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Abstract

Simulation of high speed flows where shock waves play a significant role is still an
area of development in computational fluid dynamics. Numerical simulation of dis-
continuities such as shock waves often suffer from nonphysical oscillations which can
pollute the solution accuracy. Grid adaptation, along with shock-capturing methods
such as artificial viscosity, can be used to resolve the shock by targeting the key flow
features for grid refinement. This is a powerful tool, but cannot proceed without
first converging on an initially coarse, unrefined mesh. These coarse meshes suffer
the most from nonphysical oscillations, and many algorithms abort the solve process
when detecting nonphysical values.

In order to improve the robustness of grid adaptation on initially coarse meshes, this
thesis presents methods to converge solutions in the presence of nonphysical oscil-
lations. A high order discontinuous Galerkin (DG) framework is used to discretize
Burgers' equation and the Euler equations. Dissipation-based globalization methods
are investigated using both a pre-defined continuation schedule and a variable contin-
uation schedule based on homotopy methods, and Burgers' equation is used as a test
bed for comparing these continuation methods. For the Euler equations, a set of sur-
rogate variables based on the primitive variables (density, velocity, and temperature)
are developed to allow the convergence of solutions with nonphysical oscillations.
The surrogate variables are applied to a flow with a strong shock feature, with and
without continuation methods, to demonstrate their robustness in comparison to the
primitive variables using physicality checks and pseudo-time continuation.

Thesis Supervisor: David L. Darmofal
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Motivation

As technology has advanced over the last several decades, computation has grown

into an integral tool in engineering design and analysis. Numerical simulation is

particularly well suited to solving complex engineering problems that do not have

closed-form analytical solutions, or problems that are hard to test experimentally.

Computational fluid dynamics (CFD) is a popular tool in the aerospace industry to

analyze flows and reduce the need for wind tunnel testing. Various flow problems

of interest in the aerospace industry involve complex geometries and/or freestream

flow at high speeds. The setup, instrumentation, and execution of such tests may

be prohibitively expensive, time consuming, and prone to human error. This is es-

pecially true of high speed flows where shock waves play a significant role, such as

the transonic, supersonic, and hypersonic regimes. CFD simulation can significantly

reduce reliance on physical testing during the engineering design phase, which in turn

can increase the speed of product development. However, despite CFD's advantages

of cost, time, and quality relative to wind tunnel testing, there are improvements to

be made before engineers can fully rely on computational results.

Numerical simulation of high speed flow is not without its challenges. The physical

processes to be modeled are complex and vary over extreme ranges. Rigorous model-
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ing of supersonic and hypersonic flows involves modeling many physical phenomena,

including: transition prediction, unsteady chemical reactions due to gas ionization at

high temperature, radiative heat transfer behind shocks, use of both continuum and

rarefied gas models, and unsteady shock and boundary layer interactions [3].

Even when the problem is vastly simplified to not include these various complex phys-

ical processes, computational challenges still remain. The computational mesh used

to discretize the domain of the problem is a critical factor in overall solution qual-

ity. It is even possible that a solution does not exist on an under-resolved grid [15].

Unstructured meshes are capable of being iteratively refined and adapted to resolve

key flow features and thereby minimize solution error. Such an adaptive framework

eliminates a significant amount of user intervention and makes the CFD process more

autonomous. Unstructured adapted grids can save computational resources by allow-

ing the mesh to focus cells in regions which are most important to controlling the

accuracy, and have been shown to require fewer degrees of freedom (DOF) to achieve

the same level of accuracy as structured meshes [34]. However, meshes which do not

align with strong shocks, which is frequently true of unstructured meshes, often do

not perform well, lacking in both accuracy and robustness [12, 28]. Numerical error

due to grid misalignment around shocks causes error to propagate and pollute the

downstream solution. The key to mitigating these errors is in achieving a smoothed

shock representation in which many DOF are used to represent a shock. There are

many approhes t dac uiing this enu. The use If higliel-ulUe[ uiscreizations, along

with artificial viscosity and grid adaptation, has been shown to mitigate these errors

in unstructured meshes [3].

However, grid adaptation algorithms cannot proceed if the initial solve on a coarse

mesh does not converge [40]. Nonphysical oscillations around discontinuities, such as

shocks, are an additional source of error that can impede the solution process from

converging by making the system poorly conditioned. Another factor that is ubiqui-

tous among CFD problems of all flow regimes is that of having a poor initial guess of

the solution. An initial condition that poorly matches the boundary conditions can
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contribute to the ill-conditioning of a nonlinear system. This problem can occur even

in a flow without strong features that would be difficult to guess or otherwise easily

incorporate into an initial condition. It is important then to develop robust nonlinear

solution algorithms capable of converging on poorly conditioned problems and poorly

resolved meshes. High accuracy of such converged solutions is not required; as long as

the solution on the current mesh converges, grid adaptation can subsequently refine

the mesh to reach a high-fidelity solution.

Developing robust nonlinear solution methods for convergence of shock-dominated

problems is the focus of this thesis. For simplicity, all work is done in one dimension

on uniform grids.

1.2 Background

1.2.1 High Order Methods

High order methods are used to achieve higher accuracy at less computational cost

compared to lower order methods. This objective is realized by reducing the dis-

cretization error. Despite the increase in accuracy, higher order methods have not

been extensively adopted in industry.

The current industry standard for aerospace CFD software uses finite volume dis-

cretization. The typical approach for increasing the order of finite volume methods

amounts to extending the numerical stencil to include cell "neighbors" increasingly

far away. Increasing the numerical stencil complicates the boundary discretization

(because there are no neighbors to one side) and increases computational expense

on the interior by coupling more cells. Increasing the stencil also makes problems

more difficult to linearize, so approximate Jacobians are typically used for Newton's

method. To this end, industry codes typically use only second order accurate finite

volume. This scheme is generally fast and robust, but lacks a high degree of accuracy:

15



the error of a second order finite volume scheme converges at a rate of 0(h 2 ), where

h is a measure of the grid size.

Finite element methods (FEM) are easily extended to high order accuracy, that is, er-

ror rates that converge faster than 0(h 2 ). In general, the FEM solution is represented

by:

u(x) = i(x)it (1.1)

where O(x) represents the basis polynomial functions and fi represents the amplitude

of each basis function, which are the unknowns of the problem. In particular, the dis-

continuous Galerkin (DG) finite element method can compute higher order solutions

by increasing the polynomial order, p, of the basis functions inside each element. For

smooth problems, the error (measured in the L2 norm) converges at a rate of 0(hP+l)

[46]. Increasing the polynomial order does not increase the elemental stencil, only the

number of modes in each element. Also, the DG scheme only requires information

from the face neighboring elements to compute the residual.

The DG method was introduced by Reed and Hill [45] in 1973 for scalar hyperbolic

equations for neutron transport. The DG method was further applied to nonlinear

hyperbolic problems by Chavent, Salzano, Cockburn, and Shu [16, 20, 19, 18, 21].

Bassi and Rebay demonstrated DG for use on the Euler and Navier Stokes equations,

developing the BRI [5] and BR2 [6] schemes for viscous discretization to stabilize

elliptic problems.

1.2.2 Shock Capturing

Dealing with discontinuities has long been a challenge for high order discretizations.

Nonphysical oscillations arise in the vicinity of discontinuities; this is known as Gibbs

phenomenon. The magnitude of Gibbs oscillations are constant and bounded away

from zero [29], regardless of mesh size. In some cases, these nonphysical oscillations
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can spread into smoother regions of the solution, adversely affecting the solution

accuracy [27] and global convergence rate.

First order schemes, on the other hand, do not suffer from such oscillations around

shocks. Such schemes have second order truncation error that serves as numerical

dissipation, which smears out sharp features like discontinuities. The issue of shock

capturing deals with how to dissipate these oscillations in the presence of discontinu-

ities in order to still take advantage of the high accuracy that high order discretizations

otherwise enjoy.

A broad range of shock capturing methods has been investigated in the literature.

One approach to shock capturing is slope limiting, originated by van Leer [52], where

the cell gradient is decreased according to the neighboring cells, such that the solution

is monotonicity preserving. Cockburn and Shu [20] extended this method to DG by

reducing the polynomial of the cell to piece-wise constant. The limiting is applied

after the residual calculation, making implicit time-stepping difficult. Moreover, these

types of methods in [20] do not guarantee positive values of density and pressure [53].

Another class of shock capturing methods are referred to as Essentially Non-Oscillatory

(ENO) and Weighted Essentially Non-Oscillatory (WENO). These methods use a fi-

nite volume stencil to reconstruct the polynomial, at the cost an increased stencil

[31, 49]. Applied to DG, the size of the stencil can be decreased by using Hermite

polynomials (HWENO) [42, 38]. The downsides to these reconstruction methods

are that they are still applied outside the residual evaluation and therefore inhibit

implicit time-stepping, and that they require additional programming of the finite

volume scheme [27].

A third class of shock capturing methods, which is popular in the DG community, is

artificial viscosity. Persson and Peraire [41] developed a method for directly adding

artificial viscosity to the governing equations in the region of shocks. The artificial

viscosity is piece-wise constant and scales with the sub-cell resolution, h/(p + 1).

17



Scaling the viscosity with the sub-cell resolution also scales the shock width with the

sub-cell resolution, meaning that the shock can be captured in only one element for

high enough p, as opposed to the shock being smeared out over several elements. So as

to not add viscosity in smooth regions, a shock sensor is used to detect high frequency

oscillations and turn on the artificial viscosity only in the vicinity of shocks. While

this method has been successful, it does require several tuning parameters, namely the

magnitude of the artificial viscosity. Too little viscosity will not capture the shock

and mitigate oscillations, while too much viscosity will smear the shock too much

and hurt solution accuracy. Another drawback to this method is that the piece-wise

constant viscosity is not smooth, which can itself cause oscillations in the solution

gradient.

Barter [3) addressed this smoothness issue by using a separate PDE to determine

the artificial viscosity. This PDE-based artificial viscosity was applied to hypersonic

compressible Navier Stokes flows on unstructured grids, successfully mitigating non-

physical oscillations when compared to non-smooth artificial viscosity models. The

drawback to PDE-based artificial viscosity is that it introduces more unknowns to

the system of equations.

Guermond [29] proposed another type of artificial viscosity that scales with entropy

production. Entropy production is high near shocks, so the added viscosity is large

there. Smooth areas do not exhibit much entropy production, making the added

viscosity negligible there. The entropy viscosity method is applicable to any conver-

sation equations with one or more entropy inequalities, and was shown to successfully

smooth shocks for scalar conservation laws and the compressible Euler equations [57].

1.2.3 Preserving Physicality

In addition to degrading solution accuracy, Gibbs oscillations can cause values that

are required to be greater than zero, e.g. density or pressure, to go negative [27].

Additionally, small negative values of density or pressure in regions of high speed
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(such as high Mach number flow around a corner) might approximate the solution

within the truncation error -of the scheme [37]. Internal energy (and equivalently

temperature) is also prone to going negative since it is calculated as the difference

between total and kinetic energy- a small difference between two large values in high

speed areas. Whatever the cause, negative values of density or pressure can cause

many CFD codes to detect nonphysical errors and abort the solution process entirely.

For example, a negative pressure would cause the calculation of the speed of sound,

a = /yp/p, to either fail, or at the very least, to produce a value that is not physically

meaningful. Einfeldt et. al [23] defined the set of physically feasible states for the

Euler equations as those for which density and internal energy are positive; Linde

and Roe [37] equivalently replaced the positive internal energy constraint with a

positive pressure constraint in the definition of physically feasible states for the Euler

equations.

Einfeldt et. al [23] deemed the term "positively conservative" to refer to schemes that

always compute positive values of density and pressure. They noted that the Roe

flux scheme, without any entropy fix, is not positively conservative. For finite volume

Euler schemes, Linde and Roe [37] showed that schemes which are not positively

conservative can fail when nearby nonphysical states, no matter how small the time

step, and offered methods for determining whether a scheme is positively conservative

or not.

When using a scheme that is not positively conservative, methods need to be employed

to avoid nonphysical states. In an implicit scheme, one such method is to use a line

search to limit the state update. The line search is to find the maximum solution

update factor that keeps the change in density and pressure under a defined fraction,

and moreover, that these changes result in physical quantities [24, 39].

Ceze and Fidkowski [15] investigated pseudo-unsteady algorithms that incorporate

physicality constraints. These constraints penalize the residual as nonphysical states

are approached, thus repelling nonfeasible states. Incorporating physicality con-
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straints with various line search and pseudo-unsteady continuation algorithms showed

consistent convergence and decreased sensitivity to nonphysical transients. These al-

gorithms are, however, rather sensitive to certain tuning parameters.

1.3 Thesis Overview

This thesis describes work toward developing robust solution methods in the pres-

ence of oscillations for higher order DG discretizations. The methods presented are

intended to be used with a pre-existing grid-adaptive framework in conjunction with

local artificial viscosity methods. The contributions made are:

e Application of alternative nonlinear solution methods to solutions with shocks

9 Development of surrogate variables to eliminate nonphysical transient solutions

for the Euler and Navier Stokes equations

CHAPTER 2 introduces the the governing equations and flux functions used for the

Burgers and Euler equations. This chapter then describes the DG discretization.

CHAPTER 3 describes the solution technique and provide details for the following con-

tinuation methods: pseudo-transient continuation, p-sequencing, dissipation-based

continuation, and homotopy. CHAPTER 4 applies these continuation methods to Burg-

ers' equation and compares the results. CHAPTER 5 introduces surrogate variables for

use with fluid flow equations, and applies the surrogate variables with the previous

solution methods to the Euler equations. CHAPTER 6 makes concluding remarks and

future work considerations.

20



Chapter 2

Governing Equations and

Discretization

This chapter first describes the governing equations, then summarizes the discontin-

uous Galerkin (DG) method for general conservation laws.

2.1 Governing Equations

In this work, two primary governing equations are considered: Burgers' equation and

the Euler equations. These equations can all be written in a general conservation

form. For compactness, let the subscript x be the partial derivative with respect to

x: U i = . Let Q E R' be a bounded domain in a 1-dimensional space. The strong

form of a time-dependent conservation law in the domain, Q, can be expressed as:

aU F'(U, x) F'(U, Ux, x)
OU + ' -- UX -S(U, x), VxEQ, tEI (2.1)

Ot x Ox

with initial condition:

U(x, 0) = Uo(x), Vx E Q

and boundary conditions:

B(U, U, x; BC) = 0 Vx E OQ, t E I

21



where U(x, t) : R' is the m-state solution vector, F(U, x) : Rm is the inviscid flux,

Fv(U, U2, x) : Rm is the viscous flux, S(U, x) : R' is the source term, and B imposes

the boundary condition.

2.1.1 Burgers' Equation

The conservative state used for Burgers' equation is U = u. The equation for the

viscous Burgers' equation is given by:

au a 1 2 a U
- +- -u 2  p(u, x)- - _ u-g(x) = 0, Vx e Q, t E I (2.2)at ax (2 ax 09x

where au + g(x) = S(u, t) is the source term. au is a reaction term with a being

a scalar, and g(x) is a forcing term. The reaction and forcing terms are included to

support a steady state shock solution at a particular x-location [3]. Without these

terms, a shock just based on the boundary conditions could set up anywhere in the

domain.

The solution to this equation has a state rank m = 1 with u being the conservative

state. In terms of the general conservative form given by EQUATION 2.1, the inviscid

flux is given by F = 1u2 , and the viscous flux is given by F = pu, x)u,. Throughout

most of this work, p is constant in time and space; however, it is possible to use a

predefined function p = p(x) that is constant in time but varies in space. When using

artificial viscosity, p = p(u).

2.1.2 Fluid Flow Equations

Quasi-1D Euler Equations

The conservative state vector used for the one-dimensional compressible Euler equa-

tions is U = [p, pu, pE]T, with state rank m = 3, where p is the density, u is the

x-directional velocity, and E is the specific total internal energy. The area can vary
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with x, making the system quasi-1D. The inviscid flux vector P is:

puA

F= (pu2 + p) A (2.3)

puHA

where p is the static pressure and H = E + p/p is the specific total enthalpy, and

A is the area. The state equation, calculated in terms of the primitive variables,

Z = [p, u, T]T, is:

p = pRT. (2.4)

Specific total internal energy can also be calculated from the primitive variables as

12
E = cT + -u2.

2

The steady version of EQUATION 2.1 for the quasi-ID Euler equations is:

ax

puA

(pu 2 + p)A

puHA

0
aA
ax
0

> 0.

Compressible Navier Stokes

For a Newtonian fluid, the sheer stress - is given by:

aXX ) Y 2 ) + A- (2.7) ( ( x ax

where p is the dynamic viscosity, and A = -2/3p is the bulk viscosity coefficient. For

a quasi-1D problem, the inviscid flux vector, F, is given by EQUATION 2.3, and the

viscous flux vector, FV, written in terms of the primitive variables is:
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0

FV 4 pu (2.8)

4 pLuu + kO T

where T is the temperature, k is the thermal conductivity, and the dynamic viscosity,

/y, is assumed to be constant throughout the domain. This assumption simplifies the

linearization. With a specific heat at constant pressure c, = yR/(7 - 1) and a specified

Prandtl number, Pr = 0.72 for air, the thermal conductivity, k, is determined by:

k = c .Pr
(2.9)

Nondimensionalization

All of the variables for the fluid flow equations are nondimensionalized in order to

make the Jacobian better conditioned, as well as for plotting purposes. The nondi-

mensionalization scheme is summarized by TABLE 2.1.

Quantity Symbol Normalization_ FreestreamValue

Density p Poo1

Pressure p po 1

Velocity u v/p /po /MO

Speed of sound a = Vyp/p ____p__/__po_____

Specific energy E = - + u2/2 pO/p. 1/(y - 1) + -yM.2/2

Temperature T TO1

Gas consant R Ro1

Viscosity p puL/Re Lco Vp 0 /pPoo 'yM0 /Re.

TABLE 2.1: Inviscid flow nondimensionalization
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2.2 Discontinuous Galerkin Discretization

For the discontinuous Galerkin discretization, let Th be a triangulation of the 1-

dimensional domain Q with non-overlapping elements, r,, of length h. Also define a

function space Dh,p as:

4h,p { ( 2 IM E (pP ()) m , Vr E Th}, (2.10)

where 'PP(,) represents the solution space of p-th degree polynomials on a physical

element r. Taking the product of EQUATION 2.1 with a test function Oh,p E 4%,p, and

integrating by parts yields the weak formulation of the governing equation. Solving

the weak formulation finds a solution uh,p(-, t) E h,p such that:

(2.11)
KEThjK qThP +Zh,p (Uh,p, i h,p) = 0 V~h,p G "Ph,p.

where the weighted residual Rh,p is comprised of inviscid (RI), viscous (R), and

source (7'7) discretization terms:

Rh,p(Wh,,, h,p) = lZi,(wpP, q h,p) + R,(Whh, hp) + 1Z,(whp, #hp). (2.12)

2.2.1 Inviscid Discretization

The DG discretization of the inviscid term is given by:

, q(W,#) T- j F(w)

+ E W - q-)T1R(w+, w+

f er

+ 5 #+ T.ib(W+, ub(w+; BC); h+)
ferb

(2.13)
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where (.)+ and (.)- denote trace values taken from opposite sides of a face f, h+ is the

normal vector pointing from the (+) side to the (-) side and equal to either (+1) or

(-1) in 1 dimension, W and b are numerical flux functions on interior and boundary

faces respectively, ub is the boundary state constructed from the interior state and

a specified boundary condition, and Fi and rb are the interior and boundary faces,

respectively. The inviscid boundary flux Rb, is calculated by evaluating the flux

at a boundary state, Ub, which is a function of both the interior state, w+, and a

user-specified boundary condition, BC.

Local Lax-Friedrichs Flux

The upwinding flux function used for Burgers' equation is the Local Lax-Friedrichs

flux [20]. The flux function is written for Burgers' equation as

ILLF(UU) = 2 ((U-)2 + '(U+)2) - 'max (I(U-) (U+)I) (u+ - u) (2.14)

Both the max(., -) function and the absolute value of u must be evaluated using a

smooth function to ensure that the derivatives are continuous. The modified smooth

max(., -) function, denoted with an asterisk (*), and its derivative are defined as:

ule aui + U2eaU
max*(ui, U2 ) = eaUl + eaU2 (2.15)

Omax*(ui, u 2 ) _ eaui (1 + a(ui - max*(ui, U 2 ))
Ou~ ~u1 au2, i =1, 2 (2.16)aui &U1i + eaU2

with a = 5. Note that as a - +oc, the function better approximates the maximum,

but can fall susceptible to floating point errors as eaui approaches infinity. Also note

that as a -+ -oc, the function approximates min(., .).

The modified smooth absolute value function, denoted with an asterisk (*) and its
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derivative are defined as:

|U|* = (2.17)
sign(u)u + e

alu* _ 2u - sign(u)u* (2.18)
au sign(u)u + e

with 6 = 10-8.

Roe flux

The upwinding flux function used for the fluid flow equations is Roe's approximate

Riemann solver [48] with entropy fix. Using the notation from [26] and letting AU =

(U- - U+) represent the jump across a cell interface, the flux function is written as

C1

'iRoe(Z-, Z+) = (F(Z-) + F'(Z+)) + |A31(U(Z-) - U(Z+)) + C1 + C2  )
C1E + C2uh

(2.19)

where ft+ is the normal vector pointing from the (+) side to the (-) side and equal

to either (+1) or (-1) in 1 dimension, and an overbar, (.), denotes the Roe average

value. The variables C1 and C2 are

C 1  s + G2 s2  C2 =  _ + G2 (2.20)

with

G= (y - 1) (j2AP _ ?A (pu) + A (pE) (2.21)

G2 = -RnAp + A (pu) ft
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and
1 1

s = (JN 11 + |A21) - IA31 , S2 (Ail - A21) . (2.22)
2 2

Ai represents the characteristic velocities, which are the Roe averaged eigenvalues,

defined as

A, = fin + d , A2 = iin - d , A3 = iin. (2.23)

Using an entropy fix for when these values are small, the absolute values are written

INJI 2 (2.24)
2 2Aiotherwise

with e = 0.01. The Roe averaged velocity, enthalpy, and speed of sound are defined

as

f NVP + V/;u (2.25)

H V H-= +V + (2.26)

d 2 =b( - 1) AI - I .L (2.27)

However, to ensure that d2 is always positive, it is rewritten and evaluated as a

function of the primitive variables, which can be guaranteed to be positive in p and

T (see SECTION 5.1):

(p-T- + p+T+)(c, + R) + Vp-p+ ( (T- + T+)(c, + R) + & (u - u+)2

(2.28)

2.2.2 Viscous Discretization

The second method of Bassi and Rebay (BR2 scheme) [7] is used to discretize the

viscous terms. For compactness, the jump [[.]] and average {.} operators are used.
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For a scalar s, the jump and averages on interior faces are defined as:

{s} = (S+ +s-), [[s]] = s+ii+ + s--

and on boundary faces as:

{s} = s+, [[s]] =s+h+.

The viscous discretization is:

7Z,(w, #) = j F'(w, wx + R([[w]])) (2.29)
K-ET

- [ [# ] T { F"(w, wx + rifrf([ [w] ))}
f Er

- + Z b (F (u~~ qr(W+ ~ub)))i+

ferb

where ub(w+, BC) and ub (w+; BC) are chosen to specify the boundary viscous flux,

rf and rf are the lifting operators on an interior and boundary face respectively,

and if is the stabilizing parameter. The viscosity and corresponding viscous flux on

the boundary is calculated as function of the boundary state, Ub, rather than the

interior, w+. This choice proved to give to viscous flux a better stabilizing effect on

the solution. The stabilization parameter is set toqf = 2, because it must be greater

than or equal to the number of faces of an element [22]. The lifting operators provide

coupling between neighboring elements by penalizing jumps in the solution. For every

face f, find rf E ")h,p such that for interior faces

Z 1 jT rf([[w]]) - [[w]]T{} VO E Dh,p (2.30)
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and for boundary faces

Z Tr (w) = wTO+f+ Vq C <D'h,p
KETh

with

R([[w]]) = 1: rj([[w]]).

2.2.3 Source Discretization

(2.31)

(2.32)

The source terms are not a function of the state gradient, so no lifting operators need

to be used. The source term is discretized as:

7ZL(w, ) = Z j OTS(w). (2.33)
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Chapter 3

Nonlinear Solution Algorithms

This chapter first summarizes the Newton-Raphson solution algorithm for generic

residuals, as well as the line search methods used. The chapter then describes the

continuation algorithms explored.

3.1 Newton-Raphson Solver

After choosing basis functions in the approximation space <Dh,p, EQUATION 2.11 be-

comes a discrete root-finding problem. The steady discrete equation can be expressed

as a system of algebraic equations, which allows for finding Q such that:

R,(Q) = 0 (3.1)

where R,(Q) is the spatial residual vector and Q is the solution vector (i.e. basis

function weights). Given an initial approximation to the solution vector, Q', the

approximate solution at the next iteration, Qn+1, is found by approximately solving

Rs(Qn+1) = 0 (3.2)

Specifically, at each iteration, the Newton-Raphson method is used to solve EQUA-

TION 3.2 such that:
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-1
Qn+1 _ Qn AQ aR ) (3.3)

aQ Q, R(33

The Newton iterations are continued until the steady spatial residual's L2 norm

I|Rs(Qn+1)112 is less than some specified tolerance.

3.1.1 Line search

Each Newton step AQ is limited by a line search with the update fraction, 77, to ensure

a decrease of the L 2 norm of the steady residual. AQ is considered the direction of the

step, while q is the magnitude of the step. Once the line search finds an acceptable

update fraction,

Qn+1 = Qn + AQ. (3.4)

Residual norm line search

Two line search algorithms are implemented to decrease the residual norm. The

first algorithm halves the step size until the L2 norm of the intermediate residual

is less than the L2 norm of the current residual. This procedure is summarized in

ALGORITHM 1. The stopping criterion, rmin = 9.5 x 10- 7, corresponds to 20 halving

iterations when starting from go = 1. In general, qo = 1, unless a physicality line

-iearoch has, impnqsed q czmaller T). Cnnjni~nn me~ithods are nn-onvnre whebn the 1line

search is unable to find a suitable update fraction q Tmin.

Algorithm: Halving line search algorithm

7=77, Qf* =Q" +AQ
while IIR,(Qn*)Hl 2 > HRs(Qn)fl 2 & 77 > 7 min do
I7 +- 1, Q "*Ql+ 77AQ;

end
if 7 >/min then
I Qn+1 = n + 77AQ

else
I abort line search

end

Algorithm 1: Halving line search
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Let an asterisk (*) denote the intermediate solution at a given line search iteration.

R* = Rs(Q"*) and Q* = Qf + 7jAQ. The derivative of the square of the L2 norm of

R* with respect to the update fraction is:

dl R* 11 2 _ d(R T R) (3.5)
d?7 dr

dR*
S2R*T

*dr
aR* dQ*

= 2R T

=2R*T s*AQ2R aQ*

As 7 -+ 0, Qf* Qn, thus aR 'A -+ -Rs(Q) according to EQUATION 3.3, and

dIIR, -+ -2RTR, <; 0. Then for small enough T7, the slope of the square L2 norm

of the residual is negative, so the residual must decrease. The halving line search is

then guaranteed to reduce the square of the L2 norm of the residual for small enough

7.

In order to reduce the number of Newton iterations needed, it can be advantageous

to find an optimal update fraction. An optimal update fraction is one that decreases

the residual as much as possible given the current step direction AQ. To do this,

Brent's method [9] is used as the root-finding algorithm which solves f(TI) = 0, where

f(r) for our problem is

A_) = l (3.6)

While Brent's method is known for its rather complicated logic, it is also known for

its efficiency [56, 50]. The algorithm selects the fastest root-finding method of the

three choices: inverse quadratic interpolation, secant interpolation, and bisection.

Inverse quadratic interpolation and secant interpolation both converge superlinearly,

provided the function to be minimized is C 2 smooth near its minimum [10]. If neither

inverse quadratic or secant interpolation are feasible, Brent's method relies on the

more robust bisection method. ALGORITHM 2 summarizes how the Brent algorithm
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solves f(,q) = 0 given the functional f(7) on the interval q E [a, b]. In practice, the

interval rj E [0, 1] is used, in which q = 0 corresponds to no update at all, and = 1

corresponds to the full Newton update.

If the tolerances for the Brent algorithm are set too tight, or if the system is ill-

conditioned or highly nonlinear- as are many of the cases investigated in this work-

Brent's method may not converge before hitting a user-defined maximum number of

iterations. If this occurs, it is possible that the output of the Brent algorithm still

does not reduce the residual. It is also possible, although uncommon, that the Brent

algorithm converges on a local maximum instead of a local minimum. For this reason,

whenever the Brent algorithm is used, the halving line search is also used in sequence

as a fail-safe, as summarized by ALGORITHM 3.

Finding the root of EQUATION 3.6 using Brent's algorithm requires one Jacobian eval-

uation per functional evaluation, which can be noticeably computationally expensive

for larger, nonlinear systems of equations such as Euler or Navier Stokes. For smaller

problems where the Jacobian is not so large, like Burgers' equation, the benefit of

minimizing R,(Qf*) every time the line search is called tends to outweigh the cost of

the additional associated Jacobian evaluations. A cheaper alternative to finding the

root of EQUATION 3.6 is to instead find the root of the energy functional, f = R*'AQ

[25]. While cheaper, use of this functional proved to be less reliable than the L'

functional in practice.

Physicality line search

A physicality line search is used prior to using the halving line search when solving the

Euler equations using the physical primitive variables, Q = Z. The Brent line search

is not used due to its expensive Jacobian evaluations. The physicality line search

sets an upper limit on the update fraction to ensure that density and temperature

do not go below some small critical value, E. This upper limit sets 7o, which is then

used by ALGORITHM 1. Since these variables are assumed to be greater than zero,
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Algorithm: Brent's method line search

Calculate f(a), f(b);
if f (a)f (b) > 0 then
I the root is not bracketed, exit function

end
if lf(a)j < Jf(b)j then

I swap a, b
end
c = a;
flag = 1;
while f (b) = 0 or (|b - a| < tol & iter < maxiter) do

if f(a) 0 f(c) & f(b) 4 f(c) then
Inverse quadratic interpolation;

af (a)f (c) bf (a)f (c) cf (a)f (b)

(f (a) - f(b))(f (a) - f (c)) (f (b) - f (a))(f (b) - f (c)) (f (c) - f (a))(f (c) - f (b))
else

Secant interpolation;

=b - f (b) f(b - f(a)

end

if s is notE [3a b, b] or
flag= 1 & |a-bl> |b-c|/2 or
flag = 0 & |a - b > |c - d|/2 or
flag = 1 & lb - cl < tol or
flag = 0 & Ic - d < tol or then

Bisection;

s = -
2'

flag = 1
else
I flag= 0

end
Calculate f(s);

d = c;
c =b;
if f (a)f (s) < 0 then

I b=s
else

i a=s
end
if If(a)I < Jf(b)j then
I swap a, b

end
iter = iter+1

Algorithm 2: Brent's method line search
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Algorithm: Brent's method line search with halving fail-safe

77 1;

if IIR,(Q"+ 7nAQ)I2 > IIR,(Qn)I 2 then
Brent's algorithm on the interval 0 e [0,1];
77 = 77Brent;
if IIR,(Q"+qAQ)fl 2 > j|R,(Qn)l2 then

Halving algorithm;
77 77Halving

end
if IR 8 (Q + 77AQ)|12 > IIR, (Q") 12 then
I Cannot reduce residual; end run

end

end

Algorithm 3: Brent's method line search with halving fail-safe

and the update fraction is never allowed to be negative, only negative AQ values are

considered.

Ep - i Api <0 E -TiAT < 0
_ Ap _ ATi (3.7)

1 Api >0 1 AT 0

77 = min (7,,, 7T,i, 1) (3.8)

For consistency with the critical values used by the surrogate primitive variables

introduced in CHAPTER 5, e, = 0.01 and ET = 0.001 are used.

3.2 Continuation Methods

Newton's method often fails for highly nonlinear problems with poor initial guesses. In

order to globalize Newton's method, continuation methods are used to obtain better

initial guesses. For well-behaved problems, globally convergent continuation algo-

rithms are slower to converge than Newton's method by itself. However, continuation

methods can help poorly-behaved problems converge when they may have otherwise

failed. The line search is always used in conjunction with the continuation methods

unless otherwise noted. This section describes the continuation techniques explored
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in conjunction with Newton's method: pseudo-transient continuation, p-sequencing,

and diffusion-based continuation.

3.2.1 Pseudo-Transient Continuation

Pseudo-transient continuation, PTC, is a popular continuation method that imitates

physical time-marching. Decreasing the time step makes the problem more similar to

a real physical, unsteady system, which means the transient solution path is less likely

to go through a nonphysical state. Since the user is only interested in a steady state

solution, time accuracy is not necessary. If the system becomes poorly conditioned

and must employ a line search to decrease the residual, smaller time steps can be

taken to better imitate a real system. When the system is well conditioned, larger

time steps can be taken to drive the solution to the steady state. The pseudo-transient

version of the problem is solved using implicit backward Euler time marching. The

unsteady version of EQUATION 3.2 becomes:

Rt(Qn+1) = M,(U(Qn+1) - U(Q")) + R(Qn+l) = 0 (3.9)

where Rt is the pseudo-unsteady residual and M' is the mass matrix weighted by a

local elemental time step At,. This time step is calculated as a function of the global

CFL number defined as:

AtKAma
CFL = A "m (3.10)

hn

where h, is the element size and Amax is the maximum characteristic speed. For Burg-

ers' equation, Amax refers to the maximum characteristic speed in the entire domain,

and A = Jul*; for the Euler equations, Amax refers to the maximum characteristic

speed within the element r,, and A = Iul* + a. The Newton-Raphson method now

solves the pseudo-unsteady version of EQUATION 3.3:

Qn+1 - Qf ~ AQ t- Mt+ R R (Qn) (3.11)Qn, a~Q Qn)-(311
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A number of CFL evolution strategies exist to increase the robustness of the PTC

method, since pseudo-time is less needed as the solution approaches the steady state

solution. When using PTC, unless otherwise noted, exponential progression with

under-relaxation is used to evolve the CFL. If the residual is successfully reduced

without the help of a line search, the CFL is increased, meaning that a larger time

step is taken towards steady state on the next Newton iteration. On the other hand, if

the Newton iteration requires a line search but the line search fails to find an update

fraction that reduces the residual, the CFL is decreased and the Newton iteration

is retried with a correspondingly smaller time step. This method is summarized

by ALGORITHM 4. Other potential CFL evolution algorithms are switched evolution

relaxation, and the residual difference method. In both of these methods, the CFL is

evolved based on the relative change in the residual [14].

While PTC methods are widely used in both industry and academia, it remains

unclear how to implement PTC when using unstructured space-time grids. This is

one reason for exploring alternative continuation strategies.

Algorithm: Exponential Progression with Under-relaxation

#3>1, K <1;
if r1 = 1 then
I CFL <- min(3CFL, CFLmax)

else
if 7 < 77min then

7 = 0;
CFL <- max(KCFL, CFLmin)

end
end

Algorithm 4: Exponential Progression with Under-relaxation

3.2.2 P-Sequencing

P-sequencing is another common continuation method for higher-order solutions that

can be used in addition to other methods. Lower-order solutions are used as the

initial condition for higher-order solutions. Higher-order problems with strong shocks

tend to have difficulty converging without p-sequencing [4]. Since P0 (that is, zero-
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order polynomial or finite volume) solutions converge very robustly, p-sequencing is

an effective tool for generating better initial guesses for the Newton-Raphson method

with higher-order polynomials. The system is solved in discrete sub-problems of

increasing polynomial order. A solution is first obtained for a low polynomial order,

either PO (for Burgers' equation) or P1 (for the Euler equations). The BR2 viscous

discretization is only consistent for PO in ID; so while starting from PO is fine for

ID or quasi-1D, extensions to higher dimensions may need to start with P1. Then,

that solution is projected onto the next-higher polynomial space to serve as the initial

condition for the sub-problem of the next-higher polynomial order, until the desired

polynomial order is reached.

3.2.3 Dissipation-Based Continuation

In order to capture shocks and prevent oscillations, it is common to add artificial vis-

cosity or some type of numerical dissipation to the problem [41, 3]. To this end, Hicken

and Zingg [33, 32] showed that dissipation-based parameter continuation (DBC) is

capable of outperforming pseudo-transient continuation for the Euler equations solved

with an inexact Newton method. Similar to p-sequencing, DBC uses the solution to

a higher-dissipation problem as the initial condition for a lower-dissipation problem.

EQUATION 2.12 becomes:

R = Ri + Rv + R8 + ARd (3.12)

where lZd is the residual for the added dissipation terms, and A E [0, Amax] is the

continuation parameter which scales the magnitude of the added dissipation. The

value of A begins that A0 = Amax and is reduced towards zero after every sub-problem

solve until A - 0 and EQUATION 2.12 is recovered.

The initial value and evolution of A affect the robustness of the DBC algorithm. For

both Burgers' equation and the Euler equations, the initial value of A0 is set to 1.

Initially a tuning parameter, this value of A0 was chosen for Burgers' equation because
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it created enough dissipation to consistently converge the various initial conditions

tested. For the Euler equations, A0  1 sets the artificial viscosity magnitude equal to

the viscosity based on the user-input Reynolds number with global length scale. A is

reduced by a factor of 10 after each sub-problem, until a minimum value, Amin = 10-6.

is hit where the additional dissipation becomes negligible, and the original problem

can be solved with A = 0. This evolution is summarized by ALGORITHM 5. Granted,

this continuation schedule is somewhat arbitrary, and may not be as robust for the

Euler equations as it is for Burgers' equation. This issue is addressed in SECTION 3.2.4.

Algorithm: DBC Continuation Parameter Evolution

r = 10, Amin = 10-6;
if A > KAmin then

I A <- A/r,
else
I A -0

end

Algorithm 5: DBC Continuation Parameter Evolution

3.2.4 Homotopy Continuation

The issue that remains with DBC is how to best evolve the continuation parameter.

Instead of solving sub-problems at discrete values of A, one can include A as a vari-

able rather than parameter, aiid solve a modified problem with a method known as

homotopy continuation [1].

Homotopy is an established continuation method in numerical algebraic geometry and

bifurcation analysis [35], and has been applied in chemical engineering analysis [51, 17,

43], and to some extent in circuitry analysis [36] and computer science [44]. Homotopy

continuation methods had not seen many applications in CFD until recent years, and

was initially investigated for individual flow problems using parameters specific to the

problem [13, 47]. More recently, dissipation-based homotopy has been implemented

as a general globalization method with Finite Difference and DG schemes for the
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Euler equations [30, 55], as well as with Finite Volume schemes for the Euler, Navier

Stokes, and Reynolds-Averaged Navier Stokes (RANS) equations [11]. In several of

these cases, homotopy-based continuation methods have outperformed PTC methods

in solver robustness and efficiency [11, 32].

Homotopy Overview

Let F(Q) = 0 represent a generic system of equations with F(Q) : R m -+ Rm . In this

case, F(Q) = 0 represents EQUATION 2.11. F(Q) might be highly nonlinear and hard

to solve. Let G(Q) = 0 be a different system of equations with G(Q) : Rm  + Rm

that has a known solution and is easy to solve regardless of the initial condition. Let

Qo represent the initial condition. The homotopy continuation method first solves

G(Qo) = 0, then gradually morphs the system of equations G(Q) into F(Q) using

A E [0, 1].

H(Q, A) = AF(Q) + (1 - A)G(Q) = 0 (3.13)

For A = 0, H(Q, A) = G(Q), which is the easy-to-solve problem. For A = 1, H(Q, A) =

F(Q), which is the hard-to-solve problem. If G(Q) is linear, the Newton-Raphson

solver will converge when A = 0, regardless of the initial condition. This gets around

the issue of having initial conditions that poorly match that boundary conditions.

G(Qo) = 0 must have a unique solution, and it must be twice differentiable [17].

For Burger's equation, G(Q) = 0 represents Rd = 0. For the Euler and Navier

Stokes equations, G(Q) = 0 represents (Ri + Rv + Rs) + Rd = 0, where the terms in

parentheses represent the steady residual of the actual system. This choice of G(Q)

recovers the full steady residual in the homotopy equation, but with added dissipation

that is gradually reduced, i.e.
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H(Q, A)Euler,NS A (V + 1v + Rs) + (1 - A) ((V + dv + Rq) + Rd) (3.14)

= (Ri +RV + R) + (I - A)Rd

Because the (i + Rv + RS) term is not scaled by A, this continuation method is very

similar to that of DBC. Including the steady residual also makes G(Q) more nonlinear,

meaning that convergence of G(Qo) = 0 is not guaranteed. Despite these drawbacks,

this choice of G(Q) is used because it ensures consistent boundary conditions for

H(Q, A).

The curve Q(A) that satisfies EQUATION 3.13 and connects A = 0 to A = 1 is called the

homotopy path. Provided there is a unique homotopy path connecting H(Qo, 0) and

H(Q, 1) for a given initial condition, Qo, the method is probability-one convergent

[54]. A homotopy path exists and is unique if and only if the Jacobian of H(Q, A) is

full rank for all A - [0, 1]. The Jacobian is size n x (n + 1), and is thus required to

have rank n. This means that F(Q) can become rank-1 deficient without affecting the

homotopy path [51]. This gives the homotopy method one advantage not only over

PTC methods, but also over the very similar DBC method proposed in SECTION 3.2.3,

wherein the Jacobian for both of these methods is always n x n and will fail when

F(Q) nears singularity.

A predictor-corrector method is used to numerically follow the homotopy path along

A. Once on the homotopy path, the predictor takes a step in the direction tangent to

the path. Then, the corrector refines this rough guess to hone in on the actual path.

This sequence of steps is represented in FIGURE 3-1.
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F(Q) = 0

G(Q) = 0'
0 1

A

FIGURE 3-1: Example of a homotopy path

Euler Predictor

Let W be the augmented solution vector such that:

W = .(3.15)

A point on or near the homotopy path after k steps is

Wk = W(sk) (3.16)

where Sk is thought of as the arc length from the starting point for k > 0, such that

ASk = sk+1 - sk IIWk+1 - WkI12. (3.17)

Note that the actual value of Sk is never needed, only the step size, 6 sk. The step

taken for each Euler predictor is equal to the step size times the unit tangent vector.

The unit tangent vector, 4 !Y(sk) satisfies:

aHC a(W) dW

dWT ) d (s) = N (3.18)

ds (Sk)

where N is a unit vector with the same dimensions as w, equal to all zeros and one

in the last entry: N = [0 0 ... 1]T. In order to keep the path going in a consistent
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direction, and not turning back on itself, it is required that:

dWT dW
ds (Sk_1) (Sk) > 0 (3.19)

for k > 1. In order to make the system linear to calculate the tangent vector, the

bottom row of EQUATION 3.18 is replaced by a known vector, the effect of which only

changes the norm of the tangent vector [17]. For k = 0, the tangent vector, Vk, is

calculated by:

aH(Wk )
( w )Vk= N. (3.20)

N T

For k > 0, the previous tangent vector is used, and the new tangent vector is calcu-

lated by:
(9H( -(Wk) Vk = N. (3.21)

dWT (k1)

ds /-

The unit tangent vector is then calculated by:

dW(s) = kVk(3.22)

ds 11vk112

where ok = +1 in order to satisfy EQUATION 3.19.

The Euler predictor now approximates the next point along the homotopy path by:

dWW W+ds (sk6sk. (3.23)

While algorithms to strategically control the step size 6
4s exist, these often require

the calculation of the determinant of the Jacobian matrix [17], which may be compu-

tationally expensive. Such step size control is similar to the CFL algorithms of the

PTC methods. This work uses a constant step size and leaves it as a tuning param-

eter, only requiring that SSk > 0. For Burgers' equation, s4 = 0.1 is used. For fluid

flow equations, a larger 6
Sk = 1 is used for the sake of speeding up the computation
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time by reducing the number of predictor steps. The user may choose to decrease the

step size for difficult problems in either case. The predictor steps are continued until

A > 1 is predicted, at which point, A is set to a constant of 1 and the non-homotopy

version of the problem is solved as in EQUATION 3.3.

Newton Corrector

Using W+ 1 as an initial guess to the next point on the homotopy path, the Newton-

Raphson method is used to hone in on the true path. Since the approximate point is

only a small step away from the last known point on the homotopy path, it is expected

that the approximate point is within the basin of attraction for sufficiently small 6 sk,

allowing the Newton solver to quickly converge. Since this work uses a constant

6 Sk, this step size might be too big on occasion, so a line search is still employed if

necessary. Let Wk+1 represent the point after n Newton corrector iterations. Newton's

method is used to solve:

( __ H(Wkn 1 ) 0. (3.24)
ds k) - (Wk+1 - +1

which is an augmented, homotopy-specific version of EQUATION 3.2. The bottom

(augmented) equation in EQUATION 3.24 constrains the corrector path to be orthogo-

nal to the tangent predictor path, with the expectation that this corrector path will

be transversal to the homotopy path. It also allows the matrix in EQUATION 3.21 to

be reused for the Jacobian computation. The Newton-Raphson solver now uses the

augmented Jacobian [2],

(H

A aW wn+1 (3.25)
dWT ( 1ds
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with

OH = (-H -H (3.26)
5-W -Q '9\

H -- (Q) + (1 - A)---(Q) (3.27)O Q8Q +Q

H F(Q) - G(Q) (3.28)
aA

and augmented residual vector,

R H(Wkl) ) (3.29)
0

to solve

W - AW+1  -A--(W n+ 1 ). (3.30)

The Newton corrector iterations are continued until max (AWk+l) is less than some

specified tolerance. For A = 0 and A = 1, the non-augmented version of the system

is used to ensure that A does not change throughout the newton iterations.

There is one caveat in that the bottom equation of EQUATION 3.25 does not exactly

correspond to the bottom row of EQUATION 3.24, but rather to:

dWAT I- TTxrr+l Timf N '-

ds ' k) " vkl- 'Vk+1) .~t1

But since

W+1- Wk+1= AWk+j, (3.32)
n

then
dWT dWT

ds (Wk+ 1 - W + ds XAWk+1 = 0. (3.33)
n

This is consistent with requiring an orthogonal corrector direction with an exact solve.

However, this may not be the best choice when using an inexact linear solver, since

an inexact update may be calculated and cause the direction of the corrector step to
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drift from the orthogonal direction.
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Chapter 4

Burgers' Equation

This chapter demonstrates the performance of the various nonlinear solver techniques

as applied to Burgers' equation.

The solution methods are first tested by solving Burger's equation because it is a

simple nonlinear PDE with no physicality constraints. Since there are no physicality

constraints on the solution, a broad range of initial conditions may be tested, and

the solution process has more freedom when going through transients than when

solving the Euler or Navier Stokes equations. Furthermore, Burgers' equation is

scalar, meaning the computation expense is relatively small compared to the Euler

equations, which facilitates extensive testing.

4.1 Viscous Burgers' Equation

4.1.1 Test Case

The equation for the viscous Burgers' equation is given by EQUATION 2.2. The specific

case under consideration has g(x) = a tanh(-) and a = -0.2, such that the steady

state solution, shown in FIGURE 4-1, is equal to

u = -tanh - (4.1)
2 p
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with P = 0.005 unless otherwise noted. The Dirichlet boundary conditions are set to

be consistent with EQUATION 4.1 at the edges of the domain at x = -1 and x = 1.

1

0.5

0

-0.5

-1

-0.5 0 0.5 1

FIGURE 4-1: Exact solution for viscous Burgers' example

This manufactured solution is chosen such that the width of the shock can be scaled

with viscosity. FIGURE 4-2 shows the effect of increasing viscosity in the governing

equation, solving EQUATION 2.2 using pseudo-transient continuation, with one rela-

tively simple initial condition (top row), and one randomized initial condition (bottom

row), plotted in black. The X labels report number of linear solves performed, and

failure mode if applicable. Of the three viscosity levels shown, 1u = 0.005, 0.05, 0.5,

the least viscous cases with p = 0.005 hit the minimum CFL and do not converge,

even for the more benign initial condition. FIGURE 4-2 demonstrates that solutions

with more viscosity are more likely to converge, and in fewer iterations, even for

poor initial conditions. This is the motivation behind diffusion-based continuation

methods of DBC and homotopy.
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(f) 1- = 0.5

FIGURE 4-2: Effects of increasing viscosity. Black: initial condition; Multi: final output

4.1.2 Discrete Solution

On a coarse mesh, a thin shock (of finite width) might still appear as a discontinuity,

and Gibbs oscillations are present. With enough DOF, the true shock can be resolved,

and Gibbs oscillations go away.

resolution on the presence of Gi

FIGURE 4-3 demonstrates this effect of increasing

bbs oscillations around a finite width shock.

-0.5

-1.-
1  

-0.5 0 as 1

(a) P4 8 elements

0.5

-0.5.

-1 -0.5 0 .5 1

(b) P4 20 elements

a.,

.1 -

-1 -0.5 0 0 1

(c) P4 30 elements

FIGURE 4-3: Example of diminishing oscillations with refinement of finite width shock
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Before attempting to solve this problem using various continuation methods, we first

make sure that a discrete solution actually exists. This is checked by using the L2

projection of the exact solution as the initial condition, and seeing that the residual

is driven to machine zero (2.2204 x 10--). For grid of 65 elements, FIGURE 4-4 shows

the discrete solutions for various polynomial orders. The X labels indicate the final

residual.

1

.2
_I -0.5 0 0.5

-1 -0.5 0 0. 5 1
2uDiscrete istkn. Re shid = 3.790&-17

(a) P1 65 elements

2

0

-1 -

2-1 0.5 0 0.5

2

2-1 -0 .5 0 0. 5
2 Diwrmt wltik. W sndal -363 -17

(b) P2 65 elements

2

--

-1 -0.5 0 as

1

-1

2 -0.5 0 0.5
Diwn-te >luion, RrddiLl = .272Wr-16

(c) P3 65 elements

FIGURE 4-4: Discrete solutions for the viscous Burgers' case

4.1.3 Comparison of Solver Techniques

FIGURE 4-5 shows all of the initial conditions used to test the different solution tech-

niques. The initial conditions that converged without the need for any continuation

methods (labeled "Good") are plotted in black, while the remaining initial conditions

that required some continuation method to converge are plotted in red.
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(a) "Good" ICs (b) All ICs

FIGURE 4-5: Initial conditions used for testing with Burgers' equation

The problem is solved on 65- and 129-element uniform grids for various polynomial

orders, using (a) no continuation method, (b) p-sequencing, (c) dissipation-based

continuation, and (d) homotopy. FIGURE 4-6 shows the L2 norm of the final residual

plotted against the L2 norm of the initial residual. The residuals for cases which

"blew up"- i.e. whose residual increased beyond 104 , are not plotted. This happens

when the solver starts from a previous sub-problem that had not converged, and is

more common to p-sequencing than the other methods. In each case, the number of

linear solves is limited to 1000 per sub-problem, and the convergence tolerance is set

to 10-14.

We can clearly see in FIGURE 4-6(a) that there are several cases which do not converge.

It is seen in FIGURE 4-6(b) that p-sequencing is a reliable method, and that while one

PO case does not converge within the maximum number of iterations, the subsequent

solves with higher P do converge. FIGURE 4-6(c) and FIGURE 4-6(d) show consistent

convergence even for PO for DBC and homotopy.
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L2 norm of IC Residual

(d) Homotopy

FIGURE 4-6: Final residuals using various solver techniques for viscous Burgers'

While FIGURE 4-6 indicates that p-sequencing is sufficient to converge high order

solutions, we also want to consider the computational expense. The computational

expense is determined by comparing the number of linear solves performed by each

case, since the inversion of the Jacobian matrix is generally the most expensive part

of the solution process. This comparison is shown in FIGURE 4-7. The number of

solves include all sub-problems, for example, a given p-sequenced P2 solution totals

the solves taken for PO, P1, and P2 for that case.

P-sequencing (b) shows slightly more linear solves than using no continuation method,

as expected. For slightly more solves, nearly all the cases converge. DBC (c) requires
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fewer linear solves for the lower-DOF cases of P0 and most of P1 than the homotopy

method and most IC cases with and without p-sequencing. The bands of high numbers

of solves for DBC indicates that the maximum number of iterations were hit for one

or more of the sub-problems. However, FIGURE 4-6 shows that all of these cases did

converge. It is likely that relaxing the tolerance for the sub-problems would alleviate

the number of solves required to converge using DBC. The homotopy method shows

less of a spread in number of linear solves, likely due to the fact that aside from

the initial condition, the same exact sequence of subproblems are solved since G(Qo)

is linear for Burgers' equation and always results in the same solution for A = 0.

Increasing the predictor step size, 6s, would likely reduce the required number of

solves. Considering the number of linear solves taken to achieve the same level of

convergence as p-sequencing, the homotopy method seems to be overkill. Even though

DBC outperforms the other methods for the lower-DOF cases, the same issue remains

with the method in that its continuation schedule is rather arbitrary. It is still unclear

whether DBC would perform this well on other problems.
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FIGURE 4-7: Number of linear solves for viscous Burgers'

4.2 Inviscid Burgers' Equation

The same solution methods are now investigated for an inviscid problem with a shock,

where oscillations will be present regardless of the number of DOF.

4.2.1 Test Case

Following the test case in [3] the general governing equation is the same as EQUA-

TION 2.2, with po = 0, a = -0.1 and forcing term g(x) such that the inviscid exact

solution has a shock at x = 0:
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2 +sin (ZX) X < 0
U(X) = 2 (4.2)

-2 - sin (ZX-) X > 0

The Dirichlet boundary conditions are set to be consistent with EQUATION 4.2 at the

edges of the domain at x = -1 and x = 1. FIGURE 4-8 shows the exact analytic

solution.

U 0-

5
-1 -0.5 0 0.5 1

i

FIGURE 4-8: Exact solution for inviscid Burgers' example

4.2.2 Discrete Solution

We check that discrete solutions exist for this problem. For a grid of 65 elements,

FIGURE 4-9 shows the discrete solutions for various polynomial orders. The X labels

indicate the final residual.
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FIGURE 4-9: Discrete solutions. Top row: initial condition, Bottom row: final solution

4.2.3 Comparison of Solver Techniques

The problem is solved on 65- and 129-element uniform grids for various polynomial

orders, using (a) no continuation method, (b) p-sequencing, (c) dissipation-based

continuation, and (d) homotopy. FIGURE 4-10 shows the L 2 norm of the final residual

plotted against the L2 norm of the initial residual. The residuals for cases which "blew

up"- i.e. whose residual increased beyond 104 , are not plotted. This happens when

the solver starts from a previous solution that had not converged, and is more common

to p-sequencing than to the other methods. In each case except for homotopy, the

number of linear solves is limited to 1000 per sub-problem; for homotopy, the number

of linear solves is limited to 100 per Newton corrector sub-problem, and number of

predictor steps is limited to 300. The convergence tolerance is set to 10-14 for all

cases.

FIGURE 4-10(a) shows several cases which do not converge, more so than with this

viscous case. This is due to the Gibbs oscillations around the shock, a true discontinu-

ity which no amount of DOF can resolve. FIGURE 4-10(b) shows that p-sequencing is
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unable to converge many more cases and is not much more reliable overall, sometimes

performing worse than the cases with no continuation method. This is attributed to

the Gibbs oscillations. It appears in FIGURE 4-10(c) that while all of the DBC cases

converged, the P3 results lay very close to the set tolerance when compared with

the other P cases. It is unclear whether those cases would converge closer to 10-"

like the rest of the results given a tighter tolerance. FIGURE 4-10(d) shows consistent

convergence for all the homotopy cases in a similar residual range to DBC.
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FIGURE 4-10: Final residuals using various solver techniques for inviscid Burgers'

We also consider the computational expense, which is compared in FIGURE 4-11. As

expected, the p-sequencing method is more expensive than almost all of the cases
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without continuation. The DBC and homotopy performances are similar to those

for the viscous case. DBC performs well for PO and P1, but again seems to hit

maximum iteration limits for higher P. However, all of these cases still converged,

meaning that the brute force method of decreasing viscosity even on an unconverged

sub-problem can still work. It is likely that those unconverged sub-problems were

close to the tolerance such that the unconverged intermediate solutions were within

the basin of attraction for the subsequent sub-problems. FIGURE 4-11(d) shows that

homotopy performs similarly to DBC for P0, is more expensive than DBC for P1,

but outperforms DBC for most P2 and several P3 problems.

For all four methods overall, DBC performed best for PO and P2, while homotopy

performed best for most higher P cases for the inviscid test case. This is in contrast

to the viscous test case, where p-sequencing showed a wide range of linear solves,

making it unclear exactly when one method would perform better over another, since

almost all of the continuation methods converged robustly.
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FIGURE 4-11: Number of linear solves for inviscid Burgers'

61

10

I V

102

10,

100
10P 10

" "



62



Chapter 5

Euler Equations

For Burgers' equation, any value of the state, u, is allowed; however, the same cannot

be said for the Euler and Navier Stokes equations. For example, a negative pressure

would cause the calculation of the speed of sound, a = '}p/p, to fail. For the Euler

equations using the conservative vartiables, Einfeldt et. al. [23] defined the set of

physically admissible states, G (not to be confused with G(Q) in CHAPTER 3), as

those which contain positive density and internal energy:

G = { U | p > 0 and 2p (pE) - (pu) 2 } > 0. (5.1)

Linde and Roe [37] defined the same set of admissible states as EQUATION 5.1, but

referred to requiring positive pressure rather than internal energy. Indeed, requir-

ing positive pressure is equivalent to requiring positive internal energy. The second

constraint is rewritten as

p (E - U2 /2) > 0. (5.2)

Since (-y - 1) = 0.4 > 0 for air, EQUATION 5.2 also corresponds to positive pressure

when written in terms of the conservative variables:

p = (-y - 1) p (E - U 2 /2) > 0. (5.3)
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Substituting e = E - u2 /2 and cT = e for an ideal gas,

p = (y -1) pcT = pRT > 0. (5.4)

We see that requiring density and temperature to be positive also corresponds to

requiring positive pressure and energy, as well as speed of sound, written above.

Linde and Roe also note that limiting the primitive variables has yielded good results

in many other numerical experiments [37.

These physicality constraints cause robustness issues for fluid simulations that might

pass through nonphysical states during the transient solves. A nonphysical state

might be computed during a Newton iteration; even if a subsequent line search would

reduce the update size and prevent the Newton update from making the state go

nonphysical (nonphysical or close-to-nonphysical states are often associated with large

residual values), some codes will immediately halt once detecting the nonphysical

state and end the solve. A nonphysical state might also be computed around a

shock where Gibbs oscillations are present due to the discontinuity. Gibbs oscillations

can also appear on smooth features that are under-resolved, such as shocks of finite

thickness (i.e. with viscosity) on coarse meshes.

Since this is a relatively ubiquitous problem in CFD, there are many approaches to

avoiding nonphysical states. As described in SECTION 1.2, some of these approaches

take the form of shock capturing or positivity preserving methods, including line

searches, (constrained) pseudo-unsteady algorithms, and artificial viscosity. This

chapter proposes an alternate strategy wherein density and temperature surrogate

solution variables are allowed to go negative, while still preserving positivity of the

actual density and temperature.
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5.1 Surrogate Variables

When solving the Euler and Navier Stokes equations, we would like to emulate the

property of Burgers' equation of having no nonphysical state. Specifically, we would

like to allow density and temperature to go negative during the transient solves and/or

on coarse meshes, knowing that the steady state and/or grid-refined solution (possible

with local artificial viscosity as in [41] or [3]) will indeed be physical.

We consider the use of surrogate primitive variables, Z = [1 ii, I , which are allowed

take on any real value. The conversion back to the actual primitive variables, Z =

[p, u, T]IT, is chosen to ensure that p() and T(T) are always positive.

The specific surrogate primitive variables we use are:

p() (5.5a)

3 - 3#i/# + (#i/fic)2 P<PC

u(il) = u (5.5b)

T(T) j-C~ ~ (5.5c)
2T < T,

3 - 3f/lc + C)/ 2

A plot of this surrogate model is shown in FIGURE 5-1. The values and slopes of the

surrogates match at the critical values, fic and TC. The choices of these critical values

are tuning parameters; for the test case presented, fc = 0.01 and tc = 0.001 were

found to work well and are used for all results shown. Tc is smaller than Ac because t

tended to take on much larger-magnitude negative values than 15, and decreasing the

critical value helped to lessen its drastic negative spikes during the transient solves.
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FIGURE 5-1: Surrogate density and temperature functions

The code which was developed for this work originally used conservative states as the

working variables, Q = U. Thus, the linearization 8R/&U was already available. In

using surrogates, Q Z and now &R/&Z is needed. We construct 9R/&Z via the

chain rule which then only requires small changes in the existing OR/U code (to

ensure U (Z(2)) is correctly used). Thus,

aR aR WU oZ-RO=&--- (5.6)az aU aZ 09

where

1 0 0

aZ u p 0 (5.7)

kE Pu pcv

and

(c0 0
~ 0 1 0 (5.8)

O 0 Oj

with

op OTa = -(5.9)
Cp8
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5.2 Artificial Viscosity and Linearization

A difficulty that arises when combining surrogate variables and artificial viscosity is

that the physical variables will tend to have small variations in regions where the

surrogates are active (e.g. p < &c). Then, spatial gradients such as U, or Z, will

be small. This particularly problematic because regions where the surrogates are

active are likely to require artificial dissipation to smooth the solution. Instead, we

use the gradient of the surrogate primitive variables, Z (or "surrogate" conservative

variables, Ox = U(Z)x). For a threshold value of 0.5, FIGURE 5-2 illustrates the effect

of the surrogates flattening the gradient of density, while the gradient of surrogate

density remains large in magnitude.
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(a) Density (b) Density gradient

FIGURE 5-2: Effect of surrogate reducing physical gradient

The physical viscosity uses the defined MO, which is constant throughout the domain.

The linearization of the physical viscous flux, FV(Z, Z,), with respect to Z is
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dFV &FV &Fv &Zx

dZ aZ +Zx aZ
DFv aZ Fv a (az a2

Z Z ZZ
&9Z a2 9ZX (a~& 2 X +az az axJ

where

and

DFv

5Z

&FV

a8Z = KV

0

0

0

0

0
4 pu

0

0

0

(5.10)

(5.11)

(5.12)

0

01

0

0)
0 .
k)

0
4

i y
3 P

The presence of the second derivative with respect to Z in EQUATION 5.11 suggests

that the mapping from surrogate to primitive variables must be C2 smooth. When

making the artificial viscosity a function of the gradient of the surrogate variables

instead of the gradient of the physical variables, the linearization of the surrogate

physical viscous flux, F(Z, Z,), simplifies to:

dFV 0FV

dZ &Z

aFV

9Z

aF" aZ,

aZv o a
azxa (ax
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with 4 = 8FV and QFV - OFv since they are only functions of velocity and thea-az 9, 0Z

velocity gradient, and the surrogate variables use i = u.

5.3 Euler with Shock

5.3.1 Test Case

The inviscid test case solves the Euler equations, with artificial dissipation for DBC

and homotopy. The governing equations are:

puA 0
a 8A a
- (pU2 + p)A - p (F*)= , Vx E , I].ax - i x

puHA 0

FV* is the artificial viscosity flux, either Fv or Fl. For a diverging

varying according to:

(5.14)

nozzle with

ln (1 + x)
A(x) = 1 + 9 In()

ln(2)
(5.15)

shown in FIGURE 5-3, the boundary conditions are set such that the inviscid exact

solution has a shock in the middle of the domain at x = 0.5, over which the temper-

ature increases by a factor of 10. At x = 0, the supersonic inflow Dirichlet boundary

condition specifies the state with M, = 4.37. At x = 1, the subsonic outflow bound-

ary condition specifies the static back-pressure with Pback/Po = 4.07. FIGURE 5-4

shows the exact analytic solution. For in this exact solution, Z = Z because the

exact solution values for pi and T are above their respective critical values.
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FIGURE 5-3: Area geometry for Euler shock
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FIGURE 5-4: Exact solution for Euler shock

5.3.2 Discrete Solution

As done for the Burgers' examples, we check for the existence of discrete solutions. For

a grid of 15 elements, FIGURE 5-5 shows the discrete solutions for various polynomial

orders, using the L2 projection of the exact solution as the initial condition, and a

convergence tolerance of 2 x 10-". The X labels indicate the final residual. For the

P2 solution, the oscillations of 3 peak off the plot at imax 13, while the oscillations

of T peak off the plot at Tmin = -12. For the P3 solution, the oscillations of T peak

off the plot at Tmin = -86.
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FIGURE 5-5: Discrete solutions for Euler shock case

5.3.3 Demonstration of Surrogate Variables

Converging to inviscid solution with primitive and surrogate variables

The problem is solved for a 15-element uniform grid with a uniform initial condition

based on the outflow state of the exact solution. While it is common to start with

an initial condition based on the inflow state, it was found that supersonic initial

conditions were not likely to converge for this test problem, since the flux upwinding

largely prevents the subsonic outflow condition from allowing a shock to travel inward.

The physical viscosity model is used as the artificial viscosity for all subsequent results

shown.

Because FIGURE 5-5 shows that there are oscillations which go negative in the discrete
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solution, it is expected that the primitive variables alone will not be able to converge

to a fully inviscid solution on this grid. To see how far the primitive variables could

be used before the surrogate variables become necessary, the dissipation-based contin-

uation method, starting with a viscosity such that the freestream Reynolds number

equals 20 (Re, = p .. L./pt) is used to approach the solution from a smooth,

physical state. FIGURE 5-6 and FIGURE 5-7 show the solutions for density, Mach num-

ber, and temperature, for Re, = 20, 100, 1000, and finally the Re.. = oc inviscid

case, for P1 and P2. In these figures, Q = Z and Q = Z what the solution variables

were.

The primitive variables, even with DBC combined with PTC, are unable to converge

with Re, = 1000 and Re, = oo for P1. The Re = oc case is also unable to converge

using primitive variables for P2. The line search is unable to find an update fraction

that does not result in a nonphysical state for all of the unconverged cases. Using the

same solution method (DBC combined with PTC), the primitive surrogate variables

are able to converge each case shown in FIGURE 5-6 and FIGURE 5-7, including the

fully inviscid solutions.
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FIGURE 5-6: Surrogate vs primitive variables: P1
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FIGURE 5-7: Surrogate vs primitive variables: P2

Negative transient surrogate values

It is shown that the surrogate variables are needed to converge on the solution with

nonphysical oscillations. In doing so, it was observed that transient solutions us-
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ing Q = Z sometimes passed through states with negative surrogate densities and

temperatures, even when the converged solution was completely positive and free of

oscillations. FIGURE 5-8 shows an example of such a progression of transient states for

P3 on a 15-element grid. The initial condition is again the uniform subsonic-outlet

IC, with Re, = 100. The system is not yet converged after the sixth linear solve

shown, but the subsequent solves remain positive in density and temperature, for a

total of 10 linear solves.

(a) Solve 1

(d) Solve 4

(b) Solve 2

(e) Solve 5

(c) Solve 3

(f) Solve 6

FIGURE 5-8: Surrogate variables passing through negative temperatures

To investigate how well either choice of variables converges without artificial viscosity

continuation, we now compare the use of surrogate primitive variables to the use of

regular primitive variables, supported with a physicality line search. Having been

convinced that the primitive variables are unable to converge Re, = oc, the Re, =

20, ReO = 100 and ReO = 1000 are compared. Re, = 1000 is the "borderline" case

where the primitive variables, using DBC, converge for P2 but not for P1. Now we

see what happens without DBC. TABLE 5.1 reports the number of linear solves taken

to converge with a residual tolerance of 10", with X indicating that the solve failed.

"N" indicates the use of the Newton solver with no additional continuation method;

"PTC" indicates that pseudo-transient continuation was also used.
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Re,= 20 Re =100 Re. = 1000

N I PTC N PTC N PTC

Primitive 7 14 10 16 X X
P1

Surrogate 7 14 11 14 X 33

Primitive 7 15 9 16 X x
P2

Surrogate 10 14 11 14 X 91

Primitive 7 15 9 16 x 53
P3

Surrogate 10 14 10 14 69 36

TABLE 5.1: Number of linear solves for P1-3, 15 elements

Each of the cases converges for Re, = 20 and Re, = 100, with or without PTC,

for both the primitive and the surrogate variables. We can conclude that allowing

the transient solutions to pass through negative surrogate values of density and tem-

perature, such as those depicted by FIGURE 5-8, has little effect on the overall solver

performance for these smoother cases. However, the higher Reynolds number cases

using the primitive variables are often observed to fail before the shock was set up at

in the center of the domain; where these cases fail is where the surrogate variables go

negative in the transient.

For Re, = 1000, 5 of the 12 cases converge; the primitive variables account for only

1 of those 5 cases, while the surrogate variables account for the remaining 4. Without

any continuation method, none of the primitive variable cases converge; the only case

to converge is the P3 surrogate case. When applying PTC, the only case to converge

with primitive variables is P3, while all of the surrogate variable cases do converge.

Overall, surrogate variables combined with PTC yielded the best results for the bor-

derline Re, = 1000 case. These results demonstrate three things. First, the relative

success of P3 over P1 and P2 demonstrates the benefit of using increased resolution

in general. Second, PTC is shown to successfully aid in convergence of difficult prob-

lems. Third, the use of surrogate variables is shown to aid in the convergence of the
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problems in which PTC alone is not enough.

Continuation methods with surrogate variables

We have shown that the discrete solution to this inviscid shock problem exist, and

that they require the surrogate variables to converge. We have also shown that the

surrogate variables are beneficial to convergence from the uniform initial condition,

although convergence was less likely for lower-order cases without pseudo-transient

continuation. We now apply the diffusion-based continuation methods to the surro-

gate variables for the fully inviscid case.

The problem is solved with and without the artificial viscosity continuation methods

on a 15-element uniform grid, with the uniform initial condition based on the outflow

of the exact solution. The residual and continuation parameter histories are shown in

FIGURE 5-9. "Modified residual" refers to the residuals that include artificial viscosity,

i.e., the ones which Newton's method is driving to zero on each sub-problem: EQUA-

TION 3.12 for DBC and EQUATION 3.29 for homotopy. "Steady residual" refers to the

unmodified residual without any artificial dissipation. The continuation parameter

for DBC is plotted as (1- ADBC) for better comparison to the homotopy continuation

parameter. The sawtooth patterns of the modified residuals show the convergence of

each sub-problem, with the increasing jumps indicating the start of the subsequent

sub-problem.
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FIGURE 5-9: Residual histories for Euler shock case using primitive variables

FIGURE 5-9 shows that none of the cases are able to converge without the use of some

continuation method. While the DBC method requires more linear solves to converge

each sub-problem, it converges faster overall than the homotopy method, which slows
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down as it approaches the fully inviscid solution with A = 1. FIGURE 5-10 shows

the Mach number distribution at converged sub-problems of the homotopy method

over the course of the P2 solve. The legend indicates the value of the continuation

parameter and the running total of linear solves taken. This slowing down near A = 1

could be due to the fixed predictor step size, Js; step size algorithms for controlling

6s should be explored to improve this continuation method. The DBC method in

contrast is able to skip ahead to a more inviscid problem, although the first three

sub-problems for P2 indicate that DBC could have performed better with less drastic

changes the continuation parameter.

A 1 0, Solve 10
10 -- - --- - --A - O.M .7 Solve 38

A -D.45.Solv.e 

............ I A 09 O. ov g

A =- 0=.99g, Solve 125

4 ... .......

0 0.2 04 0. 0. 1

FIGURE 5-10: Evolution of Mach number distribution using homotopy

The DBC method takes 54 linear solves to converge the P2 Re, = oc case- we note

that this is less than the number of linear solves taken by the PTC method to converge

the P2 Re, = 1000 case-91 solves. While these cases are at two different Reynolds

numbers and cannot be directly compared, it is postulated that the DBC method

would converge the ReO = 1000 case in fewer than 54 solves, as it is more viscous

than the ReO = oo case, thereby outperforming the PTC method. Since PTC can be

implemented at each DBC sub-problem, it is further postulated that a combination

of PTC and DBC with the surrogate variables could converge even faster and more

robustly.
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Chapter 6

Conclusion

6.1 Summary and Conclusions

This thesis investigated methods to enhance the robustness of shock capturing for

high-order DG discretization. Dissipation-based continuation methods were applied

as a form of globalization for both Burgers' and the Euler equations. For the Euler

equations, a method for eliminating nonphysical states using surrogate primitive vari-

ables was presented to allow for convergence of problems with shocks exhibiting large

oscillations, even without artificial viscosity. Through the use of surrogate variables

combined with continuation methods, this work has demonstrated ability to converge

to a strong shock solution that was otherwise not possible to realize.

Dissipation-based continuation was used as an alternative to pseudo-transient con-

tinuation and p-sequencing. Global artificial viscosity was introduced to the initial

problem, and gradually decreased to recover the original low-viscosity or inviscid

problem by varying a continuation parameter, A, which scaled the amount of arti-

ficial viscosity. The DBC method used a pre-determined continuation schedule for

decreasing A from 1 to 0 by a factor of ten on each sub-problem, where A = 0 re-

covered the original problem. DBC was generally the most efficient method among

those tested, applied to both Burgers' and the Euler equations, but there is some

uncertainty with using a pre-defined continuation schedule.
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Because of these reservations with the DBC method, a homotopy method was in-

troduced in which the continuation parameter became an additional variable. A

predictor-corrector method was used to follow the solution path over the range of A.

The homotopy method was able to globalize problems for Burgers' equation that used

known Dirichlet boundary conditions; the method was also successful in converging

the inviscid shock test case for the Euler equations. While about on par for the test

cases for Burgers' equation, the homotopy continuation method was computationally

more expensive than the DBC method in nearly all cases shown for the Euler shock

test case.

For the Euler equations, surrogate variables were introduced in order to converge

solutions with nonphysical oscillations, i.e., strong shocks, in the absence of grid

refinement, as well as more sophisticated shock capturing techniques. The conversion

from any real values of the surrogate variables maintained physical states of the

primitive variables. For the test case shown with a M = 6.8 shock, surrogate variables

were needed to converge the solution in the presence of nonphysical oscillations. The

transient solutions were also allowed to pass through states with negative surrogate

densities and temperatures; while this had little effect on the convergence of smooth

(high-viscosity) problems, it did allow the less viscous problems reach the converged

solutions.

For higher Reynolds numbers and in the absence of any continuation method, the

surrogate variables showed more robust convergence at higher order than the primitive

variables. When combined with pseudo-transient continuation, the use of surrogate

variables showed superior convergence to the primitive variables for the same high

Reynolds numbers. The artificial viscosity continuation methods were then applied

to the surrogate variables for the inviscid shock problem. The test cases were all able

to converge with the use of either the pseudo-transient, diffusion-based, or homotopy

continuation methods. It is expected that a combination of surrogate variables with

diffusion-based continuation as well as pseudo-transient continuation would be the

most robust and efficient method to converge the invsicid shock problem.
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6.2 Future Work

Interface with grid adaptation

The next step is to introduce surrogate variables to an already-existing adaptive grid

framework. The surrogate variables and other continuation methods will be used

to converge on unrefined grids. As the grid refines around shocks, the surrogate

variables will allow the cycle to continue in the presence of Gibbs oscillations while

local artificial viscosity and grid refinement will eventually remove the oscillations

altogether.

More Euler and Navier Stokes testing

A side by side comparison was done of the Euler solver with surrogate variables to a

solver without surrogate variables that relies on a line search to preserve physicality,

but this was done only for one initial condition and one test case. We would like to see

how the surrogate method performs for a larger variety of initial conditions and test

problems, as well as for higher polynomial orders. Additionally, direct comparisons

of the dissipation-based and pseudo-transient continuation methods applied to the

surrogate variables for the same Reynolds number would help to better establish the

relative merits of either method beyond what is currently only postulated.

Investigation of artificial viscosity methods

In order to preserve solution accuracy, methods should be investigated to only add

dissipation where needed, by use of a sensor that activates the artificial viscosity.

Other shock capturing research has successfully used shock switches with artificial

viscosity methods. Furthermore, the artificial viscosity should scale with the mesh

size, in addition to the switch.

The use of artificial Laplacian viscosity should also be carefully examined. Since the

artificial viscosity initially dominates the total residual in diffusion-based continua-

tion, the artificial viscosity should ideally be linear or close to linear, such that the

Newton-Raphson solver quickly converges to a solution. Laplacian viscosity is linear,
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full rank, and its diffusion matrix is acted on by the gradient of the solution vari-

ables. Additionally, these properties would potentially allow the homotopy method

to start from solving just the Laplacian for its first solve, which would likely increase

robustness with respect to the initial conditions.

Expand homotopy framework

A basic homotopy framework has been implemented, but it is missing step size con-

trol. Decreasing the predictor step size can be very useful towards the end of the

solution process when there is very little artificial dissipation left in the problem and

oscillations arise, but using an accordingly small step size throughout the whole solve

slows down the process unnecessarily. Including step size control will increase the

efficiency and robustness of the homotopy procedure by selecting a better choice for

the predicted A.

Furthermore, it would be beneficial to explore different options for G(Q) for the Euler

and Navier Stokes equations that do not include the convective residual. Homotopy

showed promise with Burgers' equation, in part because it matched the boundary

conditions of the exact answer and because it always solved a linear system for G(Qo).

It is expected that the homotopy process would perform better for the Euler equations

if it solved a diffusion equation for G(Q). However, a diffusion equation would require

three boundary conditions at the outflow, while the real system requires only one

(static pressure) for the shock case considered here.

Boundary conditions

This leads us to consider boundary conditions that vanish with viscosity. Of interest

are the Berg-Nordstrom [8] boundary conditions, which are dual-consistent and stable

for the Euler and Navier Stokes equations. For subsonic outflow with nonzero vis-

cosity, these give three boundary conditions. In the inviscid limit, only one condition

remains that sets static pressure.
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