed in Sec-

tion 5.2.1.

To account for the spatial profile of the incoming beam, we discretized a Gaus-

sian intensity profile along a rectangular grid on the emitter surface, and find the

total charge yield across all of the grid spaces. The pulse was taken to be Gaus-

sian in time with a FWHM of 35 fs. Due to the spatial and temporal averaging,

the steep channel closings, similar to those found in Figure 5-2, are smoothed over,

leaving only a small dip near the first channel closing for the transition from 3- to
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Figure 5-13: Intensity scaling of total charge yield versus incident pulse energy for bias
values of 10 V, 100 V, 500 V, and 1000 V respectively. The top x-axis is labeled in terms of
an enhanced peak intensity at the tip, which is calculated by matching the kink location
with that expected from the SF perturbation model, which is shown in the plot as the black,
dashed line. It is matched against the highest bias of 1000 V to ensure any virtual cathode
effects have been reduced. The quantum efficiency calculation is shown in the inset. Due
to the multiphoton process, the quantum efficiency depends on the input intensity.

4- photon emission. This leaves only a fit of the pre-factor that accounts for the

tip area, and field enhancement at the tip surface, which shift the simulated curve

in the vertical and horizontal direction respectively. This curve is then matched

against the intensity scaling at a 1000 V bias as we want to reduce the effect of any

space-charge induced virtual cathode.

The modeled curve (dashed, black line in Figure 5-13), matches almost perfectly

with the experimental data. The field enhancement factor needed to achieve the

best matching to the experimental data was found to be 10.5×, which agress very

well with the simulated enhancement factor of 9.4× at 800 nm. To give a clearer

look at how well the modeled yield fits the experimental data at a 1000 V bias, this

case is isolated in Figure 5-14. Even the unique dip in yield near the first channel
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closing is observed in the experimental data, giving a high degree of confidence

that the structured cathode is being driven into the optical tunneling regime of

photoemission.

Figure 5-14: Intensity scaling of the experimental results at a 1000 V bias compared to
the modeled result, including (solid, blue) and excluding (solid, red) any virtual cathode
effects.

We cannot totally rule out the effect of a virtual cathode, as there is clearly some

change in total yield with increasing bias at the highest incident pulse energies.

A virtual cathode is essentially the formation of separated sheets of charge due

to the emitted charge bunch and corresponding image charge within the cathode

substrate. For thermal and DC field emitters, the electrons are emitted from the

substrate continuously, leading to a long channel of charge. In this regime, the

Child-Langmuir current limit describes space-charge limited emission. However,

ultrafast photocathodes emit charge over a very short window of time leading to
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a dense “sheet” of charge. In this limit, one can estimate that space-charge limited

current should occur when the field between the sheet of emitted charge and the

cathode surface is equal to that of the DC bias. In this scenario, electrons in the

trailing edge of the bunch are pushed back to the cathode surface and reabsorbed

rather than emitted. The amount of charge where this limit is reached is referred

to as the critical charge, QC

QC =
VAQε0

d
, (5.19)

where V is the bias voltage,AQ is the area of the charge sheet, ε0 is the permittivity

of free space, and d is the anode to cathode spacing. To account for the fact that the

charge is not emitted uniformly over the cathode surface due to the spatial profile

of the beam, this critical charge is calculated for each rectangular grid section used

for spatial averaging by simply replacing AQ with the grid area to find QC, grid.

During the calculation of the spatial emission profile, the charge emitted from each

grid area is then limited to QC, grid.

This calculation makes some basic assumptions. First, it ignores any DC field

enhancement or variation around the tip structures. This is justified as field model-

ing shows that enhanced DC fields decay to a value expected for a planar cathode

within tens of nm of the tip apex making them negligible during the electron tran-

sit to the anode. Furthermore, particle-in-cell simulations indicate that within 1 ps

after emission [11] the electrons spread from the tip to a radius the size of the lat-

tice constant. Since it takes more than 1 ns for the electrons to reach the anode,

the spatial structure of the electron cloud can be safely ignored. Finally, the model

does not account for further spreading of the electron cloud beyond the size of the

initial beam spot. This means that the critical charge calculation underestimates

what should be experimentally observed, consistent with the modeled current ac-

counting for space-charge in Figure 5-14, as laser acceleration causes a significant

transverse energy spread away from the tip apex.

Using the same parameters for fitting the model results to the 1000 V bias curve,

the space-charge limited current was calculated for all bias levels using QC,grid,
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and the results are compiled in Figure 5-15. In each case, the virtual cathode limit

used provides an underestimate of the measured current for the same bias. For

instance, at a bias of 1000 V, the final slope predicted with space-charge included

is 0.51, however the measured slope of 0.66 falls somewhere between 0.51 and 1.2,

the modeled slope with no space-charge included. This is likely a result of ignor-

ing the transverse and longitudinal momentum spread of the bunch as discussed

above. Nonetheless, the calculations clearly match the experimentally observed

trend. At low yields, the intensity scaling profiles overlap, while at higher yields

each saturate to different levels depending on QC, which increases with the ap-

plied bias voltage. Thus, when total yield is a critical issue, especially for cathodes

with tighter tip spacing, an increased DC and/or low frequency bias is necessary

to ensure a full collection of current from the cathode.

5.3.3 Energy Spectra

While SF perturbation theory combined with a simple virtual cathode simulation

provides an explanation of the total emission yield curve, more information about

the emission process and subsequent interaction with the driving laser pulse can

be gathered through analysis of the emitted electron spectra. As discussed in Sec-

tions 5.2.2 and 5.2.3, the energy spectrum should consist of two main components

for SF emission: the low energy, direct peak, and the high energy plateau due to

rescattering from the tip surface. Classically speaking, an electron born within a

laser field alone can at most be accelerated to an energy of 2Up. However, with the

inclusion of a rescattering boundary, the plateau cutoff energy [27, 64] can exceed

10Up.

Using the same 800 nm pulsed source and emitter geometry for measuring the

intensity scaling with a 10 V bias, the anode was replaced with a time of flight

electron spectrometer, and the electron energy spectra were collected from the tips

for a range of laser pulse energies. The results of this scan are shown in Figure 5-16.

The results of this scan show a sharp (< 1.5 eV FWHM peak width) low-energy
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Figure 5-15: Modeled current scaling for a Gaussian pulse having a diameter of 90 µm
FWHM and temporal duration of 35 fs FWHM on a Si surface accounting for virtual cath-
ode induced saturation of the current yield. Each curve represents a different bias setting,
from 10 V to 1000 V, each saturating at higher and higher charge yield levels. The topmost
curve (red) represents the case of no space charge, and is the same as the black dashed
curve in Figure 5-13. For visual comparison, the spatially averaged WKB tunneling rate is
also shown along with key slope references, including: initial 3-photon absorption slope,
final slope including space-charge with 1000 V bias, and final slope without space-charge.

peak with a high-energy plateau extending to around 12 eV beyond the low-energy

peak at the highest pulse energy tested. To ensure the high-energy plateau is in-

deed due to laser acceleration after emission, space-charge broadening must be

ruled out. Particle in cell modeling of a single Si tip [11] shows that pulse spread-

ing indeed occurs with the inclusion of space-charge; however the high-energy

plateau was still dominated by laser accelerated electrons for charge yields ex-

ceeding 1 pC, while the yield in the spectral measurements shown in Figure 5-16

did not exceed 50 fC. While this rules out such effects in the single-tip limit, the
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Figure 5-16: Intensity scaling study of energy spectra. The psuedocolor plot shows all
collected spectra as a function of enhanced peak intensity. For reference, the top x-axis
shows the calculated Keldysh parameter. The overlayed plots show the calculated (grey
triangles) and experimentally measured (white circles) cutoff values. The inset show the
central energy of the direct electron peak as a function of integrated electron signal in the
peak alone. It demonstrates a linear dependence with the charge in the peak as one would
expect for an image-charge induced deceleration of the electron bunch.

substrate and neighboring charges may also influence the spectra.

Femtosecond electron pulse spreading from a planar cathode due to electron-

electron interactions has been shown both theoretically and experimentally to scale

as the square root of the number of particles in the electron bunch and be inversely

proportional to the electron bunch radius [65, 66]. Passlack et al. [65] experimen-

tally demonstrated that for an electron pulse with a group velocity corresponding

to 0.18 eV, the pulse broadening did not exceed 300 meV for more than 75000 elec-

trons per pulse and an initial bunch radius of 350 µm. Accounting for the differ-

ences in initial bunch radius based on the beam profile used, even a conservative

estimate does not indicate broadening the electron pulse by more than 2 eV at the
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highest yield measured.

To determine the predicted plateau cutoff extension described by laser accelera-

tion, the Simpleman model was used. The enhanced peak intensity was calibrated

by matching the current scaling measured at the spectrometer to the measurements

in Figure 5-13. The details of the calculation are outlined in Section 5.2.2, where we

have replaced the dipolar decay function describing the electric field profile with

the simulated profile from finite element based electromagnetic simulations [11].

As the Simpleman model only applies to the tunneling regime of emission, care

was taken to only compare the predicted and measured cutoff values beyond the

kink observed in the emission curve. For reference, the value of the Keldysh pa-

rameter, γ, is also provided in the top x-axis of Figure 5-16.

To account for the 10 V DC bias in the simulation, the Simpleman solution is

shifted by 10 eV. Space charge is neglected in this calculation, following the pre-

vious discussion. The cutoff value was again defined in the same way as in Sec-

tion 5.2.2, being the energy where P(W) = 0.1P(W/2) is satisfied. The results are

overlaid with the energy spectra in Figure 5-16 and compared to the measured

cutoff values using the same condition. The calculated cutoff values are offset to

slightly higher energies, with a slightly increased slope relative to the measured

values. Overall, the agreement between the measured and the predicted cutoff

values is reassuring given that the peak intensity was calibrated using the kink in

current yield, an entirely separate measurement, rather than as a free parameter to

achieve the best fit.

The absolute value of the cutoff using this method is sensitive to the exact spec-

tral shape. Since the semiclassical model results in spectra having much steeper

cutoff than those observed experimentally, it is difficult to find an absolute match

between calculated and measured values. However, the difference in slope is more

interesting as this points to a deviation between the modeled and actual field decay

away from the tip apex. The calculations here already show a reduced slope for

the modeled field decay as compared to the case of a homogeneous electric field

due to the fact that the electron excursion starts to be on the order of the field decay
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length, resulting in a minimum adiabaticity parameter [13] δ ≈ 15. While not deep

into the subcycle regime where the adiabaticity parameter is much less than 1 and

the cutoff scales linearly with the field [13], the overall reduction in cutoff energy

can be quite severe much before this regime is reached (Figure 5-5).

Laser-induced cutoff scaling also indicates that the emission process is prompt

with respect to the driving electric field, as the laser can only accelerate electrons

that are present within the duration of the laser pulse itself. Preliminary cross cor-

relation electron emission measurements using two-color pulses further demon-

strate the prompt nature of the electron emission and laser-induced spectral shap-

ing (Section 5.3.4). Such results indicate the possibility of tailoring laser waveforms

to engineer emitted electron spectra.

Another feature that stands out from the electron spectra is the slight loss in

energy of the main spectral peak as the intensity is increased. If the effect is solely

due to changing ponderomotive potential, then the shift should vary linearly with

peak intensity, which was not found to be the case. The single tip model at the

beginning of the paper indicates that image charge effects from the tip alone can

contribute significantly to electron deceleration and recombination with the tip

surface at pC level yields across the entire array. In recent years, observations of

peak shifts in photoemission due to image-charge effects have been studied in de-

tail across a variety of emission levels [67,68]. Zhou et al. [67] show experimentally

and theoretically that the image charge-related shift from a planar conductive sam-

ple is due mostly to the amount of charge in the bunch, and shifts the mean energy

linearly with respect to the total number of electrons in the bunch. A simple analy-

sis shows that the main spectral peak indeed shifts linearly to lower energies with

respect to the number of charges in the peak, but not the total charge (Figure 5-16

inset). This interpretation is also consistent with the idea that the fast moving elec-

trons quickly escape the low-energy bunch after laser acceleration, and contribute

minimally to the peak shift.

While the quantum model more correctly describes a slow roll-off of the spec-

trum near the cutoff as compared to the Simpleman model, the predicted harmonic
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peaks are missing from all of the experimentally measured spectra. This is thought

to be due to dephasing effects of the emitter, as well as spectral averaging effects

that result from the ground state distribution, thermal effects, and intensity aver-

aging around the tip apex. This is consistent with many other experimental results

from single tips. Only one group has consistently observed harmonic peaks from

tips of tungsten [14, 15], however in their experiments only single tips are mea-

sured and the incident pulses are significantly shorter (only 6 fs FWHM) which

may contribute to the increase contrast in the harmonic structure if dephasing is a

critical issue. Nonetheless, the contrast they observe is still less than theory would

predict.

5.3.4 Two-Color Cross-Correlation

To further ensure that the emission mechanism measured is prompt with the laser

field, and that the extended energy plateau is indeed a strong-field acceleration

affect and not due to space-charge accumulation, two-color measurements were

performed on the tip structures. For this a 2 µm laser system based on optical

parametric chirped pulse amplification of a broadband seed generated by intra-

pulse difference frequency generation of a titanium sapphire oscillator [69] was

used to generate pulses at a 1 kHz repetition rate. The pulses are broadband, hav-

ing a bandwidth extending from ∼ 1800-2450 nm, compressed to within 10% of

their Fourier limit of 20 fs. A portion of the available pulse energy was frequency

doubled in a 0.5 mm thick BBO crystal, to generate an additional pulse extending

from ∼ 980-1200 nm with a Fourier limited duration of 25 fs. Both pulses were

combined collinearly using a dichroic mirror, with a carefully controlled delay be-

tween them. Due to dispersion in the experimental setup and nonlinear effects in

the second harmonic generation process, the pulses were slightly chirped, but care

was taken to keep each pulse compressed to within a factor of 2 of their Fourier

limits at the sample. Both electron spectra and current yield were monitored with

varying delays between the pulses. The key results of the measurement are high-
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lighted in Figure 5-17.

Figure 5-17: Comparison of the two-color results. (a) Spectra taken with the 1 µm pulse
alone (blue), and overlapped in time with the 2 µm pulse (green) on a linear scale centered
near the direct peak. (b) The spectra from 1 µm alone (blue), 2 µm alone (teal), 1 µm with
2 µm not overlapped in time (red) and overlapped in time (green) respectively. In (b), all
curves are plotted on a log scale to emphasize the shift in cutoff energy of the lower yield
plateau. In both (a) and (b), the spectra are all shifted such that their peaks are centered
at 0 eV and are normalized to 1. The inset of (b) shows a typical cross correlation current
trace where the current has been normalized to the baseline (5 pA , or 5 fC/pulse for the
measurement shown).

The 2 µm pulse was focused to a spot size of ∼ 170 µm FWHM, and the 1 µm

pulse to a spot size of ∼ 110 µm FWHM, and the incident beam angle was held at

roughly 6∘ grazing incidence as in the text. Cross correlation current yield mea-

surements were made at various 2 µm and 1 µm energies, and a typical trace is

shown in the inset of Figure 5-17, where the current has been normalized to the

baseline current (∼ 5 pA corresponding to ∼ 5 pC/pulse). The cross correlations

show a spike in current that is prompt with the driving pulses, being just tens of

femtoseconds in duration (56 fs FWHM for the case shown in inset of Figure 5-17).

More importantly, no evidence of a long-lifetime tail on either side of the cross cor-

relation profiles was observed, and the baseline current was verified to be simply

the sum of the two individual input pulse responses. This demonstrates that any

excited states that would contribute significantly to emission are short lived and

would not contribute to effects, such as photo-field from the DC bias that would re-

sult in emission times much longer than the laser pulse. A numerical propagation

117



model [70] used to simulat the few-cycle pulse second harmonic generation in the

interferometer produced a 1 µm pulse with an asymmetric temporal profile and

structure similar to that seen in Figure 5-17 (inset), and may offer an explanation

for the cross-correlation shape.

The energy spectra also indicate a prompt emission, and emphasize the impor-

tance of laser acceleration dynamics on the final energy profile of the electrons.

For the measurement shown in Figure 5-17b, the 2 µm pulse was fixed at an en-

ergy of 730 nJ, and the 1 µm pulse at 200 nJ. The charge per pulse was recorded to

be roughly 10 pC/pulse for the 2 µm pulse alone, 25 pC/pulse for the 1 µm pulse

alone, and 50 pC/pulse when both are overlapped in time. When both are over-

lapped in time, the bandwidth of the main spectral peak is virtually unchanged

from spectrum using the 1 µm pulse alone (Figure 5-17a). If the plateau exten-

sion were purely due to space-charge broadening of a low-energy pulse, models

of single-tip emission, and the experimental results of others indicate that broad-

ening should occur across the entire spectrum [65] (especially for the low-energy

peak where there is the highest charge density). However, for the case of two-color

fields, the laser acceleration dynamics are altered, and the cutoff can be extended

up to 21Up [64]. Fine delay structure was not observed in this measurement, how-

ever this is believed to be due to noise in the system and alignment issues that

resulted in averaging (for example, a slight noncolinear alignment between the

two pulses leading to spatial averaging over delay). Using a Simpleman model, a

peak field strength for the 1 µm and 2 µm pulses was estimated by their respective

cutoff energies to be 7.5 V/nm and 5.0 V/nm, respectively. The cutoff was then

recalculated by superimposing the two pulses in the model, averaging over one

cycle of delay. This showed a net increase in cutoff of around 12 eV, as compared

to the measured value of 7 eV shown in Figure 5-17b. Current work is underway

to resolve remaining experimental issues and verify finer delay structure due to

the field driven emission and acceleration process.

118



5.3.5 Oxide Effects

The final consideration for a Si emitter is the effect of native oxide formation. It

is well understood that Si will form a native oxide on the order of angstroms to

nanometers depending on its exposure to atmospheric conditions. In DC field

emission studies, it has been well documented that such oxide thicknesses are

enough to dramatically alter the nature of tunneling emission [71–73]. By care-

fully testing Si tips where the native oxide was not removed before use, we were

able to observe similar effects in optical tunneling and how the presence of the

oxide alters the final electron energy spectrum.

These tests were performed on very similar tip structures as in Sections 5.3.1-

5.3.4, only this time being spaced on a 10 µm square grid, with end ROC ranging

from 5-10 nm. The laser source had an equivalent pulse duration and center wave-

length of 800 nm, only this time at repetition rate of 1 kHz. The sample was also

held at a low bias for these tests, only around 2 V coming directly from a positive

drift tube voltage inside of the TOF spectrometer.

While testing electron spectra from the tips at various spots along the sam-

ple, a distinct, repeatable annealing process was observed when applying laser

intensities above a certain threshold. For tips that had the oxide stripped prior to

testing, this process was observed to a very small extent, and essentially not ob-

served when care was taken to minimize opportunity for the oxide to grow before

mounting and testing. This led to the conclusion that the native oxide must be re-

sponsible for the observed annealing process. To study the laser induced annealing

effect, the following process was performed:

1. A fresh spot of tips was centered in front of the TOF spectrometer.

2. This spot was tested at low incident intensities ranging from 5× 1010 W/cm2

to 1.6 × 1011 W/cm2.

3. The location was illuminated with an energy exceeding the annealing thresh-

old for a fixed duration of time.
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4. Steps two and three were repeated.

The results of this test are compiled in Figures 5-18-5-20.

Figure 5-18: Electron spectra taken as a function of increased anneal time at an incident
pulse energy of 0.6 µJ. The times given are the integrated anneal times, starting with an
oxidized position on the sample at time 0. The annealing energies ranged from 1 to 2 µJ
focused onto the same spot the spectra were taken from. Note the red shift of the main
spectral peak. The inset shows integrated current yield as a function of anneal time. Ini-
tially there is a decrease in total electron yield before an eventual increase as anneal time
is increased.

Figure 5-18 shows the effects of the anealing process on the electron spectrum

and current yield. Each spectrum is taken at a peak intensity of 1.6 × 1011 W/cm2

at the given accumulated anneal time. Three main trends are clear. First, the for-

mation of a higher energy plateau that is not prevalent before the anneal. Secondly,

there is a net red-shift of the main peak in each spectrum, from an original value of

∼ 5 eV before the anneal, to a value of ∼ 1 eV after the last anneal step. Finally, the

total electron yield varies over the anneal, first slightly decreasing before finally

increasing.
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Figure 5-19: Experimental results from the power scaling study of the same spot after
the final integrated anneal step has been performed. The main spectral peak shows little
change with increasing pulse energy. A significant plateau forms at high pulse energies,
extending outward with increased laser field strength.

Figure 3 shows a power scaling study after the total annealing process to demon-

strate how the plateau scales with increased intensity, while the main spectral

peak stays roughly fixed. This was true after all anneal times throughout the

experiment. These features are both comparable to those already observed by

others when performing energy-resolved photoemission experiments on metallic

tips [13, 15, 74], and our own results discussed in Section 5.3.3. The question that

needs to be addressed is if it is expected that the oxide indeed prevents a rescatter-

ing plateau for comparable peak intensities to bare Si.

Figure 5-20 shows the integrated current vs. incident pulse energy after the fi-

nal annealing step. A slope change occurs near an incident pulse energy of 0.4 µJ

indicating that the tip characterization is happening just near and above the tran-

sition from multiphoton to tunneling emission. An analysis of the slope transition

point and the plateau feature extent, the predicted tip enhancement factors range

from 10-14 giving a peak field strength range of 11-15.4 V/nm. This agrees quite
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Figure 5-20: Plot of total MCP current yield with increasing incident energy. The slope
transition is typical of a transition from multiphoton emission to the SF regime, occurring
near γ ≈ 2. The black circles indicate the measured values. The red and green trend-lines
show the power law relation before and after the slope change respectively, where P is the
pulse energy.

well with results from Section 5.3.2, which is expected as the Si doping factor and

fabrication process is the same, and the overall geometry of the tip apex is quite

similar. To compare our experimental results to theory, we turn back to the Sim-

pleman model.

For the tunneling rates, a modified Fowler-Nordheim rate equation is used,

following the procedure found in [72] in order to account for the effects of any

oxide layer. Rather than the situation where a single step barrier is present (no

oxide), with a thin oxide present, a double step barrier is formed. The interme-

diate work function Wox is taken to be 3.5 eV for the Si to SiO2 interface, while

χSi = Wox +∆φ = 4.05 eV. The schematic of the barriers and different tunneling

scenarios are shown in Figure 5-21. Applying the WKB approximation to such a
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Figure 5-21: Schematic of oxide structure. In (a) the oxide layer structure in 1D is drawn.
In (b) the energy levels are drawn and labeled along the axis of the layers. All three basic
tunneling scenarios are also shown depending on the external field strength. At the highest
field strengths, the electron tunnels over the extra barrier between the oxide and vacuum,
without interacting with the intermediate quantum well formed.

barrier leads to the following rate equation.

J = Θ(F0(t))
q3|F(t)|2

16π2 hχSiB2

(
m*

m

)
exp

(
4
√

2m
3q h|F(t)|

χ
3/2
Si C

)
, (5.20)
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Here B and C are defined below.

B =εox

√
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√
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(5.22)

Θ(t) is the Heaviside function, εox the dielectric constant of the oxide at 800 nm,

dox the oxide thickness, F(t) is the enhanced electric field of the laser in vacuum

just above the SiO2 surface, and Fox(t) = F(t)/εox is the component of the electric

field in the oxide. As in the experiment, the electric field is polarized along the

direction of the tips. Here we also take m* as the effective electron mass in Si and

mox the effective mass in the oxide, m to be the mass of an electron and q the

fundamental charge. Note that when dox is set to zero, or the oxide properties are

set to that of the vacuum, B and C both go to 1 and the rate equation reduces to

that of traditional FN theory as expected.

The electric field was modeled assuming a dipolar decay away from the tip

as in Equation (5.8). Scattered electrons are modeled as elastically scattering off

of the silicon surface, traveling through the SiO2, since the scattering length of the

electron within the oxide is on the order of 3nm [73], which is greater than the max-

imum modeled native oxide thickness. When calculating the electron trajectories,

space-charge effects and multiple rescattering events are deemed negligible.

Figure 5-22 gives the results of the theoretical model of the power scaling ex-

periment which matches quite well to the experimental spectra in Figure 5-19. The

spectra were averaged over different peak field values, the average value taken to
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be 12V/nm. A native oxide thickness of 0.5 nm was used, along with a roughly fit-

ted reflection probability of R = 0.3. By turning off the reflectivity it can be shown

that the sharp spectral peak is due purely to the electron trajectories that do not re-

scatter, and the plateau feature is due to those that do. While a free electron with

no scattering can only pick up a maximum of 2Up ≈ 2.8 eV from the driving laser

field in our case at an incident of 0.6 µJ, only the inclusion of rescattered electrons

accounts for the high energies observed experimentally.

Figure 5-22: Model results when simulating the experimental incident power study. The
spectral features qualitatively match those of the experiment, each spectra having a sharp
low energy peak with a broad plateau. The plateau can be turned on or off in the model
through the electron rescattering probability, and scales with incident energy similar to the
experimental data.

To explain the red shift and increased current yield observed throughout the

annealing process, a charging-, thinning-oxide model is used. Trapped charge at

the surface explains the spectral offset, and the subsequent loss of charge as a func-

tion of anneal due to oxide thinning leads to the observed red-shift. Furthermore,

a thinning oxide explains the net increase in current yield as a function of anneal
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time. To explore this explanation, we have modeled an oxide thinning from 0.9 nm

down to 0.5 nm.

For simplicity, the charge is assumed to be spread evenly throughout the oxide

with a surface density around 5.5 × 1012 electrons/cm2, which is consistent with

trap densities commonly found near SiO2-Si interfaces, especially for native ox-

ides where the impurity concentration can be large at the surface [72]. The peak

field strength of the trapped charge is taken to be 0.5 V/nm. As this field is an

order of magnitude below that due to the laser, the effects of this field on emission

probability is neglected. We also assumed that the changing oxide thickness does

not significantly alter the field enhancement factor, α. The results of this model are

shown in Figure 5-23.

Figure 5-23: Simulation results for a tip-model including a charged, thinning oxide. Three
basic trends are reproduced in the model. First the prevalent red-shift is introduced due
to the reduction of surface charge. Secondly, it accurately models the plateau suppression
before anneal. Thirdly, the thinning-oxide models first a reduction and then increase in net
electron yield. The inset shows the modeled total electron yield as a function of decreasing
oxide thickness.

Though simple, the model qualitatively reproduces all three trends as observed
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experimentally. First, the initial decrease and then eventual increase in current

yield as a function of thinning oxide. This is a result of the changing potential

barrier profile as a function of oxide thickness which, at certain dox values, can

lead to higher emission when the oxide is increased while keeping the applied

field fixed. Secondly, the presence and reduction of surface charge easily explains

the 4-5 eV shift of the energy spectra as observed in the experiment. However, it

is clear that the effect of the oxide thinning occurs in the experimental data before

a significant red-shift. This is consistent with the charge being located nearer to

the interface of the Si-SiO2. Finally, due to the extension of the tunnel exit away

from the tip surface, the electron rescattering is reduced thus suppressing the high

energy plateau before the anneal.

Despite explaining these features, it is clear that more work has to be done to

understand all of the underlying dynamics at play during the annealing process

more fully. One striking difference between the experiment and simulations is

the significantly broader plateau observed for intermediate anneal times in the

experimental data that is not reproduced in the simulation.
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Chapter 6

Outlook

It will be interesting to see the next decade of advances in attosecond science. There

are many indications that the new frontier for the field lies in creating on-chip,

solid-state devices. This thesis has presented much of the groundwork necessary

for creating such devices on a large scale. One area of particular interest to me is

one where nanoscale tips have already seen tremendous application: microscopy.

Near-field tunneling has been utilized in the scanning tunneling electron miscrope

for many years. By coupling this with a pulsed laser, unprecedented timing reso-

lution could be added, creating a time-resolved scanning tunneling electron micro-

scope. This might be the breakthrough necessary for providing much of the rich

information on chemical structure and electron dynamics that attosecond science

has been quick to promise, but slow to deliver.

However, creating such a device will require yet more study of the basic pro-

cesses at play in laser driven emission from nanostructures, especially in the con-

text of coupling this emission with a near-field tunneling microscope. One partic-

ular challenge will be to develop pulse retrieval techniques for the electron packets

emitted from the nanostructures, allowing for experimental measurements of their

temporal resolution. It would truly be satisfying if the work on attosecond EUV

pulse retrieval documented in Chapters 3 and 4 proves useful in this regard, bring-

ing the work in this thesis full circle.

With regard to attosecond pulse retrieval, it was recently brought to my at-
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tention that others have developed ways of incorporating the concept of partial

coherence into FROG [75]. If it is possible to extend these ideas to the VTGPA al-

gorithm, it would bring it one step closer to becoming the most complete retrieval

approach available in attosecond science. Furthermore, as more of the field moves

toward integrating attosecond science with solid state systems, where decoherence

is much more critical, accounting for partial coherence will prove to be invaluable.
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Appendix A

Magnetic Field Effects

To examine why the magnetic field has been neglected in all preceeding calcula-

tions, the classical motion of an electron is an electromagnetic field is considered.

For the sake of simplicity, it is assumed that at time t = 0 and position z = (0, 0, 0)

an electron is injected at rest into an electromagnetic field traveling in the z direc-

tion described by

F = F0 cos(kz−ωt)x̂ (A.1)

B =
F0

c
cos(kz−ωt)ŷ, (A.2)

where c is the speed of light in the vacuum. A calculation of the electron accelera-

tion, a, yields

a = −
q

m
F0 cos(kz−ωt)

[
vx

c
ẑ+

(
1 −

vz

c

)
x̂

]
, (A.3)

where vx is the velocity in the x direction and vz the velocity in the y direction. It is

clear that if vz/c≪ 1, which is equivalent to stating that the excursion in z is much

less than a wavelength over one cycle of radiation, the effects of the magnetic field

can be safely ignored, and the dipole approximation holds. The magnetic field is

ignored when describing all of the experimental work presented in this thesis as

the electron velocities never approach such relativistic speeds.

The expression above is continued in order to give insight into the upper limit
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on the electric field strength to satisfy the dipole approximation. The expression

for the velocity in z due to the magnetic field component is approximated by

vz ≈
q2F2

0
2m2cω2 sin2ωt. (A.4)

For this to be consistent with the original approximation that vz/c ≪ 1 requires

that
q2F2

0
2m2ω2c2 ≪ 1. (A.5)

Thus, as long as

F0 ≪ mωc

q

√
2, (A.6)

the dipole approximation holds.
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Appendix B

Consideration of Emitter Size and

Ground State Population

In this section, the emitter size and ground state populations are considered. To do

this, a total emission probability for each given initial k inside of the substrate is

defined. This can then be used in conjunction with the initial ground state distri-

bution of any given substrate to determine the total emission yield and outgoing

momentum spectrum. For an input optical pulse and incoming ground state plane

wave with momentum k having unity amplitude impinging on a step potential

boundary, we define the outgoing charge distribution as a function of the final

momentum p as

wp =
Charge/Area/Pulse Momentum Distribution

Jin(kz)
(B.1)

≈ 4kzm*
z

B(k2
z +α

2)
|Mp|

2, (B.2)

where Jin(kz) is the charge current density at initial longitudinal momentum kz

incident on the barrier. We have also taken account of a general effective mass

tensor m* by using the effective mass in the z direction inside of the material, m*
z.

In deriving equation (B.2), it has been assumed that the emission is constant over

some area B, and that the the electric field is constant in this region. Finally, the top
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integral is over all outgoing momenta p, andα describes the evanescently decaying

portion of the ground state in the vacuum half space, and is expressed as

α =

√
2m
(
U+

k2
x(m

*
x −m)

2m*
xm

+
k2
y(m

*
y −m)

2m*
ym

− k2
z/(2m*

z)
)
, (B.3)

where U is the step-barrier height. Note that the transverse terms disappear if the

effective mass is the same in the transverse direction as that in the vacuum. We

assume the external electric field, F, to be polarized parallel to the surface normal

of the emitter as earlier in the text. Note also that the curvature of the tip has

been neglected in the potential barrier and ground state assumptions, assuming

it is an extended flat surface. Thus, the localization is approximated by assuming

that there is an electric field “hot-spot” just over a region of area B on the emitter

surface.

qmjaer

Surface

"

Figure B-1: Schematic of an emitter as simulated. There is a hot-spot (square dashed
region) of width ∆x by ∆y where a driving electric field pulse, F(t), is present. For all of
the discussion that follows, F is assumed to be pointing along z. The relevant angles in
spherical coordinates are also shown along with a potential outgoing momentum vector
p.
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Moving forward, the expression ofMp is approximated to the first order using

strong-field perturbation theory as

M
(1)
p =

−i
 h

∫
dτ exp

{
i
 h

(
Spz(τ) +

(
p2
⊥

2m
−W(k)

)
τ

)}
qF(τ)×

1
(2π)3/2

∫
d3re−i(pz+qA(τ))z/ he−i(px−kx)x/ he−i(py−ky)y/ he−αz/ hz, (B.4)

where p⊥ is the outgoing transverse momentum magnitude, and

W(k) = k2
x/(2m

*
x) + k

2
y/(2m

*
y) + k

2
z/(2m

*
z) −U (B.5)

is the electron energy for an initial state k. We can break up the spatial portion of

the matrix element calculation in equation (B.4) into the integral along z (normal to

the tip), and that along the surface in x and y. This leads us to our discussion on the

effects of limiting the emission region in space. If we assume area B extends over a

small region ∆x in x and ∆y in y, we can then pull the surface integral portion out

of the calculation of |Mp|
2 as a pre-factor, Γ , being

Γ(∆x,∆y,kx,ky,px,py) =
∆x2∆y2

(2π)2 sinc2((kx − px)∆x/(2 h))×

sinc2((ky − py)∆y/(2 h)). (B.6)

Thus the expression of |M(1)
p |2 becomes

|M
(1)
p |2 = Γ

∣∣∣∣−i h
∫

dτ exp
{
i
 h

(
Spz(τ) +

(
p2
⊥

2m
−W(k)

)
τ

)}
qF(τ)×

1√
2π

∫∞
0

dze−i(pz+qA(τ))z/ he−αz/ hz
∣∣∣∣2. (B.7)

For now, we can focus on Γ , as it dictates the behavior of the outgoing trans-

verse momentum distribution of the emitted electron bunch as a function of the

emitter area. As ∆x and ∆y are reduced, the width of each respective sinc function

widens in px and py around a center value of kx and ky. The interpretation of this
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is that, due to the uncertainty principle, as the location of the emitter area is more

and more well defined, the outgoing transverse momentum becomes less well de-

fined. When the emitter area is squeezed down to a point source of infinitesimal

area, the central lobes of the sinc functions become infinitely wide, and the elec-

trons are equally emitted in all directions with no conservation of initial transverse

momentum.

On the other hand, for a large enough emitter area, the sinc functions become

more peaked around the initial transverse momenta in x and y, leading to the inter-

pretation that for an infinitely large emitter area the initial transverse momentum

is conserved after emission. In fact, this is mathematically shown by taking the

limit of Γ as both ∆x and ∆y both go to infinity. This task is simplified by noting

that

lim
∆x→∞∆x sinc2((kx − px)∆x/(2 h)) = 2πδ((kx − px)/ h). (B.8)

By plugging this into the expression for Γ , we have

lim
∆x→∞,∆y→∞ Γ = Bδ((kx − px)/ h)δ((ky − py)/ h). (B.9)

Clearly, the delta functions imply conservation of initial transverse momentum,

and only make sense when coupled with an integration over the initial ground

state momentum distribution, which will be performed later. Furthermore, note

that for a large enough emission area, the emission rate scaling is linearly propor-

tional with the emitter area, B. While seemingly obvious that tiny emitters should

at some point have a transverse momentum spread dominated by the uncertainty

principle, this analysis is often ignored (such as in [38]). As the state of the art in

fabrication and characterization of such emitters continues, such analysis should

be performed to properly characterize the spatial emission profile and fundamen-

tal emittance of such devices.

We can rewrite the expression for wp as

wp =
4kzm*

z

B(k2
z +α

2)

(
Γ
∣∣M(1)

pz

∣∣2), (B.10)
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where

M
(1)
pz =

−i
 h

∫
dτ exp

{
i
 h

(
Spz(τ) +

(
p2
⊥

2m
−W(k)

)
τ

)}
qF(τ)×

1√
2π

∫∞
0

dze−i(pz+qA(τ))z/ he−αz/ hz. (B.11)

This expression should look familiar to the one-dimensional calculation of the

strong-field emission rate, just with a modified ground state energy that depends

on the initial transverse momentum. In fact, if the effective mass is simply the

same as the rest mass in vacuum, this expression only depends on kz, and is iden-

tical to the one-dimensional calculation. Thus, this further justifies the calculation

for total electron yield used in Chapter 5, where it was assumed the 1D calculation

is valid to within some constant pre-factor proportional to the emitter area.

While not shown explicitly here, this same analysis can be extended to higher

order terms of strong-field perturbation theory, which accounts for rescattering

events with the tip surface. In each case, if the emitter area is large enough, the

transverse momentum is conserved, and the emission rate is directly proportional

to that given by the 1D calculation to within a constant pre-factor.

The analysis above is extended in a similar form as that found in [38] to fully

incorporate the ground state distribution into the final yield calculation. The total

current density incident on the surface of the emitter, Js is given by

Js =
1
 h3

∫
d3kF(k), (B.12)

where F(k) defines the ground state momentum distribution. To calculate the total

charge yield then requires a rather complex series of integrations, where we sum

over all initial state momenta k, weighting each term with the probability of a

transition to final state momentum, p, given by wp. Finally, we integrate over all

possible final momenta p to give the total emitted charge Q,

Q =
1
 h6

∫
d3p
∫

d3kF(k)wp(k). (B.13)
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The expression above can be simplified significantly if it is assumed we are

in the “large emitter regime”, thus making the sinc functions in Equation (B.6)

collapse into the form given by Equation (B.9). In this case, due to momentum

conservation, kx and ky can be written as

kx = pz tan(θ) cos(φ) (B.14)

ky = pz tan(θ) sin(φ), (B.15)

where θ and φ are the outgoing momentum angles relative to the z and x axes

respectively. It can then also be shown that

∫
dpx
∫

dpy =
∫

dkx
∫

dky =
∫

dΩ sec3(θ)p2
z, (B.16)

where the integral overΩ is the integral over the outgoing solid angle.

Equation (B.13) can now be combined with Equation (B.16) to give the differ-

ential cross section dQ
dΩ ,

dQ
dΩ

=
sec3(θ)

 h4

∫
dpzp2

z

∫
dkzF(θ,φ,kz,pz)×

4kzm*
z

k2
z +α(θ,φ,kz,pz)2

∣∣M(1)
pz (θ,φ,kz)

∣∣2. (B.17)

This gives the spatial charge distribution, and can be integrated over to give the

total charge yield. The integral is rather complicated for most general ground-

state charge distributions if there is a mismatch in the transverse effective mass

values and the electron rest mass in vacuum. This difference makes M(1)
pz and α

both depend on θ and φ. However, it also leads to potential applications where

the effective masses can be chosen in such a way to help engineer the emittance of

the outgoing electron packet.

If we assume that the effective mass is simply m*
x = m*

y = m, then the total

yield Q can be written in a similar form as that found in [38]. The ground state

distribution can be taken from the Fermi-Dirac distribution in a general conduc-
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tor/semiconductor.

F(k) =
kz

4π3m*
z(e

β[k2
x/(2m∗x)+k2

y/(2m∗y)+k2
z/(2m∗z)−∆E] + 1)

(B.18)

The major parameter that controls the shape of the distribution relative to the

ground state momentum is ∆E. For a metal, ∆E = Ef, the Fermi energy, and the

potential barrier height is described as U = W + Ef, where W is the metal work

function. However, for a semiconductor, the barrier height is given by the electron

affinity, χ, which is the energy difference between the bottom of the conduction

band and the vacuum level. In this case, ∆E = Ef − Ec, where Ec is the conduction

band energy, which is typically negative even for the case of a doped semicon-

ductor. For a clearer picture of the energy levels within each type of material see

Figure B-2.

Metal Semiconductor
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Figure B-2: Schematic of relevant energy levels for both a metal and a semiconductor. In
each, the barrier at the material/vacuum interface has been idealized as a step-potential.
The shaded region shows a typical Fermi-Dirac distribution of Equation (B.18). Due to
the bandgap, the distribution of available electrons is different within a semiconductor as
compared to a metal.

Since m*
x = m

*
y = m, F(θ,kz,pz) is the only term that depends on the outgoing

polar angle of the electron, θ. However, due to the cylindrical symmetry of the
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problem, there is no dependence on the azimuthal angle, φ. Thus, all of the terms

that depend on the outgoing angle can be pulled out, and an integration performed

over a 2π solid angle above the surface to give the following expression for Q,

Q =
2m*

z

π2β h4

∫
dkz

(
k2
z

k2
z +α(kz)

2

)
ln
[

1 + eβ(∆E−k
2
z/(2m∗z))

]
×∫

dpz
∣∣M(1)

pz (kz)
∣∣2. (B.19)

This expression is a direct analogue to that found in [38] where the derivation has

been performed for a pulsed electric field rather than a continuous wave source.

This explains why the summation of discrete final energies pn is replaced by an

integration over a continuous energy distribution in pz. Note that if the electron

energy distribution over k is sufficiently narrow, the expression reduces to within

a constant factor of
∫

dpz
∣∣M(1)

pz (kz)
∣∣2, which was used to describe the total charge

yield from Si tips.
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