
Computational Complexity of Certain Quantum Theories
in 1+1 Dimensions

by

Saeed Mehraban

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2015

c○Massachusetts Institute of Technology 2015. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 28, 2015

Certified by .
Scott Aaronson

Associate Professor of EECS
Thesis Supervisor

Accepted by. .
Professor Leslie A. Kolodziejski

Chair, Department Committee on Graduate Students

2

Computational Complexity of Certain Quantum Theories in 1+1

Dimensions

by

Saeed Mehraban

Submitted to the Department of Electrical Engineering and Computer Science
on August 28, 2015, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract
While physical theories attempt to break down the observed structure and behavior of pos-
sibly large and complex systems to short descriptive axioms, the perspective of a computer
scientist is to start with simple and believable set of rules to discover their large scale
behaviors. Computer science and physics, however, can be combined into a new frame-
work, wherein structures can be compared with each other according to scalar observables
like mass and temperature, and also complexity at the same time. For example, similar
to saying that one object is heavier than the other, we can discuss which system is more
complex. According to this point of view, a more complex system can be interpreted as the
one which can be programmed to encode and simulate the behavior of the others within
its own degrees of freedom. Within this framework, at the most fundamental layer, phys-
ical systems are related to languages. In this thesis, I try to exemplify this point of view
through an analysis of certain quantum theories in two dimensional space-time. In sim-
ple words, these models are the quantum analogues of elastic scattering of colored balls
moving on a line. The models are closely related to each other in both relativistic and
non-relativistic regimes. Physical examples that motivate this are the factorized scattering
matrix of quantum field theory, and the repulsive delta interactions of quantum mechanics,
in 1+1 dimensions. In classical mechanics, when two hard balls collide, they bounce off
and remain in the same order. However, in the quantum setting, during a collision, either
the balls bounce off, or otherwise they tunnel through each other, and exchange their con-
figurations. Each event occurs with a certain probability. As a result, moving balls are put
in a superposition of being in different color configurations. Thereby, if we consider n dis-
tinct balls, the state space is according to their n! possible arrangements, and their collisions
act as quantum transpositions. Quantum transpositions can then be viewed as local quan-
tum gates. I therefore consider the general Hilbert space of permutations, and study the
space of unitary operators that can be generated by the local permuting gates. I first show
that all of the discussed quantum theories can be programmed into an idealized model, the
quantum ball permuting model, and then I will try to pin down the language of this model
within the already known complexity classes. The main approach is to consider a series
of models, as the variations of the ball scattering problem, and then to relate them to each

3

other, using tools of computational complexity and quantum complexity theory. I find that
the computational complexity of the ball permuting model depends on the initial superpo-
sition of the balls. More precisely, if the balls start out from the identity permutation, the
model can be simulated in a one clean qubit, which is believed to be strictly weaker than
the standard model of quantum computing. Given this upper-bound on the ball permuting
model, the result is that the model of ball scatterings can be simulated within a one clean
qubit, if they start out from an identity permutation. Furthermore, I will demonstrate that
if special superpositions are allowed in the initial state, then the ball permuting model can
efficiently simulate and sample from the output distribution of standard quantum comput-
ers. Next, I show how to use intermediate demolition ball detections to simulate the ball
permuting model nondeterministically. According to this result, using post-selection on the
outcome of these measurements, one obtains the original ball permuting model. Therefore,
the post-selected analogue of ball scattering model can efficiently simulate standard quan-
tum computers, when arbitrary initial superpositions are allowed. In the end, I formalize
a quantum computer based on ball collisions and intermediate ball detections, and then I
prove that the possibility of efficient simulation of this model on a classical computer is
ruled out, unless the polynomial hierarchy collapses to its third level.

Thesis Supervisor: Scott Aaronson
Title: Associate Professor of EECS

4

Acknowledgments

Above all, I would like to express my utmost gratitude to my advisor Scott Aaronson for

his patience, unlimited wisdom, enthusiasm and continuous support during the time I was

working on this thesis. He has been a supportive mentor, and I extremely value our dis-

cussions. I would like to thank Professor Kuperberg for invaluable discussions. I am spe-

cially indebted to Professor Schmidt, my academic advisor for his aspiring guidance, and

to Professor Kolodziejski for her kind support throughout. I am thankful to Adam Bouland

for valuable discussions and for mentoring me in research. I would like to thank Hamed

Pakatchi, Usman Naseer and Hossein Esfandiary for insightful discussions. Last but not

least, as I have always been, I am grateful to my family, specially my Parents and my

Sisters; I wouldn’t be who I am today, if it wasn’t because of them.

5

6

Contents

1 Introduction 11

1 Motivating lines . 11

2 Methods and Summary of the results . 13

3 Summary of the Chapters . 14

2 Computability Theory and Complexity Theory 17

1 Alphabets . 17

2 Turing Machines . 18

3 The Complexity Theory of Decidable Languages 23

4 The Polynomial Hierarchy . 26

5 Circuits . 28

3 Quantum Theory and Quantum Complexity Theory 31

1 Quantum Mechanics . 31

1.1 A word on Special Relativity . 33

1.2 The Scattering Matrix . 34

2 Some Quantum Models in 1+1 Dimensions 37

2.1 Semi-classical Approximation to the Model 47

3 Quantum Complexity Theory . 48

4 The One Clean Qubit . 56

5 Complexity Classes with Post-Selection 58

6 Some Remarks on Lie Algebras . 59

7

4 Computational Complexity of Particle Scattering and Ball Permuting Models 61

1 Classical Computation with Probabilistic Swaps 61

1.1 The Symmetric Group . 61

1.2 The Classical Ball Permuting Model 64

1.3 The Yang-Baxter Equation . 66

2 General Hilbert Space of Permutations . 68

2.1 The Yang-Baxter Equation . 72

2.2 The Class of Quantum Ball-Permuting Languages 76

2.3 A Flash-forward to the Final Results 77

3 Upper-bounds . 78

3.1 XQBALL on Separable States . 84

4 The Scattering Quantum Computer with Demolition Intermediate Mea-

surements . 88

4.1 Programming the Scattering Amplitudes with Intermediate Particle

Detections . 90

4.2 Stationary Programming of Particle Scatterings 92

4.3 3-particle Gadgets with Non-demolition Measurements 94

5 Lower-bounds . 104

5.1 ZQBALL= BQP . 104

5.2 Arbitrary Initial States . 106

6 Evidence for the Hardness of Classical Simulation of the Scattering Quan-

tum Computer . 132

7 Open Problems and Further Directions 138

8 Conclusion . 140

8

List of Figures

3-1 Factorization of the scattering matrix . 42

3-2 Line representation of the Yang-Baxter equation 43

3-3 Examples of equivalent factorized diagrams 43

3-4 Relationship between general linear, unitary and orthogonal groups 50

4-1 Nondeterministic four particle gadget which allows braiding of the balls . . 93

4-2 Nondeterministic two particle gadget to navigate the particles 94

4-3 Example of the simulation of a ball permuting circuit with nondeterministic

ball scattering gadgets . 95

4-4 Another example of ball permuting simulation in nondeterministic ball

scattering . 96

4-5 Nondeterministic stationary ball scattering gadget to simulate an X operator 97

4-6 Examples of stationary programming of an X circuit into ball scattering . . 98

4-7 Nondeterministic three particle gadget to simulate an X operator with non-

demolition measurements . 99

4-8 An example of a path model . 130

9

10

Chapter 1

Introduction

1 Motivating lines

What [3] happens when computer science meets physics? The Church-Turing thesis states

that all that is computable in the physical universe is also computable on a Turing machine

[3, 46]. Other than a mathematical statement, this is a conjecture about a fundamental rule

in theoretical physics. An outstanding discovery of computability theory was the exis-

tence of undecidable problems [51]; problems that are not decidable by Turing machines.

Therefore, the Church-Turing thesis can be falsified if there exists a physical model that

is programmable to decide an undecidable problem. The Church-Turing thesis was then

further extended to another conjecture that: all that is efficiently computable in the physical

universe is also efficiently computable by a probabilistic Turing machine. An efficient pro-

cess is defined to be the one which answers a question reliably after polynomial time in the

number of bits that specify the question itself. The extended Church-Turing thesis sounds

to be defeated by the laws of quantum physics, as the problem of factoring large numbers

is efficiently solvable on a quantum computer [44], while yet no polynomial time proba-

bilistic algorithm is not known for it. If this is true, then the revised thesis is that all that is

efficiently computable in the physical universe, is also efficiently computable on a quantum

computer. Given this illustration, a natural approach is to classify the available physical

theories with their computational power, both according to the notion of complexity and

computability [1]. There are variety of known examples that are equivalent to classical

11

Turing machines [1, 49, 52, 56], and also other equivalents of the standard quantum com-

puters [26, 40]. Among the available computing models are those that are believed to be

intermediate between classical polynomial time and quantum polynomial time [4, 31, 37].

These are models that are probably strictly weaker than standard quantum computers, but

they still can solve problems that are believed to be intractable on a classical computer.

Besides a theory of decidable languages, complexity theory, as is manifest in its title, pro-

vides means to compare objects with respect to their complexity. This is well defined for

languages, and is given by reduction from a language to the other. Intuitively, a reduction

is of programming an object in to the shape of another object. The language of a physical

system can be interpreted both as the relationship between the description of the system and

the existence of a property in it, or the relationship between the initial states and a property

in the final states. The latter can somehow be viewed as the special case of the first one.

Therefore, viewing models as their languages, complexity theory can provide grounds to

define a complex system.

In this thesis, I try to apply these ideas to some physical theories, involving scattering

of particles. The objective is to realize if these models are efficiently programmable, and

if so, what languages? Moreover, I am interested in upper-bounds, ı.e., models that can ef-

ficiently accept a reduction from these. Scattering amplitudes are central to quantum field

theory and quantum theory of scattering particles [10]. They relate the asymptotic initial

states of a quantum system to the final states, and therefore they can be viewed as notable

observables of quantum theory. While in general scattering amplitudes are sophisticated

objects, in integrable theories of 1+1 dimensions [9, 47] they take simple forms, and can

be described by a single diagram with four-particle vertices. These diagrams encode the

overall scattering matrix, whose functionality can be placed in one to one correspondence

with permutations of finite element sets [55]. A crucial element of these integrable theories

is a factorized scattering matrix [57]. In this case, the scattering matrix can be decom-

posed as a product of local unitary scattering matrices. These local matrices satisfy the

well-known Yang-Baxter [14, 55] relations, and it can be demonstrated that Yang-Baxter

relations impose special symmetries on the diagrams in a way that each diagram can be

consistently assigned to a permutation. Such drastic simplification is directly related to

12

the existence of an infinite family of conservation rules, first noticed by Zamolodchikov

et. al. [58]. In general, a unitary scattering matrix is a manifold of dimension exponential

in the number particles. However, it can be shown that the infinite family of conservation

rules shrinks the number of degrees of freedom drastically, so that the matrix as a manifold

can be embedded in a manifold of linear dimensionality.

2 Methods and Summary of the results

Given these amazing features of the integrable quantum models, it is interesting to use the

tools from complexity theory to understand how complex these models are. Specifically,

I analyze the situation, where all the particles are distinguishable. In the sense of quan-

tum field theory, this is the situation where infinite colors are allowed. Language within

the framework of quantum mechanics is the subject of quantum computation and quantum

information, and I will employ these tools over and over. The standard model of language

in quantum computation is the class BQP, which is the set of problems that are efficiently

verifiable by local quantum circuits, and a quantum model is called BQP-universal if it

can recognize the same set of languages. Bits of quantum information are called qubits, the

states of a system which can take two states in a superposition. Therefore, in order to have a

reference of comparison, I will try to relate the state space of the integrable quantum theory

of scattering to bits and qubits. My approach is to define different variations of the scat-

tering model, as new models, and prove reductions between them one by one. Therefore,

given a tower of models, I will find corresponding upper-bounds and lower-bounds.

I define the ball permuting model as a quantum models with a Hilbert space consisting

of permutations of a finite element set as its orthogonal basis. Then, the gates of ball per-

muting model act by permuting states like |x,y⟩ according to |x,y⟩→ c|x,y⟩+ is|y,x⟩, where

x and y are members of a finite element set, and c and s are real numbers with c2 + s2 = 1.

This model is an upper-bound on the particle (ball) scattering model. I prove that if the ball

permuting model starts out of an initial state according to |123 . . .n⟩, then the model can

be simulated within the one clean qubit [37]. Moreover, I demonstrate that if the model is

allowed to start out from arbitrary initial states, then there is a way to simulate BQP within

13

the ball permuting model. I also consider a variant of the ball permuting model, wherein

the action of the gates are according to |x,y⟩ → cx,y|x,y⟩+ isx,y|y,x⟩. Here cx,y and sx,y are

real numbers that depend on the labels x and y only, and also c2
x,y + s2

x,y = 1. I will demon-

strate that this model can directly simulate BQP on any initial state, including the identity

|123 . . .n⟩. After that, I do a partial classification on the power of ball permuting model on

different initial states. The classification is according to the Young-Yamanouchi orthonor-

mal basis [30], which form the irreducible representations of the symmetric group. Lastly,

I prove that if we allow intermediate demolition measurements on the scattering outcomes

of the mentioned integrable quantum models, then the overall scattering matrix can take

exponentially large number of degrees of freedom. After that, I use post-selection [2], as

a mathematical tool to prove that if the scattering particles are allowed to start from arbi-

trary initial superpositions, then the model of particle scattering with intermediate demoli-

tion particle detections cannot be simulated efficiently with polynomial time probabilistic

algorithms, unless a drastic situation occurs in complexity theory: the polynomial hierar-

chy [11] collapses to its third level.

3 Summary of the Chapters

The thesis consists of three chapters. In chapter 1, I review the essential backgrounds about

computability and complexity. I start by defining alphabets, and proceed to the Turing

machine as the well-accepted model of computation. After discussing some ingredients of

computability theory, I will talk about complexity theory, and bring the definitions for the

well-known complexity classes that are related to this thesis. Then I finish the survey on

classical computation by circuits, which are essential ingredients of quantum computing.

In chapter two, I quickly review quantum mechanics in a nutshell, and end my dis-

cussion with scattering amplitudes and quantum field theory. Given the backgrounds from

quantum physics, I talk about quantum complexity theory, as complexity theory written on

a background of quantum mechanics. After that, I introduce the integrable models both in

quantum field theory, and quantum mechanics.

Chapter 3 is dedicated to the results. As the symmetric group is an important element

14

of integrable quantum theories, I brought some notes about it in the beginning of the chap-

ter. Before jumping to the computational complexity of the models, I talk a little about a

classical analogue of the ball permuting model. After that, I formally define the languages

and the variants of the ball permuting model, and pin them down withing the known com-

plexity classes. Specifically, I prove that the model of ball permuting on the initial state

|123 . . .n⟩ can be efficiently simulated within the one clean qubit. This immediately gives

an upper-bound of one clean qubit on the scattering models on this initial state. Then I

introduce a ball scattering computer with intermediate measurements. In order to partially

classify ball permuting model on different initial states, I borrow tools from the decoher-

ence free subspaces theory and representation theory of the symmetric group. So I wrote

a short review of these at the middle of this chapter. After the classification, I demonstrate

explicitly how to program the ball permuting model to simulate models of BQP, if we are

allowed to initialize the ball permuting model in any way that we want. Then in the end,

I put everything together to demonstrate that the output distribution of the ball scattering

computer cannot be simulated efficiently, unless the polynomial hierarchy collapses.

15

16

Chapter 2

Computability Theory and Complexity

Theory

1 Alphabets

An alphabet Σ is a finite set of symbols. Alphabets can be combined to create strings (sen-

tences). For example, if Σ= {0,1}, then any combination like 01110 is a string over this al-

phabet. The set of strings (sentences) over an alphabet Σ is denoted by Σ? := {w1w2 . . .wk :

w j ∈ Σ,k ≥ 0}. The length of a string w = w1w2 . . .wk is simply the number of alphabets

which construct the string denoted by |w| := k. Notice that in the definition of Σ? the length

of a string can be 0 (k = 0). An empty string ε ∈ Σ? is thereby defined to be a string of

length 0. We can alternatively write Σ? := {ε}∪{w1w2 . . .wk : w j ∈ Σ,k ≥ 1}. An alpha-

bet of length zero is called an empty alphabet, and the set of strings over this alphabet by

definition only contains an empty string. The set of strings over alphabet Σ of length n is

denoted by Σn. Clearly |Σn|= |Σ|n. An alphabet of length 1 is called a unary alphabet and

the sentences over this alphabet are isomorphic to {1n : n≥ 0} ∼= N. An alphabet of length

2 is called a binary alphabet. We denote an alphabet of length k by Σk. Also, throughout

we denote Zt := {0,1,2, . . . , t− 1}. All alphabets larger than binary are equivalent in the

following sense. In the following sections by A ∼= B for two sets A and B, it is meant that

there is a one-to-one function which maps the elements of A to B and vice versa.

17

Proposition 2.1. Σ?
0
∼= Z1, Σ?

1
∼= N, and for t ≥ 3, Σ?

2
∼= Σ?

t
∼= R.

Proof. The first two are clear since Σ?
0 = {ε} and Σ?

1
∼= {ε}∪{1n : n > 0}. In order to see

the third one, notice that Σt ∼=Zt . In order to see Σ?
2
∼= Σ?

t
∼=R, first notice that Σ?

t
∼=Z?

t . For

w ∈ Z?
t , consider the map w ↦→ 0.w as the (base t) decimal representation of a number in

[0,1]. This map is a bijection between the set of infinite strings and [0,1]∼=R. Also consider

a bijection between the set of finite strings and N. Any finite string can be written as 0lw

where l ≥ 0 and w starts with a nonzero element, thereby there is a bijection 0lw ↦→ (l,w),

between the set of finite string and N×N∼= N. Therefore, for any t ≥ 2 there is a bijection

between Σ?
t and [0,1]∪N ∼= R. Consider any such bijections, between Σ?

2 and R, and

between Σ?
t and R, combine them together to get a bijection between Σ?

2 and Σ?
t .

2 Turing Machines

A language L over the alphabet Σ is defined as a subset L⊆ Σ? ı.e. A language is a selection

of sentences. A selection is in some sense a mechanical process. Given a language, and any

string, we wish to distinguish if the string is contained in the language or not. A machine is

thereby an abstract object which is responsible for this mechanical selection. At this point

the formal definition of such object is unclear, and we need make an extra assumption:

machines are logical or physical. There are two directions to this. Firstly, a computing

procedure should go through several causal steps. Like a mathematician writing down a

mathematical proof on a piece of paper. The other direction for this is that a machine is a

physical system. Physical systems are embedded in space and time and their evolution is

causal. The first of these directions was fulfilled by Alan Turing [51], when he introduced

the Turing machine. A Turing machine is in some sense a model of a mathematician who

is writing down on a proof on a piece of paper.

More formally, a Turing machine (TM) has a set of finite states (control) Q, a one

dimensional unbounded tape, and a head (pointer) on the tape which can read/write from/on

the tape. We can assume that the tape has a left-most cell and it is unbounded from the right.

Initially, the machine is in a specific initial state q0 ∈Q, and the tape head is in the left most

18

cell. The input is initially written on the tape and the rest of the tape is blank. The input

might just be blank. We specify an alphabet Σ for the input according to the language we

wish to recognize. However a different alphabet Γ can be used for the tape. Γ must contain

Σ and an extra letter b as the blank symbol. The machine evolves step by step according to a

transition function δ . A transition function inputs the current state (p ∈Q) of the machine,

and the content of the current tape cell x, and based on these, outputs q ∈ Q as the next

state, y ∈ Γ as the content to be written on the current cell, and a direction Le f t or Right as

the next direction of the head. For example δ (p,x) = (q,y,L), means that if the TM reads

x in state p, it’ll write y instead of x goes to the state q and the head goes to the left on

the tape. If at some point the machine enters a special state qy, then it will halt with a yes

(accepting) answer. There is another state qn to which if the machine enters, it will halt

with a no (rejecting) answer.

Definition 2.1. A (Deterministic) Standard Turing machine is a 7-tuple (Σ,Γ,Q,q0,qy,qn,δ ,D :=

{L,R}). Where Σ is the input alphabet, and Γ⊇ Σ is the tape alphabet. Q is the finite set of

states of the machine, q0 ∈ Q is the unique starting state, qy and qn ∈ Q are the accepting

and rejecting halting states, respectively. δ : Q×Γ→ Q×Γ×D is the transition function.

The Standard Turing machine has a single tape isomorphic to N with a single head.

Any Turing machine corresponds to a languages, and informally all accessible (enu-

merable) languages correspond to Turing machines. In computer science this statement is

recalled after Church and Turing:

The Church Turing Thesis: "All that is computable in the Physical Universe is

Computable by a Turing machine."

Such statement is a concern of scientific research in the sense that it is falsifiable, and

can be rejected if one comes up with architecture of a physical computing device whose

language corresponds to a language that is undecidable by Turing machines. Yet, still the

Church-Turing Thesis has not refused a thought experiment.

We formally classify Languages according to their relation to the class of Turing ma-

chines.

19

Definition 2.2. A language L over the alphabet Σ is called Turing Recognizable if there is

a single tape Standard Turing machine M such that for every x ∈ Σ?, x ∈ L if and only if M

accepts x. In this case we say that M recognizes L. The language L is called Decidable if

there is a Standard Turing machine M which recognizes L and moreover, for any x ∈ Σ?, M

halts. A function f : Σ?→ Σ? is called computable if there is a Turing machine M such that

M run on x halts with y on its tape iff f (x) = y.

We say a Turing machine halts on the input x∈ Σ?, if after finite transitions the machine

ends up in either state qy or qn. We say the Turing machine accepts the input if it ends up

in qy, otherwise, if it does not halt or if it ends at qn the input is said to be rejected. We

can make several conventions for the transition and the structure of a Turing machine. For

example, we can think of a Turing machine with multiple finite tapes. Moreover, in the

defined version of the Turing machine, we assumed that at each step the tape head either

moves left of right. We can think of a Turing machine wherein the head can either move to

left or right or stay put. Thereby, we define a transition stationary if the tape head stays put,

and define it moving if it moves. Also the geometry of the tape itself can differ. In the model

we discussed the geometry of the tape cell is isomorphic to N with a single tape head. We

can discuss tapes of geometry isomorphic to Z, ı.e. a discrete line which is infinite from

both sides. Moreover, for any finite c≥ 1 we can think of tapes of geometry Zc or Nc with a

single tape head. Although these models each can give rise to different complexity classes,

in terms of computability, we can show that all of these cases are equivalent.

At this point it is tempting to prove that there exists at least a language that is not

decidable by a Turing machine. We mentioned that the space of languages is according to

Lang = {L ⊆ Σ? : Σ is finite}. We just proved that for any alphabet Σ larger than unary,

Σ? ∼= R. The set of subsets of Σ? is a set larger than R, meaning that there is no bijection

from it to R. The following proposition formalizes this fact:

Proposition 2.2. The set of subsets of any set larger than empty cannot be counted by the

original set.

Proof. This true for finite sets, since given any set of n elements the set of subsets has 2n

elements. Suppose that A is an infinite set, and suppose as a way of contradiction that 2A

20

(the set of subsets) can be counted by A. Then there is a bijection f : A→ 2A. Given the

existence of f consider the subset of A, P = {x ∈ A : x /∈ f (x)}, and we claim that this

subset cannot be counted by A, which is a contradiction. Suppose that P has a pre-image,

so ∃a ∈ A, f (a) = P. Then a ∈ P if and only if a /∈ f (a) = P.

Given this nice fact, we observe that the space of languages cannot be counted by R.

However, most of the languages are inaccessible to a physical machine, ı.e. a physical

machine can recognize an input that has finite length. Thereby we consider the set of

accessible languages as those that have finite length. This corresponds to the set of subsets

of the subset of Σ? that has all finite sentences. The set of finite sentences can count N

and thereby its subset cannot be counted by N. It suffices to prove that the space of Turing

machines is countable by N and this implies that at least there exists a language that is

not captured by Turing machines, or more precisely is not Turing recognizable. Hence

a quest for counterexamples to Church-Turing Thesis is a concern for us. This is a non-

constructive proof, we indeed can mention specific languages that are not decidable by a

Turing machine. For example given the description of a Turing machine and its input, the

problem of deciding if the machine accepts the input is undecidable. Moreover, given the

description of two Turing machines, the problem of deciding whether they recognize the

same language is not Turing Recognizable.

Definition 2.3. NN := {(x1,x2, . . . ,xn) : n ∈ N,x j ∈ N, j ∈ [n]}.

We can view NN as the space of finite tuples.

Proposition 2.3. (Gödel [28]) N∼= NN, with a computable map.

Proof. We give an injection g : NN → N. Given any X = (x1,x2, . . . ,xn) ∈ NN, construct

f (X) = px1
1 px2

2 . . . pxn
n . Clearly, non-equal tuples are mapped to non-equal natural numbers.

Also the map is invertible since any natural number is uniquely decomposed into a prime

factorization. The map is computable, since given any n-tuple one finds the first n primes

and constructs the image as multiplications.

Proposition 2.4. The Turing machines can be counted by natural numbers.

21

Proof. It suffices to find a computable one-to-one embedding of T M into NN. Each Turing

machine M is a finite tuple. We need to make a precise convention to distinguish between

different machines. We give each imaginable symbol a natural number. These symbols

correspond to the input and tape alphabets, name of the machine states, and the left/right

(or possibly stay put) symbols. The following is one possible embedding:

M ↦→ 2|Σ|3|Γ|5|Q|pΣ . . . pΣ pΓ . . . pΓ

pq0 pqy pqn pD pq1,Γ1,q2,Γ2,D . . . pq1,Γ1,q2,Γ2,D

Here we show the sequence of primes multiplied together with some encoding of the

symbols for the set A as powers by pA . . . pA. In order to avoid adding a new symbol for a

delimiter we first specify the size of the sets by 2|Σ|3|Γ|5|Q|. Thereby, the next |Σ| primes

written as pΣ . . . pΣ as the encoding of the alphabet symbols and so on. Next, the symbol

corresponding to the starting, and halting states is specified. Then the map specifies the

direction D symbols. Next we need to specify the transition function. A transition function

can be specified by a set of 5-tuples of symbols. Each 5-tuple is written as the notation

q1,Γ1,q2,Γ2,D, corresponding to one of the relations δ (q1,Γ1) = (q2,Γ2,D). Therefore,

each of these relations is specified by the multiplication of 5 consecutive primes.

Given a Turing machine of symbols clearly there is a Standard Turing machine which

converts the description to the discussed standard form and then multiplies the numbers and

outputs the binary representation of the image natural number. Given any natural number,

a Standard Turing machine can factorize the number and sort it according to the ascending

prime power representation, and thereby checks if the description corresponds to a valid

Turing machine description. The machine rejects if the description is not valid otherwise

it will output the description of the Turing machine into any other computable description.

Corollary 2.5. The following statements should be true:

∙ There is a language that is not recognizable by any Turing machine.

22

∙ There is a real number that is not computable.

3 The Complexity Theory of Decidable Languages

By definition, for any decidable language there exists a Turing machine which always halts

in certain amount of time and space. One way of classifying these languages is based on

the minimum amount of time (space) of a Turing machine that decides the language. In

order to classify the languages, then we need a partial (or total order). For this we use

the inclusion ⊆ relation among the languages. Inclusion is a partial order and there are

those languages that are incomparable. However, the inclusion map has been found to be a

natural one [46].

Definition 2.4. For any f :N→N, A language L is in time TIME(f) (SPACE(f)) if there is

a Standard Turing machine M which on any input x of size n := |x|, it halts using O(f (n))

time steps (tape cells of space) and x ∈ L if and only if M accepts L. For f ,g : N→ N,

a language is said to be in TISP(f ,g) (TIMESPACE) if there is a Turing machine which

recognizes the language and halts on every input after O(f (n)) time using O(g(n)) space.

We therefore define P := TIME(nO(1)) and PSPACE := SPACE(nO(1)).

Next, I mention the concept of nondeterminism:

Definition 2.5. For any f ,g : N→ N the language L ∈ NTIME(f) (NSPACE(f)) with g

long witness if there is a Standard Turing machine M, which halts in TIME(f) and x ∈ L

if and only if there exists a string |y| ∈ O(g(|x|)) such that M(x,y) = 1 (accepts). For poly

long witnesses, g∈ nO(1) we define NP :=NTIME(nO(1)) PSPACE :=NSPACE(nO(1)), and

NL := NSPACE(O(logn)).

One can think of a nondeterministic version of a Turing machine in which the machine

starts out of a unique initial state q0 on some input x∈ Σ?. At each step the computation can

branch according to a nondeterministic transition function. At each step depending on the

content of the tape head and the current state, the machine can nondeterministically transit

to one state, write some symbol and choose a direction among the finitely many available

options. A nondeterministic transition function therefore specifies these options at each

23

point. The running time of a nondeterministic Turing machine is the longest running time

among these branches. The machine accepts the input if there exists an accepting branch

and rejects otherwise.

Definition 2.6. A standard nondeterministic Turing machine is a 7-tuple (Σ,Γ,Q,q0,qy,qn,δ ,D :=

{L,R}). Everything in the definition is similar to a (Deterministic) Turing machine except

for the transition function which is the map to the set of subsets δ : Q×Γ→ 2Q×Γ×D. Com-

putation starts out in q0, and at each step if the machine is in state q and reads a symbol a,

in the next step it nondeterministically according to one of (q′,a′,d) ∈ δ (q,a) ı.e. writes

a′ on the current cell, goes to state q′, and moves the head to right if d = R and to the left

otherwise. Each such nondeterministic choice is called a branch of nondeterministic com-

putation. Input is accepted if at least of the branches of the nondeterministic computation

transits to qy state, and is rejected otherwise.

Intuitively, NP is the class of languages that have checkable proof (witness). For exam-

ple consider the following language:

SAT= {φ : {0,1}n→{0,1}|φ is in the

CNF form and has a satisfiable assignment}

A CNF formula consists of a number of clauses C1,C2, . . . ,Cm and variables x1,x2, . . . ,xn.

Each clause consists of a constant number of variables or their negations. For example

(x1,¬x2,x3) is a clause and ¬ is the negation of the variable. We can assign the variables

with 0 or 1, and a clause is satisfied with this assignment if at least one of its literals is set to

1. In the clause example, an assignment x1 = 0,x2 = 0,x3 = 0 satisfies the clause because

¬x2 = 1, but x1 = 0,x2 = 1,x3 = 0 does not. A CNF is satisfiable if there is an assignment

to its variables that satisfies all of the clauses. SAT is contained in NP. We can see this in

a number of ways. Firstly, the language can be phrased in the form ∃yM(x,y) = 1. Where

x is some encoding of the CNF formula, y is the encoding of an assignment to the formula

and M is a Turing machine which reads x and y, and checks if y satisfies x. Secondly, we

can think of a nondeterministic polynomial time Turing machine which on input φ nonde-

terministically guesses an assignment in one of its branches and checks if the assignment

24

satisfies φ , if one branch accepts the computation accepts. And thirdly, we can think of the

assignment as the witness for containment of φ in SAT. We can use any of these views for

NP problems.

An oracle is the interface of a language with a machine. Although most of the languages

are undecidable, we can think of an imaginary box, the oracle, to which a machine can

query some input and it outputs the answer in one step of computation. This can be the

answer to a decision problem or computing a function. Based on this concept we can also

define different complexity classes:

Definition 2.7. Given a class of computing machines M which can make queries to an

oracle A, define MA to be the class of languages that are decidable by these machines with

query access to A.

Each oracle is a language, or in other words they are in one-to-one correspondence with

the set of languages. Next, I define a reduction as a crucial element of theory of computing:

Definition 2.8. A reduction is a partial order on the set of languages. Given a class of

machines M, and two languages L1,L2 over alphabet Σ, we say that L1 ≤M L2, or L1 is

reducible to L2 with M, if there is a function computable in M, such that x ∈ L1 if and only

if f (x) ∈ L2.

Definition 2.9. A language is called NP hard if all languages in NP are P reducible to it.

A language is called NP complete if it is NP hard and is also contained in NP.

Theorem 2.6. (Cook-Levin [20]) SAT is complete for NP.

Lemma 2.7. A language is NP complete if there is a polynomial time reduction from SAT

or any other NP complete language to it.

An NP language is in P if there is a reduction from the language to a language in P.

P= NP if and only if SAT ∈ P (also true for any other NP complete language)

Definition 2.10. #P is the class of functions f : Σ?→N which count the number of accept-

ing branches of an NP machine. Given a nondeterministic Turing machine, M, f (x) is the

number of accepting branches of M when run on x. PP is the class of problems L for which

there exists an NP machine M such that x∈ L iff most of the branches of M run on x accept.

25

So far we have introduced the deterministic and nondeterministic computation in dif-

ferent resources of time and space. An alternative model of computation is the one which

is equipped with randomness. In such scheme of computing a Turing machine has access

to an unbounded read-once tape consisting of independent true random bits. The transition

function can thereby depend on a random bit. Based on such machines we can define new

complexity classes.

Definition 2.11. A probabilistic standard Turing machine is defined similar to the deter-

ministic version, with an extra unbounded read-once tape of random bits, as an 8-tuple

(Σ,Γ,R,Q,q0,qy,qn,δ ,D := {L,R}). Here R is a finite alphabet of random bits, and each

element of the alphabet is repeated with equal frequency (probability). The transition func-

tion δ : Q×Γ×R→ Q×Γ×D.

Therefore, the following two complexity classes are naturally defined as:

∙ (bounded error probabilistic polynomial time) BPP is the class of languages L for

which there is a probabilistic polynomial time Turing machine M such that if x ∈ L,

Pr[M(x) = 1]≥ 2/3 and otherwise Pr[M(x) = 0]≥ 2/3.

∙ (probabilistic polynomial time) PP is the class of languages L for which there is a

probabilistic polynomial time Turing machine M such that if x ∈ L then Pr[x = 1]>

1/2 and otherwise Pr[x = 0]> 1/2.

The class PP is related to the counting classes by the following theorem:

Theorem 2.8. P#P = PPP [11].

4 The Polynomial Hierarchy

The NP language can be equivalently formulated as the set of languages L ⊆ {0,1}?, for

which there is a polynomial time Turing machine M(·, ·) and a polynomial p : N→N, such

that x ∈ L if and only if there exists y ∈ {0,1}p(|x|) such that M(x,y) accepts. We can just

write:

26

x ∈ L iff ∃y, M(x,y) = 1

The complement of NP is called coNP and is defined as the set of languages L⊆{0,1}?

for which there is a polynomial time Turing machine M such that:

x ∈ L iff ∀y, M(x,y) = 1

The relationship between NP and coNP is unknown, but we believe that they are in com-

parable as set of languages,ı.e. none of them is properly contained in the other. Define the

notation Σ0
P = Π0

P = P, and Σ1
P = NP and Π1

P = coNP, then we can inductively extend the

definitions to a Hierarchy of complexity classes. Define Σ
j
P to be the class of languages

L⊆ {0,1}?, for which there is a polynomial time Turing machine M such that:

x ∈ L iff ∃y1, ∀y2, ∃y3 . . .Qiyi M(x,y1,y2, . . . ,yi) = 1.

Here Qi is either a ∃ or ∀ quantifier depending on the parity of i. The complexity class

Πi
P is similarly defined as the class of langauges for which there exists a polynomial time

Turing machine M such that:

x ∈ L iff ∀y1, ∃y2, ∀y3 . . . Qiyi M(x,y1,y2, . . . ,yi) = 1.

The complexity class polynomial hierarchy is defined as the union PH := ∪i≥0Σi
P. The

relationship between BPP and NP is unknown, however according to Sipser et al. BPP ∈

Σ2
P. According to a theorem by Toda [50], PH is contained in P#P = PPP. The relationship

between the Πi and Σi and also the different levels within PH is unknown. However we

know that if Σi
P = ΠiP or Σi

P = Σ
i+1
P for i > 0, then PH collapses to the i’th level, that is the

hierarchy will consist of finitely many levels [11].

We believe that PH contains infinite levels, and we usually use this assumption to make

inference about the containments of complexity classes. For example, the class BPPNP

is known to be appropriate for efficient approximate counting; in comparison, P#P is the

exact counting class. BPPNP is contained in the third level of PH. However, because of

27

Toda’s theorem P#P ⊆ BPPNP which implies PH ⊆ P#P ⊆ Σ3
P, and then a collapse of PH

to the third level. Therefore, we say that there are counting problems that are hard to even

approximate within a multiplicative constant, unless PH collapses to the third level [11].

5 Circuits

As a detour consider the set of functions F of the form {0,1}?→{0,1}. Clearly, there is an

injective map between F and the set of languages. Given any language L construct a unique

function with f (x) = 1 if and only if x ∈ L. In other words each such function represents a

language. Most of the languages are undecidable, thereby most of these functions are not

computable. We can think of a subset of these functions as Fn as the set of functions of the

form {0,1}n→ {0,1}. Consider a lexicographic ordering on the set of strings of n bits, as

an injective map between these strings and [2n] ı.e. represent each of these strings with an

integer between 1 and 2n. Given this ordering any function Fn can be specified with a string

of 2n bits, and thereby |Fn| = 22n
. Such an encoding of a function is formalized by a truth

table:

Definition 2.12. A truth table tt f of a function f : {0,1}n→{0,1} is a subset of {0,1}n×

{0,1} for which (x,s) ∈ tt f if and only if f (x) = s.

Definition 2.13. Boolean algebra is a vector space with basis Σ = {0,1} and two (asso-

ciative) binary operations (AND) . and (OR) + : Σ×Σ→ Σ and a unary operation called

negation (NOT) ′ : Σ→ Σ. Given x,y ∈ Σ, x.y = 1 if x = 1 and y = 1, otherwise x.y = 0,

and x+ y = 0 only if x = 0 and y = 0 and otherwise x+ y = 1. And x′ = 0 if x = 1 and

otherwise x = 1. We can alternatively use the symbols ∧, ∨ and ¬ for AND, OR, and NOT

operations, respectively.

We can think of the operations as physical gates and 0,1 (vectors) as wires, and thereby

we formalize a model of computation called circuits. A circuit has n input wires and 1

output wire. The input wires are glued by AND,OR and NOT gates. Each of these gates

take input wire(s) and one output wire. Based on the value of the inputs the output bit is

set according to the function of the gate. Thereby, following the input wires down to the

28

output wire a circuit assigns a value in {0,1} to an n bit string. Renaming and extending

some of these concepts, we can formalize circuits as a subset of directed graphs.

An unbounded AND (OR) gate is a gate with unbounded input wires and unbounded

output wires such that all output wires are a copy of the other, and their value is 1(0) if and

only if all the input wires are 1(0), and otherwise the output wires take 0(1).

Definition 2.14. A family of circuits {Cm,n}, each with m inputs and n outputs, is called

uniform if there is a Turing machine which on input m,n outputs the description Cm,n. The

family is otherwise called nonuniform.

Any boolean function f : {0,1}n→ {0,1}, can be constructed by a sequence of AND,

OR, NOT and COPY. We then call the collection these operations a universal gate set.

Therefore, any gate set which can simulate these operations is also universal for Boolean

computing. Among these universal gate sets is the gate set consisting of NAND operation

only. A NAND operation is the composition of NOT and AND from left to right. We are

also interested in universal gate sets which are reversible. That is the gate sets that can

generate subsets of invertible functions f : {0,1}?→ {0,1}? only. A necessary condition

is that each element of the gate set has equal number of inputs and outputs. Examples

of reversible gates are controlled not (CNOT) C : {0,1}2→ {0,1}2 which maps (x,y) ↦→

(x,x⊕ y). That is C flips the second bit if the first bit is a 1. Here ⊕ is the addition of bits

mod 2. Notice that C is an involution and therefore it is its own inverse. Circuits based

on C can generate linear functions only and thereby, CNOT is not universal in this sense.

However, if a gate operates as NOT controlled by two input bits, then we can come up with

gates that are both reversible and universal. More precisely, let T : {0,1}3 → {0,1}3, be

a Boolean gate with the map (x,y,z) ↦→ (x,y,x.y⊕ z). Then T is also its own inverse, and

one can confirm that composition of T gates can simulate a NAND gate. Notice that we

need extra input and output bits to mediate the simulation. The T gate is also known as

the Toffoli gate. As another example let F : {0,1}3→ {0,1}3, be a Boolean gate with the

maps (0,x,y) ↦→ (0,x,y) and (1,x,y) ↦→ (1,y,x). F is also its own inverse and moreover it

can be proved that F is also universal.

29

30

Chapter 3

Quantum Theory and Quantum

Complexity Theory

In this chapter, I go over the essential backgrounds in quantum mechanics, and quantum

computing, and complexity theory. After a short introduction to quantum mechanics and

quantum field theory, I discuss the integrable models in 1+1 dimensions. Quantum com-

puting and quantum complexity theory are discussed later in the second half of the chapter.

1 Quantum Mechanics

There are various interpretations and formulations of quantum mechanics. In this work,

we however, focus on one of these, which in simple words views quantum mechanics as

a generalization of classical probability theory to operator algebras. In that, a system is

described as a quantum state, which is a complex vector in a vector space. These states

encode the probability distribution over the possible outcomes of observables. Observables

are Hermitian operators on the vector space. Like in classical probability theory, the states

of the vector space should be normalized with respect to some norm, and the set of operators

that map normalized states to normalized state are the legitimate evolution operators.

A vector space is called a Hilbert space H , if it is complete and has an inner-product.

A Hilbert space can have finite or infinite dimension. An inner-product is a function

⟨·, ·⟩ : H ×H → C, with conjugate symmetry, ı.e ⟨φ1|φ2⟩? = ⟨φ2|φ1⟩,∀φ1,φ2 ∈H , posi-

31

tive definiteness, that is for all φ ∈H , ⟨φ |φ⟩ ≥ 0, with equality if and only if φ = 0, and

bilinearity ⟨φ |aφ1 +bφ2⟩ = a⟨φ |φ1⟩+b⟨φ |φ2⟩. Here ∙? is the complex conjugation of the

C-numbers. Complete means that any Cauchy sequence is convergent with respect to the

norm inherent from inner product. We represent vectors φ ∈H with a ket notation |φ⟩. If

H is finite dimensional with dimension n, then H ∼=Cn, as a vector space. Otherwise, we

denote an infinite dimensional Hilbert space with C∞. We call {|e j⟩ : j ∈ [n]} an orthonor-

mal basis of Cn, if ⟨ei|e j⟩ = δi j. δi j is the Kronecker, which takes the value 1 if i = j and

otherwise 0. Let |φ⟩= ∑ j∈[n]φ j|e j⟩, and |ψ⟩= ∑ j∈[n]ψ j|e j⟩, be vectors in Cn, we use the

inner product:

⟨φ |ψ⟩= ∑
j∈[n]

φ
?
j ψ j

Here ⟨φ | :=∑ j∈[n]φ
?
j ⟨ j|, is the bra notation for the dual vectors. Where, ⟨e j| act as ⟨e j|ei⟩=

δi j. More precisely, we call H ? the dual of the Hilbert space H , as the set of linear

functions : H → C. H ? is also a vector space isomorphic to H , and thereby has the

same dimension as H , and is spanned by ⟨e j|. We will not delve into the foundations

of infinite dimensional Hilbert spaces. In simple words, such a Hilbert space corresponds

to the space of square integrable functions φ : Rm → C, and we call this function square

integrable if:

∫
z∈Rn

dnz|φ(z)|2

exists, and the inner product is defined as:

(φ ,ψ) =
∫

z∈Rn
dnzφ

?(z)ψ(z)

A vector |φ⟩ in this Hilbert space is decomposed as
∫

z∈Rn dnzφ(z)|z⟩, and a normalized state

is the one which
∫

z∈Rn dnz|φ(z)|2 = 1.

Consider the Hilbert space Cn. A quantum state |ψ⟩ ∈ Cn is therefore a normalized

vector. Any orthonormal basis | f j⟩, j ∈ [n] corresponds to a set of non-intersecting events.

The amplitude of measuring the state |ψ⟩ in the state | f j⟩ is the complex number ⟨ f j|ψ⟩,

32

and is related to a probability with Pj = |⟨ f j|ψ⟩|2, where ∑ j∈[n]Pj = 1.

An operator on the Hilbert space is any function : H →H . Observables are therefore

the linear Hermitian operators. Given a quantum state |ψ⟩, and an observable O with

spectrum {a, |a⟩}, measuring |ψ⟩with observable O corresponds to observing the real value

a with probability |⟨a|ψ⟩|2, therefore the expected value of O is ⟨ψ|O|ψ⟩. A Hamiltonian is

the observable having the allowed energies of the system as its eigenvalues. A Hamiltonian

encodes the dynamics of a system.

A legitimate time evolution of a quantum system corresponds to an operator which

maps the normalized states to normalized states. A linear operator U with this property is

called a unitary operator, and satisfies U†U = I. Each physical system can be described by

a Hamiltonian H. The Hamiltonian is responsible for the unitary evolution in time. Such

an evolution is described by a Schrödinger equation:

i
∂

∂ t
|ψ(t)⟩= H|ψ(t)⟩.

Where |ψ(t)⟩ is the state of the system at time t. If H is time-independent, then the unitary

evolution is |ψ(t)⟩= exp(−iHt)|ψ(0)⟩.

1.1 A word on Special Relativity

Lorentz transformations are those which preserve length with respect to the metric η =

diag(−1,1,1,1). The basis is (t,x) = (x0,x1,x2,x3); time and three space coordinates.

The Greek letters (µ,ν , . . .) run from 0 to 3, the ordinary letters (a,b, . . .) run from 1 to

3. An infinitesimal length should be conserved according to this metric, and therefore

ηµνdxµdxν = ηµνdx′µdx′ν . If we define the matrix elements of the Lorentz transform as

Lµ
ν = ∂x′µ/∂xν . So the general transforms are of the form x′µ = Lµ

νxν + aµ , and the

transforms must satisfy:

ηµνLµ
αLν

β = ηαβ

or equivalently using the matrix form:

33

LT
ηL = η

This equation tells us that Det(L) = ±1. In general the representation of the Lorentz

transforms on quantum states are T (L,a). These in general construct the Poincaré group.

Any representation U of the general Poincaré group for quantum states should satisfy:

U(L1,a1)U(L2,a2) =U(L1L2,L1a2 +a1) (3.1)

1.2 The Scattering Matrix

Let H be a possibly infinite dimensional Hilbert space, and h0 be the Hamiltonian respon-

sible for the time evolution of vectors in H . N copies of the Hilbert space can be combined

into H ⊗N . Refer to Hi as the i’th copy of this combined Hilbert space, and hi
0 as its corre-

sponding Hamiltonian, ı.e., hi
0 acts as h0 on Hi, and acts trivially on the others. The natural

time evolution of the states in this Hilbert space is then governed by ∑ j∈[N] h
j
0 =: H0. This

Hamiltonian acts on each copy independently, and we call it the free Hamiltonian. Let S1

and S2 be subsets of [N]. An interaction between S1 and S2 subsystems of the Hilbert space

is a Hermitian operator HS1,S2 , which maps the vectors of HS1⊕HS2 to itself, and acts as

identity on the rest of the Hilbert space. A general form of an interaction is then according

to ∑S,S′⊆[N]HS,S′ . Let V be any such interaction. The Hamiltonian describing the overall

time evolution is then H = H0 +V . At this point we assume that all of the operators are

time-independent. Let Ψt be the time dependent quantum state in H ⊗N , then the unitary

time evolution is according to U(t,τ) = exp(−iH(t− τ)), which maps |Ψτ⟩ ↦→ |Ψt⟩. Let

|Φt⟩ := exp(iH0t)|Ψt⟩, be the interaction picture of wave-functions. The evolution of |Φτ⟩

is then given by the unitary operator:

Ω(t,τ) = exp(iH0t)exp(−iH(t− τ))exp(−iH0τ), (3.2)

that is |Φt⟩ = Ω(t,τ)|Φτ⟩. Scattering matrix is a unitary operator which relates Φ−∞ to

Φ+∞, and is given according to S = Ω(+∞,−∞). That is, the scattering matrix relates the

states in far past to the states in far future. The interaction picture for the observables is

34

defined as V (t) = exp(iH0t)V exp(−iH0t). The scattering matrix is then:

S = Texp
(
−i
∫ +∞

−∞

V (t)dt
)
, (3.3)

where T is the time ordering operator sorting the operators in decreasing order from left to

right, given by:

S = 1+
∞

∑
n=1

(−i)n

n!

∫
∞

−∞

dt1dt2 . . .dtnθ(tn, . . . , t2, t1)V (t1)V (t2) . . .V (tn)

where θ : Rn→{0,1}, is the indicator of the event t1 > t2 > .. . > tn. Or we can just write:

S = 1+
∞

∑
n=1

(−i)n

n!

∫
∞

−∞

dt1dt2 . . .dtnT
(

V (t1)V (t2) . . .V (tn)
)

This expansion is known as the Dyson series. There is also a similar expression for the

scattering matrix of quantum field theory. Here, I sketch the logic given in [53]. We need

to first revisit the Hilbert space slightly. Consider the decomposition of a Hilbert space

according to the number of particles
⊕

∞
i=0 Hi. The zeroth term H0 consists of a single

vector |0⟩, which is called the vacuum state. This corresponds to the minimum energy

state. The other terms Hi for i≥ 1, corresponds to i particles, each with a four momentum

p j = (p0,ppp) and A j a set of discrete internal degrees of freedom, for j ∈ [i]. The discrete

degrees of freedom are internal degrees of freedom like spin. Denote the vectors in the

combined Hilbert space with Greek letter α,β , The amplitude of scattering for state

with label α to state with label β is then Sβ ,α = ⟨Ψβ |S|Ψα⟩. A creation operator a†
α is

naturally defined as the operator which maps vacuum state to the state with α ingredients

in its corresponding block of the Hilbert space, ı.e., |Ψα⟩= a†
α |Ψ0⟩.

We need a theory that poses both locality and unitarity. Unitarity is simply captured by

choosing Hermitian interactions. By locality it is meant that the Lorentz group is a sym-

metry of this theory. Or in other words, the observables, ı.e., the scattering amplitudes are

Lorentz invariant. We can hardly imagine how to define operators that only depend on time

in a way that they are invariant according to Lorentz space and time transformations. There-

fore, a necessary condition is that there exist a well defined interaction density in spatial

35

coordinates, in the sense that V (t) =
∫

d3xH (x, t). Cluster decomposition in quantum field

theory relates the structure of the interaction density to a seemingly obvious logic: if two

physical processes occur independently the amplitude of the combined process products of

separate amplitudes in each subsystem. This is something like statistical independence in

probability theory. Then cluster decomposition forces the interaction densities to be com-

posed of integration over creation and annihilation (the Hermitian conjugate of the creation

operator) operators, in such a way that all the creation operators appear on the left hand side

of annihilation operators, and the arguments in these integrals contain at most one Dirac

delta like singularity. Therefore, in short, the interactions should be specific combinations

of the annihilation and creation operators in such a way that they are local and transform

according to Lorentz symmetry. That is:

U(L,a)H (x)U−1(L,a) = H (Lx+a)

and locality,

[H (0,xxx),H (0,0)] = 0 |xxx|> 0

If we take a close look at the Greek letter α we see that these are momentum, and

other discrete quantum numbers. So the interaction density depends on several (creation

and annihilation) operators which they themselves depend on a finite number of momen-

tum species. How can we impose Lorentz scalars when your interaction density depends

only on finite numbers of momenta. The solution is the quantum field, an operator that de-

pends on space time and carries all possible creation and annihilation operators in a suitable

superposition:

Ψ
†
i (x) = ∑

σ

∫
d3 pAi(p,x,σ)a†(p,σ)

where Al(·, ·, ·) is a suitable function, that can be a vector or scalar and so on. A quantum

field is then a proper combination of annihilation and creation operators in such a way that

they respect the Lorentz transformation as operators:

36

U(L,a)Ψ†
i (x)U

−1(L,a) = ∑
i

Mi jΨ
†
j(Lx+a)

Therefore, the quantum fields are building blocks of the quantum field theory, operators

that each are Lorentz invariant independently. The legitimate interaction densities then

correspond to all the ways that we can combine quantum fields to a Hermitian operator.

Represent points of space-time with x = (t,xxx). Expanding equation 3.3 we get:

Sβ ,α =
∞

∑
N=0

(−i)N

N!

∫
d4x1d4x2 . . .d4xN⟨0|aβ T{H (x1) . . .H (xN)}a†

α |0⟩ (3.4)

The zeroth term in the summation is 1, by convention. Each argument in the integral is

a combination of creation and annihilation operators and quantum fields which are integra-

tions over creation and annihilation operators themselves, and these along with their (anti-)

commutation relations pose a combinatorial structure and correspond to a set of Feynman

diagrams, which we will not delve into. Thereby, given the interaction density of a theory,

we construct sequences of Feynman diagrams each amounting to a complex number, and

then the summation over them gives the overall amplitude of an interaction.

2 Some Quantum Models in 1+1 Dimensions

In this section, I am going to review some basic quantum models of two dimensional space-

time. As it turns out, both relativistic and non-relativistic versions of the models pose simi-

lar structures. For the purpose of this thesis, it is sufficient to focus on one of these, and the

same results immediately apply to the others. More specifically, these are integrable quan-

tum models of 1+1 dimensions [25,27,47]. Integrability is translated as a model which has

an exact solution, that is, the perturbation terms in the expression of scattering amplitudes

amount to an expressible shape. In order to understand this point, view each perturbation

term as a piece among the pieces of a broken vase. While these pieces look unstructured

and unrelated, in an integrable world, they can be glued together and integrated in a way

that the whole thing amounts to a vase. The solution to an integrable model is simple to

describe, and indeed the relation between the problem and its solution can be formalized

37

as a language, as I will do later. For example, given some initial configuration of particles,

I can ask if the amplitude of observing a specific outcome for a measurement is nonzero.

Therefore, the mission is to pin down the locus of languages of this form among the already

known languages.

The situation in two dimensional space-time is that in far past, a number of free particles

are initialized on a line, moving towards each other, and in far future, an experimenter

measures the asymptotic wave-function that is resulted from scattering. In the following,

I first review models of quantum field theories with factorized scattering matrices. The

structure of the interactions is described, and then it is explained how the entries of the

scattering matrix are obtained. Next, I review the repulsive delta interactions model, as

a non-relativistic model of scattering of free particles. The structure of the two models

resemble each other, and I am going to focus on the second model throughout.

Zamolodchikov and Zamolodchikov [57, 58] studied models of two dimensional quan-

tum field theory that give rise to factorized scattering matrices. A scattering matrix is called

factorized, if it is decomposable into the product of 2→ 2 scattering matrices. They found

that the factorization property is related to an infinite family of conservation rules for these

theories. More specifically, suppose that the initial quantum state of n particles with mo-

menta p1, p2, . . . , pn, and masses m1,m2, . . .mn is related to an output state of l particles

with momenta p′1, p′2, . . . , pl , and masses m′1,m
′
2, . . . ,m

′
l , then an example of these conser-

vation rules is according to:

∑
j∈[n]

p2N+1
j = ∑

j∈[l]
p′2N+1

j N = 0,1,2,3, . . .

and,

∑
j∈[n]

p2N
j

√
p2

j +m2
j = ∑

j∈[n]
p′2N

j

√
p′2j +m′2j N = 0,1,2,3, . . .

These equations directly impose selection rules on the scattering process. According to

these selection rules, n = l, {m1,m2, . . . ,mn} = {m1,m2, . . . ,ml}, and that the particles of

different mass do not interact, and the output momenta among the particles of the same

mass are permutations of the input momenta. In this case, the conservation rules put drastic

38

constraints on the structure of the scattering amplitudes, and this directly imply factoriza-

tion of the scattering matrix, and thereby integrability of the scattering matrix. Indeed,

particles do not actually interact, and instead they only exchange their internal degrees of

freedom and their momenta. Thereby, the process resembles pairwise elastic collisions

quantum hard balls.

In their paper, the authors find actual examples of quantum field theories that satisfy the

factorization condition and are thereby integrable. These models include the quantum sine-

Gordon [43], the massive Thirring model, and quantum chiral field [58]. All of these mod-

els pose an O(n) isotopic symmetry. Let φ1,φ2, . . . ,φn be n fields. A model is said to have

O(n) isotopic symmetry, if its Lagrangian density and the constraints are both invariant un-

der the application of orthogonal matrices on the fields. Consider a model with Lagrangian

density L (φ1,φ2, . . . ,φn), subject to a series of constraints g j(φ1,φ2, . . . ,φn) = 1. For any

n×n orthogonal matrix O ∈ O(n), define the rotated fields as φ ′i := ∑ j∈[n]Oi jφ j. Then the

model has O(n) symmetry if L (φ1,φ2, . . . ,φn)=L (φ ′1,φ
′
2, . . . ,φ

′
n), and, g j(φ1,φ2, . . . ,φn)=

g j(φ
′
1,φ
′
2, . . . ,φ

′
n). For example, the Lagrangian L = ∑i∈[n] ∂µφi∂

µφi, and the constraint

∑i∈[n]φ
2
i = 1, has the desired symmetry.

In the following, I sketch the general structure of a factorized relativistic scattering

matrix. Suppose that n particles of the same mass m are placed on a line, where each one

is initialized with a two momentum (p0, p1) =: m(coshθ ,sinhθ), and an internal degree

of freedom with a label in [n]. In 1 + 1 dimensions, the two momentum p = (p0, p1)

should satisfy p02− p12
= m2, where m is the mass of the particle. So any momenta can

be specified with a single real parameter, θ called the rapidity, which is related to p as

p = (p0, p1) = m(coshθ ,sinhθ). Therefore, we can mark the entries of the scattering

matrix by n discrete labels i1, i2, i3, . . . , in of [n]n, and rapidities θ1,θ2, . . . ,θn. Let π be

the permutation for which θπ(1) ≥ θπ(2) ≥ . . . ≥ θπ(n). Denote the scattering matrix by S,

then given the conservation rules the entries corresponding to I := i1, i2, i3, . . . , in → J :=

j1, j2, j3, . . . , jn and θ̃ := θ1,θ2,θ3, . . . ,θn→ θ̃ ′ := θ ′1,θ
′
2,θ
′
3, . . . ,θ

′
n of S has the following

form:

Sθ̃ ,θ̃ ′

I,J = δ (θ̃ ′−π(θ̃))AI,J.

39

Where π(θ1,θ2, . . . ,θn) = (θπ(1),θπ(2), . . . ,θπ(n)). That is, the only nonzero entries are the

ones where the rapidities are reordered in a non-ascending order. We are interested in the

computation of the amplitudes AI,J . From now on, we recall the scattering matrix by the

entries αI,J .

Zamalodchikov et. al. invented an algebra, which demonstrates how to compute the

amplitudes of a factorized model. This is now known as the Zamalodchikov algebra.

The algebra is generated by non-commutative symbols that encode initial rapidities and

labels of the particles before scattering. Suppose that n particles are initialized with ra-

pidities θ1,θ2, . . . ,θn, and labels i1, i2, . . . , in ∈ [n]. We are interested in the amplitude

Ai1...,in→ j1..., jn . Define a symbol Ai j(θ j) for each particle j. Here, the labels i j can be

possibly repeated. The multiplication rules between these symbols are according to:

Ai(θ)A j(φ) = α(θ ,φ)Ai(φ)A j(θ)+β (θ ,φ)A j(φ)Ai(θ)

for i ̸= j. This case corresponds to the scatterings i+ j→ i+ j and i+ j→ j+ i, where

either the particles bounce off or otherwise they simply tunnel through each other. Here α

and β are complex numbers that depend on the rapidities, and the number of particles. For

i = j the replacement rule is an annihilation-creation type i+ i→ j+ j:

Ai(θ)Ai(φ) = eiφ(θ ,φ)
∑

j∈[n]
A j(φ)A j(θ),

and the overall process obtains a global phase. Now in order to compute the amplitude

Ai1...,in→ j1..., jn , multiply the symbols according to:

Ai1(θ1)Ai2(θ2) . . .Ain(θn),

and read the coefficient of A j1(θπ(1))A j2(θπ(2)) . . .A jn(θπ(n)) as the desired amplitude. We

also want that the final amplitude be independent from the order that we multiply the sym-

bols together, that is, we want the algebra to be associative:

. . .Ai1(θ1)
(

Ai2(θ2)Ai3(θ3)
)
. . .= . . .

(
Ai1(θ1)Ai2(θ2)

)
Ai3(θ3) . . .

40

Intuitively, this asserts that as long as the rapidities are reordered in a suitable way, the

order of multiplications is not important. This is also known as the factorization condition,

also known as the Yang-Baxter equation [14, 55]. I am going to describe this point in

detail in the context of the non-relativistic repulsive model, and later in section See

Figure ??: the total scattering process is decomposed into pairwise 4-particle interactions,

as demonstrated with the red circles. The reconfiguration of the rapidities is represented by

lines flowing upwards. In this case, the scattering matrix is the product of smaller matrices,

each corresponding to one of the red circles.

The scattering matrix S has a separate block corresponding to the matrix entries indexed

by all distinct labels as permutations of 1,2,3, . . . ,n. In this case, the scattering of the form

1+ 1→ 2+ 2 does not occur at all. This separate block is fairly large and has dimension

n!. I am specifically interested in computational complexity of finding matrix elements of

this block.

The non-relativistic analogue of the factorized scattering is given by the repulsive delta

interactions model [55] of quantum mechanics. In this model, also elastic hard balls with

known velocities are scattered from each other. The set of conserved rules are closely

related to the relativistic models. If we denote the initial momenta of the balls with

p1, p2, . . . , pn, then the conserved quantities are ∑ j p2k+1
j , and ∑ j p2

j/m j, for k ≥ 0. Where

m j are the mass of the balls. Again, the selection rules assert that balls with different mass

do not interact with each other, and the final momenta among the balls of same mass are

permutation of the initial momenta.

In the repulsive delta interactions model, n asymptotically free balls in one spatial di-

mension and time interact and scatter from each other. I am interested to find the amplitude

of each output configuration as a function of the input configuration and momenta of the

balls. Asymptotic freedom means that except for a trivially small spatial range of inter-

actions between each two balls, they move freely and do not interact until reaching to the

short range of contact. Denote the position of these balls by x1,x2, . . . ,xn and the range

of interaction as r0, then for the asymptotic free regime, we assume |xi− x j| ≫ r0. The

interaction consists of
n(n−1)

2
terms, one for each pair of balls. For each pair of balls, the

interaction is modeled by the delta function of the relative distance between them. If no

41

Figure 3-1: Factorization of the S-Matrix into two particle interactions. Any such nonzero
amplitude diagram has even number of legs, and for 2n legs, the factorization is according
to intersections of n straight lines.

42

Figure 3-2: Three particle symmetry, known as the Yang-Baxter equation.

Figure 3-3: Two equivalent diagrams with Yang-Baxter Symmetry. The right hand diagram
can be obtained from the left hand diagram by moving some of the straigth lines parallel to
themselves.

43

balls are in contact, then the action of such Hamiltonian is just a free Hamiltonian, and each

contact is penalized by a delta function. The functional form of the Schrödinger’s equation

is written as:

ih̄
∂

∂ t
ψ(x1,x2, . . . ,xn, t) =

[n

∑
j=1
− ∂ 2

∂x2
j
+2c ∑

i< j
δ (xi− x j)

]
ψ(x1,x2, . . . ,xn, t)

Here c> 0 is the strength of the interactions. As the species of unequal mass do not interact,

only balls of same mass are considered. The Hilbert space is indeed (C∞)⊗n×R. One can

write down a general solution like:

|ψ⟩=
∫ d p1 . . .d pn

(2π)n/2 A (p1, . . . , pn, t)|p1, p2, . . . , pn⟩.

Where ⟨x|p⟩= exp(ipx). Inspired by Bethe ansatz [?] for spin chain models, one can guess

a solution for the eigenfunction with the following form:

ψ(x1, . . . ,xn) = ∑
τ,π∈Sn

A τ
π θτ(x1, . . . ,xn)exp [i(xτ1 pπ1 + . . .+ xτn pπn)]

θπ : Rn→ {0,1} is an indicator function. It gives the output 1 if the input satisfies xπ(1) <

xπ(2) < .. . < xπ(n), and otherwise zero. p j for j ∈ [n] are constant parameters, and can

be viewed as the momenta. The proposed solution must be a continuous function of the

positions and also one can impose a boundary condition for xπ(t) = xπ(t+1) for t ∈ [n] on the

derivative of the wave-function. Applying these boundary conditions, one can get linear

relations between the amplitudes:

A t∘τ
π =

−icA τ
π +Vτ,tA τ

t∘π
ic+Vτ,t

Here t ∘π is a new permutation resulted from the swapping of the t and t + 1’th labels in

the permutation π . Vτ,t = pτ(t)− pτ(t+1). The above linear map has a simple interpreta-

tion: two balls with relative velocity V collide with each other with amplitude
−ic

ic+V
, the

momenta are exchanged and they are reflected, or otherwise, with amplitude
V

ic+V
they

44

tunnel through without any interaction. In any case, the higher momentum passes through

the lower momentum and starting from a configuration x1 < x2 < .. . < xn for n balls with

momenta are in a decreasing order p1 > p2 > .. . > pn, the wave-function will end up in a

configuration with momenta in the increasing order pn < pn−1 < .. . < p1.

Each of these pairwise scatterings can be viewed as a local quantum gate, and the col-

lection of scatterings as a quantum circuit. In order to see this, consider an n! dimensional

Hilbert space for n particles with orthonormal basis {|σ⟩ : σ ∈ Sn}. Assume an initial state

of |1,2,3, . . . ,n⟩, with defined momenta p1, p2, . . . , pn. These momenta and the initial dis-

tance between the particles specify in what order the particles will collide. It is instructive

to view the trajectory of the particles as n straight lines for each of these particles in an

x− t plane. Time goes upwards and the intersection between each two lines is a collision.

In each collision, either the label of the two colliding balls is swapped or otherwise left

unchanged. The tangent of each line with the time axis is proportional to the momentum

of the ball that the line is assigned to in the first place. Balls with zero relative velocity do

not interact, as lines with equal slope do not intersect. Suppose that the first collision corre-

sponds to the intersection of line t with line t +1. Such a collision occurs when pt > pt+1.

Then the initial state is mapped to:

∣∣∣1,2, . . . ,n〉→ −ic
ic+Vt,t+1

∣∣∣1,2, . . . t, t +1, . . . ,n
〉
+

Vt,t+1

ic+Vt,t+1

∣∣∣1,2, . . . t +1, t, . . . ,n
〉

Where, Vt = pt− pt+1. This map can be viewed as a n!×n! unitary matrix:

H(pt− pt+1, t) := H(pt , pt+1, t) :=
−ic

ic+Vt,t+1
I +

Vt,t+1

ic+Vt,t+1
L(t,t+1)

Here I is the n!×n! identity matrix, L(t,t+1) is the n!×n! matrix which transposes the t and

the t +1’th labels of the basis states. H(u, t) acts only on the t and the t +1’th balls only.

u is the velocity of the t’th ball relative to the t + 1’th balls. From now on I refer to these

unitary gates as the ball permuting gates. One can check that these gates are unitary:

H(u, t)H†(u, t) = H(u, t)H(−u, t) = I.

45

Given n particles, with labels i1, i2, . . . , in, and momenta p1, p2, . . . , pn, we can obtain

a quantum circuit with gates H(u1, t1),H(u2, t2), . . . ,H(um, tm), one for each intersection

of the straight lines. The scattering matrix in this theory is then given by the product S =

H(um, tm),H(um−1, tm−1), . . . ,H(u1, t1). In general, the label of the balls can be repeated,

and the matrix S has a block diagonal form. For each tuple I = i1, i2, . . . , in, assign a vector

XI = (x1,x2, . . . ,xn), where x j is the number of times that the index j appears in I. Clearly,

∑ j x j = n. Given this description, the blocks of S are marked by vectors X , that is, the

block X = (x1,x2, . . . ,xn), consists of basis entries for which the index 1 appears for x1

times, the index 2 for x2 times and so on. S is an nn×nn matrix, and the dimension of the

block X is given by
n!

x1!x2! . . .xn!
. For the purpose of this thesis, I am interested in the block

(1,1,1, . . . ,1), where the entries of the S matrix are marked by permutations of the numbers

{1,2,3, . . . ,n}. The product of symbols with distinct labels A1(θ1)A1(θ1) . . .An(θn) can be

formulated similarly using product of two-local unitary gates.

An important ingredient of these quantum gates is the so called Yang-Baxter equation

[?, ?], which is essentially the factorization condition, and is the analogue of the associa-

tivity of Zamalodchikov algebra. The Yang-Baxter equation is a three ball condition, and

is according to:

H(u, t)H(u+ v, t +1)H(v, t) = H(v, t +1)H(u+ v, t)H(u, t +1).

Basically, the Yang-Baxter equation asserts that the continuous degrees of freedom like

the initial position of the particles does not change the outcome of a quantum process,

and all that matters is the relative configuration of them. In order to see the line repre-

sentation of the Yang-Baxter equation, see Figure ??. Also, the Yang-Baxter equation

imposes overall symmetries on the larger diagrams, see Figure ?? for an example. Con-

sider three balls with labels 1,2,3, initialized with velocities +u, 0 and −u, respectively.

If we place the middle ball very close to the left one, the order of collisions would be

1− 2→ 2− 3→ 1− 2. However, if the middle one is placed very close to the third ball,

the order would be 2− 3→ 1− 2→ 2− 3. The Yang-Baxter equation asserts that the

output of the collisions is the same for the two cases. Therefore, the only defining pa-

46

rameters are the relative configurations, and the relationships between the initial velocities.

The Yang-Baxter equation has an important role in many disciplines [?], these range from

star-triangle relations in analog circuits to lattice models of statistical mechanics. Also it

can be related to the braiding of n tangles, in the sense that a collision corresponds to the

braiding of two adjacent tangles. Braid [?] group is defined by Bn generated by elements

b j for j ∈ [n−1]. The defining feature of the braid group is the two conditions: [bi,b j] = 0

for |i− j| ≥ 2, and bibi+1bi = bi+1bibi+1 for i ∈ [n− 2]. The first property is readily sat-

isfied for the ball permuting gates, and the second property corresponds somehow to the

Yang-Baxter equation.

2.1 Semi-classical Approximation to the Model

It is not conventional to do a measurement at the middle of a scattering process. How-

ever, in the discussed integrable model, it sounds that the two particle interactions occur

independently from each other, and the scattering matrix is a product of smaller scattering

matrices. Moreover, in the regime that I am going to consider, no particle creation or anni-

hilation occurs. Therefore, it sounds reasonable to assume that at the middle of interactions

the particles (balls) are independent from each other, and no interactions occur unless two

particles collide. So, in the following sections, I assume that balls start out from far dis-

tances and the nondeterminism in the momentum variable is small. So it is plausible to

assume that the balls move according to actual trajectories, and it is possible to track them

in between and stop the process whenever we want at the middle of collisions. Also, I am

going to use intermediate demolition measurements at the middle of interactions. In such

a measurement, a ball is detected by a detector, and then it is taken away from the system.

In such a measurement only the classical post-measurement outcome is available to an ex-

perimentalist. As a matter of fact, this is a semi-classical approximation on the quantum

model.

47

3 Quantum Complexity Theory

As discussed we compare the complexity of the models using reductions; this is translated

in the question of which system can efficiently simulate the other ones. Therefore, in this

subsection we review the definition of BQP, as the standard complexity class for quantum

computing, and will use this model and its variations as the point of reference in reduc-

tions. A qubit as the extension of a bit to quantum systems, is a quantum state in C2. Let

|0⟩ and |1⟩ be an orthonormal basis state for C2, and we assume that an experimenter can

measure the qubit in these basis whenever (s)he wants to. Such a basis state is called the

computational basis. The extension of strings to quantum computing is given by quantum

superpositions over (C2)⊗n, for some n ≥ 1. Therefore, a quantum computing can cre-

ate a probability distribution over strings of qubits, through a quantum superposition like

∑x∈{0,1}n αx|x⟩, for complex amplitudes αx, amounting to ∑x∈{0,1}n |αx|2 = 1. A quantum

algorithm then is a way of preparing a quantum superposition from which a measurement

reveals nontrivial information about the output of a computing task. Therefore, we use a

quantum circuit to produce such a superposition. A quantum circuit is a sequence of local

unitary operators each of which affect constant number of degrees of freedom at a time.

Each such unitary operator is called quantum gate, and the size of a quantum circuit is the

number of local gates in it.

A local quantum gate set is a set of unitary operators G, each of which affecting a con-

stant number of qubits at a time. A quantum circuit on n qubits is then a way of composing

the gates in G on n qubits. G as gate-set is called dense or BQP-universal if for any n > 0,

for any unitary operator U on n qubits and any ε > 0, there is a quantum circuit in G which

amounts to a unitary that is ε-close to U .

Theorem 3.1. (Solovay-Kitaev [35]) all BQP-universal gate sets are equivalent: if G and

G′ are two BQP-universal gate sets, then for any quantum circuit C of size d in G, there is

a quantum circuit C′ of size O(d) logO(1)(1/ε) in G′ that is ε-close to C.

also it is worth to mention that:

Theorem 3.2. (Dawson-Nielsen [21]) there is an algorithm which takes ε and the descrip-

tion of C in theorem 3.1 as input, and outputs the description C′ in a time that grows like

48

O(d) logO(1) 1/ε .

Definition 3.1. A group (G, ·) is a set G and a binary operation · with the associative map

map (g1,g2) ↦→ g1 · g2, with the following structures: 1)G is closed under ·, 2) there is an

element e ∈ G with e ·g = g · e = g,∀g ∈ G, and 3) for all g ∈ G there exists g−1 such that

g−1 ·g = g ·g−1 = e.

The set of n× n real and invertible matrices with the matrix multiplication create a

group, which we call it the general linear group, GL(n,R). Let O(n) be the set orthog-

onal matrices, ı.e., matrices that send orthonormal (real) vectors to orthogonal vectors.

These are matrices with orthonormal columns and rows. O(n) is a subgroup of GL(n,R).

The determinant of an orthogonal matrix is either 1 or −1. Determinant of a matrix is

a homomorphism with respect to matrix multiplication, thereby the subset of GL(n,R)

corresponding to determinant 1 is a subgroup called the special orthogonal group SO(n).

It can be confirmed that SO(n) is indeed connected. Similarly, we can define the same

groups with matrices over the field of complex numbers. These are GL(n,C), U(n) and

SU(n). The determinant of a unitary matrix is a phase, ı.e., a complex number of the form

eiφ ,φ ∈ R. SU(n) is thereby the (connected) proper subgroup of U(n) with determinant 1.

See the containments of figure.

From a computing perspective, we are interested in programming a quantum gate set

into the unitary group. That is we wish to find a local quantum gate set along with a

classical algorithm which given the description of a unitary in U(n) outputs a sequence of

gates in the gate set, whose composition, with respect to some measure, is arbitrarily close

to the input unitary. The final output of such computing scheme is a probability distribution

over the qubit strings. Denseness of the gate set in U(n) is a sufficient condition. However,

this is not a necessary condition for universal computing. As a first input, the overall phase

of a unitary matrix is not an observable in the output probability distribution. Therefore, a

gate set that is dense in SU(n) would suffice for universal computation.

Let φ : GL(n,C)→ GL(2n,R), be the map which replace each entry Mi j = meiθ of

M ∈ GL(n,C) with a 2×2 real matrix:

49

Figure 3-4: Containment relations between general linear, unitary, orthogonal, special uni-
tary and special orthogonal groups groups.

m

cosθ −sinθ

sinθ cosθ

 .

φ is a homomorphism and respects the group action. Let {| j⟩ : j ∈ [n]} and {| j1⟩, | j2⟩ :

j ∈ [n]} be basis for GL(n,C), and GL(2n,R), respectively. Then if M ∈ GL(n,C) maps

∑ j∈[n]α j| j⟩ to ∑ j∈[n]β j| j⟩, then φ(M) maps ∑ j∈[n]ℜα j| j1⟩+ℑα j| j2⟩ to ∑ j∈[n]ℜβ j| j1⟩+

ℑβ j| j2⟩. If M is a unitary matrix, φ(M) is an orthogonal matrix. Moreover, the determi-

nant of φ(M) is 1. In order to see this write M = V DV †, where D is a diagonal matrix

consisting of phases only, and V is a unitary matrix. Then φ(M) = φ(V)φ(D)φ(V †) =

φ(V)φ(D)φ(V)T . Thereby, det(M) = det(φ(V))2 det(φ(D)) = det(φ(D)). φ(D) has a

block diagonal structure, and the determinant of each block is individually a 1. There-

fore φ sends U(n) to a subset of SO(2n). From this we conclude that denseness in SO(n)

is a more relaxed sufficient condition for universal quantum computing. See Figure 3-4 for

the relationship between these.

As a first step we need to program a qubit; that is, we need universal gates that act

on Q = C2. A qubit is a normal vector in C2, therefore, any such complex vector can be

specified using three real parameters:

50

|(ψ,θ ,φ)⟩= exp(iψ)(cosθ/2|0⟩+ sinθ2eiφ |1⟩)

The overall phase ψ is unobservable and we can drop it, and qubits can be repre-

sented by |(θ ,φ)⟩. In other words, we take two states equivalent if and only if they

are equal modulo a global phase. |(θ + 2π,φ)⟩ = −|(θ ,φ)⟩ are projectively equivalent.

The choice of θ/2 is important, and with this choice the space of qubits (modulo over-

all phase) is isomorphic to points (θ ,φ) on a unit 2-sphere, corresponding to the surface

(cosθ cosφ ,cosθ sinφ ,cosθ). This sphere is referred to as the Bloch Sphere. Therefore, a

qubit is programmable if given any two points on the Bloch sphere there is a way to output

a unitary operator which maps one point to the other.

Define the Pauli operators on the Hilbert space C2 as:

σx :=

0 1

1 0

 , σy :=

0 −i

i 0

 , σz :=

1 0

0 −1

 (3.5)

These operators are Hermitian, unitary, traceless and have determinant equal to −1. They

anti-commute with each other and each of them squares to the identity operator. We say that

two operators A,B anti-commute if {A,B} = AB+BA = 0, or in other words AB = −BA.

Moreover they satisfy the commutation relation:

[
1
2

σi,
1
2

σ j] = i
1
2 ∑

k∈{x,y,z}
εi jkσk, ∀.i, j ∈ {x,y,z}

[·, ·], is the commutator operator and maps A,B ↦→ AB−BA. εi jk is the Levi Civita symbol,

amounts to zero if any pair in i, j,k are equal, otherwise gives a 1 if the order of (i, j,k)

is right-handed, and otherwise takes the value −1. A triple (i, j,k) is called right-handed

if it is equal to (1,2,3), and is called left-handed if the order is (2,1,3), modulo cyclic

rotation. We usually drop the summation for simplicity. In short the Pauli operators satisfy

σiσ j = δi j + iεi jkσk.

Any 2× 2 unitary operator with unit determinant, can be decomposed as R(v) = v0 +

i(v1σx + v2σy + v3σz), where v := (v0,v1,v2,v3) =: (v0,v) ∈ R4, and pose the structure

51

v2
0 + v2

1 + v2
2 + v2

3 = 1. We can thereby use equivalent parameterization (v0,v1,v2,v3) =

(cosθ ,sinθn), where n ∈ R3 is a unit vector. Two points (v0,v) and (w0,w) act on each

other as:

(v0,vvv).(w0,www) = (v0.w0−vvv.www, w0vvv+ v0www−vvv×www),

If we define the exponential map as the limit of M ↦→ exp(M) := ∑
∞
j=0

M j

j!
, then R(v) =

exp(iθn.σ). Where, σ = (σx,σy,σz), and n.σ is the usual inner product of the two objects.

The object sitting in the argument of the exponential map has the structure of a vector space,

with σx,σy,σz as its linearly independent basis. Along with the commutation relation as the

vector-vector action it has the structure of an algebra. This algebra is called the Lie algebra

su(2). The exponential map is an isomorphism between SU(2) and su(2). The element

R j(θ) := exp(iθσ j) is called the single qubit rotation along the j axis, for j ∈ {x,y,z}.

Indeed, any element in SU(2), can be decomposed as a composition of two rotations Rx,Ry,

only.

We can extend this to larger dimensions. Any unitary matrix A with unit determinant

can is related to a traceless Hermitian operator H with the exponential map exp(iH). Let

su(n) the vector space over R, with n×n traceless Hermitian matrices as its linearly inde-

pendent basis. Again the exponential map is an isomorphism between SU(n) and su(n).

su(n) as a vector space has dimension n2− 1. Also, we know that elements of the set of

n×n unitary matrices with unit determinant can be specified with n2−1 real parameters.

Other well known qubit operations are Hadamard H and π/8 gate P:

H :=
1√
2

1 1

1 −1

 , P :=

e
−i

π

8 0

0 e
i
π

8

 (3.6)

The importance of a Hadamard gate is that its action H⊗n in parallel maps |0⟩⊗n to an

equal superposition over n bit strings, ı.e,
1

2n/2 ∑x∈{0,1}n |x⟩.

Let Cd be a Hilbert space, with orthonormal basis {|e j⟩} j∈[d]. Consider the Lie algebra

52

gi j generated by the operators:

|ei⟩⟨e j|+ |e j⟩⟨ei|, −i|ei⟩⟨e j|+ i|e j⟩⟨ei|, |ei⟩⟨ei|− |e j⟩⟨e j|,

for i < j. Clearly, gi j is closed under Lie commutation, and is isomorphic to su(2). Its

image under the exponential map, Gi j, is isomorphic to SU(2), and corresponds to quantum

operators (with unit determinant) that impose rotations on the subspace spanned by |ei⟩ and

|e j⟩, and acts as identity of the rest of the Hilbert space. Such set of operation is called a

two level gate. If we allow operations from Gi j for all i < j, then the corresponding gate

set is called a two-level system. A two level system is universal, and is dense in SU(d):

Theorem 3.3. Let g be the vector space generated by ∪i< jgi j then g = su(d).

Proof. g ⊆ su(d), since elements of gi j are traceless and Hermitian. Pick any Hermitian

matrix M with vanishing trace. Then:

M = ∑
i< j∈[d]

mi j|ei⟩⟨e j|+m?
i j|e j⟩⟨ei|+ ∑

i∈[d]
mii|ei⟩⟨ei|

= ∑
i< j∈[d]

ℜmi j(|ei⟩⟨e j|+ |e j⟩⟨ei|)+ℑmi j(i|ei⟩⟨e j|− i|e j⟩⟨ei|)

+ ∑
i∈[d]

mii|ei⟩⟨ei|

with ∑i∈[d]mii = 0. The off-diagonal terms are manifestly constructible with gi j basis. The

last term is also constructible with g basis:

∑
i∈[d]

mii|ei⟩⟨ei| = ∑
i∈[d−1]

mii|ei⟩⟨ei|+mdd|ed⟩⟨ed|

= ∑
i∈[d−1]

mii(|ei⟩⟨ei|− |ed⟩⟨ed|)

Corollary 3.4. A two level system on Cd can generate elements of SU(d).

53

Corollary 3.5. The following d2−1 elements create a linearly independent basis for su(d):

|ei⟩⟨e j|+ |e j⟩⟨ei|,

−i|ei⟩⟨e j|+ i|e j⟩⟨ei|,

for all i < j ∈ [d], and:

|ed⟩⟨ed|− |ei⟩⟨ei|,

for i ∈ [d−1].

Any d×d unitary matrix with unit determinant can be decomposed as the composition

of
d(d−1)

2
two level gates. For computation purpose we want to program a gate set to act

on multi-qubit systems, that is the Hilbert space Q⊗n, which has dimension 2n. Therefore

a two-level system on Q⊗n consists of exponentially many elements, and is not an efficient

choice for computing. Therefore, we are looking for gates that act on constant number of

qubits at a time and generate a dense subgroup of SU(Q⊗n).

An important two qubit gate is the controlled not (CNOT) gate [42], which maps the

basis |x,y⟩ to |x,x⊕ y⟩, for x,y ∈ {0,1}. That is it flips the second bit if the first bit is set

to 1. Indeed, we can discuss a controlled-U gate as |0⟩⟨0|⊗ I + |1⟩⟨1|⊗U for any unitary

U . Therefore, a CNOT gate is the controlled σx gate. A controlled phase gate is the one

with U = σz. CNOT is also related to the classical reversible circuits, that is a boolean gate

which flips the second bit conditioned on the status of the first bit. Among these, CNOT

has a classical circuit analogue as we discussed previously. Also inspired by the classical

reversible gates, we can discuss three qubit gates. Among these are the quantum Fredkin

and Toffoli gates. A Fredkin gate is a swap controlled on two qubits controlled by a third

qubit, that is the maps |0,x,y⟩ → |0,x,y⟩ and |1,x,y⟩ → |1,y,x⟩. A Toffoli or controlled-

controlled not or CCNOT is the gate which acts as σx a qubit controlled on the status of

two other bits; it gives the map |x,y,z⟩ → |x,y,x.y⊕ z⟩. Here x.y is the logical AND of x

and y.

54

As described two level systems are universal, but not efficiently programmable. There

are a number of well known universal gate sets. CNOT with arbitrary qubit rotation are

BQP universal by simulating the two level systems. Moreover, for any unitary U , there is

a way of assigning real angles to the rotations, such that the composition of gates in this

gate set simulates U exactly. However, given finite rotation gates with irrational rotation

angles, along with CNOT generate a dense subset of SU(Q⊗(n)). CNOT and X rotations

can simulate any special orthogonal matrix, and by the discussion of embedding complex

matrices into real ones these are still universal for quantum computing. There are other

known BQP-universal gate set. For example, Hadamard with Toffoli generate a dense

subset of the orthogonal group (see [5] for a proof), and also π/8 phase gate, Hadamard

with CNOT are also universal for BQP. However, the composition of Hadamard and CNOT

gates generate a sparse subset of unitary matrices and the output of any such quantum

circuit can be simulated in polynomial time.

A quantum computer works in three steps, initialization, evolution and measurement.

The initialization is due to a polynomial time Turing machine which on the size of the input

outputs the description of a quantum circuit in some universal gate set. Evolution is simply

the action of the quantum circuit on the input |x⟩ ⊗ |00 . . .0⟩. The |x⟩ part is the string

in computational basis and the state |00 . . .0⟩ is a number of extra bits which mediate the

computation. These extra bits are called ancilla qubits. Measurement is basically sampling

from the output distribution of C|x00 . . .0⟩ in the computational basis. Moreover, for a

decision problem, we can deform C in such a way that measuring the first bit is sufficient

to obtain a non-trivial answer.

Definition 3.2. (Bounded-error quantum polynomial time [16]) a language L ⊂ {0,1}? is

contained in BQP, if there a polynomial time Turing machine M, which on the input 1|x|,

outputs the description of a quantum circuit C in some universal gate set, such that if x ∈ L,

the probability of measuring a 1 in the first qubit is ≥ 2/3 and otherwise ≤ 1/3.

There are variety of definitions for the state norms and operator norms; however, in the

context of this research, they all give similar results. More specifically, if |ψ⟩ is a vector,

the Lk norm of this vector is defined as:

55

‖|ψ⟩‖k :=

(
∑

j
|ψ j|k

)1/k

A valid distance between two operators U and V is then defined as [42]:

d(U,V) := sup‖|ψ⟩‖=1‖(U−V)|ψ⟩‖

Specifically, the following theorem is crucial. It basically says that if we can approx-

imate each unitary operator in a quantum circuit, then the error in approximation of the

overall circuit grows linearly in its size:

Theorem 3.6. (Bernstein-Vazirani [15]) if U1U2 . . .Un and V1V2 . . .Vn be two sequences of

unitary operators such that the distance between each pair Ui and Vi is at most ε , then the

distance between U1U2 . . .Un and V1V2 . . .Vn is at most nε .

4 The One Clean Qubit

While state of a quantum system is a pure vector in a Hilbert space, most of the time the

actual quantum state is unknown; instead, all we know is a classical probability distribution

over different quantum states, ı.e., the given quantum state is either |ψ1⟩ with probability

p1, or |ψ2⟩ with probability p2, and so on. In other words, the state is an ensemble of

quantum states {(p1, |ψ1⟩),(p2, |ψ2⟩), . . . ,(pn, |ψn⟩)}, for p1 + p2 + . . . pn = 1. Such an

ensemble is a mixture of quantum probability and classical probability distributions at the

same time, it is also called a mixed state, and is described by a density matrix ρ:

ρ = ∑
j∈[n]

p j|ψ j⟩⟨ψ j|.

A density matrix is a Hermitian operator, with non-negative eigenvalues and unit trace. A

quantum state is called pure, if it has a density matrix of the form |ψ⟩⟨ψ|. In other words,

a quantum state ρ is pure if and only if tr(ρ2) = 1.

If some quantum state is initially prepared in the mixed state ρ0, then given a unitary

evolution U , the state is mapped to Uρ0U†. Let {| j⟩ : j ∈ [n]} be some orthonormal basis of

56

a Hilbert space. The maximally mixed state of this Hilbert space has the form
1
n

∑ j | j⟩⟨ j|=
I
n

, is a quantum state which contains zero quantum information in it. That is, the outcome

of any measurement can be simulated by a uniform probability distribution on n numbers.

Also, a maximally mixed state is independent of the selection of the orthonormal basis.

Quantum computing on a maximally mixed state is hopeless, since
I
n

is stable under any

unitary evolution.

Consider the situation where we can prepare a pure qubit along with n maximally mixed

qubits to get |0⟩⟨0|⊗ I
n

. The state |0⟩⟨0| is also referred to as a clean qubit. In this case,

the quantum state has one bit of quantum information in it. It is also believed that there

are problems in DQC1 that are not contained in the polynomial time. One example of such

problem, is the problem of deciding if the trace of a unitary matrix is large or small. No

polynomial time algorithm is known for this problem. I am going to point out to the trace

computing problem later in section Moreover, if we consider the version of DQC1

where we are allowed to measure more than one qubits, then it is shown that there is no

efficient classical simulation in this case, unless the polynomial Hierarchy collapses to the

third level. In the version of my definition, since I used a polynomial Turing machine as a

pre-processor, DQC1 immediately contains P. Pre-processing can be tricky for one clean

qubit. For example, as it appears, if instead of P, we used NC1, the class P and DQC1 are

incomparable.

Definition 3.3. (One clean qubit [37]) let DQC1 be the class of decision problems that are

efficiently decidable with bounded probability of error using one clean qubit and arbitrary

amount of maximally mixed qubits. More formally, these are the class of languages L ⊆

{0,1}?, for which there is a polynomial time Turing machine M, which on any input x ∈

{0,1}?, outputs the description of a unitary matrix ⟨U⟩ with the following property: if

x ∈ L, the probability of measuring a |0⟩ on the first qubit of U |0⟩⟨0|⊗ I
n

U† is ≥ 2/3, and

otherwise ≤ 1/3. Here U is an n+1×n+1 unitary matrix.

Notice that if we allow intermediate measurements we will obtain the original BQP; just

measure all qubits in {|0⟩, |1⟩} basis, and continue on a BQP computation. Clearly, DQC1

is contained in BQP; in order to see this, just use Hadamrds and intermediate measurements

57

to prepare the maximally mixed state, and continue on a DQC1 computation. It is unknown

whether BQP⊆ DQC1, however, we believe that this should not be true.

5 Complexity Classes with Post-Selection

Here we define the complexity classes with post-selection. Intuitively, these are the com-

plexity classes with efficient verifiers with free retries. That is an algorithm which runs on

the input, and in the end will tell you whether the computation has been successful or not.

The probability of successful computation can be exponentially small.

Definition 3.4. Fix an alphabet Σ. PostBQP (PostBPP) is the class of languages L ⊂ Σ?

for which there is a polynomial time quantum (randomized) algorithm A : Σ?→ {0,1}2,

which takes a string x ∈ Σ? as an input and outputs two bits, A (x) = (y1,y2), such that:

∙ 1)∀x ∈ Σ?,Pr(y1(x) = 1)> 0.

∙ If 2)x ∈ L then Pr(y2(x) = 1|y1(x) = 1)≥ 2
3

∙ If 3)x /∈ L then Pr(y2(x) = 1|y1(x) = 1)≤ 1
3

Here y1 is the bit which tells you if the computation has been successful or not, and y2 is

the actual answer bit. The conditions 2) and 3) say that the answer bit y2 is reliable only

if y1 = 1. In this work, we are interested in the class PostBQP. However, PostBPP is

interesting on its own right, and is equal to the class BPPpath, which a modified definition

of BPP, where the computation paths do not need to have identical lengths. PostBPP is

believed to be stronger than BPP, and is contained in BPPNP, which is the class of problems

that are decidable on a BPP machine with oracle access to NP or equivalently SAT.

Due to a seminal result by Aaronson, PostBQP is related to the complexity class PP:

Theorem 3.7. (Aaronson [37]) PostBQP= PP.

Firstly, because of PPP =P#P as a corollary to the theorem, with oracle access to PostBQP,

P can solve intricate counting tasks, like counting the number of solutions to an NP com-

plete problem. The implication of this result for the current work is that if a quantum model,

58

combined with post-selection is able to efficiently sample from the output distribution of a

PostBQP computation, then the existence of a randomized scheme for approximating the

output distribution of the model within constant multiplicative factor is ruled out unless PH

collapses to the third level. This point is going to be examined in section

6 Some Remarks on Lie Algebras

Let a1,a2, . . . ,an be Hermitian operators. These can be Hamiltonians of a physical inter-

action. We are interested in the Lie group generated by operators like Ak(t) := exp(iakt),

for k ∈ [n] and t ∈ R, as a manifold G. The Lie group is fairly complicated, and it is

worth looking at the space tangent to the identity element. Such a space is a vector space,

and moreover, it is an alternative definition of a Lie algebra. I denote this Lie algebra

by g. Since the exponential map is an isomorphism, the dimension of a Lie algebra, as

a vector space, matches the dimension of the manifold G. In addition, for some vector

space V , the containment of su(V) in g, implies denseness of G in SU(V). Starting with

A1(t),A2(t), . . . ,An(t), it is well-known that the corresponding Lie algebra consists of all

the elements that can be ever generated by taking the Lie commutators i[·, ·] : g×g→ g of

the elements, and Linear combination of the operators over R.

In order to obtain an intuition about what is going on, it is worth mentioning the follow-

ing remarks that are followed from [22, 23, 40]. Notice that this is far from being a proof.

The Trotter formula states that for any two operators H and V :

exp(i(H +V)) = lim
m→∞

(exp(iH/m)exp(iV/m))m , (3.7)

and the rate of convergence is according to:

exp(i(H +V)) = (exp(iH/m)exp(iV/m))m +O(1/m).

Therefore, this implies that if two elements H and V in g can be approximated within

arbitrary accuracy, then H +V can also be approximated efficiently. Next, observe the

following identity:

59

exp([H,V]) = lim
m→∞

(
exp(iH/

√
m)exp(iV/

√
m)exp(−iH/

√
m)exp(−iV/

√
m)
)m

, (3.8)

with the rate of convergence:

(
exp(iH/

√
m)exp(iV/

√
m)exp(−iH/

√
m)exp(−iV/

√
m)
)m

= exp([U,V])+O(1/
√

m)

Therefore this explains the commutator. Lastly, we need to take care of the scalar multi-

plications. Notice that if an element exp(iH) is approximated in G, then for any k ≥ 1,

exp(iHk) can be approximated similarly by repeating the process for k times. Now assume

that the sequence ∏i Ai(ti) approximates the element with the desired accuracy, then the

process (∏i Ai(ti/km))m can approximate exp(iH/k) in any way that we want by tuning m.

60

Chapter 4

Computational Complexity of Particle

Scattering and Ball Permuting Models

In this chapter, I borrow tools from pervious chapters to examine the computational com-

plexity of the integrable models. In the beginning, I describe a classical motivation for the

problem. After that I formally express the languages, and the goal of the rest of this chapter

is to pin down the complexity of these languages.

1 Classical Computation with Probabilistic Swaps

Suppose that n distinct colored balls are placed on a straight line. Label the initial configu-

ration of the balls from left to right with ordinary numbers 1,2,3, . . . ,n. Clearly, each con-

figuration of the balls can be (uniquely) represented by a permutation as a rearrangement

of the elements of an n-element set [n] := {1,2,3, . . . ,n}. Therefore, the ball permuting

model of n-balls has n! distinct states. In general, the transition rules are given by the set

of bijections : [n]→ [n]. These bijections along with their compositions correspond to the

well-known symmetric group, which is the subject of the next section.

1.1 The Symmetric Group

Here is a formal definition of the set of bijections as a group:

61

Definition 4.1. (The Symmetric Group) Given a finite element set X of n elements, let

S(X)∼= S([n]) be the set of bijections : X → X . The bijections of S[n] along with ∘ : S[n]×

S[n]→ S[n] as the composition of functions of functions from right-to-left, create a group

Sn := (S[n],∘,e), with identity e as the identity function.

Sn is a group because each element of S[n] is a bijection, and thereby is invertible.

Also, the composition of functions ∘ is associative. For any π ∈ Sn construct the structure{
{1,π(1),π ∘π(1), . . .},{2,π(2),π ∘π(2), . . .}, . . . ,{n,π(n),π ∘π(n), . . .}

}
=: {Cπ(1),Cπ(2), . . . ,Cπ(n)}=:

Cπ . This structure is called the set of cycles of permutation π , and each element Cπ(j) :=

{π(j),π ∘π(j), . . .} is the cycle corresponding to element j. The number of cycles in Cπ

can vary from 1 to n! (corresponding to e). [n] is finite set, and for each π ∈ Sn and j ∈ [n]

there is a number n ≥ k ≥ 1, which depends on π and j and πk(j) = j. Therefore the size

of the cycle is the minimum |Cπ(j)| = min{k > 0 : πk(j) = j}. The set [n] is therefore

partitioned into the union of disjoint cycles C1,C2, . . . ,CN . Let λ1 ≥ λ2 ≥ . . . ≥ λN be the

size of these cycles, clearly λ1 +λ2 + . . .+λN = n.

Definition 4.2. For each positive integer n, a partition of n is a non-ascending list of positive

integers λ = (λ1 ≥ λ2 ≥ . . . ≥ λN) such that λ1 + λ2 + . . .+ λN = n. Denote λ ! with

λ1!λ2! . . .λN!.

For any cycle structure of partition (size of cycles) λ1 ≥ λ2 ≥ . . . ≥ λN there is a sub-

group of Sn that is isomorphic to S[λ] := Sλ1×Sλ2× . . .×Sλn . In other words the subgroup

consists of the product of N permutations each acting on a distinct cycle. Any such sub-

group has λ ! elements. There are n!/λ ! ways to construct a subgroup isomorphic to S[λ].

The symmetric group is indeed the mother of all groups, and any group can be embed-

ded in an instance of a symmetric group. In other words, any group G is isomorphic to

a subgroup of S[G]. However, such an embedding is not efficient since S[G] has |G|! ele-

ments, and is exponentially larger than the original group itself. However, the observation

of this embedding had been the prime motivation for the definition of Sn as a group.

Theorem 4.1. (Cayley) Any group G is isomorphic to a subgroup of SG.

Proof. We give an isomorphism between the elements of G and a subset of bijections on

G. Consider the following set of bijections:

62

RG := {ρg : G→ G|x ↦→ g.x,∀x ∈ G}

We claim that h : G→ RG ≤ SG with the map g ↦→ ρg is an isomorphism. For any

a,b ∈ G, ρg(a) = ρg(b) if and only if g.a = g.b which is true if and only if a = b. And

for all a ∈ G there is an element b = g−1.a that ρg(b) = a. Therefore, for all g ∈ G, ρg is

a bijection. Also ∀x,y,a ∈ G, ρx(ρy(a)) = x.y.a = ρx.y(a) and thereby ρxρy = ρx.y. Now

h(a) = h(b), if and only if a(x) = b(x) for all x ∈ G, and for x = e, a = b. Since RG has at

most |G| elements, the map must be onto too. So h is an isomorphism. Moreover, ∀x,y∈G,

h(x).h(y) = ρxρy = ρx.y = h(x.y).

In order to complete the proof we must show that RG ≤ SG. Clearly, RG ⊆ SG. RG is

associative with function composition and contains the identity bijection ρe. Since any h is

an isomorphism, for any f ∈ RG there is a unique g that f = ρg, and has the inverse ρg−1 .

Also for any f1, f2 ∈ RG there are unique g1,g2 ∈ G such that f1 = ρg1 and f2 = ρg2 and

thereby f1 f2 = ρg1g2 ∈ RG which is the closure property.

Two permutations might have same cyclic structures. Indeed, corresponding to a cyclic

structure with cycles of sizes λ1,λ2, . . . ,λm, there are (λ1− 1)!(λ2− 1)! . . .(λm− 1)! per-

mutations. For example, there are two permutations with a single cycle of size 3, and these

are the maps (1,2,3)→ (3,1,2), and (1,2,3)→ (2,3,1).

In order to address each permutation π uniquely, we can use an alternative representa-

tion for the cycles as an ordered list (tuple) (y1,y2, . . . ,yk), with π(yt) = yt+1 mod k. There-

fore, each permutation π can be represented by its cycles π ∼= (C1,C2, . . . ,Ck). We can

define two different actions of the symmetric group Sn on an ordered list (x1,x2, . . . ,xn).

The first one of these is called the left action where a permutation π acts on a tuple X =

(x1,x2, . . . ,xn) as (π,X) ↦→ (xπ(1),xπ(2), . . . ,xπ(n))=: l(π). The left action rearranges the lo-

cation of the symbols. The right action is defined by (π,X) ↦→ (π(x1),π(x2), . . . ,π(xn)) =:

r(π). Throughout by permutation we mean left action, unless it is specified otherwise.

A permutation is called a swap of i, j if it has a nontrivial cycle (i, j) and acts trivially

on the other labels. A swap is called a transposition (i) for i ∈ [n− 1] if it affects two

adjacent labels i, i+ 1 with a cycle (i, i+ 1). There are n− 1 transpositions in Sn and the

63

group is generated by them. We use the notations (i, j) or bi, j for swaps and bi and (i)

for transpositions, interchangeably. Any permutation can be generated by at most
n(n−1)

2
transpositions or n swaps. Indeed, we can define a distance between permutations as d :

Sn×Sn→N, with d(π,τ) being the minimum number of transpositions whose application

on π constructs τ . Like any finite group Sn is also compact, and it is indeed isomorphic to

a hypercube of dimension n−1, or a regular graph of degree n−1. Therefore, the problem

of permutation generation has a reduction to the search problem on a hypercube. Given a

distance on the permutations we can classify the permutations into even and odd ones.

Definition 4.3. A sign of a permutation sgn : Sn→ {−1,1} is a homomorphism, with the

map σ ↦→ 1 if d(σ ,e) is even and gives −1 otherwise.

It is not hard to see that sign is a homomorphism. Given this, we can think of En ≤ Sn

as a subgroup of Sn consisting of σ ∈ Sn with sgn(σ) = 1. Clearly, En includes the identity

permutation, inverse and closure.

Proposition 4.2. For n≥ 2, any group (G, .,e) generated by b1,b2, . . . ,bn−1 is isomorphic

to Sn if and only if the following is satisfied:

∙ bi.b j = b j.bi for |i− j|> 1

∙ b2
i = e for i ∈ [n−1]

∙ bibi+1bi = bi+1bibi+1 for i ∈ [n−2]

1.2 The Classical Ball Permuting Model

Consider the following problem:

"(BALL) The input is given as a target permutation π ∈ Sn along with a m = poly(n)

long list of swaps (i1, j1),(i2, j2), . . . ,(im, jm), and a list of independent probabilities p1, p2, . . . , pm.

We apply the swaps in order to the list (1,2,3, . . . ,n) in order each with its corresponding

probability. That is we first apply (i1, j1) with probability p1, (and with probability 1− p1

we do nothing), then we apply (i2, j2) with probability p2 and so on. Given the promise that

64

the probability of target permutation is ≥ 2/3 or ≤ 1/3, The problem is to decide which

one is the case."

The above process creates a probability distribution over the permutations of Sn and

the problem is to decide if there is nonzero support on the target permutation. What is

the computational complexity of deciding this problem? Is the complexity of the problem

different if all the input swaps are adjacent ones? We can start with the identity permutation

and add the permutations that get nonzero probability support at each step and check if the

target permutation appears at the end of the process. If at some step τ appears in the list,

after applying the next swap (i, j) we should update the list by adding (i, j) ∘ τ , and we

should do the same thing for all of the permutations in the list. However, the size of the

list can be as large as n!, and this suggests an upper-bound of TIME(n!)⊂ EXP. However,

we observe that this problem can be decided by a polynomial time nondeterministic Turing

machine, where the short proof (witness) of the nonzero probability support is the sub list of

swaps which creates the target permutation. However, the number of alternative witnesses

can be as large as 2m. Therefore, the first question is to see where in NP does BALL. It can

be anywhere ranging from P to NP complete.

Next, we can think about the computational complexity of finding the exact probability

of the target permutation. This can be viewed as a (enumerative) counting process. For

example if all the probabilities are equal to 1/2, then the probability of a target permutation

is equal to the number of ways that one can produce the permutation with the given swaps

divided by 2m. Usually the counting problems are captured by the complexity class #P,

which is the class of functions that compute the number of witnesses for an NP complete

problem. However, even if the BALL problem itself is in P, the counting version can be as

complex as #P complete. For example, deciding if an undirected graph has an Euler path

is in P, but counting the number of Euler paths is known to be #P complete. Moreover, we

can ask if one can approximate (known as PTAS) the target probability. However, if the

exact counting is #P complete, a PTAS is also ruled out unless P= NP.

Notice that a BPP machine can sample from the output probability distribution over

the permutations, by just tossing coins whenever a probabilistic swap is needed. However,

the converse is not true and as we will see in the next section, there is an upper bound of

65

a class called AlmostL. Although the exact computation of the probabilities sounds like an

intricate counting task, finding the marginal probability distribution of the location of each

color in the end can be done in polynomial time.

Theorem 4.3. Starting with the list (1,2,3, . . . ,n), given a list of swaps (i1, j1),(i2, j2), . . . ,(im, jm)

with corresponding probabilities p1, p2, . . . , pm, there is a polynomial time (in n and m) pro-

cedure to compute the marginal probability distribution over the locations for each (ball)

color ∈ [n].

Proof. We give the procedure for the first color. We construct a vector V of size n, whose

entries Vj for j ∈ [n] is the probability of finding the first ball in the j’th location in the end

of ball permutation. The vector is initialized at (1,0,0,0, . . . ,0). For steps t = 2,3, . . . ,m,

let Vk←Vk if k ̸= it , jt , and otherwise map:

Vit ← ptVjt +(1− pt)Vit

and,

Vjt ← ptVit +(1− pt)Vjt

This can be done in O(m.n) number of operations.

1.3 The Yang-Baxter Equation

Alternatively, this process can be viewed as the action of probabilistic swaps can be cap-

tured by multiplication of stochastic matrices. Consider the probability simplex Vn :=

{V ∈ Rn!,∑ j Vj = 1}. Each entry of V corresponds to a permutation, and its content is

the probability that the permutation appears in the process. Consider an orthonormal basis

for this vector space as {|σ⟩ : σ ∈ Sn}. The basis |σ⟩ has probability support 1 on σ and

0 elsewhere. Now a swap can be viewed as the homomorphism L : Sn → End(Vn) with

the map L(π)|σ⟩ = |π ∘σ⟩, that is the left action of the symmetric group on the vector

space. Here End(Vn) is the set of operators which map the simplex Vn to itself. Denote

the swap operator by Li, j := L(i, j). Notice that the symmetry operators of the simplex Vn

66

is the set of stochastic matrices of size n!, that is the matrices whose rows sum up to 1. A

probabilistic swap (i, j) with probability p is therefore given by the matrix:

Ri, j(p) = (1− p)+ pLi, j

So this clearly gives a reduction to matrix multiplication. A matrix description of the

problem allows us to formalize the Yang-Baxter symmetry of three labels (balls). As dis-

cussed in the quantum ball permuting model, a Yang-Baxter (YB) symmetry is a restriction

on probabilities in such a way that the swaps in order (1,2),(2,3),(1,2) give the same

probability distribution as the swaps (2,3),(1,2),(2,3). We can view this as the solution

to the following equation:

R1(p1)R2(p2)R1(p3) = R2(p′1)R1(p′2)R2(p′3) (4.1)

We want to find the class of probabilities 1 ≥ p1, p2, . . . , p′6 ≥ 0 which the equation is

satisfied. If we rewrite Ri, j(p) with the parameter x ∈ [0,∞):

Ri, j(x) =
1+ xLi, j

1+ x

We can observe that there is a solution of the form:

Theorem 4.4. The following is a solution to equation 4.1:

p1 =
x

1+ x
p2 =

x+ y
1+ x+ y

p1 =
y

1+ y

p′1 =
y

1+ y
p′2 =

x+ y
1+ x+ y

p′3 =
x

1+ x

Proof. First I need to show that these are indeed a solution to YB equation. Expanding the

equation R1(x)R2(x+ y)R1(y) we get:

1+ xy+(x+ y)(L1 +L2)+(x+ y)(xL1L2 + yL2L1)+ xy(x+ y)L1L2L1

(1+ x)(1+ x+ y)(1+ y)
(4.2)

Exchanging L1 with L2 and x with y in the left hand side of equation 4.2 gives the right

hand side. Using the identity L1L2L1 = L2L1L2, however equation 4.2 is invariant under

67

these exchanges.

2 General Hilbert Space of Permutations

In the previous section I discussed several quantum models, whose evolution is governed

by local gates responsible for exchanging the order of internal degrees of freedom. My

approach was to introduce a formal model, as I will call it the quantum ball permuting

model, which captures all of the others. That is the quantum ball permuting model is more

complex than the others, in the sense that with some feasible encodings, it can simulate the

evolution of the other examples. In this model, all degrees of freedom are distinguishable,

and the Hilbert space is described by the order of these labels; that is the basis of the Hilbert

space is marked by the permutations of a finite-element set. We can think of these labels,

as colors, distinguishable particles (balls), or internal degrees of freedom like qudits.

Let Hn =C[Sn] be an n! dimensional Hilbert space, with permutations of n symbols as

its orthonormal basis. I consider a finite unitary gate set with all 2-local permuting gates

acting on Hn. I am interested in the set of local gates according to:

X(θ ,k) = cosθ I + isinθL(k,k+1),

where θ is a free parameter, and I is the identity operator on the Hilbert space. L(k,k+1) is

called the left transposition with the map:

|x1,x2, . . . ,xk,xk+1, . . . ,xn⟩ ↦→ |x1,x2, . . . ,xk+1,xk, . . . ,xn⟩

for any permutation x1,x2, . . . ,xn of the labels 1,2,3, . . . ,n.

For example, consider CS2, spanned by the basis |12⟩ and |21⟩. The matrix form of

X(θ ,1) on these basis according to:

X(θ ,1) =

cosθ isinθ

isinθ cosθ

 .

This has one free parameter, and moreover, each column is a permutation of the other.

68

However, the general form of a unitary on a two dimensional orthonormal Hilbert space

has four parameters with the form:

U(θ ,ψ,δ1,δ2) = eiψ

 cosθ isinθeiδ1

isinθeiδ2 cosθei(δ1+δ2)

 .

The X(·, ·) operator is a special case of U where all the phases ψ,δ1,δ2 = 0. Moreover,

U is expressible by permutations on two labels only, only if δ1 = δ2 and δ1+δ2 = 0 modulo

2π , which implies that δ1,δ2 ∝ π . Therefore, this suggests that other than some arbitrary

overall phase ψ , X is the most general form to express a local permuting unitary gate.

The operator L can be thought of as a homomorphism : Sn→→U(CSn), I call it a left

action because it lets a member τ of Sn act on a basis state |σ⟩,σ ∈ Sn according to:

L(τ)|σ⟩= |τ ∘σ⟩

However, the transpositions and swaps in general of the form L(i j) are both Hermitian

and unitary, that is the image of a swap under L is an involution (a map that is its own

inverse). Indeed, one can observe the following simple fact, which I am going to use in a

later section:

Proposition 4.5. If L is unitary and also an involution, projecting out the overall phase, the

operator α +βL for α,β ∈ C is unitary if and only if α = c,β = is for some real valued

parameters c,s, with c2 + s2 = 1.

We can also talk about a right action : Sn→U(CSn) with a corresponding map:

R(τ)|σ⟩= |σ ∘ τ⟩

While a left action rearranges the physical location of the labels, a right action relabels

them, and as it is mentioned in a later section, the unique commutant of the associative

algebra generated by left actions is the algebra of right actions. Therefore, it is worthwhile

to introduce a right permuting version of a local gate:

69

Y (θ ,k) = cosθ I + isinθR(k,k+1)

A Y operator simply exchanges the labels k with k + 1, independent of their actual

location, and is not local in this sense. As a first input, the following theorem can be

observed.

Theorem 4.6. Let U = X(θm,km) . . .X(θ2,k2)X(θ1,k1) be any composition of the X oper-

ators, then columns of U as a matrix in Sn basis, are obtainable by permuting the entries

of the top-most column.

Proof. Consider the first column of U spanned by:

U |123 . . .n⟩= ∑
σ∈Sn

ασ |σ⟩

Where ασ ’s are the amplitudes of the superposition. Now consider any other column

marked by π:

U |π⟩= ∑
σ∈Sn

βσ |σ⟩

Clearly, |π⟩= R(π)|123 . . .n⟩, and since [U,R(π)] = 0:

∑
σ∈Sn

βσ |σ⟩= ∑
σ∈Sn

ασ |σ ∘π⟩,

which is the desired permutation of columns, and in terms of entries βσ∘π = ασ .

The same conclusion can be made for the composition of Y operators. Let G be the

group of unitary operators that can ever be generated by the compositions of X operators.

While the unitary group U(H) is a Lie group of dimension n!2, as the corollary of the

above theorem G⊂U(H) as a Lie group, has dimension n! which is polynomially smaller

than n!2. This is suggestive of the fact that G is not a dense subgroup of the unitary group.

In the definition of X(·, ·) and Y (·, ·) operators, the angle θ is independent of the labels

that are being swapped. In fact the property observed in theorem 4.6 was a consequence

70

of this independence. Therefore, I introduce another local unitary, Z(θ̃ ,k), wherein the

transposition angles depend on the color of the labels. Here θ̃ = {θi j} is a list of angles,

one element per each i ̸= j∈ [n]. By definition Z(θ̃ ,k) acts on the labels |ab⟩ in the locations

k and k+1 with the following map:

Z(θ̃ ,k)|ab⟩= cosθabI + isinθabL(a,a+1)

If we assume real valued angles with θi j = θ ji, then the operator Z becomes unitary.

Clearly, the X operators are the special case of the Z operators. In order to see this, consider

any basis |σ⟩,σ ∈ Sn, and suppose σ(k) = a,σ(k+1) = b then:

Z †(θ̃ ,k)Z(θ̃ ,k)|σ⟩=

(cosθab− isinθabL(k,k+1))(cosθab + isinθabL(k,k+1))|σ⟩= |σ⟩

Now the composition of Z operators give rise to a subgroup U(H) whose dimension

can exceed n!. We can also define W (θ̃ ,k) as an analogue of the Z operators. Such a W

map is according to the following:

| . . .
a
k . . .

b
k+1 . . .⟩ → cosθab| . . .

a
k . . .

b
k+1 . . .⟩+ isinθab| . . .

a
k+1 . . .

b
k . . .⟩.

The superscripts demonstrate the location of the labels. However, W is not a dual to

Z, like X and Y ’s, since these operators do not commute in general. In general, we can

confirm the following properties for the discussed operators:

∙ X†(θ ,k) = X−1(θ ,k) = X(−θ ,k), and the similar relations are true for the Y and Z

operators.

∙ [X(θ ,k),X(θ ′,k′)] ̸= 0 if and only if |k−k′|= 1, this is also true for the Y operators.

∙ [Z(θ̃ ,k),Z(θ̃ ′,k′)] ̸= 0 if and only if |k−k′|= 1, this is also true for the W operators.

∙ [X(θ ,k),Y (θ ′,k′)] = 0 for all values of k,k′ and θ ,θ ′.

71

∙ [Z(θ̃ ,k),R(π)] can be nonzero. Therefore if U is a composition of Z operators, the

columns of can be different modulo permutation.

The last property suggests that the Lie group generated by Z operators is larger than G,

and I am going to prove that with slight encodings one obtains a BQP-universal model.

2.1 The Yang-Baxter Equation

We can discuss the restriction on the angles of the X operators in such a way that they

respect Yang-Baxter equation (YBE) of three particles. Therefore, this restricted version

can capture the scattering matrix formalism of particles on a line. YBE in the scattering

models asserts that the amplitudes depend only on the initial configuration and momenta

of the particles.

Given a vector space V⊗n, let Ri j for i < j ∈ [n] be a family of two-local operators in

GL(V⊗n) such that each Ri j only affects the i j slot of the tensor product, and acts trivially

on the rest of the space. Then, R is said to satisfy the parameter independent YBE if they

are constant and:

Ri jR jkRi j = R jkRi jR jk

Sometimes, I refer to the following as the YBE:

(R⊗ I)(I⊗R)(R⊗ I) = (I⊗R)(R⊗ I)(I⊗R)

Both sides of the equation act on the space V⊗V⊗V, and R⊗ I acts effectively on

the first two slots, and trivially on the other one. Similarly, I can define a parameter de-

pendent version of the YBE, wherein the operator R : C→GL(V⊗V) depends on a scalar

parameter, and R is said to be a solution to the parameter dependent YBE is according to:

(R(z1)⊗ I)(I⊗R(z2))(R(z3)⊗ I) = (I⊗R(z′1))(R(z
′
2)⊗ I)(I⊗R(z′3))

for some z1,z2, . . . ,z′3. I am interested in a solution of parameter dependent YBE with

X(·, ·) operators. For simplicity of notations, in this part, I use the following operator:

72

R(z,k) :=
1√

1+ z2
+

iz√
1+ z2

L(k,k+1) = X(tan−1(z),k)

instead of the X operators. The following theorem specifies a solution to the parameter

dependent YBE:

Theorem 4.7. Constraint to z1z2 . . .z′3 ̸= 0, the following is the unique class of solutions to

the parameter dependent YBE, with the R(·, ·) = X(tan−1(·), ·) operators:

R(x,1)R(x+ y,2)R(y,1) = R(y,2)R(x+ y,1)R(x,2),

for all x,y ∈ R.

Proof. We wish to find the class parameters z1,z2, . . . ,z′3 such that the following equation

is satisfied:

R(z1,1)R(z2,2)R(z3,1) = R(z′1,2)R(z
′
2,1)R(z

′
3,2) (4.3)

It is straightforward to check that if z1 = z′3, z3 = z′1 and z2 = z′2 = z1 + z2, then the

equation is satisfied. I need to prove that this is indeed the only solution. Let:

Γ :=

√
(1+ z′21)(1+ z′22)(1+ z′23)
(1+ z2

1)(1+ z2
2)(1+ z2

3)
.

If equation 4.3 is satisfied, then the following are equalities inferred:

1) Γ.(1− z1z3) = (1− z′1z′3)

2) Γ.(z1 + z3) = z′2

3) Γ.z2 = (z′1 + z′3)

4) Γ.z1z2 = z′2z′3

5) Γ.z2z3 = z′1z′2

6) Γ.z1z2z3 = z′1z′2z′3

73

Suppose for now that all of the parameters are nonzero; I will take care of these special

cases later. If so, dividing 6) by 5) and 6) by 4) reveals:

z1 = z′3

z3 = z′1. (4.4)

Again suppose that z1z3 ̸= 1 and z′1z′3 ̸= 1. Then using the equivalences of 4.4 in 2),

one gets Γ = 1, from 2) and 3):

z2 = z′2 = z1 + z3,

which is the desired solution. Now suppose that z1z3 = 1. This implies also z′1z′3 = 1. Using

these in 6) one finds Γ.z2 = z′2 and substituting this in 2) and 3) reveals Γ = 1 as the only

solution, and inferring from equations 2),3), . . . ,6) reveals the desired solution.

If one of the parameters is indeed 0, I can find other solutions too, but all of these are

trivial solutions. The following is the list of such solutions:

∙ If z1 = 0, then:

– either z′3 = 0, which implies z3 = z′2 and z2 = z′1

– or z′2 = 0 that implies z3 = 0 and tan−1(z2) = tan−1(z′1)+ tan−1(z′3).

∙ If z2 = 0 then z′1 = z′3 = 0 and tan−1(z,2) = tan−1(z1)+ tan−1(z3).

∙ If z3 = 0, then:

– either z′1 = 0, which implies z1 = z′2 and z2 = z′3

– or z′2 = 0 that implies z1 = 0 and tan−1(z2) = tan−1(z′1)+ tan−1(z′3).

The solutions corresponding to z′j = 0 are similar, and I can obtain them by replacing

the primed rapidities with the unprimed rapidities in the above table. There is another

corresponding to the limit z j→ ∞:

74

X(0,1)X(0,2)X(0,1) = X(0,2)X(0,1)X(0,2)

Which corresponds to the property L(1,2)L(2,3)L(1,2)= L(2,3)L(1,2)L(2,3) of the symmetric

group. From now on, I use the following form of the R-matrices:

R(v1,v2,k) := R(v1− v2,k),

for real parameters v1,v2, and the YBE is according to:

R(v1,v2,1)R(v1,v3,2)R(v2,v3,1) = R(v2,v3,2)R(v1,v3,1)R(v1,v2,2).

The parameters v j can be interpreted as velocities in the scattering model. I can now

extend the three label Yang-Baxter circuit to larger Hilbert spaces.

Definition 4.4. An m gate Yang-Baxter circuit over n labels is a collection of n smooth

curves (x1(s),s),(x2(s),s) . . .(xn(s),s) where s ∈ [0,1], with m intersections, inside the

square [0,1]2, such that, 0 < x1(0) < x2(0) < .. . < xn(0) < 1, and xi(1) are pairwise non-

equal.

If σ ∈ Sn, and xσ(1)(1) < xσ(2)(1) < .. . < xσ(n)(1), then σ is called the permutation

signature of the circuit.

I can assume that all the intersections occur in different s parameters. Then one can

enumerate the intersections from bottom to the top with the parameters s1 < s2 < .. . < sm.

Let ε < min{st+1− st : t ∈ [m−1]}, then for each intersection s ∈ {s1,s2, . . . ,sm}, there is

a permutation π ∈ Sn such that:

xπ(1)(s− ε)< · · ·< xπ(k)(s− ε)< xπ(k+1)(s− ε)< .. . < xπ(n)(s− ε)

and,

xπ(1)(s+ ε)< · · ·< xπ(k+1)(s+ ε)< xπ(k)(s+ ε)< .. . < xπ(n)(s+ ε).

Then the intersection at s maps the order of lines from the permutation π to the per-

75

mutation τ := (k,k+ 1) ∘π , which is the adjacent transposition of the k and k+ 1’th line.

Thereby, I can say that the intersection corresponds to the transposition (k,k+1), and the

permutation signature of the Yang-Baxter circuit after this intersection is τ . Intuitively, the

permutation signature at each section is the rearrangement of lines at that section. Indeed,

each Yang-Baxter circuit represents a permutation, as its permutation signature. Two iso-

topic1 Yang-Baxter circuits have the same permutation signature, but the converse is not

necessarily true.

Definition 4.5. Let C be a Yang-Baxter circuit of m gates, each corresponding to a trans-

position (kt ,kt +1), t ∈ [m], and the permutation signature πt , t ∈ [m] at each of these gates.

Then if one assigns a real velocity v j to each line, then the Yang-Baxter quantum circuit

for C is a composition of R(·, ·, ·) operators:

R(vπm(km)− vπm(km)+1,km) . . .R(vπ2(k1)− vπ2(k1+1),k2)R(vk1− vk1+1,k1).

Each of these unitary R-matrices is a quantum gate.

2.2 The Class of Quantum Ball-Permuting Languages

Now that I have specified the quantum gate sets, I make an attempt to formalize these

models according to classes of languages they recognize, and then in a later section I will try

to pin down their complexities. In general, I am interested in a form of quantum computing

where one starts with some initial state in CSn, applies a polynomial size sequence of ball

permuting gates, and then in the end samples from the resulting probability distribution in

the permutation basis of Sn. An initial state of the form |123 . . .n⟩ sounds natural, however,

for the reasons that we are going to see later, I believe that the model in this case is going

to be strictly weaker than the situation where the model is allowed to start with arbitrary

initial states. Therefore, I study the case where the model has access to arbitrary initial

states separately:

1we call two objects isotopic if there exists a smooth function which maps one to the other.

76

Definition 4.6. Let XQBALL be the class of languages L⊆ {0,1}? for which there exists a

polynomial time Turing machine M which on any input x ∈ {0,1}?, outputs the description

of a ball permuting quantum circuit C as a composition of X operators, such that if x ∈ L,

|⟨123 . . .n|C|123 . . .n⟩|2 ≥ 2/3 and otherwise ≤ 1/3. Also, define YQBALL and ZQBALL

similarly with the ball permuting circuits as the composition of Y and Z operators, respec-

tively. Define HQBALL in the same way with the H operators with (possibly non-planar)

Yang-Baxter circuits.

Let XQBALLad j, YQBALLad j, ZQBALLad j, and HQBALLad j as the corresponding sub-

classes where all operators act on adjacent labels XQBALL?ad j, YQBALL
?
ad j, and ZQBALL?ad j

as further restricted subclasses with all nonzero transposition angles.

For later sections, by XQBALL I mean the model that starts out from |123 . . .n⟩, otherwise

it is mentioned that the initial state is arbitrary. In any case, the final measurement is done

in the ball label basis. Here I defined different variants of the model. It is conventional to

consider such variations for a computational model, to see if the computing power is robust

under these variations.

2.3 A Flash-forward to the Final Results

As I am going to define it later, PostHQBALL is the class of problems that are decidable

on the ball scattering model with H operators when we are allowed to post select on the

outcomes of intermediate demolition measurements. As we are going to see, the following

upper-bounds can be obtained on the models:

Model |123 . . .n⟩ initial state arbitrary initial state

XQBALL DQC1 BQP

ZQBALL BQP BQP

PostHQBALL DQC1 BQP

The following lower-bounds are obtained:

77

Model |123 . . .n⟩ initial state arbitrary initial state

XQBALL ? BQP

ZQBALL BQP BQP

PostHQBALL ? BQP

3 Upper-bounds

Some of these models are the special cases of the others and as the first input, the following

containments are immediate:

∙ HQBALL⊆ XQBALL⊆ ZQBALL

∙ XQBALL?ad j ⊆ XQBALLad j = XQBALL, similar relations are true for H,Y and Z

classes.

Clearly, models with arbitrary initial states immediately contain their corresponding

model with initial state |123 . . .n⟩. In order to see all the containments in BQP, it is suffi-

cient to prove that ZQBALL⊆ BQP.

Theorem 4.8. ZQBALL⊆ BQP.

Proof. Let L ∈ ZQBALL. Then, on any input x ∈ {0,1}?, there exists a polynomial time

Turing machine that outputs the description of a Z ball permuting circuit. We simulate the

Hilbert space of permutations with bits, by just representing each label of [n] with its ⌈logn⌉

long binary representation. Therefore, we use n⌈logn⌉ bits to encode the permutations of

Sn. Although this is not an optimal encoding, it works in this case. The computation

consists of three steps: at first we should simulate the initial state quantum states over

binary bits, then we need to simulate the Z operators, and in the end we need to demonstrate

how to sample from the output states.

1) Initialization: the BQP quantum circuit first applies enough not gates to the |0⟩⊗n⌈logn⌉

to prepare the encoded initial state |123 . . .n⟩ with binary representations.

2) Evolution: it is sufficient to show how to simulate one of the Z(θ̃) operators on

two labels. The list θ̃ consists of coefficients θi j. So for each pair of indices i < j we

78

add a control ancilla bit. We initialize all of the ancilla bits with zeros. We first apply

enough controlled operations to the binary encodings of the k and k+1 slots, to flip the i, j

control bit if and only if the contents of k and k+ 1 slots are i and j, then controlled with

the i, j control bit we apply the unitary cosθi j + isinθi jS, where S is the operator which

swaps all the bits in the k slot with all the bits in k + 1. Notice the operator S acts on

at most O(logn) qubits, and because of the Solovay-Kitaev theorem, it can be efficiently

approximated by a quantum computer. We continue this for all of the indices i < j. Since

we are using several ancilla bits, we need to uncompute their contents, at the end of each

Z simulation. Therefore, a Z ball permuting quantum circuit can be simulated by a qubit

quantum circuit with polynomial (in n) blow-up in its size, and a Hilbert space consisting

of O(n logn+mn2) = O(m.n2), where m is the size of the original circuit.

3) Measurement: at the end of the computation we only need to measure the output bits,

and interpret them as a permutation. Therefore the output of the Z ball permuting circuit

can be sampled efficiently. We can also use enough controlled operations to flip a single

bit if and only if the n⌈logn⌉ bits encode the identity permutation.

This readily demonstrates that all of the discussed models are contained in BQP. Next,

I use the following theorem to prove that the models with X and Y operators

Theorem 4.9. Let G and H be the unitary groups generated by X and Y operators, respec-

tively. Then G∼= H.

Proof. We show an isomorphism T : G→ H, as a linear map, with T (Lσ) = Rσ−1 , and the

(linear) inverse T−1 : H→G, with T−1(Rσ) = Lσ−1 . Let U be any element in A, then U can

be decomposed as a sequence of X operators Um =X(θm,km)X(θm−1,km−1) . . .X(θ1,k1)=:

∑σ∈Sn ασ Lσ , we need to prove that T (Um)∈ B. I use induction to show that T (U) is simply

Y (θm,km)Y (θm−1,km−1) . . .Y (θ1,k1) ∈ B. Clearly, T (X(θ1,k1)) = Y (θ1,k1), since the in-

verse of each transposition is the same transposition. For t <m, let Ut =X(θt ,kt)X(θt−1,kt−1) . . .X(θ1,k1))=:

∑σ∈Sn α ′σ Lσ . By induction hypothesis suppose that T (Ut)=:Vt =Y (θt ,kt)Y (θt−1,kt−1) . . .Y (θ1,k1)=

∑σ∈Sn α ′σ Rσ−1 . For simplicity let c := cosθt+1 and s := sinθt+1 and the transposition

k := (kt ,kt +1), then:

79

Ut+1 = X(θt+1,kt+1)Ut = ∑
σ∈Sn

cα
′
σ Lσ + isα

′
σ Lk∘σ

= ∑
σ∈Sn

(cα
′
σ + isα

′
k∘σ)Lσ

and,

Vt+1 = Y (θt+1,kt+1)Vt = ∑
σ∈Sn

cα
′
σ Rσ−1 + isα

′
σ Rσ−1∘k−1

= ∑
σ∈Sn

cα
′
σ Rσ−1 + isα

′
σ R(k∘σ)−1 = ∑

σ∈Sn

(cα
′
σ + isα

′
k∘σ)Rσ−1

= T (Ut+1)

And more generally,

Theorem 4.10. Let A and B be the associative algebras generated by L and R operators

over the field C, respectively. Then A∼= B.

Proof. The isomorphism T of theorem 4.9 works.

Corollary 4.11. XQBALL= YQBALL

Proof. I use the isomorphism result of theorem 4.9: suppose that after application of

several gates X(θm,km)X(θm−1,km−1) . . .X(θ1,k1) to the state |123 . . .n⟩ one obtains the

quantum state |ψ⟩ = ∑σ∈Sn ασ |σ⟩, then the application of the corresponding Y operators

Y (θm,km)Y (θm−1,km−1) . . .Y (θ1,k1) to the same initial state, one obtains |ψ⟩=∑σ∈Sn α−1
σ |σ⟩,

where σ−1 is the inverse of the permutation σ . Any X computation can be deformed in a

way that in the end the computation just reads the amplitude corresponding to the identity

permutation, ı.e., α123...n. Since the inverse of the identity permutation is identity itself,

X computation can be simulated by a Y computation, by just applying the same quantum

circuit with Y operators and read the identity amplitude in the end. A similar reduction also

works from X to Y computations.

80

Next, I demonstrate that adjacent swaps and nonadjacent swaps do not change the com-

putational power of the ball permuting model:

Theorem 4.12. XQBALL?ad j = XQBALLad j = XQBALL, also the same equalities are true

for Y and Z operators.

Proof. The direction XQBALL?ad j ⊆ XQBALLad j ⊆ XQBALL is immediate. Now in order

to see XQBALL ⊆ XQBALL?ad j, consider any gate X(θ), if θ is a multiple of 2π , then

composing X with itself for a constant number of times reveals the pure swap operator.

Otherwise, if it is an irrational multiple of 2π , because of equidistribution theorem for

any ε > 0, there is a number N = O(1/ε), such that composing X with itself for N times,

reveals an operator that is ε-close to the pure swap operator. Given this observation, any

computation in XQBALLad j can be simulated by a computation XQBALL?ad j, where all

the X operators are different from swaps. Finally, I will prove XQBALL ⊆ XQBALLad j.

This should be also true, since any non-adjacent swap can be simulated with a sequence of

adjacent swaps. See the proof of theorem ??. The same arguments also work for Y and Z

operators.

The general definition of HQBALL involves possibly non-planar circuits. Although this

is not physical, it is interesting to show that the model is equivalent to XQBALL itself:

Theorem 4.13. XQBALL= HQBALL.

Proof. The direction HQBALL ⊆ XQBALL is immediate; R gates are special cases of X

gates. To see the other direction, given any ball permuting quantum circuit as a composition

C = X(θm,km)X(θm−1,km−1) . . .X(θ1,k1), we construct an HQBALL quantum circuit with

non-planar Yang-Baxter circuit C′, which can efficiently sample from the output of C. I use

non-planarity (in a tricky way) to compose a two particle R quantum gate with itself over

and over. As it can be seen in the next theorem, non-planarity is indeed necessary for this

simulation. Suppose that C acts on n labels, then one can choose the velocities of C′ to be

v1 = nπ,v2 = (n−1)π, . . . ,vn = π . Given this choice of velocities, the rapidity vi− v j ∝ π

for all i, j and the angle φi j tan−1(vi− v j) is an irrational multiple of π . From Gibb’s

equidistribution theorem, for any ε > 0 and angle θ ∈ [0,2π], there is a number N =O(1/ε)

81

such that |Nφi j− θ | < ε, mod 2π . So given any gate X(θt ,kt), we approximate it with

accuracy ε/m with O(m/ε) compositions of the operator R(z,kt) with itself. Thereby, we

approximate all of the local gates with accuracy ε/m, and given the linear propagation of

error in quantum circuits, the unitary C′ is ε-close to C, with respect to some matrix norm.

Corollary 4.14. XQBALL= HQBALL, on arbitrary initial states.

Proof. Given that the unitary C′ described in the proof of 3 can approximate the unitary C

with arbitrary precision, we can conclude that given any initial state |ψ⟩, the quantum state

C|ψ⟩ is arbitrary close to C′|ψ⟩.

Theorem 4.15. Let Qn be the Lie group generated by planar Yang-Baxter quantum circuits

over n labels, then Qn as a manifold is isomorphic to the union of n! manifolds, each with

dimension at most n.

Proof. Fix the velocities v1,v2, . . . ,vn. The idea is to demonstrate an embedding of the

group generated with these fixed velocities into the symmetric group Sn. Consider any

two planar Yang-Baxter quantum circuits C and C′, with permutation signatures σ and τ ,

respectively. I show that if σ = τ , then C =C′.

The underlying circuit of C corresponds to a sequence of transpositions k1,k2, . . . ,kM

and C′ corresponds to another sequence l1, l2, . . . , lN , such that kM ∘ . . . ∘ k2 ∘ k1 = σ , and

lN ∘ . . .∘ l2 ∘ l1 = τ . Then the unitary operators C and C′ can be written as a sequence of R

operators:

C = R(zM,kM) . . .R(z2,k2)R(z1,k1)

and,

C′ = R(z′N , lN) . . .R(z
′
2, l2)R(z

′
1, l1).

Where the z parameters are the suitable rapidities assigned to each two-particle gate

based on the velocities v1,v2, . . . ,vn, and the underlying Yang-Baxter circuits. From propo-

82

sition 4.2 if two sequence of transpositions kM ∘ . . .∘ k2 ∘ k1 and lN ∘ . . .∘ l2 ∘ l1 amount to

the same permutation, then there is a sequence of substitution rules among:

1) b2
i ⇔ e

2) bib j⇔ b jbi if |i− j|> 1

3) bibi +1bi⇔ bi +1bibi +1, for all i ∈ [n−1]

Such that if we start with the string kM ∘ . . .∘k2 ∘k1 and apply a sequence of substitution

rules, we end up with lN ∘ . . .∘ l2∘ l1. All I need to do is to prove that the sequences of unitary

gates are invariant under each of the substitution rules. The invariance under each rule is

given in the below:

1) If we apply two successive quantum transpositions on the labels i, i + 1 we will

end up with the identity operator. This follows from unitarity R(z)R(−z) = I,∀z ∈ R, and

planarity of the circuits. Suppose that in the first transposition the left strand has velocity v1

and the right strand has velocity v2, then the first unitary gate is R(p1− p2, i), now applying

another transposition on i and i+1’th label corresponds to the unitary R(p2− p1, i), which

is the inverse of the first one. This is true since after the first application of Ri the order of

velocities is exchanged, and because of planarity the only way to compose the unitary with

itself is with R(p2− p1, i).

2) Clearly R(·, i)R(·, j) = R(·, j)R(·, i) for |i− j|> 1, since these are 2-local gates.

3) This part also follows from the Yang-Baxter equation.

We can then start with the unitary C = R(zM,kM) . . .R(z2,k2)R(z1,k1) and apply the

same substitution rules and end up with C = R(z′N , lN) . . .R(z
′
2, l2)R(z

′
1, l1).

Now let Qn(σ) be the Lie group corresponding to all Yang-Baxter quantum circuits

with permutation signature σ . For each choice of velocities, there is exactly one unitary in

this group, so Qn(σ) is locally diffeomorphic to Rn, and Qn = ∪σ∈SnQn(σ).

In the following I show that even with post-selection in the end, a quantum planar

Yang-Baxter circuit still generates a sparse subset of unitary group.

Theorem 4.16. The set of unitary operators generated by HQBALLad j with post-selection

in particle label basis in the end of computation, correspond to the union of (discrete)

n!O(1) manifolds, each with linear dimension.

83

Proof. We follow the proof of theorem 4.16. Consider the planar YB circuits on n labels.

If the input velocities are fixed, then the unitary operators generated by the model constitute

a finite set of size at most n!. There are finite n!O(1) to do a post-selection on the output

labels of each circuit. So for each fixed set of velocities, the unitary matrices obtained

by post-selection and proper normalization still constitute a set of size n!O(1). Therefore,

label the manifolds with the permutation signature of the circuits and the type of final post-

selection. Then the points in each of these manifolds are uniquely specified by n velocity

parameters, which is an upper-bound on the dimension for each of them.

Notice that result of these theorems still hold if we allow the circuit models to start with

arbitrary initial states.

3.1 XQBALL on Separable States

The result of this section was obtained in joint collaboration with Greg Kuperberg. In this

section, I find an upper-bound for the class XQBALL; that is computing with the |123 . . .n⟩

initial state. I provide evidence that it is unlikely to do universal quantum computation with

this initialization of states.

XQBALL can alternatively be defined as the class of decision problems that are polyno-

mial time reducible to the following problem:

"The input is a polynomial m= nO(1) long list of swaps (i1, j1),(i2, j2), . . . ,(im, jm) on n

labels, and an independent list of rotations θ1,θ2, . . . ,θm ∈ [0,2π]. Let C =Xim, jm(θm)Xim−1, jm−1(θm−1) . . .Xi1, j1(θ1)

be the corresponding ball permuting quantum circuit. Given the promise that |⟨123 . . .n|C|123 . . .n⟩|

is either ≥ 2/3 or ≤ 1/3, decide which one is the case."

XQBALL(σ ,τ) can be defined in a similar way, except that the initialization and final-

ization is according to ⟨σ |C|τ⟩. Clearly, there are linear time reductions between the two

complexity classes in both ways. For example, given any instance C of XQBALL(σ ,τ), the

reduction is just to add pure swaps L(σ) and L(τ) to obtain C = L−1(τ)CL(σ) as the equiv-

alent instance in XQBALL. The reduction in the other direction is similar. This is indeed

due to the fact that unitary matrices of the XQBALL have at most n! degrees of freedom,

compared to n!2 number of degrees of freedom of the unitary group. This is because, as dis-

84

cussed, each column of any such unitary can be obtained by permuting the other columns.

This is indeed a special property and we believe that it makes this complexity class a weak

one. Indeed, the situation can be phrased according to the trace of the unitary matrices

generated in this class:

Lemma 4.17. Given any ball permuting quantum circuit C over CSn, the trace Tr(C) =

n!⟨123 . . .n|C|123 . . .n⟩.

Proof. A quantum ball permuting circuit, by definition, consists of left permuting actions

only, and it commutes with a right action R(σ) (relabeling) for any σ ∈ Sn. Thereby

⟨123 . . .n|C|123 . . .n⟩= ⟨123 . . .n|R−1(σ)CR(σ)|123 . . .n⟩= ⟨σ |C|σ⟩. From this, Tr(C) =

∑σ∈Sn⟨σ |C|σ⟩= n!⟨123 . . .n|C|123 . . .n⟩.

This suggests that all the amplitudes are closely related to the trace of a ball permuting

operator. I also used the observation of commutation with the right actions (relabeling) to

obtain a non-universality criterion in section 9.1.

At this point, it is crucial to be precise about they way XQBALL is simulated in BQP.

Consider the following simulation: given a circuit C over CSn, simulate the ball permuting

model with qubits. Represent each number in [n] with logn bits of binary representation

and let the initial state be the encoding of 123, . . .n. We just need to simulate each local

ball permuting gate with corresponding gates on qubits. I demonstrate such a simulation

for X1,2(θ) the construction of the rest of the operators is similar. Let Ti, j be the swap

operator in the qubit basis, ı.e. the operator which swaps the content of the i and j’th

qubits. Then clearly T̃12 := T1,lognT2,1+logn . . .Tlogn,2logn is Hermitian and moreover (an

involution) T̃ 2
12 = I. From this we conclude that exp(iθ T̃12) = cos(θ)I + sin(θ)T̃12 is a

unitary operator, and can be approximated with a polylog(n) size circuit of a universal gate

set.

As discussed, the one clean qubit model is an example of a problem which is interme-

diate between P and BQP. The major motivation for the definition of this complexity class

has been the physics of nuclear magnetic resonance. In such a model most of the qubits are

in a highly mixed state, and an experimenter has control over a few qubits. Although one

bit of quantum information does not sound like a high computational power, it has been

85

shown that this model is able to solve promise problems that are believed to be hard for the

class P. One these problems which is relevant to the current work is computing the trace of

a large unitary matrix.

Definition 4.7. (Trace) given as input the poly(n) size description of a unitary circuit U

over n qubits, and the promise that either
1
2n |Tr(U)| ≥ 2/3 or ≤ 1/3, decide which one is

the case. I assume that U is generated from a BQP universal gate set.

Theorem 4.18. (Jordan-Shor [45]) Trace∈DQC1. Moreover, Trace is a complete promise

problem for DQC1, ı.e., DQC1 can be defined as the class of decision problems that are

polynomial time reducible Trace.

Given any ball permuting circuit C, it is sufficient to prove that deciding if ⟨123 . . .n|C|123 . . .n⟩

is large or small is a problem decidable in DQC1. In order to do this, I give a polynomial

time algorithm which takes the description of C as input, and outputs the description of

a unitary U from a BQP-universal gate set, such that Tr(U) ∝ ⟨123 . . .n|C|123 . . .n⟩ with

a known proportionality constant. The algorithm goes according to the following: given

n, specify n⌈logn⌉ qubits to represent each label in 1,2,3, . . . ,n, and
n(n−1)

2
more (flag

register) qubits, and label them by fi j, i < j ∈ [n]. The quantum circuit U consists of two

parts. The initial part of U , for each i < j ∈ [n], using sequences of CNOT , compares the

qubits (i− 1)⌈logn⌉+ 1 to i.⌈logn⌉ with the qubits (i− 1)⌈logn⌉+ 1 to i.⌈logn⌉, bit by

bit, and applies the Pauli gate σx to the register fi, j if the corresponding bits are all equal to

each other. The second half of U is given by the BQP-simulation of Theorem ??. Then U

is fed into the Trace computation. It suffices to show that Tr(U) ∝ ⟨123 . . .n|C|123 . . .n⟩.

Let N := n⌈logn⌉+n(n−1)/2. The trace Tr(U) = ∑x∈{0,1}N ⟨x|U |x⟩. Given the described

construction, the term ⟨x|U |x⟩ = ⟨σ |C|σ⟩, if and only if the label part of x is the correct

encoding of the permutation σ , and if x is not a correct encoding of a permutation it gives

0. There are 2n(n−1)/2 strings like x which encode σ correctly, therefore:

1/2NTr(U) =
2n(n−1)/2

2N Tr(C) =
n!

2n⌈logn⌉ ⟨123 . . .n|C|123 . . .n⟩.

This is still problematic, since the coefficient
n!

2n⌈logn⌉ can be exponentially small, and

thereby using polynomial iterations of the DQC1 computation wouldn’t reveal sufficient

86

information bout the desired amplitude. Taking a close look at the this coefficient, it is

observed that:

n!
dimV

where V is the Hilbert space that is used to encode permutations in it. In the discussed,

I used O(n logn) bits to encode permutations of n labels. We need a more compressed

way of encoding these permutations, and more precisely we need an encoding which uses

log2(n!nO(1)) = log2(n!)+O(n) number of bits. Therefore, the existence of an encoding

with the following properties implies XQBALL⊆ DQC1:

∙ 1) the encoding uses log2(n!)+O(n) number of bits.

∙ 2) for any transposition τ , there is a polynomial size reversible circuit Cτ which

inputs the encoding of any permutation ⟨π⟩ and outputs ⟨τ ∘π⟩.

∙ 3) it is verifiable, in the sense that there is a reversible circuit which inputs any string

of size log2(n!)+O(n) bits (the same size as the size of the encoding) and an extra

flag bit f , and outputs the first log2(n!)+O(n) bits without altering them, and flips f

if the string is not a correct encoding of a permutation.

The requirement is to find a lexicographic ordering on the permutations of n labels. Based

on this lexicographic ordering, one can think of a bijection between Sn and the numbers

of [n!], which is efficiently computable in Sn→ [n!] and also in [n!]→ Sn direction. Call

this bijection g, and g−1 as its inverse. Indeed efficient computation of such a bijection

exists [19] 2. Then the first condition is satisfied. Also the verifiability condition is relaxed,

since we are dealing with bijections. In order to see the implementation of condition 2,

notice that if we can implement Cτ for each transposition τ , then the circuit is reversible

since C2
τ =Cτ2 is equal to the identity circuit, which is clearly reversible. Given reversible

circuits for g and g−1 one can implement Cτ . Just use g−1 to map the input number to any

(even less compressed) encoding of the permutations. We can use polynomial amount of
2Also see http://stackoverflow.com/questions/12146910/finding-the-lexicographic-index-of-a-

permutation-of-a-given-array and http://stackoverflow.com/questions/8940470/algorithm-for-finding-
numerical-permutation-given-lexicographic-index

87

ancilla bits. Then apply the transposition in this encoded basis, and finally use g to invert

the permutation back to a binary number in [n!]. Suppose that we use N number of ancilla

bits, then an interaction of DQC1 reveals:

1
2
+

1
2

n!
(n!+O(1))2N 2N⟨123 . . .n|C|123 . . .n⟩

which proves the desired result:

Theorem 4.19. XQBALL⊆ DQC1.

4 The Scattering Quantum Computer with Demolition In-

termediate Measurements

In the previous section, I showed that the quantum circuit model with planar Yang-Baxter

symmetry, even with post-selection in the end, generates discrete Lie groups each of linear

dimension in n, and therefore I believe that it probably fails to generate a dense subgroup

of U(n!). The model with planar YB quantum circuits is an upper bound on the models

of particle scattering in 1+ 1 dimension, so the same result for the complexity of these

models; this is basically the following corollary:

Corollary 4.20. (Of theorem 4.16) let S be the set of unitary scattering operators generated

by n particle scattering with any of the models in section 2. Then S corresponds to a

manifold of dimension at most n.

Proof. The proof of theorem 4.16 still works here, with a tiny difference. In the scattering

problem, the signature of the corresponding planar YB quantum circuit is fixed by the

velocities, therefore, for any set of velocities, the model can generate at most one unitary,

and hence the points in the set of scattering matrices combined together is parameterized

with n real numbers, as velocities.

Moreover, as another corollary of theorem 4. 16, we find out that probably a proof for

post-selected BQP universality of particle scattering does not exist, if we post-select in the

particle label basis in the end of computation:

88

Corollary 4.21. (Of theorem ??) let S be the set of unitary scattering operators generated

by n particle scattering with any of the models in section 2, with and without post-selection

in the particle label basis in the end of computation. Then S corresponds to n!O(1) manifolds

each with dimension at most n.

Proof. Following the proof of 4.16, if the velocity parameters are fixed, then the model

can generate exactly one unitary operator, and there are (discrete) n!O(1) ways to do post-

selection on the output of this unitary matrix. Therefore, given a set of particles initialized

with fixed velocities, the model can generate at most n!O(1) number of unitary scattering

matrices.

Here I add another ingredient to the scheme of computing with particle scattering; that

is intermediate measurement. The idea is to use intermediate measurements to simulate X

operators of class XQBALL, and then because of the equivalence between XQBALLwith

arbitrary initial states and BQP, particle scattering with intermediate measurement can also

efficiently sample from the output of a BQP computation and then from a PostBQP, if it

is allowed to start out with arbitrary initial states. There are two ways to do an interme-

diate measurement. The first of these is to measure, intermediately, in the particle label

basis, in a way that the outcome of the measurement is the post measurement quantum

state. In this way, because of the planarity of circuits in one spatial dimension, I have

to use the post-measurement state over and over. In a later section I will discuss how to

nondeterministically simulate X operators with non-adaptive use Yang-Baxter gate. Here

nondeterministic simulation I mean a simulation that succeeds with a certain probability.

However, this model of computing is not realistic, and moreover, because of the multiple

use of the post-measurement states it disallows one to use post-selection hardness result in

this case.

The second scheme of intermediate measurement is a non-adaptive demolition measure-

ment due to a particle detector. That is a measurement which reveals the classical output

of measurement but not the post-measurement quantum state. In other words the detec-

tion throws the measured label to a second Hilbert space, which is inert and no quantum

operation can affect it anymore.

89

4.1 Programming the Scattering Amplitudes with Intermediate Par-

ticle Detections

The goal is to come up with a quantum algorithm based on particle scattering in 1+ 1

dimension, which takes the description ⟨C⟩ of a general X quantum ball permuting model

as an input, and outputs the description of a sequence of particle scatterings and a sequence

of intermediate non-adaptive demolition particle measurements, in a way that the overall

process efficiently samples from the output of C. The construction of this section is very

similar to the nondeterministic gates of [36, 38]. For a review of quantum computing with

intermediate measurements see [18, 39, 48].

For example, consider the X ball-permuting gate of FIG. 1., where we let the two input

wires interact with arbitrary amplitudes, and in the end we measure the label locations

of A and B. The objective is to have a particle scattering gadget that can simulate the

output distribution of circuit in FIG. 1. Therefore, we can use the four particle gadget

of FIG. 2. to accomplish this. The overall scattering process acts as a nondeterministic

gate, in the sense that the gadget succeeds in a successful simulation, only with a certain

probability, and an experimenter can verify, in the end of the scattering, if the gadget has

succeeded in its simulation. In FIG. 2. the lines represent particle trajectories, and the

red circles are interactions between them. The rectangles are particle detectors, which

measure the particles intermediately, and output the classical measurement outcome, and

not the post-measurement quantum states. Indeed, the measured particle is thrown away

in a second inert Hilbert space, as the detectors’ internal degrees of freedom, upon which

no particle scattering can make any further affections. The experimenter, then post-selects

on measuring the labels a and b, in the left and right detectors, respectively. Then (s)he

lets the particles collide, and in the end reads the actual measurement outcomes. If the

outcomes match the post-selected labels, (s)he makes sure that the scattering has succeeded

in producing the desired swap. The velocities v1,v2,va and vb can be tuned in such a way

that the desired swap is obtained. The probability of success, thereby, depends on these

velocity parameters. More precisely, conditioned on a successful simulation, the overall

action of the scattering gadget is the swap X(tan−1 ze f f ,1), where:

90

tan−1 ze f f = tan−1 z1 + tan−1 z2

with z1 = v1− v2 and z2 = va− vb. As a result of this, the left and right black output par-

ticles will have velocities vb and va, respectively. Moreover, as described, in this model of

scattering the particles move on straight line in time-space place, and they do not naturally

change their directions. We thereby can use a two particle gadget of FIG. 3. to navigate

the particles’ trajectories. In FIG. 3. the two particles collide from left to right, and the

left particle is measured in the end. Conditioned on the detector measures the label a, the

navigation is successful, and the outcome of this process is particle with its original label

1 moves to the right direction with velocity va. One can match va = v1, so that the overall

action of the nondeterministic gadget is a change of direction. The success probability, then

depends on v1 and va. Notice that all of these results still hold if the black particles start out

of arbitrary initial superpositions. However, one should make sure that the ancilla particles

start out of states with definite distinct labels; labels that are not in a superposition with any

other labels.

As another example consider the X quantum ball permuting circuit of FIG. 4. This

circuit consists of X gates, 1,2 and 3, and they permute labels of the four input wires.

In the end we measure the output wires A,B,C and D, in the particle label basis. We

use the particle scattering sequences of FIG. 5. to simulate this circuit. Again the blue

particles are ancilla, and the black particles correspond to the wires, and the labels 1,2

and 3, correspond to the simulation of gates 1,2 and 3 in FIG. 4., respectively. Each of

the detectors measure in the particle label basis, and in the end the experimenter measures

the particle locations A,B,C and D, corresponding to the output wires A,B,C and D, in

FIG. 4., respectively. The overall scattering process succeeds in its simulation only if the

detectors measure the ancilla particles with their initial labels. That is, conditioned on all

blue particles successfully pass through their intermediate interactions and bouncing off

the last interaction, the scattering process simulates the circuit of FIG. 4. successfully.

This is true, because the particles move on straight lines, and the only event corresponding

to detecting an ancilla particle with its original label is the one where it never bounces

91

off in its intermediate interactions, and bounces off its final collision before moving to

its corresponding detector. For an example of a larger simulation see the simulation of

the X quantum circuit of FIG 6. with the scattering process of FIG. 8. This example

specially, demonstrates that during the scattering, blue (ancilla) particles can experience

many intermediate interactions, and the number of these interactions can scale linearly in

the number of particles being used. Therefore, the event corresponding to a successful

simulation can have exponentially small probability.

It is important to mention that because of the Yang-Baxter equation, braiding of two

particles is impossible. Braiding means that two particles can interact with each other over

and over, however, because of the expression of unitarity, H(u)H(−u) = I, two successive

collisions is equivalent to no collision. The role of the intermediate measurements is to

allow two particles interact over and over without ending up with identity.

4.2 Stationary Programming of Particle Scatterings

The simulations of last section are both intuitive and instructive. However, they have a

drawback. The slope of the lines corresponding to particle trajectories, depend on the

velocities of the particles. So for large simulations, we need to keep the track of the archi-

tecture of collisions, and the amplitudes of interactions at the same time, and this can be

both messy and difficult in the worst cases. In this section, I try to present a better sim-

ulation scheme where one only needs to keep track of amplitudes, and the architecture of

collisions can be tuned easily. The philosophy is to have steady particles, in the beginning,

and whenever we want a ball permuting gate, a number of ancilla particles are fired to the

target steady particles. Then the intermediate detections are used, and then post-selections

on their outcomes enables the model to simulate an arbitrary X quantum ball permutation.

By stationary particle I mean a particle that is not moving. In order to fulfill this purpose,

I use the stationary gadget of FIG. 8. The objective is to impose a desired permutation on

the input black particles. And I want the black particles to stay stationary in the end of the

simulation. In order to do this, two other stationary ancillas are put at the left and right of

the black particles. Then, two other ancilla particles, the desired velocities, are fired from

92

(a) (b)

Figure 4-1: (a) The representation of an X operator. The gate permutes the input labels,
and in the end we measure the labels of output wires A and B. (b) Four particle scattering
gadget gadget to simulate X rotation of FIG. 1. Lines represent the trajectories of particles,
red circles demonstrate interactions, and white rectangles are detectors. Blue particles are
ancillas which mediate computation, and black particles are the particles that we wish to
implement the actual quantum swap on. The gate is nondeterministic in the sense that
it succeeds in producing the desired superposition on labels |1⟩ and |2⟩ only if the left
and right detectors detect |a⟩ and |b⟩ labels in the particle label basis, respectively. The
probability of success, thereby, depends on the velocities. That is conditioned on both
ancilla particles bounce off the black particles, the gate operates successfully.

left and right, and post-selection is made on them bouncing off from the black particles.

Then the two black particles interact and exchange momenta, and then they collide with

the two stationary ancillas. In the end, we measure and post-select on the ancilla particles

bouncing off the black particles. Therefore, in the end of the process, the stationary black

particles are left stationary, and the desired superposition is obtained. In order to see an

example for the implementation of the stationary programming in larger circuits, see the

simulation of XQBALL circuit of FIG. 9. with stationary particle programming of FIG. 10.

Here I demonstrate that using intermediate post selection, even with the planar Yang-

Baxter symmetry one can simulate the unitary operators generated by XQBALL. The main

idea is to pick a planar Yang-Baxter circuit C and use local intermediate post selections

which projects the quantum states to the one where all i’th colors in the superposition being

seated at the j’th position, thereby for the Hilbert space CSN there are N2 choices for such

93

Figure 4-2: Two particle gadget to navigate the trajectory of a single particle. In this setting
the particles move on straight line, therefore, I use this gadget to change the particle’s
trajectory, that is, the particle moving towards left with velocity v1, changes direction to
right with velocity va, if the detector on the left detects label |a⟩. If the velocities match,
va = v1, the overall action is a change of direction. The success probability depends on v1
and va.

post selection. Moreover, in my approach the choice of the sequence of post-selections

is made non-adaptively. I therefore use polynomial size three particle gadgets with pla-

nar Yang-Baxter circuits combined with post-selection which can simulate an arbitrary X

rotation with arbitrary accuracy.

4.3 3-particle Gadgets with Non-demolition Measurements

Here I give a version of a three particle gadget with fixed velocities v1,v2,v3, can in turn

generate an arbitrary X rotation on two labels. Like before, let the rapidities z1 = v1− v2

and z2 = v2− v3, and consider a Yang-Baxter circuit with permutation signature (13), ı.e.,

the permutation which maps (1,2,3)→ (3,2,1):

C(v1,v2,v3) = R(z2,1).R(z1 + z2,2).R(z1,1) =: C(z1,z2)

The corresponding unitary operation amounts to:

94

(a) (b)

Figure 4-3: (a) A combination of X operators in a circuit. The circuit consists of three
gates, 1, 2, and 3, and in the end we measure the wires A, B, C, and D, in the label basis.
(b) An architecture of quantum ball permuting circuit based on particle scattering and in-
termediate particle detections to simulate quantum ball permuting circuit of FIG. 4. The
circuit consists of 6 ancilla particles which mediate the computation and are detected inter-
mediately with detectors. The labels 1, 2, and 3 demonstrate the simulation of gates 1, 2,
and 3, of FIG. 4, respectively. In the end we measure the particle locations A, B, C, and D.
The overall circuit operates successfully only if the detectors measure the the initial label of
ancilla particles. That is conditioned on all ancilla particles succeed in passing through all
of the intermediate interactions and bouncing off the last interaction, the scattering process
succeeds in its simulation.

95

(a) (b)

Figure 4-4: (a) Another example of a quantum circuit with X gates, 1, 2, . . . , 8, on five
labels. In the end we measure the wires A,B,C,D and E, in the particle label basis. (b)
Programming particle scattering with intermediate measurements to simulate the X quan-
tum ball permuting circuit of FIG. 6. The labels 1,2, . . . ,8 correspond to the simulation of
gates 1,2, . . . ,8 in FIG. 6., respectively. Notice that in this example, the ancilla particles
can experience many intermediate interactions. This example demonstrates that the over-
all process succeeds in successful simulation, only with small probability, and in general
simulations, the probability of success can be exponentially small in the number of parti-
cles being used. Therefore, post-selecting on the outcome of the measurements, one can
successfully simulate any X ball permuting quantum circuit. In the end the experimenter
will measure the particle locations A,B,C,D and E, corresponding to wires A,B,C,D and
E, of FIG. 6., respectively. A drawback of this scheme of programming is that, it is hard to
program the velocities as we proceed to higher layers of the quantum circuit, and we might
need to use particles with higher and higher velocity, as we proceed to the top of the circuit.

96

Figure 4-5: Four particle gadgets for stationary programming of particle scattering with
detectors and intermediate particle collisions. The overall gadget simulates the two label
permutation of FIG. 1. The objective is to impose superpositions on black particles which
are stationary, in the sense that they do not move. Initially two black particles are stationary
in the beginning, and we put two more stationary ancilla particles next to them. Then we
shoot two ancilla particles from left and right and measure and post-select on them being
bounced off the black particles. Then the two black particles collide with the two stationary
ancilla particles and we measure and post-select on the ancilla particles being bounced off
in the end. In this scheme it is easier to program the particle scatterings, and it has the
advantage of inducing arbitrary permutation amplitudes on any two labels.

97

(a) (b)

Figure 4-6: (a) Stationary programming of particle scattering. We have used gadgets of
FIG. 7. for this purpose. The overall scattering with intermediate post-selections simu-
lates the X ball permuting circuit of FIG. 8. (b) A three particle gadget with RQBALLad j
quantum gates to simulate arbitrary rotations on the left (red) and right (blue) wires. Pi j
means post-selection on label i being measured in the location j. The z parameters are the
rapidities. The construction is done in three steps. First we let three wires to interact with
three intersections. Then we measure the middle wire and post-select on measuring label
|2⟩. Then in step 2, we let the two left wires to interact and post select on the left most wire
being label 2. Then in step 3), we let the right most wires interact, and finally in step 4)
the two left wires have an interaction and we post-select on measuring the label |2⟩ on the
middle wire. In this scheme of programming, the post-measured label is being used over
and over.

98

Figure 4-7: Nondeterministic three particle gadget to simulate an X operator with non-
demolition measurements. The underlying model is the one where amplitudes are selected
according to the Yang-Baxter equation. Measured labels are being used over and over in
this computing scheme.

(1− z1z2)+ i(z1 + z2)(L1 +L2)− (z1 + z2)(z1L2L1 + z2L1L2)− iz1z2(z1 + z2)L1L2L1√
(1+ z2

1)(1+ z2
2)(1+(z1 + z2)2)

There are 3×3 = 9 choices for a post-selection. Let Pi j to be the corresponding post-

selection of label i being located at the j’th location. Modulo a normalization factor, this is

indeed the projection:

Pi j = ∑
σ∈S3:σ(j)=i

|σ⟩⟨σ |.

The following is the list of the normalized out-come of post-selections. I will drop the

overall phases throughout:

∙ P11C(z1,z2)|123⟩= (1− z1z2)|123⟩+ i(z1 + z2)|132⟩√
(1− z1z2)2 +(z1 + z2)2

99

∙ P12C(z1,z2)|123⟩= |213⟩+ iz2|312⟩√
1+ z2

2

∙ P13C(z1,z2)|123⟩= |231⟩+ iz2|321⟩√
1+ z2

2

∙ P21C(z1,z2)|123⟩= |213⟩+ iz1|231⟩√
1+ z2

1

∙ P22C(z1,z2)|123⟩= (1− z1z2)|123⟩− iz1z2(z1 + z2)|321⟩√
(1− z1z2)2 +(z1z2(z1 + z2))2

∙ P23C(z1,z2)|123⟩= |132⟩+ iz2|312⟩√
1+ z2

2

∙ P31C(z1,z2)|123⟩= |312⟩+ iz1|321⟩√
1+ z2

1

∙ P32C(z1,z2)|123⟩= |132⟩+ iz1|231⟩√
1+ z2

1

∙ P33C(z1,z2)|123⟩= (1− z1z2)|123⟩+ i(z1 + z2)|213⟩
(1− z1z2)2 +(z1 + z2)2

After the first iteration, the configuration of the velocities changes from v1,v2,v3 to

v3,v2,v1. Several of these post-selection are need to make sure about two things: first that

the configuration of the momenta is back to v1,v2,v3, and second that the middle label 2 is

back to middle. The latter is because we want to use this label as an ancilla, and we want

to make sure that it is not entangled to any other label. These gadgets are problematic and

one needs more operations since, for instance, implementing the protocol P11C(z1,z2) first

maps |123⟩ to (1− z1z2)|123⟩+ i(z1+ z2)|132⟩ and if we implement it for the second time,

because of the exchange of velocities the operation is forced to be P11C3(−z2,−z1) which

maps |123⟩ back to itself.

In order to resolve the problem to recover a general rotation, we need to use a three

particle gadget with the property that after each of its iterations, the configuration of the

velocities is unchanged, and that the overall action is a rotation on two desired labels. I

claim that the three particle gadget of Figure 5.1 does this task. The gadget consists of

100

two circuits, the first of which is a single P22 iteration of the discussed post-selection, and

induces a rotation on the first and the third labels, and the second circuit makes sure that

the velocities are arranged back to their primary locations. Let x and y be the labels of the

first and the third locations, respectively. We add a third ancilla color, with a new label

2, and through each step of the protocol I will make sure that the ancilla label does not

superimpose with the other labels.

I go through the steps of the protocol one by one. For simplicity, I drop the normal-

ization factor for the intermediate steps and the states are normalized in the end. Let

z1 = v1− v2 and z2 = v2− v3 and z3 = v1− v3 also let the label of the middle particle

be 2:

∙ Step 1: |x2y⟩ → (1− z1.z2)|x2y⟩− iz1.z2z3|y2x⟩. And the configuration of velocities

in the end is: v3,v2,v1.

∙ Step 2: let the first and second label locations interact, and after that, post select on

the first particle to have the label 2. Then:

|123⟩ → (1− z1.z2)|2xy⟩− iz1.z2z3|2yx⟩,

and the configuration of velocities is v2,v3,v1.

∙ Step 3: let the second and the third label locations interact, and that is going to be

with rapidity −z1− z2. Then:

|123⟩ → (1− z1.z2− z1z2z2
3)|2xy⟩− iz3|2yx⟩,

and the configuration of the velocities is v2,v1,v3.

∙ Step 4: finally, let the first and the second label locations interact, and after that

post-select on label 2 to be at the second location, which maps:

|123⟩ → (1− z1.z2− z1z2(z1 + z2)
2)|x2y⟩− i(z1 + z2)|y2x⟩,

101

and the configuration of velocities is now back to v1,v2,v3.

The overall action of the protocol is:

|123⟩ → cos(φz1,z2)|x2y⟩+ isin(φz1,z2)|y2x⟩

With:

φz1,z2 = tan−1
(

−(z1 + z2)

1− z1.z2− z1.z2(z1 + z2)2

)
Now it is easy to check that the output state after t iterations of this gadgets is going to be:

|123⟩ → cos(t.φz1,z2)|x2y⟩+ isin(t.φz1,z2)|y2x⟩.

The rapidity v2 is a free parameter and can be set in a way that the angle φz1,z2 is an irrational

multiple of 2π , so using O(1/ε) iterations, one can simulate any of the X rotations with

accuracy ε .

Given these three particle gadgets, I wish to prove that any model with X operators can

be efficiently approximated by a post-selected instance of planar Yang-Baxter R operators.

I therefore use the discussed three particle gadgets to create arbitrary rotations on two

labels, whenever we need them. Any circuit X operators can be represented by a normal

form like Figure 5. 2. Where, each of the boxes is a unitary two particle gate, with some

specific arbitrary amplitudes c, is. Consider any such circuit C of n particles and m gates,

then we use a modified circuit of Figure 5. 3. In Figure 3, each gate of C is replaced

by a three particle gadget. The ancilla labels are represented with dashed lines; each of

them has a new label and an arbitrary velocity. The circles above the gates represent post-

selection. The velocities (va), for each ancilla label a, should be selected in such a way

that for all velocities v,v′ of the original circuit, the rotation angles (φv− va,va− v′) are

irrational multiples of 2π . In each gadget of the modified circuit, one should repeat the

base gadget of Figure 5. 3. a sufficient number of times so that the parameters c, is for each

gate of C is approximated with the desired accuracy. Given this background, I summarize

this result in the following theorem:

102

Theorem 4.22. XQBALL⊆ PostHQBALLad j.

Proof. I prove the inclusion of XQBALLad j, and since XQBALL⊆ XQBALLad j, the inclu-

sion of XQBALL is implied. Given the description of any adjacent X ball permuting circuit

C, with n labels and m gates, in polynomial time (in n and m), one can convert it to a normal

form of Figure 3. This can be done layer by layer: in each layer, whenever two labels inter-

act, a box with the desired amplitudes is placed, otherwise, we put boxes with amplitudes

c = 1, is = 0, for each non-interacting adjacent labels. For each of the boxes with nonzero

rotation angles, we add a three particle gadget, each with a new ancilla label and proper

velocity such that the rotation angles are irrational multiples of 2π . Suppose that we want

to approximate the output of C with accuracy ε , then we need the gadget to approximate

its corresponding X operator with accuracy ε/m. If so, we will obtain a unitary which is

ε-close to C. So each gadget will have size O(m/ε), and will have O(m/ε) number of

intermediate post-selections. Therefore, the final circuit will have O(n) labels, O(m2/ε)

size and O(m2/ε) number of intermediate post-selections.

This proves an efficient approximation of XQBALL. However, I can also do better, and

by adding m new ancilla labels, one per each gate of C, to tune the ancilla velocities in such

a way that X operators are simulated exactly. Like the previous construction, I construct a

circuit in HQBALLad j, with the same gate configurations of C, with velocities v1,v2, . . . ,vn.

Then I replace each two particle gate with amplitudes c and is, with a three particle gadget

with a new ancilla label a of velocity va. Therefore, the input momenta of the gadget are

now vi,va,v j, and one needs to choose va in a way that the angle φ of the gadget satisfies

cos(φ) = c,sin(φ) = s. Here, vi and v j are the proper choices of velocities according to

the base Yang-Baxter circuit. The only issue is that the new particle a can superimposed

to other particles whenever the line corresponding to va intersects another line. In order

to fix this issue, I add a new two-particle gadget (see Figure 5. 4), which avoids such

an interference. Suppose that at some point, the label in location j+ 1 interacts with the

ancilla label a at location j then do a post-selection Pa, j+1 to make sure that the particle

a is located at j + 1 after the interaction, and thereby, the overall action of the gadget is

a mere swap, and rearrangement of velocities. Therefore, for each gate, I add a proper

ancilla label, and using the discussed post-selected swap gadget, it gets passed through all

103

the intermediate lines until it is located at the bottom of its designed gadget. Then the

gadget is implemented, and again the ancilla label is moves passed through the rest of the

lines in the circuit, so that the ancilla label does not interact with any of the other labels

anymore. Using this second approach, adding m ancilla labels to the Hilbert space, and

doing O(m) number of post-selections, C is simulated exactly.

5 Lower-bounds

5.1 ZQBALL= BQP

In this part I use a simple encodings of qubits using labels 1,2,3 . . . ,n, and the Z operators

to operate on them as single and two qubit gates. More specifically, I prove that using a

sequence of Z operators, one can encode any element in the special orthogonal group. For

an example of encoded universality see [12, 29]. I encode each qubit using two labels.

Given two labels a < b I define the encoded (logical) qubits as:

|0⟩ := |ab⟩

and,

|1⟩ := i|ba⟩.

Using simple X(θ ,1) we can apply arbitrary rotation of the following form:

|0⟩ → cosθ |0⟩+ sinθ |1⟩

and,

|1⟩ → cosθ |1⟩− sinθ |0⟩.

We are dealing with orthogonal matrices which are represented over the field or real num-

bers. Using the Z operators, we can discuss a controlled swap of the form:

104

S(i, j,k, l) := Z(π/2δi, j,k, l).

In simple words, S(i, j,k, l) applies the swap iL(k, l), on the k and l’th labels if and only

if the content of these label locations are i and j (j and i). We can also extend it to the

following form:

S({(i1, j1)s1,(i2, j2)s2, . . . ,(it , jt)st},k, l) := Z(π/2δi, j,k, l).

Where sm can be a symbol ? or nothing. Given (im, jm)? in the list means that the swap

(iL(k,l))
† = −iL(k,l) is applied if the content of k and l are im and jm. And given plain

(im, jm) in the list means iL(k,l) if the content of k and l are im and jm.

Suppose that one encodes one qubit with labels a < b and another one with x < y, we

wish to find a unitary operator which applies a controlled not on the two qubits, that is the

following map:

|00⟩ := |a,b,x,y⟩ → |a,b,x,y⟩= |00⟩

|01⟩ := i|a,b,y,x⟩ → i|a,b,y,x⟩= |01⟩

|10⟩ := i|b,a,x,y⟩ → −|b,a,y,x⟩= |11⟩

|10⟩ := −|b,a,y,x⟩ → i|b,a,x,y⟩= |10⟩

It can be confirmed that the following operator can do this:

C := S({(a,x),(a,y)?},1,3)S({(a,x),(a,y)},2,3)S({(a,x),(a,y)},1,2)

Given these two operators, one can simulate special orthogonal two-level systems, that is

for each orthonormal |ψ⟩ and |φ⟩ in the computational basis of n qubits we can apply an

operator which acts as:

|ψ⟩ → cosθ |ψ⟩+ sinθ |φ⟩

105

and,

|φ⟩ → cosθ |φ⟩− sinθ |ψ⟩

5.2 Arbitrary Initial States

As mentioned in theorem 4.6, the columns of a ball permuting operator as a unitary matrix

are all permutations of each other, and as a result of this constraint, I believe that the

model starting with |123 . . .n⟩ initial state is strictly weaker than the standard BQP model

of computation. Moreover, one can observe the following property:

Lemma 4.23. If C is any composition of X ball permuting operators over CSn, then C|123 . . .n⟩=

|123 . . .n⟩ if and only if C = I.

Proof. One direction is clear, that is if C = I then C|123 . . .n⟩= |123 . . .n⟩. In order to see

the other direction, suppose that C|123 . . .n⟩= |123 . . .n⟩, then act R(σ) for all σ ∈ Sn to the

both sides to obtain R(σ)C|123 . . .n⟩ = R(σ)|123 . . .n⟩. Since any ball permuting circuit

commutes with a right (relabeling) action, we get C|σ⟩ = |σ⟩,∀σ ∈ Sn, which readily

implies C = I.

The lemma is another way of phrasing theorem ??, and states that the group of ball

permuting operators that stabilize |123 . . .n⟩ is trivial. Also, one can extend this to all

states like |σ⟩ for σ ∈ Sn, and indeed all states that are reachable by an X ball permuting

circuit from |123 . . .n⟩. This suggests that the set of ball permuting gates is contained in a

subgroup SU(n!) as manifold of lower dimension. However, although this does not rule out

encoded universality, because of the following corollary there is some evidence, supporting

that even encoded BQP universality and therefore BQP universality is impossible for ball

permuting circuits in this case:

Corollary 4.24. Let |0L⟩ = C0|123 . . .n⟩ and |1L⟩ = C1|123 . . .n⟩, with C0 and C1 being

ball permuting circuits, be any logical encoding of a qubit. Then for any N ≥ 1 and any

string x ∈ {0,1}N , a ball permuting unitary U is a stabilizer of the encoded |x⟩, if and only

if U = I.

106

Proof. Again, one direction of the proof is clear, that is if U = I, then U |x⟩ = |x⟩. Now

suppose that U |x⟩ = |x⟩. Then UCx1 ⊗Cx2 ⊗ . . .⊗CxN |12,3, . . . ,nN⟩ = Cx1 ⊗Cx2 ⊗ . . .⊗

CxN |12,3, . . . ,nN⟩. Since Cx j are unitary ball permuting circuits, they have inverses, and

Gx := Cx1 ⊗Cx2 ⊗ . . .CxN is also a ball permuting gate and has an inverse G−1
x which is

also a ball permuting circuit. Therefore, G−1
x UGx|123 . . .nN⟩= |123 . . .nN⟩. From lemma

4.24, G−1
x UGx = I which implies U = I.

In the proof, I used two facts: first that C0 and C1 have inverses, and that they commute with

the relabeling R operators. Indeed, the lemma applies to non-unitary C0 and C1, as long

as they have the commuting and the inverse properties. I finally conclude the following

general non-universality criterion:

Corollary 4.25. The result of corollary 4.24 remains true if C0 and C1 have inverses and

commute with the relabeling operators.

While computing with the |123 . . .n⟩ initial state, results in a presumably week model,

one can use other initial states to break the conditions of lemma 4.24. For example, if one

allows the initial state |ψ⟩= 1
n!

∑σ∈Sn |σ⟩ then the application of any operator of the form

X(θ1, ·)X(θ2, ·) . . .X(θp, ·) results in the state exp(i(θ1 +θ2 + . . .+θp))|ψ⟩, so as long as

the angles sum up to zero the operator stabilizes |ψ⟩. Indeed, the projection
1
n!

∑σ∈Sn R(σ)

maps any state in CSn to a state proportional to |ψ⟩.

In this section I provide evidence for encoded universality of the ball permuting model,

in the case where initial states other than |123 . . .n⟩ are allowed. This requires three con-

siderations: first, we need to find a subspace V ⊆H , that is invariant under ball permuting

operators, and that also scales exponentially in n in dimension. Secondly, we need to find a

way of composing the X operators to act densely in SU(V). Thirdly, we need to find a way

to sample from the output states in V , in the color basis, to extract non-trivial information

about these states. In order to achieve the second goal, I find a reduction from a model that

is already known to be BQP universal. See section .

107

Theory of decoherence free subspaces and the BQP universality of the exchange in-

teractions

The theory of decoherence free subspaces was originally motivated by the following prob-

lem [32]. Let H be a Hilbert space, and let N be the set of Hamiltonians, as the unwanted

noise interactions. The objective is to find a large enough subspace V ⊆H that is unaf-

fected by the noise operators. Such a subspace is called a decoherencce free subspace. It is

tempting to find a set of local and feasible quantum Hamiltonians, E, which commute with

N and affect the decoherence free subspace only. Then universal quantum computation is

possible if E acts as a universal gate set on V .

Ideally, the Hilbert space is decomposable into two separate subsystems H = H1⊗

H2, and the action of N affects H2 only, and acts trivially on H1. Then, any universal gate

set acting on H1 can reliably do universal quantum computing. However, in general, N can

mix all local degrees of freedom of the available subsystems at the same time. Thereby, in-

stead of subsystems, one can think about subspaces which mimic the structure of decoupled

subsystems. Intuitively, this can be interpreted as subspaces of a Hilbert space simulating

decoupled subsystems.

In order to find such a decomposition, it is helpful to consider a larger structure, A, as

the matrix algebra generated by operators of N, by matrix composition and scalar linear

combinations. This is a vector space of matrices, with matrix multiplication as the vector

on vector action. Then, under certain conditions, A is isomorphic to the decomposition of

smaller irreducible matrix algebras:

A∼=
D⊕

λ=1

nλ⊕
j=1

M(dλ)∼=
⊕

λ

I(nλ)⊗M(dλ).

Here λ enumerates the type of the matrix blocks. M(dλ) denotes the algebra of matrices

with dimension dλ , and
⊕nλ

j=1 M(dλ) is the same algebra repeated for dλ times, and nλ is

therefore the multiplicity of this block. This means that there is a change of basis, on which

the element of A acts as the block diagonal structure M1×M1× . . .×M1× . . .×MD×MD×

. . .×MD; each matrix M j is repeated for n j times in the product series. These basis states

are indeed the desired subspaces, and the Hilbert space also decomposes accordingly:

108

H =
⊕

λ

nλ X(dλ)∼=
⊕

λ

V (nλ)⊗X(dλ).

Here nλ Xdλ
means nλ isomorphic subspaces each with dimension dλ , and therefore dimH =

∑λ nλ dλ . Given these decompositions, the operators of each block λ in the decomposition

of A acts non-trivially on X(λ) only, and leaves the subspace V (nλ) unaffected. It remains

to find operators that act only on the V species and leave the X parts unaffected. The most

general such structure is the matrix algebra B which commutes with all of A. B has the

unique decomposition according to:

B∼=
⊕

λ

M(nλ)⊗ I(dλ).

Let E be a gate set in B. Then, universal quantum computation on a decoherence free

subspace V (nλ) is translated to first zooming into a subspace V (nλ)⊗|ψ⟩, for some |ψ⟩ ∈

X(dλ), and then denseness of E in SU(V (nλ)), and finally zooming out from V (nλ), by

sampling bits of information from the output of computation.

Most of the mathematical review is borrowed from [30] We are interested in two math-

ematical structures, the group algebra of the symmetric group CSn, and the unitary regular

representation of the symmetric group. As it turns out, the two structures are closely re-

lated to each other, and also to the group generated by the ball permuting gates. Group

algebra is an extension of a group to an algebra, by viewing the members of the group as

linearly independent basis of a vector space over the field C. Therefore, in addition to the

group action an action of C on Sn is needed, by the map (α,σ) ↦→ αSn, and also addition

of vectors in the usual sense. Therefore, a group algebra consists of all elements that can

ever be generated by vector on vector composition and linear combination of vectors over

C. Any element of CSn can be uniquely written as ∑σ∈Sn ασ σ , with C coefficients ασ .

If we add a conjugation convolution † with maps σ† = σ−1, and α† = α?, then for any

element v ∈ CSn, v†v = 0, if and only if, v = 0. In order to see this, let v = ∑σ∈Sn ασ σ .

Then, v†v = ∑σ |ασ |2e+ . . . = 0. A zero on the right hand side implies zeroth of all the

vector components, including the component along e, which implies ασ = 0 for all σ ∈ Sn,

and therefore v = 0. Let e be the identity element of Sn, consider an element p ∈ CSn to

109

be a projector if it has the property p2 = p. Two projectors p and q are called orthogonal

if p.q = 0. Then (e− p)2 = e− p is also a projector, and also p(e− p) = 0 are orthogonal

projectors. 0 is trivially a projector. Therefore, the group algebra decomposes as:

CSn = CSne = CSn(e− p)+ p = CSn(e− p)⊕CSn p.

A projector is called minimal if it cannot be written as the sum of any two others projectors

other than 0 and itself. Let pµ be a list of minimal projectors summing ∑µ pµ = e, then the

decomposition of the group algebra into minimal parts is according to:

CSn =
⊕

µ

CSn pµ .

pµ are known as Young symmetrizers, and I am going to mention them later.

A (finite) representation ρ of a group G is a homomorphism from G to the group of

isomorphisms of a linear space : G→ GL(V,C), for some vector space V . Let g be any

element of G, with its inverse g−1, and e and 1 as the identity elements of G and GL(V,C),

respectively. Given the definition, ρ(g−1) = ρ(g)−1, and ρ(e) = 1 are immediate. One

can observe that ρ : G→ {I ∈ GL(V,C)}, is immediately a representation, and is called

the trivial representation of V . A dual representation of G is a homomorphism from G into

the group of linear maps : V → C. As I discussed before, this is called the dual space V ?,

and V is viewed as the space of column vectors, then its dual space is a row space. For

any vector spaces V and W , the two can be combined into a larger linear structure, V ⊗W ?,

as the set of linear maps from W to V . Let M1 and M2 be two elements of GL(V,C) and

GL(W,C), respectively. Then, viewing V ⊗W ? as a vector space, the object (M1,M2) acts

on x∈V⊗W ? with M1xM−1
2 . Then, if M1 and M2 are two representations of G on V and W ,

then (M1,M2) is a representation of G on V ⊗W ?, as a vector space. Notice that the inverse

on M2 is needed in order to have (M1,M2) act as a homomorphism. The dual representation

M of V is then the representation on C⊗V ?, when M2 = M, and M1 is the one dimensional

trivial representation. This is just saying that the dual representation M? of M on V ?, maps

⟨ψ| to ⟨ψ|M(g−1), if we view the dual space as the usual row space. If we define an inner

product as the action of the dual of a vector on itself, then G, as a representation, sends

110

orthonormal basis to orthonormal basis. This suggests that every representation of a finite

group is isomorphic to a unitary representation. That is, any non-unitary representation

becomes unitary after a change of basis. Let M be a representation on V . Then, we say

W ⊆ V is called stable under M, if for any x ∈W , Mx ∈W . Then, M restricted to W is

called a sub-representation. A representation M on V is called an irreducible representation

(irrep), if it has no stable subspaces other than 0 and V . Two representations M1 and M2

on V1 and V2 are isomorphic if M1 resembles M2 after a suitable change of basis within

V1. Then, if V is reducible, it can be decomposed as V1⊕V2⊕ . . .⊕Vn, for n > 1. Some

of the sub-representations can be isomorphic, and the multiplicity of a sub-representation

is the number of sub-representations isomorphic to it. Then, the isomorphic subspaces

can be grouped together to V ∼= m1V1⊕m2V2⊕ . . .mkVk. Then dimV = ∑ j m j dimVj. The

structure of such decomposition is isomorphic to
⊕

j Vj⊗X j, where X j is the multiplicity

space of Vj and is a vector space of dimension m j. Decomposition of a representation onto

the irreducible ones is unique up to isomorphism and multiplicities and dimensionality of

irreducible representations do not depend on the decomposition. Canonical ways to find a

decomposition are also known.

The regular representation of Sn, also denoted by CSn, is the unitary representation of

Sn onto the usual Hilbert space CSn spanned by the orthonormal basis {|σ⟩ : σ ∈ Sn}. It is

well known that for any regular representation, the dimension of each irrep is equal to the

multiplicity of the irrep, and therefore CSn decomposes into irreducible representations of

the following form:

CSn ∼=
⊕

λ

Vλ ⊗Xλ ,

with dimXλ = dimVλ =: mλ , and indeed ∑λ m2
λ
= n!. Here Xλ is again the multiplicity

space, and Vλ corresponds to each irrep. It is tempting to make a connection between the

group algebra and regular representation of the symmetric group. As described earlier,

Sn can act on the Hilbert space CSn in two ways; the left and right, L,R : Sn →U(CSn),

unitary regular representation, with the maps L(σ)|τ⟩ = |σ ∘ τ⟩ and R(σ)|τ⟩ = |τ ∘σ−1⟩.

Also, similar left and right structure can be added to the group algebra. Clearly, L and R

111

representations commute, and it can be shown that the algebra generated by L is the entire

commutant of the algebra generated by R. Putting everything together, inspired by the

theory of decoherence free subspaces, and the defined structures, one can show that the left

(A) and right (B) algebras and the Hilbert space CSn decompose according to:

A∼=
⊕

λ

M(mλ)⊗ I(mλ),

B∼=
⊕

λ

I(mλ)⊗M(mλ),

and,

CS∼=
⊕

λ

V (mλ)⊗X(mλ).

This is indeed a nice and symmetric structure. Indeed each irrep Vλ is an invariant subspace

of the X operators, and it cannot be reduced further. It remains to demonstrate the structure

of the irreps λ , and to study the action of X operators on these subspaces.

The irreducible representations of the symmetric group Sn are marked by the partitions

of n. Remember that a partition of n is a sequence of non-ascending positive numbers

λ1 ≥ λ2 ≥ λ3 ≥ . . .λk summing to n, ı.e., ∑ j λ j = n. The number of partitions of n grows

like expΘ(
√

n). Each as described earlier each partition λ = (λ1,λ2, . . . ,λk) is related to

a diagram, called the Young diagram, which consists of k horizontal rows of square boxes

r1,r2, . . . ,rk. The Young diagram is then created by paving the left-most box of r1 to the

left-most box of r2, and so on. For a Young diagram λ , the dual diagram λ̃ , is another

Young diagram, whose rows are the columns of λ . A Young tableau tλ with the shape λ , is

a way of bijective assigning of the numbers in [n] to the boxes of λ . I will use tλ and simply

t with the shape λ interchangeably. A permutation π ∈ Sn can act on a Young tableau tλ by

just replacing the content of each box to the its image under π , ı.e., if a box contains j, after

the action of π it will be replaced with π(j). A tableau is called standard, if the numbers in

each row and column are all in ascending orders. The number of standard tableau for each

partition of shape λ is denoted by f λ .

112

Let t be a tableau with shape λ . Define P(t) and Q(t) ⊆ Sn to be sets of permutations

that leave each row and column invariant, respectively. Then the projectors of the CSn

group algebra are according to the Young symmetrizers, one for each standard tableau:

pt =
1
f λ ∑

π∈C(t)
∑

σ∈R(t)
sgn(π)π ∘σ .

These subspaces correspond to all of the irreducible invariant subspaces of Sn. The

dimension for each of these subspaces is the number of standard tableaus of each partition,

and it is computable using the hook lengths. The hook of each box in a partition of shape λ

is consists of the box itself along with all boxes below and at the right of the box. The hook

length of each box is the number of boxes contained in that hook, and the hook length hλ

of the shape λ is the multiplication of these numbers for each box. Then, the dimension of

the irrep corresponding to λ is according to f λ = n!/hλ .

In order to talk about quantum operations subspaces with orthonormal basis are needed.

It would be nice if we have a more lucid description of the basis, in a way that the action of

X operators on these subspaces is clear. Moreover, I seek for an inductive structure for the

orthonormal basis of the irreps that is adapted to the nested subgroups S1 ⊂ S2 ⊂ . . .⊂ Sn.

By that I mean states that are marked with quantum numbers like | j1, j2, j3, . . . , jk⟩, such

that while elements of Sn affect all the quantum numbers, for any m1 < n, elements of Sn

restricted to the first m1 labels affects the first k1 quantum numbers only, and act trivially

on the rest of the labels. Also, for any m2 < m1 < n, the elements of Sn restricted to the first

m2 labels affect the first j2 < j1 < k quantum numbers only, and so on.

Fortunately, such a bases exist, and are known as the subgroup adapted Young-Yamanouchi

(YY) bases [30]. These bases are both intuitive and easy to describe: for any partition of

shape λ , mark an orthonormal basis with the standard Young Tableaus of shape. Agree on

a lexicographic ordering of the standard tableaus, and denote these basis corresponding to

the partition λ , by a {|λ j⟩} f λ

j=1. Denote the action of a swap (i, j) on |λl⟩ by |(i, j).λl⟩, to

be the basis of a tableau that is resulted by exchanging location of i and j in the boxes.

Suppose that for such tableau t, the number j (i) is located at the r j and c j (ri and ci) row

and column of t, respectively. Then, define the axial distance di j of the label i from label

113

j of on each tableau to be (c j− ci)− (r j− ri). Or in other words, starting with the box

containing i walk on the boxes to get to the box j. Whenever step up or right is taken add a

−1, and whenever for a step down or left add a 1. Starting with the number 0, the resulting

number in the end of the walk is the desired distance. Given this background, the action of

L(k,k+1) on the state |λi⟩, is according to:

L(k,k+1)|λi⟩=
1

dk+1,k
|λi⟩+

√
1− 1

d2
k+1,k
|(k,k+1).λi⟩

Three situations can occur: either k and k+ 1 are in the same column or row, or they are

not. If they are in the same row, since the tableau is standard, k must come before k+ 1,

then the axial distance is dk+1,k = 1, and the action of L(k,k+1) is merely:

L(k,k+1)|λi⟩= |λi⟩.

If the numbers are not in the same column, k must appear right at the top of k+1, and the

action is:

L(k,k+1)|λi⟩=−|λi⟩.

Finally, if neither of these happen, and the two labels are not in the same row or column,

then the tableau is placed in the superposition of itself, and the tableau wherein k and k+1

are exchanged. Notice that if the tableau |λi⟩ is standard the exchanged tableau |λi⟩ is also

standard. This can be verified by checking the columns and rows containing k and k+ 1.

For example, in the row containing k, all the numbers at the left of k are less than k, then if

we replace k with k+1, again all the numbers on the left of k+1 are still less than k+1.

Similar tests for the different parts in the two rows and columns will verify (k,k+1)λi, as

a standard tableau. The action of Lk,k+1 in this case is also an involution. This is obvious

for the two cases where k and k+1 are in the same row or column. Also, in the third case if

the action of L(k,k+1) maps |λ ⟩ to
1
d
|λ ⟩+

√
1− 1

d2 |t ∘λ ⟩ then a second action maps |t ∘λ ⟩

to
−1
d
|t ∘λ ⟩+

√
1− 1

d2 |λ ⟩, and therefore:

114

L2
(k,k+1)|λ ⟩=

1
d
(

1
d
|λ ⟩+

√
1− 1

d2 |t ∘λ ⟩)+
√

1− 1
d2 (
−1
d
|t ∘λ ⟩+

√
1− 1

d2 |λ ⟩) = |λ ⟩.

Given this description of the invariant subspaces, I wish to provide a partial classifi-

cation of the image of the ball permuting gates on each of these irreps. The hope is to

find denseness in ∏λ SU(Vλ), on each of the irreps Vλ , with an independent action on each

block. In this setting, two blocks λ and µ are called dependent, if the action on λ is a

function of the action on µ , ı.e., the action on the joint block Vλ ⊕Vµ resembles U× f (U),

for some function f . Then, independence is translated to decoupled actions like I×U and

U× I.

Throughout, the λ ⊢ n, means that λ is a partition of n. We say µ ⊢ n+1 is constructible

by λ ⊢ n, if there is a way of adding a box to λ to get µ . We say a partition µ ⊢ m

is contained in λ ⊢ n, for m < n, if there is a sequence of partitions µ1 ⊢ m+ 1, µ2 ⊢

m+2, . . . ,µn−m−1 ⊢ n−1, such that µ1 is constructible by µ , λ is constructible by µn−m−1,

and finally for each j ∈ [n−m−2], µ j+1 is constructible by µ j. I also call µ a sub-partition

of λ . A box in a partition λ is called removable, if by removing the box the resulting

structure is still a partition. Also, define a box to be addable if by adding the box the

resulting structure is a partition.

Theorem 4.26. The Young-Yamanouchi bases for partitions of n are adapted to the chain

of subgroups {e}= S1 ⊂ S2 ⊂ . . .⊂ Sn.

Proof. Let λ ⊢ n, and t be any standard tableau of shape λ . I construct some enumeration

of states in the Young-Yamanouchi basis of λ which is adapted to the action of subgroups.

For any m < n, since t is a standard tableau, the numbers 1,2,3, . . . ,m, are all contained

in a sub-partition µ ⊢ m of λ . This must be true, since otherwise the locus of numbers

1,2,3, . . . ,m do not shape as a sub-partition of λ . Let ν be the smallest sub-partition of

n that contains these numbers. Clearly, |ν | > m. The pigeonhole principle implies that,

there is a number k > m contained somewhere in ν . The box containing k is not removable

from ν , since otherwise you can just remove it to obtain a sub-partition smaller than ν that

contains all of the numbers in [m]. Therefore, if k is in the bulk of ν , then both the row

115

and column containing k are not in the standard order. If k is on a vertical (horizontal)

boundary, then the column (row) of the box containing k is not standard.

Let λk be the smallest sub-partition of λ that contains [k]. Then the enumeration of

the basis is according to |λ1,λ2, . . . ,λn⟩. Here, λn = λ , and λ1 is a single box. From

before, for any j < n, λ j+1 is constructible by λ j. For m < n, let Sm be the subgroup of Sn,

that stabilizes the numbers m+1,m+2, . . . ,n. For any k ≤ m, L(k,k+1) just exchanges the

content of boxes withing λm, and therefore leaves the quantum numbers λm+1,λm+2, . . . ,λn

invariant. Moreover, the box containing m is somewhere among the removable boxes of

λm, since otherwise, as described in the last paragraph, the tableau λm is not standard. The

box containing m−1 is either right above or on the left side of m, or it is also a removable

box. In the first two cases, the action of L(m−1,m) is diagonal, and the quantum numbers are

intact. In the third case, the only quantum numbers that are changed are λm−1 and λm.

Consider now the action of Sn−1 on an element |λ1,λ2, . . . ,λn = λ ⟩. In any case λ is

constructible by λn−1, and the construction is by adding an addable box to λn−1. In other

words, λn−1 can be any partition ⊢ n− 1, that is obtained by removing a removable box

from λ . These observations, all together, lead to a neat tool:

Lemma 4.27. (Branching.) Under the action of Sn−1, Vλ
∼=
⊕

µ⊢n−1
µ⊂λ

Vµ .

Proof. Choose an orthonormal basis according to YY. Enumerate the removable boxes of λ

by 1,2, . . . , p. Clearly, in any standard tableau of λ , the box containing n is a removable one.

Group the tableaus according to the location of n. Clearly, each subspace corresponds to a

partition µ ⊢ n−1 ⊂ λ . Call these partitions µ1,µ2, . . . ,µp, according to the enumeration

of removable boxes. Also denote the space Vµ j correspondingly. For any µ j, any element

of Sn−1, acted on Vµ j , generates a vector within Vµ j . In other words, these subspaces are

stable under Sn−1.

Partial classification of arbitrary initial states

In the following, I first prove denseness in some special class of Young tableaus. As de-

scribed, the Hilbert space CSn has the decomposition:

116

CSn ∼=
⊕
λ⊢n

Vλ ⊗Xλ

In this section, I will work on the Lie algebra and the unitary Lie group generated by X

operators, interchangeably. That is if the dimension of the Lie algebra as a vector space is

large enough, then the Lie group is dense in some background group, and vice versa. As a

first input, the element X(θ ,k) can be written as:

X(θ ,k) = exp(iθL(k,k+1)).

Let G be the unitary group generated by these X operators. As described earlier, the space

tangent to the identity element of G is a Lie algebra, g, which contains L(k,k+1) for all

k ∈ [n− 1], and is close under linear combination over R, and the Lie commutator i[·, ·].

The objective is to show that for any λ ⊢ n with two rows or two columns, and any element

U of SU(Vλ), there is an element of G that is arbitrarily close to U .

The proof is presented inductively. First of all, for any n, the irreps Vn and V1,1,1,...,n

are one dimensional, and the action of x ∈ G is to add an overall phase. However, ob-

serving the structure of YY basis for these irreps, the action of G on the joint blocks

Vn⊕V(1,1,1,...,1) cannot be decoupled, and the projection of G onto these subspaces is diago-

nal, and moreover isomorphic to the group eiθ ×e−iθ : θ ∈R. Intuitively, these are Bosonic

and Fermionic subspaces, where an exchange L(k,k+1) of particles results in a +1 and −1

overall phase, respectively.

For n = 2, the only invariant subspaces are V2 and V(1,1), and we know the structure of

these irreps from the last paragraph:

CS2 ∼=V2⊕V(1,1), G � eiθ × e−iθ : θ ∈ R.

For n = 3, the decomposition is according to:

CS3 ∼=V3⊕V(1,1,1)⊕V(2,1)⊗X(2).

Here, X(2) is a two dimensional multiplicity space. There are two standard (2,1)

117

tableaus and therefore V(2,1) is also two dimensional. Observing the YY basis the two

generators L(1,2) and L(2,3) take the matrix forms:

L(1,2) =

1 0

0 −1

 ,

and,

L(2,3) =

−1/2
√

3/2
√

3/2 1/2

 .

The basis of the matrix are marked with the two standard Young tableaus of shape (2,1).

The first basis corresponds to the numbering (1,2;3) and the second one corresponds to

(1,3;2). Here, the rows are separated by semicolons. The following elements of the Lie

algebra g generate su(V(2,1)) and annihilate the two Bosonic and Fermionic subspaces:

1
2
√

3
[L(1,2), [L(1,2),L(2,3)]] = 0⊕0⊕σx⊗ I,

i√
3
[L(1,2),L(2,3)] = 0⊕0⊕σy⊗ I,

and,

1
6
[[L(1,2), [L(1,2),L(2,3)]], [L(1,2),L(2,3)]] = 0⊕0⊕σz⊗ I.

This implies the denseness of G in 1× 1× SU(V(2,1)). Therefore, we obtain a qubit

coupled to the multiplicity space, placed in a superposition of the one dimensional Bosonic

and Fermionic subspaces. So, projecting onto a subspace like V(2,1)⊗|ψ⟩, for |ψ⟩ ∈ X(2),

we obtain a qubit.

I use this result as the seed of an induction. The upshot is to add boxes to (2,1) one

by one, in a way that the partitions remain with two rows or two columns. At each step, I

use the branching rule to combine the blocks together to larger and larger special unitary

groups. In the course of this process, I use two powerful tools, called the bridge lemma,

and decoupling lemma:

118

Lemma 4.28. (Aharonov-Arad [6]) let A and B be two orthogonal subspaces, with non-

equal dimensions, dimA < dimB:

∙ (Bridge) if there is some state |ψ⟩ ∈ A, and a (bridge) operator V ∈ SU(A⊕B), such

that the projection of V |ψ⟩ on B is nonzero, then the combination of SU(A), SU(B),

and V is dense in SU(A⊕B).

∙ (Decoupling3) suppose for any elements x ∈ SU(A) and y ∈ SU(B), there are two

corresponding sequences Ix and Iy in G, arbitrarily close to x and y, respectively, then

the action of G on A⊕B is non-diagonal, ı.e., SU(A)×SU(B)⊆ G.

See [7,8] for more similar results. Intuitively, what bridge lemma says is that given two

subspaces, with one of them larger than the other, dense action each, along with a bridge

between them, implies denseness on the combined subspace. That is a bridge glues them

to a larger special group. The condition of different dimensions is a crucial requirement for

the application of this lemma. The decoupling lemma, on the other hand, states that given

dense action on two subspaces, as long as they have different dimensionality, there is way

of acting on the two subspaces independently. Again, in this case non-equal dimensionality

is important. For example, suppose that dimA = dimB, then the action x× x† : x ∈ SU(A),

cannot be decoupled. In order to see this, just notice that after finite compositions, the gen-

eral form of elements generated in this way is (x1x2 . . .xn)× (xn . . .x2x1)
†, and an identity

action in the left part implies identity action in the right part of the Cartesian product.

Next, I show that the lemma along with the branching rule, force denseness on all irreps

corresponding to partitions of two rows or two columns. I will take care of the case with

two rows. The situation with two columns is similar. As a way of induction, suppose that,

for any m < n, for any λ = (λ1 ≥ λ2) ⊢ m, the projection of G on λ is dense in SU(Vλ).

The objective is to prove denseness for any partition µ ⊢ n.

This is true for (2,1), as showed above. For the sake of illustration, I prove this for

n = 4. The partitions (4) is immediate, because this is one dimensional. Also, the partition

(2,2) is immediate, since the branching rule, under the action of S3 is:

3I wrote an alternative formulation of Aharonov-Arad’s original lemma that is consistent with the ball
permuting group G.

119

V(2,2)
∼=V(2,1),

That is the only removable box from (2,2) is the last box, and in the YY basis for (2,2),

this last box can contain the symbol 4 only. So, the same operators of S3 act densely on this

subspace.

The situation with the partition (3,1) is a little different. Analyzing the hook lengths,

V(3,1) has dimension 3, and the branching rule involves the direct sum of partitions (2,1)

and (3):

V(3,1)
∼=V(2,1)⊕V(3).

Where, V(2,1) is two dimensional, and V(3) is one dimensional, and therefore, they have non-

equal dimensions, and also their direct sum adds up to dimension 3. From, the analysis of S3

we know that independent SU(2), and SU(1) = {1} is possible on these irreps. It suffices

to find a bridge operator in SU(V(2,1)⊕V(3)). In the first glance, the operator L3,4 ∈ g

sounds like a suitable choice. However, there is a problem with this: the restriction of

L3,4 on V(3,1) is not traceless, and therefore the image under exponentiation does not have

unit determinant. Therefore, a wise choice for a bridge operator is i[L(2,3),L(3,4)]. Looking

at the actual matrices, restricted to the YY basis of (3,1), one finds i[L(2,3),L(3,4)], as a

suitable bridge, that is nice and traceless:

i


0

√
2 −

√
2
3

−
√

2 0

√
1
3√

2
3
−
√

1
3

0

 .

Here the matrix is written in the basis corresponding to the tableaus (1,2,3;4),(1,2,4;3)

and (1,3,4;2). The bridging is between the (1,2) and (2,1) elements of the matrix.

Thereby, the bridge lemma implies the desired denseness.

For general n, two situations can happen, either the partition under analysis is of the

form (ν ,ν) = (n/2,n/2) (for even n of course), or not. In the first case, the situation is

120

similar to the partition (2,2) of n = 4. Thereby, restricted to Sn−1:

V(ν ,ν)
∼=V(ν ,ν−1),

and based on the induction hypothesis the image of G is already dense in the subspace. In

the second case, also two cases can happen: either the partition has the form µ = (ν +1,ν),

with 2ν +1 = n, or not. In the first case, the branching rule is according to:

V(ν+1,ν)
∼=V(ν ,ν)⊕V(ν+1,ν−1)

The space V(ν ,ν) corresponds to all YY basis corresponding to tableaus, wherein the index

n is located in the last box of the first row. Therefore, the index n−1 in all of the tableaus of

(ν ,ν) is located in the last box of the second column, because this is the only removable box

available. For simplicity, let’s call this space V1. The YY bases of V(ν+1,n−1) correspond

to all the tableaus of (ν + 1,ν), where the index n is located in the last box of the second

row. In this space, the location of the index n−1 is either in the last box in the first row or

in the box right at the left of the last box in the second row. A coarser stratification of the

states in V(ν+1,ν−1) is by grouping the YY basis according to the location of n−1. Let V2

be the first one, and V3 the second one. Therefore, YY bases of V(ν+1,ν) can be grouped in

three ways, V1,V2,V3, corresponding to all the ways that one can remove two boxes from

the original V(ν+1,ν). Again, a neat candidate for a bridge is L(n−1,n). Taking a closer look

at the operator L(n−1,n), it can be decomposed according to:

L(n−1,n) = ∑
| j⟩∈V3

| j⟩⟨ j|+ 1
2 ∑

k′:k
|k⟩∈V1
|k′⟩∈V2

|k⟩⟨k|− |k′⟩⟨k′|+
√

3
2 ∑

k′:k
|k⟩∈V1
|k′⟩∈V2

|k⟩⟨k′|+ |k′⟩⟨k|

| j⟩, |k⟩, and |k′⟩, of V1, V2, and V3 are the corresponding orthonormal basis in the spaces.

Notice that the space V1 is isomorphic to V2, and k : k′, refers to this isomorphism. Clearly,

the restriction of L(n−1,n) to this block is not traceless, and indeed trV(ν+1,ν) = dimV3 =

dimV(ν+1,ν−2).

121

Now, I use the decoupling lemma of Aharonov-Arad. V(ν+1,ν) and V(ν ,ν) have different

dimensionality, and also, due to the induction hypothesis the operators can act as the special

unitary group on each of them. Thereby, there is a way to act as x⊕ 0 on the joint space

V(ν ,ν)⊕V(ν+1,ν−1), for some traceless element x∈ su(V(ν ,ν)). Therefore, x| j⟩= 0 and x|k′⟩,

for all | j⟩ ∈ V3, |k′⟩ ∈ V2. And denote |xk⟩ := x|k⟩, for |k⟩ ∈ V1. Taking the commutator

i[x,L(n−1,n)]:

i[x,L(n−1,n)] =
i
2 ∑

k′:k
|k⟩∈V1
|k′⟩∈V2

|xk⟩⟨k|− |k⟩⟨xk|+ i

√
3
2 ∑

k′:k
|k⟩∈V1
|k′⟩∈V2

|xk⟩⟨k′|− |k′⟩⟨xk|.

Clearly, this operator is traceless, Hermitian, and also one can choose x in such a way that

the bridging term in the second sum is nonzero.

Given the above proof for the case V(ν+1,ν), I will use a similar technique to take care

of the situation V(p,q), where p > q+1, and p+q = n. Again, the branching rule is:

V(p,q) =V(p,q−1)⊕V(p−1,q).

The space V(p,q−1) corresponds to all YY bases that correspond to the tableaus where the

index n is located at the last box of the first row. In this space, the index n− 1 is either

located at the left side of the box containing n, or it is located in the last box of the second

row. Call the space corresponding to the first (second) one V1 (V3). V(p−1,q) corresponds

to all YY bases of tableaus with index n is located at the last box of the second row. In

this space, the index n− 1 is either located at the left side of the box containing n, or it is

located in the last box of the first row. Call the first space V2 and the second one V4. Again,

write the decomposition of L(n−1,n), accordingly:

L(n−1,n)= ∑
| j⟩∈V1

| j⟩⟨ j|+ ∑
| j⟩∈V2

| j⟩⟨ j|+α(p,q) ∑
k′:k
|k⟩∈V3
|k′⟩∈V4

|k⟩⟨k|−|k′⟩⟨k′|+β (p,q) ∑
k′:k
|k⟩∈V3
|k′⟩∈V4

|k⟩⟨k′|+|k′⟩⟨k|

Here:

122

α(p,q) =
1

p−q+1

and,

β (p,q) =

√
1− 1

(p−q+1)2 .

Once again, V2 is isomorphic to V3, and k : k′ denotes the correspondence between

elements of the two spaces. Once again, I use the decoupling lemma, which asserts the

existence of elements like X := x⊕ 0, and Y := 0⊕ y, on V(p,q−1)⊕V(p−1,q), for every

x ∈ su(V(p,q−1)) and y ∈ su(V(p,q−1)). A bridge between V3 and V4 is needed, in such a

way that the bridge annihilates both V1 and V2. A candidate for a bridge is [Y, [X ,L(n−1,n)]].

However, it can be easily shown that the element i[X ,L(n−1,n)] will also work. The operator

X annihilates everything in V2 and V4. Therefor, taking the commutator, the second sum

is annihilated, and also, all the remaining terms are trace-less and one can find x in such a

way that the bridge part is nonzero. All the above results also apply to the tableaus with

two columns.

Programmability: reduction from exchange interactions

In the last section, I demonstrated denseness of G in special unitary groups over some

specific invariant subspaces of CSn. However, this is a nonconstructive statement, and it is

desirable to have an explicit description of BQP simulations in this model. Suppose that

we can prepare an arbitrary initial state. For example, suppose that we can initialize the

ball permuting model in one of the YY bases of an irrep V(n,n). We can view V(n,n) as a

single giant qudit of exponential size. Analyzing the hook lengths, indeed one obtains the

dimensionality:

dimV(n,n) =
(2n)!

(n+1)!n!
= 2Ω(n),

which is exponential, and can hold Ω(n) bits of quantum information in it. Even so, it is

not clear how to efficiently program the states of V(n,n), using a polynomial time Turing

123

preprocessor. Moreover, in the way that I described the model, the final measurements can

be done in the ball labels basis only, and given an output state in V(n,n), it is not obvious

how one can sample from it to extract bits of information. Given this motivation, in this

section I show how to use arbitrary initial states to obtain a programmable BQP universal

model. This is done by demonstrating a reduction from the exchange interaction model of

quantum computation which is already known to be BQP universal.

Here, I first review the exchange interaction model [12, 32, 33], and then describe

how to do a reduction from the computation in this model to the ball permuting model

of computing on arbitrary initial states. Next, I sketch the proof of universality for the

exchange interaction model, which in turn results in BQP universality of ball permuting

model on arbitrary initial states. Consider the Hilbert space (C2)⊗n =: C{0,1}n, with

binary strings of length n, Xn := {|x1⟩⊗ |x2⟩⊗ . . .⊗ |xn⟩ : x j ∈ {0,1}}, as the orthonor-

mal computational basis. I am interested in the group generated by the unitary gates

T (θ , i, j) = exp(iθE(i, j)) = cosθ I + isinθE(i, j), where the operator, E(i, j), called the ex-

change operator, acts as:

E =
1
2
(I +σx⊗σx +σy⊗σy +σz⊗σz)

on the i, j slots of the tensor product, and acts as identity on the other parts. More specifi-

cally, E is the map:

|00 ⟩ → |00⟩,

|01 ⟩ → |10⟩,

|10 ⟩ → |01⟩,

|11 ⟩ → |11⟩.

The action of Ei j is very similar to the permuting operator L(i, j), except that E oper-

ates on bits rather than the arbitrary labels of [n]. These operators are also known as the

Heisenberg couplings, related to the Heisenberg Hamiltonian for spin-spin interactions:

124

H(t) = ∑
i< j∈[n]

ax
i j(t)σ

i
x⊗σ

j
x +ay

i j(t)σ
i
y⊗σ

j
y +az

i j(t)σ
i
z⊗σ

j
z .

Here al
i j are time dependent real valued couplings. The Heisenberg Hamiltonian models

pairwise interaction of spin
1
2

particles, on a network. If one considers zero couplings for

the nonadjacent locations with |i− j|> 1, what the model describes is a chain of spins, with

spin-spin interaction of the particles located on a line, or circle if the boundary condition

of ai,i+1 = a j, j+1 is considered for i = j mod n. These are both one dimensional geome-

tries. An isotropic Heisenberg Hamiltonian is the one for which the coefficients satisfy

ax
i j(t) = ay

i j(t) = az
i j(t) = a(t)i j, at all times. The isotropic Hamiltonian is expressible by

the exchange operators according to:

H(t) = ∑
i< j∈[n]

a(t)i j(2E(i, j)−1).

If one further restricts the a(t)i j couplings to be piecewise constant in time, and that at most

one nonzero coupling at a time, in the summation above, H(t) imposes a general form of

unitary evolution, according to:

U = T (θm, im, jm) . . .T (θ2, i2, j2)T (θ1, i1, j1). (4.5)

Given (θ1, i1, j1),(θ2, i2, j2), . . . ,(θm, im, jm) as the description of U , and special initial

states |ψ⟩ ∈ (C2)⊗n, I will demonstrate how to use X operators with arbitrary initial state

to simulate U , and then sample from the output distribution of U |ψ⟩. After that, I con-

sult a previously known result, which asserts that exchange interactions are sufficient for

universal quantum computing.

Definition 4.8. Define X k
n := {|x⟩ : x∈{0,1}n, |x|H = k} to be the subset of Xn, containing

strings of Hamming distance k ≤ n. Here, |.|H is the Hamming distance, which is the

number of 1’s in a string. Also, let CX k
n

4 be the corresponding Hilbert space spanned by

these basis.

Theorem 4.29. Given a description of U (in equation 4.5), and an initial state |ψ⟩ ∈CX k
n ,

4Usually CG refers to a group algebra, however, here I just use CX k
n just for the simplicity of notations.

125

there exists an initial |ψ ′⟩ ∈ CSn, and a ball permuting circuit, with X operators, that can

sample from the output of U |ψ ′⟩, exactly.

Proof. I show how to encode any state of CX k
n with states of CSn. Let Sk,n−k be the

subgroup of Sn according to the cycles {1,2, . . . ,k} and {k+ 1,k+ 2, . . . ,n}, and denote

|φ0⟩ =
1√

k!(n− k)!
∑σ∈Sk,n−k

R(σ)|123 . . .n⟩ be an encoding of the state |1k0n−k⟩. Here,

1k means 1’s repeated for k times. This is indeed a quantum state that is symmetric on

each the labels of {1,2, . . . ,k} and {k+1,k+2, . . . ,n}, separately. Any string of Hamming

distance k can be obtained by permuting the string 0k1n−k. For any such string x let πx

be such a permutation, and encode |x⟩ with |φ(x)⟩ := Lπx |φ0⟩. Therefore, given any initial

state |ψ⟩ := ∑x∈X k
n

αx|x⟩, pick an initial state |ψ ′⟩ := ∑x∈X k
n

αx|φ(x)⟩ in CSn. Now, given

any unitary U = T (θm, im, jm) . . .T (θ2, i2, j2)T (θ1, i1, j1) with T operators, pick a corre-

sponding ball permuting circuit U ′ = X(θm, im, jm) . . .X(θ2, i2, j2)X(θ1, i1, j1). It can be

confirmed that for any i < j ∈ [n] if E(i, j)|x⟩ = |x′⟩, then E(i, j)|φ(x)⟩ = |φ(x′)⟩. From this,

if U |ψ⟩= ∑x∈X k
n

βx|x⟩, then U ′|ψ ′⟩= ∑x∈X k
n

βx|φ(x)⟩.

It remains to show that given access to the output of U ′|ψ ′⟩, one can efficiently sample

from U |ψ⟩. Suppose that U ′|ψ ′⟩ is measured in the end, and one obtains the permutation

σ = (σ(1),σ(2), . . . ,σ(n)). Then, by outputting a string x by replacing all the labels of

{1,2, . . . ,k} in σ with ones and the other labels with zeros the reduction is complete. The

probability of obtaining any string x with this protocol is exactly equal to |⟨x|U |ψ⟩|2.

Indeed, in this simulation, the space is going to be projected onto a subspace of CSn

that is invariant under X operators. Moreover, this subspace is isomorphic to the strings of

bits with certain Hamming distances. One can formally extend this idea to other similar

subspaces. As before, let λ = (λ1,λ2, . . . ,λt) be a partition of n, and Sλ
∼= Sλ1 × Sλ2 ×

. . .Sλt , be the subgroup of Sn as the set of permutations with cycles {1,2, . . . ,λ1},{λ1 +

1, . . . ,λ2},{λt−1 + 1, . . . ,λt}. Then it can be seen that P(λ) :=
1

λ !
∑σ∈Sλ

R(σ) is a pro-

jection, ı.e., it is Hermitian and also P(λ)2 = P(λ). P(λ) is Hermitian, since R(·) is a

Hermitian operator. Sλ is a group, and R is a homomorphism, therefore for any τ ∈ Sλ ,

R(τ)∑σ∈Sλ
R(σ) = ∑σ∈Sλ

R(σ), which is implied by the closure of R(Sλ) as a group.

Therefore:

126

P(λ)2 =
1

λ !2 ∑
τ∈Sλ

R(τ) ∑
σ∈Sλ

R(σ) =
|Sλ |
λ !2 ∑

σ∈Sλ

R(σ) = P(λ).

Indeed, looking at the Young symmetrizers, it can be confirmed that the subspace Vλ is

contained in the space resulted under this projection, and the subspace is further reducible.

I need to show that for any partition λ , P(λ)CSn is a subspace that is invariant under the

X operators. Let Wλ := {|ψ⟩ ∈ CSn : (I−P(λ))|ψ⟩= 0} be the subspace obtained by this

projection, and W ′
λ

as its complement in CSn. Choose any |ψ⟩ ∈Wλ , I claim that for any

operator X , X |ψ⟩ ∈Wλ . This is true, because the projection P(λ) commutes with X , and

(I−P(λ))X |ψ⟩= X(I−P(λ))|ψ⟩= 0. However, as it is going to be mentioned in a later

section, these subspaces are further reducible. More specifically, in the proof of theorem

4.29, I used the partition λ = (k,n− k), and constructed the subspace Wλ := P(λ)CSn ⊂

CSn as the encoding of CX k
n ; in other words W(k,n−k)

∼= CX k
n .

For any k ∈ [n], CX k
n is an invariant subspace of the group, GT , generated by T oper-

ators. This is because the exchange operators do not change the Hamming distance of the

computational basis. So the decomposition C{0,1}n ∼=
⊕

kCX k
n is immediate. Consider

the standard total Z direction angular momentum operator:

JZ :=
1
2
(σ1

z +σ
2
z + . . .+σ

n
z).

Then [JZ,E(i, j)] = 0 for all i and j. Here, the superscript j in A j for operator A means

I⊗ I⊗ . . .⊗
j
↓
A⊗ . . .⊗ I, the action of the operator on the j’th slot of the tensor product. JZ

indeed counts the Hamming distance of a string, and more precisely, for any |ψ⟩ ∈ CX k
n ,

JZ|ψ⟩ = (
n
2
− k)|ψ⟩. Therefore, the eigenspace corresponding to each eigenvalue of JZ is

an invariant subspace of GT . For each eigenvalue n/2− k the multiplicity of this space is(n
k

)
, the number of n bit strings of Hamming distance k. One can also define the X and Y

direction total angular momentum operators in the same way:

JX :=
1
2
(σ1

x +σ
2
x + . . .+σ

n
x),

and,

127

JY :=
1
2
(σ1

y +σ
2
y + . . .+σ

n
y).

Indeed, consulting the decoherence free subspaces theory of the exchange operators, the

algebra generated by the operators JX ,JY and JZ , is the unique commutant of the exchange

operators, and vice versa. Indeed, for any positive algebra that is closed under the con-

jugation map, the commutant relation is an involution [30], i.e., the commutant of the

commutant of any such algebra is the algebra itself.

The decomposition of C{0,1}n, of n spin
1
2

particles, is well known, and can be char-

acterized by total angular momentum, and the Z direction of the total angular momentum.

The total angular momentum operator is:

J2 = (∑
j∈[n]

1
2

σ
j

x)
2 +(∑

j∈[n]

1
2

σ
j

y)
2 +(∑

j∈[n]

1
2

σ
j

z)
2.

Indeed, using a minimal calculation one can rewrite J2 as:

J2 = n(n−1/4)+ ∑
i< j∈[n]

E(i, j),

and it can be confirmed that for all k < l ∈ [n], [E(k,l),J2] = 0. In other words, the exchange

operators do not change the total and Z direction angular momentum of the a system of

spin 1/2 particles. The decomposition of C{0,1}n can be written down according to these

quantum numbers. Let V (s) ⊂ C{0,1}n, be the set of states |ψ⟩ in C{0,1}n such that

J2|ψ⟩ = s(s+ 1/2)|ψ⟩, and V (s,m) ⊂ V (s) ⊂ C{0,1}n, as the subspace with states |φ⟩

such that JZ|φ⟩= m/2|φ⟩. If n is even, C{0,1}n decomposes according to:

C{0,1}n ∼=V (0)⊕V (1)⊕ . . .⊕V (n/2),

and each of these subspaces further decomposes to:

V (s)∼=V (s,−s)⊕V (s,−s+1)⊕ . . .⊕V (s,s).

For odd n the only difference is in the decomposition C{0,1}n ∼= V (
1
2
)⊕V (

3
2
)⊕ . . .⊕

128

V (n/2). From what is described in the context of decoherence free subspaces theory, the

exchange interaction can affect the multiplicity space of each subspace V (s,m). I am in-

terested in the subspaces of the form V (s,0) for even n, and V (s,±1
2
), for odd n, which

correspond to the decomposition of X
n/2

n , and X
(n±1)/2

n , based on the total angular mo-

mentum, respectively.

There is a neat connection between the multiplicity space of these subspaces, and the

subgroup adapted YY bases. For k ∈ [n], define the following series of operators:

J2
k = k(k−1/4)+ ∑

i< j∈[k]
E(i, j).

Clearly, J2
k = J2. These are indeed the total angular momentum measured by just look-

ing at the first k particles. Using a minimal calculation one gets [J2
k ,J

2
l] = 0 for all k, l.

That is they are all commuting, and they can be mutually diagonalized. For x j ∈ [n], let

|x1,x2, . . . ,xn⟩, be such basis with J2
j |x1,x2, . . . ,xn⟩ = x j(x j +

1
2
)|x1,x2, . . . ,xn⟩. These are

appropriate candidates as a basis for the multiplicity space of V (s,0)(V (s,1/2) for odd n).

Then, xn = s. Analyzing these operators more carefully, it is realized that for each l < n,

either xl+1 = xl +1/2 or xl+1 = xl−1/2. Intuitively, this is saying that adding a new spin

1/2 particle Q = C2 to V (x j):

V (x j)⊗Q∼=V (x j +
1
2
)⊕V (x j−

1
2
),

for x j > 0, and otherwise:

V (0)⊗Q∼=V (
1
2
),

This is similar to the branching rule of the symmetric group representation theory. The

second form is directly related to the branching rule of V(n,n)
∼= V(n,n−1). For simplicity,

here I consider the twice of the J operators instead, so that the branching rule takes the

form:

V (x j)⊗Q∼=V (x j +1)⊕V (x j−1),

129

Figure 4-8: An example of a path model. The blue and red paths start out of (0,0) and
end up with the point (8,2). YY basis corresponding to tableaus that two rows are closely
related to the path model.

for x j > 0 and,

V (0)⊗Q∼=V (1),

otherwise. Applying this rule recursively, the path model is obtained. See Figure 4-8 for an

example. A path model Ps is the set of paths between two points (0,0) and (n,s) in a two

dimensional discrete Cartesian plane {0,1,2,3, . . . ,n}2, where no path is allowed to cross

the (x,0) line, and at each step the path will move either one step up or one step down. Path

up/down from the point (x,y) is the connection from this point to (x+1,y+1)/(x+1,y−

1). See FIG for an example of a path model. Therefore, the Hilbert space V (s) corresponds

to the orthonormal basis labeled by the Paths to the point (n,2s).

Indeed, I could agree on a path model for the YY basis of the tableaus with two rows.

Let λ be the Young diagram of shape λ = (n,m). The path model is constructed in the

following way: map each tableau t to a symbol, Mt = y1y2 . . .yn+m, where y j is the row

index of the box containing the number j. Starting at the point (0,0) then the path corre-

sponding to t is constructed by taking a step up, whenever a 1 is read in M, and a step down

otherwise. Thereby, P0 corresponds to (n,n), and P2n corresponds to the partition (2n).

130

Given this background, universal quantum computing is possible by encoding a qubit

using three spin 1/2 particles. Suppose that the following initial states are given in CX 1
3 :

|0L⟩ :=
|010⟩− |100⟩√

2

and,

|1L⟩ :=
2|001⟩− |010⟩− |100⟩√

6
,

as some logical encoding of a qubit using three quantum digits. I claim that there is a way

to distinguish |0L⟩ from |1L⟩ with perfect soundness. These mark the multiplicity space

of the space with half Z direction angular momentum and half total angular momentum.

First, we should find a way to distinguish between these two states using measurement in

the computational basis. Suppose that we have access to k copies of an unknown quantum

state, and we have the promise that it is either |0L⟩ or |1L⟩, and we want to see which one is

the case. The idea is to simply measure the third bit of each copy, and announce it to be 0L

if the results of the k measurements are all 0 bits. If the state has been |0L⟩, the probability

of error in this decision is zero, because |0L⟩=
|01⟩− |10⟩√

2
⊗|0⟩. Otherwise, we will make

a wrong decision with probability at most (1/3)k, which is exponentially small. This is

because the probability of reading a 0 in the third bit of |1L⟩ is 1/3.

Theorem 4.30. There is a way of acting as encoded SU(2) on the span of {|0L⟩, |1L⟩}, and

also SU(4) on the concatenation of two encoded qubits.

Proof. (Sketch) according to the analysis of [24,32], one can look at the Lie algebra of the

exchange operators to find encoded su(2) algebra on the encoded qubit. Also, we need to

take enough commutations such that the action of the designed operators annihilates the two

one dimensional spaces spanned by |000⟩ and |111⟩. The authors of [32] prove that there is

a way to act as SU(V (s,m)) on each invariant subspace V (s,m). Moreover, they prove that

the action on two subspaces V (s1,m1) and V (s2,m2) can be decoupled, unless s1 = s2, and

m2 =−m1, where the two subspaces are isomorphic. It is almost enough to prove that the

state |0L⟩⊗ |0L⟩ is contained in non-isomorphic invariant subspaces. However, this is also

true, since |0L⟩⊗ |0L⟩ is completely contained in subspaces with m = 2.

131

See [13, 34, 54] for similar models with encoded universality. Therefore, this is a non-

constructive proof for the existence of an encoded entangling quantum gate; CNOT for

example. Indeed, the actual construction of a CNOT is given in [24] . Notice that for a de-

cision problem, one can formulate quantum computation in such a way that only one qubit

needs to be measured in the end, and this can be done by distinguishing |0L⟩ and |1L⟩ using

measurement in the computational basis. The probability of success in distinguishing be-

tween the two bits can also be amplified by just repeating the computation for polynomial

number of times, and taking the majority of votes. Also, taking the majority of votes can

be done with encoded CNOTs and single qubits gates on a larger circuit, and without loss

of generality we can assume that one single measurement on one single qubit is sufficient.

6 Evidence for the Hardness of Classical Simulation of the

Scattering Quantum Computer

In this section, I combine some of the results from last sections with known facts in com-

plexity theory to give substantial evidence that it is hard to sample from the output probabil-

ity distribution of the ball scattering model when we allow intermediate particle detections

and arbitrary initial states. The approach is to demonstrate that the existence of a feasible

sampling scheme results in falsification of statements that are believed to be true. These

are statements that have not been proved, but yet no counter examples are known to them.

An example is the well-known P versus NP question. Most of the researchers in computer

science believe that these two objects are not equal. However, a proof of equivalence or a

separation does not exist yet, and it might be the case that this problem is an undecidable

problem itself. Another example of this kind is the problem of deciding if the polyno-

mial hierarchy is finite or infinite. Indeed, in this section I show that efficient sampling

from the output distribution of the ball scattering problem directly implies finiteness of

the polynomial hierarchy (PH). As described, the polynomial hierarchy is an extension

of nondeterministic polynomial time, NP, to a tower of complexity classes with the form

NPNP···
NP

; more precisely PH is the union of Σ
j
P for j ≥ 1, where Σ1

P = P, Σ2
P = NP, and

132

Σ
j+1
P = Σ

j
P

NP
, for j ≥ 2. Remember that AB is the machine of class A with oracle access to

B. It is widely believed that the polynomial hierarchy is infinite, and recently, it has been

proved that relative to a random oracle PH is infinite.

The objective of this section is to demonstrate that it is hard to sample from the output

distribution of the ball scattering model, unless the polynomial hierarchy collapses to its

third level. Similar proof techniques already exist, for example see [4, 41]. In sections 4.1

and 4.2 of this chapter, I showed that one can use intermediate demolition measurements

on the ball scattering problem of section 2 to come up with a sequence of nondeterministic

gates that are able simulate quantum circuits of XQBALL. The gates are nondeterministic,

in the sense that they will succeed in their simulation, only if certain measurement outcomes

are obtained, and this can happen with exponentially small probability. Also, the proof still

holds on arbitrary initial states. After that, in section 5.2, I proved that on arbitrary initial

states, the model XQBALL is equal to the standard BQP. Moreover, I discussed that in

order to simulate a standard quantum circuit model C of BQP in XQBALL, the form of the

desired initial state depends on the number n of qubits in C only. I denote this initial state

by |ψ?
n ⟩, or just simply by |ψ?⟩. Putting these results together, we observe that the model

of ball scattering with intermediate demolition post-selection is equal to BQP, if we allow

arbitrary initial states. For the sake of clarity, I define PostXQBALL with the following

definition to capture the discussed ingredients in the model of ball scattering:

Definition 4.9. Let PostHQBALL be the class of decision problems that are efficiently

solvable using the following resources:

∙ Yang-Baxter ball collision circuits, similar to section 4.2,

∙ initial states of the form |ψ?⟩⊗ |c1,c2, . . . ,cm⟩,

∙ post-selection on demolition intermediate measurement outcomes.

Here, |ψ?⟩ is the discussed special inital, and c1,c2, . . . ,cm are distinct colors that are also

distinct from color species of |ψ?⟩. More precisely, this is the class of languages L ⊂

{0,1}?, for which there is a polynomial time Turing machine M that on any input x ∈

{0,1}? outputs the description of a ball scattering setup like in section 4.2, and a polynomial

133

size set of ball colors c̃, along with a special output ball register c′0, with the following

properties:

∙ 1) for all x ∈ {0,1}?, Pr[c′1 = c1,c′2 = c2, . . . ,c′m = cm]> 0, where c′l is the outcome

of the l’th intermediate measurement. Denote this event by C.

∙ 2) if x ∈ L, Pr[c′0 ∈ c̃|C] ≥ 2/3. Here c′j ∈ c̃ is the event where the color of the ball

measured in location j, in the end of scattering, is among the colors of the set c̃.

∙ 3) if x /∈ L, Pr[c′0 ∈ c̃|C]≤ 1/3.

Condition 1 states that the probability of the event that the classical outcomes of the in-

termediate measurements match the guessed outcomes c1,c2,c3, . . . ,cm is nonzero. Notice

that as discussed in the section 4 of this chapter, this probability can be exponentially small,

but since we are dealing with conditional probabilities, a nonzero probability is sufficient.

Conditions 2 and 3 state that the probability of error is bounded. Here c̃ is a set of colors

among the colors of |ψ?⟩, which correspond to the accepting ball colors. The ball register

c′0, is a special location of a ball in the output of ball scattering; c′0 can be viewed as an

answer register.

A major observation is the following theorem, stating that although the ball scattering

model might be strictly weaker than BQP, the post-selected version is equal to PostBQP,

and to PP because of Aaronson’s PostBQP= PP.

Theorem 4.31. PostHQBALL= PostBQP= PP.

Proof. PostBQP=PP is given by the result of Aaronson. Also, PostHQBALL⊆PostBQP.

In order to see this, observe that the BQP machine first prepares the initial state |ψ?⟩⊗

|c1,c2, . . . ,cm⟩, encoded with binary strings. Then, whenever an intermediate measurement

is done, it just leaves the state along and postpones the measurement to the end of com-

putation. This might give rise to a non-planar quantum circuit, but it is fine, since we are

working with BQP. The BQP measurements are done in a proper basis that encodes the

ball color basis. For example, if we encode ball colors with binary representations, then

it is sufficient to measure in binary basis and confirm if the digital representation of the

134

ball color (number) is correct. Notice that in the simulation, we are not going to use the

balls that have already been measured intermediately again. All the swap gates are applied

accordingly. Then in the end we post select on the desired demolition measurements and in

the end we measure the encoded location of the j’th ball and confirm if it is among c̃. We

can also use CNOT gates to shrink the number of post-selections down to one.

In order to see the more interesting direction PostHQBALL⊇ PostBQP, just we follow

the post-selected universality result of section 4.2 and 5.2 of this chapter, to simulate any

computation in BQP. Then notice that any PostBQP computation can be deformed in a

way that one only needs to post-select on one qubit, and also measure one qubit in the end.

PostHQBALL uses this deformed PostBQP protocol, instead, and uses one of its demolition

measurements in the end of computation to simulate post selection of the actual PostBQP

circuit.

In section 4.2.2, I defined HQBALL as a variation of the ball permuting model with

planar Yang-Baxter circuits. Later, in section 4.4.2 , I demonstrated how to use intermediate

non-demolition measurements to come up with nondeterministic three particle gadgets that

simulate the two particle gates of XQBALL. Thereby, I define the formal model with post-

selection:

Definition 4.10. Let PostHQBALL? to be the class of decision problems that are efficiently

solvable using initial states of the form |ψ?⟩, and non-adaptive planar Yang-Baxter cir-

cuits with post-selection on non-demolition intermediate measurements. The details of the

definition is similar to definition 4.9.

This model does not immediately have a corresponding physical example, but it is

interesting that the same result of theorem 4.31 is applicable to it:

Theorem 4.32. PostHQBALL? = PostBQP= PP.

Proof. The proof of both directions is similar to the proof theorem 4.31, except that now

in the direction PostBQP⊇ PostHQBALL?, the BQP simulation uses CNOT gates to post-

pone all intermediate measurements to the end.

135

The equivalence of these quantum models and PP is already and interesting connection,

however, we are two steps away from the major results, that is the connection to the collapse

of polynomial hierarchy. In order to achieve this goal, I recapitulate amazing tools from

complexity theory in the following theorem:

Theorem 4.33. The following relationships are true for the complexity classes PP,PostBPP,NP,PH,PostBQP,

and Σ3
P:

∙ PostBPP⊆ BPPNP ⊆ Σ3
P ⊆ PH [11].

∙ P#P = PPP [11]

∙ (Toda [50]) PH⊆ P#P

∙ PostBPP⊆ PostBQP

∙ (Aaronson) PostBQP= PP [2]

A direct corollary to these containment relations is the following:

Corollary 4.34. PostHQBALL⊆ PostBPP implies the collapse of PH to the third level Σ3
P.

Proof. Putting the relations in theorem 4.33, along with the result of theorem 4.31 together

we obtain:

PostBPP⊆ BPPNP ⊆ Σ
3
P ⊆ PH⊆ P#P = PPP = PPostBQP = PPostHQBALL

If PostHQBALL ⊆ PostBPP, then PPostHQBALL ⊆ PPostBPP ⊆ PΣ3
P , and thereby PH ⊆ Σ3

P,

which results in the collapse of PH to the third level.

Given this corollary, the existence of a randomized classical procedure to exactly sam-

ple from the output of the ball scattering problem, immediately results in the collapse of

PH. However, we can even proceed further to come up with a somehow stronger result.

Here, I borrow definitions from the notions of randomized simulation from computational

complexity theory:

136

Definition 4.11. Let P be the output a computational (or physical) model, as a probability

distribution on n variables x := (x1,x2, . . . ,xn), we say a randomized algorithm R simulates

P within multiplicative constant error, if R produces a probability distribution P̃ on the

variables, with the property that there is a constant number α > 1, which for all x:

1
α

P(x)< P̃(x)< αP(x).

The following theorem states that the existence of a randomized simulation of ball scatter-

ing with multiplicative error immediately results in PostHQBALL⊆ PostBPP:

Theorem 4.35. The existence of a BPP algorithm to create a probability distribution with-

ing multiplicative error to the actual distribution on c1,c2, . . . ,cm and c0 of definition 4.9

implies PostHQBALL⊆ PostBPP.

Proof. The proof is similar to the proof of theorem 2 in [17]. Suppose that there is a

procedure which outputs the numbers x1,x2, . . . ,xm,y such that:

1/αPr[c′0 = c0;c′1 = c1,c′2 = c2, . . . ,c′m = cm]<Pr[y= c0;x1 = c1,x2 = c2, . . . ,xm = cm]<αPr[c′0 = c0;c′1 = c1,c′2 = c2, . . . ,c′m = cm],

for every list of colors c1,c2, . . . ,cm and c0. Notice that if this is true, it should also be true

for all marginal probability distributions. Denote the vector (c′1,c
′
2, . . . ,c

′
m,c
′
0) by (c̃′,c′0),

and (x1,x2, . . . ,xm,y) by (x̃,y). Then the conditional probabilities also satisfy:

1/α
2Pr[c′0 = c0|c̃′ = c̃]< Pr[y = c0|x̃ = c̃]< α

2Pr[c′0 = c0|c̃′ = c̃].

Now let L be any language in PostHQBALL. Then if x ∈ L, Pr[d′ = d|C] ≥ 2/3 and oth-

erwise ≤ 1/3. Suppose that x ∈ L, then in order for Pr[y = d|x̃ = c̃] > 1/2, it is required

that:

1/2 < 1/α
2(2/3)

which means if 1 < α <
√

4/3−O(1), then the PostBPP algorithm recognizes x with

137

bounded probability of error. The probability of success can be increased by using the

majority of votes’ technique.

Putting it all together, I finally mention the result of this section in the following corollary:

Corollary 4.36. There exists no polynomial time randomized algorithm to simulate ball

scattering models of section 4.4.2 and 4.4.3 within multiplicative constant error, unless PH

collapses to its third level.

7 Open Problems and Further Directions

∙ The actual model of particle scattering corresponds to a unitary scattering matrix

with at most n degrees of freedom. Therefore, as a manifold, the dimension of the

unitary group that is generated by the Yang-Baxter scatterings have small dimension.

Although I proved that with intermediate measurements the structure of the group

will expand to exponential dimension, it is still unknown if classical simulation is

allowed for the problem without intermediate measurements. There examples [31] of

models that generate discrete number of unitary operators, and still they are believed

to be able to solve problems that are hard for classical computation. Moreover, the

structure of the described manifold, as a mathematical object is interesting.

∙ No physical example for the model ZQBALL is mentioned. Since the model is proved

to be equivalent to BQP it is interesting to see if there are actual physical models that

capture the dynamics of ZQBALL. This might be a model for molecular dynam-

ics with exchange interactions for which the coupling terms depend on the type of

molecules being exchanged.

∙ While we hope to find a lower bound of ∏λ⊢n SU(Vλ) for G, on
⊕

λ⊢nVλ , there is

some evidence supporting correlated action of G on pairs of subspaces Vλ and Vλ ? ,

whenever λ is dual to λ ?. As a first input, the subspaces of dual partitions have equal

dimensions, therefore, even dense action on each, separately, does not immediately

imply decoupling of the two subspaces.

138

If we enumerate the YY basis of λ , by |i1⟩, |i2⟩, . . . , |id⟩, where d is the dimension of

Vλ . Each element of these bases, |i j⟩, have a corresponding tableau, and the transpose

of that tableau is a tableau of λ ?, and it is bijectively related to a YY base element,

|i′j⟩, of Vλ ? . Let X be an element of the Lie algebra of G, whose action on Vλ has the

form:

X
λ

� ∑
j∈d

α j| j⟩⟨ j|+∑
i< j

βi j(|i⟩⟨ j|+ |i⟩⟨ j|)+ iδi j(|i⟩⟨ j|− |i⟩⟨ j|).

By
λ

�, I mean the restriction of X on Vλ , by projecting out everything else from other

subspaces. It is believable that the similar action on the dual block is according to:

Claim 1. The projection of X on λ ? is according to:

X
λ ?

� ∑
j∈d
±α j| j′⟩⟨ j′|+ ∑

i′< j′
±βi j(|i′⟩⟨ j′|+ |i′⟩⟨ j′|)± iδi j(|i′⟩⟨ j′|− |i′⟩⟨ j′|).

If this is the case, then it immediately implies the mentioned coupling. In order to

see this, notice that X
λ

� 0 implies X
λ ?

� 0, and vice versa. Checking the situation

for the dual partitions (2,1,1) and (3,1) for four labels, one can confirm that this is

true. However, even in this case, quantum efficient computation is not ruled out. For

example, consider the situation where the initial state is according to
1√
2
(|x⟩+ |x′⟩).

Then a coupled action of the form U⊕U? maps
1√
2
(|x⟩+ |x′⟩) to

1√
2
(U |x⟩+U?|x′⟩).

Then finalizing with the same state we get
1
2
(⟨x|U |x⟩+⟨x′|U?|x′⟩)=ℜ⟨x|U |x⟩. How-

ever, the problem of reading an entry of a quantum circuit is already known to be

BQP-complete.

∙ It is not clear if there is a way to act as SU(Vλ) on all of the partitions of n. The bridge

lemma works if two orthogonal subspaces are being joined together. Therefore, it is

interesting to extend the bridge lemma to more subspaces. Moreover, there cases

where two subspaces of equal dimensionality take part in a single branching rule.

Therefore, the bridge lemma is not applicable. For example consider the partition

139

(3,2,1). The branching rule for this partition involves decomposition into the direct

sum of three subspaces corresponding to (2,2,1), (3,1,1), and (3,2). However,

not only the subspaces corresponding partitions (2,2,1) and (3,2) have the same

dimensions, but also they are dual partitions, and it might be the case that even the

action of G cannot be decoupled from the two.

8 Conclusion

I applied some of the ideas from complexity theory and quantum complexity theory to a

small regime of theoretical physics, the problem of particle scattering in integrable theories

of 1+ 1 dimensions. I found that the complexity of the model essentially depends on the

initial superpositions that the particles start out from. The theory can be simulated within

the one clean qubit if no initial superposition is allowed. However, I proved that if special

initial superpositions are allowed, then in the model equipped with demolition intermediate

measurements, it is hard to sample from the output distribution on a classical computer,

unless the polynomial hierarchy collapses to the third level.

140

Bibliography

[1] Scott Aaronson. Guest column: Np-complete problems and physical reality. ACM
Sigact News, 36(1):30–52, 2005.

[2] Scott Aaronson. Quantum computing, postselection, and probabilistic polynomial-
time. In Proceedings of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences, volume 461, pages 3473–3482. The Royal Society, 2005.

[3] Scott Aaronson. Quantum computing since Democritus. Cambridge University Press,
2013.

[4] Scott Aaronson and Alex Arkhipov. The computational complexity of linear optics.
In Proceedings of the forty-third annual ACM symposium on Theory of computing,
pages 333–342. ACM, 2011.

[5] Dorit Aharonov. A simple proof that toffoli and hadamard are quantum universal.
arXiv preprint quant-ph/0301040, 2003.

[6] Dorit Aharonov and Itai Arad. The bqp-hardness of approximating the jones polyno-
mial. New Journal of Physics, 13(3):035019, 2011.

[7] Dorit Aharonov, Itai Arad, Elad Eban, and Zeph Landau. Polynomial quantum al-
gorithms for additive approximations of the potts model and other points of the tutte
plane. arXiv preprint quant-ph/0702008, 2007.

[8] Dorit Aharonov, Vaughan Jones, and Zeph Landau. A polynomial quantum algorithm
for approximating the jones polynomial. Algorithmica, 55(3):395–421, 2009.

[9] Changrim Ahn and Rafael I Nepomechie. Review of ads/cft integrability, chapter iii.
2: exact world-sheet s-matrix. Letters in Mathematical Physics, 99(1-3):209–229,
2012.

[10] Nima Arkani-Hamed, Jacob L Bourjaily, Freddy Cachazo, Alexander B Goncharov,
Alexander Postnikov, and Jaroslav Trnka. Scattering amplitudes and the positive
grassmannian. arXiv preprint arXiv:1212.5605, 2012.

[11] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach.
Cambridge University Press, 2009.

141

[12] D Bacon, J Kempe, DP DiVincenzo, DA Lidar, and KB Whaley. Encoded univer-
sality in physical implementations of a quantum computer. arXiv preprint quant-
ph/0102140, 2001.

[13] Bela Bauer, Claire Levaillant, and Michael Freedman. Universality of single quantum
gates. arXiv preprint arXiv:1404.7822, 2014.

[14] Rodney J Baxter. Partition function of the eight-vertex lattice model. Annals of
Physics, 70(1):193–228, 1972.

[15] Charles H Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. Strengths
and weaknesses of quantum computing. SIAM journal on Computing, 26(5):1510–
1523, 1997.

[16] Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. In Proceedings of
the twenty-fifth annual ACM symposium on Theory of computing, pages 11–20. ACM,
1993.

[17] Michael J Bremner, Richard Jozsa, and Dan J Shepherd. Classical simulation of com-
muting quantum computations implies collapse of the polynomial hierarchy. In Pro-
ceedings of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, page rspa20100301. The Royal Society, 2010.

[18] HJ Briegel, DE Browne, W Dür, R Raussendorf, and Maarten Van den Nest.
Measurement-based quantum computation. Nature Physics, 5(1):19–26, 2009.

[19] William H Campbell. Indexing permutations. Journal of Computing Sciences in
Colleges, 19(3):296–300, 2004.

[20] Stephen A Cook. The complexity of theorem-proving procedures. In Proceedings
of the third annual ACM symposium on Theory of computing, pages 151–158. ACM,
1971.

[21] Christopher M Dawson and Michael A Nielsen. The solovay-kitaev algorithm. arXiv
preprint quant-ph/0505030, 2005.

[22] David Deutsch, Adriano Barenco, and Artur Ekert. Universality in quantum compu-
tation. In Proceedings of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences, volume 449, pages 669–677. The Royal Society, 1995.

[23] David P DiVincenzo. Two-bit gates are universal for quantum computation. Physical
Review A, 51(2):1015, 1995.

[24] David P DiVincenzo, Dave Bacon, Julia Kempe, Guido Burkard, and K Birgitta
Whaley. Universal quantum computation with the exchange interaction. Nature,
408(6810):339–342, 2000.

[25] LD Faddeev. Two-dimensional integrable models in quantum field theory. Physica
Scripta, 24(5):832, 1981.

142

[26] Michael Freedman, Alexei Kitaev, Michael Larsen, and Zhenghan Wang. Topological
quantum computation. Bulletin of the American Mathematical Society, 40(1):31–38,
2003.

[27] Subir Ghoshal and Alexander Zamolodchikov. Boundary s matrix and boundary state
in two-dimensional integrable quantum field theory. International Journal of Modern
Physics A, 9(21):3841–3885, 1994.

[28] Kurt Gödel. Über formal unentscheidbare sätze der principia mathematica und ver-
wandter systeme i. Monatshefte für mathematik und physik, 38(1):173–198, 1931.

[29] Daniel Gottesman, Alexei Kitaev, and John Preskill. Encoding a qubit in an oscillator.
Physical Review A, 64(1):012310, 2001.

[30] Gordon James and Adalbert Kerber. The representation theory of the symmetric
group. Reading, Mass, 1981.

[31] Stephen P Jordan. Permutational quantum computing. arXiv preprint
arXiv:0906.2508, 2009.

[32] Julia Kempe, Dave Bacon, Daniel A Lidar, and K Birgitta Whaley. Theory of
decoherence-free fault-tolerant universal quantum computation. Physical Review A,
63(4):042307, 2001.

[33] Julia Kempe, David Bacon, David P DiVincenzo, and K Brigitta Whaley. Encoded
universality from a single physical interaction. Quantum Information & Computation,
1(4):33–55, 2001.

[34] Julia Kempe and K Birgitta Whaley. Exact gate sequences for universal quantum
computation using the xy interaction alone. Physical Review A, 65(5):052330, 2002.

[35] A Yu Kitaev. Quantum computations: algorithms and error correction. Russian Math-
ematical Surveys, 52(6):1191–1249, 1997.

[36] E Knill, R Laflamme, and G Milburn. Efficient linear optics quantum computation.
arXiv preprint quant-ph/0006088, 2000.

[37] Emanuel Knill and Raymond Laflamme. Power of one bit of quantum information.
Physical Review Letters, 81(25):5672, 1998.

[38] Emanuel Knill, Raymond Laflamme, and Gerald J Milburn. A scheme for efficient
quantum computation with linear optics. nature, 409(6816):46–52, 2001.

[39] Debbie W Leung. Quantum computation by measurements. International Journal of
Quantum Information, 2(01):33–43, 2004.

[40] Seth Lloyd. Almost any quantum logic gate is universal. Physical Review Letters,
75(2):346, 1995.

143

[41] Tomoyuki Morimae, Keisuke Fujii, and Joseph F Fitzsimons. Hardness of classically
simulating the one-clean-qubit model. Physical review letters, 112(13):130502, 2014.

[42] Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum infor-
mation. Cambridge university press, 2010.

[43] B Schroer, TT Truong, and P Weisz. Towards an explicit construction of the sine-
gordon field theory. Physics Letters B, 63(4):422–424, 1976.

[44] Peter W Shor. Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM journal on computing, 26(5):1484–1509, 1997.

[45] Peter W Shor and Stephen P Jordan. Estimating jones polynomials is a complete
problem for one clean qubit. Quantum Information & Computation, 8(8):681–714,
2008.

[46] Michael Sipser. Introduction to the Theory of Computation. Cengage Learning, 2012.

[47] Matthias Staudacher. Review of ads/cft integrability, chapter iii. 1: Bethe ansätze and
the r-matrix formalism. Letters in Mathematical Physics, 99(1-3):191–208, 2012.

[48] Barbara M Terhal and David P DiVincenzo. Adaptive quantum computation, constant
depth quantum circuits and arthur-merlin games. arXiv preprint quant-ph/0205133,
2002.

[49] Barbara M Terhal and David P DiVincenzo. Classical simulation of noninteracting-
fermion quantum circuits. Physical Review A, 65(3):032325, 2002.

[50] Seinosuke Toda. Pp is as hard as the polynomial-time hierarchy. SIAM Journal on
Computing, 20(5):865–877, 1991.

[51] Alan Mathison Turing. On computable numbers, with an application to the entschei-
dungsproblem. J. of Math, 58(345-363):5, 1936.

[52] Leslie G Valiant. Classical simulation of quantum computations. Technical report,
DTIC Document, 2005.

[53] Steven Weinberg. The quantum theory of fields, volume 2. Cambridge university
press, 1996.

[54] L-A Wu and DA Lidar. Power of anisotropic exchange interactions: Universality and
efficient codes for quantum computing. Physical Review A, 65(4):042318, 2002.

[55] Chen-Ning Yang. Some exact results for the many-body problem in one dimension
with repulsive delta-function interaction. Physical Review Letters, 19(23):1312, 1967.

[56] Andrew Chi-Chih Yao. Classical physics and the church–turing thesis. Journal of the
ACM (JACM), 50(1):100–105, 2003.

144

[57] Alexander B Zamolodchikov and Alexey B Zamolodchikov. Relativistic factorized
s-matrix in two dimensions having o (n) isotopic symmetry. Nuclear Physics B,
133(3):525–535, 1978.

[58] Alexander B Zamolodchikov and Alexey B Zamolodchikov. Factorized s-matrices
in two dimensions as the exact solutions of certain relativistic quantum field theory
models. Annals of physics, 120(2):253–291, 1979.

145

