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Abstract

The binary values processed and stored at the intermediary stages of an algorithm are
often highly correlated. Motivated in part by this observation and the ever-increasing
challenge of power density for Integrated Circuit (IC) systems, a novel reconfigurable
memory framework is proposed in this thesis which builds upon traditional low power
techniques such as voltage scaling in order to achieve up to 31% power savings for
targeted applications. The general strategy underlying the presented low power
memory innovation is to leverage global and local data correlation in order to make
predictions so that the overall switching activity on the read bit-lines of the Static
Random Access Memory (SRAM) is reduced with minimal area overhead. Additionally,
multiple prediction schemes are incorporated into this framework wherein statistical
data features are used to optimally configure each column of the proposed SRAM.
Analysis tools for developing this type of reconfigurable low-power memories are
provided.

An example reconfigurable CP SRAM adhering to the proposed framework is
presented which includes the novel designs of a 10-transistor (10T) bit-cell, a prediction-
based conditional pre-charge scheme, and a column-wise reconfigurable dual prediction
mode architecture. A 16kbit SRAM incorporating these innovations is implemented
in a test chip using a 28nm FD-SOI CMOS process. Using post-layout simulations,
the proposed SRAM is found to provide 14%-20%, 4%, and 31% reductions in read
power as compared with a conventional 8T SRAM for three targeted applications:
the coefficient SRAMs in a sparse Fast Fourier Transform (sFFT) implementation,
the Support Vector Machine (SVM) weights SRAM in an objection detection system,
and the Motion Estimation (ME) reference pixel SRAM in a video coding system,
respectively.

Thesis Supervisor: Anantha P. Chandrakasan
Title: Joseph F. and Nancy P. Keithley Professor of Electrical Engineering
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Chapter 1

Introduction

1.1 Motivation

Continuous process scaling, driven by the exponential growth of the semiconductor

industry as famously predicted by Moore’s law [18], has led to innovation in the area

of integrated circuit (IC) design and has primarily resulted in increased functionality,

lower fabrication and production costs, and continuously shrinking form factors. This

trend of transistor feature size reduction, however, has also introduced challenges

including increased power density and heat dissipation which are undesirable to small,

energy-constrained mobile devices that rely on limited battery and/or self-harvested

energy.

1.1.1 Designing for energy constrained applications and sys-

tems

The power consumed by a digital circuit is dominated by two components: dynamic

power (Pdynamic) and leakage power (Pleakage). Specifically, dynamic power consumption

is attributed to capacitive logic switching, i.e. the charging and discharging of capacitors.

When a circuit node goes from low (0) to high (1), current is drawn from the power

15



supply to fully charge the capacitor(s) attached to that node. Dynamic power is

typically given by

Pdynamic = ↵0!1CV 2
ddf (1.1)

where ↵0!1 is the activity factor, C is the switching capacitance, Vdd is the supply

voltage, and f is the clock frequency. On the other hand, leakage power is attributed

to the undesired leakage current that flows between power sources, intermediary nodes,

and ground as a result of the fact that transistors are not completely off in their off

state. Leakage power is typically given by

Pleakage = IleakageVdd (1.2)

where Ileakage is the leakage current.

While the switching capacitance C scales proportionately with process technology,

digital circuits at advanced nodes are designed to have more functionality per chip, more

gates and therefore more switching nodes per unit area, and faster clock frequencies.

As a result, the ever-increasing challenge is power density for IC systems. Additionally,

leakage power in scaled processes is increased due to, for example, lower threshold

voltages (VT ) and thinner gate oxides. For the reasons stated above, the exploration

of low-power techniques for IC systems remains an active research area.

Embedded Static Random Access Memories (SRAMs) are critical components

in modern system-on-chips (SoCs). As the capabilities of many digital electronic

devices continue to improve at roughly exponential rates, the need for both large and

low-power on-chip storage grows in parallel [4]. In IC implementations for various

applications, SRAMs occupy a disproportionate amount of both the total die area

and the total power consumption [37]. While recent progress has allowed the digital

blocks of a system to be operated at lower supply voltages, robust SRAM operations

still require a high supply voltage in order to guarantee reliability under worst-case

16



process, temperature, and voltage conditions. Figure 1-1 shows the scaling trend of

SRAM bit-cell sizes and SRAM power supply voltages VMIN (minimum Vdd at which

an SRAM works reliably) over process nodes. Observe that SRAM supply voltage

scales much slower than the bit-cell size due to the stability challenges mentioned

above. Consequently, SRAM has recently become the bottleneck of further power

reduction in many systems and thus necessitates creative energy and area-efficient

solutions.

Figure 1-1: Bit-cell and VMIN scaling trend of SRAM from major semiconductor
manufacturers. Figure adapted from ISSCC 2014 Trends.

1.1.2 Application specific considerations

In order to develop a new dimension of energy savings, application-specific data features

have been explored in addition to conventional techniques such as voltage scaling,

read-/write-assist circuitry, and variation-tolerant sensing schemes. Highly correlated

data, defined in [26] as data with repeated or similar values in consecutive cycles or

more specifically with low switching activity ↵0!1, has been leveraged to help memory
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make predictions, reduce bit-line switching, and ultimately save energy wasted on

reading redundant and/or predictable information. Existing data-dependent designs,

however, are limited by their narrow applicability as well as significant overhead in

area and/or latency. In this work, we propose an alternative 10-transistor (10T)

bit-cell and a novel conditional pre-charge column circuit to save read power while

simultaneously minimizing the overhead introduced by generating predictions. In

addition, we develop a framework for reconfigurable memory in which data features

are used to select an optimal prediction scheme per column of the proposed SRAM,

making it well-suited for various energy-constrained applications with a wide range of

data features.

1.2 Summary of contributions

This thesis focuses on the design of energy-efficient, data-dependent SRAMs equipped

with reconfigurable prediction schemes and the methods by which application data

statistics may be utilized to identify optimal configurations. The key contributions

of this work are twofold. First, we propose a general framework and the associated

analysis tools for developing reconfigurable low-power memories that take into account

application-specific information provided by software. Second, an example reconfig-

urable CP SRAM adhering to the proposed framework is presented which includes

the novel designs of a 10T bit-cell, a prediction-based conditional pre-charge scheme,

and a column-wise reconfigurable dual prediction mode architecture. Incorporating

these innovations, a 16kbit SRAM test chip is developed in a 28nm Fully-Depleted

Silicon-on-Insulator (FD-SOI) Complementary Metal-Oxide Semiconductor (CMOS)

process. Using its post-layout simulations, the proposed SRAM is found to provide

14%-20%, 4%, and 31% reductions in read power as compared with a conventional

8-transistor (8T) SRAM for three targeted applications: the coefficient SRAMs in a
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sparse Fast Fourier Transform (sFFT) implementation, the Support Vector Machine

(SVM) weights SRAM in an objection detection system, and the Motion Estimation

(ME) reference pixel SRAM in a video coding system, respectively.
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Chapter 2

A survey of low power SRAMs

Key metrics of on-chip SRAM designs include power and/or energy, performance,

area, and robustness. These metrics often imply critical design tradeoffs for which

careful analysis and creative thinking may lead to an acceptable balance by taking

into account the targeted application. This thesis focuses in particular on the design

of low-power SRAMs for energy-constrained systems using this approach.

The total power consumption of SRAM consists primarily of power incurred

during read and write accesses and leakage power wasted during data retention.

This thesis emphasizes on SRAMs active operations for which average dynamic

power, corresponding to per unit time energy consumed for charging and discharging

capacitive loads, is regarded as the critical metric. The majority of SRAM dynamic

power dissipation occurs during the switching of its highly capacitive bit-lines. In

particular, the power consumed by bit-line switching can be written as

P = ↵0!1CBLVdd(�V )f, (2.1)

where ↵0!1 is the activity factor, CBL is the bit-line capacitance, Vdd is the supply

voltage, �V is the minimum amount of voltage development required on the bit-line

for the sensing circuit to correctly resolve the read value, and f is the frequency of
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operation.

This thesis considers applications in which the total number of data accesses is

high and read operations occur much more frequently than write operations. Hence,

our design effort is primarily spent on the reduction of dynamic power dissipated on

the read bit-lines.

2.1 Overview of low power techniques

The conventional 6-transistor (6T) SRAM is the most common type of on-chip

memory due to its merit of high density [12]. However, in its most primitive form,

6T is inherently energy-inefficient. Power is consumed on its bit-lines during every

read operation irrespective of the specific data being read. In this sense, 6T SRAM

has ‘dynamic’ read operations in that every data evaluation is contingent on a bit-line

pre-charge activity which always consumes a considerable amount of power. This

implies that the combined ↵0!1 in Eq. 2.1 corresponding to both bit-lines is at its

maximum (= 1) for 6T read operations.

In the literature, much work has focused on reducing power via voltage scaling,

i.e. to lower the supply voltage Vdd or Vmin as it is sometimes referred to in SRAMs. By

lowering Vdd both leakage and dynamic power are saved [5]. However, operating SRAM

at low voltages is generally challenging in that it requires a significant amount of

design effort to deal with issues such as increased soft error rate, degraded read static

noise margin, and reduced write margin due to the exponential impact of intensified

VT variations (e.g., [34, 23]). To guarantee SRAM’s reliability and robustness under all

operating conditions is a critical task and a research area of its own. We refer readers

to [24] for a rigorous and complete development of this subject. Other approaches, for

example minimizing �V by designing low-offset or offset-compensated sense amplifiers

(e.g., [30]), have been undertaken. However, due to increased device variations at
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Figure 2-1: The conventional 8T bit-cell.

reduced Vdd, worst-case �V approaches Vdd in value.

2.2 The data dependent approach

As a consequence of the previously discussed limitations associated with voltage scaling,

SRAM designers have looked into new ways of reducing memory power. One such

way is to minimize switching activity ↵0!1 of bit-lines using or introducing correlation

in stored data. Data stored in an SRAM often has particular properties that can

be leveraged for application-specific designs. An example of an application-specific

SRAM is presented in [8]. This work recognizes the inherent data dependency of 8T

SRAM, a bit-cell of which is depicted in Fig. 2-1. Referring to this figure, 8T SRAM’s

pre-charged read bit-line RBL is only discharged when reading a 0 (or a 1 if the single

read port is connected to Q). By using majority logic and data-bit inverting, this

design maximizes the number of 1s stored in the SRAM resulting in minimized total

power consumption. This scheme works well for heavily skewed data. However, when

the percentage of 1s is close to 50%, 8T SRAM consumes at least half of the read

power of a 6T SRAM.

New bit-cells as well as architectural designs have helped in leveraging data

correlation. For example, [26] and [7] respectively designed a prediction-based 10T

SRAM and a priority-based 6T/8T hybrid SRAM to maximize total power savings in
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Figure 2-2: PB-RBSA bit-cell. Figure adapted from [26].

real-time video applications. The prediction-based reduced bit-line switching activity

(PB-RBSA) SRAM design, as presented in [26], reduces bit-line switching activity by

using correlation present in video data and a bit-cell topology that uses a bit-wise

prediction provided by a separate arithmetic averaging block. As illustrated by the

PB-RBSA bit-cell diagram in Fig. 2-2, the footer nodes of the two read ports are

not connected to ground but two prediction lines pred and predB. With a correct

prediction, i.e. pred = Q and predB = QB, both read bit-lines RBL0 and RBL1 stay at

Vdd during a read evaluation. A major drawback of this design is the highly capacitive

prediction lines pred and predB that span the entire height of the array. Therefore,

driving and changing predictions creates a significant power overhead and introduces

critical tradeoffs between the prediction accuracy and the power consumption of

prediction lines.

Alternative SRAM models may also benefit from utilizing data correlation. For

instance, the work in [21] eliminates the pre-charge phase entirely by using a 10T

bit-cell with a statically driven read bit-line. A depiction of this bit-cell design is

provided in Fig. 2-3. When reading the same or similar data between cycles, this

static SRAM has minimal switching on its read bit-lines. However, both latency and

area are major concerns of this approach.

In Table 2.2 we compare our approach against the previously mentioned relevant

data-dependent memory models. As is evident in our discussion this far, previous
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Figure 2-3: 10T non-precharge-type two-port memory cell. Figure adapted from [21].

Table 2.1: Comparison with relevant data-dependent SRAM models
Work Design Idea Targeted Application(s)
Noguchi ’07 [21] A non-precharge 10T SRAM for reduc-

tion in bit-line switching activity
video applications

Fujiwara ’08 [8] An 8T SRAM using majority logic and
data-bit reordering for reduction in bit-
line switching activity

video applications

Chang ’11 [7] A priority-based 6T/8T hybrid SRAM
for aggressive voltage scaling

video applications

Sinangil ’14 [26] A 10T PB-RBSA SRAM using out-
put prediction for reduction in bit-line
switching activity

video coding

This work A conditional pre-charge 10T SRAM
using reconfigurable prediction schemes
for reduction in bit-line switching ac-
tivity

sFFT, object detection,
video coding

work has identified opportunity in a data-dependent SRAM approach. However, room

for improvement exists in that no one has fully developed a generic model that would

work well across various applications. Toward this end, this thesis aims to leverage

these ideas by incorporating a wide range of data features into the design of a single

SRAM. Both circuit- and architectural-level techniques are explored in order to realize

dynamic power savings with minimal area overhead. In Section 3.3.3, we compare our

proposed SRAM against the models mentioned in this section.
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Chapter 3

Energy-efficient reconfigurable

memory

3.1 A general framework

In this chapter, we present our reconfigurable memory framework in which application

specific information such as data statistics are generally obtained via software in

order to dynamically configure our memory hardware. Two statistical measures are

repeatedly considered in the analysis in this thesis, namely the global correlation

measure ⇢ and the local correlation measure ↵0!1, equivalently referred to as the

switching activity factor. The global correlation measure shows how biased a data

sequence is in its bit values. It is generated by

⇢ , M

N
, (3.1)

where M is the number of occurrences of the majority bit in a given data sequence of

length N . For example, 1 is the majority bit in the sequence 1111111100 since there

are eight 1s out of the total ten bits. In this case, M = 8, N = 10, and therefore

⇢ = 0.8 or 80%. On the other hand, the local correlation measure shows how often a
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0 ! 1 bit-level change occurs in a given data set. It is generated by

↵0!1 ,
number of 0 ! 1 transitions

N � 1

. (3.2)

With these definitions in place, we comment that the local and global correlation

measures respectively satisfy ↵0!1 2 [0, 0.5] and ⇢ 2 [0.5, 1] while not all (⇢,↵0!1)

pairs in [0.5, 1]⇥ [0, 0.5] are obtainable since the measures are correlated themselves.

We refer to correlated data in what follows as a data sequence with high global and/or

local correlation, i.e. a large ⇢ and/or a small ↵0!1.

As illustrated by Fig. 3-1, statistical parameters such as ⇢ and ↵0!1 are passed from

software to the prediction generation block, i.e. the predictor, which communicates

directly with the memory array. The software program specifically takes the profiled

data set for a targeted application and passes to the predictor a number of computed

statistical measures. Equipped with this information as well as other inputs from the

memory, the predictor identifies the optimal prediction mode from which prediction

values for each memory read operation are generated and provided to the memory

unit. In this sense, the memory in this framework is reconfigurable since a number

of prediction modes are available for selection. Equipped with this infrastructure

and knowledge of application-specific statistics, the proposed memory can support

low-power data access for various classes of applications with distinct data features.

Predictor

Figure 3-1: An illustration emphasizing the communication between software and
memory hardware via the predictor in the proposed reconfigurable memory framework.

This thesis in part focuses on the exploration and design of a compact architecture
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which endorses reconfigurability as previously described. In addition, pertinent ques-

tions involving the selection of appropriate prediction schemes and the identification

of sufficient statistics to discern which scheme is best suited to a particular application

are addressed. In the remainder of this chapter, we present our design at different

hierarchical levels and address the above questions by means of simulation using a

number of novel and existing memory designs. We conclude this chapter with an

example SRAM adhering to the presented framework which constitutes our final

design.

3.2 Conditional pre-charge SRAM

3.2.1 Proposed bit-cell design

Figure 3-2 shows our proposed bit-cell design. The 10T bit-cell depicted subsumes a

standard 6T bit-cell, i.e. two cross-coupled inverters and two access NMOS transistors,

and two additional read ports. Read operations are decoupled from write operations

in this memory cell since separate word lines (RWL and WWL) and bit-line pairs

(RBL/RBLB and BL/BLB) are used for read and write control and accesses, respec-

tively. Equipped with separated read ports, the 10T bit-cell is exempt from read

stability issues as is the conventional 8T memory cell. Additionally, it may be used to

construct two-port SRAMs wherein simultaneous read and write bit-line accesses are

allowed. This design avoids the prediction line power overhead observed in the 10T

bit-cell design in [26] by grounding the sources of the two bottom read port devices.

Alternatively, prediction signals are passed to the memory via pre-charge circuitry as

is discussed in Section 3.2.2.
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BL BLB

RWL RWL

Figure 3-2: The proposed 10T bit-cell consisting of two cross-coupled inverters, two
access NMOS transistors for the write bit-lines BL and BLB, and two read ports
connected to the read bit-lines RBL and RBLB.

3.2.2 Conditional pre-charge

The column architecture of the proposed 10T memory array is provided in Fig. 3-

3. Write operations are handled using the conventional 6T portion of the bit-cell.

In particular, BL and BLB are driven to the desired values of the input and its

complement, and then, with the WWL asserted, values on these bit-lines get passed

to the bit-cell storage nodes Q and QB and overwrite their original values. Read

operations in this design selectively utilize one of the read ports depending on the

current prediction value. The general idea is to always pre-charge the bit-line on the

side that is predicted to store a 0, a scheme we henceforth refer to as conditional

pre-charge. In particular, two PMOS transistors (P1 and P2) in the pre-charge circuit

are controlled by a pair of prediction signals, specifically, by the prediction pred and

its complement predB. When the pre-charge enable signal prechB is asserted, one

of the read bit-lines is charged through the turned-on PMOS stack while the other

read bit-line’s connection to the power supply is cut off. A pair of crossed-coupled

NMOS transistors (CNN) keeps the unselected read bit-line low while the selected

one is pre-charged high. Hereon, we refer to this design as the Conditional Pre-charge

SRAM (CP SRAM).

Figure 3-4 illustrates two example cases for a read operation. Suppose the bit-cell

nodes have the values Q = 0 and QB = 1. Figure 3-4(a) depicts a correct prediction,
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i.e. pred = 0. In this case, RBL is charged high in the pre-charge phase while RBLB

is kept low. During evaluation, the discharge path is open thus RBL stays high for the

next read cycle. Figure 3-4(b) depicts an incorrect prediction. In this case, pre-charged

RBLB discharges through the turned-on PMOS transistors during evaluation. Making

correct predictions for the CP SRAM leads to reduced total pre-charge activity and

consequently decreases the total energy consumed on the bit-lines.

It should be noted that the above arguments are valid if off-state leakage current is

small as compared with the total on-state current. This is generally the case for regular

threshold voltage (regular VT ) devices in technologies such as FD-SOI [15]. If leakage

current is significant and the evaluation phase is sufficiently long, the pre-charged

read bit-line will leak from Vdd to a low logic value even when the prediction is correct

and the associated PMOS transistors are turned off. This would result in an incorrect

read output. In the development of a prototype test chip using regular VT devices in a

FD-SOI technology, we further ensure the functionality of the presented read scheme

by using fixed-width timing controls as is discussed in Chapter 4. Secondary effects

including leakage current are considered in the post-layout simulations presented in

Section 4.2.

As expected, the prediction sequence directly affects the amount of power savings

achievable in prediction-based SRAMs. Arithmetic averaging is a suitable scheme for

the PB-RBSA SRAM since changing prediction from cycle to cycle causes significant

power overhead and therefore should be balanced by using a larger prediction generation

window. For CP SRAM, however, updating the prediction value has a negligible cost

overhead due to the embedded prediction devices P3 and P4 in the pre-charge circuitry.

Making a prediction complementary to the current output invariably causes switching

in the following pre-charge phase and in the evaluation phase if the updated prediction

is incorrect (e.g., due to signal noise). In order to minimize these types of unnecessary

switchings when data is sufficiently correlated, we propose the Previous-Read-Data
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RBL RBLBBL BLB
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Figure 3-3: Column architecture of the proposed Conditional Pre-charge SRAM (CP
SRAM). One of the read bit-lines is pulled high depending on the current prediction
values (pred, predB) via the associated pair of pre-charge PMOS transistors. The
other read bit-line is kept low by one of the cross-coupled NMOS transistors N1 and
N2.
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Figure 3-4: (a) Correct and (b) incorrect prediction cases during a read operation
with the CP SRAM. The conditionally pre-charged read bit-line remains high if the
prediction is correct and is discharged to low if the prediction is wrong.

(PRD) prediction scheme where the data value currently being accessed is used to

generate the next prediction. Our analysis shows that for a broad range of data

profiles, PRD is a better option as compared with arithmetic averaging in terms of

area, simplicity, and power savings with correlated data. Consistent with this remark,
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a simulation-based analysis of various prediction schemes is presented in Section 3.3.1.

There are, of course, corner cases where PRD does not result in power saving, e.g.,

when ↵0!1 = 0.5. These cases will be examined in detail and handled by selecting

a different prediction mode of the reconfigurable SRAM. Finally, it should be noted

that more complex and application-specific prediction generation designs can easily be

incorporated into the framework. However, since this work serves as a proof of concept

and demonstration of a simple generic system, we henceforth focus our attention to

only PRD and arithmetic averaging with variable length average window sizes.

3.3 Evaluation of memory models and prediction schemes

We proceed to evaluate the tradeoffs amongst various memory models and their

associated performance capabilities for different data sets using a custom dynamic

power simulation program wherein the total read power consumption of application-

specific and synthetic data alike is computed for each model. In high density arrays,

bit-line switching activity accounts for the majority of total power consumption during

read accesses [26]. Therefore, for the sake of tractability, we focus our evaluation to

power consumption on read bit-lines. The custom program design specifically allows

for flexibility in the sense of parameterized bit-line and prediction-line capacitances as

well as bit-line voltage swing.

We respectively propose and consider the following designs:

(i) CP-SRAM : conditional pre-charge SRAM

(ii) 8T : conventional 8T SRAM wherein the bottom gate of the read port is

connected to Q

(iii) static : non-precharge static SRAM

(iv) PB-RBSA : prediction-based reduced bit-line switching activity SRAM
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where (ii)-(iv) are as previously mentioned and listed here for completeness.

The justification of these designs for energy-constrained systems is twofold. First,

by using separated read port(s), resulting in high read stability, these memories

have the potential to support aggressive voltage scaling. Second, the read power

consumption of each design depends critically upon data statistics such as ↵0!1, as

was discussed previously. Further power savings can be achieved by leveraging the

data-dependent capability of each memory design thus motivating a careful analysis

of these dependencies via the custom program.

The simulation program takes as an input SRAM data in one of three ways:

specified by the user, synthesized using correlation parameters such as ↵0!1 and ⇢, or

profiled from an application. For a given data array, the simulator first populates the

corresponding prediction array for each of the prediction-based SRAMs (CP-SRAM

and PB-RBSA) for the prediction schemes indicated by the user. Then, for each

memory type, it identifies the power-incurring switching activities associated with

reading data out the array in a sequential order. Bit-line power, as described in

Eq. 2.1, is incurred on the bit-line(s) during pre-charge activity for 8T, PB-RBSA

and CP-SRAM and during 1-after-0 data accesses for static SRAM. For PB-RBSA,

switching the pred and predB lines contributes additional power consumption, which

we henceforth regard as similar in cost to the power incurred on the bit-lines for

simplicity. Loosely speaking, this implies that CPL ⇡ CBL. Lastly, adhering to

Eq. 2.1, the total power consumption for each column of the memories considered,

parameterized using the bit-line capacitances (CBL and CPL) and bit-line voltage

swing (�V ), is computed.

Sensing networks are a critical peripheral circuit in an SRAM. The choice of

utilizing small signal sensing by employing Sense Amplifiers (SA) to amplify small

signal variations on the bit-lines into full swing output signal, or large signal sensing

directly affects the minimum value of �V . Other contributing factors include the
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implementation technology as well as the process, voltage and temperature variation

effects. Generally, a �V value of 0.1V is achievable with Vdd = 1V. However, consid-

ering worst case process variations when operated at a lower Vdd and/or the power

overhead of offset compensation circuit, we assume that the �V associated with small

signal sensing is approximately 2
5 of the �V associated with large signal sensing which

is itself approximately equal to Vdd. The bit-line(s) of PB-RBSA and 8T SRAM are

often evaluated with SAs whereas the bit-line of static SRAM and the prediction lines

of PB-RBSA require full-swing operations. We summarize this assumption as

�V ⇡

8
><

>:

Vdd, for static, PB-RBSA prediction-line
2
5Vdd, for 8T, PB-RBSA

. (3.3)

We consider CP-SRAM with both small and large signal sensing networks. We next

comment on the read power simulations for each of the three data types under the

assumptions established in this subsection.
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Figure 3-5: Normalized read bit-line power consumption of CP-SRAM using prediction
scheme PRD vs arithmetic averaging for various average window sizes (w). Three
data sets are used: (i) 216 16-bit binary number combinations, (ii) synthetic data with
↵0!1 = 0.25 and ⇢ = 0.5, and (iii) 1080⇥ 1920 highly compressed ME reference frame
pixels.
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Figure 3-6: Organization of the input data set (i). The exhaustive collection of 2N
N -bit binary number combinations cover all possible patterns of the data stored in
column <c> in an SRAM of size N ⇥M .

3.3.1 Prediction scheme

The normalized total read power consumption of CP-SRAM is depicted in Fig. 3-5 for

both PRD and arithmetic averaging prediction schemes where the average window size

w = 2

k ranges from k = 1 to k = 6. The results reported correspond to three input

data sets: (i) an exhaustive collection of 2N N -bit binary number combinations for

N = 16, (ii) a randomly synthesized data set with statistics ↵0!1 = 0.25 and ⇢ = 0.5,

and (iii) 1080 ⇥ 1920 highly compressed Motion Estimation (ME) reference pixels

extracted using the scheme discussed in Section 5.2.2. In regard to data set (i), the

organization of the data set into memory is illustrated by Fig. 3-6 for an SRAM of size

N ⇥M . Referring to an arbitrary column <c>, the bit values are read sequentially, i.e.

b0 ! bN�1. As is indicated on the right, the exhaustive nature of (i) ensures that all

possible patterns of data that can be stored in a column are considered. Furthermore,

we comment that the mapping of an N -bit binary sequence to a (⇢,↵0!1) pair is

not unique and so this approach facilitates the analysis of all possible (⇢,↵0!1) pairs

achievable by a binary sequence of length N . For the purpose of demonstration and

consistent with a wide range of values of N , the results displayed in Fig. 3-5 use
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Figure 3-7: Normalized read bit-line power consumption of CP-SRAM for every 16-bit
binary number combination for prediction scheme PRD and arithmetic averaging
(w = 8). The indexing corresponds to decreasing ↵0!1 for the exhaustive data set.

N = 16. We remark that our analysis and conclusions do not rely critically upon the

specific value of N and in this sense we proceed taking N = 16 hereon for consistency.

Observe in Fig. 3-5 that only the applicable average window sizes are simulated for

data sets (i) and (iii). Nonetheless, common to all three input data sets, PRD-based

prediction results in the lowest total bit-line power consumption. This advantage of

PRD is most evident for ME reference pixels which, on average, have a higher local

correlation measure (a lower ↵0!1) than the 16-bit binary number combinations.

In order to compare the performance of these prediction schemes more rigorously,

the read power consumption is computed for each data sequence in the exhaustive

set of 16-bit binary number combinations. The normalized power consumption of

these sequences, sorted according to decreasing switching activity, shows that power

consumption of CP-SRAM with PRD decreases monotonically with ↵0!1 whereas

arithmetic averaging is not smoothly related to ↵0!1 (Fig. 3-7). For low values of

↵0!1 (toward the right-hand side of the plot) PRD incurs less power for most cases

and on average as compared with arithmetic averaging. This result is consistent with
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our previous discussion, in particular that PRD is a better scheme in terms of power

savings when the data is locally correlated which manifest itself as a low ↵0!1 value.

Subsequently, we proceed in our presentation by pairing the CP SRAM design with

the PRD prediction scheme and henceforth refer to their joint use as CPSRAM.

CPSRAM
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Figure 3-8: Normalized read bit-line and prediction-line power of various memory
models for synthesized data sets with various switching activity factors ↵0!1. All data
sets have ⇢ = 0.5.

3.3.2 Power dependency on data statistics

As was previously mentioned, a built-in subroutine of the custom simulation program

allows synthetic SRAM data to be generated for a prespecified pair (⇢, ↵0!1). This

capability allows us to explore the data-dependent features of each memory design in

great detail. For instance, as shown in Fig. 3-8, the read power of both prediction-

based and static SRAM is seen to scale appropriately with increasing ↵0!1 while

⇢, or specifically here the percentage of 0s of each data set, is held constant at 0.5.

The read power of 8T, however, remains relatively constant with respect to switching

activity. Figure 3-9 plots the read power of the selected memory models using data
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Figure 3-9: Normalized read bit-line and prediction-line power of various memory
models for synthesized data sets with various percentages of 0s. All data sets have
↵0!1 = 0.15.

sets with constant ↵0!1 = 0.15 and increasing percentage of 0s. Observe that 8T’s

read power decreases as the number of 0s in the data set increases while the others’

remain relatively constant.

3.3.3 Model evaluation

Pixel values from a 1080⇥ 1920 video frame, extracted from the ‘Park Scene’ video

sequence belonging to the Joint Collaborative Team on Video Coding (JCT-VC)

common test conditions [3], have been pre-profiled into an array structure, in mimicry

of the block-based retrieval pattern found in High Efficiency Video Coding (HEVC)

motion search. This is further discussed in Section 5.2.2. Figure 3-10 illustrates the

normalized read power consumption of the video frame pixels for all four memory

models. Referring to this figure, CPSRAM with both small (a) and large (b) signal

sensing networks are considered. In particular, (a) assumes that �V (8T, PB-RBSA) :

�V (CPSRAM) : �V (static, PB-RBSA prediction-line) = 1 : 1 : 2.5, i.e. the minimum
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Bit positions in a memory row, 
organized by decreasing 
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(a) CPSRAM with small signal sensing   (b) CPSRAM with large signal sensing   

CPSRAM

(a) CPSRAM with small signal sensing   (b) CPSRAM with large signal sensing   

Figure 3-10: Normalized read bit-line and prediction-line power of various memory
models for pixels in a highly-compressed HEVC ME reference frame. Bit posi-
tions are organized by decreasing ↵0!1. Voltage swing ratio �V (8T, PB-RBSA) :

�V (CPSRAM) : �V (static, PB-RBSA prediction-line) = (a) 1 : 1 : 2.5 and (b)
1 : 2.5 : 2.5.

amount of voltage development on the bit-line(s) of 8T, PB-RBSA, and CPSRAM

is 2
5 of that on the static SRAM read bit-line and the PB-RBSA prediction-lines.

This assumption is only valid if 8T, CPSRAM, and PB-RBSA SRAMs are designed

with small signal sensing circuits. On the other hand, if CPSRAM makes use of

large signal sensing, then the second ratio of �V (8T, PB-RBSA) : �V (CPSRAM) :

�V (static, PB-RBSA prediction-line) = 1 : 2.5 : 2.5 should be used for power compu-

tation as is the case in (b).

Observe from (b) that static SRAM is strictly better than CPSRAM in terms of bit-

line power consumption when their switching costs are assumed to be equal. Loosely

speaking, for any data profile CPSRAM has greater or equal ↵0!1 as compared with

static SRAM. However, a key disadvantage of static SRAM is that it is considerably

slower in read operations as compared to the other SRAMs considered. Since the

targeted applications in this thesis require real-time speeds, we proceed without further

consideration of static SRAM. Correct resolution of read data in static SRAM requires
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full bit-line voltage swing whereas the penalty of switching CPSRAM’s bit-lines can

be reduced by using sense amplifiers as shown in (a). We again call attention to the

fact that the assumed �V ratios here are conservative. The actual amount of power

that is saved by using sense amplifiers is often insignificant due to the large bit-line

capacitance and number of bit-cells per bit-lines and therefore increased SA sensitivity

to process variation, device mismatches, etc. [29, 31, 39]. Additionally, adding sense

amplifiers to the CPSRAM design causes significant overhead in area. For the obvious

reasons, we proceed with large signal sensing for CPSRAM.

For each column in Fig. 3-10(b), either 8T or CPSRAM has the lowest read

power consumption depending on the data statistics of that column. For the specific

case shown (average ⇢ ⇡ 0.58), CPSRAM consumes less power for columns with

↵0!1 < 0.126. This observation suggests that combining these two memory models

into the design of a dual prediction mode SRAM would help reduce total power. Note

that reading from an 8T SRAM is equivalent to reading from a CP SRAM using a

constant prediction scheme, i.e. to always predict 0 or 1 for each column depending on

which value constitutes the majority and consistently pre-charge the bit-line associated

with the 0 prediction. In fact, CP SRAM with this bit-wise constant prediction scheme

introduces the majority logic described in [8] to each column and would perform

better than a data agnostic 8T SRAM. Thus, the hardware complexity associated

with integrating two distinct SRAM models can be reduced by combining the two

prediction schemes (PRD and constant) into the design of a single reconfigurable CP

SRAM.
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3.4 Proposed reconfigurable memory design

3.4.1 Two modes of read operation

In order to make accurate and low-power memory predictions for various data statistics,

we propose in this thesis a conditional pre-charge SRAM with reconfigurable prediction

modes wherein one of the two previously discussed prediction modes (PRD and

constant) is selected for each SRAM column based on that column’s data statistics.

By independently operating each column in the preferred mode, i.e. finding and

connecting the lowest points on the simulated power curves in Fig. 3-10 (b), we can

achieve the maximum total read power savings for various applications and systems.

To this end, Fig. 3-11 shows an example decision tree on the left and an equivalent

decision plane on the right. The depicted tree illustrates the procedure by which

prediction modes are selected for each memory column. The presented decision tree is

simplified in anticipation of the discussions in Chapter 5 surrounding three example

applications and how, for each of them, the preferable SRAM configuration is identified

in accordance with the decision branches. Referring to the figure, the red and blue

coloring respectively indicate PRD and constant mode decisions. If the column’s input

data has a low global correlation, i.e. ⇢ is in the vicinity of 0.5 meaning the density of

0s and 1s are comparable, then we proceed to the left-hand branch to examine the local

correlation coefficient ↵0!1. If ↵0!1 is sufficiently small, then PRD is recommended

for that column (label A); otherwise, constant should be selected to reduce bit-line

switching activity (label B). If the input data set is sufficiently biased, i.e. if ⇢ is

larger than some 0.5 + � for some �, then we proceed to the right-hand branch. It

should be noted that if the data set has a sufficiently high global correlation (label C)

then its local correlation is also high by definition. An extreme example of this is a

series of purely 0s or 1s. In this extreme case, the two modes perform equally well.

However, constant mode is preferred due to its superior stability in the presence of
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noise. For example, if one 0 value appears in the middle of a sequence of 1s, constant

mode has equal or fewer discharging activities than PRD mode. Further simulations

are required for data with no distinctive global or local correlation (label D). The

parameters C, � and ⌧ are essential to the decision rule presented and are determined

later in Section 4.2.2 via post-layout simulation.

PRD

constant

constant

input data

yes no

yes no yes no

further 
simulation 
required

Figure 3-11: A decision tree (left) and an equivalent decision plane (right) illustrating
the procedure by which prediction modes are configured for each SRAM column.

3.4.2 Proposed column circuit design

Figure 3-12 presents the column circuit for the reconfigurable CP SRAM. By adding

a number of basic logic gates, e.g., multiplexers (MUX) and inverters, two prediction

paths are introduced at the circuit-level. In particular, two inverters I1 and I2 are

designed with skewed sizing to speed up the bit-line sensing. An And-Or-Invert

(AOI) logic based Set/Reset (SR) latch takes the outputs of I1 and I2 along with

the current prediction as inputs to resolve the read value. If one of the bit-lines stays

high, meaning the prediction is correct, the SR latch holds the current values of D

and DB; otherwise the SR latch inverts the values of D and DB reflecting that the read
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value is complementary to the prediction. Once the latch outputs settle and one of

the bit-line is pre-charged high according to the next prediction, an enable signal

dout_en is asserted and a second latch, I7, latches D as the read output dout.

out*

outB*

D

DB

E

dout
outB*1

0
bias_8T

PRD

out*

1

0bias_8TN

PRD

DB predB pred

ref_D

ref_DB

do
ut
_e
n

ref
PRDN

bias_8T

bias_8TN

ref_D

ref_DB

WWL WWL

RBL RBLBBL BLB

RWL RWL

Figure 3-12: The proposed column circuit design which supports column-wise mode
selection between PRD and constant prediction schemes. PRD signals are highlighted
in red and constant signals are highlighted in blue.

While both prediction modes follow the above procedure for read operations, PRD

and constant have separate prediction generation paths that are controlled by a mode

selection signal PRD in MUXes I8 and X1. When PRD mode is selected, i.e. PRD is set

to high, the value of DB is selected to generate the new prediction and dout is passed

to the SR latch as the prediction feedback out*. In constant mode, a DC bias control

bias_8T indicating the majority bit of the column is sent to the prediction generation

and feedback paths. Additionally, since constant mode invariably predicts 0 or 1 and

pre-charges the same bit-line, it requires a reset in the SR latch every read cycle by

using a control signal ref.
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Chapter 4

Implementation of the reconfigurable

CP SRAM

Consistent with the general framework outlined in Chapter 3, a 16kbit, 28nm CMOS

test chip was developed using CP SRAM utilizing the 10T bit-cell illustrated in

Fig. 3-2, the prediction-based conditional pre-charge scheme discussed in Section 3.2,

and the reconfigurable column circuit depicted in Fig. 3-12. The primary focus of this

chapter is to present the associated memory array and system architectures, discuss

the implementation of the test chip, and provide a number of selected results from

post-layout simulations. To begin, we discuss in Section 4.1 the specific architectures

implemented at the array, macro system and chip levels as well as associated physical

design considerations. In Section 4.2, post-layout simulation results are presented

including functional verification of the system across process corners and power

measurements for various operation modes and data sequences.
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4.1 System architecture and physical design in 28nm

FD-SOI CMOS

4.1.1 Memory array architecture

The SRAM array architecture is depicted in Fig. 4-1; the array is 16kbit in size and

contains 256 rows and 64 columns of 10T memory cells along with row and column

peripheral circuits. Specifically, memory cells in the same row share a Write Word

Line (WWL) and a Read Word Line (RWL). During an active read/write cycle, one

of these word lines is driven high through a word line driver depending on the specific

operation performed. On the other hand, memory cells in the same column share a

pair of write bit-lines (BL/BLB) and a pair of read bit-lines (RBL/RBLB). During

a write operation, BLs and BLBs are driven to the desired bit values of input DIN

by 64 write drivers. Each pair of RBL/RBLB is connected to pre-charge circuitry

that consists of two PMOS transistors controlled by a global timing signal prechB

and two other PMOS transistors controlled by a pair of column-specific prediction

signals, pred and predB. As previously addressed in Section 3.4, each of these pairs

of prediction signals is generated internally in a column circuit which also facilitates

output sensing and configuration of prediction mode.

In the physical design of the memory array using a 28nm FD-SOI CMOS process, a

custom 10T bit-cell is designed using logic rules specifically following the memory cell

layout convention of two poly pitches as illustrated in Fig. 4-2. All gates within the

peripheral blocks are also custom designed to ensure pitch matching, i.e. the height of

each individual WL driver and the width of each column circuit and write driver is

designed to match the height and width of the 10T bit-cell, respectively. Additionally,

the metal routing design in the column circuit specifically minimizes the parasitic

capacitance and hence delay and power consumption of critical timing signals such

as the refresh signal ref and the output latch enable signal dout_en as shown in
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Figure 4-1: A diagram of the system architecture for the 16kbit memory array. The
memory consists of 256 ⇥ 64 10T memory cells, row drivers for RWL and WWL,
write drivers for BL/BLB, and a column circuit for RBL/RBLB variation sensing,
prediction generation, and mode configuration.

Fig. 3-12. Write drivers are conservatively sized and not optimized for power since

our focus is on reducing the disproportionate power consumption associated with read

operations.

4.1.2 Macro architecture

The architecture of the macro system implemented on chip is depicted in Fig. 4-3. The

specific column circuit design was discussed in Section 3.4. Equipped with separate
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Figure 4-2: General structure of the custom 10T bit-cell. This diagram does not show
the actual or any scaled version of the bit-cell layout. The approximate placements of
NWELL, p and n active regions, polys, contacts, and METAL2/METAL3 routings
are shown in the diagram.

read and write ports, the presented 10T array is capable of supporting simultaneous

access by both operations. However, for the purpose of simplicity, read and write

operations are designed to be mutually exclusive in this implementation meaning

that only one or less of the two may occur during the same clock cycle. With this

assumption in place, many peripheral blocks are shared between read and write

operations which leads to savings in silicon area and reduced complexity of control.

An 8-to-256 two-stage decoder is implemented in order to decode the 8-bit input

addresses for both read and write operations. Specifically, the first stage of the

decoder contains two 4-to-16 sub-decoders which respectively take the most and least

significant four bits of the address as their inputs. Outputs of these sub-decoders are

hierarchically paired in the second stage in order to compute the 256 RWL/WWL

enables for the array. The decoder is controlled by two enable signals labeled rgate

and wgate. Depending on the specific operation, one of the enable signals is passed to

the decoder in order to gate all input address bits and their complements in the first

decoding stage so that the decoder would only start decoding when the gating signal

is low. When the gating signal goes back to high near the end of an operation, the

256 decoder outputs, hence the 256 word lines, collectively go low. By using these
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Figure 4-3: Architecture diagram of the system macro. The macro consists of the
memory array, an 8-to-256 two-stage address decoder and a timing control unit.

gating signals, we ensure that all of the word lines are low during the transition from

one clock cycle to the next, and thus preventing overwriting or reading at some wrong

address while the new address is in the process of being decoded.

Another critical block of the macro system is the timing control unit. Referring

again to the architecture diagram in Fig. 4-3, the control unit generates and passes to

the array various timing signals including the aforementioned column circuit controls

prechB, ref, and dout_en and decoder gating signals rgate and wgate. These

timing signals are designed to have fixed-width pulses which are generated using

delay elements along with the system clock (clk) and read/write enables (ren, wen).

Subsequently, the system is robust in meeting the timing requirement of bit-line

pre-charge and discharge activities even when the clock frequency is scaled.

Figure 4-4 depicts the resulting timing control waveforms for the sequence of

operations: write, read, write, and read. Fixed-width pulses of rgate and wgate
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Figure 4-4: Timing control waveforms for the sequence of operations: write, read,
write, and read. Write control waveforms including write enable wen, write decoder
gating signal wgate, and write word line WWL are highlighted in blue.

are generated using delayed and inverted versions of clk and ren /wen. A falling

edge of either rgate or wgate signals the beginning of address decoding for that

specific operation. After a certain delay, the associated word line is pulled high as is

indicated by the RWL/WWL waveforms. The pre-charge control signal prechB is kept

low during write cycles indicating that the read bit-lines are constantly pre-charged

to high. During a read operation, however, the edges of a delayed rgate create a

fixed-width prechB pulse during which the read bit-lines are floated for bit value

evaluation. Observe that the pulses on the RWL are strictly contained within the

pulses of prechB, i.e. pre-charge is turned off during the entire time the RWL is high.

This is purposely designed such that the effects of the pre-charge and evaluation

activities on the read bit-lines are separated and the stored bits may be correctly

evaluated through the column circuit without any disturbance from the pre-charge

circuitry. The maximum operating frequency is considerably limited by the read

bit-lines’ pre-charge and discharge delays. Specifically, the time it takes to fully

discharge a read bit-line through the stacked NMOS transistors determines the pulse

width of the RWL while the fixed delay from the falling edge of the RWL to the rising
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edge of the output latch enable dout_en is determined by the time it takes to fully

pre-charge a read bit-line. For columns operating in constant mode, the pulses of ref,

generated using the delayed and non-overlapping version of the pulses of dout_en,

refresh the states of the corresponding AOI-based latches in the column circuit in

preparation for the following read cycle.

VDD_CORE
VDD_CTR
VDD_OUT
VDD_TC

din

dout

dout_offchip

din_offchip

ADDR

ADDR_offchip

CFG_offchip

ren,wen,MUX_sel
PRD, bias_8T
ren,wen,MUX_sel
PRD, bias_8T

Figure 4-5: Architecture diagram of the test chip. Additional input/output and testing
circuit blocks are added to the chip for functional completeness. Four supply voltages
are indicated. Blocks supplied by the same VDD are highlighted in the same color.

4.1.3 Test chip architecture

The macro system discussed above along with I/O and testing circuits constitute the

complete test chip design. Figure 4-5 shows the architecture of the test chip. All

address, data, timing, and configuration inputs to the system on chip are synchronized
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to the clock’s rising edge via I/O registers which include the DIN register file, the

ADDR register file, and the configuration shift register. Limited by the number

of available digital I/O pins, a 64-to-1 MUX is included for data output. Output

data is readily synchronized through the output latches in the column circuit thus

no additional registers are required. Observe that four different supply voltages are

implemented on chip for the ease of testing and measuring power as is highlighted using

four different colors in the architecture diagram. In particular, V DDCORE (green)

covers the memory array and its functional peripherals; V DDCTR (red) supplies the

timing generation unit and may be scaled for timing control; V DDTC (yellow) supplies

all of the input registers; and V DDOUT (blue) is the power supply for the output

MUX. Since no level shifters are inserted between these blocks, signals should only

flow from blocks with greater or equal supply voltage than the destination blocks’

supply voltage. In other words, the supply voltages satisfy the natural enumeration

given by

V DDOUT  V DDCORE  V DDCTR  V DDTC . (4.1)

Finally, Figure 4-6 shows the 1mm⇥ 1mm pad ring design and the completed full

chip layout. The pad ring diagram on the left also shows the relative positions of the

core system, the decoupling capacitors (DECAP), and the output level shifters (LS).

Bonding pads around the external perimeter of the ring are highlighted in different

colors to denote the different pads for: SoC power supplies (green), pad ring power

supplies (red), system inputs (blue), and system outputs (yellow).

4.2 Post-layout results

Owing in part to today’s aggressively scaled technologies such as 45nm and beyond,

on-chip parasitics of digital circuits are often dominated by interconnect which does

not scale as fast. Consistent with this remark, we observe a 1.5� 1.8⇥ slower delay
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Figure 4-6: Left: pad ring design for the test chip. Bonding pads are highlighted
in different colors to indicate the types of pad cells they are connected to. Right:
completed layout of the test chip.

in post-layout simulation with extracted parasitic capacitances of the macro system

as compared with the schematic simulation. Subsequently, delay elements and the

supply voltage of the timing control unit are tuned through many design iterations to

ensure proper functionality. In this section, we present our functional verification of

the reconfigurable CP SRAM followed by a number of selected results from post-layout

power simulations.

4.2.1 Functional verification

The macro system’s functionality is tested with extracted parasitic capacitances across

process corners with the supply voltage Vdd = 0.65V and clock frequency f = 100MHZ.

The sequence of operations: (cycle i) writing a 1 in row 255, (cycle ii) writing a 0 in

row 0, (cycle iii) reading the 1 from row 255, and (cycle iv) reading the 0 from row 0

is used to demonstrate the functionality of the reconfigurable CP SRAM operated in

both PRD and constant modes. The waveforms corresponding to PRD mode at the
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Figure 4-7: Simulation waveforms of the extracted reconfigurable CP SRAM operated
in PRD mode. The sequence of operations performed are: (i) writing a 1 in row 255,
(ii) writing a 0 in row 0, (iii) reading the 1 from row 255, and (iv) reading the 0 from
row 0. The simulation is run with Vdd = 0.65V , f = 100MHZ, and at the SS corner.

slow-slow (SS) process corner are depicted in Fig. 4-7. In the first two clock cycles,

input values 1 and 0 are successfully written to the internal nodes Q in row 255 and

row 0, respectively. During the read operations in the third and fourth cycles, the read

bit-lines RBL/RBLB are conditionally pre-charged based on current prediction values.

The prediction value is initialized to 0 for the first read operation whereas the value

1 read in the first read cycle is used to update the prediction value for the second

read cycle. For both read operations depicted, the prediction is readily seen to be

incorrect. Subsequently, predicted read bit-lines discharge in both cycles, resulting in

the observable two current surges in i(vdd_core). The simulation result for constant

mode is illustrated in Fig. 4-8 where the prediction (bias) is set to be 0. After reading
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Figure 4-8: Simulation waveforms of the extracted reconfigurable CP SRAM operated
in constant mode (prediction = 0). The sequence of operations performed are: (i)
writing a 1 in row 255, (ii) writing a 0 in row 0, (iii) reading the 1 from row 255, and
(iv) reading the 0 from row 0. The simulation is run with Vdd = 0.65V , f = 100MHZ,
and at the SS corner.

a 1 in the first read cycle, the control signal ref resets the column circuit state D to

be the bias value 0. RBL’s discharge activity is saved in the second read cycle since

the read value 0 matches the prediction value. As expected, i(vdd_core) has only one

current surge in this specific scenario.

4.2.2 Power simulations

A power simulation model

The read power consumption of the extracted macro system is plotted in Fig. 4-9 using

both PRD and constant prediction modes for all possible single-bit read values and
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Figure 4-9: Simulated read power consumption of the reconfigurable CP SRAM
operated in PRD and constant prediction modes for various scenarios. Specifically,
four scenarios are simulated for each mode: reading 0 with an incorrect prediction,
reading 1 with an incorrect prediction, reading 0 with a correct prediction, and reading
1 with a correct prediction.

prediction settings. Specifically, four scenarios are simulated for each mode: reading 0

with an incorrect prediction, reading 1 with an incorrect prediction, reading 0 with a

correct prediction, and reading 1 with a correct prediction. Observe that in either

mode, correctly predicted read operations incur much lower power than the same

operations performed with incorrect predictions.

Due to the large size of the data sequences typical of our targeted applications,

we simplify from hereon our power simulations by approximating the total power

consumption of reading a prespecified long data sequence based solely upon the power

consumption of the various read scenarios mentioned above.

Mode configuration

As previously discussed in Section 3.4, a decision tree may be used to optimally

configure the presented SRAM. In order to identify the parameter values C, �, and ⌧

which are essential to the decision rule in Fig 3-11, we simulate the power consumption

of the SRAM operated in PRD and constant mode for 25000 randomly generated data

sequences each of length 52 bits. The simulation results are illustrated in Fig. 4-10.
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Figure 4-10: Mode selection analysis for randomly generated statistical measure pairs
(⇢,↵0!1). Extrapolated data from (a) are shown in (c) and (d). The prediction mode
corresponding to the higher power consumption is plotted in the plane views in (b)
and (c).

Referring to this figure, subplot (a) shows the normalized read power consumption

for each generated data sequence as a function of its statistical measures (⇢,↵0!1).

Subplot (b) equivalently shows this result where the mode with the higher power

consumption is plotted for each (⇢,↵0!1) pair in the (⇢,↵0!1)-plane. To generalize

our analysis, we extrapolate from the points in subplot (a) in order to predict the

performance outcome over the entire (⇢,↵0!1)-plane; the result is depicted in subplot

(c). Analogous to the relationship between subplots (a) and (b), subplot (d) shows

the projection of subplot (c) onto the (⇢,↵0!1)-plane where the infeasible region has

been excluded. This subplot is consistent with the (⇢,↵0!1)-plane that was postulated

in the discussion surrounding Fig. 3-11. In conclusion, we find that the decision
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parameters C, �, and ⌧ are approximately given by

C ⇡ 0.25 � ⇡ 0.26 ⌧ ⇡ 0.85. (4.2)
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Chapter 5

Application-specific power results

The primary purpose of this chapter is to provide by means of example a method by

which any SRAM consistent with the reconfigurable framework presented in this thesis

may be properly initialized for a specific targeted application. In order to illustrate this

general procedure, three example applications spanning digital signal processing, video

coding and computer vision are surveyed in Section 5.2. Equipped with the power

simulation model developed in Section 4.2.2, we compute the read power consumption

of the reconfigurable CP SRAM for each of the targeted applications. Prior to this, in

Section 5.1, we revisit the two key statistical measures introduced in Section 3.1 in

order to facilitate the SRAM configuration stage for applications beyond those covered

by the scope of this thesis.

5.1 Statistical data measures

The binary values processed and stored at the intermediary stages of an algorithm are

often highly correlated. Chapter 3 illustrated that significant energy savings may be

achieved for a given data set by toggling the SRAM configuration according to the

data statistics. In particular, we introduced two key sufficient statistics, namely the

global and local correlation measures ⇢ and ↵0!1, from which a given pair (⇢,↵0!1)
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jointly corresponds to an optimal SRAM configuration.

Recall that the global correlation coefficient ⇢ of a prespecified data set was defined

in Eq. 3.1 as the percentage of the majority bit, i.e. ⇢ = max{p, 1 � p} where p is

the percentage of 0s. It is generally possible to save power on the read bit-lines of

an 8T SRAM when the bits stored in memory are mostly 1s. Figure 2-1 portrays

that since 8T SRAMs’ single-ended read ports require only one bit-line, the discharge

path through PG4 is open in the evaluation phase when the internal node Q stores a

1 and QB stores a 0. Thus, the pre-charge activity on the read bit-line is avoided in

the following cycle; by symmetry it follows that comparable power savings may be

achieved when the majority of the 8T bit-cells store 0s and the SRAM’s read ports

are connected to Qs. In order to obtain a higher global correlation coefficient, the

bit-invert-coding method may be adapted using a majority logic conversion scheme

wherein the total number of 1s stored in memory is increased by converting some

words to their complements [8]. In contrast, the use of a majority logic conversion is

unnecessary in the presented reconfigurable CP SRAM since energy savings may be

achieved with a biased data set in either direction, i.e. one can select a desired read

port via prediction setting in the constant mode.

Globally correlated data exists in a wide range of real-world applications where

sparsity is present, e.g. matrices with a small number of non-zero entries or more

generally where sufficiently small entries may be ignored. The use of sparse signal

representation and companion algorithms can be found in tasks such as digital signal

processing, compressive sensing and biomedical imaging [13]. The use of such methods

and the associated theoretical developments are becoming increasingly practical as the

demand for efficient processing of massive high-dimensional data such as audio, image,

video and bioinformatics data increases. As an example, we studied a variant of the

Fast Fourier Transform specific to sparse signals, i.e. the sparse Fast Fourier Transform

(sFFT), and will discuss in Section 5.2.1 some of the challenges in the hardware
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implementation of the algorithm as well as the memory power savings achievable by

using the reconfigurable CP SRAM.

On the other hand, local correlation was defined as a measure of the bit-level

changes of the signal values in a given data set. In part, it can be viewed as inversely

proportional to the notion of the switching activity factor, an essential element of digital

circuit dynamic power analysis and design optimization. The lower the switching

activity factor, the higher the local correlation. We call attention to the fact that the

complete definition of switching activity involves two parts: probability and toggle

density. In this context, probability is the likelihood that a nodes voltage value is 1,

whereas toggle density corresponds to the total number of 0 ! 1 and 1 ! 0 transitions

seen at that node per unit clock cycle. For convenience, we focus only on the toggle

density aspect of this definition since the probabilistic portion is covered by the global

correlation coefficient. In addition, since power is drawn from the source only when

the node of interest changes from 0 to 1 [16], the forthcoming discussion on switching

activity will only account for the power-consuming transition of 0 ! 1. Finally,

conventional methods for computing switching activity are probabilistic in nature,

e.g., under appropriate independence conditions ↵0!1 = P0 · P1 where P0 and P1 are

respectively the probability of a 0 and 1 occurring at a given node. However, for the

purpose of data feature analysis in this thesis, we compute the switching activity of a

prespecified data set according to Eq. 3.2 since we have access to the entire data set

prior to SRAM operation.

It has been observed that high local correlation exists in data sets taken from

multimedia applications such as video coding and image processing wherein the

intensities of pixels situated in the same local region in an image or video frame are

often similar in value. In order to explore the presence of such local correlation and

other interesting data features, we focus our attention on two example applications: a

motion estimation engine in a video coding system and a Support Vector Machine
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(SVM) based object detection system.

We are specifically interested for the purpose of designing a data-dependent low

power SRAM in applications whose computation involves data which exhibits local

and/or global correlations. Only by understanding the inherent data features of such

applications can we properly configure the SRAM in order to obtain higher energy

efficiency in the data accesses of these systems. The two correlation measures ⇢ and

↵0!1 will continue to play a key role in the discussions of the following section on the

aforementioned targeted applications and their associated data characteristics.

5.2 Targeted applications and achieved power

savings

As previously mentioned, three distinct applications are targeted in this work: com-

putation of the sFFT, motion estimation in video encoding, and object detection for

embedded vision applications. Previous hardware implementations of these systems,

e.g. in [1, 32, 6], have proven to be significantly faster and more energy-efficient as

compared with their software counterparts. Further analysis of each systems power

breakdown indicates that SRAM access, more specifically read operation, accounts for

a disproportionate fraction of total power consumption, and thus illustrates the op-

portunity for demonstrable power savings by equipping these systems with low-power

SRAM modules.

In the following three sections, we consider one-by-one an example hardware

implementation of each application and simulate the characteristic storage buffers

in each system in order to profile their intrinsic data features. Then, we map the

associated data sets typical of these buffers into the reconfigurable CP SRAM and

compute the power consumption of reading them out using the power simulation

model developed in Section 4.2.2. The individual columns in each of the targeted
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buffers are configured to their lowest power mode as indicated by their statistical

measures (⇢, ↵0!1). The power consumption of the same CP SRAM operating entirely

in PRD and the constant mode across all columns is also computed for comparison.

As an additional reference, a conventional 8T SRAM is modeled using this CP SRAM

with a data agnostic prediction scheme, i.e. the prediction value is taken to be 0 for

each column.

5.2.1 Sparse FFT: collision resolution

The class of Fast Fourier Transform (FFT) algorithms is one of the most fundamental

tools in signal processing, applied mathematics and computer science. Real-world

applications such as wireless spectrum sensing, radar signal processing, and global

positioning system (GPS) position locking [35] require complex computations involving

the convolution of a signal with a long code. Such applications typically make use

of large-sized FFTs in order to compute these convolutions while simultaneously

meeting real-time constraints and thus result in high hardware costs for embedded or

mobile systems with respect to silicon area and power consumption. In a subset of

these applications, however, the signals being processed are often inherently sparse

or approximately sparse in their frequency domain characterization, i.e. most of the

Fourier coefficients computed by taking the FFT of the signal are either negligibly

small or equal to zero, motivating a need for algorithms with exploit these properties

to achieve lower complexity and higher implementation efficiency.

A novel algorithm, referred to as the sparse Fast Fourier Transform (sFFT) and

first introduced in [10], has been shown to be computationally more attractive than

traditional FFT algorithms for sufficiently sparse signal models. In essence, the sFFT

computes the frequency representation of a sparse signal without sampling it at full

bandwidth. It guarantees the sparse recovery of a signal with only a small subset of its

samples, hence greatly reduces the cost associated with computation and intermediary
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data storage.

The sFFT algorithm and the algorithm-inspired software implementation, the

BigBand [11], follow the general procedure of bucketization, estimation and collision

resolution. Bucketization is the process of partitioning an input signal into two

signals via downsampling with co-prime rates and computing FFTs with co-prime sizes

followed by placing the Fourier coefficients into the appropriate ‘buckets.’ Subsampling

a signal in the time domain generally results in frequency domain aliasing. However,

since the non-empty (non-zero or non-negligible) FFT coefficients of a sparse signal are

concentrated at a limited number of frequencies, most buckets are either empty or have

a single active frequency whereas only a few of them have collisions due to multiple

active frequencies. The bucketization step is repeated for time-shifted versions of the

input signal with a signal reconstruction process to follow. To reconstruct the full

bandwidth, non-empty buckets are first passed to the estimation step, where the value

and the position (frequency number f) of each active frequency are estimated. In

particular, the value of a bucket with no collision is the value of the original spectrum

at the frequency number of interest. The frequency number f is then calculated using

��, the estimated phase change between the FFT coefficients of the input signal x[n]

and the time-shifted signal x[n+ ⌧ ]. This processing is summarized as:

x[n]
N�point FFT��������! X(f) (5.1)

x[n+ ⌧ ]
N�point FFT��������! X(f)ej!⌧ (5.2)

f , N��

2⇡⌧
. (5.3)

Equipped with the estimated frequency number f , collision detection is then performed

for each bucket by comparing the values of the FFT coefficients corresponding to

the input signal with and without a time shift. If the bucket contains a single active

frequency, the time shift results in a linear phase change and preserves the magnitude.
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Alternatively, buckets with multiple frequency collisions exhibit a change in both

phase and magnitude. If no collision is detected, the estimated frequency value

and position are assigned to the desired final spectrum and eliminated from further

iterations. In the final stage of collision resolution, the above process is repeated

between the two co-prime FFTs. It is known that with co-prime sampling rates, any

two frequencies colliding in one bucketization are separate in the other bucketization.

Once a single active frequency f is detected at bucket number b1 in one bucketization,

the corresponding bucket number b2 in the other bucketization can be calculated by:

b2 = f mod N2 (5.4)

where mod is the modulus operator, the remainder b2 is the bucket number, and N2

is the FFT size of the second bucketization. The sFFT algorithm is then able to

locate and recover each sufficiently large frequency coefficient and eventually the full

spectrum of the original input signal by iteratively finding and subtracting all buckets

which, in the other bucketization, are collision free.

An existing hardware implementation

A VLSI implementation of the sFFT algorithm, as reported by Abari et al. in [1],

demonstrated a 40⇥ better energy-efficiency and an 88⇥ speed-up in runtime as

compared with traditional FFT algorithms implemented using an ASIC or Intel i7

processor when the signal is no more than 0.1% sparse in the frequency domain.

As illustrated by the block diagram of the system in Fig. 5-1, two lengths of FFTs

(210-point and 3

6-point) are selected for the bucketization step for a 0.75-million-point

input signal. Specifically, an input signal subsampled by 3

6 in the time domain is

passed to a 2

10-point FFT module and the same signal subsampled by 2

10 is passed

to a 3

6-point FFT module. Three FFT modules of each length are implemented to
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Memory 1 Memory 2 Memory 3

Memory Interface

Bucketization

Scheduler

Reconstruction

Figure 5-1: Architecture of the sFFT system [1]. Three memory modules are imple-
mented to enable the efficient operation of a three-stage pipelined sFFT system.

compute the FFT coefficients of the input signal shifted in time by 0, 1 and 32 time

units. The memory module consists of two SRAMs, each respectively consisting of

2

10 and 3

6 rows, and is triplicated in order to enable the efficient operation of an

associated three-stage pipeline that contains the I/O interface, bucketization, and

reconstruction blocks.

Figure 5-2 shows the internal structure of the aforementioned two types of SRAMs

used in this sFFT system. SRAM1 is designed to store the output coefficients of the

three 2

10-point FFT modules in the first bucketization group. In particular, the FFTs

of the subsampled original input signal are stored in the SRAM bank b1 whereas the

FFTs of the subsampled and time-shifted versions of the input signal are stored in

the banks b1ts1 and b1ts32 where the superscripts ts1 and ts32 are used to denote

‘time-shifted by 1’ and ‘time-shifted by 32,’ respectively. A similar bank division applies

for SRAM2 which stores the output of the 3

6-point FFTs in the second bucketization

group. Each of these SRAMs has a row size of 75 bits where 72 of them are used

to store the three FFT coefficients, each represented by a 24-bit combined real and
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210
buckets
(words)

36
buckets
(words)

Figure 5-2: Architecture design of the two FFT coefficient SRAMs in the sFFT
system. SRAM1 (left) stores the output of the three 2

10-point FFT modules in the
first bucketization group; SRAM2 (right) stores the output of the three 3

6-point FFT
modules in the second bucketization group.

imaginary value, and the extra 3 bits are the control bits for the system.

By using a three-stage pipeline and highly effective in-place FFT modules, this

ASIC implementation of the sFFT algorithm is able to reduce its memory usage

in the bucketization step and consequently lower the cost of hardware area and

power consumption. However, it has been reported that over 50% of the total

power consumption of the system is attributed to its on-chip SRAMs which are

generated using generic memory compilers. Among the different operations that

involve interaction with the memory block, the collision resolution step requires a

significant amount of power for the almost ad infinitum retrieval of active frequency

parameters from both types of SRAMs, thus motivating a need for more energy-efficient

and application-specific memory designs.

An analysis of FFT coefficients in collision resolution

A key property exploited by the sFFT algorithm is the inherent sparsity of intermediary

data. The majority of coefficients stored in the FFT SRAMs are either 0 valued or of
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Subsample
by 33 1% sparse input signal

 & signal time-shifted by 1

x[n] X(f)

Subsample
by 26

26-point
FFT

33-point
FFT

Figure 5-3: Architecture and pseudo code of a custom program that simulates data
progression in the FFT coefficient SRAMs. Step 1 generates the SRAMs’ input data
and step 2 simulates the SRAMs’ data progression during collision resolution.

negligible size. In order to visualize this sparsity, the data stored in each frequency

bucket at every intermediate step of the sFFT algorithm is simulated using a custom

program for a randomly generated sparse signal. Figure 5-3 shows the architecture

and the pseudo code of the custom program, which is adapted and modified from the

GHz-wide sensing and decoding algorithm in [11]. The simulation program follows

the general steps of the sFFT algorithm described in the earlier section. For the

purpose of an example, we simplify the hardware system in [1] to having only 2

6 ⇥ 3

3-

sized input signals (up to 1% sparse) and hence 2

6 and 3

3-point FFT modules. The

program, however, can be easily adapted for simulations of higher-point sFFTs with

parameterized input signal length and sparsity level. In order to run the algorithm to

completion and consistent with theory, the number of iterations of collision resolution

is selected to be log2 N , where N is the length of the input signal to be analyzed.

Depicted in Fig. 5-4 is a typical progression of the data in the two FFT SRAMs

highlighted in Fig. 5-3 over the course of the collision resolution procedure. The figure
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Figure 5-4: Storage data in different SRAM banks in the collision resolution stage
(26 ⇤ 33 input size, 1% sparse in frequency). Real and imaginary parts of the FFT
coefficients are plotted separately as they occupy different columns of the SRAM.

shows the sequence of values corresponding to the four SRAM banks b1 and b1ts1

in SRAM1, and b2 and b2ts1 in SRAM2. In particular, SRAM1 and SRAM2 stores

the result of taking three 2

6-point FFTs and three 3

3-point FFTs respectively of the

1%-sparse, 26⇥ 3

3-length input signal after respective advances of 0 and 1 samples and

appropriate downsampling. These four subplots illustrate that both SRAMs contain

mostly 0s after 2-3 iterations of collision resolution. This observation suggests that

using the constant mode of the presented reconfigurable CP SRAM which facilitates

low-power read operations of biased values would be of merit. The sFFT application
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Figure 5-5: Magnitude differences between the FFT coefficients in SRAM banks b1
and b1ts1 in a simulation of the sFFT collision resolution process.

maps well to the branch C in the decision tree in Fig. 3-11, where the embedded

‘majority logic’ of the constant mode further increases the number of 0 accesses from

the FFT coefficient SRAMs.

Observe from the previously discussed simulations that low probability of collision

as a result of a sufficiently sparse input signal ensures that the stored frequency

information generated via systematic time-shifts of the original input are similar if

not identical. Fig. 5-5 illustrates the difference in magnitude between the values in

SRAM banks b1 and b1ts1 throughout the collision resolution stage of a test simulation.

Specifically, for a collision free bucket, the magnitude of the two coefficients are equal

and their phases are linearly related. This observation provides a potential direction

for future exploration of techniques that store the time-shifted FFTs such that data

correlation within the SRAM columns is maximized. More 0 entries may be generated

by storing only the differences between the FFT coefficients.

Power simulation result

In order to investigate column-wise data correlation and read power consumption

within the FFT SRAMs, we convert the decimal representations of the FFT coefficients

stored in SRAM1 and SRAM2 to their binary representations following the scheme

in [1]. Specifically, each real/imaginary number is represented using 12 bits among

which 4 bits are used for the fractional part.
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Figure 5-6: (Top) The statistical measures ⇢ and ↵0!1, respectively computed in
accordance with (3.1) and (3.2), as a function of each column of the data set associated
with SRAM1 in an sFFT implementation. (Bottom) The normalized power for each
column of the same data set for each of the listed memory models.
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Figure 5-7: (Top) The statistical measures ⇢ and ↵0!1, respectively computed in
accordance with (3.1) and (3.2), as a function of each column of the data set associated
with SRAM2 in an sFFT implementation. (Bottom) The normalized power for each
column of the same data set for each of the listed memory models.
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Following the power simulation procedure outlined at the beginning of Section 5.2,

we select the preferred prediction mode for each column of the profiled SRAM1 and

SRAM2 by first computing each column’s statistical measures ⇢ and ↵0!1. Figure 5-6

and 5-7 respectively show these statistical measures and the average read power

consumption for each column of SRAM1 and SRAM2 implemented using the reconfig-

urable CP SRAM. The power consumption of the same CP SRAM operating entirely

in PRD and the constant mode across all columns and the power consumption of a

conventional 8T SRAM is also provided for comparison.

Still referring to the figures, 8T SRAM performs equally well as the CP SRAM

restricted to the constant prediction mode. This is due to the fact that data stored in

the sFFT SRAMs are mostly 0s and ⇢ is strictly larger than 0.8 for all columns in both

SRAMs. The majority bit of each column is 0 and subsequently the constant mode

predicts 0 for each column as does the modeled 8T SRAM. However, for some columns,

PRD incurs lower power than the constant mode or 8T. Specifically in SRAM2 (Fig. 5-

7), PRD results in lower power consumption than the constant mode for all columns

except those for which ↵0!1 is greater than ⇡ 0.08. In SRAM1 (Fig. 5-6), more

columns are configured to the constant mode due to their higher ↵0!1. It should be

noted that for columns with all 0 entries, i.e. ⇢ = 1 and ↵0!1 = 0, the simulated

power consumed by PRD is lower than that of the constant mode. This gap is entirely

due to the difference in the power consumed by the two modes even when they are

reading a correctly predicted value. However, in the presence of noise, as is the case

for columns 8-9 in both SRAMs, the power consumed by the PRD mode catches up

with or even surpasses that of the constant mode. This observation is consistent with

our discussion in Section 3.4.1 that constant mode is normally preferred for highly

biased data sets due to its superior stability in the presence of noise. In summary,

by effectively choosing the lowest power prediction mode for each memory column,

reconfigurable CP SRAM achieves the lowest overall power consumption.
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5.2.2 Video coding: motion estimation

Error tolerant and low latency distribution of high quality real-time multimedia content

has experienced increasing demand in both rural and urban areas, continually pushing

the boundaries of resource allocation protocols and technologies. In the age of big data,

the transmission of such content in wireless networks is often the bottleneck. The use

of a Video Encoder-Decoder (CODEC), a device or program capable of compressing

and decompressing digital videos, is the most common and widely adopted remedy.

One of the key challenges in the development of future multimedia systems lies in

the design of efficient and quality-preserving compression algorithms and hardware

architectures. Advanced Video Coding (AVC or H.264) and High Efficiency Video

Coding (HEVC or H.265) are the two most recent video coding standards that target

high compression capability. In particular, as compared with its predecessor H.264,

HEVC targets a 50% gain in coding efficiency, equivalently a 40 � 50% reduction

in bit-rate, while maintaining the same visual quality. To achieve such goals, new

tools are introduced such as the quad-tree data structure, a modular coding structure

commonly used to decompose a video frame into separate regions to flexibly identify

the optimal processing unit size. This flexibility in coding structure, however, comes

at the cost of increased memory size and on-chip/off-chip bandwidth consequently

leading to higher power consumption in hardware devices and systems. Various

hardware-aware strategies have been proposed which allow for configurability and/or

efficient resource sharing in hardware [38, 6, 27, 36]. Such efforts have typically causes

degradation in the compression rate and quality achieved in practice, establishing a

critical design trade-off between coding efficiency and hardware costs as is analyzed in

detail in [28]. Subsequently, in order to lower energy costs without sacrificing efficiency

at the algorithm and system architecture levels, we proceed with a focus on low power

operations specifically at the circuit level.

We restrict our attention in this section to the design of video encoders whose
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Figure 5-8: Block diagram of an example video encoding system with ME and MC
engines. Motion estimation identifies motion vectors which are then used by motion
compensation to retrieve predicted blocks in the reference frame. Processed differences
between the predicted and the current blocks are transmitted to the decoder system
which is not shown here. A current frame is also reconstructed at the encoder side
which becomes the new reference.

primary responsibility in the overall CODEC is video compression. Figure 5-8 depicts

a block diagram of an example video encoding system which makes use of inter frame

prediction. In this encoder, Motion Estimation (ME) is one of the most critical tools
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whose complexity directly affects that of the overall system since almost 90% of the

total computation workload is attributed to the ME engine [19].

Motion estimation is a technique by which the movement of objects within a

sequence of image frames is identified [14]. Given a previously encoded reference frame

for comparison, the ME engine performs a motion search by computing, for each block

in the current frame, the differences between the current frame and the reference for all

blocks within a prespecified search range. After identifying the block of the reference

frame with the most pixel-wise intensity resemblance (8-bit luma signals), the ME

engine produces a motion vector which is later used in the motion compensation

stage to locate the position of the predicted block. The computed differences between

the predicted and the current blocks, i.e. the residual, are transformed, quantized

and entropy coded before being transmitted to the decoder system. The residual in

conjunction with the motion prediction vector are used to reconstruct the current

frame at the decoder while the reconstructed current frame takes the role of the

reference frame for the next iteration.

In tracking the movements of objects, the ME engine consecutively accesses on-chip

reference pixel buffers in order to obtain the reference pixels necessary for computing

Sums of Absolute Differences (SADs). As shown in Fig. 5-9, reference frames are

generally stored using off-chip memory whereas a subset of the reference pixels are

stored using an on-chip buffer that interacts with the ME engine directly. The duty

cycle of conventional on-chip pixel buffers is disproportionately high and thus the

power consumption is significant with respect to the overall system [6]. Moreover,

the number of read accesses is greater than three times the number of write accesses

to these buffers [27], providing motivation for novel memory designs which support

low-power read operations.
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Figure 5-9: Off-chip memory and on-chip buffer for the ME engine. The engine
consecutively accesses on-chip pixel buffer with a read to write ratio greater than
three.

Existing frame buffer designs

Many energy and/or area-efficient memory designs are driven by the inherent statistical

characteristics of video frame pixels in video processing systems, as previously addressed

in Chapter 2. The existence of a large number of prior approaches is due in part to the

high correlation between pixel intensities prevalent in pixels located in the same region

of a frame. We refer to a digital group in what follows as the collection of a specific bit

depth across all pixels in a given frame. Figure. 5-10 illustrates the analysis presented

in [8] wherein the distribution of the number of 1s across different digital groups is

plotted for two high-definition television (HDTV) test sequences, namely ‘Market’ and

‘Church’. This work shows that adjacent pixels, specifically pixels used to represent

the same foreground object or background setting, in an image are of similar intensity

values and a stronger correlation exists in the more significant digital groups, i.e. the

Most Significant Bits (MSBs). The majority logic SRAM in [8] leverages two key

ideas: (i) the single-ended read nature of an 8T SRAM as previously addressed, and

(ii) data-bit reordering and inverting in order to increase the number of 1s stored in

memory. These efforts collectively save bit-line discharge activity and consequently

the overall power consumed by the SRAM.

We take as a second and final example the local correlation analysis of pixel values

in 16⇥ 16 processing blocks in a video frame, as was presented in [26]. Data extracted

from the test sequences ‘Traffic’ and ‘Basketball’ is used in [26] to illustrate the
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Figure 5-10: Statistical analysis of video frame pixels in H.264 HDTV test sequences
‘Market’ (left) and ‘Church’ (right). For each sequence, the probability of having
different numbers of 1s is plotted for each digital group. Figure adapted from [8].

differences between individual pixels and the mean of the corresponding block using

distributional techniques. It is concluded that for the two sequences 58% and 76% of

the pixels, respectively, are within ±3 bits of the corresponding block’s mean. This

implies that four to five MSBs out of the pixel’s 8-bit depth are highly correlated with

its neighbors’ bit-values. Furthermore, the correlation among inter and intra frame

pixels increases with increasing video resolution.

A statistical analysis of reference frame pixels

In order to gain further insight into the correlation between values stored in a typical

reference pixel buffer, a custom program is developed to simulate and profile the

effective data sequence that is accessed from the buffer during motion estimation. For

the purpose of demonstration, we take a 1080 ⇥ 1920 image frame from the ‘Park

Scene’ video sequence belonging to the JCT-VC common test conditions [3] as the

simulation input. Figure 5-11 illustrates the data-to-memory mapping scheme selected
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for this specific simulation. The entire reference frame is stored in an off-chip DRAM

while the pixels in the current 192 ⇥ 192 search window are stored in an on-chip

buffer implemented using an SRAM. The processing block size for current frames

complies with the standard size of 64 pixels where the smallest computational unit,

i.e. the sub-block, is selected to be 4 ⇥ 4. For each 4 ⇥ 4 sub-block read from the

reference frame, we cycle through all sub-blocks of the same size in the associated

processing block in the current frame for SAD computations. In order to meet a

certain throughput requirement, the reference pixel SRAM is designed to support

in each row 16 pixels, i.e. 128 bits in total. Depending on the compression rate of

the transform and filter stages in Fig. 5-8, reconstructed reference frames may have

different data correlation levels. We comment upfront that the input image frame

used in this specific simulation is compressed with a high compression rate. With

this setup, we simulate all read operations that are required to perform a complete

motion search and then evaluate the local correlation between the values stored in

each individual column of the SRAM.

10
80

px

1920px

4px
4px

Pixel sub-block in
the current frame

Reference frame in DRAM

Search window

Reference frame in DRAM

19
2p

x

192px

Search window

4px
4px

Reference pixel buffer 
of search window size

128 columns

23
04

 r
ow

s

Reference pixel buffer 
of search window size

Search window

19
2p

x

192px

128px

Pixel sub-block in
the current frame

Figure 5-11: Diagram showing the data-to-memory mapping scheme. Pixels in each
192 ⇥ 192 search window within the reference frame are retrieved from an off-chip
DRAM and stored in an on-chip pixel buffer implemented as a 2304⇥ 128 SRAM.
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Figure 5-12: Switching activity in each column of the reference pixel SRAM. Pixels in
a 1080⇥ 1920 highly compressed reference frame from the ‘Park Scene’ video sequence
are stored in this SRAM which has sixteen 8-bit pixels per row, i.e. 128 bits per row.
The MSBs of these pixels have much higher local correlation than the LSBs.

A plot of the simulation result is provided in Fig. 5-12. This local correlation

analysis shows that observable switching activity patterns exist between the MSBs

and the Least Significant Bits (LSBs) of the reference pixels. In particular, the activity

factor ↵0!1 of data stored in the column direction illustrates that the MSBs are more

locally correlated than the LSBs, which are often corrupted by noise. This observation

is consistent with the conclusions made in [8], and further implies that for each digital

group, the switching activity is generally predictable.

Using the reconfigurable CP SRAM presented in this thesis, the read operations

of the MSBs and the LSBs may be optimized separately, acknowledging their fun-

damentally different correlation statistics. This mode selection scheme is similar to

the paths described by the decision tree branches A and B in Fig. 3-11. Additionally,

equipped with the presented conditional pre-charge technique, predictions can be

made and refreshed every read cycle with the PRD scheme, reflecting the bit-to-bit

local correlation of the MSBs. For columns with high global correlation, i.e. heavily

lopsided data such as the MSBs of the pixels in an image’s background, PRD or

constant mode with the correct bias setting can be utilized so that the power and area
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overhead of an external inversion block and its controls can be saved.

We call attention to the fact that for video frame pixels, a corner case may occur

where adjacent pixels are of similar intensity values but their 8-bit representations are

very different. For instance, all bit values are changed in going from a pixel intensity

of 127 (01111111) to a pixel intensity of 128 (10000000) [26]. These effects on local

correlation can be mitigated by using a binary bit shifting technique [25]. For the

purpose of simplicity in our system-level architecture design, we leave as future work

the handling of these corner effects which may potentially further improve the bit-wise

local correlation among video frame pixels.

Power simulation result

Analogous to the discussion in Section 5.2.1 surrounding the power simulation result

of the sFFT coefficient SRAMs, we present the column-wise statistics and average

read power consumption for each column in the ME reference pixel SRAM. As shown

in Fig. 5-13 (top), the statistical measures do indeed follow the simulated patterns

existing between the MSBs and the LSBs of the reference pixels. Specifically, low and

high values of ↵0!1 and ⇢, respectively, are observed among the MSBs whereas the

opposite case is observed for the LSBs. Referring to the bottom plot, similar patterns

exist between the digital groups in terms of the power consumed by both PRD and the

constant mode. For the video frame analyzed, the LSBs have a low average value of

↵0!1 which is approximately 0.22 while the average value of ⇢ is close to its minimum

value of 0.5. For this reason, the expected advantage of the constant mode among the

LSBs does not manifest itself in this simulation result. This observation is consistent

with the discussion surrounding the simulated decision plane in Fig. 4-10. We observe

that the difference in the power consumed by the two modes gets smaller near the

LSBs. A mode slider configuration scheme, i.e. using PRD for the columns storing the

MSBs and the constant mode for the columns storing the LSBs, may be applicable for
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video frames with more details. We conclude that as compared with the 8T SRAM,

the reconfigurable CP SRAM achieves the minimum overall power consumption by

correctly using PRD.
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Figure 5-13: (Top) The statistical measures ⇢ and ↵0!1, respectively computed in
accordance with (3.1) and (3.2), as a function of each column of the data set associated
with the ME reference pixel SRAM. (Bottom) The normalized power for each column
of the same data set for each of the listed memory models.

5.2.3 Object detection: support vector machine classification

Object detection, the process of detecting particular instances of semantic objects

in digital images or videos, has found application in a number of areas of computer

vision including video surveillance and image database retrieval. As a straightforward

example, consider the problem of detecting an object within a given test image or
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video frame a. The outcome is commonly generated as

sign(aTw? � b?) =

8
><

>:

1 object detected

�1 object not detected
(5.5)

where w? and b? denote respectively the weights and offset chosen for implementation.

The specific values of these parameters are typically selected as the solution to the

SVM training problem. More specifically, given a data set D where

D =

�
(ai, yi) : ai is the ith training image with associated binary label yi, i = 1, . . . ,M

 

and yi = 1 if the particular object of interest is contained within test image ai and

yi = �1 otherwise, the optimal weights w? and offset b? are given by

(w?, b?) = argmin

w,b
kwk22

s.t. yi
�
aTi w � b

�
 1, i = 1, . . . ,M.

(5.6)

Extensions of Eq. 5.6 to multi-valued classification and therefore multi-valued object

detection follow in a straightforward manner [2].

An existing hardware implementation

Modern advancements and hence imposed hardware challenges in the direction of

embedded or mobile devices demand robust and energy-efficient hardware for object

detection algorithms. Applications such as unmanned aircraft vehicles, portable

electronics, and advanced driver assistance systems require real-time object detection

with high frame rate, resolution, and energy-efficiency due to limited battery capacity

and/or large heat dissipation [20]. In addition, such systems are expected to support

multi-scale detection in order to facilitate detection of object of different sizes, e.g. a

pedestrian walking from background to foreground.
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Existing hardware implementations of object detection exploit a wide range of

computational platforms such as CPU, GPU, FPGA and ASIC. Although relatively

high throughput may be achieved using CPU or GPU-based systems, average power on

the scale of hundreds of Watts is typically required for real-time processing with these

platforms [22] and thus renders them as unsuitable choices for embedded applications.

More energy-efficient high-definition object detection systems have been explored using

FPGA or ASIC [9, 17, 33]. These implementations, nonetheless, require relatively

large on-chip memory resources and therefore result in high hardware costs too.

Frame 
Buffer

SVM weights
SRAM

Scale Generator

Off-chip
 processing

Figure 5-14: The core architecture of an example SVM based object detection system
[32]. This system supports multi-scale detection and uses three detectors in parallel.
Each detector performs HOG feature extraction and SVM classification for the inputted
frames by accessing trained optimal SVM weights from an on-chip SRAM.

Alternative approaches in the literature address the challenges mentioned above

by employing parallel detectors with balanced workload, on-the-fly SVM classification,

and image pre-processing as depicted by the core architecture in Fig. 5-14 [32]. In

this multi-scale object detection system, an original video frame image is first down-

sampled to two octaves. Then, each octave including the original image generates

three scales via bilinear interpolation, resulting in a 12-level image pyramid. These

multiple scaled versions of the original frame are then fed into three parallel detectors,
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each composed of a Histogram-of-Oriented-Gradient (HOG) feature extraction unit

and an SVM classifier with optimal SVM weights trained off-line. A block diagram of

the SVM classification unit is shown in Fig. 5-15. By using this on-the-fly multiply-

and-accumulate approach, only the accumulated values of the partial dot products of

HOG features and SVM weights are stored in the accumulation SRAM, leading to a

19⇥ reduction in memory size.

SVM weights
SRAM

Position & scale
of detected window

SVM Classification

M
U

X Accumulation
SRAM

HOG 
feature

..
..

..
..

Figure 5-15: Architecture of the SVM classifier used in the object detection system in
[32]. Thirty-two Multiply-And-Accumulation (MAC) modules and an accumulation
SRAM are used to realize on-the-fly SVM classification.

Beyond the memory size savings achieved, the use of various on-chip memories,

highlighted in grey in Fig. 5-14 for emphasis, imposes a number of system-level design

challenges with the potential for improved energy efficiency. The SRAM used to store

the SVM weights in the classification unit, for instance, is the current power bottleneck

as a result of the large bandwidth requirement, i.e. the optimal SVM coefficients w?

and b? in Eq. 5.6 are accessed in both a frequent and consecutive manner from the

SRAM for real-time classification processing. It has been reported that the power

consumed by the SVM memory module is approximately 85% of that of a detector

processing gradient magnitude images and comprises approximately 17% of the total
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pedestrian detection

 Binary content 
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Figure 5-16: Visualization of SVM coefficients trained for pedestrian detection and
their binary representations stored in the SVM weights SRAM.

power consumption of the system. We comment upfront that such read-only memories

may be implemented using only register files. However, due to the area and density

constraints of real-world systems, SRAM is typically selected as the storage medium

for optimal SVM coefficients in a system.

A statistical analysis of optimal SVM weights

Analysis in [32] indicates that certain local correlation exists between the optimal

SVM weight coefficients that are used to identify whether a specific feature and/or

object is present. As an example, we analyze the SVM weights trained using a

pedestrian image from the INRIA person data set, as illustrated in Fig. 5-161. The

particular weights corresponding to the general vicinity of image background are highly

spatially correlated and therefore take similar values whereas the lighter coefficients

corresponding to the object of interest form a pattern that generally follows the outline

of a pedestrian. The binary representation of the weights stored in the SRAM is

1
Data set and visualization program courtesy of the Energy-Efficient Multimedia Systems Group

at MIT
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Figure 5-17: Column-wise correlation statistics of the SVM weights SRAM. Columns
with low switching activity ↵0!1 (black) tend to have high global correlation ⇢ (blue).

depicted on the right hand side of Fig. 5-16. Specifically in our simulation, we follow

the original system’s setup wherein the SVM classifier has a size equal to the number

of HOG features in a detection window consisting of 16⇥ 8 cells, where each cell is a

patch of 8⇥ 8 non-overlapping pixels. A total of 16⇥ 8⇥ 36 signed 4-bit SVM weight

coefficients are stored in a 18Kb SRAM with a row size of 128 bits.

Under the assumption that the SVM weights SRAM is fully written with the

example optimal weights and is accessed for run-time classification row-after-row with

incremental addresses, we compute the statistics ⇢ and ↵0!1 for each column of the

SRAM with the content depicted in Fig. 5-16. Plotted along the two vertical axes

of the graph in Fig. 5-17 are respectively the percentage of the majority bit ⇢ and

the switching activity ↵0!1 in each column of the populated SRAM. Ticks on the

horizontal axis are the column indices. It is evident from the figure that data stored in

the SVM weights SRAM does not possess a straightforward switching activity pattern

as compared with the reference pixels in ME. Additionally, the switching activity

is low in columns where the percentage of the majority bit is high. The global and
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local correlation measures are not statistically independent of one another, a proof of

this argument is straightforward and can be shown for example by using the extreme

counterexample where ↵0!1 is taken to be zero. Therefore, in this specific example

of optimal SVM weights, it is not immediately evident from the figure whether one

correlation is higher than the other for certain columns. Other than a simple slider in

the case of a ME reference frame buffer, further analysis is required for a fine-grained

configuration for each column of the SVM weights SRAM. This configuration process

may follow the paths described in the decision tree in Fig. 3-11.

In addition to the SVM weights, our analysis shows that local correlation also

exists between the image pyramid pixels stored in the on-chip buffers in the scale

generator. The argument in Section 5.2.2 that higher resolution of video frames or

images implies a higher local correlation among both inter- and intra-frame pixels also

applies here. In addition, gradient magnitude images contain even higher pixel-wise

correlation as compared with images with unprocessed intensities [32]. Motivated in

part by these observations, we remark that a potential direction for future extensions

involving this application would involve equipping the scale generator with a low-power

data-dependent SRAM model in order to potentially reduce the power consumed in

reading the pixel values.

Power simulation result

Figure 5-18 shows the statistical measures and the average read power consumption

for each column in the profiled SVM weights SRAM. Consistent with our analysis

of the correlation statistics, the amount of power consumed by the columns in this

SRAM displays a less traceable pattern as compared with that of the ME reference

pixel SRAM. We observe that the prediction mode corresponding to the minimum

power consumption rotates between PRD and the constant mode across all columns.

The reconfigurable CP SRAM fully leverages the data statistics and achieves the
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minimum total read power consumption by effectively connecting the lowest points in

the bottom plot.
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Figure 5-18: (Top) The statistical measures ⇢ and ↵0!1, respectively computed in
accordance with (3.1) and (3.2), as a function of each column of the data set associated
with the SVM weights SRAM in an object detection system implementation. (Bottom)
The normalized power for each column of the same data set for each of the listed
memory models.

5.2.4 Summary of power results

As a summary, we present the normalized total (or average) read power aggregated

across all columns for each application SRAM in Fig. 5-19. According to these results,

the reconfigurable CP SRAM provides a respective 14%, 20%, 4%, and 31% reduction

in read power as compared with the 8T SRAM for the SFFT coefficient SRAMs 1

and 2, the SVM weights SRAM, and the ME reference pixel SRAM. Also notice that

with its columns dynamically configured, the reconfigurable CP SRAM has lower

total power consumption than CP SRAMs equipped with only one of the prediction
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Figure 5-19: Simulated total read power aggregated across all columns of the data
sets corresponding to the targeted applications for each of the memory models listed.

schemes. This observation is consistent with the results discussed in Section 3.3.3

obtained using the simulation program which in part motivated the reconfigurable

memory design.

5.3 Further comments on data mapping

Statistical correlation present along a given direction of the data matrix stored in an

SRAM depends critically upon the scheme by which application data is organized

into the SRAM. For example, correlation between pixels in an ME reference frame

buffer is directly affected by the prespecified search window and sub-block sizes as

well as the dimensions of the SRAM used. Additionally, the specific sequence of read

addresses affects how the data correlation is perceived by the SRAM’s column circuit

and consequently affects the prediction accuracy and total power consumption of the

columns operating in PRD mode.

In the previous section, we discussed the method by which data is mapped into

and accessed from the simulated SRAM(s) for each application independently. Each

of these mapping schemes was adapted from an existing hardware implementation of

the associated application and all applications were assumed to access data row after
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row with incremental addresses. We reiterate here that a future direction is to explore

alternative schemes in hopes of increasing the global and/or local correlation within the

SRAM(s). For example, we postulated that storing the differences between the FFT

coefficients in different SRAM banks of the sFFT system would result in an increase

in the total number of 0 entries. These types of data organization and manipulation

schemes, however, may require a modification of the application’s algorithm and

associated system architecture which may introduce considerable overhead in hardware

and degrade overall performance. For this reason, data mapping should be judiciously

designed for any application targeted. The details of this process for the applications

considered in this thesis is outside the scope of our presentation.
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Chapter 6

Conclusions

The primary focus of this thesis is the design of energy-efficient, data-dependent SRAMs

equipped with reconfigurable prediction schemes and the methods by which application

data statistics may be utilized to identify optimal configurations. On-chip memories,

typically implemented using SRAMs due to their merit of high density, are known to

consume a disproportionate amount of power in today’s energy-constrained integrated

systems. A commonly discussed approach to reducing the power consumed by these

memories consists in lowering the supply voltage thereby inevitably introducing

stability issues for the SRAMs and hence requiring additional circuit assist techniques

to ensure proper functionality. This thesis addresses low power SRAM design in

application specific settings by proposing a reconfigurable data-dependent memory

framework that can be used to reduce the overall bit-line switching activity in the

SRAM. As a demonstration of this framework, a conditional pre-charge 10T bit-cell

paired with a reconfigurable dual prediction mode architecture was designed. A 16kbit

SRAM test chip incorporating this innovation was developed using a 28nm FD-SOI

CMOS technology. To optimally configure the presented SRAM for an arbitrary

application, this thesis additionally provides tools for statistical data analysis and

applied them to three example applications spanning digital signal processing, video
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coding, and computer vision. In order to facilitate the extension of this framework to

new applications, a systematic approach to configuring the prediction mode for each

SRAM column was developed.

In the remainder of this chapter, we summarize the key ideas and contributions

presented in this thesis and discuss a number of potential directions for future work.

6.1 Reconfigurable memory framework

In Chapter 3, a reconfigurable memory framework was presented wherein the com-

munication between software and memory hardware via a reconfigurable prediction

generation unit is emphasized. In this framework, application specific information

including data statistics are obtained using software in order to dynamically configure

memory hardware into its most energy-efficient mode, e.g. the mode which generates

the highest number of correct data predictions resulting in reduced overall bit-line

switching activity. In order to provide quantitative notions for the types of data

statistics we are interested in, the global correlation measure ⇢ as well as the local

correlation measure ↵0!1 were defined. Complete definitions and interpretations of ⇢

and ↵0!1 are provided in the discussion surrounding Eqs. 3.1 and 3.2 in Section 3.1,

respectively.

Continuing our discussion of this framework, a thorough analysis of the data-

dependent features of various memory designs was conducted via a custom dynamic

read power simulation program (Section 3.3). The utility of this analysis was in

evaluating the tradeoffs amongst these data-dependent memory models and then

identifying the best suited one(s) with respect to the presented framework. Specifically,

the simulation program computes the total power consumption of each SRAM column’s

read bit-lines parameterized using the bit-line capacitances and bit-line voltage swing

for any SRAM data input provided in one of three ways: specified by the user,
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synthesized using correlation parameters ⇢ and ↵0!1 , or profiled from an application.

In order to illustrate the procedure of organizing application data into the proposed

memory and configuring its prediction modes, a decision tree and the equivalent deci-

sion (⇢,↵0!1)-plane are provided in Section 3.4.1. Values of the statistical parameters

essential to the presented decision rule were determined in Section 4.2.2 via post-layout

simulation. As discussed in Chapter 5, this thesis also profiled data features for three

example applications: collision resolution in the sFFT algorithm, SVM classification

in object detection, and motion estimation in video coding. Results of this statistical

analysis were used to configure the prediction mode for each column of the associated

SRAMs independently.

6.2 Reconfigurable CP SRAM design in 28nm FD-

SOI CMOS

An example SRAM adhering to the proposed reconfigurable framework was the central

focus of Chapter 3 and is referred to as the reconfigurable CP SRAM. Specifically, a

10T memory bit-cell was developed for use with a novel conditional pre-charge scheme

that allows for power to be saved at the bit-lines whenever data is correctly predicted.

This memory array design significantly reduces the power overhead associated with

prediction switching in [26] and was the primary motivating factor for the development

of the PRD prediction scheme wherein the previous value read is used to generate the

new prediction value. Using our read power simulation program, PRD was proven to

save total bit-line power for data sets with various statistical features as compared

with arithmetic averaging using variable length window sizes. We also evaluated

the performance capabilities of the proposed CP SRAM using PRD against three

existing data-dependent memory models. A key conclusion from this evaluation is that

combined CP SRAM and conventional 8T SRAM results in the most power savings
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when the data is globally and/or locally correlated. This observation was incorporated

into our final design of a reconfigurable memory where column-wise prediction mode

configuration is made readily available. A hierarchical depiction of these proposed

contributions is illustrated by Fig. 6-1.

In Section 3.4.2, we presented a circuit-level implementation of the reconfigurable

CP SRAM. In particular, a compact column circuit endorsing reconfigurability was

developed in order to facilitate fast and robust bit-line sensing, prediction generation,

and prediction mode selection for each memory column independently. In Chapter 4,

the implementation of a 16kbit reconfigurable CP SRAM test chip in a 28nm FD-SOI

CMOS process is discussed. Architecture designs at several hierarchical levels are

presented as well as the associated physical design considerations. Finally, we provided

a number of selected post-layout simulation results which include the functional verifi-

cation of both operating modes of the SRAM and the simulated power consumption

of all possible single-bit read values and prediction settings. Using the power model

discussed in Section 4.2.2, we approximated the average read power consumption of

our proposed reconfigurable CP SRAM for the previously mentioned applications and

compared the result against three other SRAM models. The reconfigurable CP SRAM

was found to provide 14%, 20%, 4%, and 31% reductions in read power as compared

with a modeled conventional 8T SRAM for the SFFT coefficient SRAMs 1 and 2, the

SVM weights SRAM, and the ME reference pixel SRAM, respectively.

Reconfigurable Memory Framework

Figure 6-1: Hierarchy of the main thesis contributions.
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6.3 Future directions

We now state a number of potentially fruitful directions for continued research. A

more rigorous analysis of each of the data-dependent SRAM models addressed in

Section 3.3 could potentially enable further power saving through more accurate mode

configuration in the presented framework. For example, bit-line voltage swing �V

associated with small signal sensing versus large signal sensing as well as the cost of

bit-line/prediction-line switching for each of the considered memory models should

be carefully simulated and eventually included in the analysis tools presented in this

thesis.

Another potential direction for future work consists in developing a low-power

application-specific memory compiler using the results presented in this thesis. The

number of prediction and application-to-memory data mapping schemes considered

in identifying the most energy-efficient memory configuration for any given data

sequence should be expanded. Updating the memory configuration settings at run-

time based upon recent data inputs may also prove to be beneficial. However, the

consequences associated with the tradeoffs between power consumption, silicon area,

and performance need to be carefully analyzed. An additional compiler feature worth

exploring is the capability of comparing the performance between a reconfigurable data-

dependent SRAM and a conventional SRAM that additionally compresses incoming

data based on statistical measures such as correlation. Although compressed data

generally requires a smaller memory size and subsequently may save SRAM power

and area, the overall system power and area overhead may still be larger due to the

requirement of lossless and fast compression and decompression.

Finally, integration of the reconfigurable CP SRAM into larger digital systems or

microprocessors is desired to reduce their overall system power consumption.

95



96



Bibliography

[1] O. Abari, E. Hamed, H. Hassanieh, A. Agarwal, D. Katabi, A.P. Chandrakasan,
and V. Stojanovic. A 0.75-million-point fourier-transform chip for frequency-
sparse signals. In Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), 2014 IEEE International, pages 458–459, Feb 2014.

[2] C. M. Bishop. Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[3] F. Bossen. Common test conditions and software reference configurations. Docu-
ment jctvc-h1100, JCT-VC, San Jose, CA, February 2012.

[4] D. C. Brock. Understanding MooreâĂŹs Law: Four Decades of Innovation.
Chemical Heritage Foundation, 2006.

[5] B.H. Calhoun and A.P. Chandrakasan. A 256kb sub-threshold sram in 65nm
cmos. In Solid-State Circuits Conference, 2006. ISSCC 2006. Digest of Technical
Papers. IEEE International, pages 2592–2601, Feb 2006.

[6] H. Chang, J. Chen, B. Wu, C. Su, J. Wang, and J. Guo. A dynamic quality-
adjustable h.264 video encoder for power-aware video applications. Circuits and
Systems for Video Technology, IEEE Transactions on, 19(12):1739–1754, Dec
2009.

[7] I.J. Chang, D. Mohapatra, and K. Roy. A priority-based 6t/8t hybrid sram
architecture for aggressive voltage scaling in video applications. Circuits and
Systems for Video Technology, IEEE Transactions on, 21(2):101–112, Feb 2011.

[8] H. Fujiwara, K. Nii, H. Noguchi, J. Miyakoshi, Y. Murachi, Y. Morita,
H. Kawaguchi, and M. Yoshimoto. Novel video memory reduces 45% of bitline
power using majority logic and data-bit reordering. Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, 16(6):620–627, June 2008.

[9] M. Hahnle, F. Saxen, M. Hisung, U. Brunsmann, and K. Doll. Fpga-based
real-time pedestrian detection on high-resolution images. In Computer Vision
and Pattern Recognition Workshops (CVPRW), 2013 IEEE Conference on, pages
629–635, June 2013.

97



[10] H. Hassanieh, P. Indyk, D. Katabi, and E. Price. Simple and practical algorithm
for sparse fourier transform. In Proceedings of the Twenty-third Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’12, pages 1183–1194. SIAM,
2012.

[11] H. Hassanieh, L. Shi, O. Abari, E. Hamed, and D. Katabi. Ghz-wide sensing and
decoding using the sparse fourier transform. In INFOCOM, 2014 Proceedings
IEEE, pages 2256–2264, April 2014.

[12] W. Kong, R. Venkatraman, R. Castagnetti, F. Duan, and S. Ramesh. High-density
and high-performance 6t-sram for system-on-chip in 130 nm cmos technology. In
VLSI Technology, 2001. Digest of Technical Papers. 2001 Symposium on, pages
105–106, June 2001.

[13] T.A. Lahlou and A.V. Oppenheim. Unveiling the tree: A convex framework for
sparse problems. In Proceedings of the 40th IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), page unavailable, May 2015.

[14] J. S. Lim. Two-Dimensional Signal and Image Processing. Prentice-Hall, 1989.

[15] P. Magarshack, P. Flatresse, and G. Cesana. Utbb fd-soi: A process/design
symbiosis for breakthrough energy-efficiency. In Design, Automation Test in
Europe Conference Exhibition (DATE), 2013, pages 952–957, March 2013.

[16] R. V. Menon, S. Chennupati, N. K. Samala, D. Radhakrishnan, and B. Izadi.
Switching activity minimization in combinational logic design. In nternational
Conference on Embedded Systems and Applications, pages 47–53, June 2004.

[17] K. Mizuno, Y. Terachi, K. Takagi, S. Izumi, H. Kawaguchi, and M. Yoshimoto.
Architectural study of hog feature extraction processor for real-time object
detection. In Signal Processing Systems (SiPS), 2012 IEEE Workshop on, pages
197–202, Oct 2012.

[18] G.E. Moore. Cramming more components onto integrated circuits. Proceedings
of the IEEE, 86(1):82–85, Jan 1998.

[19] Y. Murachi, T. Matsuno, K. Hamano, J. Miyakoshi, M. Miyama, and M. Yoshi-
moto. A 95mw mpeg2 mp@hl motion estimation processor core for portable high
resolution video application. In VLSI Circuits, 2005. Digest of Technical Papers.
2005 Symposium on, pages 212–215, June 2005.

[20] B. Myers, J. Burns, and J. Ratell. Embedded electronics in electro-mechanical
systems for automotive applications. SAE Technical Paper, page unavailable,
2001.

[21] H. Noguchi, Y. Iguchi, H. Fujiwara, Y. Morita, K. Nii, H. Kawaguchi, and
M. Yoshimoto. A 10t non-precharge two-port sram for 74% power reduction in
video processing. In VLSI, 2007. ISVLSI ’07. IEEE Computer Society Annual
Symposium on, pages 107–112, March 2007.

98



[22] J. Oh, G. Kim, I. Hong, J. Park, S. Lee, J. Kim, J. Woo, and H. Yoo. Low-power,
real-time object-recognition processors for mobile vision systems. IEEE Micro,
32(6):38–50, 2012.

[23] K. Osada, Y. Saitoh, E. Ibe, and K. Ishibashi. 16.7 fa/cell tunnel-leakage-
suppressed 16 mb sram for handling cosmic-ray-induced multi-errors. In Solid-
State Circuits Conference, 2003. Digest of Technical Papers. ISSCC. 2003 IEEE
International, pages 302–494 vol.1, Feb 2003.

[24] J.M. Rabaey, A.P. Chandrakasan, and B. Nikolic. Digital Integrated Circuits.
Pearson Prentice-Hall, 2003.

[25] R. Rithe, C. Cheng, and A.P. Chandrakasan. Quad full-hd transform engine for
dual-standard low-power video coding. Solid-State Circuits, IEEE Journal of,
47(11):2724–2736, Nov 2012.

[26] M.E. Sinangil and A.P. Chandrakasan. Application-specific sram design using
output prediction to reduce bit-line switching activity and statistically gated
sense amplifiers for up to 1.9x lower energy/access. Solid-State Circuits, IEEE
Journal of, 49(1):107–117, Jan 2014.

[27] M.E. Sinangil, A.P. Chandrakasan, V. Sze, and M. Zhou. Hardware-aware motion
estimation search algorithm development for high-efficiency video coding (hevc)
standard. In Image Processing (ICIP), 2012 19th IEEE International Conference
on, pages 1529–1532, Sept 2012.

[28] M.E. Sinangil, A.P. Chandrakasan, V. Sze, and M. Zhou. Memory cost vs. coding
efficiency trade-offs for hevc motion estimation engine. In Image Processing
(ICIP), 2012 19th IEEE International Conference on, pages 1533–1536, Sept
2012.

[29] M.E. Sinangil, M. Yip, M. Qazi, R. Rithe, J. Kwong, and A.P. Chandrakasan.
Design of low-voltage digital building blocks and adcs for energy-efficient systems.
Circuits and Systems II: Express Briefs, IEEE Transactions on, 59(9):533–537,
Sept 2012.

[30] Y. Sinangil and A.P. Chandrakasan. An embedded energy monitoring circuit
for a 128kbit sram with body-biased sense-amplifiers. In Solid State Circuits
Conference (A-SSCC), 2012 IEEE Asian, pages 69–72, Nov 2012.

[31] J. Singh, S. P. Mohanty, and D. K. Pradhan. Robust SRAM Designs and Analysis.
Springer Science + Business Media New York, Inc., 2013.

[32] A. Suleiman and V. Sze. Energy-efficient hog-based object detection at 1080hd
60 fps with multi-scale support. In Signal Processing Systems (SiPS), 2014 IEEE
Workshop on, pages 1–6, Oct 2014.

99



[33] K. Takagi, K. Mizuno, S. Izumi, H. Kawaguchi, and M. Yoshimoto. A sub-100-
milliwatt dual-core hog accelerator vlsi for real-time multiple object detection.
In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International
Conference on, pages 2533–2537, May 2013.

[34] K. Takeda, Y. Hagihara, Y. Aimoto, M. Nomura, Y. Nakazawa, T. Ishii, and
H. Kobatake. A read-static-noise-margin-free sram cell for low-vdd and high-speed
applications. Solid-State Circuits, IEEE Journal of, 41(1):113–121, Jan 2006.

[35] A. C. Team. Fundamentals of Global Positioning System Receivers: A Software
Approach. Wiley-Interscience, 2000.

[36] J. Vanne, M. Viitanen, and T.D. Hamalainen. Efficient mode decision schemes
for hevc inter prediction. Circuits and Systems for Video Technology, IEEE
Transactions on, 24(9):1579–1593, Sept 2014.

[37] N. Verma. Ultra-Low-Power SRAM Design In High Variability Advanced CMOS.
PhD thesis, Massachusetts Institute of Technology, 2009.

[38] Swee Yeow Yap and J.V. McCanny. A vlsi architecture for variable block size video
motion estimation. Circuits and Systems II: Express Briefs, IEEE Transactions
on, 51(7):384–389, July 2004.

[39] K. Zhang, K. Hose, V. De, and B. Senyk. The scaling of data sensing schemes
for high speed cache design in sub-0.18 µm technologies. In VLSI Circuits, 2000.
Digest of Technical Papers. 2000 Symposium on, pages 226–227, June 2000.

100


