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Abstract

In this thesis we study dimensionality reduction techniques for approximate 𝑘-means
clustering. Given a large dataset, we consider how to quickly compress to a smaller
dataset (a sketch), such that solving the 𝑘-means clustering problem on the sketch
will give an approximately optimal solution on the original dataset.

First, we provide an exposition of technical results of [CEM+15], which show that
provably accurate dimensionality reduction is possible using common techniques such
as principal component analysis, random projection, and random sampling.

We next present empirical evaluations of dimensionality reduction techniques to
supplement our theoretical results. We show that our dimensionality reduction al-
gorithms, along with heuristics based on these algorithms, indeed perform well in
practice.

Finally, we discuss possible extensions of our work to neurally plausible algorithms
for clustering and dimensionality reduction.

This thesis is based on joint work with Michael Cohen, Samuel Elder, Nancy
Lynch, Christopher Musco, and Madalina Persu.

Thesis Supervisor: Nancy A. Lynch
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

This thesis will focus on dimensionality reduction techniques for approximate 𝑘-means

clustering. In this chapter, we introduce the 𝑘-means clustering problem, overview

known algorithmic results, and discuss how algorithms can be accelerated using di-

mensionality reduction. We then outline our contributions, which provide new the-

oretical analysis along with empirical validation for a number of dimensionality re-

duction algorithms. Finally we overview planned future work on neurally plausible

algorithms for clustering and dimensionality reduction.

1.1 𝑘-Means Clustering

Cluster analysis is one of the most important tools in data mining and unsupervised

machine learning. The goal is to partition a set of objects into subsets (clusters)

such that the objects within each cluster are more similar to each other than to

the objects in other clusters. Such a clustering can help distinguish various ‘classes’

within a dataset, identify sets of similar features that may be grouped together, or

simply partition a set of objects based on some similarity criterion.

There are countless clustering algorithms and formalizations of the problem [JMF99].

One of the most common is 𝑘-means clustering [WKQ+08]. Formally, the goal is to

partition 𝑛 vectors in R𝑑, {a1, . . . , a𝑛}, into 𝑘 sets, {𝐶1, . . . , 𝐶𝑘}. Let 𝜇𝑖 be the cen-

troid (the mean) of the vectors in 𝐶𝑖. Let A ∈ R𝑛×𝑑 be a data matrix containing our
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vectors as rows and let 𝒞 represent the chosen partition into {𝐶1, . . . , 𝐶𝑘}. Then we

seek to minimize the objective function:

𝐶𝑜𝑠𝑡(𝒞,A) =
𝑘∑︁

𝑖=1

∑︁
a𝑗∈𝐶𝑖

‖a𝑗 − 𝜇𝑖‖22 (1.1)

That is, the goal is to minimize the total intracluster variance of the data. This

is equal to the sum of squared distances between the data points and the centroids

of their assigned clusters. We will always use the squared Euclidean distance as our

cost measure; however, this may be generalized. For example the problem may be

defined using the Kullback-Leibler divergence, the squared Mahalanobis distance, or

any Bregman divergance [BMDG05]. Our restriction of the problem, which is the

most commonly studied, is sometimes referred to as Euclidean k-means clustering.

The 𝑘-means objective function is simple and very effective in a range of applica-

tions, and so is widely used in practice and studied in the machine learning commu-

nity [Jai10, Ste06, KMN+02a]. Applications include document clustering [SKK+00,

ZHD+01], image segmentation [RT99, NOF+06], color quantization in image process-

ing [KYO00, Cel09], vocabulary generation for speech recognition [WR85] and bag-

of-words image classification [CDF+04]. Recently, it has also become an important

primitive in the theoretical computer science literature. Minimum cost, or approxi-

mately minimum cost clusterings with respect to the 𝑘-means objective function can

be shown to give provably good partitions of graphs into low expansion partitions

- where each set of vertices has few outgoing edges compared with internal edges

[PSZ14, CAKS15]. Under some conditions, 𝑘-means clustering a dataset generated

by a mixture of Gaussian distributions can be used to estimate the parameters of the

distribution to within provable accuracy [KK10].

Minimizing the 𝑘-means objective function is a geometric problem that can be

solved exactly using Voronoi diagrams [IKI94]. Unfortunately, this exact algorithm

requires time 𝑂
(︀
𝑛𝑂(𝑘𝑑)

)︀
. In fact, 𝑘-means clustering is known to be NP-hard, even

if we fix 𝑘 = 2 or 𝑑 = 2 [ADHP09, MNV09]. Even finding a cluster assignment

achieving cost within (1 + 𝜖) of the optimal is NP-hard for some fixed 𝜖, ruling out
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the possibility of a polynomial-time approximation scheme (PTAS) for the problem

[ACKS15]. Given its wide applicability, overcoming these computational obstacles is

an important area of research.

1.2 Previous Algorithmic Work

Practitioners almost universally tackle the 𝑘-means problem with Lloyd’s heuristic,

which iteratively approximates good cluster centers [Llo82]. This algorithm is so

popular that is it often referred to simply as the “𝑘-means algorithm” in the machine

learning and vision communities [SKK+00, KYO00, CDF+04]. It runs in worst case

exponential time, but has good smoothed complexity (i.e. polynomial runtime on

small random perturbations of worst case inputs) and converges quickly in practice

[Vas06]. However, the heuristic is likely to get stuck in local minima. Thus, finding

provably accurate approximation algorithms is still an active area of research.

Initializing Lloyd’s algorithm using the widely implemented [Ope15, Sci15, Mat15a]

k-means++ technique guarantees a log(𝑘) factor multiplicative approximation to the

optimal cluster cost in expectation [Vas06]. Several (1 + 𝜖)-approximation algorithms

are known, however they typically have exponential dependence on both 𝑘 and 𝜖 and

are too slow to be useful in practice [KSS04, HPK07]. The best polynomial time

approximation algorithm achieves a (9 + 𝜖)-approximation [KMN+02b]. Achieving a

(1 + 𝜖)-approximation is known to be NP-hard for some small constant 𝜖 [ACKS15],

however closing the gap between this hardness result and the known (9+𝜖) polynomial

time approximation algorithm is a very interesting open problem.

1.3 Dimensionality Reduction

In this thesis, we do not focus on specific algorithms for minimizing the 𝑘-means ob-

jective function. Instead, we study techniques that can be used in a “black box" man-

ner to accelerate any heuristic, approximate, or exact clustering algorithm. Specif-

ically, we consider dimensionality reduction algorithms. Given a set of data points
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{a1, . . . , a𝑛} in R𝑑, we seek to find a low-dimensional representation of these points

that approximately preserves the 𝑘-means objective function. We show that, using

common techniques such as random projection, principal component analysis, and

feature sampling, one can quickly map these points to a lower dimensional point set,

{ã1, . . . , ã𝑛} in R𝑑′ , with 𝑑′ << 𝑑. Solving the clustering problem on the low dimen-

sional dataset will give an approximate solution for the original dataset. c In other

words, we show how to obtain a sketch Ã with many fewer columns than the original

data matrix A. An optimal (or approximately optimal) 𝑘-means clustering for Ã

will also be approximately optimal for A. Along with runtime gains, working with

the smaller dimension-reduced dataset Ã can generically improve memory usage and

data communication costs.

Using dimensionality reduction as a preprocessing step for clustering has been

popular in practice for some time. The most common technique is to set Ã to be

A projected onto its top 𝑘 principal components [DH04]. Random projection based

approaches have also been experimented with [FB03]. As far as we can tell, the first

work that gives provable approximation bounds for a given sketching technique was

[DFK+99], which demonstrates that projecting A to its top 𝑘 principal components

gives Ã such that finding an optimal clustering over Ã yields a clustering within a

factor of 2 of the optimal for A. A number of subsequent papers have expanded on

an improved this initial result, given provable bounds for techniques such as random

projection and feature selection [BMD09, BZD10, BZMD11, FSS13]. Dimensionality

reduction has also received considerable attention beyond the 𝑘-means clustering

problem, in the study of fast linear algebra algorithms for problems such as matrix

multiplication, regression, and low-rank approximation [HMT11, Mah11]. We will

draw heavily on this work, helping to unify the study of 𝑘-means clustering and

linear algebraic computation.

The types of dimensionality reduction studied in theory and practice generally

fall into two categories. The columns of the sketch Ã may be a small subset of the

columns of A. This form of dimensionality reduction is known as feature selection

- since the columns of A correspond to features of our original data points. To
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form Ã we have selected a subset of these features that contains enough information

to compute an approximately optimal clustering on the full dataset. Alternatively,

feature extraction refers to dimensionality reduction techniques where the columns of

Ã are not simply a subset of the columns of A. They are a new set of features that

have been extracted from the original dataset. Typically (most notably in the cases

of random projection and principal component analysis), these extracted features are

simply linear combinations of the original features.

1.4 Our Contributions

This thesis will first present a number of new theoretical results on dimensionality

reduction for approximate 𝑘-means clustering. We show that common techniques

such as random projection, principal component analysis, and feature sampling give

provably good sketches, which can be used to find near optimal clusterings. We com-

plement our theoretical results with an empirical evaluation of the dimensionality

reduction techniques studied. Finally, we will discuss extensions to neural implemen-

tations of 𝑘-means clustering algorithms and how these implementations may be used

in combination with neural dimensionality reduction.

1.4.1 Main Theoretical Results

The main theoretical results presented in this thesis are drawn from [CEM+15]. We

show that 𝑘-means clustering can be formulated as a special case of a general con-

strained low-rank approximation problem. We then define the concept of a projection-

cost-preserving sketch - a sketch of A that can be used to approximately solve the

constrained low-rank approximation problem. Finally, we show that a number of effi-

cient techniques can be used to obtain projection-cost-preserving sketches. Since our

sketches can be used to approximately solve the more general constrained low-rank

approximation problem, they also apply to 𝑘-means clustering. We improve a number

of previous results on dimensionality reduction for 𝑘-means clustering, as well as give
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applications to streaming and distributed computation.

Constrained Low-Rank Approximation

A key observation, used in much of the previous work on dimensionality reduction for

𝑘-means clustering, is that 𝑘-means clustering is actually a special case of a more gen-

eral constrained low-rank approximation problem [DFK+04]. A more formal definition

will follow in the thesis body, however, roughly speaking, for input matrix A ∈ R𝑛×𝑑,

this problem requires finding some 𝑘 dimensional subspace Z of R𝑛 minimizing the

cost function:

‖A−PZA‖2𝐹 .

PZA is the projection of A to the subspace Z and ‖ · ‖2𝐹 is the squared Frobenius

norm - the sum of squared entries of a matrix. This cost function can also be referred

to as the ‘distance’ from A to the subspace Z. Since Z is 𝑘 dimensional, PZA

has rank 𝑘, so finding an optimal Z can be viewed as finding an optimal low-rank

approximation of A, minimizing the Frobenius norm cost function.

As we will discuss in more detail in the thesis body, if Z is allowed to be any

rank 𝑘 subspace of R𝑛, then this problem is equivalent to finding the best rank 𝑘

approximation of A. It is well known that the optimal Z is the subspace spanned by

the top 𝑘 left principal components (also known as singular vectors) of A. Finding

this subspace is achieved using principal component analysis (PCA), also known as

singular value decomposition (SVD). Hence finding an approximately optimal Z is

often referred to as approximate PCA or approximate SVD.

More generally, we may require that Z is chosen from any subset of subspaces in

R𝑛. This additional constraint on Z gives us the constrained low-rank approximation

problem. We will show that 𝑘-means clustering is a special case of the constrained

low-rank approximation problem, where the choice of Z is restricted to a specific set

of subspaces. Finding the optimal Z in this set is equivalent to finding the clustering 𝒞

minimizing the 𝑘-means cost function (1.1) for A. Other special cases of constrained
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low-rank approximation include problems related to sparse and nonnegative PCA

[PDK13, YZ13, APD14].

Projection-Cost-Preserving Sketches

After formally defining constrained low-rank approximation and demonstrating that

𝑘-means clustering is a special case of the problem, we will introduce the concept of

a projection-cost-preserving sketch. This is a low dimensional sketch Ã ∈ R𝑛×𝑑′ of

our original dataset A ∈ R𝑛×𝑑 such that the distance of Ã from any 𝑘-dimensional

subspace is within a (1± 𝜖) multiplicative factor of that of A. Intuitively, this means

that Ã preserves the objective function of the constrained low-rank approximation

problem. So, we can approximately solve this problem using Ã in place of A. As

𝑘-means clustering is a special case of constrained low-rank approximation, Ã gives a

set of low dimensional data points that can be used to find an approximately optimal

𝑘-means clustering on our original data points.

We give several simple and efficient approaches for computing a projection-cost-

preserving sketch of a matrix A. As is summarized in Table 1.1, and detailed in

Chapter 4, our results improve most of the previous work on dimensionality reduc-

tion for 𝑘-means clustering. We show generally that a sketch Ã with only 𝑑′ = 𝑂(𝑘/𝜖2)

columns suffices for approximating constrained low-rank approximation, and hence

𝑘-means clustering, to within a multiplicative factor of (1+𝜖). Most of our techniques

simply require computing an SVD of A, multiplying A by a random projection ma-

trix, randomly sampling columns of A, or some combination of the three. These

methods have well developed implementations, are robust, and can be accelerated

for sparse or otherwise structured data. As such, we do not focus heavily on specific

implementations or runtime analysis. We do show that our proofs are amenable to

approximation and acceleration in the underlying sketching techniques – for exam-

ple, it is possible to use fast approximate SVD algorithms, sparse random projection

matrices, and inexact sampling probabilities.
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Previous Work Our Results
Technique Ref. Dimension Error Theorem Dimension Error

SVD [DFK+04]
[FSS13]

𝑘
𝑂(𝑘/𝜖2)

2
1 + 𝜖

Thm 17 ⌈𝑘/𝜖⌉ 1 + 𝜖

Approximate
SVD [BZMD11] 𝑘 2 + 𝜖

Thm
18,19 ⌈𝑘/𝜖⌉ 1 + 𝜖

Random
Projection [BZD10] 𝑂(𝑘/𝜖2) 2 + 𝜖

Thm 22
Thm 32

𝑂(𝑘/𝜖2)
𝑂(log 𝑘/𝜖2)

1 + 𝜖
9 + 𝜖 †

Non-oblivious
Randomized
Projection

[Sar06] 𝑂(𝑘/𝜖) 1 + 𝜖 ‡ Thm 26 𝑂(𝑘/𝜖) 1 + 𝜖

Feature Selection
(Random
Sampling)

[BMD09,
BZMD11] 𝑂

(︀
𝑘 log 𝑘
𝜖2

)︀
3 + 𝜖 Thm 24 𝑂

(︀
𝑘 log 𝑘
𝜖2

)︀
1 + 𝜖

Feature Selection
(Deterministic) [BMI13] 𝑘 < 𝑟 < 𝑛 𝑂(𝑛/𝑟) Thm 25 𝑂(𝑘/𝜖2) 1 + 𝜖

Table 1.1: Summary of our new dimensionality reduction results. Dimension refers to
the number of columns 𝑑′ required for a projection-cost-preserving sketch Ã computed
using the corresponding technique. As noted, two of the results do not truely give
projection-cost-preserving sketches, but are relevant for the special cases of 𝑘-means
clustering and uncontrained low-rank approximation (i.e. approximate SVD) only.

Application of Results

In addition to providing improved results on dimensionality reduction for approx-

imating the constrained low-rank approximation problem, our results have several

applications to distributed and streaming computation, which we cover in Chapter 5.

One example of our new results is that a projection-cost-preserving sketch which

allows us to approximate constrained low-rank approximation to within a multiplica-

tive factor of (1 + 𝜖) can be obtained by randomly projecting A’s rows to 𝑂(𝑘/𝜖2)

dimensions – i.e. multiplying on the right by a random Johnson-Lindenstrauss matrix

with 𝑂(𝑘/𝜖2) columns. This random matrix can be generated independently from A

and represented with very few bits. If the rows of A are distributed across multi-

ple servers, multiplication by this matrix may be done independently by each server.

† applies to 𝑘-means clustering only. ‡ applies to unconstrained low-rank approximation only.
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Running a distributed clustering algorithm on the dimension-reduced data yields the

lowest communication relative error distributed algorithm for 𝑘-means, improving on

[LBK13, BKLW14, KVW14].

As mentioned, constrained low-rank approximation also includes unconstrained

low-rank approximation (i.e. principal component analysis) as a special case. Since

the Johnson-Lindenstrauss matrix in the above result is chosen without looking at

A, it gives the first oblivious dimension reduction technique for principal component

analysis. This technique yields an alternative to the algorithms in [Sar06, CW13,

NN13] that has applications in the streaming setting, which will also be detailed in

the thesis body.

Finally, in addition to the applications to 𝑘-means clustering and low-rank ap-

proximation, we hope that projection-cost-preserving sketches will be useful in de-

veloping future randomized matrix algorithms. These sketches relax the guaran-

tee of subspace embeddings, which have received significant attention in recent years

[Sar06, CW13, LMP13, MM13, NN13]. Subspace embedding sketches require that

‖xÃ‖2 ≈ ‖xA‖2 simultaneously for all x. It is not hard to show that this is equiv-

alent to Ã preserving the distance of A to any subspace in R𝑛. In general Ã will

require at least 𝑂(𝑟𝑎𝑛𝑘(A)) columns. On the other hand, projection-cost-preserving

sketches only preserve the distance to subspaces with dimension at most 𝑘, however

they also require only 𝑂(𝑘) columns.

1.4.2 Empirical Evaluation

After presenting the theoretical results obtained in [CEM+15], we provide an empir-

ical evaluation of these results. The dimensionality reduction algorithms studied are

generally simple and rely on widely implemented primitives such as the singular value

decomposition and random projection. We believe they are likely to be useful in prac-

tice. Empirical work on some of these algorithms exists [BZMD11, CW12, KSS15],
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however we believe that further work in light of the new theoretical results is valuable.

We first implement most of the dimensionality reduction algorithms that we give the-

oretical bounds for. We compare dimensionality reduction runtimes and accuracy

when applied to 𝑘-means clustering, confirming the strong empirical performance of

the majority of these algorithms. We find that two approaches – Approximate SVD

and Non-Oblivous Random Projection (which had not been previously considered

for 𝑘-means clustering) are particularly appealing in practice as they combine ex-

tremely fast dimensionality reduction runtime with very good accuracy when applied

to clustering.

Dimensionality Reduction via the Singular Value Decomposition

After implementing and testing a number of dimensionality reduction algorithms, we

take a closer look at one of the most effective techniques – dimensionality reduction

using the SVD. In [CEM+15] we show that the best ⌈𝑘/𝜖⌉-rank approximation to

A (identified using the SVD) gives a projection-cost-preserving sketch with (1 + 𝜖)

multiplicative error. This is equivalent to projecting A onto its top ⌈𝑘/𝜖⌉ singular

vectors (or principal components.)

Our bound improves on [FSS13], which requires an 𝑂(𝑘/𝜖2) rank approximation.

𝑘 is typically small so the lack of constant factors and 1/𝜖 dependence (vs. 1/𝜖2)

can be significant in practice. Our analysis also shows that a smaller sketch suffices

when A’s spectrum is not uniform, a condition that is simple to check in practice.

Specifically, if the singular values of A decay quickly, or A has a heavy singular value

‘tail’, two properties that are very common in real datasets, a sketch of size 𝑜(𝑘/𝜖)

may be used.

We demonstrate that, for all datasets considered, due to spectral decay and heavy

singular value tails, a sketch with only around 2𝑘 to 3𝑘 dimensions provably suffices

for very accurate approximation of an optimal 𝑘-means clustering. Empirically, we
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confirm that even smaller sketches give near optimal clusterings.

Interestingly, SVD based dimensionality reduction is already popular in practice

as a preprocessing step for 𝑘-means clustering. It is viewed as both a denoising

technique and a way of approximating the optimal clustering while working with a

lower dimensional dataset [DH04]. However, practitioners typically project to exactly

𝑘 dimensions (principal components), which is a somewhat arbitrary choice. Our new

results clarify the connection between PCA and 𝑘-means clustering and show exactly

how to choose the number of principal components to project down to in order to

find an approximately optimal clustering.

Dimensionality Reduction Based Heuristics

In practice, dimensionality reduction may be used in a variety of ways to accelerate

𝑘-means clustering algorithms. The most straightforward technique is to produce a

projection-cost-preserving sketch with one’s desired accuracy, run a 𝑘-means cluster-

ing algorithm on the sketch, and output the nearly optimal clusters obtained. However

a number of heuristic dimension-reduction based algorithms may also be useful. In

the final part of our empirical work, we implement and evaluate one such algorithm.

Specifically, we reduce our data points to an extremely low dimension, compute

an approximate clustering in the low dimensional space, and then use the computed

cluster centers to initialize Lloyd’s heuristic on the full dataset. We find that this

technique can outperform the popular k-means++ initialization step for Lloyd’s al-

gorithm, with a similar runtime cost. We also discuss a number of related algorithms

that may be useful in practice for clustering very large datasets.

1.4.3 Neural Clustering Algorithms

After presenting a theoretical and empirical evaluation of dimensionality reduction for

𝑘-means clustering, we will discuss possible extensions of our work to a neural setting.
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In future work, we plan to focus on developing a neurally plausible implementation

of a 𝑘-means clustering algorithm with dimensionality reduction. We hope to show

that this implementation can be used for concept learning in the brain.

Dimensionality Reduction and Random Projection in the Brain

It is widely accepted that dimensionality reduction is used throughout the human

brain and is a critical step in information processing [GS12a, SO01]. For exam-

ple, image acquisition in the human brain involves input from over 100 million pho-

toreceptor cells [Hec87]. Efficiently processing the input from these receptors, and

understanding the image in terms of high level concepts requires some form of di-

mensionality reduction. To evidence this fact, only 1/100𝑡ℎ as many optic nerve cells

exist to transmit photoreceptor input as photoreceptors themselves, possibly indi-

cating a significant early stage dimensionality reduction in visual data [AZGMS14].

Similar dimensionality reduction may be involved in auditory and tactile perception,

as well is in ‘internal’ data processing such as in the transmission of control informa-

tion from the large number of neurons in the motor cortex to the smaller spinal cord

[AZGMS14].

One hypothesis is that dimensionality reduction using random projection is em-

ployed widely in the brain [GS12a, AV99]. Randomly projecting high dimensional

input data to a lower dimensional space can preserve enough information to approx-

imately recover the original input if it is sparse in some basis [GS12a], or to learn

robust concepts used to classify future inputs [AV99]. Further, random projection can

be naturally implemented by randomly connecting a large set of input neurons with

a small set of output neurons, which represent the dimension-reduced input [AV99].

Some recent work has focused on showing that more efficient implementations, with a

limited number of random connections, are in fact possible in realistic neural networks

[AZGMS14].
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Combining Neurally Plausible Dimensionality Reduction with Clustering

Recall that one of our main results shows that applying a random projection with

𝑂(𝑘/𝜖2) dimensions to our dataset gives a projection-cost-preserving sketch that al-

lows us to solve 𝑘-means to within a (1 + 𝜖) multiplicative factor. A natural question

is how random projection in the brain may be combined with neural algorithms for

clustering. Can we develop neurally plausible 𝑘-means clustering algorithms that use

random projection as a dimensionality reducing preprocessing step? Might a dimen-

sionality reduction-clustering pipeline be used for concept learning in the brain? For

example, we can imagine that over time a brain is exposed to successive inputs from

a large number of photoreceptor cells which undergo significant initial dimensionality

reduction using random projection. Can we cluster these successive (dimensional-

ity reduced) inputs to learning distinct concept classes corresponding to everyday

objects? We discuss potential future work in this area in Chapter 7.
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Chapter 2

Mathematical Preliminaries

In this chapter we review linear algebraic notation and preliminaries that we will refer

back to throughout this thesis.

2.1 Basic Notation and Linear Algebra

For a vector x ∈ R𝑛×1 we use x𝑖 to denote the 𝑖𝑡ℎ entry of the vector. For a matrix

M ∈ R𝑛×𝑑 we use M𝑖𝑗 to denote the entry in M’s 𝑖𝑡ℎ row and 𝑗𝑡ℎ column. We use m𝑖

to denote M’s 𝑖𝑡ℎ row. M⊤ ∈ R𝑑×𝑛 is the transpose of M with M⊤
𝑖𝑗 = M𝑗𝑖. Intuitively

it is the matrix reflected over its main diagonal. For a vector x, the squared Euclidean

norm is given by ‖x‖22 = x⊤x =
∑︀𝑛

𝑖=1 x
2
𝑖 .

For square M ∈ R𝑛×𝑛, the trace of M is defined as tr(M) =
∑︀𝑛

𝑖=1M𝑖𝑖 – the

sum of M’s diagonal entries. Clearly, the trace is linear so for any M,N ∈ R𝑛×𝑛,

tr(M + N) = tr(M) + tr(N). The trace also has the following very useful cyclic

property :

Lemma 1 (Cyclic Property of the Trace). For any M ∈ R𝑛×𝑑 and N ∈ R𝑑×𝑛,

tr(MN) = tr(NM).

This is known as the cyclic property because repeatedly applying it gives that
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the trace is invariant under cyclic permutations. E.g. for any M,N,K, tr(MNK) =

tr(KMN) = tr(NKM).

Proof.

tr(MN) =
𝑛∑︁

𝑖=1

(MN)𝑖𝑖

=
𝑛∑︁

𝑖=1

𝑑∑︁
𝑗=1

M𝑖𝑗N𝑗𝑖 (Definition of matrix multiplication)

=
𝑑∑︁

𝑗=1

𝑛∑︁
𝑖=1

M𝑖𝑗N𝑗𝑖 (Switching order of summation)

=
𝑑∑︁

𝑗=1

(NM)𝑗𝑗 = tr(NM). (Definition of matrix multiplication and trace)

If M ∈ R𝑛×𝑛 is symmetric, then all of its eigenvalues are real. It can be writ-

ten using the eigendecompostion M = VΛV⊤ where V has orthonormal columns

(the eigenvectors of M) and Λ is a diagonal matrix containing the eigenvalues of M

[TBI97]. We use 𝜆𝑖(M) to denote the 𝑖th largest eigenvalue of M in absolute value.

2.2 The Singular Value Decomposition

The most important linear algebraic tool we will use throughout our analysis is the

singular value decomposition (SVD). For any 𝑛 and 𝑑, consider a matrix A ∈ R𝑛×𝑑.

Let 𝑟 = rank(A). By the singular value decomposition theorem [TBI97], we can

write A = UΣV⊤. The matrices U ∈ R𝑛×𝑟 and V ∈ R𝑑×𝑟 each have orthonormal

columns – the left and right singular vectors of A respectively. The columns of U

form an orthonormal basis for the column span of A, while the columns of V form an

orthonormal basis for the A’s row span. Σ ∈ R𝑟×𝑟 is a positive diagonal matrix with

Σ𝑖𝑖 = 𝜎𝑖, where 𝜎1 ≥ 𝜎2 ≥ ... ≥ 𝜎𝑟 are the singular values of A. If A is symmetric,
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the columns of U = V are just the eigenvectors of A and the singular values are just

the eigenvalues.

We will sometimes use the pseudoinverse of A, which is defined using the SVD.

Definition 2 (Matrix Pseudoinverse). For any A ∈ R𝑛×𝑑 with singular value decom-

position A = UΣV⊤, the pseudoinverse of A is given by A+ = VΣ−1U⊤, where Σ−1

is the diagonal matrix with Σ−1
𝑖𝑖 = 1/𝜎𝑖.

If A is invertible, then A+ = A−1. Otherwise, A+ acts as an inverse for vectors

in the row span of A. Let I denote the identity matrix of appropriate size in the

following equations. For any x in the row span of A,

A+Ax = VΣ−1U⊤UΣV⊤x (Definition of psuedoinverse and SVD of A)

= VΣ−1IΣV⊤xx (U⊤U = I since it has orthonormal columns)

= VV⊤x (Σ−1IΣ = I since Σ𝑖𝑖 ·Σ−1
𝑖𝑖 = 1)

= x.

The last equality follows because x is in the rowspan of A. Since the columns of

V form an orthonormal basis for this span, we can write x = Vy for some y and

have: VV⊤x = VV⊤Vy = VIy = x.

While we will not specifically use this fact in our analysis, it is worth understanding

why singular value decomposition is often referred to as principal component analysis

(PCA). The columns of U and V are known as the left and right principal components

of A. v1, the first column of V, is A’s top right singular vector and provides a top

principal component, which describes the direction of greatest variance within A.

The 𝑖th singular vector v𝑖 provides the 𝑖th principal component, which is the direction
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of greatest variance orthogonal to all higher principal components. Formally:

‖Av𝑖‖22 = v⊤
𝑖 A

⊤Av𝑖 = 𝜎2
𝑖 = max

x:‖x‖2=1
x⊥v𝑗∀𝑗<𝑖

x⊤A⊤Ax, (2.1)

where A⊤A is the covariance matrix of A. Similarly, for the left singular vectors we

have:

‖u⊤
𝑖 A‖22 = u⊤

𝑖 AA⊤u𝑖 = 𝜎2
𝑖 = max

x:‖x‖2=1
x⊥u𝑗∀𝑗<𝑖

x⊤AA⊤x. (2.2)

2.3 Matrix Norms and Low-Rank Approximation

A’s squared Frobenius norm is given by summing its squared entries: ‖A‖2𝐹 =∑︀
𝑖,𝑗 A

2
𝑖,𝑗 =

∑︀
𝑖 ‖a𝑖‖22, where a𝑖 is the 𝑖𝑡ℎ row of A. We also have the identities:

‖A‖2𝐹 = tr(AA⊤) =
∑︀

𝑖 𝜎
2
𝑖 . So the squared Frobenius norm is the sum of squared

singular values. A’s spectral norm is given by ‖A‖2 = 𝜎1, its largest singular value.

Equivalently, by the ‘principal component’ characterization of the singular values in

(2.2), ‖A‖2 = maxx:‖x‖2=1 ‖Ax‖2. Let Σ𝑘 ∈ R𝑘×𝑘 be the upper left submatrix of Σ

containing just the largest 𝑘 singular values of A. Let U𝑘 ∈ R𝑛×𝑘 and V𝑘 ∈ R𝑑×𝑘

be the first 𝑘 columns of U and V respectively. For any 𝑘 ≤ 𝑟, A𝑘 = U𝑘Σ𝑘V
⊤
𝑘 is

the closest rank 𝑘 approximation to A for any unitarily invariant norm, including the

Frobenius norm and spectral norm [Mir60]. That is,

‖A−A𝑘‖𝐹 = min
B|rank(B)=𝑘

‖A−B‖𝐹 and

‖A−A𝑘‖2 = min
B|rank(B)=𝑘

‖A−B‖2.

We often work with the remainder matrix A−A𝑘 and label it A𝑟∖𝑘. We also let

U𝑟∖𝑘 and V𝑟∖𝑘 denote the remaining 𝑟− 𝑘 columns of U and V and Σ𝑟∖𝑘 denote the
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lower 𝑟 − 𝑘 entries of Σ.

We now give two Lemmas that we use repeatedly to work with matrix norms.

Lemma 3 (Spectral Submultiplicativity). For any two matrices M ∈ R𝑛×𝑑 and

N ∈ R𝑑×𝑝, ‖MN‖𝐹 ≤ ‖M‖𝐹‖N‖2 and ‖MN‖𝐹 ≤ ‖N‖𝐹‖M‖2.

This property is known as spectral submultiplicativity. It holds because multiplying

by a matrix can scale each row or column, and hence the Frobenius norm, by at most

the matrix’s spectral norm.

Proof.

‖MN‖2𝐹 =
∑︁
𝑖

‖ (MN)𝑖 ‖
2
2 (Frobenius norm is sum of row norms)

=
∑︁
𝑖

‖m𝑖N‖22 (𝑖𝑡ℎ row of MN equal to m𝑖N)

≤
∑︁
𝑖

‖m𝑖‖22 · 𝜎2
1(N) = 𝜎2

1(N) ·
∑︁
𝑖

‖m𝑖‖22 = ‖M‖2𝐹‖N‖22.

Taking square roots gives the final bound. The inequality follows from (2.2)

which says that ‖xN‖22 ≤ 𝜎2
1(N) for any unit vector x. By rescaling, for any vector

x, ‖xN‖22 ≤ ‖x‖22 · 𝜎2
1(N) = ‖x‖22‖N‖22.

Lemma 4 (Matrix Pythagorean Theorem). For any two matrices M and N with the

same dimensions and MN⊤ = 0 then ‖M + N‖2𝐹 = ‖M‖2𝐹 + ‖N‖2𝐹 .

Proof. This matrix Pythagorean theorem follows from the fact that ‖M + N‖2𝐹 =

tr((M + N)(M + N)⊤) = tr(MM⊤ +NM⊤ +MN⊤ +NN⊤) = tr(MM⊤) + tr(0) +

tr(0) + tr(NN⊤) = ‖M‖2𝐹 + ‖N‖2𝐹 .

Finally, we define the Loewner ordering, which allows us to compare two matrices

in ‘spectral sense’:
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Definition 5 (Loewner Ordering on Matrices). For any two symmetric matrices

M,N ∈ R𝑛×𝑛, M ⪯ N indicates that N−M is positive semidefinite. That is, it has

all nonnegative eigenvalues and x⊤(N−M)x ≥ 0 for all x ∈ R𝑛.

Note that we can view the spectral norm of a matrix as spectrally bounding

that matrix with respect to the identity. Specifically, if ‖M‖2 ≤ 𝜆, then for any x,

x⊤Mx ≤ 𝜆 so −𝜆 · I ⪯M ⪯ 𝜆 · I. We will also use the following simple Lemma about

the Loewner ordering:

Lemma 6. For any M,N ∈ R𝑛×𝑛, if M ⪯ N then for any D ∈ R𝑛×𝑑:

D⊤MD ⪯ D⊤ND.

Proof. This is simply because, letting y = Dx,

x⊤ (︀
D⊤ND−D⊤MD

)︀
x = y⊤ (N−M)y ≥ 0

where the last inequality follow from the definition of M ⪯ N.

2.4 Orthogonal Projection

We often use P ∈ R𝑛×𝑛 to denote an orthogonal projection matrix, which is any ma-

trix that can be written as P = QQ⊤ where Q ∈ R𝑛×𝑘 is a matrix with orthonormal

columns. Multiplying a matrix by P on the left will project its columns to the column

span of Q. Since Q has 𝑘 columns, the projection has rank 𝑘. The matrix I − P is

also an orthogonal projection of rank 𝑛 − 𝑘 onto the orthogonal complement of the

column span of Q.

Orthogonal projection matrices have a number of important properties that we

will use repeatedly.
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Lemma 7 (Idempotence of Projection). For any orthogonal projection matrix P ∈

R𝑛×𝑛, we have

P2 = P.

Intuitively, if we apply a projection twice, this will do nothing more than if we

have just applied it once.

Proof.

P2 = QQ⊤QQ⊤ = QIQ⊤ = P.

Lemma 8 (Projection Decreases Frobenius Norm). For any A ∈ R𝑛×𝑑 and any

orthogonal projection matrix P ∈ R𝑛×𝑛,

‖PA‖2𝐹 ≤ ‖A‖2𝐹 .

Proof. We can write an SVD of P as P = QIQ⊤. So, P has all singular values

equal to 1 and by spectral submultiplicativity (Lemma 3), multiplying by P can only

decrease Frobenius norm.

Lemma 9 (Separation into Orthogonal Components). For any orthogonal projection

matrix P ∈ R𝑛×𝑛 we have (I−P)P = 0 and as a consequence, for any A ∈ R𝑛×𝑑 can

write:

‖A‖2𝐹 = ‖PA‖2𝐹 + ‖(I−P)A‖2𝐹 .

Proof. The first claim follows because (I−P)P = P−P2 = P−P = 0. Intuitively,

the columns of P fall within the column span of Q. The columns of I−P fall in the

orthogonal complement of this span, and so are orthogonal to the columns of P.

The second claim follows from the matrix Pythagorean theorem (Lemma 4).
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(PA)⊤(I−P)A = A⊤P(I−P)A = 0 so:

‖A‖2𝐹 = ‖PA + (I−P)A‖2𝐹 = ‖PA‖2𝐹 + ‖(I−P)A‖2𝐹 .

As an example application of Lemma 9, note that A𝑘 is an orthogonal projection

of A: A𝑘 = U𝑘U
⊤
𝑘 A. A𝑟∖𝑘 is its residual, A−A𝑘 = (I−U𝑘U

⊤
𝑘 )A. Thus, ‖A𝑘‖2𝐹 +

‖A𝑟∖𝑘‖2𝐹 = ‖A𝑘 + A𝑟∖𝑘‖2𝐹 = ‖A‖2𝐹 .
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Chapter 3

Constrained Low-Rank

Approximation and

Projection-Cost-Preservation

In this chapter we will present the core of our theoretical results, developing the theory

behind constrained low-rank approximation and its approximation using projection-

cost-preserving sketches. The chapter is laid out as follows:

Section 3.1 We introduce constrained low-rank approximation and demonstrate that

𝑘-means clustering is a special case of the problem.

Section 3.2 We introduce projection-cost-preserving sketches and demonstrate how

they can be applied to find nearly optimal solutions to constrained low-rank

approximation.

Section 3.3 We give a high level overview of our approach to proving that common

dimensionality reduction techniques yield projection-cost-preserving sketches.

Formally, we give a set of sufficient conditions for a sketch Ã to be projection-

cost-preserving.
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3.1 Constrained Low-Rank Approximation

We start by defining the constrained low-rank approximation problem and demon-

strate that 𝑘-means clustering is a special case of this problem.

Definition 10 (Constrained 𝑘-Rank Approximation). For any A ∈ R𝑛×𝑑 and any

set 𝑆 of rank 𝑘 orthogonal projection matrices in R𝑛×𝑛, the constrained 𝑘 rank ap-

proximation problem is to find:

P* = arg min
P∈𝑆

‖A−PA‖2𝐹 . (3.1)

That is, we want to find the projection in 𝑆 that best preserves A in the Frobenius

norm. We often write Y = I𝑛×𝑛 −P and refer to ‖A−PA‖2𝐹 = ‖YA‖2𝐹 as the cost

of the projection P.

When 𝑆 is the set of all rank 𝑘 orthogonal projections, this problem is equivalent

to finding the optimal rank 𝑘 approximation for A, and is solved by computing U𝑘

using an SVD algorithm and setting P* = U𝑘U
⊤
𝑘 . In this case, the cost of the optimal

projection is ‖A−U𝑘U
⊤
𝑘 A‖2𝐹 = ‖A𝑟∖𝑘‖2𝐹 . As the optimum cost in the unconstrained

case, ‖A𝑟∖𝑘‖2𝐹 is a universal lower bound on ‖A−PA‖2𝐹 .

3.1.1 𝑘-Means Clustering as Constrained Low-Rank Approxi-
mation

The goal of 𝑘-means clustering is to partition 𝑛 vectors in R𝑑, {a1, . . . , a𝑛}, into 𝑘

cluster sets, 𝒞 = {𝐶1, . . . , 𝐶𝑘}. Let 𝜇𝑖 be the centroid of the vectors in 𝐶𝑖. Let

A ∈ R𝑛×𝑑 be a data matrix containing our vectors as rows and let 𝐶(a𝑗) be the set

that vector a𝑗 is assigned to. The objective is to minimize the function given in (1.1):

𝐶𝑜𝑠𝑡(𝒞,A) =
𝑘∑︁

𝑖=1

∑︁
a𝑗∈𝐶𝑖

‖a𝑗 − 𝜇𝑖‖22 =
𝑛∑︁

𝑗=1

‖a𝑗 − 𝜇𝐶(a𝑗)
‖22.
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To see that 𝑘-means clustering is an instance of general constrained low-rank

approximation, we rely on a linear algebraic formulation of the 𝑘-means objective that

has been used critically in prior work on dimensionality reduction for the problem

(see e.g. [BMD09]).

For a clustering 𝒞 = {𝐶1, . . . , 𝐶𝑘}, let X𝒞 ∈ R𝑛×𝑘 be the cluster indicator matrix,

with X𝒞(𝑗, 𝑖) = 1/
√︀
|𝐶𝑖| if a𝑗 is assigned to 𝐶𝑖. X𝒞(𝑗, 𝑖) = 0 otherwise. Thus, X⊤

𝒞 A

has its 𝑖𝑡ℎ row equal to
√︀
|𝐶𝑖| · 𝜇𝑖 and X𝒞X

⊤
𝒞 A has its 𝑗th row equal to 𝜇𝐶(a𝑗)

, the

center of a𝑗’s assigned cluster. So we can express the 𝑘-means objective function as:

‖A−X𝒞X
⊤
𝒞 A‖2𝐹 =

𝑛∑︁
𝑗=1

‖a𝑗 − 𝜇𝐶(a𝑗)
‖22.

By construction, the columns of X𝒞 have disjoint supports and have norm 1, so

are orthonormal vectors. Thus X𝒞X
⊤
𝒞 is an orthogonal projection matrix with rank

𝑘, and 𝑘-means is just the constrained low-rank approximation problem of (3.1) with

𝑆 as the set of all possible cluster projection matrices X𝒞X
⊤
𝒞 .

While the goal of 𝑘-means is to well approximate each row of A with its clus-

ter center, this formulation shows that the problem actually amounts to finding an

optimal rank 𝑘 subspace to project the columns of A to. The choice of subspace is

constrained because it must be spanned by the columns of a cluster indicator matrix.

3.2 Projection-Cost-Preserving Sketches

With the above reduction in hand, our primary goal now shifts to studying dimension-

ality reduction for constrained low-rank approximation. All results will hold for the

important special cases of 𝑘-means clustering and unconstrained low-rank approxima-

tion. We aim to find an approximately optimal constrained low-rank approximation

(3.1) for A by optimizing P (either exactly or approximately) over a sketch Ã ∈ R𝑛×𝑑′
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with 𝑑′ ≪ 𝑑. That is we want to solve:

P̃* = arg min
P∈𝑆

‖Ã−PÃ‖2𝐹 .

and be guaranteed that ‖A− P̃*A‖2𝐹 ≤ (1 + 𝜖)‖A−P*A‖2𝐹 for some approximation

factor 𝜖 > 0.

This approach will certainly work if the cost ‖Ã − PÃ‖2𝐹 approximates the cost

‖A − PA‖2𝐹 for every P ∈ 𝑆. If this is the case, choosing an optimal P for Ã will

be equivalent to choosing a nearly optimal P for A. An even stronger requirement

is that Ã approximates projection-cost for all rank 𝑘 projections P (of which 𝑆 is a

subset). We call such an Ã a projection-cost-preserving sketch.

Definition 11 (Rank 𝑘 Projection-Cost-Preserving Sketch with Two-sided Error).

Ã ∈ R𝑛×𝑑′ is a rank 𝑘 projection-cost-preserving sketch of A ∈ R𝑛×𝑑 with error

0 ≤ 𝜖 < 1 if, for all rank 𝑘 orthogonal projection matrices P ∈ R𝑛×𝑛,

(1− 𝜖)‖A−PA‖2𝐹 ≤ ‖Ã−PÃ‖2𝐹 + 𝑐 ≤ (1 + 𝜖)‖A−PA‖2𝐹 ,

for some fixed non-negative constant 𝑐 that may depend on A and Ã but is independent

of P.

Note that ideas similar to projection-cost preservation have been considered in

previous work. In particular, our definition is equivalent to the Definition 2 of [FSS13]

with 𝑗 = 𝑘 and 𝑘 = 1. It can be strengthened slightly by requiring a one-sided error

bound, which some of our sketching methods will achieve. The tighter bound is

required for results that do not have constant factors in the sketch size (i.e. sketches

with dimension exactly ⌈𝑘/𝜖⌉ rather than 𝑂(𝑘/𝜖)).

Definition 12 (Rank 𝑘 Projection-Cost-Preserving Sketch with One-sided Error).

Ã ∈ R𝑛×𝑑′ is a rank 𝑘 projection-cost preserving sketch of A ∈ R𝑛×𝑑 with one-sided
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error 0 ≤ 𝜖 < 1 if, for all rank 𝑘 orthogonal projection matrices P ∈ R𝑛×𝑛,

‖A−PA‖2𝐹 ≤ ‖Ã−PÃ‖2𝐹 + 𝑐 ≤ (1 + 𝜖)‖A−PA‖2𝐹 ,

for some fixed non-negative constant 𝑐 that may depend on A and Ã but is independent

of P.

3.2.1 Application to Constrained Low-Rank Approximation

It is straightforward to show that a projection-cost-preserving sketch is sufficient for

approximately optimizing (3.1), our constrained low-rank approximation problem.

Lemma 13 (Constrained Low-Rank Approximation via Projection-Cost-Preserving

Sketches). For any A ∈ R𝑛×𝑑 and any set 𝑆 of rank 𝑘 orthogonal projections, let P* =

arg minP∈𝑆 ‖A− PA‖2𝐹 . Accordingly, for any Ã ∈ R𝑛×𝑑′, let P̃* = arg minP∈𝑆 ‖Ã−

PÃ‖2𝐹 . If Ã is a rank 𝑘 projection-cost preserving sketch for A with error 𝜖 (i.e.

satisfies Definition 11), then for any 𝛾 ≥ 1, if ‖Ã− P̃Ã‖2𝐹 ≤ 𝛾‖Ã− P̃*Ã‖2𝐹 ,

‖A− P̃A‖2𝐹 ≤
(1 + 𝜖)

(1− 𝜖)
· 𝛾‖A−P*A‖2𝐹 .

That is, if P̃ is an optimal solution for Ã, then it is also approximately optimal for

A. We introduce the 𝛾 parameter to allow P̃ to be approximately optimal for Ã. This

ensures that our dimensionality reduction algorithms can be used as a preprocessing

step for both exact and approximate constrained low-rank approximation (e.g. 𝑘-

means clustering) algorithms. In the case of heuristics like Lloyd’s algorithm, while a

provable bound on 𝛾 may be unavailable, the guarantee still ensures that if P̃ is a good

low-rank approximation of Ã, then it will also give a good low-rank approximation

for A.
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Proof. By optimality of P̃* for Ã, ‖Ã− P̃*Ã‖2𝐹 ≤ ‖Ã−P*Ã‖2𝐹 and thus,

‖Ã− P̃Ã‖2𝐹 ≤ 𝛾‖Ã−P*Ã‖2𝐹 . (3.2)

Further, since Ã is projection-cost-preserving, the following two inequalities hold:

‖Ã−P*Ã‖2𝐹 ≤ (1 + 𝜖)‖A−P*A‖2𝐹 − 𝑐, (3.3)

‖Ã− P̃Ã‖2𝐹 ≥ (1− 𝜖)‖A− P̃A‖2𝐹 − 𝑐. (3.4)

Combining (3.2),(3.3), and (3.4), we see that:

(1− 𝜖)‖A− P̃A‖2𝐹 − 𝑐 ≤ ‖Ã− P̃Ã‖2𝐹 (By (3.4))

≤ 𝛾‖Ã−P*Ã‖2𝐹 (By (3.2))

≤ (1 + 𝜖) · 𝛾‖A−P*A‖2𝐹 − 𝛾𝑐 (By (3.3))

‖A− P̃A‖2𝐹 ≤
(1 + 𝜖)

(1− 𝜖)
· 𝛾‖A−P*A‖2𝐹 ,

where the final step is simply the consequence of 𝑐 ≥ 0 and 𝛾 ≥ 1.

For any 0 ≤ 𝜖′ < 1, to achieve a (1 + 𝜖′)𝛾 approximation with Lemma 13, we just

need 1+𝜖
1−𝜖

= 1 + 𝜖′ and so must set 𝜖 = 𝜖′

2+𝜖′
≥ 𝜖′

3
. Using Definition 12 gives a variation

on the Lemma that avoids this constant factor adjustment:

Lemma 14 (Low-Rank Approximation via One-sided Error Projection-Cost Pre-

serving Sketches). For any A ∈ R𝑛×𝑑 and any set 𝑆 of rank 𝑘 orthogonal pro-

jections, let P* = arg minP∈𝑆 ‖A − PA‖2𝐹 . Accordingly, for any Ã ∈ R𝑛×𝑑′, let

P̃* = arg minP∈𝑆 ‖Ã − PÃ‖2𝐹 . If Ã is a rank 𝑘 projection-cost preserving sketch

for A with one-sided error 𝜖 (i.e. satisfies Definition 12), then for any 𝛾 ≥ 1, if
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‖Ã− P̃Ã‖2𝐹 ≤ 𝛾‖Ã− P̃*Ã‖2𝐹 ,

‖A− P̃A‖2𝐹 ≤ (1 + 𝜖) · 𝛾‖A−P*A‖2𝐹 .

Proof. Identical to the proof of Lemma 13 except that (3.4) can be replaced by

‖Ã− P̃Ã‖2𝐹 ≥ ‖A− P̃A‖2𝐹 − 𝑐 (3.5)

which gives the result when combined with (3.2) and (3.3).

3.3 Sufficient Conditions for Projection-Cost Preser-
vation

Lemmas 13 and 14 show that, given a projection-cost-preserving sketch Ã for A,

we can compute an optimal or approximately optimal constrained low-rank approxi-

mation of Ã to obtain an approximately optimal low-rank approximation for A. In

particular, an approximately optimal set of clusters for Ã with respect to the 𝑘-means

cost function will also be approximately optimal for A.

With this connection in place, we seek to characterize the conditions required for

a sketch to have the rank 𝑘 projection-cost preservation property. In this section we

give sufficient conditions that will be used throughout the remainder of the paper.

In proving nearly all our main results (summarized in Table 1.1), we will show that

the sketching techniques studied satisfy these sufficient conditions and are therefore

projection-cost-preserving.

Before giving the full technical analysis, it is helpful to overview our general ap-

proach and highlight connections to prior work.

39



3.3.1 Our Approach

Using the notation Y = I𝑛×𝑛 − P and the fact that ‖M‖2𝐹 = tr(MM⊤), we can

rewrite the projection-cost-preservation guarantees for Definitions 11 and 12 as:

(1− 𝜖) tr(YAA⊤Y) ≤ tr(YÃÃ⊤Y) + 𝑐 ≤ (1 + 𝜖) tr(YAA⊤Y), and (3.6)

tr(YAA⊤Y) ≤ tr(YÃÃ⊤Y) + 𝑐 ≤ (1 + 𝜖) tr(YAA⊤Y). (3.7)

Thus, in approximating A with Ã, we are really attempting to approximate AA⊤

with ÃÃ⊤. This is the view we will take for the remainder of our analysis.

Furthermore, all of the sketching approaches analyzed in this paper (again see

Table 1.1) are linear. We can always write Ã = AR for R ∈ R𝑑×𝑑′ . Suppose our

sketching dimension is 𝑚 = 𝑂(𝑘) – i.e. Ã ∈ R𝑛×𝑂(𝑘). For an SVD sketch, where we

set Ã to be a good low-rank approximation of A we have R = V𝑚. For a Johnson-

Lindenstrauss random projection, R is a 𝑑×𝑚 random sign or Gaussian matrix. For

a feature selection sketch, R is a 𝑑×𝑚 matrix with one nonzero per column – i.e. a

matrix selection 𝑚 columns of A as the columns of Ã. So, rewriting Ã = AR, our

goal is to show:

tr(YAA⊤Y) ≈ tr(YARR⊤A⊤Y) + 𝑐.

A common trend in prior work has been to attack this analysis by splitting A into

separate orthogonal components [DFK+04, BZMD11]. In particular, previous results

note that by Lemma 9, A𝑘A
⊤
𝑟∖𝑘 = 0. They implicitly compare

tr(YAA⊤Y) = tr(YA𝑘A
⊤
𝑘 Y) + tr(YA𝑟∖𝑘A

⊤
𝑟∖𝑘Y) + tr(YA𝑘A

⊤
𝑟∖𝑘Y) + tr(YA𝑟∖𝑘A

⊤
𝑘 Y)

= tr(YA𝑘A
⊤
𝑘 Y) + tr(YA𝑟∖𝑘A

⊤
𝑟∖𝑘Y) + 0 + 0,
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to

tr(YARR⊤A⊤Y) = tr(YA𝑘RR⊤A⊤
𝑘 Y) + tr(YA𝑟∖𝑘RR⊤A⊤

𝑟∖𝑘Y)

+ tr(YA𝑘RR⊤A⊤
𝑟∖𝑘Y) + tr(YA𝑟∖𝑘RR⊤A⊤

𝑘 Y).

We adopt this same general technique, but make the comparison more explicit and

analyze the difference between each of the four terms separately. The idea is to show

separately that tr(YA𝑘RR⊤A⊤
𝑘 Y) is close to tr(YA𝑘A

⊤
𝑘 Y) and tr(YA𝑟∖𝑘RR⊤A⊤

𝑟∖𝑘Y)

is close to tr(YA𝑟∖𝑘A
⊤
𝑟∖𝑘Y). Intuitively, this is possible because A𝑘 only has rank 𝑘

and so is well preserved when applying the sketching matrix R, even though R only

has 𝑚 = 𝑂(𝑘) columns. A𝑟∖𝑘 may have high rank, however, it represents the ‘tail’

singular values of A. Since these singular values are not too large, we can show that

applying R to YA𝑟∖𝑘 has a limited effect on the trace. We then show that the ‘cross

terms’ tr(YA𝑘RR⊤A⊤
𝑟∖𝑘Y) and tr(YA𝑟∖𝑘RR⊤A⊤

𝑘 Y) are both close to 0. Intuitively,

this is because A𝑘A𝑟∖𝑘 = 0, and applying R keeps these two matrices approximately

orthogonal so A𝑘RR⊤A⊤
𝑟∖𝑘 is close to 0. In Lemma 16, the allowable error in each

term will correspond to E1, E2, E3, and E4, respectively.

Our analysis generalizes this high level approach by splitting A into a wider va-

riety of orthogonal pairs. Our SVD results split A = A⌈𝑘/𝜖⌉ + A𝑟∖⌈𝑘/𝜖⌉, our random

projection results split A = A2𝑘 + A𝑟∖2𝑘, and our column selection results split

A = AZZ⊤ +A(I− ZZ⊤) for an approximately optimal rank-𝑘 projection ZZ⊤. Fi-

nally, our 𝑂(log 𝑘) result for 𝑘-means clustering splits A = P*A + (I−P*)A where

P* is the optimal 𝑘-means cluster projection matrix for A.

3.3.2 Characterization of Projection-Cost-Preserving Sketches

We now formalize the intuition given in the previous section. We give constraints

on the error matrix E = ÃÃ⊤ − AA⊤ that are sufficient to guarantee that Ã is a
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projection-cost-preserving sketch. We start by showing how to achieve the stronger

guarantee of Definition 12 (one-sided error), which will constrain E most tightly.

We then loosen restrictions on E to show conditions that suffice for Definition 11

(two-sided error).

Lemma 15. Let C = AA⊤ and C̃ = ÃÃ⊤. If we can write C̃ = C + E where

E ∈ R𝑛×𝑛 is symmetric, E ⪯ 0, and
∑︀𝑘

𝑖=1 |𝜆𝑖(E)| ≤ 𝜖‖A𝑟∖𝑘‖2𝐹 , then Ã is a rank 𝑘

projection-cost preserving sketch for A with one-sided error 𝜖 (i.e. satisfies Definition

12). Specifically, referring to the guarantee of Equation 3.7, for any rank 𝑘 orthogonal

projection P and Y = I−P,

tr(YCY) ≤ tr(YC̃Y)− tr(E) ≤ (1 + 𝜖) tr(YCY). (3.8)

The general idea of Lemma 15 is fairly simple. Letting b𝑖 be the 𝑖𝑡ℎ standard basis

vector, we can see that restricting E ⪯ 0 implies tr(E) =
∑︀𝑛

𝑖=1 b
⊤
𝑖 Eb𝑖 ≤ 0. This

ensures that the projection-independent constant 𝑐 = − tr(E) in our sketch is non-

negative, which was essential in proving Lemmas 13 and 14. Then we observe that,

since P is a rank 𝑘 projection, any projection-dependent error at worst depends on

the largest 𝑘 eigenvalues of our error matrix. Since the cost of any rank 𝑘 projection is

at least ‖A𝑟∖𝑘‖2𝐹 , we need the restriction
∑︀𝑘

𝑖=1 |𝜆𝑖(E)| ≤ 𝜖‖A𝑟∖𝑘‖2𝐹 to achieve relative

error approximation.

Proof. First note that, since C = C̃− E, by linearity of the trace

tr(YCY) = tr(YC̃Y)− tr(YEY)

= tr(YC̃Y)− tr(YE)

= tr(YC̃Y)− tr(E) + tr(PE). (3.9)

The second step follows from the cyclic property of the trace (Lemma 1) and the fact
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that Y2 = Y since Y is a projection matrix (Lemma 7). Plugging (3.9) into (3.8),

we see that to prove the Lemma, all we have to show is

−𝜖 tr(YCY) ≤ tr(PE) ≤ 0. (3.10)

Since E is symmetric, let v1, . . . ,v𝑟 be the eigenvectors of E, and write

E = VΛV⊤ =
𝑟∑︁

𝑖=1

𝜆𝑖(E)v𝑖v
⊤
𝑖 and thus by linearity of trace

tr(PE) =
𝑟∑︁

𝑖=1

𝜆𝑖(E) tr(Pv𝑖v
⊤
𝑖 ). (3.11)

We now apply the cyclic property of the trace (Lemma 1) and the fact that P is a

projection so has all singular values equal to 1 or 0. We have, for all 𝑖,

0 ≤ tr(Pv𝑖v
⊤
𝑖 ) = v⊤

𝑖 Pv𝑖 ≤ ‖v𝑖‖22‖P‖22 ≤ 1 (3.12)

Further,

𝑟∑︁
𝑖=1

tr(Pv𝑖v
⊤
𝑖 ) = tr(PVV⊤)

= tr(PVV⊤VV⊤P) (Cylic property and P = P2, VV⊤ = (VV⊤)2)

= ‖PV‖2𝐹

≤ ‖P‖2𝐹 (Projection decrease Frobenius norm – Lemma 8)

= tr(QQ⊤QQ⊤)

= tr(Q⊤Q) = 𝑘 (3.13)

where the last equality follow from the cyclic property of the trace and the fact

that Q⊤Q = I𝑘×𝑘.

Equations (3.12) and (3.13) show that we have 𝑟 values tr(Pv𝑖v
⊤
𝑖 ) for 𝑖 = 1, ..., 𝑟
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that each have value less than 1 and sum to at most 𝑘. So, since E ⪯ 0 and accordingly

has all negative eigenvalues,
∑︀𝑟

𝑖=1 𝜆𝑖(E) tr(Pv𝑖v
⊤
𝑖 ) is minimized when tr(Pv𝑖v

⊤
𝑖 ) = 1

for v1, . . . ,v𝑘, the eigenvectors corresponding to E’s largest magnitude eigenvalues.

So,

𝑘∑︁
𝑖=1

𝜆𝑖(E) ≤
𝑟∑︁

𝑖=1

𝜆𝑖(E) tr(Pv𝑖v
⊤
𝑖 ) = tr(PE) ≤ 0.

The upper bound in Equation (3.10) follows immediately. The lower bound follows

from our requirement that
∑︀𝑘

𝑖=1 |𝜆𝑖(E)| ≤ 𝜖‖A𝑟∖𝑘‖2𝐹 and the fact that ‖A𝑟∖𝑘‖2𝐹 is a

universal lower bound on tr(YCY) (see Section ??).

Lemma 15 is already enough to prove that an optimal or nearly optimal low-

rank approximation to A gives a projection-cost-preserving sketch (see Section 4.1).

However, other sketching techniques will introduce a broader class of error matrices,

which we handle next.

Lemma 16. Let C = AA⊤ and C̃ = ÃÃ⊤. If we can write C̃ = C+E1+E2+E3+E4

where:

1. E1 is symmetric and −𝜖1C ⪯ E1 ⪯ 𝜖1C

2. E2 is symmetric,
∑︀𝑘

𝑖=1 |𝜆𝑖(E2)| ≤ 𝜖2‖A𝑟∖𝑘‖2𝐹 , and tr(E2) ≤ 𝜖′2‖A𝑟∖𝑘‖2𝐹

3. The columns of E3 fall in the column span of C and tr(E⊤
3 C

+E3) ≤ 𝜖23‖A𝑟∖𝑘‖2𝐹

4. The rows of E4 fall in the row span of C and tr(E4C
+E⊤

4 ) ≤ 𝜖24‖A𝑟∖𝑘‖2𝐹

and 𝜖1 + 𝜖2 + 𝜖′2 + 𝜖3 + 𝜖4 = 𝜖, then Ã is a rank 𝑘 projection-cost preserving sketch for

A with two-sided error 𝜖 (i.e. satisfies Definition 11). Specifically, referring to the

guarantee in Equation 3.6, for any rank 𝑘 orthogonal projection P and Y = I−P,

(1− 𝜖) tr(YCY) ≤ tr(YC̃Y)−min{0, tr(E2)} ≤ (1 + 𝜖) tr(YCY).
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Proof. Again, by linearity of the trace, note that

tr(YC̃Y) = tr(YCY) + tr(YE1Y) + tr(YE2Y) + tr(YE3Y) + tr(YE4Y). (3.14)

We handle each error term separately. Starting with E1, note that tr(YE1Y) =∑︀𝑛
𝑖=1 y

⊤
𝑖 E1y𝑖 where y𝑖 is the 𝑖th column (equivalently row) of Y. So, by the spectral

bounds on E1 (see Definition 5):

−𝜖1 tr(YCY) ≤ tr(YE1Y) ≤ 𝜖1 tr(YCY). (3.15)

E2 is analogous to our error matrix from Lemma 15, but may have both positive

and negative eigenvalues since we no longer require E2 ⪯ 0 . As in (3.9), we can

rewrite tr(YE2Y) = tr(E2)− tr(PE2). Using an eigendecomposition as in (3.11), let

v1, . . . ,v𝑟 be the eigenvectors of E2, and note that

| tr(PE2)| =

⃒⃒⃒⃒
⃒

𝑟∑︁
𝑖=1

𝜆𝑖(E2) tr(Pv𝑖v
⊤
𝑖 )

⃒⃒⃒⃒
⃒ ≤

𝑟∑︁
𝑖=1

|𝜆𝑖(E2)| tr(Pv𝑖v
⊤
𝑖 ).

Again using (3.12) and (3.13), we know that the values tr(Pv𝑖v
⊤
𝑖 ) for 𝑖 = 1, ..., 𝑟

are each bounded by 1 and sum to at most 𝑘. So
∑︀𝑟

𝑖=1 |𝜆𝑖(E2)| tr(Pv𝑖v
⊤
𝑖 ) is max-

imized when tr(Pv𝑖v
⊤
𝑖 ) = 1 for v1, . . . ,v𝑘. Combined with our requirement that∑︀𝑘

𝑖=1 |𝜆𝑖(E2)| ≤ 𝜖2‖A𝑟∖𝑘‖2𝐹 , we see that | tr(PE2)| ≤ 𝜖2‖A𝑟∖𝑘‖2𝐹 . Accordingly,

tr(E2)− 𝜖2‖A𝑟∖𝑘‖2𝐹 ≤ tr(YE2Y) ≤ tr(E2) + 𝜖2‖A𝑟∖𝑘‖2𝐹

min{0, tr(E2)} − 𝜖2‖A𝑟∖𝑘‖2𝐹 ≤ tr(YE2Y) ≤ min{0, tr(E2)}+ (𝜖2 + 𝜖′2)‖A𝑟∖𝑘‖2𝐹

min{0, tr(E2)} − (𝜖2 + 𝜖′2) tr(YCY) ≤ tr(YE2Y) ≤ min{0, tr(E2)}+ (𝜖2 + 𝜖′2) tr(YCY).

(3.16)

The second step follows from the trace bound on E2. The last step follows from
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recalling that ‖A𝑟∖𝑘‖2𝐹 is a universal lower bound on tr(YCY) since it is the minimum

cost for the unconstrained 𝑘-rank approximation problem.

Next, since E3’s columns fall in the column span of C, CC+E3 = E3 (See Defini-

tion 2 and explanation). Applying the cyclic property of trace and Y = Y2:

tr(YE3Y) = tr(YE3) = tr
(︀
(YC)C+(E3)

)︀
.

Writing A = UΣV⊤ we have C = AA⊤ = UΣV⊤VΣU⊤ = UΣ2U⊤ and so C+ =

UΣ−2U⊤. This implies that C+ is positive semidefinite since for any x, x⊤C+x =

x⊤UΣ−2U⊤x = ‖Σ−1U⊤x‖22 ≥ 0. Therefore ⟨M,N⟩ = tr(MC+N⊤) is a semi-inner

product and we can apply the the Cauchy-Schwarz inequality. We have:

⃒⃒
tr
(︀
(YC)C+(E3)

)︀⃒⃒
≤

√︁
tr(YCC+CY) · tr(E⊤

3 C
+E3) ≤ 𝜖3‖A𝑟∖𝑘‖𝐹 ·

√︀
tr(YCY).

Since
√︀

tr(YCY) ≥ ‖A𝑟∖𝑘‖𝐹 , we conclude that

|tr(YE3Y)| ≤ 𝜖3 · tr(YCY). (3.17)

For E4 we make a symmetric argument.

|tr(YE4Y)| =
⃒⃒
tr
(︀
(E4)C

+(CY)
)︀⃒⃒
≤

√︁
tr(YCY) · tr(E4C+E⊤

4 ) ≤ 𝜖4 · tr(YCY).

(3.18)

Finally, combining equations (3.14), (3.15), (3.16), (3.17), and (3.18) and recalling

that 𝜖1 + 𝜖2 + 𝜖′2 + 𝜖3 + 𝜖4 = 𝜖, we have:

(1− 𝜖) tr(YCY) ≤ tr(YC̃Y)−min{0, tr(E2)} ≤ (1 + 𝜖) tr(YCY).
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Chapter 4

Dimensionality Reduction Algorithms

In this chapter, we build off the results in Chapter 3, showing how to obtain projection-

cost-preserving sketches using a number of different algorithms. The chapter is orga-

nized as follows:

Section 4.1 As a warm up, using the sufficient conditions of Section 3.3, we prove

that projecting A onto its top ⌈𝑘/𝜖⌉ singular vectors or finding an approximately

optimal ⌈𝑘/𝜖⌉-rank approximation to A gives a projection-cost-preserving sketch.

Section 4.2 We show that any sketch satisfying a simple spectral norm matrix ap-

proximation guarantee satisfies the conditions given in Section 3.3, and hence

is projection-cost-preserving.

Section 4.3 We use the reduction given in Section 4.2 to prove our random projec-

tion and feature selection results.

Section 4.4 We prove that non-oblivious randomized projection to 𝑂(𝑘/𝜖) dimen-

sions gives a projection-cost-preserving sketch.

Section 4.5 We show that the recently introduced deterministic Frequent Directions

Sketch [GLPW15] gives a projection-cost-preserving sketch with 𝑂(𝑘/𝜖) dimen-

sions.
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Section 4.6 We show that random projection to just 𝑂(log 𝑘/𝜖2) dimensions gives a

sketch that allows for (9 + 𝜖) approximation to the optimal 𝑘-means clustering.

This result goes beyond the projection-cost-preserving sketch and constrained

low-rank approximation framework, leveraging the specific structure of 𝑘-means

clustering to achieve a stronger result.

4.1 Dimensionality Reduction Using the SVD

Lemmas 15 and 16 of Section 3.3 provide a framework for analyzing a variety of

projection-cost-preserving dimensionality reduction techniques. As a simple warmup

application of these Lemmas, we start by considering a sketch Ã that is simply A

projected onto its top 𝑚 = ⌈𝑘/𝜖⌉ singular vectors. That is, Ã = AV𝑚V
⊤
𝑚 = A𝑚, the

best rank 𝑚 approximation to A in the Frobenius and spectral norms.

Notice that A𝑚 actually has the same dimensions as A – 𝑛× 𝑑. However, A𝑚 =

U𝑚Σ𝑚V
⊤
𝑚 is simply U𝑚Σ𝑚 ∈ R𝑛×𝑚 under rotation. We have, for any matrix Y,

including Y = I−P:

‖YA𝑚‖2𝐹 = tr(YA𝑚A
⊤
𝑚Y) = tr(YU𝑚Σ𝑚V

⊤
𝑚V𝑚Σ𝑚U

⊤
𝑚Y) =

tr(YU𝑚Σ𝑚I𝑚×𝑚Σ𝑚U
⊤
𝑚Y) = ‖YU𝑚Σ𝑚‖2𝐹 .

So, if A𝑚 is a projection-cost-preserving sketch U𝑚Σ𝑚 is. This is the sketch

we would use to solve constrained low-rank approximation since it has significantly

fewer columns than A. U𝑚Σ𝑚 can be computed using a truncated SVD algorithm -

which computes the first 𝑚 singular vectors and values of A, without computing the

full singular value decomposition. In our analysis we will always work with A𝑚 for

simplicity.

In machine learning and data analysis, dimensionality reduction using the singular

value decomposition (also referred to as principal component analysis) is very common
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[WEG87, Jol02]. In practice it is often used as a preprocessing step for 𝑘-means

clustering [DH04]. Most commonly, the dataset is first projected to its top 𝑘 singular

vectors (equivalently, principal components), in what is viewed as both a denoising

technique and a way of approximating the optimal clustering quality while working

with a lower dimensional dataset. Our results clarify the connection between PCA

and 𝑘-means clustering and show exactly how to choose the number of principal

components to project down to in order to find an approximately optimal clustering.

The first result on dimensionality reduction for 𝑘-means clustering using the SVD

is [DFK+04], which shows that projecting to A’s top 𝑘 principal components gives

a sketch that allows for a 2-approximation to the optimal clustering. This result

was extended in [FSS13], which claims that projecting A to 𝑚 = 𝑂(𝑘/𝜖2) singular

vectors suffices for obtaining a (1 ± 𝜖) factor projection-cost-preserving sketch (see

their Corollary 4.2). Our analysis is extremely close to this work. Simply noticing

that 𝑘-means amounts to a constrained low-rank approximation problem is enough

to tighten their result to ⌈𝑘/𝜖⌉. In Appendix A of [CEM+15] we show that ⌈𝑘/𝜖⌉ is

tight – we cannot take fewer singular vectors and hope to get a (1 + 𝜖) approximation

for 𝑘-means clustering in general. However, as discussed in Section 4.1.1, for matrices

that exhibit strong singular value decay and heavy singular value tails, which are

common traits of real datasets, many fewer than ⌈𝑘/𝜖⌉ dimensions actually suffice.

As in [BZMD11], after showing that the exact A𝑚 is a projection-cost-preserving

sketch, we show that our analysis is robust to imperfection in our singular vector

computation. This allows for the use of approximate truncated SVD algorithms,

which can be faster than classical methods [SKT14]. Randomized approximate SVD

algorithms (surveyed in [HMT11]) are often highly parallelizable and require few

passes over A, which limits costly memory accesses. In addition, as with standard

Krylov subspace methods like the Lanczos algorithm, runtime may be substantially

faster for sparse data matrices.
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4.1.1 Exact SVD

Theorem 17. Let 𝑚 = ⌈𝑘/𝜖⌉. For any A ∈ R𝑛×𝑑, the sketch Ã = A𝑚 satisfies the

conditions of Definition 12. Specifically, for any rank 𝑘 orthogonal projection P,

‖A−PA‖2𝐹 ≤ ‖Ã−PÃ‖2𝐹 + 𝑐 ≤ (1 + 𝜖)‖A−PA‖2𝐹 .

Proof. We have

C̃ = ÃÃ⊤ = (A−A𝑟∖𝑚)(A−A𝑟∖𝑚)⊤ = AA⊤ −A𝑟∖𝑚A
⊤
𝑟∖𝑚.

The last equality follows from noting that AA⊤
𝑟∖𝑚 = (A𝑚 +A𝑟∖𝑚)A⊤

𝑟∖𝑚 = A𝑟∖𝑚A
⊤
𝑟∖𝑚

since the rows of A𝑟∖𝑚 and A𝑚 lie in orthogonal subspaces and so A𝑚A
⊤
𝑟∖𝑚 = 0. Now,

we simply apply Lemma 15, setting E = −A𝑟∖𝑚A
⊤
𝑟∖𝑚. We know that C̃ = C + E,

E is symmetric, and E ⪯ 0 since A𝑟∖𝑚A
⊤
𝑟∖𝑚 is positive semidefinite. Finally, we

can write E = U𝑟∖𝑚Σ
2
𝑟∖𝑚U

⊤
𝑟∖𝑚, which gives both the singular value and eigenvalue

decomposition of the matrix. We have:

𝑘∑︁
𝑖=1

|𝜆𝑖(E)| =
𝑘∑︁

𝑖=1

𝜎2
𝑖 (A𝑟∖𝑚) =

𝑚+𝑘∑︁
𝑖=𝑚+1

𝜎2
𝑖 (A) ≤ 𝜖‖A𝑟∖𝑘‖2𝐹 . (4.1)

The final inequality follows from the fact that

‖A𝑟∖𝑘‖2𝐹 =
𝑟−𝑘∑︁
𝑖=1

𝜎2
𝑖 (A𝑟∖𝑘) =

𝑟∑︁
𝑖=𝑘+1

𝜎2
𝑖 (A) ≥

𝑚+𝑘∑︁
𝑖=𝑘+1

𝜎2
𝑖 (A) ≥ 1

𝜖

𝑚+𝑘∑︁
𝑖=𝑚+1

𝜎2
𝑖 (A) (4.2)

since the last sum contains just the smallest 𝑘 terms of the previous sum, which has

𝑚 = ⌈𝑘/𝜖⌉ terms in total. So, by Lemma 15, we have:

‖A−PA‖2𝐹 ≤ ‖Ã−PÃ‖2𝐹 + 𝑐 ≤ (1 + 𝜖)‖A−PA‖2𝐹 .
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Note that, in practice, it is often possible to set 𝑚 ≪ ⌈𝑘/𝜖⌉. Specifically, 𝑚 =

⌈𝑘/𝜖⌉ singular vectors are only required for the condition of Equation 4.1,

𝑚+𝑘∑︁
𝑖=𝑚+1

𝜎2
𝑖 (A) ≤ 𝜖‖A𝑟∖𝑘‖2𝐹 .

This condition is tight only when the top ⌈𝑘/𝜖⌉+ 𝑘 singular values of A are all equal

and the remaining singular values are all 0. In this case, the sum 𝜎2
𝑚+1 + ...+ 𝜎2

𝑚+𝑘 is

equal to 𝜖‖A𝑟∖𝑘‖2𝐹 = 𝜖
(︀
𝜎2
𝑘+1 + ... + 𝜎𝑘+𝑚 + 0 + ...0

)︀
. However if the spectrum of A

decays, so the values 𝜎2
𝑚+1+...+𝜎2

𝑚+𝑘 are significantly smaller than top singular values

of A, the equation will hold for a smaller 𝑚. Additionally, nonzero singular values

outside of the top 𝑚 + 𝑘 will increase ‖A𝑟∖𝑘‖2𝐹 without increasing 𝜎2
𝑚+1 + ... + 𝜎2

𝑚+𝑘,

making the bound hold more easy.

In practice, it is simple to first compute ‖A𝑟∖𝑘‖2𝐹 using a partial SVD. One can then

iteratively compute the singular vectors and values of A, checking 𝜎2
𝑚+1 + ... + 𝜎2

𝑚+𝑘

against ‖A𝑟∖𝑘‖2𝐹 at each step and stopping once a sufficiently large 𝑚 is found. As

demonstrated in Chapter 6, in most real datasets, this will not only limit the number

of principal components that must be computed, but will lead to an extremely small

sketch for approximately solving constrained low-rank approximation.

4.1.2 Approximate SVD

In this section we show that computing A𝑚 exactly is not necessary. Any nearly

optimal rank 𝑚 approximation (computable with an approximate SVD algorithm)

suffices for sketching A.

Theorem 18. Let 𝑚 = ⌈𝑘/𝜖⌉. For any A ∈ R𝑛×𝑑 and any orthonormal matrix

Z ∈ R𝑑×𝑚 satisfying ‖A−AZZ⊤‖2𝐹 ≤ (1+𝜖′)‖A𝑟∖𝑚‖2𝐹 , the sketch Ã = AZZ⊤ satisfies
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the conditions of Definition 12. Specifically, for all rank 𝑘 orthogonal projections P,

‖A−PA‖2𝐹 ≤ ‖Ã−PÃ‖2𝐹 + 𝑐 ≤ (1 + 𝜖 + 𝜖′)‖A−PA‖2𝐹 .

In recent years, algorithms for computing a basis Z giving this sort of (1 + 𝜖)

relative error approximation to the optimal low-rank approximation have become

standard [Sar06, HMT11]. These ‘approximate SVD’ algorithms can be extremely fast

compared to traditional algorithms, even running in time proportional to the number

of nonzero entries in A - i.e. the amount of time required to even read the full matrix

[CW13, NN13]. Note that, as with the exact SVD, Ã = AZZ⊤ being a projection-

cost-preserving sketch immediately implies that AZ ∈ R𝑛×⌈𝑘/𝜖⌉ is also projection-cost-

preserving. We work with AZZ⊤ for simplicity, however would use AZ in application

to constrained low-rank approximation due to its smaller dimension.

Proof. As in the exact SVD case, since ZZ⊤ is an orthogonal projection,

C̃ = ÃÃ⊤ = (A− (A−AZZ⊤))(A− (A−AZZ⊤))⊤

= AA⊤ − (A−AZZ⊤)(A−AZZ⊤)⊤.

We set E = −(A−AZZ⊤)(A−AZZ⊤)⊤. C̃ = C + E, E is symmetric, E ⪯ 0, and

𝑘∑︁
𝑖=1

|𝜆𝑖(E)| =
𝑘∑︁

𝑖=1

𝜎2
𝑖 (A−AZZ⊤) = ‖(A−AZZ⊤)𝑘‖2𝐹 .

Observe that, since (A − AZZ⊤)𝑘 is rank 𝑘 and AZZ⊤ is rank 𝑚, AZZ⊤ + (A −

AZZ⊤)𝑘 has rank at most 𝑚 + 𝑘. Thus, by optimality of the SVD for low-rank

approximation:

‖A−
(︀
AZZ⊤ + (A−AZZ⊤)𝑘

)︀
‖2𝐹 ≥ ‖A𝑟∖(𝑚+𝑘)‖2𝐹 .
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Regrouping and applying the matrix Pythagorean theorem gives:

‖A−AZZ⊤‖2𝐹 − ‖(A−AZZ⊤)𝑘‖2𝐹 ≥ ‖A𝑟∖(𝑚+𝑘)‖2𝐹 .

Reordering and applying the near optimal low-rank approximation requirement for

AZZ⊤ gives

‖(A−AZZ⊤)𝑘‖2𝐹 ≤ (1 + 𝜖′)‖A𝑟∖𝑚‖2𝐹 − ‖A𝑟∖(𝑚+𝑘)‖2𝐹

≤ 𝜖′‖A𝑟∖𝑚‖2𝐹 +
𝑚+𝑘∑︁

𝑖=𝑚+1

𝜎2
𝑖 (A)

≤ (𝜖 + 𝜖′)‖A𝑟∖𝑘‖2𝐹 .

The last inequality follows from Equation (4.2) and the fact that ‖A𝑟∖𝑘‖2𝐹 ≥ ‖A𝑟∖𝑚‖2𝐹 .

So, we conclude that
∑︀𝑘

𝑖=1 |𝜆𝑖(E)| ≤ (𝜖 + 𝜖′)‖A𝑟∖𝑘‖2𝐹 and the theorem follows from

applying Lemma 15.

4.1.3 General Low-Rank Approximation

Finally, we consider an even more general case when Ã is a good low-rank approxima-

tion of A but may not actually be a row projection of A – i.e. Ã doesn’t necessarily

take the form AZZ⊤ for some orthonormal matrix Z. This is the sort of sketch

obtained, for example, by the randomized low-rank approximation result in [CW13]

(see Theorem 47). Note that [CW13] still returns a decomposition of the computed

sketch, Ã = LDW⊤, where L and W have orthonormal columns and D is a 𝑘 × 𝑘

diagonal matrix. Thus, by using LD in place of Ã, which has just 𝑚 columns, it

is still possible to solve 𝑘-means (or some other constrained low-rank approximation

problem) on a matrix that is much smaller than A.

Theorem 19. Let 𝑚 = ⌈𝑘/𝜖⌉. For any A ∈ R𝑛×𝑑 and any Ã ∈ R𝑛×𝑑 with 𝑟𝑎𝑛𝑘(Ã) =
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𝑚 satisfying ‖A− Ã‖2𝐹 ≤ (1 + (𝜖′)2)‖A𝑟∖𝑚‖2𝐹 , the sketch Ã satisfies the conditions of

Definition 11. Specifically, for all rank 𝑘 orthogonal projections P,

(1− 2𝜖′)‖A−PA‖2𝐹 ≤ ‖Ã−PÃ‖2𝐹 + 𝑐 ≤ (1 + 2𝜖 + 5𝜖′)‖A−PA‖2𝐹 .

Proof. We write Ã as the sum of a projection and a remainder matrix: Ã = AZZ⊤+E

where Z ∈ R𝑑×𝑚 is an orthonormal basis for row span of Ã. Since Z is a basis for

the rowspan of Ã, ÃZZ⊤ = Ã so we can write E = Ã − AZZ⊤ = (Ã − A)ZZ⊤.

This implies that E(A−AZZ⊤)⊤ = (Ã−A)ZZ⊤(I−ZZ⊤)A⊤ = 0 (See Lemma 9).

Hence, by the matrix Pythagorean theorem,

‖A− Ã‖2𝐹 = ‖A−AZZ⊤ − E‖2𝐹 = ‖A−AZZ⊤‖2𝐹 + ‖E‖2𝐹 ,

Intuitively speaking, the rows of A−AZZ⊤ are orthogonal to the row span of Ã and

the rows of E lie in this span. Now, since the SVD is optimal for low-rank approx-

imation, ‖A − AZZ⊤‖2𝐹 ≥ ‖A𝑟∖𝑚‖2𝐹 . Furthermore, by our low-rank approximation

condition on Ã, ‖A− Ã‖2𝐹 ≤ (1 + (𝜖′)2)‖A𝑟∖𝑚‖2𝐹 . Thus:

‖E‖2𝐹 ≤ (𝜖′)2‖A𝑟∖𝑚‖2𝐹 . (4.3)

Also note that, by Theorem 18,

‖(I−P)A‖2𝐹 ≤ ‖(I−P)AZZ⊤‖2𝐹 + 𝑐 ≤ (1 + 𝜖 + (𝜖′)2)‖(I−P)A‖2𝐹 . (4.4)

Using these facts, we prove Theorem 19, by starting with the triangle inequality:

‖(I−P)AZZ⊤‖𝐹 − ‖(I−P)E‖𝐹 ≤ ‖Ã−PÃ‖𝐹 ≤ ‖(I−P)AZZ⊤‖𝐹 + ‖(I−P)E‖𝐹 .

Noting that, since I−P is a projection it can only decrease Frobenius norm (Lemma
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8), we substitute in (4.3):

‖Ã−PÃ‖2𝐹 ≤ ‖(I−P)AZZ⊤‖2𝐹 + ‖E‖2𝐹 + 2‖(I−P)AZZ⊤‖𝐹‖E‖𝐹

≤ ‖(I−P)AZZ⊤‖2𝐹 + 𝜖′2‖A𝑟∖𝑚‖2𝐹 + 2𝜖′‖(I−P)AZZ⊤‖𝐹‖A𝑟∖𝑚‖𝐹

≤ (1 + 𝜖′)‖(I−P)AZZ⊤‖2𝐹 + (𝜖′ + (𝜖′)2)‖A𝑟∖𝑚‖2𝐹 ,

where the last step follows from the AM-GM inequality. Then, using (4.4) and again

that ‖A𝑟∖𝑚‖2𝐹 lower bounds ‖(I−P)A‖2𝐹 , it follows that:

‖Ã−PÃ‖2𝐹 ≤ (1 + 𝜖′)(1 + 𝜖 + (𝜖′)2)‖(I−P)A‖2𝐹 − (1 + 𝜖′)𝑐 + (𝜖′ + (𝜖′)2)‖A𝑟∖𝑚‖2𝐹

≤ (1 + 𝜖 + 2𝜖′ + 2(𝜖′)2 + (𝜖′)3 + 𝜖𝜖′)‖(I−P)A‖2𝐹 − 𝑐′

≤ (1 + 2𝜖 + 5𝜖′)‖(I−P)A‖2𝐹 − 𝑐′, (4.5)

where 𝑐′ = (1 + 𝜖′)𝑐. Our lower on ‖Ã−PÃ‖2𝐹 follows similarly:

‖Ã−PÃ‖2𝐹 ≥ ‖(I−P)AZZ⊤‖2𝐹 − 2‖(I−P)AZZ⊤‖𝐹‖E‖𝐹 + ‖E‖2𝐹

≥ ‖(I−P)AZZ⊤‖2𝐹 − 2𝜖′‖(I−P)AZZ⊤‖𝐹‖A𝑟∖𝑚‖𝐹

≥ (1− 𝜖′)‖(I−P)AZZ⊤‖2𝐹 − 𝜖′‖A𝑟∖𝑚‖2𝐹

≥ (1− 𝜖′)‖(I−P)A‖2𝐹 − (1− 𝜖′)𝑐− 𝜖′‖A𝑟∖𝑚‖2𝐹

≥ (1− 2𝜖′)‖(I−P)A‖2𝐹 − 𝑐′. (4.6)

The last step follows since 𝑐′ = (1 + 𝜖′)𝑐 ≥ (1− 𝜖′)𝑐. Combining 4.5 and 4.6 gives the

result.

While detailed, the proof of Theorem 19 is conceptually simple – the result relies

on the small Frobenius norm of E and the triangle inequality. Alternatively, we could
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have computed

C̃ = (AZZ⊤ + E)(AZZ⊤ + E)⊤

= AA⊤ − (A−AZZ⊤)(A−AZZ⊤)⊤ + E(AZZ⊤)⊤ + (AZZ⊤)E⊤ + EE⊤,

and analyzed it using Lemma 16 directly, setting E2 = −(A−AZZ⊤)(A−AZZ⊤)⊤+

EE⊤, E3 = E(AZZ⊤)⊤, and E4 = (AZZ⊤)E⊤. Additionally, note that in the theo-

rem we place no restrictions on E. Depending on the low-rank approximation algo-

rithm being used, it is likely that further conditions on the output would exist that

would allow for a tighter analysis. For example, if Ã was formed by approximately

projecting A onto some 𝑘 dimensional subspace, then it may be the ‖E‖2𝐹 is much

smaller than 𝜖′‖A𝑟∖𝑚‖2𝐹 , which would make the presented bound tighter.

4.2 Reduction to Spectral Norm Matrix Approxima-
tion

The SVD based dimensionality reduction results presented in Section 4.1 are quite

strong, and SVD based dimensionality reduction is important in practice - it is widely

used for a number of tasks in data analysis so efficient implementations are readily

available. However for a number of reasons, we would like to show that projection-

cost-preserving sketches can be obtained using alternative techniques - specifically

random projection and feature selection.

Random projection which amounts to setting Ã = AΠ where Π ∈ R𝑑×𝑑′ is a

random Gaussian or sign matrix has the advantage that it is oblivious - Π is chosen

independently of A. In distributed and streaming settings this means that Π can be

applied to reduce the dimension of individual rows of A without considering the full

matrix. Feature selection has the advantage that Ã consists only of columns from our

original matrix. If A was sparse, Ã will typically also be sparse, possibly leading to
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runtime gains when solving constrained low-rank approximation over Ã. In addition,

Ã is more ‘interpretable’ – it gives a set of features that provide enough information

to approximately capture A’s distance to any low-rank subspace.

Finally, as will be discussed in Section 4.3, both random projection and feature

selection can be significantly faster than computing a partial SVD of A. Recall that

aside from 𝑘-means clustering, one special case of constrained low-rank approximation

is the unconstrained case, where we seek Z ∈ R𝑛×𝑘 such that ‖A − ZZ⊤A‖2𝐹 ≤

(1 + 𝜖)‖A − U𝑘U
⊤
𝑘 A‖2𝐹 = (1 + 𝜖)‖A − A𝑘‖2𝐹 . For this application, SVD based

dimensionality reduction is not useful – computing a projection-cost-preserving sketch

using an SVD or approximate SVD is harder than computing Z in the first place!

However, in this case random projection and column selection will let us quickly find a

projection-cost-preserving sketch and then compute Z using this sketch in time much

faster than if we actually computed the optimal subspace U𝑘.

We use a unified proof technique to show our column selection and random pro-

jection results. We rely on a reduction from the requirements of Lemma 16 to spectral

norm matrix approximation. Recall from Section 3.3.1 that, for column selection and

random projection, we can always write Ã = AR, where R ∈ R𝑑×𝑚 is either a ma-

trix with a single nonzero per column that selects and reweights columns of A or

a Johnson-Lindenstrauss random projection matrix. Our analysis will be based on

using A to construct a new matrix B such that, along with a few other conditions,

‖BRR⊤B⊤ −BB⊤‖2 < 𝜖

implies that Ã = AR satisfies the conditions of Lemma 16 and so is projection-cost-

preserving up to error (1± 𝜖). Specifically we show:

Lemma 20. Suppose that, for 𝑚 ≤ 2𝑘, we have some Z ∈ R𝑑×𝑚 with orthonormal

columns satisfying ‖A−AZZ⊤‖2𝐹 ≤ 2‖A𝑟∖𝑘‖2𝐹 and ‖A−AZZ⊤‖22 ≤ 2
𝑘
‖A𝑟∖𝑘‖2𝐹 . Set
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B ∈ R(𝑛+𝑚)×𝑑 to have B1 = Z⊤ as its first 𝑚 rows and B2 =
√
𝑘

‖A𝑟∖𝑘‖𝐹
·(A−AZZ⊤) as

its remaining 𝑛 rows. Then 1 ≤ ‖BB⊤‖2 ≤ 2, tr(BB⊤) ≤ 4𝑘, and tr(B2B
⊤
2 ) ≤ 2𝑘.

Furthermore, if

‖BRR⊤B⊤ −BB⊤‖2 < 𝜖 (4.7)

and

tr(B2RR⊤B⊤
2 )− tr(B2B

⊤
2 ) ≤ 𝜖𝑘, (4.8)

then Ã = AR satisfies the conditions of Lemma 16 with error 6𝜖.

Note that the construction of B is really an approach to splitting A into orthogonal

pairs as described in Section 3.3.1. None of our algorithms need to explicitly construct

B – it is simply a tool used in our analysis. The conditions on Z ensure that AZZ⊤ is

a good low-rank approximation for A in both the Frobenius norm and spectral norm

sense. We could simply define B with Z = V2𝑘, the top 2𝑘 right singular vectors of

A. In fact, this is what we will do for our random projection result. However, in order

to compute sampling probabilities for column selection, we will need to compute Z

explicitly and so want the flexibility of using an approximate SVD algorithm.

Proof. We first show that 1 ≤ ‖BB⊤‖2 ≤ 2. Notice that

B1B
⊤
2 = Z⊤(I− ZZ⊤)A⊤ ·

√
𝑘

‖A𝑟∖𝑘‖𝐹
= 0

so BB⊤ is a block diagonal matrix with an upper left block equal to B1B
⊤
1 = I

and lower right block equal to B2B
⊤
2 . The spectral norm of the upper left block

I is 1. This gives a lower bound on ‖BB⊤‖2 since any unit vector x that is zero

except in the first 𝑚 coordinates satisfies ‖BB⊤x‖22 = ‖x‖ = 1. ‖B2B
⊤
2 ‖2 =

‖B2‖22 = 𝑘
‖A𝑟∖𝑘‖2𝐹

· ‖A − AZZ⊤‖22. So by our spectral norm bound on A − AZZ⊤,
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‖B2B
⊤
2 ‖2 ≤ 2

𝑘
‖A𝑟∖𝑘‖2𝐹 𝑘

‖A𝑟∖𝑘‖2𝐹
= 2. Now, since BB⊤ is block diagonal, ‖BB⊤‖2 ≤

max{‖B1B
⊤
1 ‖2, ‖B2B

⊤
2 ‖2}. This is because for any x, letting x1 be x with all but the

first 𝑚 entries zeroed out and x2 = x− x1, we have

‖BB⊤x‖22 = ‖B1B
⊤
1 x1‖22 + ‖B2B

⊤
2 x2‖22 ≤ ‖B1B

⊤
1 ‖22‖x1‖22 + ‖B2B

⊤
2 ‖22‖x2‖22

≤ max{‖B1B
⊤
1 ‖22, ‖B2B

⊤
2 ‖22}

(︀
‖x1‖22 + ‖x2‖22

)︀
≤ max{‖B1B

⊤
1 ‖22, ‖B2B

⊤
2 ‖22}‖x‖22.

Since ‖B1B
⊤
1 ‖2 = 1 and ‖B2B

⊤
2 ‖2 = 2 this gives us the upper bound of 2 for ‖BB⊤‖2.

We next show the trace bounds claimed in the Lemma. tr(B2B
⊤
2 ) ≤ 𝑘

‖A𝑟∖𝑘‖2𝐹
‖A−

AZZ⊤‖2𝐹 ≤ 2𝑘 by our Frobenius norm condition on A − AZZ⊤. Additionally,

tr(BB⊤) = tr(B1B
⊤
1 ) + tr(B2B

⊤
2 ) ≤ 4𝑘 since tr(B1B

⊤
1 ) = tr(I𝑚×𝑚) ≤ 2𝑘.

We now proceed to the main reduction. Start by setting E = C̃−C = ARR⊤A⊤−

AA⊤. Now, choose W1 ∈ R𝑛×(𝑛+𝑚) to be [AZ, 0𝑛×𝑛] so W1B = AZZ⊤. Set

W2 ∈ R𝑛×(𝑛+𝑚) to be
[︁
0𝑛×𝑚, ‖A𝑟∖𝑘‖𝐹√

𝑘
· I𝑛×𝑛

]︁
. This insures that W2B =

‖A𝑟∖𝑘‖𝐹√
𝑘

B2 =

A−AZZ⊤. So, A = W1B + W2B and we can rewrite:

E = (W1BRR⊤B⊤W⊤
1 −W1BB⊤W⊤

1 ) + (W2BRR⊤B⊤W⊤
2 −W2BB⊤W⊤

2 )+

(W1BRR⊤B⊤W⊤
2 −W1BB⊤W⊤

2 ) + (W2BRR⊤B⊤W⊤
1 −W2BB⊤W⊤

1 )

We consider each term of this sum separately, showing that each corresponds to

one of the error terms described in Section 3.3.1 and included in Lemma 16.

Term 1:

E1 = (W1BRR⊤B⊤W⊤
1 −W1BB⊤W⊤

1 )

= AZZ⊤RR⊤ZZ⊤A⊤ −AZZ⊤ZZ⊤A⊤
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Clearly E1 is symmetric. If, as required by the conditions of the Lemma, ‖BRR⊤B⊤−

BB⊤‖2 < 𝜖, −𝜖I ⪯ (BRR⊤B⊤ −BB⊤) ⪯ 𝜖I. By Lemma 6, this gives

−𝜖W1W
⊤
1 ⪯ E1 ⪯ 𝜖W1W

⊤
1 . (4.9)

Furthermore, W1BB⊤W⊤
1 = AZZ⊤ZZ⊤A⊤ ⪯ AA⊤ = C. This is because ZZ⊤ is

an orthogonal projection matrix so for any x, x⊤AZZ⊤ZZ⊤A⊤x = ‖ZZ⊤A⊤x‖22 ≤

‖A⊤x‖22 = x⊤AA⊤x.

Since W1 is all zeros except in its first 𝑚 columns and since B1B
⊤
1 = I, W1W

⊤
1 =

W1BB⊤W⊤
1 . This gives us:

W1W
⊤
1 = W1BB⊤W⊤

1 ⪯ C. (4.10)

So overall, combining with (4.9) we have:

−𝜖C ⪯ E1 ⪯ 𝜖C, (4.11)

satisfying the error conditions of Lemma 16.

Term 2:

E2 = (W2BRR⊤B⊤W⊤
2 −W2BB⊤W⊤

2 )

= (A−AZZ⊤)RR⊤(A−AZZ⊤)⊤ − (A−AZZ⊤)(A−AZZ⊤)⊤

Again, E2 is symmetric and, noting that W2 just selects B2 from B and reweights

by ‖A𝑟∖𝑘‖𝐹√
𝑘

,

tr(E2) =
‖A𝑟∖𝑘‖2𝐹

𝑘
tr(B2RR⊤B⊤

2 −B2B
⊤
2 ) ≤ 𝜖‖A𝑟∖𝑘‖2𝐹 (4.12)

60



by condition (4.8). Furthermore,

𝑘∑︁
𝑖=1

|𝜆𝑖(E2)| ≤ 𝑘 · |𝜆1(E2)|

≤ 𝑘 ·
‖A𝑟∖𝑘‖2𝐹

𝑘
|𝜆1(B2RR⊤B⊤

2 −B2B
⊤
2 )|

≤ ‖A𝑟∖𝑘‖2𝐹 · |𝜆1(BRR⊤B⊤ −BB⊤)|

≤ 𝜖‖A𝑟∖𝑘‖2𝐹 (4.13)

by condition (4.7). So E2 also satisfies the conditions of Lemma 16.

Term 3:

E3 = (W1BRR⊤B⊤W⊤
2 −W1BB⊤W⊤

2 )

= AZZ⊤RR⊤(A−AZZ⊤)⊤ −AZZ⊤(A−AZZ⊤)⊤

The columns of E3 are in the column span of W1B = AZZ⊤, and so in the column

span of C, as required by Lemma 16. Now:

E⊤
3 C

+E3 = W2(BRR⊤B⊤ −BB⊤)W⊤
1 C

+W1(BRR⊤B⊤ −BB⊤)W⊤
2 .

W1W
⊤
1 ⪯ C by (4.10), so W⊤

1 C
+W1 ⪯ I. So:

E⊤
3 C

+E3 ⪯W2(BRR⊤B⊤ −BB⊤)2W⊤
2

which gives:

‖E⊤
3 C

+E3‖2 ≤ ‖W2(BRR⊤B⊤ −BB⊤)2W⊤
2 ‖2

≤
‖A𝑟∖𝑘‖2𝐹

𝑘
‖(BRR⊤B⊤ −BB⊤)2‖2 ≤ 𝜖2

‖A𝑟∖𝑘‖2𝐹
𝑘
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by condition (4.7). Now, E3 and hence E⊤
3 C

+E3 only have rank 𝑚 ≤ 2𝑘. The

trace of a matrix is the sum of its eigenvalues, so for any symmetric matrix tr(M) =∑︀𝑟
𝑖=1 𝜎𝑖(M) ≤ 𝑟‖M‖2. So

tr(E⊤
3 C

+E3) ≤ 2𝜖2‖A𝑟∖𝑘‖2𝐹 . (4.14)

Term 4:

E4 = (W2BRR⊤B⊤W⊤
1 −W2BB⊤W⊤

1 )

= (A−AZZ⊤)RR⊤ZZ⊤A⊤ − (A−AZZ⊤)ZZ⊤A⊤

E4 = E⊤
3 and thus we immediately have:

tr(E4C
+E⊤

4 ) ≤ 2𝜖2‖A𝑟∖𝑘‖2𝐹 . (4.15)

Combining Bounds on Individual Terms

Together, (4.11), (4.12), (4.13), (4.14), and (4.15) ensure that Ã = AR satisfies

Lemma 16 with error 𝜖 + (𝜖 + 𝜖) +
√

2𝜖 +
√

2𝜖 ≤ 6𝜖.

4.3 Dimensionality Reduction Using Random Pro-
jection and Feature Selection

The reduction in Lemma 20 reduces the problem of finding a projection-cost-preserving

sketch to well understood matrix sketching guarantees – subspace embedding (4.7) and

trace preservation (4.8). A variety of known sketching techniques achieve the error

bounds required. This includes several families of random projection matrices (also

62



known as subspace embedding matrices or Johnson-Lindenstrauss random projection

matrices) along with randomized and deterministic column selection techniques. By

simply applying known bounds along with Lemma 20, we show that all these methods

yield projection-cost-preserving sketches.

We first give a Lemma summarizing known results on subspace embedding and

trace preservation. To better match previous writing in this area, the matrix M given

below will correspond to a scaling of B⊤ in Lemma 20.

Lemma 21. Let M be a matrix with 𝑞 rows, ‖M⊤M‖2 ≤ 1, and tr(M⊤M)
‖M⊤M‖2 ≤ 𝑘.

Suppose R is a sketch drawn from any of the following probability distributions on

matrices. Then, for any 𝜖 < 1 and 𝛿 < 1/2, ‖M⊤R⊤RM − M⊤M‖2 ≤ 𝜖 and⃒⃒
tr(M⊤R⊤RM)− tr(M⊤M)

⃒⃒
≤ 𝜖𝑘 with probability at least 1− 𝛿.

1. R ∈ R𝑑′×𝑞 a dense Johnson-Lindenstrauss matrix with 𝑑′ = 𝑂
(︁

𝑘+log(1/𝛿)
𝜖2

)︁
,

where each element is chosen independently and uniformly as ±
√︀

1/𝑑′ [Ach03].

Additionally, the same matrix family except with elements only 𝑂(log(𝑘/𝛿))-wise

independent [CW09].

2. R ∈ R𝑑′×𝑞 a fully sparse embedding matrix with 𝑑′ = 𝑂
(︁

𝑘2

𝜖2𝛿

)︁
, where each column

has a single ±1 in a random position (sign and position chosen uniformly and

independently). Additionally, the same matrix family with position and sign

determined by a 4-wise independent hash function [CW13, MM13, NN13].

3. R an OSNAP sparse subspace embedding matrix [NN13]. Such a matrix has

a limited number of nonzero entries per column, giving a tradeoff between the

fully dense and fully sparse Families 1 and 2.

4. R ∈ R𝑑′×𝑞 a matrix that samples and reweights 𝑑′ = 𝑂
(︁

𝑘 log(𝑘/𝛿)
𝜖2

)︁
rows of M.

Each of the 𝑑′ selected rows is chosen independently and set to be M𝑖 with proba-

bility proportional to ‖M𝑖‖22 (i.e. with probability ‖M𝑖‖22
‖M‖2𝐹

). Once selected, the row
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is reweighted proportional to the inverse of this probability – by
√︁

‖M‖2𝐹
𝑑′‖M𝑖‖22

. Alter-

natively, an R that samples 𝑂
(︁∑︀

𝑖 𝑡𝑖 log(
∑︀

𝑖 𝑡𝑖/𝛿)

𝜖2

)︁
rows of M each with probability

proportional 𝑡𝑖, where 𝑡𝑖 ≥ ‖M𝑖‖22 for all 𝑖 [HKZ12].

5. R ∈ R𝑑′×𝑞 a ‘BSS matrix’: a matrix generated by a deterministic polyno-

mial time algorithm that selects and reweights 𝑑′ = 𝑂
(︀

𝑘
𝜖2

)︀
rows of M [BSS12,

CNW14].

Lemma 21 requires that M has stable rank tr(M⊤M)
‖M⊤M‖2 =

‖M‖2𝐹
‖M‖22

≤ 𝑘. It is well known

(see citations in Lemma) that if M has rank ≤ 𝑘, the ‖M⊤R⊤RM −M⊤M‖2 ≤ 𝜖

bound holds for families 1, 2, and 3 because they are all subspace embedding matrices.

It can be shown that the relaxed stable rank guarantee is sufficient as well [CNW14].

Note however that it is possible to avoid this new stable rank result. For completeness,

we include an alternative proof for families 1, 2, and 3 under Theorem 22 that gives

a slightly worse 𝛿 dependence for some constructions.

For family 4, the ‖M⊤R⊤RM −M⊤M‖2 ≤ 𝜖 bound follows from Example 4.3

in [HKZ12]. Family 5 uses a variation on the algorithm introduced in [BSS12] and

extended in [CNW14] to the stable rank case.

Since ‖M⊤M‖2 ≤ 1, our requirement that tr(M⊤M)

‖M‖22
≤ 𝑘 ensures that tr(M⊤M) =

‖M‖2𝐹 ≤ 𝑘. Thus, the
⃒⃒
tr(M⊤R⊤RM)− tr(M⊤M)

⃒⃒
≤ 𝜖𝑘 bound holds as long as

|‖RM‖2𝐹 − ‖M‖2𝐹 | ≤ 𝜖‖M‖2𝐹 . This Frobenius norm bound is standard for embedding

matrices and can be proven via the JL-moment property (see Lemma 2.6 in [CW09]

or Problem 2(c) in [Nel13]). For family 1, a proof of the required moment bounds

can be found in Lemma 2.7 of [CW09]. For family 2 see Remark 23 in [KN14]. For

family 3 see Section 6 in [KN14]. For family 4, the bound follows from applying a

Chernoff bound.

For family 5, the Frobenius norm condition is met by computing R using a matrix

M′. M′ is formed by appending a column to M whose 𝑖𝑡ℎ entry is equal to ‖M𝑖‖2 –
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the ℓ2 norm of the 𝑖th row of M. The stable rank condition still holds for M′ with

𝑘′ = 2𝑘 since appending the new column doubles the squared Frobenius norm and

can only increase spectral norm so ‖M′‖2𝐹
‖M′‖22

≤ 2𝑘. So we know that R preserves M′ up

to small spectral norm error. This ensures that it must also preserve the submatrices

M⊤M and (M′⊤M′)𝑖𝑖. In particular we must have |(M′⊤M′ −M′⊤R⊤RM′)𝑖𝑖| =

|‖R‖2𝐹 − ‖M‖2𝐹 | ≤ 𝜖‖M′‖22 ≤ 2𝜖‖M‖2𝐹 . Adjusting 𝜖 by a constant (dividing by 2)

then gives the required bound.

To apply the matrix families from Lemma 21 to Lemma 20, we first set M to 1
2
B⊤

and use the sketch matrix R⊤. Applying Lemma 21 with 𝜖′ = 𝜖/4 gives requirement

(4.7) with probability 1 − 𝛿. For families 1, 2, and 3, (4.8) follows from applying

Lemma 21 separately with M = 1
2
B⊤

2 and 𝜖′ = 𝜖/4. For family 4, the trace condition

on B2 follows from noting that the sampling probabilities computed using B upper

bound the correct probabilities for B2 and are thus sufficient. For family 5, to get

the trace condition we can use the procedure described above, except B′ has a row

with the column norms of B2 as its entries, rather than the column norms of B.

4.3.1 Random Projection

Since the first three matrix families listed in Lemma 21 are all oblivious (do not depend

on M) we can apply Lemma 20 with any suitable B, including the one coming from

the exact SVD with Z = V2𝑘. Note that B does not need to be computed at all to

apply these oblivious reductions – it is purely for the analysis. This gives our main

random projection result:

Theorem 22. Let R ∈ R𝑑′×𝑑 be drawn from any of the first three matrix families

from Lemma 21. Then, for any matrix A ∈ R𝑛×𝑑, with probability at least 1− 𝑂(𝛿),

AR⊤ is a rank 𝑘 projection-cost-preserving sketch of A (i.e. satisfies Definition 11)

with error 𝑂(𝜖).
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Family 1 gives oblivious reduction to 𝑂(𝑘/𝜖2) dimensions, while family 2 achieves

𝑂(𝑘2/𝜖2) dimensions with the advantage of being faster to apply to A, especially

when our data is sparse. Family 3 allows a tradeoff between output dimension and

computational cost.

A simple proof of Theorem 22 can be obtained that avoids work in [CNW14] and

only depends on more well establish Johnson-Lindenstrauss properties. We briefly

sketch this proof here. We set Z = V𝑘 and bound the error terms from Lemma 20

directly (without going through Lemma 21). The bound on E1 (4.11) follows from

noting that W1B = AV𝑘V
⊤
𝑘 only has rank 𝑘. Thus, we can apply the fact that

families 1, 2, and 3 are subspace embeddings to claim that tr(W1BRR⊤B⊤W⊤
1 −

W1BB⊤W⊤
1 ) ≤ 𝜖 tr(W1BB⊤W⊤

1 ).

The bound on E2 (4.13) follows from first noting that, since we set Z = V𝑘,

E2 = (A𝑟∖𝑘RR⊤A⊤
𝑟∖𝑘 − A𝑟∖𝑘A

⊤
𝑟∖𝑘). Applying Theorem 21 of [KN14] (approximate

matrix multiplication) along with the referenced JL-moment bounds for our first three

families gives ‖E2‖𝐹 ≤ 𝜖√
𝑘
‖A𝑟∖𝑘‖2𝐹 . Since

∑︀𝑘
𝑖=1 |𝜆𝑖(E2)| ≤

√
𝑘‖E2‖𝐹 , (4.13) follows.

Note that (4.12) did not require the stable rank generalization, so we do not need any

modified analysis.

Finally, the bounds on E3 and E4, (4.14) and (4.15), follow from the fact that:

tr(E⊤
3 C

+E3) = ‖Σ−1U⊤(W1BRR⊤B⊤W⊤
2 −W1BB⊤W⊤

2 )‖2𝐹

= ‖V𝑘RR⊤A⊤
𝑟∖𝑘‖2𝐹 ≤ 𝜖2‖A𝑟∖𝑘‖2𝐹

again by Theorem 21 of [KN14] and the fact that ‖V𝑘‖2𝐹 = 𝑘. In both cases, we

apply the approximate matrix multiplication result with error 𝜖/
√
𝑘. For family 1,

the required moment bound needs a sketch with dimension 𝑂
(︁

𝑘 log(1/𝛿)
𝜖2

)︁
(see Lemma

2.7 of [CW09]). Thus, our alternative proof slightly increases the 𝛿 dependence stated

in Lemma 21.
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4.3.2 Feature Sampling

Feature selection methods like column sampling are often preferred to feature extrac-

tion methods like random projection or SVD reduction. Sampling produces an output

matrix that is easier to interpret, indicating which original data dimensions are most

‘important’. Furthermore, the output sketch often maintains characteristics of the

input data (e.g. sparsity) that may have substantial runtime and memory benefits

when performing final data analysis.

Efficient Computation of Sampling Probabilities

The guarantees of family 4 immediately imply that feature selection via column sam-

pling suffices for obtaining a (1 + 𝜖) error projection-cost-preserving sketch. However,

unlike the first three families, family 4 is non-oblivious – our column sampling proba-

bilities and new column weights are proportional to the squared column norms of B.

Hence, computing these probabilities requires actually computing low-rank subspace

Z satisfying the conditions of Lemma 20. Specifically, the sampling probabilities in

Lemma 21 are proportional to the squared column norms of Z⊤ added to a multiple

of those of A − AZZ⊤. If Z is chosen to equal V2𝑘 (as suggested for Lemma 20),

computing the subspace alone could be costly. So, we specifically structured Lemma

20 to allow for the use of an approximation to V2𝑘. Additionally, we show that, once

a suitable Z is identified, for instance using an approximate SVD algorithm, sampling

probabilities can be approximated in nearly input-sparsity time, without having to

explicitly compute B. Formally, letting nnz(A) be the number of non-zero entries in

our data matrix A,

Lemma 23. For any A ∈ R𝑛×𝑑, given an orthonormal basis Z ∈ R𝑑×𝑚 for a rank 𝑚

subspace of R𝑑, for any 𝛿 > 0, there is an algorithm that can compute constant factor

approximations of the column norms of A − AZZ⊤ in time 𝑂(nnz(A) log(𝑑/𝛿) +

67



𝑚𝑑 log(𝑑/𝛿)) time, succeeding with probability 1− 𝛿.

Note that, as indicated in the statement of Lemma 21, the sampling routine

analyzed in [HKZ12] is robust to using norm overestimates. Scaling norms up by our

constant approximation factor (to obtain strict overestimates) at most multiplies the

number of columns sampled by a constant.

Proof. The approximation is obtained via a Johnson-Lindenstrauss transform. To

approximate the column norms of A − AZZ⊤ = A(I − ZZ⊤), we instead com-

pute ΠA(I−ZZ⊤), where Π is a Johnson-Lindenstrauss matrix with 𝑂(log(𝑑/𝛿)/𝜖2)

rows drawn from, for example, family 1 of Lemma 21. By the standard Johnson-

Lindenstrauss Lemma [Ach03], with probability at least 1 − 𝛿, every column norm

will be preserved to within 1± 𝜖. We may fix 𝜖 = 1/2.

Now, ΠA(I − ZZ⊤) can be computed in steps. First, compute ΠA by ex-

plicitly multiplying the matrices. Since Π has 𝑂(log(𝑑/𝛿)) rows, this takes time

𝑂(nnz(A) log(𝑑/𝛿)). Next, multiply this matrix on the right by Z in time 𝑂(𝑚𝑑 log(𝑑/𝛿)),

giving ΠAZ, with 𝑂(log(𝑑/𝛿)) rows and 𝑚 columns. Next, multiply on the right by

Z⊤, giving ΠAZZ⊤, again in time 𝑂(𝑚𝑑 log(𝑑/𝛿)). Finally, subtracting from ΠA

gives the desired matrix; the column norms can then be computed with a linear scan

in time 𝑂(𝑑 log(𝑑/𝛿)).

Again, the sampling probabilities required for family 4 are proportional to the sum

of the squared column norms of Z⊤ and a multiple of those of A −AZZ⊤. Column

norms of Z⊤ take only linear time in the size of Z to compute. We need to multiply

the squared column norms of A−AZZ⊤ by 𝑘
‖A𝑟∖𝑘‖2𝐹

, which we can estimate up to a

constant factor using an approximate rank 𝑘 SVD. So, ignoring the approximate SVD

runtimes for now, by Lemma 23, the total runtime of computing sampling probabilities

is 𝑂(nnz(A) log(𝑑/𝛿) + 𝑚𝑑 log(𝑑/𝛿)).

We must address a further issue regarding the computation of Z: a generic approx-
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imate SVD algorithm may not satisfy the spectral norm requirement on A−AZZ⊤

from Lemma 20. Our analysis in Section 4.4.1 can be used to obtain fast algorithms

for approximate SVD that do give the required spectral guarantee – i.e. produce a

Z ∈ R𝑑×2𝑘 with ‖A−AZZ⊤‖2𝐹 ≤ 2
𝑘
‖A𝑟∖𝑘‖2𝐹 . Nevertheless, it is possible to argue that

even a conventional Frobenius norm error guarantee suffices.

The trick is to use a Z′ in Lemma 20 that differs from the Z used to compute

sampling probabilities. Specifically, we will choose a Z′ that represents a potentially

larger subspace. Given a Z satisfying the Frobenius norm guarantee, consider the

SVD of A − AZZ⊤ and create Z′ by appending to Z all singular directions with

squared singular value > 2
𝑘
‖A𝑟∖𝑘‖2𝐹 . This ensures that the spectral norm of the newly

defined A −AZ′Z′⊤ is ≤ 2
𝑘
‖A𝑟∖𝑘‖2𝐹 . Additionally, we append at most 𝑘 rows to Z.

Since a standard approximate SVD can satisfy the Frobenius guarantee with a rank

𝑘 Z, Z′ has rank ≤ 2𝑘, which is sufficient for Lemma 20. Furthermore, this procedure

can only decrease column norms for the newly defined B′: effectively, B′ has all the

same right singular vectors as B, but with some squared singular values decreased

from > 2 to 1. So, the column norms we compute will still be valid over estimates

for the column norms of B.

Subspace Score Sampling

Putting everything together gives us our main feature sampling result:

Theorem 24. For any A ∈ R𝑛×𝑑, given an orthonormal basis Z ∈ R𝑑×𝑘 satisfying

‖A−AZZ⊤‖2𝐹 ≤ 2‖A𝑟∖𝑘‖2𝐹 , for any 𝜖 < 1 and 𝛿, there is an algorithm running in time

𝑂(nnz(A) log(𝑑/𝛿)+𝑘𝑑 log(𝑑/𝛿)) returning Ã containing 𝑂(𝑘 log(𝑘/𝛿)/𝜖2) reweighted

columns of A, such that, with probability at least 1− 𝛿, Ã is a rank 𝑘 projection-cost-

preserving sketch for A (i.e. satisfies Definition 11) with error 𝜖. Specifically, this
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algorithm samples the 𝑖𝑡ℎ column of A with probability proportional to:

𝑠𝑖 = ‖
(︀
Z⊤)︀

𝑖
‖22 +

2𝑘

‖A−AZZ⊤‖2𝐹
· ‖

(︀
A−AZZ⊤)︀

𝑖
‖22.

We call 𝑠𝑖 the subspace score of the 𝑖𝑡ℎ column of A with respect to the subspace Z.

Connections with Prior Work

It is worth noting the connection between our column sampling procedure and recent

work on column based matrix reconstruction [DRVW06, GS12b, BDMI14, BW14].

Our result shows that it is possible to start with a basis Z giving a constant fac-

tor low-rank approximation of A and sample the columns of A by a combination of

the row norms of Z and and the column norms of A−AZZ𝑇 . In other words, to

sample by a combination of the leverage scores with respect to Z and the residu-

als after projecting the rows of A onto the subspace spanned by Z. We call these

combined scores subspace scores with respect to the subspace Z. In [BW14], a very

similar technique is used in Algorithm 1. A is first sampled according to the leverage

scores with respect to Z. Then, in the process referred to as adaptive sampling, A

is sampled by the column norms of the residuals after A is projected to the columns

selected in the first round (see Section 3.4.3 of [BW14] for details on the adaptive

sampling procedure). Intuitively, our single-shot procedure avoids this adaptive step

by incorporating residual probabilities into the initial sampling probabilities.

Additionally, note that our procedure recovers a projection-cost-preserving sketch

with �̃�(𝑘/𝜖2) columns. In other words, if we compute the top 𝑘 singular vectors

of our sketch, projecting to these vectors will give a (1 + 𝜖) approximate low-rank

approximation to A. In [BW14], the 1/𝜖 dependence is linear, rather than quadratic,

but the selected columns satisfy a weaker notion: that there exists some good 𝑘-rank

approximation falling within the span of the selected columns.

70



4.3.3 Deterministic Feature Selection

Finally, family 5 gives an algorithm for feature selection that produces a (1 + 𝜖)

projection-cost-preserving sketch with just 𝑂(𝑘/𝜖2) columns. The BSS Algorithm is

a deterministic procedure introduced in [BSS12] for selecting rows from a matrix M

using a selection matrix R so that ‖M⊤R⊤RM −M⊤M‖2 ≤ 𝜖. The algorithm is

slow – it runs in poly(𝑛, 𝑞, 1/𝜖) time for an M with 𝑛 columns and 𝑞 rows. However,

the procedure can be advantageous over sampling methods like family 4 because it

reduces a rank 𝑘 matrix to 𝑂(𝑘) dimensions instead of 𝑂(𝑘 log 𝑘). [CNW14] extends

this result to matrices with stable rank ≤ 𝑘.

Furthermore, it is possible to substantially reduce runtime of the procedure in

practice. A can first be sampled down to 𝑂(𝑘 log 𝑘/𝜖2) columns using Theorem 24

to produce A. Additionally, as for family 4, instead of fully computing B, we can

compute ΠB where Π is a sparse subspace embedding (for example from family 2 ).

ΠB will have dimension just 𝑂((𝑘 log 𝑘)2/𝜖6)×𝑂(𝑘 log 𝑘/𝜖2). As Π will preserve the

spectral norm of B, it is clear that the column subset chosen for ΠB will also be a

valid subset for B. Overall this strategy gives:

Theorem 25. For any A ∈ R𝑛×𝑑 and any 𝜖 < 1, 𝛿 > 0, there is an algorithm run-

ning in time 𝑂(nnz(A) log(𝑑/𝛿)+poly(𝑘, 1/𝜖, log(1/𝛿))𝑑) which returns Ã containing

𝑂(𝑘/𝜖2) reweighted columns of A, such that, with probability at least 1 − 𝛿, Ã is a

rank 𝑘 projection-cost-preserving sketch for A (i.e. satisfies Definition 11) with error

𝜖.

4.4 Dimensionality Reduction Using Non-Oblivious
Random Projection

In this section, we show how to obtain projection-cost-preserving sketches using a

non-oblivious random projection technique that is standard for approximate SVD
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algorithms [Sar06, CW13]. To obtain a sketch of A, we first multiply on the left

by a Johnson-Lindenstrauss matrix with 𝑂(𝑘/𝜖) rows. We then project the rows

of A onto the row span of this much shorter matrix to obtain Ã. In this way, we

have projected A to a random subspace, albeit one that depends on the rows of A

(i.e. non-obliviously chosen). This method gives an improved 𝜖 dependence over the

oblivious approach of multiplying A on the right by a single Johnson-Lindenstrauss

matrix (Theorem 22). Specifically, we show:

Theorem 26. For 0 ≤ 𝜖 < 1, let R be drawn from one of the first three Johnson-

Lindenstrauss distributions of Lemma 21 with 𝜖′ = 𝑂(1) and 𝑘′ = 𝑂(𝑘/𝜖). Then,

for any A ∈ R𝑛×𝑑, let A = RA and let Z be a matrix whose columns form an

orthonormal basis for the rowspan of A. With probability 1 − 𝛿, Ã = AZ is a

projection-cost-preserving sketch for A satisfying the conditions of Definition 12 with

error 𝜖.

As an example, if R is a dense Johnson-Lindenstrauss matrix (family 1 in Lemma

21), it will reduce A to 𝑂(𝑘
′+log(1/𝛿)

𝜖′2
) = 𝑂(𝑘/𝜖+log(1/𝛿)) rows and thus AZ will have

𝑂(𝑘/𝜖 + log(1/𝛿)) columns.

As usual (see Section 4.1), we actually show that AZZ⊤ is a projection-cost-

preserving sketch and note that AZ is as well since it is simply a rotation. Our proof

requires two steps. In Theorem 18, we showed that any rank ⌈𝑘/𝜖⌉ approximation

for A with Frobenius norm cost at most (1 + 𝜖) from optimal yields a projection-

cost-preserving sketch. Here we start by showing that any low-rank approximation

with small spectral norm cost also suffices as a projection-cost-preserving sketch. We

then show that non-oblivious random projection to 𝑂(𝑘/𝜖) dimensions gives such a

low-rank approximation, completing the proof. The spectral norm low-rank approxi-

mation result follows:

Lemma 27. For any A ∈ R𝑛×𝑑 and any orthonormal matrix Z ∈ R𝑑×𝑚 satisfy-

ing ‖A − AZZ⊤‖22 ≤ 𝜖
𝑘
‖A𝑟∖𝑘‖2𝐹 , the sketch Ã = AZZ⊤ satisfies the conditions of
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Definition 12. Specifically, for all rank 𝑘 orthogonal projections P,

‖A−PA‖2𝐹 ≤ ‖Ã−PÃ‖2𝐹 + 𝑐 ≤ (1 + 𝜖)‖A−PA‖2𝐹 .

Proof. As in the original approximate SVD proof (Theorem 18), we set E = −(A−

AZZ⊤)(A−AZZ⊤)⊤. C̃ = C+E, E is symmetric, and E ⪯ 0. Furthermore, by our

spectral norm approximation bound,

𝑘∑︁
𝑖=1

|𝜆𝑖(E)| ≤ 𝑘‖A−AZZ⊤‖22 ≤ 𝜖‖A𝑟∖𝑘‖2𝐹 .

The result then follows directly from Lemma 15.

Next we show that the non-oblivious random projection technique described sat-

isfies the spectral norm condition required for Lemma 27. Combining these results

gives us Theorem 26.

Lemma 28. For 0 ≤ 𝜖 < 1, let R be drawn from one of the first three distributions

of Lemma 21 with 𝜖′ = 𝑂(1) and 𝑘′ = ⌈𝑘/𝜖⌉ + 𝑘 − 1. Then, for any A ∈ R𝑛×𝑑, let

A = RA and let Z be a matrix whose columns form an orthonormal basis for the

rowspan of A. Then, with probability 1− 𝛿,

‖A−AZZ⊤‖22 ≤ 𝑂
(︁ 𝜖

𝑘

)︁
‖A𝑟∖𝑘‖2𝐹 . (4.16)

Proof. To prove this Lemma, we actually consider an alternative projection technique:

multiply A on the left by R to obtain A, find its best rank 𝑘′ approximation A𝑘′ , then

project the rows of A onto the rows of A𝑘′ . Letting Z′ be a matrix whose columns

are an orthonormal basis for the rows of A𝑘′ , it is clear that

‖A−AZZ⊤‖22 ≤ ‖A−AZ′Z′⊤‖22. (4.17)
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A𝑘′ ’s rows fall within the row span of A, so the result of projecting to the orthogonal

complement of A’s rows is unchanged if we first project to the orthogonal complement

of A𝑘′ ’s rows. Then, since projection can only decrease spectral norm,

‖A(I− ZZ⊤)‖22 = ‖A(I− Z′Z′⊤)(I− ZZ⊤)‖22 ≤ ‖A(I− Z′Z′⊤)‖22,

giving Equation (4.17).

So we just need to show that ‖A − AZ′Z′⊤‖22 ≤ 𝜖
𝑘
‖A𝑟∖𝑘‖2𝐹 . Note that, since

𝑘′ = ⌈𝑘/𝜖⌉+ 𝑘 − 1,

‖A𝑟∖𝑘′‖22 = 𝜎2
𝑘′+1(A) ≤ 1

𝑘

𝑘′+1∑︁
𝑖=𝑘′+2−𝑘

𝜎2
𝑖 (A) ≤ 𝜖

𝑘

𝑘′+2−𝑘∑︁
𝑖=𝑘+1

𝜎2
𝑖 (A) ≤ 𝜖

𝑘
‖A𝑟∖𝑘‖2𝐹 .

Additionally, ‖A𝑟∖𝑘′‖2𝐹 ≤ ‖A𝑟∖𝑘‖2𝐹 and 1
𝑘′
≤ 𝑘

𝜖
. So to prove (4.16) it suffices to show:

‖A−AZ′Z′⊤‖22 ≤ 𝑂(1)

(︂
‖A𝑟∖𝑘′‖22 +

1

𝑘′‖A𝑟∖𝑘′‖2𝐹
)︂
.

In fact, this is just a statement that Z′ gives a near optimal low-rank approxima-

tion with a spectral norm guarantee, similar to what we have already shown for the

Frobenius norm! Specifically, Z′ is a span for the best 𝑘′ rank approximation of A.

A = RA is a rank 𝑘′ projection-cost-preserving sketch for A as given in Theorem

22 with 𝜖′ = 𝑂(1). Unfortunately the projection-cost-preserving sketch will only give

us multiplicative error on the Frobenius norm. We require a multiplicative error on

the spectral norm, plus a small additive Frobenius norm error. Extending our Frobe-

nius norm approximation guarantees to give this requirement is straightforward but

tedious. The prove is included below, giving us Lemma 28 and thus Theorem 26. We

also note that a sufficient bound is given in Theorem 10.8 of [HMT11], however we

include an independent proof for completeness and to illustrate the application of our

techniques to spectral norm approximation guarantees.
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4.4.1 Spectral Norm Projection-Cost-Preserving Sketches

In this section we extend our results on sketches that preserve the Frobenius norm

projection-cost, ‖A−PA‖2𝐹 , to sketches that preserve the spectral norm cost, ‖A−PA‖22.

The main motivation is to prove the non-oblivious projection results above, however

spectral norm guarantees may be useful for other applications. We first give a spectral

norm version of Lemma 16:

Lemma 29. For any A ∈ R𝑛×𝑑 and sketch Ã ∈ R𝑛×𝑚, let C = AA⊤ and C̃ = ÃÃ
⊤
.

If we can write C̃ = C + E1 + E2 + E3 + E4 where

1. E1 is symmetric and −𝜖1C ⪯ E1 ⪯ 𝜖1C

2. E2 is symmetric, ‖E2‖2 ≤ 𝜖2
𝑘
‖A𝑟∖𝑘‖2𝐹

3. The columns of E3 fall in the column span of C and ‖E⊤
3 C

+E3‖2 ≤ 𝜖23
𝑘
‖A𝑟∖𝑘‖2𝐹

4. The rows of E4 fall in the row span of C and ‖E4C
+E⊤

4 ‖2 ≤
𝜖24
𝑘
‖A𝑟∖𝑘‖2𝐹

then for any rank k orthogonal projection P and 𝜖 ≥ 𝜖1 + 𝜖2 + 𝜖3 + 𝜖4:

(1− 𝜖)‖A−PA‖22 −
𝜖

𝑘
‖A−PA‖2𝐹 ≤ ‖Ã−PÃ‖22 + 𝑐 ≤ (1 + 𝜖)‖A−PA‖22 +

𝜖

𝑘
‖A−PA‖2𝐹 .

Proof. Using the notation Y = I − P we have that ‖A − PA‖22 = ‖YCY‖2 and

‖Ã−PÃ‖22 = ‖YC̃Y‖2. Furthermore:

‖YC̃Y‖2 ≤ ‖YCY‖2 + ‖YE1Y‖2 + ‖YE2Y‖2 + ‖YE3Y‖2 + ‖YE4Y‖2 (4.18)

and

‖YC̃Y‖2 ≥ ‖YCY‖2 − ‖YE1Y‖2 − ‖YE2Y‖2 − ‖YE3Y‖2 − ‖YE4Y‖2. (4.19)
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Our bounds on E1 immediately give ‖YE1Y‖2 ≤ 𝜖1‖YCY‖2. The spectral norm

bound on E2, the fact that Y is an orthogonal projection, and the optimality of the

SVD for Frobenius norm low-rank approximation gives:

‖YE2Y‖2 ≤ ‖E2‖2 ≤
𝜖2
𝑘
‖A𝑟∖𝑘‖2𝐹 ≤

𝜖2
𝑘
‖A−PA‖2𝐹 .

Next, since E3’s columns fall in the column span of C, CC+E3 = E3. Thus,

‖YE3Y‖2 ≤ ‖YE3‖2 = ‖(YC)C+(E3)‖2.

We can rewrite the spectral norm as:

‖(YC)C+(E3)‖2 = max
a,b∈R𝑛,‖a‖2=‖b‖2=1

√︀
(a⊤YC)C+(E3b).

Since C+ is positive semidefinite, ⟨x,y⟩ = x⊤C+y is a semi-inner product and by the

Cauchy-Schwarz inequality,

‖(YC)C+(E3)‖2 ≤ max
a,b∈R𝑛,‖a‖2=‖b‖2=1

√︁
(a⊤YCC+CYa)1/2 · (b⊤E3C+E3b)1/2

≤
√︀
‖YCY‖2 · ‖E3C+E3‖2

≤ 𝜖3√
𝑘
‖A−PA‖2‖A𝑟∖𝑘‖𝐹

≤ 𝜖3
2
‖A−PA‖22 +

𝜖3
2𝑘
‖A−PA‖2𝐹 .

The final inequality follows from the AM-GM inequality. For E4 a symmetric argu-

ment gives:

‖YE4Y‖2 ≤
𝜖4
2
‖A−PA‖22 +

𝜖4
2𝑘
‖A−PA‖2𝐹 .
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Finally, combining the bounds for E1, E2, E3, and E4 with (4.18) and (4.19) gives:

(1− 𝜖)‖A−PA‖22 −
𝜖

𝑘
‖A−PA‖2𝐹 ≤ ‖Ã−PÃ‖22 ≤ (1 + 𝜖)‖A−PA‖22 +

𝜖

𝑘
‖A−PA‖2𝐹 .

It is easy to see that the conditions for Lemma 29 holds for Ã = AR as long

as the conditions of Lemma 20 are satisfied. As before choose W1 ∈ R𝑛×(𝑛+𝑚) such

that W1B = AZZ⊤ and W2 ∈ R𝑛×(𝑛+𝑚) such that W2B = A−AZZ⊤. Recall that

E = C̃−C = ARR⊤A⊤ −AA⊤ and thus,

E = (W1BRR⊤B⊤W⊤
1 −W1BB⊤W⊤

1 ) + (W2BRR⊤B⊤W⊤
2 −W2BB⊤W⊤

2 )+

(W1BRR⊤B⊤W⊤
2 −W1BB⊤W⊤

2 ) + (W2BRR⊤B⊤W⊤
1 −W2BB⊤W⊤

1 ).

As in Lemma 20, we set E1 = (W1BRR⊤B⊤W⊤
1 −W1BB⊤W⊤

1 ) and have

−𝜖C ⪯ E1 ⪯ 𝜖C. (4.20)

We set E2 = (W2BRR⊤B⊤W⊤
2 −W2BB⊤W⊤

2 ) and have:

‖E2‖2 =
‖A𝑟∖𝑘‖2𝐹

𝑘
· ‖B2RR⊤B⊤

2 −B2B
⊤
2 ‖2 ≤

𝜖

𝑘
‖A𝑟∖𝑘‖2𝐹 . (4.21)

Set E3 = (W1BRR⊤B⊤W⊤
2 −W1BB⊤W⊤

2 ). As shown in the proof of Lemma 20,

‖E⊤
3 C

+E3‖2 ≤
𝜖2

𝑘
‖A𝑟∖𝑘‖2𝐹 . (4.22)

Finally, setting E4 = (W2BRR⊤B⊤W⊤
1 −W2BB⊤W⊤

1 ) = E⊤
3 we have

‖E4C
+E⊤

4 ‖2 ≤
𝜖2

𝑘
‖A𝑟∖𝑘‖2𝐹 . (4.23)
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(4.20), (4.21), (4.22), and (4.23) together ensure that Ã = AR satisfies Lemma 29

with error 4𝜖. Together, Lemmas 20 and 29 give a spectral norm version of Theorems

22, 24, and 25:

Theorem 30. Let R ∈ R𝑑′×𝑑 be drawn from any of the matrix families of Lemma 21

with error 𝑂(𝜖). Then for any matrix A ∈ R𝑛×𝑑, with probability at least 1 − 𝑂(𝛿),

AR⊤ is a rank 𝑘 spectral norm projection-cost-preserving sketch of A with error 𝜖.

Specifically, for any rank 𝑘 orthogonal projection P

(1− 𝜖)‖A−PA‖22 −
𝜖

𝑘
‖A−PA‖2𝐹 ≤ ‖Ã−PÃ‖22 ≤ (1 + 𝜖)‖A−PA‖22 +

𝜖

𝑘
‖A−PA‖2𝐹 .

Applying Theorem 30 to A⊤ and setting 𝜖 to a constant gives the requirements

for Lemma 28. Note that, in general, a similar analysis to Lemma 13 shows that a

spectral norm projection-cost-preserving sketch allows us to find P̃ such that:

‖A− P̃A‖22 ≤ (1 + 𝑂(𝜖))‖A−P*A‖22 + 𝑂
(︁ 𝜖

𝑘

)︁
‖A−P*A‖2𝐹

where P* is the optimal projection for whatever constrained low-rank approxima-

tion problem we are solving. This approximation guarantee is comparable to the

guarantees achieved in [HMT11] and [BJS15] using different techniques.

4.5 Dimensionality Reduction Using Frequent Direc-
tions Sketching

Since the publication of [CEM+15], we have become aware of a deterministic sketch-

ing algorithm called Frequent Directions [GLPW15] which yields projection-cost-

preserving sketches. For completeness, we note this fact here.

The Frequent Directions algorithm processes columns of A one at a time, main-
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taining a sketch Ã ∈ R𝑛×𝑚 in the column-wise streaming model – essentially through

repeated applications of SVD based dimension reduction. It is implementable in a

streaming setting using just 𝑂(𝑛𝑚) space. The algorithm is also attractive in dis-

tributed and parallel settings as the sketches it produces are mergeable. That is,

if A = [A1,A2] and we have sketches Ã1, Ã2 ∈ R𝑛×𝑚 then [Ã1, Ã2] ∈ R𝑛×2𝑚 is a

sketch for A. Further, we can run Frequent Directions on [Ã1, Ã2] to obtain a sketch

Ã ∈ R𝑛×𝑚 for A.

In addition to these computational advantages, Frequent Directions achieves per-

formance nearly matching SVD based dimension reduction (Section 4.1) for projection-

cost-preservation. Specifically, a Frequent Directions sketch with 𝑚 = ⌈𝑘/𝜖⌉+ 𝑘 is a

one-sided projection-cost-preserving sketch with error 𝜖.

Theorem 31. Let 𝑚 = ⌈𝑘/𝜖⌉ + 𝑘. For any A ∈ R𝑛×𝑑, let Ã ∈ R𝑛×𝑚 be a Frequent

Directions sketch of A [GLPW15] with dimension 𝑚. Ã satisfies the conditions of

Definition 12. Specifically, for any rank 𝑘 orthogonal projection P,

‖A−PA‖2𝐹 ≤ ‖Ã−PÃ‖2𝐹 + 𝑐 ≤ (1 + 𝜖)‖A−PA‖2𝐹 .

Proof. The proof follows immediately from Theorem 1.1 of [GLPW15], which states

that, for any unit vector x ∈ R𝑛,

0 ≤ ‖x⊤A‖22 − ‖x⊤Ã‖22 ≤ ‖A−A𝑘‖2𝐹/(𝑚− 𝑘) ≤ 𝜖/𝑘‖A−A𝑘‖2𝐹 (4.24)

if we set 𝑚 = ⌈𝑘/𝜖⌉ − 𝑘. If we write P = QQ⊤ where Q ∈ R𝑛×𝑘 has orthonormal

columns we have:

‖A−PA‖2𝐹 = ‖A‖2𝐹 − ‖PA‖2𝐹 = ‖A‖2𝐹 − ‖Q⊤A‖2𝐹 = ‖A‖2𝐹 −
𝑘∑︁

𝑖=1

‖q⊤
𝑖 A‖22.
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Applying (4.24) for each q𝑖 gives:

‖A−PA‖2𝐹 ≤ ‖A‖2𝐹 −
𝑘∑︁

𝑖=1

‖q⊤
𝑖 Ã‖22 ≤ ‖Ã−PÃ‖2𝐹 + (‖A‖2𝐹 − ‖Ã‖2𝐹 ). (4.25)

We can see that ‖A‖2𝐹 ≥ ‖Ã‖2𝐹 by applying (4.24) to each of the standard basis

vectors in R𝑛. So 𝑐 = ‖A‖2𝐹 − ‖Ã‖2𝐹 is a positive value, independent of P. Similarly

we have:

‖Ã−PÃ‖2𝐹 + (‖A‖2𝐹 − ‖Ã‖2𝐹 ) = ‖A‖2𝐹 −
𝑘∑︁

𝑖=1

‖q⊤
𝑖 Ã‖22

≤ ‖A‖2𝐹 −
𝑘∑︁

𝑖=1

‖q⊤
𝑖 A‖22 + 𝑘 · 𝜖/𝑘‖A−A𝑘‖2𝐹

≤ ‖A−PA‖2𝐹 + 𝜖‖A−A𝑘‖2𝐹

≤ (1 + 𝜖)‖A−PA‖2𝐹 (4.26)

where the last inequality follows from the fact that ‖A−PA‖2𝐹 ≤ ‖A−A𝑘‖2𝐹 for

all P. Combining (4.25) and (4.26) gives the Lemma.

4.6 Constant Factor 𝑘-Means Approximation with
𝑂(log 𝑘) Dimensions

In this section we show that randomly projecting A to just 𝑂(log 𝑘/𝜖2) dimensions

using a Johnson-Lindenstrauss matrix is sufficient to find a 𝑘-means clustering within

a (9 + 𝜖) factor of the optimal. To the best of our knowledge, this is the first re-

sult achieving a constant factor approximation using a sketch with data dimension

independent of the input size (𝑛 and 𝑑) and sublinear in 𝑘. This result opens up the

interesting question of whether it is possible to achieve a (1+ 𝜖) relative error approx-

imation to 𝑘-means using just 𝑂(log 𝑘) rather than 𝑂(𝑘) dimensions. Specifically, we

show:
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Theorem 32. For any A ∈ R𝑛×𝑑, any 0 ≤ 𝜖 < 1, and R ∈ R𝑂( log(𝑘/𝛿)

𝜖2
)×𝑑 drawn from

a Johnson-Lindenstrauss distribution, let Ã = AR⊤. Let 𝑆 be the set of all 𝑘-cluster

projection matrices, let P* = arg minP∈𝑆 ‖A−PA‖2𝐹 , and let P̃* = arg minP∈𝑆 ‖Ã−

PÃ‖2𝐹 . With probability 1 − 𝛿, for any 𝛾 ≥ 1, and P̃ ∈ 𝑆, if ‖Ã − P̃Ã‖2𝐹 ≤

𝛾‖Ã− P̃*Ã‖2𝐹 :

‖A− P̃A‖2𝐹 ≤ (9 + 𝜖) · 𝛾‖A−P*A‖2𝐹 .

In other words, if P̃ is a cluster projection matrix (see Section 3.1.1) for an approx-

imately optimal clustering of Ã, then the clustering is also within a constant factor

of optimal for A. Note that there are a variety of distributions that are sufficient for

choosing R. For example, we may use the dense Rademacher matrix distribution of

family 1 of Lemma 21, or a sparse family such as those given in [KN14].

To achieve the 𝑂(log 𝑘/𝜖2) bound, we must focus specifically on 𝑘-means clustering

– it is clear that projecting to < 𝑘 dimensions is insufficient for solving general

constrained 𝑘-rank approximation as Ã will not even have rank 𝑘. Additionally,

random projection is the only sketching technique of those studied that can work

when Ã has fewer than O(𝑘) columns. Consider clustering the rows of the 𝑛 × 𝑛

identity into 𝑛 clusters, achieving cost 0. An SVD projecting to less than 𝑘 = 𝑛− 1

dimensions or column selection technique taking less than 𝑘 = 𝑛 − 1 columns will

leave at least two rows in Ã with all zeros. These rows may be clustered together

when optimizing the 𝑘-means objective for Ã, giving a clustering with cost > 0 for

A and hence failing to achieve multiplicative error.

Proof. As mentioned in Section 3.3.1, the main idea is to analyze an 𝑂(log 𝑘/𝜖2)

dimension random projection by splitting A in a substantially different way than we

did in the analysis of other sketches. Specifically, we split it according to its optimal
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𝑘 clustering and the remainder matrix:

A = P*A + (I−P*)A.

For conciseness, write B = P*A and B = (I−P*)A. So we have A = B + B and

Ã = BR⊤ + BR⊤.

By the triangle inequality and the fact that projection can only decrease Frobenius

norm:

‖A− P̃A‖𝐹 ≤ ‖B− P̃B‖𝐹 + ‖B− P̃B‖𝐹 ≤ ‖B− P̃B‖𝐹 + ‖B‖𝐹 . (4.27)

Next note that B is simply A with every row replaced by its cluster center (in the

optimal clustering of A). So B has just 𝑘 distinct rows. Multiplying by a Johnson-

Lindenstauss matrix with 𝑂(log(𝑘/𝛿)/𝜖2) columns will preserve the squared distances

between all of these 𝑘 points with probability 1 − 𝛿. It is not difficult to see that

preserving distances is sufficient to preserve the cost of any clustering of B since we

can rewrite the 𝑘-means objection function as a linear function of squared distances

alone:

‖B−X𝐶X
⊤
𝐶B‖2𝐹 =

𝑛∑︁
𝑗=1

‖b𝑗 − 𝜇𝐶(𝑗)‖22 =
𝑘∑︁

𝑖=1

1

|𝐶𝑖|
∑︁

b𝑗 ,b𝑘∈𝐶𝑖

𝑗 ̸=𝑘

‖b𝑗 − b𝑘‖22.

So, ‖B− P̃B‖2𝐹 ≤ (1 + 𝜖)‖BR⊤− P̃BR⊤‖2𝐹 . Combining with (4.27) and noting that

square rooting can only reduce multiplicative error, we have:

‖A− P̃A‖𝐹 ≤ (1 + 𝜖)‖BR⊤ − P̃BR⊤‖𝐹 + ‖B‖𝐹 .

Rewriting BR⊤ = Ã−BR⊤ and again applying triangle inequality and the fact the
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projection can only decrease Frobenius norm, we have:

‖A− P̃A‖𝐹 ≤ (1 + 𝜖)‖(Ã−BR⊤)− P̃(Ã−BR⊤)‖𝐹 + ‖B‖𝐹

≤ (1 + 𝜖)‖Ã− P̃Ã‖𝐹 + (1 + 𝜖)‖(I− P̃)BR⊤‖𝐹 + ‖B‖𝐹

≤ (1 + 𝜖)‖Ã− P̃Ã‖𝐹 + (1 + 𝜖)‖BR⊤‖𝐹 + ‖B‖𝐹 .

As discussed in Section 4.3, multiplying by a Johnson-Lindenstrauss matrix with

at least 𝑂(log(1/𝛿)/𝜖2) columns will with probability 1 − 𝛿 preserve the Frobenius

norm of any fixed matrix up to 𝜖 error so ‖BR⊤‖𝐹 ≤ (1 + 𝜖)‖B‖𝐹 . Using this and

the fact that ‖Ã− P̃Ã‖2𝐹 ≤ 𝛾‖Ã− P̃*Ã‖2𝐹 ≤ 𝛾‖Ã−P*Ã‖2𝐹 we have:

‖A− P̃A‖𝐹 ≤ (1 + 𝜖)
√
𝛾‖Ã−P*Ã‖𝐹 + (2 + 3𝜖)‖B‖𝐹 .

Finally, we note that B = A − P*A and again apply the fact that multiplying

by R⊤ preserves the Frobenius norm of any fixed matrix with high probability. So,

‖Ã−P*Ã‖𝐹 ≤ (1 + 𝜖)‖A−P*A‖𝐹 and thus:

‖A− P̃A‖𝐹 ≤ (3 + 6𝜖)
√
𝛾‖A−P*A‖𝐹 .

Squaring and adjusting 𝜖 by a constant factor gives the desired result.
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Chapter 5

Applications to Streaming and

Distributed Algorithms

In this chapter, we discuss some applications of the dimensionality reduction algo-

rithms covered in Chapter 4. We focus on streaming and distributed algorithms for

the two most common special cases of constrained low-rank approximation – 𝑘-means

clustering, and unconstrained low-rank approximation (also known as approximate

SVD or PCA).

5.1 General Applications of Dimensionality Reduc-
tion

As mentioned, there has been an enormous amount of work on exact and approximate

𝑘-means clustering algorithms [IKI94, KMN+02b, KSS04, AV07, HPK07]. While sur-

veying all relevant work is beyond the scope of this thesis, applying our dimensionality

reduction results black box gives immediate improvements to existing algorithms with

runtime dependence on dimension. For example, if we use an SVD based projection-

cost-preserving sketch with ⌈𝑘/𝜖⌉ columns (see Theorem 17) the runtime of Kumar et.

al.’s (1+𝜖) approximation algorithm reduces from 𝑂(2(𝑘/𝜖)𝑂(1)
𝑛𝑑) to 𝑂(2(𝑘/𝜖)𝑂(1)

𝑛𝑘/𝜖).
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The time to complete one iteration of Lloyd’s algorithm, or to perform a 𝑘-means++

initialization, reduces from 𝑂(𝑛𝑑𝑘) to 𝑂(𝑛𝑘2/𝜖).

Our results can also be applied to reduce the size of coresets for 𝑘-means clustering.

A coreset is a subset of the original data points such that an optimal clustering

over this subset is nearly optimal for the full dataset. It is similar in spirit to a

projection-cost-preserving sketch, except that it is achieved by reducing the number

of data points (rows in A) instead of the data dimension (columns in A). The size

of coresets for 𝑘-means clustering typically depend on data dimension, so our relative

error sketches with just ⌈𝑘/𝜖⌉ dimensions and constant error sketches with 𝑂(log 𝑘)

dimensions give the smallest known constructions. See [HPM04, HPK07, BEL13,

FSS13] for more information on coresets and their use in approximation algorithms

as well as distributed and streaming computation.

In additional to these immediate results, in the remainder of this chapter, we

describe two applications of our work to streaming and distributed computation in

more depth.

5.2 Streaming Low-Rank Approximation

For any matrix A ∈ R𝑛×𝑑, consider the problem of finding a basis for an approxi-

mately optimal 𝑘-rank subspace to project the rows of A onto – i.e. computing an

approximate SVD like the one required for Theorem 18. Specifically, we wish to find

Z ∈ R𝑑×𝑘 such that

‖A−AZZ⊤‖2𝐹 ≤ (1 + 𝜖)‖A𝑟∖𝑘‖2𝐹

Building on the work of [Lib13], [GP14] gives a deterministic algorithm for this

problem using 𝑂(𝑑𝑘/𝜖) words of space in the row-wise streaming model, when the

matrix A is presented to and processed by a server one row at a time. [Woo14]

86



gives a nearly matching lower bound, showing that Θ(𝑑𝑘/𝜖) bits of space is necessary

for solving the problem, even using a randomized algorithm with constant failure

probability.

Theorem 22 applied to unconstrained 𝑘-rank approximation allows this problem

to be solved with high probability using �̃�(𝑑𝑘/𝜖2) words plus �̃�(log 𝑘 log 𝑛) bits of

space in the more general turnstile streaming model where arbitrary additive updates

to entries in A are presented in a stream. Word size is typically assumed to be

𝑂(log 𝑑 log 𝑛) bits, giving us an �̃�(𝑑𝑘/𝜖2) word space bound overall. Here �̃�(·) hides

log factors in 𝑘 and the failure probability 𝛿.

To achieve this result, we simply sketch A by multiplying on the left by an

�̃�(𝑘/𝜖2)×𝑛 matrix R drawn from family 3 of Lemma 21, which only takes �̃�(log 𝑘 log 𝑛)

bits to specify. We then obtain Z by computing the top 𝑘 singular vectors of the

sketch. By Theorem 22, choosing constants appropriately, A⊤R⊤ is a projection-

cost-preserving sketch for A⊤ with error 𝜖/3, and, Lemma 13 gives:

‖A⊤ − ZZ⊤A⊤‖2𝐹 = ‖A−AZZ⊤‖2𝐹 ≤ ‖A𝑟∖𝑘‖2𝐹

as required. This approach gives the best known bound in the turnstile streaming

model using only a single pass over A, nearly matching the Θ(𝑑𝑘/𝜖) lower bound

given for the more restrictive row-wise streaming model. Earlier approximate SVD

algorithms [Sar06, CW13] rely on non-oblivious random projection (see Section 4.4),

so could not give such a result.

5.3 Distributed 𝑘-Means Clustering

In [BEL13], the authors give a distributed 𝑘-means clustering algorithm for the setting

where the rows of the data matrix A are arbitrarily partitioned across 𝑠 servers.

Assuming that all servers are able to communicate with a central coordinator in one
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hop, their algorithm requires total communication �̃�(𝑘𝑑+ 𝑠𝑘) (hiding dependence on

error 𝜖 and failure probability 𝛿). A recent line of work [LBK13, KVW14, BKLW14]

seeks to improve the communication complexity of this algorithm by applying the

SVD based dimensionality reduction result of [FSS13]. The basic idea is to apply a

distributed SVD algorithm (also referred to as distributed PCA) to compute the top

right singular vectors of A. Each server can then locally project its data rows onto

these singular vectors before applying the clustering algorithm from [BEL13], which

will use �̃�(𝑘𝑑′ + 𝑠𝑘) communication, where 𝑑′ is the dimension we reduce down to.

By noting that we can set 𝑑′ to ⌈𝑘/𝜖⌉ instead of 𝑂(𝑘/𝜖2), we can further improve

on the communication complexity gains in this prior work. Additionally, our obliv-

ious random projection result (Theorem 22) can be used to avoid the distributed

PCA preprocessing step entirely. Inherently, PCA requires 𝑂(𝑠𝑑𝑘) total communi-

cation – see Theorem 1.2 of [KVW14] for a lower bound. Intuitively, the cost stems

from the fact that 𝑂(𝑘) singular vectors, each in R𝑑, must be shared amongst the

𝑠 servers. Using Theorem 22, a single server can instead send out bits specifying a

single Johnson-Lindenstrauss matrix to the 𝑠 servers. Each server can then project

its data down to just �̃�(𝑘/𝜖2) dimensions and proceed to run the 𝑘-means clustering

algorithm of [BEL13]. They could also further reduce down to ⌈𝑘/𝜖⌉ dimensions using

a distributed PCA algorithm or to 𝑂(𝑘/𝜖) dimensions using our non-oblivious random

projection technique. Formalizing one possible strategy, we give the first result with

communication only logarithmic in the input dimension 𝑑.

Corollary 33. Given a matrix A ∈ R𝑛×𝑑 whose rows are partitioned across 𝑠 servers

that are all connected to a single coordinator server, along with a centralized 𝛾-

approximate algorithm for 𝑘-means clustering, there is a distributed algorithm com-

puting a (1+𝜖)𝛾-approximation to the optimal clustering that succeeds with probability

at least 1 − 𝛿 and communicates just �̃�(𝑠 log 𝑑 log 𝑘) bits, �̃�
(︀
𝑠𝑘
𝜖

)︀
vectors in R�̃�(𝑘/𝜖2),

and 𝑂
(︁

1
𝜖4

(︁
𝑘2

𝜖
+ log 1/𝛿

)︁
+ 𝑠𝑘 log 𝑠𝑘

𝛿

)︁
vectors in R𝑂(𝑘/𝜖).
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Proof. Here �̃�(·) hides log factors in the failure probability 𝛿. For the initial reduction

to �̃� (𝑘/𝜖2) dimensions, we can choose a matrix from family 3 of Lemma 21 that can

be specified with �̃�(log 𝑑 log 𝑘) bits, which must be communicated to all 𝑠 servers.

We can then use Theorem 26 to further reduce to 𝑂(𝑘/𝜖) dimensions. Note that

the first three families of Lemma 21 all have independent columns. So, in order

to compute RA where R ∈ R�̃�(𝑘/𝜖)×𝑛 is drawn from one of these families, each

server can simply independently choose R𝑖 ∈ R�̃�(𝑘/𝜖)×𝑛𝑖 from the same distribution,

compute R𝑖A𝑖, and send it to the central server. Here A𝑖 is the set of rows held

by server 𝑖 and 𝑛𝑖 is the number of rows in A𝑖. The central server can then just

compute RA =
∑︀𝑠

𝑖=1 R𝑖A𝑖, and send back an orthonormal basis for the rows of RA

to the servers. To further reduce dimension from �̃� (𝑘/𝜖) to 𝑂(𝑘/𝜖), and to improve

constant factors, the central server can actually just return an orthonormal basis for

the best rank 𝑂(𝑘/𝜖) approximation of RA, as described in the proof of Lemma

28. Each server can then independently project their rows to this basis. The total

communication of this procedure is �̃�
(︀
𝑠𝑘
𝜖

)︀
vectors in R�̃�(𝑘/𝜖2).

Finally, applying Theorem 3 of [BEL13] with ℎ = 1 and 𝑑 = 𝑂(𝑘/𝜖) and adjusting

𝜖 by a constant factor gives a communication cost of 𝑂
(︁

1
𝜖4

(︁
𝑘2

𝜖
+ log 1/𝛿

)︁
+ 𝑠𝑘 log 𝑠𝑘

𝛿

)︁
vectors in R𝑂(𝑘/𝜖) for solving the final clustering problem to within (1 + 𝜖)𝛾 error.

Extension to Arbitrary Communication Topologies

Note that, as with previous work, in Corollary 33 we assume that all servers are

connected in a single hop to a central coordinator. This assumption is reasonable

in the setting of a well connected data center, where the difficulty of distributed

computation lies in limiting the amount of communication between servers, not in

communicating across a possibly poorly connected network. However, the algorithm

[BEL13] extends to general communication topologies, and dimensionality reduction

techniques can easily be applied in these settings. For example, we can reduce to
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dimension 𝑂(𝑘/𝜖2) in the time that it takes to broadcast �̃�(log 𝑑 log 𝑘) bits (specifying

a Johnson-Lindenstrauss projection matrix) to all servers. We can then run the

algorithm of [BEL13] on the dimension-reduced data.
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Chapter 6

Empirical Results

In this chapter we provide an empirical evaluation of the dimensionality reduction

techniques discussed in Chapter 4. We focus on applications to 𝑘-means clustering,

initially simply comparing a number of dimensionality reduction algorithms to bet-

ter understand the tradeoffs between accuracy, dimension, and runtime in practice

(Section 6.2). We then take a closer look at SVD based dimensionality reduction and

show how our results give a better understanding of this commonly used technique

(Section 6.3). Finally, we discuss dimensionality reduction based heuristics and show

that they can be effective in practice for clustering massive datasets (Section 6.4).

6.1 Experimental Setup

Before going into our results we describe the experimental setup used to obtain them.

We overview the dimensionality reduction algorithms tested, along with important

implementation details. We then overview the datasets that we evaluate these algo-

rithms on, along with our method for evaluating the effectiveness of the dimensionality

reduction algorithms.
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6.1.1 Algorithms

Here we introduce the dimensionality reduction algorithms evaluated in the remainder

of this chapter. We implement all algorithms in MATLAB, and include relevant

details in the algorithm description. Note that many of these algorithms have been

previously evaluated in [BZMD11], to which we refer the reader as a valuable resource.

1. SVD (PCA) (SVD): See Theorem 17. We set Ã = U𝑑′Σ𝑑′ . This is equivalent

to projecting A onto its top 𝑑′ singular vectors, or principal components. We

compute U𝑑′ and Σ𝑑′ using MATLAB’s svds function, which uses the Lanczos

algorithm to compute a partial SVD of A [Mat15b].

2. Approximate SVD (ApproxSVD): See Theorem 18. We set Ã = AZ where

Z ∈ R𝑑×𝑑′ is a nearly optimal rank 𝑑′ subspace for approximating A. To com-

pute Ã we use the algorithm described in [Sar06]. Specifically, we compute ΠA

where Π ∈ R𝑂(𝑑′)×𝑛 is a random sign matrix (entries chosen independently to be

±1 each with probability 1/2). We then set ZΠ ∈ R𝑑×𝑂(𝑑′) to be an orthonormal

basis for the rows of ΠA and use MATLAB’s svds function to compute Ũ𝑑′ ,

Σ̃𝑑′ , and Ṽ𝑑′ – the top 𝑑′ singular vectors and values of AZΠ. Finally we set

Ã = Ũ𝑑′Σ̃𝑑′ . Note that we do not compute Z explicitly. However, it is not hard

to see that Z = ZΠṼ𝑑′ . So AZ = AZΠṼ𝑑′ = Ũ𝑑′Σ̃𝑑′ . Also note that [Sar06]

shows that the number of rows in Π can be set to 𝑂(𝑑′/𝜖) for desired accuracy 𝜖.

We found that simply using 5𝑑′ rows sufficed to obtain a Z with ‖A−AZZ⊤‖2𝐹

extremely close to ‖A−A𝑑′‖2𝐹 as required for Theorem 18. Note that, while we

implement our own approximate SVD algorithm, high quality implementations

are available from a number of sources and in a variety of languages. See for

example [Liu14, Oka10, H+09, IBM14, P+11].

3. Random Projection (RP): See Theorem 22. We choose a random sign matrix

Π ∈ R𝑑×𝑑′ and set Ã = AΠ.
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4. Non-Oblivious Random Projection (NORP): See Theorem 26. We choose a

random sign matrix Π ∈ R𝑑′×𝑛, compute an orthonormal basis ZΠ for the rows-

pan of ΠA, and then set Ã = AZΠ. Note that non-oblivious random projection

is very similar to approximate SVD based reduction. The only difference is that,

in the approximate SVD algorithm, instead of using AZΠ directly as our sketch,

we use Ã = (AZΠ)𝑑′′ for some 𝑑′′ < 𝑑′. The algorithms can really be thought

of as two versions of the same algorithm, just that in non-oblivious random

projection we set 𝑑′′ = 𝑑′ whereas in approximate SVD we choose 𝑑′′ < 𝑑′.

5. Subspace Score Sampling (SubspaceScore) See Theorem 24. We sample

𝑑′ columns of A (and reweight appropriately) using the subspace scores with

respect to V𝑘 - the top 𝑘 right singular vectors of A computed using MATLAB’s

svds function. We compute these scores approximately using the procedure

described in Theorem 23.

6. Approximate Subspace Score Sampling (ApproxSubspaceScore): Same

as above except that we compute subspace scores with respect to Z ∈ R𝑑×𝑘,

which is found using an approximate SVD. We again use the approximate SVD

algorithm of [Sar06]. Specifically, we choose Π ∈ R𝑑×5𝑘 and compute an or-

thonormal basis ZΠ for the column span of AΠ. We then set Z to be the top

𝑘 right singular vectors of ZΠA. Note that this is slightly different than the

method we use in our ApprSVD algorithm - since we apply a random projection

on the right of rather than the left of A. Either method can be chosen depend-

ing on the relative dimensions of A and whether one actually needs to compute

Z, or, as in the ApprSVD algorithm the sketch AZ.

7. Largest Subspace Score Selection (SubspaceScoreRank): In this heuristic

approach, we simply set Ã to be the 𝑑′ columns of A with the largest subspace

scores. We do not reweight the selected columns.
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8. Uniform Sampling (UniformSampling): We sample 𝑑′ columns of A uni-

formly at random, without reweighting the selected columns. This algorithm

is used as a baseline to evaluate the effectiveness of subspace score sampling in

comparison to naive feature selection.

It is important to note that the algorithms Sampl/SVD and Sampl/ApprSVD eval-

uated in [BZMD11] are not the same as our subspace score sampling algorithms.

Specifically those algorithms sample by leverage scores with respect to a good rank

𝑘 subspace Z rather than by subspace scores - which are a combination of leverage

scores and residuals after projecting to Z (see Section 4.3.2 for more detail).

6.1.2 Datasets

We evaluate our algorithms on three image and text classification datasets:

1. USPS Handwritten Digit Data: This dataset contains 9298 16 × 16 pixel

grayscale images of the ten numerical digits, with roughly equal counts for each

digit. It is presented in [Hul94] and can be downloaded from [RW14]. It was

also used to test 𝑘-means dimensionality reduction in [BZMD11]. The original

dimensionality of the data is 16 · 16 = 256 and the natural choice is to set

𝑘 = 10. A sample of the images is shown in Figure 6-1. The USPS dataset is

not very large and can easily be clustered without resorting to dimensionality

reduction. However, it is easy to work with and effective at demonstrating our

main empirical findings.

2. Extended Yale Face Database B: This dataset contains images of 38 sub-

jects under various position and lighting conditions. Its is presented in [GBK01]

and available for download at [Lee]. We only consider the face-on position for

each subject and remove images with very poor illumination – i.e. average

brightness much below the average for the full data set. This leaves us with
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Figure 6-1: Selected images from the USPS handwritten digit database.

1978 images in total, approximately 50 for each subject. All images are cen-

tered, cropped, and normalized for brightness. Each image is 192× 168 pixels,

and so originally has 32256 features. The face recognition challenge is to group

different images of the same subject together, so the natural choice for 𝑘 is 38,

the number of subjects. A sample of prepared images is included in Figure 6-2.

While consisting of relatively few data points, the Yale Face dataset has a very

large number of dimensions, and so is cumbersome to cluster without applying

dimensionality reduction techniques.

3. 20 Newsgroups Dataset: This dataset is available for download at [Ren15].

It consists of 18824 postings to 20 different online news groups on a variety

of topics. We work with just a subset of data – the 11269 postings with the

earliest timestamps. When using the dataset to benchmark classification algo-

rithms, this subset of around 60% of the postings is typically used as training

data, with the remaining 40% of the posts being used to test classification ac-

curacy. The actual data vectors we cluster are word frequency vectors, each

with 61188 dimensions. Each entry in the vector is a count of the number of
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Figure 6-2: Selected set of centered, cropped, and normalized images from the Ex-
tended Yale Face Database B.

times that a specific word appears in the posting. We normalize the vectors so

that each sums to one – i.e. so that the entries correspond to relative rather

than absolute frequency of a word in a posting. The natural choice is to set

𝑘 = 20, the number of news groups that the postings are selected from. The

20 Newgroups dataset is quite large and very difficult to work with without

applying dimensionality reduction techniques. We believe it is a good example

of a dataset whose analysis could be sped up significantly using work presented

in this thesis.

6.1.3 Clustering Computation and Evaluation

After applying dimensionality reduction, to actually cluster our data we use MAT-

LAB’s standard kmeans function. This function implements Lloyd’s heuristic with

the 𝑘-means++ initialization rule [AV07]. It also uses a second ‘refinement phase’.

In this stage, instead of assigning all points to their nearest cluster and recomputing

the centroid set, as is done in the standard Lloyd’s algorithm, points are reassigned

one at a time, and centroids are recomputed after each assignment. In this way,
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the algorithm reaches a true local minimum – no single point can be reassigned to

decrease the 𝑘-means clustering cost.

For each test, we run kmeans with 5 different initializations and up to 300 iter-

ations, returning the lowest cost clustering obtained over the 5 runs. All tests are

run on a laptop with 16GB of 1600 MHz DDR3 memory and a 2.4 GHz Intel Core i5

processor.

For each dataset, we compute a baseline clustering cost - the cost of the best

clustering found by running kmeans on the full dataset. While this cost may not

be the global optimum as Lloyd’s algorithm can converge on local minima, it is a

reasonable proxy. Computing the actual optimal clustering on a large dataset is

infeasible and the Lloyd’s solution is guaranteed to be within a 𝑂(log 𝑘) factor of

optimal due to the 𝑘-means++ initialization. Additionally, as Lloyd’s algorithm is

by far the most common 𝑘-means clustering algorithm used in practice, it makes sense

to evaluate the effectiveness of dimensionality reduction as a preprocessing step for

this algorithm.

For the 20 Newgroups dataset it was not feasible to run kmeans on the full dataset.

So, to compute a baseline cost, we clustered using an SVD dimensionality reduction

to 100 dimensions. By the tighter bound explained in Section 4.1.1, we know that

projection to the 100 singular directions gives a projection-cost-preserving sketch with

error
∑︀121

𝑖=101 𝜎
2
𝑖 (A)

‖A𝑟∖20‖2𝐹
= 0.03. So, as a lower bound on our baseline cost, we used the cost

obtained with this sketch divided by 1.03.

After computing the baseline cost, we use each algorithm described in Section

6.1.1 to produce a sketch of dimension 𝑑′ for a range of 𝑑′ < 𝑑. We compare the cost

of the clusterings found by applying kmeans to these sketches to the baseline cost.

We plot the ‘Approximation Ratio’, which is the ratio of the clustering cost found

using the sketch to the baseline cost.
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6.2 Comparision of Dimensionality Reduction Algo-
rithms

6.2.1 Dimension Versus Accuracy

We first look at the tradeoff between sketch dimension 𝑑′ and approximation ratio for

the different dimensionality reduction algorithms. Our results are shown in Figure

6-3.

Overall Performance

In general, we see a clear trend of improved approximation accuracy with increased di-

mension, as predicted theoretically. All dimensionality reduction algorithms perform

well, achieving nearly optimal error with very small sketches.

For the 20 Newsgroups dataset, most techniques achieve good error even with

extremely few dimensions. This seems to be due to the fact that the dataset is

simply not very clusterable – i.e. its optimal clustering cost is not much less than the

Frobenius norm of A. Let P* be the optimal cluster projection matrix (see Section

3.1.1). Any clustering with clustering projection matrix P, achieves approximation

ratio at most:

‖A−PA‖2𝐹
‖A−P*A‖2𝐹

=
‖A‖2𝐹 − ‖PA‖2𝐹
‖A−P*A‖2𝐹

≤ ‖A‖2𝐹
‖A−P*A‖2𝐹

.

Computing this ratio for the USPS dataset using our baseline clustering cost in

place of the optimal, we see that any clustering achieves cost at most 4.29 times the

baseline. On the Yale Faces dataset any clustering achieves approximation ratio at

most 11.92, and on the Newgroups dataset any clustering achieves approximation ratio

at most 1.5908. Considering the trivial clustering for each dataset – a single cluster

containing all points – we get approximation ratios 1.86, 3.99, and 1.15 for the USPS,
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(a) USPS Handwritten Digits. 𝑘 = 10.
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(b) Yale Faces. 𝑘 = 38.
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(c) 20 Newsgroups Postings. 𝑘 = 20.

Figure 6-3: Sketch dimension verses accuracy for all datasets and dimensionality
reduction algorithms.
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Faces, and Newgroups datasets respectively. A dimensionality reduction algorithm is

really only useful if it can achieve accuracy better than this trivial clustering. This

should be kept in mind when interpretting the results in Figure 6-3. It also highlights

the importance of the (1 + 𝜖) error bounds given in [CEM+15] as compared to the

constant factor bounds given in previous work (See Table 1.1).

SVD and Approximate SVD

We can see that both these algorithms perform extremely well on all datasets. On

the USPS and Yale Face datasets, even projecting to 𝑘 or fewer dimensions gives es-

sentially optimal clustering cost. This may be true on the Newgroup dataset as well,

although our approximation ratio is lower bounded by 1.03 due to the lack of a true

baseline clustering cost. This matches previous empirical findings [BZMD11, KSS15]

along with the analysis of Section 4.1 which shows that, in the worst case, reducing to

just ⌈𝑘/𝜖⌉ dimensions suffices for a (1 + 𝜖) approximation. In practice, a lack of con-

stant factors an just a linear dependence on 𝜖 is important. Additionally as explained

in Section 4.1 and explored in more detail in Section 6.3, on most datasets, the ⌈𝑘/𝜖⌉

bound can be improved substantially, explaining the very strong performance of SVD

based dimensionality reduction.

Non-Oblivious Random Projection

This algorithm generally significantly outperformed other algorithms and nearly matched

the performance of SVD based reduction. This may be due to the linear (rather than

quadratic) dependence 𝜖 shown in Theorem 26. As far as we can tell, we are the first

to propose applying non-oblivious random projection to 𝑘-means clustering. As will

be discussed in more detail in the runtime section below, this algorithm seems to be

one of the best options in practice.
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Random Projection

Random Projection is a very simple and effective dimensionality reduction technique.

It yields near optimal cost even when 𝑑′ is a small multiple of 𝑘 (around 5𝑘 for

all datasets considered). However, as predicted it performs significantly worse than

non-oblivious random projection and SVD based algorithms.

Subspace Score Sampling

Surprisingly, subspace score sampling did not perform well. Both SubspaceScore and

ApproxSubspaceScore did reasonably well on USPS and Yale Face datasets. How-

ever, they did not significantly outperform (and sometimes underperformed) uniform

sampling of A’s columns. On the Newsgroup dataset, all three algorithms performed

very poorly - achieving approximation ratios similar to that achieved by the trivial

solution where all data points are assigned to the same cluster. On this dataset, the

heuristic SubspaceScoreRank algorithm did perform very well. However this algo-

rithm significantly underperformed all other algorithms on the USPS and Yale face

datasets.

There are a number of reasons why sampling approaches may perform poorly

compared to other algorithms. These methods are only expected to achieve (1 + 𝜖)

error with 𝑂(𝑘 log 𝑘/𝜖2) dimensions as opposed to 𝑂(𝑘/𝜖2) for random projection and

𝑂(𝑘/𝜖) for SVD based methods and non-oblivious random projection. While log 𝑘 is

very small, since we are considering 𝑑′ not much larger than 𝑘, it may be significant.

It is also possible that, on real datasets, the random projection approaches tend

to concentrate more quickly and so perform well at low dimension, while the same

does not occur for column sampling. At the very low sketch dimensions we tested

with, the sampling algorithms may simply not produce a sketch that approximates

A to any reasonable error. Additionally, for very high dimensional datasets like the

20 Newgroups dataset, all subspace scores tend to be very small. While required
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theoretically, reweighting sampled columns proportional to the inverse of these very

small probabilities may lead to large numerical errors that degrade sketch quality.

Overall, while interesting theoretically, and perhaps as heuristic importance mea-

surements for the features of A, we cannot currently recommend the use of subspace

score sampling methods for 𝑘-means dimensionality reduction in place of SVD and

random projection based approaches.

6.2.2 Runtime

The tradeoff between sketch dimension and accuracy must be interpreted in terms of

runtime. While SVD based methods provide the best accuracy-dimension tradeoff, if

the sketch itself takes a long time to compute, it may be preferable to use an easier

to compute sketch with more dimensions.

Here we plot total runtimes for each dimension reduction algorithm. We fix 𝜖 =

1/10 and for each algorithm pick the lowest sketch dimension 𝑑′ that gives (1 + 𝜖)

approximation to the baseline cost for the given dataset. We then show the time

required to compute a sketch of dimension 𝑑′ along with the time required to run

kmeans and find a near optimal clustering using this sketch.

Overall

The clustering runtimes shown are somewhat noisy as the runtime of kmeans depends

not just on the dimension of the input matrix, but on how fast Lloyd’s algorithm

converges, which can be somewhat unpredictable. However, these results strongly

point to approximate SVD (ApproxSVD) and non-oblivious random projection (NORP)

as the dimensionality reduction algorithms of choice for large datasets. These two

algorithms, which, are very similar to each other, are simple to implement, fast,

and achieve accuracy nearly as good as that of true SVD based reduction. Non-

oblivious random projection in particular requires only simple matrix multiplication
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Figure 6-4: Total runtime for computing a clustering with cost 1.1 times the base-
line. Runtimes for clustering on the full datasets are truncated since they were much
higher than runtimes using dimensionality reduction. For the USPS Digits, runtime
on the full dataset was 39.5 seconds. For the Yale Faces it was 3526.6 seconds. For
the Newsgroups dataset, we were not able to complete a single run of kmeans on the
full dataset. For the Newsgroups dataset, we show SubspaceScoreRank in place of
SubspaceScores and ApproxSubspaceScores as these two algorithms never consis-
tently achieved a 1.1 approximation ratio. The dimensionality reduction runtime for
this algorithm is essentially equivilant to the runtime of SubspaceScores.
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and orthonormalization of ΠA ∈ R𝑑×𝑑′ , making it possible to apply to even very large

datasets.

Random projection, while requiring a larger number of dimensions to achieve

equivalent accuracy is also still very attractive in practice as it is extremely easy to

implement and parallelize.

6.3 Tighter Understanding of SVD Based Dimen-
sionality Reduction

In this section we take a closer look at SVD based dimensionality reduction, and

attempt to explain why it performs so well in practice. SVD based dimensionality

reduction, also known as PCA based reduction, is a commonly used as a preprocessing

step for clustering [Jol02, YR01, DH04, VW05]. Typically A is projected to its top

𝑘 principal components to produce a sketch Ã that is then clustered. Generally, this

form of dimensionality reduction is seen as providing two benefits:

Approximation The top principal components of A capture the directions of largest

variance in the dataset. So, projecting onto these directions does a good job

of approximating A. We make this intuition formal in Section 4.1.1, showing

that projecting to a large enough number of top principal components gives a

projection-cost-preserving sketch.

Denoising Also known as distinguishability. Intuitively, the smaller principal com-

ponents of A are thought to consist mostly noisy variation within the data.

Projecting to the top principal components removes this noise, possibly im-

proving cluster quality (e.g. by making the true clusters of the data easier to

distinguish from each other) [DH04, VW05]. Assessing this benefit of dimen-

sionality reduction requires looking not just at the 𝑘-means cost function of a

clustering, but at a cost function relating to some known ‘correct’ clustering
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of the data. It is important to note that, while most results show that PCA

based reduction improves clustering error against a known baseline clustering

(e.g. [DH04]), some works does stand in opposition to this claim – showing that

in some cases PCA based reduction signifcantly degrade cluster quality [YR01].

Our theoretical results only focus on the approximation goal of dimensionality

reduction. We prove that projecting to A’s top principal components gives a sketch

Ã from which one can find an approximately optimal clustering with respect to the

𝑘-means cost over the original dataset. Hence, in our empirical study we focus on

studying this goal rather than the denoising property of PCA based reduction.

Interestingly, these two benefits of PCA based dimensionality reduction stand

somewhat in opposition to each other. Approximation implies that clustering Ã

should produce results similar to those obtained by clustering A. Denoising im-

plies that clustering Ã should produce clusterings that are significantly different from

(specifically, better than) those obtained by clustering the full dataset. So, while we

do not directly study the denoising property of PCA based dimensionality-reduction,

we note that if a PCA based sketch produces clusterings that are nearly optimal with

respect to the 𝑘-means objective function over the original dataset, it is unlikely that

these clusterings will be significantly ‘better’ than those produced by clustering the

full dataset. That is, the effect of denoising will not be significant.

6.3.1 Comparision of Theoretical Bounds and Empirical Per-
formance

In Section 4.1.1 we show that Ã = A𝑑′ (i.e. the projection of A to its top 𝑑′ prin-

cipal components) is a rank-𝑘 projection-cost-preserving sketch with one-side error

(Definition 12):

𝜆𝑑′ =

∑︀𝑑′+𝑘
𝑖=𝑑′+1 𝜎

2
𝑖 (A)

‖A−A𝑘‖2𝐹
. (6.1)
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If we set 𝑑′ = ⌈𝑘/𝜖⌉ then we know that
∑︀𝑑′+𝑘

𝑖=𝑑′+1 𝜎
2
𝑖 (A) ≤ 𝜖‖A−A𝑘‖2𝐹 , so we have

𝜆𝑑′ ≤ 𝜖. However – this is a worst case bound. It only holds exactly if 𝜎1 = 𝜎2 =

... = 𝜎𝑑′+𝑘 and 𝜎𝑑′+𝑘+1 = ... = 𝜎𝑟 = 0. Real datasets display two qualities that two

qualities that make 𝜆𝑑′ smaller in practice:

Spectral decay Typically the top singular values of a dataset are much larger than

the lower singular values. That is, the spectrum of the dataset decays signif-

icantly. Having 𝜎𝑘, ..., 𝜎
′
𝑑 significantly larger than 𝜎𝑑′+1, ..., 𝜎𝑑′+𝑘 increases the

denominator in (6.1) in comparison to the numerator, improving the worst case

𝜆𝑑′ bound. The strong spectral decay present in the three datasets we considered

is shown in Figure 6-5.

Heavy singular value tail Even with spectral decay, very high dimensional data

has many singular values and so often has a heavy tail –
∑︀𝑟

𝑖=𝑘 𝜎
2
𝑖 (A) = ‖A −

A𝑘‖2𝐹 is large. This again increases the denominator in (6.1) in comparison to

the numerator, decreasing 𝜆𝑑′ .
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(c) 20 Newsgroups Postings

Figure 6-5: Squared singular values of our three datasets. All three display significant
spectral decay.
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In Figure 6-6 we plot 1 + 𝜆𝑑′ for are three different datasets, in comparison to

the observed approximation ratios achieved by clustering the data with Ã = A𝑑′ .

In the figure, we refer to 1 + 𝜆𝑑′ as the worst case error bound – the approximation

ratio to which we are guaranteed that any solution to a general constrained low-rank

approximation problem found using Ã will achieve (see Lemma 14). We also plot a

tightened worst case bound :

1 +

∑︀𝑑′+𝑘
𝑖=𝑑′+1 𝜎

2
𝑖 (A)

‖A−P*A‖2𝐹
(6.2)

where P* is the optimal cluster projection matrix obtained by clustering the full

dataset. This is the error to which we can approximate 𝑘-means clustering using

Ã. Of course, it is not computable without computing a baseline clustering of A,

and so is not a useful bound in determining how to set 𝑑′. However, it is helpful in

demonstrating the tightness of the worst case bound of (6.1).
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Figure 6-6: Observed approximation ratio verse worse case bounds.

Figure 6-6 has two important takeaways. First, for all three datasets considered,

our worst case bounds show that 𝑑′ << ⌈𝑘/𝜖⌉ suffices to achieve a (1 + 𝜖) approxi-

mation ratio for 𝑘-means clustering. With 𝑑′ ∈ [2𝑘, 3𝑘] we achieve a ratio below 1.1
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on all datasets. This matches the strong empirical performance of PCA based di-

mensionality reduction observed in our experiments and other papers [KSS15]. Using

our bounds, provably good sketches with extremely few dimensions can be used for

𝑘-means clustering.

Second, while the worst case error bounds are much better than the general ⌈𝑘/𝜖⌉

bound, they do not fully explain the empirical performance of PCA based reduction

– the approximation ratios observed in practice are much tighter still. For all three

datasets 𝑑′ ≤ 𝑘 is sufficient to cluster A very near optimally. This is interesting as

𝑑′ = 𝑘 is the most common choice in practice [DH04]. It indicates that the denoising

effect of PCA based reduction may be limited as projection to 𝑘 singular vectors yields

nearly optimal clusterings for the original dataset, and so should not give clusterings

significantly ‘better’ than clustering the full dataset.

An interesting future direction of exploration is to explain why PCA based re-

duction still significantly outperforms the worst case bounds we compute. One likely

possibility is that the A𝑟−𝑑′ , the part of A falling outside the span of top 𝑑′ singular

directions is mostly noise, and so displays little cluster structure. In this case, re-

moving this part of A will have a small effect on the cost of any specific clustering,

so A𝑑′ will allow for very accurate clustering of A. Specifically, it is not hard to

see, extending the analysis of Lemma 15 that, letting P* be optimal 𝑘 rank cluster

projection matrix for A and P** be the optimal cluster projection matrix for A𝑟−𝑑′ ,

then clustering using A𝑑′ will give approximation factor

1 +
‖P**A𝑟−𝑑′‖2𝐹
‖A−P*A‖2𝐹

P**A𝑟−𝑑′ is a rank 𝑘 projection of A𝑟−𝑑′ , and so, as argued in Lemma 15, its

Frobenius norm is upper bounded by ‖ (A𝑟−𝑑′)𝑘 ‖2𝐹 =
∑︀𝑑′+𝑘

𝑖=𝑑′+1 𝜎
2
𝑖 (A), giving us the

bound in (6.2). However in general, if A𝑟−𝑑′ is not well clusterable, we will have
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‖P**A𝑟−𝑑′‖2𝐹 << ‖ (A𝑟−𝑑′)𝑘 ‖2𝐹 , likely explaining the tighter approximation ratios

observed in practice.

6.4 Dimensionality Reduction Based Heuristics

In the first two sections of this chapter we explored the application of dimensionality

reduction to 𝑘-means clustering in its most straightforward form – produce a sketch

Ã with few dimensions and compute a clustering on this sketch to approximate the

optimal clustering of A. However, in practice, dimensionality reduction may be used

in a variety of heuristic ways to accelerate 𝑘-means clustering algorithms. For exam-

ple, clustering a rough sketch can give initial clusters that can then be refined using

Lloyd’s algorithm or local swap heuristics [KMN+02b]. Similarly, as implemented in

[CW12], an algorithm may progress through sketches of increasing quality, refining

the clustering at each step to achieve an increasingly close to optimal solution.

Here we implement one version of the first technique and test its performance.

We discuss related algorithms that may also be of use in practice.

6.4.1 Lloyd’s Algorithm Initialization with Random Projec-
tion

One possible application of dimensionality reduction to 𝑘-means clustering is as an

initialization method for Lloyd’s algorithm. In MATLAB’s default implementation

of kmeans, Lloyd’s algorithm is initialized with 𝑘 cluster centers chosen using the 𝑘-

means++ algorithm [AV07]. The first center is sampled uniformly from the points in

A. The next center is chosen randomly, with probability proportional to its distance

from the first. The third is chosen with probability proportional to its distance

from the closest of the first two centers, etc. The set of centers chosen gives an

𝑂(log 𝑘) approximation to the optimal 𝑘-means cost in expectation. Applying Lloyd’s

109



algorithm initialized with these centroids can only give a lower cost.

One possible algorithm is to apply dimensionality reduction to speed up the ini-

tialization. For example, we can randomly project the data points to a very low

dimension, choose initial centers with 𝑘-means++, and then initialize Lloyd’s algo-

rithm with these centers. To improve the quality of the initial centers, we can even

run Lloyd’s algorithm on the dimension-reduced data. If our reduced dimension is

very small, this initial clustering step with be very inexpensive compared to later

iterations of Lloyd’s algorithm on the full dataset.

To test this idea we use the Yale Face Dataset, which has 1978 points, 32256 di-

mensions, and 𝑘 = 38. For a control, we initialize Lloyd’s algorithm with 𝑘-means++.

We randomly project the data down to just 10 dimensions using a dense random sign

matrix. We then run kmeans on this data – that is, we run 𝑘-means++ on the

dimension-reduced data, along with a Lloyd’s algorithm ‘refinement phase’. We ini-

tialize Lloyd’s algorithm on the full dataset using the centroids found by clustering

the randomly projected data.

Our results are displayed in Table 6.1. For both 𝑘-means++ and random pro-

jection initialization, we plot the cost of the initial clustering produced, the number

of subsequent iterations for Lloyd’s algorithm to converge on the full dataset, along

with the cost of the final clustering found. Results are averaged over five trial runs.

Initialization Algorithm Initialization Runtime (seconds) Initial Cost Lloyd’s Iteration Final Cost
𝑘-means ++ 15.52 193.53 19 167.29

random projection 19.43 174.80 15 166.39

Table 6.1: Comparision of random projection based initialization using 10 dimensions
and 𝑘-means++ based initialization.

We can see that random projection based initialization, with a small increased

runtime cost, produces a slightly better initial clustering than 𝑘-means++. Especially

for very large datasets, where each iteration of Lloyd’s algorithm is costly, this method,
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which is extremely simple to implement, should be considered as an alternative to

𝑘-means++ initialization.

6.4.2 Related Heuristic Algorithms

A number of algorithms related to the random projection based initialization approach

given above may also be of use. Other very efficient dimensionality techniques, such

as approximate SVD and non-oblivious random projection may provide even better

initializations with only a small increase in runtime. Adjusting the number if itera-

tions used in the initial run of Lloyd’s algorithm, along with running multiple trials

with different random initializations and returning the best clustering may also be

useful modifications.

[CW12] achieves good results using an iterative approach closely related to random

projection based initialization. A number of sketches Ã1, ..., Ã𝑡 with progressively in-

creasing dimensions are produced using random projection. Lloyd’s algorithm for

sketch Ã𝑖+1 is initialized using the centroids found for Ã𝑖. Finally, either the clusters

found using Ã𝑡 are output as the final result, or Lloyd’s algorithm on the full dataset

is initialized using these clusters. In this iterative approach, as more iterations are

completed, more dimensions are considered, allowing a more refined clustering of the

data. It is equivalent to successive applications our our random projection initializa-

tion algorithm.

6.5 Empirical Conclusions

Overall, we find strong evidence that dimensionality reduction methods are an ef-

fective practical tool for clustering large datasets. For practitioners working with

extremely large datasets that are difficult to apply SVD (PCA) based dimension re-

duction to, approximate SVD (ApproxSVD) and Non-Oblivious Random Projection
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(NORP) provide strong alternatives. They give near optimal clustering with very low

dimensional sketches – reducing to dimension to around 2𝑘 sufficed on all datasets we

considered. This performance rivals SVD based dimensionality reduction in quality

and significantly outperforms our worst case bounds for a number of reasons dis-

cussed in Section 6.3. Additionally, both algorithms are extremely fast and simple to

implement. For ApproxSVD, many implementations are also publicly available online

[Liu14, Oka10, H+09, IBM14, P+11].

We strongly recommend using these methods as preprocessing steps for clustering

high dimensional datasets. Not only can this decrease runtime, but, given a fixed

time budget, it will increase the number of feasible iterations and restarts of Lloyd’s

algorithm that can be run, possibly improving clustering quality. The simplicity of

the dimensionality reduction methods studied also makes them easy to incorporate

into effective heuristics such as the algorithms discussed in Section 6.4, and we hope

that future work will continue to explore this direction.
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Chapter 7

Neurally Plausible Dimensionality

Reduction and Clustering

In this chapter, we discuss possible extensions of our work to a neural setting. As

explained in Section 1.4.3, it is widely accepted that dimensionality reduction, pos-

sibly using random projection, is used throughout the brain. In Chapter 4 we show

that clustering data whose dimension has been significantly reduced using random

projection yields near optimal clusters for the original data. In light of this fact, in

future work, we could like to study neurally plausible implementations of 𝑘-means

clustering algorithms that can be combined with neural dimensionality reduction,

such as random projection. We hope to show that these implementations can be used

for concept learning in the brain. The following chapter outlines a possible plan for

this work.

7.1 Neural Principal Component Analysis

Before discussing our proposed work on neural clustering algorithms, it is worth

reviewing previous work on neural principal component analysis. This is a very widely

studied neural learning problem, [Oja82, San89], and the models and techniques used
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will be useful in our work on neural clustering.

Neural principal component analysis algorithms are largely based on Hebbian

theory – the concept of ‘neurons that fire together wire together’. Roughly speaking,

previous work typically considers a generative data model. A sequence of vectors in

R𝑑, each drawn from some distribution with covariance matrix C, is presented as

input. 𝑑 input neurons with signals 𝑛1, ..., 𝑛𝑑 ∈ R are connected to a single output

neuron, by synapses with corresponding weights 𝑤1, ..., 𝑤𝑑 ∈ R. Let n,w ∈ R𝑑 be

the vectors containing the input signals and the synapse weights respectively. The

output strength of the output neuron is equal to
∑︀𝑑

𝑖=1 𝑤𝑖𝑛𝑖 = w · n. If the weight of

a synapse is incremented with each firing at a rate proportional to the input strength

(Oja’s rule [Oja82]), it is possible to show that w converges to the eigenvector of C

with the largest eigenvalue - in other words to the top principal component of the

distribution. The most common variant of this technique is called Oja’s algorithm.

In this way, the principal component is ‘learned’ by the neural network. The output

neuron will respond most strongly to inputs that have a large dot product with w,

and so are aligned with this principal component.

7.2 Neural 𝑘-Means Clustering

We are interested building off the work on neural PCA and developing neural 𝑘-means

clustering algorithms that operate under a similar generative data model. We believe

this may be interesting in understanding concept learning and input classification in

the brain.

Consider for example a mixture of Gaussian distributions. For some set of weights

𝑦1, ..., 𝑦𝑚 with
∑︀𝑚

𝑖=1 𝑦𝑖 = 1, a vector x ∈ R𝑑 is generated with probability

𝑝(x) =
𝑚∑︁
𝑖=1

𝑦𝑖 · 𝑝𝒩 (𝜇𝑖,Σ𝑖)(x)
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where 𝑝𝒩 (𝜇𝑖,Σ𝑖)(x) is the probability of generating x from a 𝑑-dimensional Gaussian

distribution with mean 𝜇𝑖 and covariance matrix Σ𝑖. That is, with probability 𝑦𝑖, x is

generated from the 𝑖𝑡ℎ Gaussian distribution in the mixture. Such a distribution can

represent points drawn from a small set of classes (the means of the Gaussians), that

are polluted with additional noise (the variance of the Gaussians). As an oversimpli-

fied example, in recognizing printed text, the means may be the canonical shapes of

the letters while the noise is due to variations in how these shapes are printed along

with interfering phenomena such as reflections, or particles and objects that obscure

the letters.

There has been significant work showing that applying 𝑘-means clustering, and

specifically Lloyd’s heuristic, to data points generated from a mixture of Gaussian

distributions can be used to learn the parameters of this mixture [CDV09, KK10].

The general approach is to cluster the input data, and assume that each identified

cluster largely represents the points coming from one of the 𝑚 Gaussians. Noise and

overlap of the Gaussians will prevent the computed clusters from exactly matching the

underlying distribution. However, with enough separation, it can be shown that each

cluster will roughly correspond to one of the underlying Gaussians, and computing its

sample mean and covariance can be used to estimate the true mean and covariance of

this Gaussian. The relative cluster sizes can be used to estimate the weights 𝑦1, ..., 𝑦𝑚.

Once the mixture is learned it can be used for classification of new data points - the

higher the probability that an incoming data point is generated from a given cluster,

the more likely that is actually belongs to that cluster.

As explained, in a neural setting, learning the means of the Gaussians corresponds

to learning a set of underlying concepts given a set of noisy inputs. As in neural PCA,

the goal is to process input vectors one at a time. With each input, we update the

synapse weights on a set of neurons, such that, after a sufficient number of inputs,

these neurons can identify points close to the mean of each Gaussian in the mixture.
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Specifically, for some set of output neurons 𝑛1, ..., 𝑛𝑚, with incoming synapse weight

vectors w1, ...,w𝑚, we want to develop an algorithm that causes w𝑖 to converge to

𝜇𝑖. In this way, given input x, the output of 𝑛𝑖 is x ·w𝑖 ≈ x ·𝜇𝑖, which is larger if x

aligns well with the 𝑖𝑡ℎ mean.

7.3 Neural Network Implementation of Lloyd’s Heuris-
tic

Our main question is whether it is possible to implement such an algorithm using

Lloyd’s heuristic for 𝑘-means clustering. While Lloyd’s heuristic does not generally

return a provably optimal 𝑘-means clustering, given sufficient separation between

the Gaussians in a mixture, the means of a clustering generated using the heuristic

provide provably close approximations to the means of the underlying Gaussians

[CDV09, KK10].

In the traditional Lloyd’s heuristic, given a set of estimates of the optimal cluster

means, we first assign each input point to its closest mean. We then reestimate

the means by averaging the input points assigned to each one. In the online neural

setting, we will only access each input point once, so will have to modify the traditional

algorithm, which accesses the full set of inputs in each iteration.

We must first compare an input vector to our current estimates of the cluster

means which are represented by the synapse weights w1, ...,w𝑚, along with perhaps

synapse weights on other auxiliary neurons. Actually making this comparison is not

difficult. As in neural PCA, an input that is close to a cluster center represented by

weights w𝑖, will cause a stronger output on a neural whose input synapses have these

weights.

The difficulty is then in developing an appropriate way to update the cluster center

estimates given the input. One possibility is to mimic Lloyd’s algorithm and develop
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a neural circuit that assigns a point to its nearest current cluster, and updates that

center only. Such a circuit would presumably have to compute a maximum of the

input point’s similarity with estimated centers w1, ...,w𝑚. Alternatively, we could do

a soft assignment, updating every cluster but with the size of the update proportional

to how similar the input point is to that cluster.

In Lloyd’s algorithm, the update itself involves recomputing the means of all points

assigned to a cluster. This is not possible in the online model if we do not remember

all previously seen points. Instead, we will have to use an incremental update perhaps

setting w𝑖 ← w𝑖 + 𝜆𝑗x𝑗 where x𝑗 is the 𝑗𝑡ℎ input point, and 𝜆𝑗 is some step size,

dependent perhaps on both x𝑗 and w𝑖. This update, upon seeing a new point in the

estimated cluster around w𝑖, moves the cluster center closer to the new input point,

mimicking the averaging behavior of Lloyd’s algorithm.

Of course, our ultimate goal will be to prove that whatever online Lloyd’s-type

algorithm we develop, that it still converges to a set of approximate cluster means, and

that the means provide good estimates of the underlying Gaussian means. Further,

we hope to understand how dimensionality reduction interacts with the algorithm. Is

a set of approximately optimal centers in a low dimension space sufficient to recover

the means of the Gaussians in the original space? Is working purely in the low

dimensional space still useful for classification or other problems?

7.4 Overview of Proposed Neural Work

Overall, we feel that both dimensionality reduction and 𝑘-means clustering are natural

problems to study in the context of neural computation. As described, our proposed

initial work will be to attempt to develop an online neural variant of Lloyd’s 𝑘-means

clustering algorithm that can be used to learn a mixture of Gaussian distributions.

This is a concrete question that will help us understand how both dimensionality
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reduction and clustering may be used for concept acquisition and identification in the

brain.

Of course, there are many other research directions that can be explored. Besides

𝑘-means clustering, what other types of clustering may be useful and easy to imple-

ment in a neural context? Additionally, aside from random projection, what other

dimensionality reduction algorithms yield natural neural implementations? There

has been significant work on neural PCA – can these neural algorithms be used

for PCA based dimensionality reduction? Can other algorithms like non-oblivious

random projection or feature selection be implemented neurally? Are there neural

implementations of these algorithms that are robust to noise inherent in a biological

computation system? We hope future work will address these questions and that we

can help initiate study by extending work on 𝑘-means clustering with dimensionality

reduction to a neural setting.
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Chapter 8

Conclusion

In this thesis we presented a theoretical study of a number of dimensionality reduction

methods for approximate 𝑘-means clustering and constrained low rank approximation.

We provide a number of new bounds, achieving (1+ 𝜖) relative error results for nearly

all known dimensionality reduction techniques including random projection, PCA,

and feature selection.

While these bounds are useful in their own right, we feel that our proof tech-

niques are an equally important contribution of the work. By abstracting 𝑘-means

clustering to constrained low-rank approximation and developing general conditions

for projection-cost-preserving sketches, we were able to use a unified analysis to give

bounds for many dimensionality reduction algorithms. This approach simplifies much

of the previous work in the area and hopefully will make our results useful in other

contexts. At a high level, our proofs help understand the interaction between com-

mon dimensionality reduction methods and low-rank approximation. We feel this is

valuable as low-rank approximation is a recurring technique in data analyze and ma-

chine learning and dimensionally reduction is a very general and common algorithmic

acceleration technique.

Aside from our theoretical work, we showed empirically that many of the dimen-
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sionality reduction algorithms studied are very effective in practice. They produce

highly accurate clusterings in significantly less time than is necessary to cluster the

original dataset. These algorithms generally involve simple and commonly imple-

mented primitives such as random projection and PCA or approximate PCA, making

them especially appealing.

We concluded by presenting a possible program for extending our work to clus-

tering an dimensionality reduction in a neural setting. Aside from neural extensions,

there are a number of other questions left open by our work, which we conclude this

thesis with.

8.1 Open Problems

Additonal Applications of Constrained Low-Rank Approximation

As mentioned, aside from 𝑘-means clustering and PCA, the constrained low-rank

approximation problem (defined in Section 3.1) includes as special cases a num-

ber of variants of sparse and nonnegative PCA [PDK13, YZ13, APD14]. Are there

other natural problems encompassed by constrained-low rank approximation? Can

using projection-cost-preserving sketches give theoretical or empirical runtime im-

provements for approximation algorithms for any of these problems?

Coresets and Data Point Selection

This thesis focuses exclusively on dimensionality reduction – reducing the num-

ber of features of our input data vectors. A significant body of work looks at

the related problem of data point selection (typically called coreset construction)

[HPM04, HPK07, BEL13, FSS13]. The idea is to select a subset of the original

data points such that an optimal clustering over this subset is nearly optimal for

the full dataset. Can our proof techniques, particularly ideas related to projection-
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cost-preserving sketching be used to improve current coreset results? Is the linear

algebraic view we take of 𝑘-means clustering and constrained low-approximation use-

ful in thinking about coresets?

Improved Bounds for Random Projection:

In Section 4.6, we show that random projection to 𝑂(log 𝑘/𝜖2) dimensions gives a

sketch that allows a 9 + 𝜖 approximation to the optimal 𝑘-means clustering. The fact

that using dimension sublinear in 𝑘 gives non trivial approximation is quite surprising.

A major open question is if one can do better. Does projection to 𝑂(log 𝑘/𝜖2) actually

give (1 + 𝜖) approximation? If not, does it give something better than (9 + 𝜖) and

what truely is the dimension that gives (1 + 𝜖) approximation? It seems as though

improving the (9 + 𝜖) bound would require significant innovation beyond our current

techniques and we feel is it an important open question to address.

Streaming and Distributed Projection-Cost-Preserving Sketches

When working with large datasets that cannot be stored in the memory of a single

machine, it may be necessary to compute projection-cost-preserving sketches using

small space streaming or distributed algorithms. In Chapter 5 we show that random

projection is applicable in both these settings. Additionally, the Frequent Directions

sketch described in Section 4.5 can be used in both streaming and distributed set-

tings [GLPW15]. It offers improved 𝜖 dependence and constant factors over random

projection, although at increased computational cost.

A number of open questions remain in the area of streaming and distributed

dimensionality reduction. Can faster alternatives to Frequent Directions that still

give 𝑂(1/𝜖) rather than 𝑂(1/𝜖2) dependence be developed? Potentially, streaming or

distributed variants of approximate SVD or non-oblivious random projection could

be useful here. Is it possible to do feature selection in the distributed or streaming
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settings? Feature selection has a major advantage in that if the input matrix has

sparse columns, the output matrix will as well, and so it can offer significant runtime

and space advantages in practice.

In sum, in an attempt to generalize to very large datasets, many approximate

linear algebraic algorithms have been studied in the distributed and streaming models.

We believe that further work on producing projection-cost-preserving sketches in these

models would be both theoretically interesting and practically useful.

Iterative Approximate SVD Algorithms

We wonder if our feature selection results can be used to develop fast low rank approxi-

mation algorithms based on sampling. Theorem 24 uses a constant factor approximate

SVD to return a sketch from which one can then produce a (1+𝜖) factor approximate

SVD. Is it possible to start with an even coarser SVD or set of sampling probabili-

ties and use this refinement procedure to iteratively obtain better probabilities and

eventually a relative error approximation? Such an algorithm would only require

computing exact SVDs on small column samples, possibly leading to advantages over

random projection methods if A is sparse or structured. Iterative algorithms of this

form exist for approximate regression [LMP13, CLM+15]. Extending these results to

low-rank approximation is an interesting open question.
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