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Abstract
Polymerization-based signal amplification is an approach to biosensing that leverages the amplification
inherent to radical polymerization to enhance signal associated with molecular recognition. This
versatile technique has been implemented with a number of radical polymerization chemistries,
including atom-transfer radical polymerization (ATRP), photopolymerization, reversible addition-
fragmentation chain transfer polymerization (RAFT), and enzyme-mediated redox polymerization. This
thesis focuses on the development of photopolymerization-based signal amplification (PBA) as a
platform technology for use at the point-of-care. We sought to build a mechanistic understanding of the
system, specifically examining the effects of non-ideal binding reactions and oxygen.

One of the greatest barriers to wider implementation of polymerization-based signal amplification is the
susceptibility of radical polymerization reactions to oxygen inhibition. Oxygen reacts with initiating and
propagating radicals to form peroxy radicals that are unreactive towards propagation, and thus have the
effect of terminating the reaction. Chapter 2 describes the development of an air-tolerant monomer
solution that allows interfacial photopolymerization reactions to proceed under ambient conditions in as
little as 35 seconds where previous implementations of PBA required inert gas purging to remove
oxygen and reaction times of 20 minutes or longer. We showed that the inclusion of submicromolar
concentrations of eosin, the photoinitiator, in the monomer solution mitigated the effects of oxygen.
The ability to perform these reactions under ambient conditions increases their clinical utility by
simplifying the procedure and by eliminating purging gases that might be detrimental in some biological
applications, specifically those involving cells.

Intrigued by eosin's ability to overcome over 1000-fold excess of oxygen, we performed spectroscopic
measurements in order to elucidate the mechanisms underlying eosin's resistance towards oxygen
inhibition. A dual-monitoring system for measuring eosin consumption and monomer conversion was
used to corroborate the hypothesized regeneration of eosin in the presence of oxygen (Chapter 3).
This required the development of a method for analyzing absorbance data for polymerizing hydrogels.
We further examined the photoactivation kinetics of the eosin/tertiary amine system and the effect of
oxygen using absorbance spectroscopy and kinetic modeling (Chapter 4). The spectroscopic
investigation revealed that, in addition to the previously postulated reactions in which eosin is
regenerated by oxygen, additional reactions between oxygen and eosin in its triplet state and
semireduced form occur and must be taken into account. The formation and consumption of the
semireduced species informed the construction of a kinetic model, for which the importance of
considering the reaction between triplet state eosin and the tertiary amine as two separate steps was
clearly demonstrated.
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Transitioning away from an examination of the amplification chemistry, we next considered the
molecular recognition event, exploring the concept of the amplification threshold by investigating the
impact of the binding affinity of the molecular recognition event on the limit of detection (Chapter 5).
We showed that improvements in binding affinity enhance detection sensitivity. A mass action kinetics
based model was used to accurately predict experimental findings and identify the key parameters for
predicting the performance of PBA reactions: surface capture probe density, incubation time,
concentration and binding affinity of the target molecule.

We evaluated the commonly proposed strategy of developing polymeric macrophotoinitiators for
improving the sensitivity of photopolymerization-based signal amplification reactions (Chapter 6).
Building on earlier work, in which solubility limits were encountered coupling eosin and neutravidin to a
poly (acrylic acid-co-acrylamide) backbone, we synthesized a more water-soluble polymeric
macrophotoinitiator based on a generation 7 poly (amidoamine) dendrimer scaffold. Although the
solubility was improved, a new quenching limitation was identified, demonstrating the complexity of
designing polymeric macrophotoinitiators that incorporate eosin as the photoinitiator. In lieu of viable
photoinitiator alternatives to eosin, we concluded that future efforts to design polymeric
macrophotoinitiators should include features that increase the distance between eosin molecules.

We used photopolymerization-based signal amplification to selectively encapsulate a target population
of cells in a co-culture (Chapter 7). PBA allows for the selective growth of an immunoprotective hydrogel
only at the surfaces of the labeled cells, even in closely contacted cell aggregates. The hydrogel protects
the cells against subsequent lysis, allowing for nucleic acid extraction from the unlabeled cells without
the need for cell sorting.

Finally, we consider the vast, unexplored parameter space for photopolymerization-based signal
amplification, surveying alternative photoinitiation chemistries, new approaches to signal interpretation,
and future applications.

Thesis Supervisor: Hadley D. Sikes
Title: Assistant Professor of Chemical Engineering
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I Introduction

1.1 Motivation
The diagnosis of disease at the point-of-care is significantly enhanced by access to reliable and sensitive
sensing tools. Techniques for amplifying signal are particularly valuable for applications for which low
limits of detection are required. Radical polymerization has been shown to be a viable amplification
technique, but barriers to implementation at the point-of-care persist.

1.2 Biosensors and amplification in sensing
Biosensors are molecular sensors that couple biological recognition events with some form of signal
transduction. The basic elements of the biological recognition event are consistent across different
platforms: a capture molecule, such as a nucleic acid sequence or protein, is used to specifically bind a
target analyte. In some cases, this interaction is transduced directly into a signal that can be monitored
in real time (Figure 1-1A). This is true for many of the biosensors employing Surface Plasmon Resonance
(SPR), in which binding at an interface changes the Refractive Index and consequently the incident
resonant angle at which surface plasmons are excited by plane polarized light.' In other cases, following
capture of the target analyte by the capture molecule, a second molecule specific to the target and to
which a label has been attached is introduced (Figure 1-1B). Fluorophores and gold nanoparticles are
commonly used labels and can be measured directly with fluorescence scanners and absorbance
spectrometers, respectively. Alternatively, the label can serve as the basis of amplification (Figure 1-1C).
The enzyme-linked immunosorbent assay (ELISA) employs an enzyme as the label; following the binding
steps, a substrate is introduced that the enzyme converts to a colored, fluorescent, or
electrochemiluminescent product. Amplification occurs as a result of the ability of one molecule of
enzyme to catalytically convert many molecules of substrate to product. Gold nanoparticles and silver
salt solutions can also be used for amplification; the silver coats the gold surfaces, catalyzing the
deposition of additional silver.

Angle Wavelength

Angle Wavelength

Wavelength
Figure 1-1. Biosensing formats depicted for antigen-antibody recognition. A) Binding of the target antigen to
a capture antibody immobilized on the surface is transduced directly (e.g. surface plasmon resonance). B) A
second antibody conjugated to a label (e.g. fluorophore) binds to the target antigen, producing a signal. C)
The label conjugated to the second antibody serves as the basis for amplification, converting a substrate
into a detectable product that can be quantitatively measured using absorbance (as shown) or fluorescence
spectroscopy.
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1.3 Development of photopolymerization-based signal amplification
In the last decade, polymerization-based signal amplification has emerged as a versatile and adaptable

biosensing tool. It presents an alternative to commonly used amplification techniques such as ELISA. In

polymerization-based signal amplification, a radical polymerization reaction amplifies the signal from a

molecular recognition event. Typically, initiating molecules are conjugated to a protein or DNA probe

that specifically recognizes surface-tethered proteins or DNA. This allows for the localization of the

reaction to only those regions where the initiating molecule has been immobilized as a function of

molecular recognition events (Figure 1-2). Amplification is inherent to radical polymerization; in

response to heat, light, or catalytic activation, each initiator molecule sets off a series of propagation

events that result in the conversion of many molecules of monomer to a polymer. Polymerization-based

amplification has been implemented with a number of different radical polymerization chemistries,

including atom-transfer radical polymerization (ATRP), photopolymerization, reversible addition-

fragmentation chain transfer polymerization (RAFT), and enzyme-mediated redox polymerization. ATRP

based methods have been reviewed recently 2 and photopolymerization as a biosensing tool has been

discussed, although not comprehensively;3 ,4 here, we consider the development of

photopolymerization-based signal amplification (PBA), presenting recent advances before discussing the

relative merits of the radical polymerization chemistries used for polymerization-based signal
amplification in a later section.

Monomers j0

iJ H Heat/ light/
t I catalyst

Initiator

Figure 1-2. Polymerization-based signal amplification for antigen-antibody recognition. Following antigen
binding to an immobilized capture antibody, a second initiator-conjugated antibody is introduced. This
second antibody links polymer formation with capture of the target antigen. Polymerization occurs upon the
addition of a solution of monomers and initiator activation in the form of heat, light, or a catalyst.

1.3.1 Proof of concept
Successful implementation of photopolymerization-based signal amplification hinges on the ability to

localize photoinitiators at the site of molecular recognition. This is accomplished through the use of

macrophotoinitiators. Macrophotoinitiator is a term that has been adopted to describe a dual-functional

molecule comprised of photoinitiators and an affinity ligand. In their simplest form, these molecules

consist of proteins to which the photoinitiator has been directly conjugated.

In the first demonstration of photopolymerization-based signal amplification, Sikes et al. prepared a

macrophotoinitiator by coupling a protein for molecular recognition and UV activated type I initiators

(Irgacure 2959) to poly (acrylic acid co-acrylamide). In this case, the molecular recognition event was

between neutravidin coupled to the polymer backbone and biotinylated oligonucleotdies covalently

bound to a thin-film biosensor surface.5 The high affinity (Kd~10' 5 M) biotin-neutravidin (or

alternatively, streptavidin) interaction has been employed extensively in PBA;s-12 the selection of these

binding partners ensures that the amplification (or signal transduction) step rather than the molecular

recognition event limits the final readout by maximizing the number of complexes formed and,

consequently, the initiator surface density. The specificity of the binding interaction between biotin and

14



streptavidin results in the localization of initiators at the surface. A second reason for selecting these
binding partners is to reduce costs during the development phase for a new technology by avoiding
antibodies, which are frequently cost prohibitive and may be more sensitive to storage conditions and
less reliable.

In photoinitiated polymerizations, light absorption produces radicals through the excitation of a
photoinitiator that then either undergoes bond cleavage to produce radicals (type 1) or interacts with a
second component through an energy transfer or redox reaction to yield radicals (type 11). These radicals
then go on to react with carbon-carbon double bonds of monomers in solution, initiating propagation.
Irgacure 2959 is a type I UV-activated photoinitiator that, upon irradiation with UV light, is cleaved into
substituent radical species (Figure 1-3). The benzoyl radical initiates polymerization.

0 0

OH hv + OH
HO o HO O

Figure 1-3. UV-activated cleavage of Irgacure 2959.

In this first implementation, the monomer solution consisted of 97 wt% hydroxyethylacrylate and 3 wt%
ethyleneglycol dimethacrylate. A 10 minute dose of 5 mW/cm 2 , 365 nm light produced readily visible
polymer films, obviating the need for the optical properties of the biosensor surface. Though not
quantitative, photopolymerization-based signal amplification in its original incarnation yielded a reliable
yes/no response for as few as 1000 molecular recognition events or -0.005 biotinylated
oligonucleotides/pam 2 (based on a 600 pm diameter spot).

In an effort to expand the applicability of the approach to clinically-relevant antigen detection, Sikes et

al. subtyped influenza viruses from crude lysates.13 This study was the first instance in which specific
protein detection from complex media was demonstrated using any of the published initiation
chemistries for polymerization-based signal amplification. Sikes et al. replaced the enzymatic
amplification used in a commercially available flu test with photopolymerization-based signal
amplification. The authors used the same thin film biosensor and UV-activated macrophotoinitiator as in

the proof-of-concept study,5 with the exception that the neutravidin was replaced by monoclonal flu

antibodies, and showed that photopolymerization-based signal amplification achieved the same limit of

detection as enzyme-based amplification. The assay was designed so that each test contained a built-in

positive control (the innermost circle where flu nucleoproteins were covalently bound to the surface as

shown in Figure 1-4). Surrounding the control was the test region where subtype specific monoclonal
antibodies were bound, while the remainder of the area served as a negative control. In the absence of

virus, polymer was only observed within the positive control spots (Figure 1-4A). The results when either

Flu A or B were present are shown in Figure 1-4B and C, respectively. The unambiguous response is one

of the strengths of PBA relative to enzymatic amplification.
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Figure 1-4. Subtyping influenza viruses with photopolymerization-based signal amplification. (a) No virus

detected so polymer is only observed within the positive control spots. (b) Influenza A detected. (c) Influenza

B detected. Reprinted with permission from Sikes et al., Lab on a Chip, 2009, 9, 633-656. Copyright @ 2009,

The Royal Society of Chemistry.13

1.3.2 Extension to visible light activation
While the initial development work was conducted using a photoinitiator that undergoes bond cleavage

in response to UV light activation, an alternative two-component (type 11) system has since gained

widespread implementation. Building on work in which eosin, a xanthene dye, was covalently bound to

a surface for interfacial hydrogel polymerization,'4 photopolymerization-based signal amplification was

extended to visible light photoinitiators.6 Eosin is a photoinitiator that following excitation with green

light can undergo a transition to its triplet state, in which it is reactive towards reducing agents such as

tertiary amines (Figure 1-5). An electron transfer from the tertiary amine to eosin in its triplet excited

state is followed by a proton transfer that generates two neutral radicals, of which the tertiary amine

radical initiates polymerization by reacting with a carbon-carbon double bond of one of the monomers

in solution. The neutral eosin radical (the semiquinone form of eosin) is posited to participate in primary

radical termination reactions,'5 but is not expected to function efficiently as an initiator due to steric

hindrance and electronic delocalization.'

0 0

HO HO

Br Br Br . Br

+H hv + N-V

-O 0 0 HO -O 0 OH HO

Br r Br Br

Figure 1-5. Visible-light activated energy transfer between eosin and triethanolamine. Eosin is excited by

green light to its singlet state, from which it undergoes intersystem crossing to its triplet state. In its triplet

state, it is reduced by triethanolamine. A subsequent proton transfer generates two neutral radials. The

triethanolamine radical initiates polymerization.

Replacing Irgacure 2959 with eosin simplified the macrophotoinitiator synthesis; a commercially

available isothiocyanate modified eosin was reacted with the lysine residues of streptavidin (Figure

1-6A), resulting in an average of 2.3 eosin per protein. The preparation of the Irgacure 2959

macrophotoinitiator required EDC/NHS activation of the carboxyl groups of the poly (acrylic acid co-

acrylamide) prior to reaction with Irgacure 2959 and neutravidin to form ester and amide linkages,

respectively (Figure 1-6B). Irgacure 2959's low molar absorptivity meant that it was necessary to

conjugate 140 Irgacure 2959 initiators per polymer. Direct conjugation of 4 Irgacure 2959 molecules to

neutravidin did not yield any polymer.
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Figure 1-6. Macrophotoinitiator synthesis. A) Isothiocyanate-modified eosin reacts with the lysine groups of
streptavidin. B) The carboxyl groups of poly (acrylic acid co-acrylamide) are activated by EDC/NHS for
reaction with Irgacure 2959 and streptavidin (or neutravidin) to form ester and amide linkages, respectively.

In addition, the assay cost was reduced by replacing the thin-film biosensor surfaces used originally with
commercially available amino and aldehyde modified glass. Previous attempts to perform the
polymerization on glass using the Irgacure macrophotoinitiators yielded inconsistent results. The new
initiator was also compatible with a less toxic, aqueous monomer solution, consisting of a tertiary amine
coinitiator (typically methyldiethanolamine (MDEA) or trithanolamine (TEA)) and polyethyleneglycol
diacrylate (PEGDA) and 1-vinyl-2-pyrrolidone (VP).

Streptavidin-eosin has become the most extensively used macrophotoinitiator, permitting the detection
of biotinylated DNA hybrids 17 and antibodies.' 9 Eosin has also been directly conjugated to antibodies
without any apparent loss of protein activity.20'2 '

Johnson et al. explored an alternative method for immobilizing eosin at the site of molecular
recognition, essentially constructing a macrophotoinitiator in situ for the detection of single base
mutations associated with cancer. In this case, surface-bound, synthetic oligonucleotide capture probes
hybridized target sequences; these target sequences were designed to emulate human genomic regions
with cancer-associated point mutations. Following hybridization of a nucleic acid target with the probe,
they used primer extension labeling with eosin labeled 2'-deoxyuridine-5'-triphosphate (dUTP) to
facilitate the covalent incorporation of the initiator into surface-immobilized DNA sequences (Figure
1-7).2 In primer extension labeling, deoxynucleotides are coupled to the DNA hybrids by a DNA
polymerase enzyme. Primer extension labeling with photopolymerization-based signal amplification was
previously demonstrated using biotinylated deoxynucleotides (dNTPs),' 7 but the procedure developed
by Johnson et al. reduced the number of required binding steps by eliminating the incubation with
streptavidin-eosin. Direct conjugation of eosin to the dUTP did not increase the initiator density on the
surface (compare Table 1 of 17 and Fig. 3 of 22) relative to primer extension labeling with biotinylated
dNTPs followed by streptavidin-eosin binding.
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Figure 1-7. Macrophotoinitiator synthesis in situ. A) Structure of eosin-modified 2'-deoxyuridine-5'-
triphosphate. B) Scheme for detection of nucleic acid hybridization. Capture probe A hybridizes the
complementary sequence, target A. Primer extension labeling is used to couple the photoinitiator, eosin, to
the hybridized DNA. This is followed by photopolymerization-based signal amplificiation, indicating that
target A has been detected. Reprinted with permission from Johnson et al., Biomacromolecules, 2010, 11,

22
1133-1138. Copyright 2010, American Chemical Society.

1.3.3 Light activation and the tunable threshold
One of the central features of photopolymerization-based signal amplification is the ability to tune the

intensity and duration of the irradiation in order to eliminate signal from nonspecific binding and

thereby limit the occurrence of false positives. As depicted schematically in Figure 1-8, PBA is a
threshold process; a minimum surface density of initiators is required for polymerization. Shorter

reaction times and lower light intensities can be used to shift the amplification threshold, so that

polymerization is only observed for initiator densities above the level of nonspecific binding.

E T1

CD T2< T,E

0

Amplr ication Thresho

Initiator Density
Figure 1-8. Amplification threshold. A minimum initiator surface density is required to initiate polymerization.
Decreasing the reaction time increases the minimum initiator surface density, shifting the amplification
threshold to the right.

Light source selection is primarily guided by the absorbance spectrum of the photoinitiator (Figure 1-9),
while the duration of the irradiation is generally selected as the time beyond which there are no further

gains in sensitivity. For Irgacure 2959 initiated polymerizations, high intensity UV lamps were used to
produce 10 minute doses of 5 mW/cm 2 light centered around 365 nm. 5 3 With the shift to eosin-

initiated reactions, high pressure mercury lamps with filters to restrict the range of irradiation

wavelengths to 495-650 nm were used to deliver 20-30 minute doses of 10-40 mW/cm 2 light. The

18



advent of inexpensive light emitting diodes (LEDs) has permitted a transition from high pressure

mercury lamps to high intensity LEDs. In addition to being less expensive than mercury lamps, LEDs have

the advantage of relatively narrow bandwidths (5-20 nm).16 This means that the full intensity of the light

source is centered around the maximum absorbance wavelength of the initiator. Relative to mercury

lamps, LEDs are also more efficient, both in terms of cost and energy usage, safer, and more

environmentally friendly.16
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Figure 1-9. Absorbance spectra for Irgacure 2959 and Eosin.

1.3.4 Monomer composition
The criteria for monomer selection have evolved since the first demonstration of PBA. Initially,

monomer compatibility with the initiating system and the formation of a polymer film were sufficient.

As efforts to use PBA quantitatively and translate the technology to the point-of-care have intensified,

the criteria have become more stringent.

For the Irgacure 2959 initiated system, the monomer solution consisted of 97 wt% hydroxyethylacrylate

and 3 wt% ethyleneglycol dimethacrylate (Figure 1-10). s,13 These monomers when used in conjunction

with the Irgacure macrophotoinitiator provided exceptional sensitivity, generating polymers in response

to 0.005 binding events/pm 2 . However, this approach, in addition to requiring the use of toxic,

nonaqueous monomers, produced mechanically unstable polymer films, precluding further analysis or

processing steps.

With the transition to the eosin-initiated system, it became possible to employ an aqueous monomer

solution consisting of 225 mM methyldiethanolamine (MDEA), 435 mM polyethyleneglycol diacrylate

(PEGDA), and 37 mM 1-vinyl-2-pyrrolidone (VP) (Figure 1-10).6 PEGDA was included as a cross-linking

agent and vinyl-2-pyrrolidone (VP) as an accelerant.23 ' 24 MDEA has been used interchangeably with

triethanolamine (TEA), a more water soluble tertiary amine. This monomer formulation, also used by

Kizilel et al.,' 4 was based on work from the Hubbell Group, in which porcine islets were encapsulated in

hydrogels through the nonspecific adsorption of eosin onto the islet surfaces.2 s 2 2 A critical advantage of

this chemistry is that the attachment of the polymer to the surface is robust, a feature attributed to

termination reactions involving the surface immobilized eosin molecules.14 This format was shown to be

approximately 1000x less sensitive compared with the UV light initiated system. However, the

advantages, including a simplification of the macrophotoinitiator synthesis, use of less toxic, aqueous
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monomer solutions, and compatibility with visible light and glass surfaces, outweigh the cost in
sensitivity.

In an effort to optimize the composition of the monomer solution and improve the sensitivity of the
signal amplification reaction, Avens et al. tested different formulations of MDEA and VP with either
PEGDA or acrylamide/bisacrylamide (Figure 1-10). They compared polymer film thickness, conversion as
measured by real-time IR spectroscopy, and the lowest initiator density for which polymerization was
observed (or sensitivity).28 For PBA, thick polymer films are desired as they are more easily visualized.
Thicker polymer films correlate with higher conversion. IR spectroscopy is used to monitor the
progression of polymerization reactions by measuring absorption from the methacrylate groups of the
monomer. Total monomer conversion is taken as the fractional change in the initial area of the
absorption peak of the methacrylate groups in the near IR.

1. Hydroxyethylacrylate 2. Ethyleneglycol dimethacrylate
o 0

0yOH

3. Poly (ethyleneglycol) diacrylate 4. 1 -Vinyl-2-pyrrolidone
0

0

5. Acrylamide 6. Bisacrylamide

o 0 0

H 2N N N
H H

Figure 1-10. Monomers for photopolymerization-based signal amplification.

Varying the monomer composition, Avens et al. found that increasing the PEGDA concentration resulted
in thicker films, but reduced sensitivity, likely a consequence of the reduced diffusivity of the amine
coinitiator in the much more viscous monomer solution. They also tested the hypothesis that
streptavidin rearranges in nonaqueous monomer formulations, causing eosin to become sterically
inaccessible. Replacing eosin with a streptavidin-eosin conjugate in a bulk monomer solution completely
inhibited the polymerization in the nonaqueous formulation. Although biocompatibility is an important
consideration, it is notable that the Irgacure system, for which a nonaqueous monomer solution was
used, had exceptional sensitivity.

The tertiary amine coinitiator (MDEA or TEA) also functions as a chain transfer agent, terminating
propagating polymer chains and initiating the formation of new ones. This enhances film growth at an
optimal concentration but can lead to increased termination and reduced sensitivity if the concentration
is too high.6 Notably, when VP was removed from the monomer solution, the sensitivity decreased
slightly, while increasing the VP concentration improved the sensitivity, reducing the threshold eosin
surface density. Compared with the PEGDA-based formulation, the acrylamide-based monomer (40 wt%
acrylamide) produced films that were at least 4x thicker and improved the sensitivity even further,
reducing the threshold surface density to 2.8 eosin/4m 2.6 This was attributed to acrylamide's lower
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molecular weight and the lower crosslinking content (bisacrylamide) of this monomer formulation
promoting faster surface-mediated polymerization by allowing MDEA to more readily diffuse.6

In spite of the advantages of using acrylamide, aqueous, PEGDA-based monomer formulations have
ultimately been favored for their lower toxicity. In addition, the PEGDA-based monomer formulation
was found to perform better for applications requiring high spatial resolution, such as immunostaining;
the smaller average mesh size of the polymers formed using PEGDA allows for the entrapment of a
higher density of labeling agents such as nanoparticles in a thinner film.8 However, it is possible that
smaller mesh sizes could be achieved by increasing the bisacrylamide content beyond 2% as the increase
from 1-2% resulted in a 60% smaller mesh. Another critical parameter that impacts mesh size is the
monomer molecular weight. Higher molecular weight PEGDA produces hydrogels with larger mesh

27sizes. A high degree of tunability is available through crosslinker content and molecular weight.

1.3.5 Signal interpretation
The polymer films generated using PBA are generally visible with the unaided eye. Profilometry and
fluorescence have been explored as modalities for enabling quantitation. This section will include a brief
discussion of each readout method.

Visible
The first studies using the Irgacure macrophotoinitiator and nonaqueous monomer formulation yielded
reliable yes/no responses, requiring no instrumentation to detect polymer formation.s1 3 This was shown
in Figure 1-4 for influenza subtyping with PBA.

Profilometry
The transition to the two-component system with eosin and a tertiary amine coinitiator enabled post-
processing steps such as profilometry to measure the thickness of the polymer films.6 The thickness of
the hydrogels polymerized following a 20 minute dose of 8 mW/cm 2, 400-500 nm light ranged between
110 and 160 nm for 100 binding events/ Lm 2 .A quantitative relationship between polymer film thickness
and probe density was later established by Hansen et al.; profilometry revealed a dynamic range
between 60 and 4,700 biotin/pm 2 with saturation beyond 8,300 biotin/Im 2 and a maximum polymer
thickness of 250 nm.7 The authors also showed how competitive binding between unconjugated
streptavidin and streptavidin-eosin may be used to tune and extend the dynamic region.

Fluorescence
As an alternative to the expensive methods available for measuring the thickness of nanometer scale
films, strategies for polymerizing fluorescent films were tested to enable quantitation through
fluorescence. Fluorescent moieties were incorporated into the monomer solution to generate an
amplified, fluorescent signal that could be directly correlated with the surface probe density.'18 Polymer
films were made fluorescent through either the inclusion of fluorescent nanoparticles (initially, 20 nm
Nile Red Fluospheres) in the monomer solution or the post-polymerization modification of remaining
pendant double bonds with dithiothreitol for reaction with methacryloxyethyl thiocarbamoyl rhodamine
B, a fluorescent dye.7 The latter method proved insufficient for the purposes of quantification, while the
addition of fluorescent nanoparticles into the PEGDA-based monomer solution reduced the

polymerization kinetics and the final conversion, a possible indication of light attenuation. Hansen et al.
also showed that at longer reaction times (>40 minutes), the Nile Red Fluospheres were capable of
initiating polymerization. The enhanced sensitivity and thicker polymer films achieved using an

acrylamide-based formulation28 mitigated some of the detrimental effects of incorporating the
fluorescent nanoparticles into the PEGDA-based monomer formulation; their inclusion in an acrylamide-
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based monomer solution allowed for an improvement in sensitivity relative to direct fluorescence
labeling.' 8

Using an acrylamide formulation to which yellow/green nanoparticles had been added, Avens &
Bowman compared fluorescent polymerization-based signal amplification (FPBA) with direct
fluorescence labeling using either a streptavidin-fluorescein conjugate or streptavidin-functionalized
yellow/green nanoparticles on antibody microarrays. They showed that FPBA reduced the limit of
detection by more than two orders of magnitude (to 0.16 + 0.01 biotinylated antibody/Im 2 ) relative to
streptavidin-fluorescein, while no positive signal was obtained using the streptavidin-functionalized
nanoparticles.' 8 In addition, FPBA had a wide dynamic range of 4 orders of magnitude compared with a
dynamic range spanning only 2 orders of magnitude for streptavidin-fluorescein labeling. As in the
earlier study, there were indications of light attenuation by the nanoparticles. The inclusion of
nanoparticles resulted in thinner films, but did not compromise sensitivity. Monomers covalently
attached to fluorophores were considered as an alternative strategy for creating fluorescent polymer
films; however, a considerable amount of photobleaching and nonspecific polymerization were
encountered.

Avens et al. demonstrated FPBA as a nonenzymatic signal amplification technique for immunostaining.' 9

Eosin had previously been nonspecifically adsorbed onto the surfaces of porcine islets for the interfacial
polymerization of immunoprotective hydrogels.26 Although green light has been shown to both
stimulate and suppress cell growth when delivered at high intensities over the course of several days, 2 9

it has been used for photopolymerizations involving mammalian cells with no adverse side effects.
Using FPBA, the fluorescent signal generated is comparable to tyramide signal amplification (TSA) with
the advantage of not being affected by endogenous peroxidase enzymes. FPBA also appears to give
better signal localization than TSA. The authors successfully labeled nuclear pore complex proteins,
vimentin, and von Willebrand factor in fixed and permeabilized human endothelial colony-forming cells,
also showing multicolor immunostaining of multiple antigens through sequential polymerizations using
differently colored nanoparticles (Figure 1-11). In the case of the nuclear pore complex staining, FPBA
was shown to reduce nonspecific signal by 5.5 fold relative to TSA.

Figure 1-11. Immunostaining with sequential rounds of fluorescent polymerization-based signal amplification
(FPBA). A) Nuclear pore complex proteins in fixed and permeabilized human endothelial cells were labeled
using Nile red nanoparticles; vimentin was labeled in a second round of FPBA using yellow/green
nanoparticles. B) Negative control in which the antibody against the nuclear pore complex protein was
omitted. As a result, only the vimentin was polymerized. C) Negative control in which the vimentin antibody
was omitted and only the nuclear pore complex protein was polymerized. No polymer was produced in the
second round. The cell nucleus was also stained with 4', 6-diamido-2-phenylindole dihydrochloride (DAPI;
blue). The scale bar is 10 microns. Reprinted with permission from Avens et al., Journal of Histochemistry
and Cytochemistry, 2011, 59, 76-87. Copyright ) 2011, Avens et al. 1
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Colorimetric
Although its quantitative potential is more limited relative to profilometry and fluorescence,
colorimetric detection is preferred, particularly in point-of-care settings, as it does not require expensive

equipment for the detection of polymer films. Kuck & Taylor introduced an additional assay step in
which the polymer film is stained with a solution of eosin Y for the purposes of visualization, showing

the potential of photopolymerizaton-based signal amplification as an inexpensive colorimetric assay and

eliminating the need for profilometers or fluorescence scanners and microscopes (Figure 1-12). 20 As a

stain, eosin Y outperforms hematoxylin, which requires a longer staining step and yields lower

contrast. Using eosin as a stain, Lee et al. showed that colorimetric intensity correlates with polymer
film thickness.9

* .***e

* *.*.e T
B

* = positive
* = negative control

Figure 1-12. Colorimetric detection. A) Positive control eosin-labeled oligonucleotides were printed in the

indicated pattern on an aldehyde functionalized glass slide. Unlabeled oligonucleotides were printed as a

negative control. B) The resulting polymers were stained with an Eosin Y solution. Reprinted with permission
from Kuck and Taylor, BioTechniques, 2008, 45,179-186. Copyright ( 2008, BioTechniques.

W,

E
0-

0
0

501

459

40-

35-

30
150 200 250

Thickness (nm)

300 350

Figure 1-13. Colorimetric intensity correlates with polymer film thickness. Average colorimetric intensities

were calculated from digital images of polymerized spots. The thickness of each spot was measured using

profilometry. Data from Lee et al. Biomacromolecules, 2012, 13, 1136-1143.9

The immunostaining technique first demonstrated by Avens et al. using FPBA was further developed to

allow for colorimetric labeling of cells, termed "Polymer Dye Labeling" (PDL). 30 Here, eosin Y was

replaced as a stain with Evans Blue as eosin nonspecifically stains cytoplasmic proteins and collagen. Like

FBPA, PDL has sufficient resolution to enable the identification of protein expression spatial patterns in
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cells. The authors showed that the signal is stable for over 200 days (Figure 1-14). Both PDL and FPBA

are reported to offer better site specificity than competing enzymatic methods. PDL was originally

developed as an alternative to FPBA that is compatible with mounting media, although the authors

showed that the samples fared well under dry storage as well. For PDL, the concentration of the tertiary

amine was reduced by a factor of 10 relative to the FPBA monomer formulation, with TEA being used in

place of MDEA. This optimized formulation may limit adverse effects from chain transfer reactions. The

authors found that the dynamic range observed when the polymer thickness was measured using

profilometry was lost upon staining, although, in accordance with the results of Lee et al., the

colorimetric intensity of the staining loosely correlated with polymer thickness.

C .b D Ak
day 0 Ay 200

Figure 1-14. Polymer dye labeling. Evans blue-stained polymers localized in response to labeling with
antibodies against nuclear pore complex (A) and vimentin (B). Polymer dye labeling of nuclear pore complex
immediately following staining (C) and 208 days later (D). Reprinted with permission from Lilly et al., PLoS
ONE, 2014, 9, e115630. Copyright @ 2014, Lilly et al.30

1.3.6 Polymeric macrophotoinitiators
A powerful feature of this technique is the ability to shift the amplification threshold by changing the

reaction time. Reducing the reaction time has the effect of shifting the amplification threshold to higher

initiator densities, which has important implications for eliminating signal from nonspecifically bound

molecules. However, increasing the reaction time will only improve sensitivity up to a point, beyond

which no gains in sensitivity are achieved.

In order to achieve sensitivities comparable to more advanced fluorescence techniques, it is necessary

to increase the number of photoinitiators per binding event. Efforts to enhance the sensitivity of

photopolymerization-based amplification have thus focused on the development of polymeric

macrophotoinitiators. As discussed, a polymeric macrophotoinitiator, consisting of 140 UV initiators and

Neutravidin conjugated to a poly (acrylic acid co-acrylamide) backbone, was used in the first

demonstration of PBAs and for subtyping influenza viruses from crude lysates.13 The poly (acrylic acid co-

acrylamide) backbone has also been used as the scaffold for a macroinitiator for AGET (activators

generated by electron transfer) ATRP, allowing for a reduction in the reaction time.
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Recently, eosin was conjugated to the same poly (acrylic acid co-acrylamide) backbone. " Eosin's poor
water solubility limited the number of eosin per polymer to 15. One of the requirements for
macrophotoinitiators developed for PBA is that they must be water soluble to allow for conjugation of
the protein that enables molecular recognition. Lee & Sikes varied the number of eosin per polymer
between 2 and 15, obtaining a non-monotonic relationship between the number of eosin per polymer
and the resulting surface initiator density. Using fluorescence to quantify eosin surface densities, they
showed that a linear increase in specific signal as the number of eosin per polymer was increased from 2
to 10 was followed by a decline to background levels when the number of eosin per polymer was further
increased to 15. The background signal increased dramatically when the number of initiators was
increased from 6 to 10. The reduction in specific signal for 15 eosin per polymer was thought to be a
consequence of eosin's poor solubility both interfering with specific binding and increasing the
nonspecific adsorption. Polymerization was only observed for the polymer with 10 eosin bound with a
three-fold higher detection limit than typically achieved using a streptavidin-eosin conjugate with an
average of three eosin per protein, a possible indication of quenching or steric effects.

The non-monotonic trend obtained for the polymeric eosin macrophotoinitiator disagreed with previous
work in which Lee et al. demonstrated how the degree of polymerization increases as the number of
photoinitiators per binding event is increased.9 In this study, a more water soluble xanthene dye,
fluorescein (Figure 1-15), was used in place of eosin. The number of fluorescein per neutravidin
conjugated polymer was varied between 7 and 168, beyond which a solubility limit was encountered.
Surface-initiated polymerization was only observed for macrophotoinitiators with 126 and 186
fluorescein molecules for surface densities exceeding 105 biotin/pim 2 .The 20% difference in the number
of photoinitiators per polymer resulted in a 20% difference in polymer thickness on the surface. Because
the reaction requires the diffusion of initiating radicals, propagating polymer chains, and monomers, it is
expected that a diffusion limit exists, beyond which increasing the number of initiators per binding event
will not increase the degree of polymerization; this limit was not encountered in this work. The
colorimetric intensity and thickness of the photopolymerized hydrogels are shown in Figure 1-13. It
should be noted that the polymerization reactions for the polymeric eosin and fluorescein
macrophotoinitiators were activated using a 400 nm LED (1 W/cm 2 ). The intensity of the light (1 W/cm 2 )
was more than 25x higher than in previous studies where a broad spectrum of light yielded a total light
intensity between 10-40 mW/cm 2 . It is likely that the high light intensity compensated for the non-
optimal excitation wavelength.
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Figure 1-15. Fluorescein and Eosin Y structures and absorbance spectra.

The sensitivity achieved using fluorescein contrasts severely with the eosin-initiated system, in which 3

eosin conjugated directly to streptavidin initiate polymerization on a surface with only 15 biotin/im 2 10

Although fluorescein is a stronger reducing agent than eosin,32 eosin is a more efficient photoinitiator as,

due to the presence of heavy bromine atoms (Figure 1-15), it more readily undergoes intersystem
crossing to the triplet state. Once in the triplet state, both fluorescein and eosin can react with a tertiary

amine to form tertiary amine radicals capable of initiating the photopolymerization.33 In a study in which

the intersystem crossing quantum yields for seven xanthene dyes were measured in methanol,

fluorescein was shown to have a 10-fold lower value than eosin (0.03 vs 0.32).34 In water, the difference

in intersystem crossing quantum yield increases (0.71 for eosin and 0.05 for fluorescein).35 The

difference in intersystem crossing quantum yield also explains why fluorescein was able to overcome

only a 10-fold excess of inhibitor, while eosin was able to overcome a 100-fold excess in experiments

exploring the cyclic regeneration of xanthene dyes as a method for overcoming oxygen inhibition.'5

Peris et al. have also examined the efficacy of macrophotoinitiators as tools for enhancing polymer

growth.3 They compared the performance of bovine serum albumin (BSA) conjugated directly to a

photoinitiator, 2- hydroxy-40-(2-hydroxyethoxy)-2-methylpropiophenone (HHMPP), with BSA and

HHMPP conjugated to a 200 kDa poly(acrylic acid co-acrylamide) backbone on polycarbonate plates to

which an antibody against BSA was physisorbed. They found that they were able to use 10-fold less (on a

molar basis) of the polymer conjugate relative to the BSA-HHMPP conjugate to achieve polymerization.

This metric for comparison differs to that traditionally used for evaluating macrophotoinitiators for PBA;

typically, dilution arrays are used to determine the minimum capture probe surface density for which

polymerization is achieved. Thus, it is difficult to determine whether the polymeric macrophotoinitiator

developed by Peris et al. would have contributed to gains in sensitivity in biosensing assays.

1.3.7 Advances
Many of the previous studies made use of specialized surfaces and expensive equipment for detecting

the formation of polymer films. As discussed, Kuck & Taylor dramatically enhanced the contrast of the

visual readout by introducing an additional assay step in which the polymer film was stained with a
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solution of eosin Y for the purposes of visualization. This simplification demonstrated the potential of

photopolymerizaton-based signal amplification as an inexpensive colorimetric method by eliminating

the need for profilometers or fluorescence scanners and microscopes.20 Their work also provided the

first demonstration of clinical samples with PBA in the context of an influenza microarray; RNA was

extracted from clinical samples known to be positive for the H3N2 subtype of Influenza A for

amplification by RT-PCR and subsequent digestion before hybridization on a DNA microarray with an

eosin-tagged oligonucleotide label. The authors indicated that the incorporation of eosin in the PCR

primer also met with success. Further advancing this technology towards implementation in point-of-

care settings, the authors were able to reduce the reaction time using a PEGDA-based monomer

formulation to less than 5 minutes and perform the reaction under ambient conditions, although they

did not provide details explaining how this was accomplished. Kuck & Taylor also compared their results

with HRP/Amplex Red amplification, replacing the eosin-tagged label with a biotinylated label for

binding to a streptavidin-HRP conjugate and found that their signal amplification was 2.8x lower than

the enzymatic assay and less sensitive than fluorescence by a factor of 3-4. The colorimetric assay, as

described by Kuck & Taylor, has been demonstrated for the detection of S. pyogenes, which causes

group A streptococcal infections, 3 and in the context of E. coli strain genotyping. 3738

One of the challenges with colorimetric readouts is enabling quantification. Johnson et al. showed how

the thermodynamics of the binding interaction can be exploited to design an instrument-free assay

capable of visual quantification of target DNA levels.22 As shown in Figure 1-16, higher capture probe

densities permit the detection of lower concentrations of target DNA in solution. The number of

polymerized spots provides a quantitative estimate for the target DNA concentration in solution.
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Figure 1-16. Visual quantification of target DNA solution concentrations. Biochips printed with capture probe
dilution series were separately hybridized with decreasing concentrations of complementary target DNA. The
polymers were stained with hematoxylin and the reverse-grayscale images were acquired with a desktop
flatbed scanner. Reprinted with permission from Johnson et al., Biomacromolecules, 2010, 11, 1133-1138.

22
Copyright @ 2010, American Chemical Society.

1.4 Comparison of polymerization-based signal amplification methods
Polymerization-based signal amplification depends on the localization of radical polymerization initiators

as a function of molecular recognition events and, thus, is a fairly versatile technique as demonstrated

by its implementation with other radical polymerization chemistries, including ATRP, RAFT, and enzyme-

mediated redox polymerization.
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A summary of the "initiators" coupled to detection probes and the corresponding molecules that initiate
radical polymerization by reacting with monomers is provided in Table 1-1. As discussed previously, in
the two-component initiation system used for photopolymerization-based signal amplification, eosin is
attached to the surface, while the tertiary amine radical initiates polymerization (Figure 1-17A). For the
enzyme-mediated method, glucose oxidase is conjugated to avidin and, thus, bound to a surface on
which biotinylated antibodies are immobilized as a function of molecular recognition events.3 9 ,40 In this
case, the monomer solution contains glucose and iron. This system cleverly recasts oxygen as a
participant in generating initiating radicals. After first being reduced in the process of converting 1-D-
glucose to 6-D-gluconolactone, glucose oxidase is regenerated following oxidation by oxygen. The
oxidation reaction produces hydrogen peroxide, which is converted to hydroxyl radicals through
Fenton's Chemistry. The hydroxyl radicals initiate polymerization by reacting with monomers in solution.
This series of reactions is summarized in Figure 1-17B.

Table 1-1. Summary of Radical Initiator Generation Methods

Radical Generation Method Surface immobilized Energy input Initiating molecule
molecule

Photoactivation Eosin Light Tertiary amine radical

Enzyme conversion and Fenton's Glucose Oxidase Hydroxyl radical
chemistry

Atom transfer radical polymerization Bromoisobutyrate Isobutyrate radical

Reversible addition-fragmentation Chain transfer agent Heat 2-cyanoprop-2-yl radical
chain-transfer polymerization (CMP)'

RAFT and ATRP are both examples of living radical polymerizations, in which bimolecular termination
reactions are minimized and the lifetimes of living polymers are extended by introducing dormant states
for the propagating species.41 When ATRP is implemented for polymerization-based signal amplification,
bromoisobutyrate is covalently bound to a detection probe and localized at the surface through binding
events.42 An initiating isobutryate radical is generated when the bromine is transferred to a Cu(I) catalyst

43in the monomer solution (Figure 1-17C). The reverse process stops the propagation. With RAFT, a
dithioester chain transfer agent is attached to a detection probe and radical initiators, such as
azobisisobutyronitrile (AIBN), are included in the monomer solution. 2-cyanoprop-2-yl initiating radicals
are formed upon the thermal decomposition of AIBN (Figure 1-17D). These radicals react with
monomers in solution and the propagating chains diffuse to the surface where they then react with
chain transfer agents.

With the exception of ATRP, for each of the radical generation methods described, the molecules
initiating polymer chains are in solution rather than tethered to the surface. In RAFT, the chain transfer
agent at the surface functions to anchor the polymer. It is less clear how this is accomplished for the
photopolymerization-based and enzyme-mediated methods, although, in the case of the former, it has
been hypothesized that eosin radicals at the surface terminate polymer chains, thereby attaching them
to the surface.

1 2-(1-Carboxy-1-methylethylsulfanylthiocarbonylsulfanyl)- 2-methyl propionic acid (CMP)
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Figure 1-17. Radical polymerization chemistries for polymerization-based amplification. For each example,
the surface immobilized molecule is highlighted in red. A) Photopolymerization using eosin and
triethanolamine (TEA) as coinitiators. The TEA radical reacts with monomers (M) in solution to initiate
polymerization. Oxygen is an inhibitor, reacting with initiating and propagating radicals to generate peroxy
radicals. It has been proposed that the peroxy radicals will abstract a hydrogen from the semiquinone form
of eosin (Eosin-H'), regenerating eosin. 154 B) Enzyme-mediated polymerization. Glucose oxidase is reduced
in the process of converting P-D-glucose to 5-D-gluconolactone. Molecular oxygen oxidizes the enzyme,
producing hydrogen peroxide, which is converted to hydroxyl radicals by Fenton's Chemistry. These
hydroxyl radicals initiate polymerization by reacting with monomers in solution. C) Activators generated by
electron transfer for atom transfer radical polymerization (AGET ATRP). In ATRP, a transition metal
compound (cuprous halide) catalyzes a reversible redox process involving an organic halide, generating an
initiating radical. L is the ligand that complexes the cuprous salt, thereby solubilizing it. CuBr 2(L) reduces the

41

propagating radical concentration and minimizes termination. Oxygen inhibits the reaction by oxidizing the
cuprous halide. In AGET ATRP, a reducing agent, such as ascorbic acid, is introduced to reduce the Cu(II)
complexes to active Cu(I) complexes.46 D) Reversible addition-fragmentation chain transfer (RAFT)
polymerization. A conventional initiator is used to generate radicals in the presence of a chain transfer agent.
Heat is used to decompose azobisisobutyronitrile (AIBN) into a nitrogen molecule and two 2-cyanoprop-2-yi
radicals that initiate polymerization by reacting with monomers in solution. The dithioester chain transfer
agent reversibly transfers a labile end to a propagating chain.41

One of the barriers to wider implementation of polymerization-based amplification is that radical
polymerization reactions are inhibited by oxygen. Oxygen inhibition is circumvented in the enzyme-

mediated system as oxygen is required for the production of initiating radicals. This thesis will describe
how submicromolar concentrations of eosin in a monomer solution allow the eosin-initiated
photopolymerization to be performed under ambient conditions.10 In addition to quenching propagating
radicals, oxygen inhibits ATRP by oxidizing the Cu(I) catalyst.47 In an approach termed activators

generated by electron transfer (AGET), it has become possible to perform ATRP in the presence of
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oxygen through the introduction of a reducing agent such as ascorbic acid to return the Cu(II) complexes
to their reactive lower oxidative state.46 48(Figure 1-17C)

RAFT was initially explored as an alternative living polymerization method intended to address some of
the limitations of ATRP, including nonspecific adsorption of metal ions to DNA molecules, 49 which
contributes to elevated background signal, and the use of toxic transition metal catalysts. Although RAFT
achieved an order of magnitude increase in polymer thickness (with a maximum of ~200 nm) and lower
background relative to ATRP, 44 its susceptibility to oxygen inhibition and heat activation requirement
have limited interest in developing the method further. Recently, Chapman et al. demonstrated the
potential utility of glucose oxidase for oxygen scrubbing in open vessel RAFT polymerizations.50 Instead
of bubbling argon through the monomer solution for 10 minutes prior to heat activation of the initiator,
glucose oxidase is added to the monomer solution and left at room temperature for the 10 minutes
preceding activation. In another recent RAFT implementation, eosin and a tertiary amine were used to
circumvent oxygen inhibition in a photoinduced electron transfer RAFT polymerization. Whether these
strategies would work for interfacial polymerizations remains to be seen and the long reaction times and
thin films remain a limitation for RAFT.

Because polymer growth is linear with respect to time,s' controlled radical polymerization methods such
as ATRP and RAFT lend themselves to quantitative detection. AGET ATRP was implemented for
quantitative electrochemical biosensing by triggering radical polymerization on an electrode surface.
s2 s3 Monomers such as 2-hydroxyethyl methacrylate (HEMA) and glycidyl methacrylate (GMA) were
selected to provide excess hydroxyl and epoxy groups, respectively, for the attachment of
electrochemical tags (aminoferrocene). The combination of AGET ATRP with electrochemical sensing
provides a linear range spanning five orders of magnitude. The electrochemical assay was clinically
validated for serum tumor markers against an existing clinical electrochemiluminescent method; 100
clinical serum samples were tested for either prostate specific antigen (PSA) or carcinoembryonic
antigen (CEA). 5

3 More recently, Wu et al. successfully implemented AGET ATRP as part of a paper-based
microfluidic electrochemical immunodevice for the detection of four cancer biomarkers (Figure 1-18).54
Looking to the future, the authors envision a portable, low-cost diagnostic enabled by the rapidly
evolving electronics manufacturing landscape.
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Figure 1-18. A paper-based electrochemical device integrated with AGET ATRP. A) The device consists of
two layers of patterned square filter paper. Layer A consists of a central connecting zone and 8 working
zones. Layer B has one connecting zone corresponding to that of layer A. The chromatography paper was
impregnated with photoresist and irradiated with UV light to create the patterns. The working zones of layer
A were screen-printed with carbon ink. Ag/AgCI and carbon ink were printed on layer B to form the reference
and counter electrodes, respectively. B) The device was designed for the detection of four biomarkers:
carcinoembryonic antigen (CEA), alpha-fetoprotein (AFP), cancer antigen 125 (CA125), and carbohydrate
antigen 153 (CA153). The fabrication and assay procedure are shown for CEA. A solution of graphene oxide
(GO) was dropped onto each working electrode, followed by a chitosan solution. The GO was then
electrochemically reduced and the electrode was incubated with glutaraldehyde. Capture antibodies against
each of the cancer biomarkers were applied to the corresponding working electrodes. Remaining active sites
were blocked with BSA and a sample solution containing the biomarker (here, CEA) was introduced. The
bromoisobutyrate (initiator)-coupled CEA antibody was added and AGET ATRP was performed. A solution of
HRP (intended to react with side-chain functional groups of the polymer) was dropped onto each working
electrode prior to electrochemical detection. Reprinted with permission from Wu et al., Biosensors &
Bioelectronics, 2014, 52, 180-187. Copyright 2014, Elsevier B.V.5

However, while the electrochemical output simplifies quantification relative to ellipsometry (the favored
method for measuring the thickness of the films generated using ATRP), the attachment of the
electrochemical tags added 10-20 hours to the assay time (on top of 2 hours of AGET ATRP followed by a
2 hour rinse), ultimately limiting its utility. In addition, although AGET ATRP was carried out in the
presence of oxygen, many of the electrochemical experiments were performed under nitrogen, 535255

erasing the gains achieved through the use of AGET ATRP.

AGET ATRP has also been coupled with flow injection chemiluminescent and electrochemical detection
ss and electrochemiluminescent detection 56. Although electrochemiluminescent detection expanded
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the linear range to seven orders of magnitude, neither of these methods reduced the limit of detection
relative to electrochemical sensing.

AGET ATRP has been used to enhance the detection sensitivity of surface plasmon resonance (SPR)
spectroscopy. 57' 58 Liu & Cheng presented a membrane based biosensing interface using functional gold
nanoparticles and AGET ATRP to enable ultrasensitive detection of cholera toxin (LOD=160 aM) by SPR,
improving the detection limit by six orders of magnitude relative to direct measurement without
amplification. In another membrane application, Liu et al. used AGET ATRP to grow a polymer at the
membrane-water interface of a supported lipid bilayer by using initiator labeled trimethylammonium
salts to recognize membrane-bound cavitands. 59

Nanoparticle-based colorimetric methods have been demonstrated using both ATRP60-62 and enzyme-
mediated polymerization. In all of these methods, polymerization was used to alter the optical
properties of a solution of nanoparticles. The ATRP examples concentrated on the immobilization of
initiators on DNA or antibody modified nanoparticles through molecular recognition events, while
Gormley et al. used glucose oxidase mediated radical polymerization to entangle negatively charged
gold nanoparticles. Glucose oxidase was used to eliminate oxygen from the system as well as generate
hydrogen peroxide for the horseradish peroxidase-catalyzed reaction with acetylacetone. In addition to
horseradish peroxidase, this concept of nanoparticle aggregation was used for the detection of catalase,
iron, and copper.

It is clear that significant progress has been made in the last few years in terms of exploring novel
applications, overcoming oxygen inhibition, and enabling quantitation. Each of the initiation chemistries
presented has unique advantages and the selection of one amplification method over another must be
driven by the end application. For colorimetric, point-of-care assays, photopolymerization is a strong
candidate as it is capable of producing thick films that are readily visible to the unaided eye using
inexpensive light emitting diodes for activation. The oxygen-tolerant methods, AGET ATRP and
enzymatically-mediated polymerization, require hour-scale reaction times and experience sensitivity
losses when the reaction time is reduced. A major advantage of photoinitiated polymerization is the
ability to limit the occurrence of false positives by tuning the dose of light, thereby shifting the threshold
for the positive response.

Photopolymerization-based amplification is limited by the difficulty of accessing a dynamic regime and
interpreting the colorimetric readout quantitatively. Johnson et al. presented a possible solution to this
problem through careful microarray design,2 2 but the dynamic range and precision achieved using
electrochemical detection with AGET ATRP would be challenging to match. In the published methods,
quantification through the generation of an electrochemical output is achieved at the expense of assay
time. However, for some applications the extra time required to generate the final output and reliance
on gold substrates may be warranted.

There are many factors to consider in biosensor design: expense, time, complexity, and a requirement
for equipment among them. In developing photopolymerization-based amplification, we have focused
on reducing the cost and complexity of the assay with the goal of addressing some of the limitations of
currently used amplification methods for point-of-care disease detection. We envision a device that can
be used to screen for infectious diseases. We are also excited about new directions in the field,
particularly in the area of targeted cell encapsulation.
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1.5 Barriers to wider implementation of photopolymerization-based signal
amplification

1.5.1 Diagnostic test criteria
In 2004, Mabey et al. summarized the need for accurate and stable diagnostic tests for the developing
world.6 In their review, they defined point-of-care tests as diagnostic tests that are "performed in the
clinic, with results available within a short time so that patients can be treated without a return visit."
They also identified the characteristics of the ideal diagnostic test as specified by the World Health
Organization. These characteristics spell out "ASSURED" and are as follows:

e Affordable by those at risk of infection
- Sensitive (few false negatives)
* Specific (few false positives)
- User-friendly (simple to perform and requires little training)
e Rapid (enable treatment at first visit) and Robust (no requirement for refrigerated storage)

e Equipment-free
* Delivered to those who need it

These characteristics have become guiding criteria for the development of diagnostic tests, particularly
for resource-limited settings. Mabey et al. emphasized that tests deployed in resource-limited settings
are not necessarily competitive with laboratory-based assays, stating "the best test is not always the
most useful test."

Photopolymerization-based signal amplification has the potential to transform diagnostics, both in the
laboratory and at the point-of-care. Significant advances towards achieving this potential include the
replacement of high-intensity mercury lamps with LEDs and the development of a colorimetric readout.
However, many of the implementations of PBA discussed thus far have required inert gas purging, which
increases the cost and complexity of performing the reactions. Additionally, more robust and
inexpensive surfaces are required in order to facilitate translation of this technology to the point-of-
care. These ideas will be discussed further in the following sections.

1.5.2 Oxygen inhibition
16,65Radical polymerization reactions are typically inhibited by oxygen. Oxygen reacts with propagating

radicals to form peroxy-based radicals that react much more slowly with monomers than propagating
radicals and thus have the effect of inhibiting the reaction.

R - +02 -> ROO -

The dissolved oxygen concentration (0.3-2 mM15) is frequently sufficient for complete inhibition.
Consequently, it is common to remove oxygen by purging both the monomer solution and the reaction
chamber with an inert gas. Nitrogen and argon are most commonly used for this purpose in PBA,
although helium, which is prohibitively expensive, is reported to be more efficient in displacing oxygen
as a result of its high diffusivity.16 The solubility of oxygen is lower in water than in acrylates; 6

6 this is
another advantage of the eosin system, which uses an aqueous monomer solution.

Other strategies for limiting the impact of oxygen inhibition include increasing the light intensity and the
photoinitiator concentration. These solutions are impractical for PBA where the initiator concentration
is limited by the number of binding events on the surface. This means that increasing the light intensity
would likely only deplete the few initiating molecules at a faster rate in reactions with oxygen. It is
common to employ additives and, in some cases, modify the monomers, using cationic polymerization
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or multifunctional monomers, in order to overcome oxygen inhibition. 6 A common strategy unavailable
to PBA is to increase the initiator concentration, making propagation reactions competitive with peroxy

16radical formation. However, PBA is limited to what is captured on the surface. Type 11 systems are
reported to be less affected by oxygen inhibition than type I systems as the amine coinitiators can react
with peroxy radicals to reinitiate polymerization according to the expression below where DH is the
hydrogen donor (the amine).16 Hydrogens bound to carbons adjacent to an electron-rich heteroatom
(oxygen, sulfur, nitrogen) tend to be abstractable.16

ROO - +DH -* ROOH + D

Thiols are also effective hydrogen donors, but are not as extensively used due to their strong odor. 16

Higher functionality thiols are also used to increase the viscosity of the reaction mixture and slow
67diffusion of oxygen.

Monomer selection can also impact susceptibility to oxygen inhibition. Lee et al. showed that
methacrylates are less sensitive to oxygen inhibition than acrylates. 68 In this case, the monomers
contained ether groups with abstractable hydrogens that were thought to contribute to increased
resistance to oxygen inhibition. Methacrylates are hypothesized to be less sensitive to oxygen due to the
stability of the methacrylate radical, which makes chain transfer reaction less likely, as well as the lower
solubility of oxygen in methacrylates compared with acrylates.

Because singlet oxygen is not reactive towards radicals like ground state oxygen, triplet sensitizers have
been used in conjunction with singlet oxygen scavengers to overcome oxygen inhibition.' This concept
was demonstrated by Decker in a study in which triplet excited state methylene blue reacted with
oxygen to give singlet oxygen which went on to react with 1,3-diphenylisobenzofuran to give 1,2-
dibenzoylbenzene and one half molecule of oxygen, thereby reducing the oxygen concentration. Zinc
tetrakis(tert-butyl) phthalocyanine (Zn(ttp)) was later used to excite oxygen at a rate higher than the
initiation rate to favor reaction of oxygen with Zn(ttp) over initiating radicals. 70

Padon and Scranton have proposed an oxygen scavenging pathway for the three-component radical
photoinitiator system comprised of methylene blue, MDEA, and diphenyliodonium chloride (DPI). 71 In
the proposed reaction, DPI regenerates methylene blue by reacting with the neutral methylene blue
radical, in the process generating additional initiating phenyl radicals while the peroxyradical abstracts a
hydrogen from MDEA to regenerate the MDEA radical.

Ligon et al. identified the most effective strategies as those that can either avoid peroxy radical
formation entirely or reinitiate polymerization from the peroxy radicals that form. The strategy of
introducing an additive followed by Decker, Shenoy and Bowman, and Padon and Scranton as described
above is worthy of consideration, although other factors, such as solubility, health hazards, and the
impact on sensitivity, crosslinking density, and polymer film thickness must be taken into account. In a
mechanistic study of bulk polymerization reactions, Avens & Bowman found that eosin in conjunction
with a tertiary amine coinitiator is able to overcome a 1000-fold excess of oxygen in solution.'5 This idea
will be explored in depth in later chapters.

1.5.3 Surface compatibility and cost
In nearly every microarray implementation of polymerization-based signal amplification, self-assembled
monolayer (SAM) modified glass surfaces were used to immobilize capture molecules. In the course of
developing an ambient tolerant monomer solution, we found that PBA has sufficient sensitivity to report
on surface inconsistencies in SAM coatings.'0 This observation led to the conclusion that a more robust,
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yet inexpensive, surface was required. In addition, as many molecular diagnostic applications are based
on protein binding events, a surface on which protein activity would be retained following the surface-
immobilization process is required.

1.6 Thesis Overview
This thesis details the development of photopolymerization-based signal amplification as a platform
technology. We leverage the amplification inherent to radical polymerization to enhance signal
associated with specific molecular recognition events. The primary focus of this work was to begin the
transition of photopolymerization-based signal amplification from the lab to point-of-care users by
addressing some of the major limitations of the technology as originally developed in addition to
improving the mechanistic understanding of the binding reaction as well as the signal amplification.

Having identified oxygen inhibition as one of the major hindrances limiting adoption of this technology
in point-of-care settings, we sought to understand how eosin could be used to mitigate the effects of
oxygen inhibition. Chapters 2-4 present efforts to overcome and understand the role of oxygen in our
system.

Exploring the initiation threshold concept and the predictive value of known parameters, we
investigated the impact of the dissociation constant on the limit of detection and identified the crucial
parameters for predicting the performance of polymerization-based signal amplification reactions. This
study is presented in Chapter 5.

In order to expand the realm of potential applications and maximize sensitivity, we constructed
macrophotoinitiators to increase the number of initiators at the surface per binding event. Synthetic
strategies and conclusions about the utility of this strategy comprise Chapter 6.

Finally, we employed photopolymerization-based signal amplification for targeted cell encapsulation,
mitigating the effect of contaminating white blood cells for molecular analysis. These efforts are
described in Chapter 7.
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2 Development of an air tolerant monomer formulation

Some of the work, text, and figures presented in this chapter are reprinted or adapted from Kaastrup
and Sikes. Polymerization-based signal amplification under ambient conditions with thirty-five second
reaction times. Lab on a Chip, 2012, 12, 4055-4058.

2.1 Abstract
Although polymerization-based amplification (PBA) has demonstrated promise as an inexpensive
technique for use in molecular diagnostics, oxygen inhibition of radical photopolymerization has
hindered its implementation in point-of-care devices. The addition of 0.3-0.7 tM eosin to an aqueous
acrylate monomer solution containing a tertiary amine allows an interfacial polymerization reaction to
proceed in air only near regions of a test surface where additional eosin initiators coupled to proteins
have been localized as a function of molecular recognition events. The dose of light required for
reaction is inversely related to eosin concentration. This system achieves sensitivities comparable to
those reported for inert gas-purged systems and requires significantly shorter reaction times. We
provide several comparisons of this system with other implementations of polymerization-based
amplification.

2.2 Introduction
The diagnosis of infectious diseases is significantly enhanced by access to point-of-care devices,
particularly in resource-constrained regions. In order to diagnose and prevent the spread of disease in
areas with restricted access to public health care, it is essential to develop accurate, rapid, and
affordable point-of-care tests. Designing diagnostic tests that satisfy all of the criteria set forth by the
World Health Organization6 4 has proven challenging. Many of the current systems for clinical diagnostics
are PCR-based and instrument-intensive, requiring access to a hospital or laboratory as well as being
expensive.

A growing body of work indicates that polymerization-based amplification (PBA) addresses several of
these problems and shows promise as an inexpensive technique for use in molecular diagnostics if the
gap between meeting several of the criteria and all of the criteria can be bridged.s 13 ,7 2039 40 42 4 7 s2 n
this approach to biosensing, initiator-labeled detection reagents connect a signal amplification reaction
to molecular recognition events, as depicted conceptually in Figure 2-1. Binding reactions localize
initiating molecules near the test surface. With the addition of a monomer solution and light,
polymerization-initiating radicals are produced and a crosslinked, hydrogel forms provided the number
of binding events exceeds a certain threshold. In addition to being low cost and simple to perform, this
process also tolerates complex analytes. 13 ,17,19 However, limitations stand in the way of widespread use
in field and point-of-care settings. Chain growth reactions that proceed through radical mechanisms are
inhibited by oxygen, and previous implementations of photoinitiated PBA have made use of inert gas-
purged reaction vessels.5 ,6,13 ,17- 1 9 ,2 8,4 2 Molecular oxygen inhibits radical polymerization by reacting with
initiators and propagating radicals to form peroxy radicals, which are unreactive towards further
propagation and thus terminate chain growth.65 This termination reaction is particularly important for
surface-initiated polymerization where the ratio of atmosphere-exposed surface area to reaction
volume is high and, consequently, oxygen is readily replenished even as it is consumed. In the present
work, we address the oxygen inhibition problem in a visible-light, photo-reducible dye initiation system.

Eosin Y has been used as a coinitiator for the photopolymerization of acrylate monomers in visible-light
initiated systems for decades, 14 ,25 ,26 ,74 but it is only in the last few years that its role in preventing oxygen
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inhibition has been appreciated.15 5 Eosin is a photoreducible dye that reacts with a tertiary amine to
form an initiating species for free radical polymerization. The tertiary amine, typically either
methyldiethanolamine (MDEA) or triethanolamine (TEA), forms an initiating radical as a result of charge
transfer from the triplet excited state of eosin. Recently, Avens et al. proposed a mechanism by which
eosin is able to initiate polymerization in the presence of oxygen. They demonstrated that 0.4 pM eosin
in combination with 210 mM MDEA is able to initiate polymerization of an aqueous poly(ethyleneglycol)
diacrylate (PEGDA) solution containing 1000-fold excess of dissolved oxygen after a 2.5 minute
inhibition period.' 5 These experiments were conducted using homogeneous, rather than interfacial
polymerization reactions, and molecular recognition events were not involved. According to the
proposed mechanism, eosin reacts with inhibitors through a process in which it is cyclically regenerated.
A peroxy radical, formed in the reaction between molecular oxygen and a propagating chain, abstracts
hydrogen from an eosin radical, regenerating eosin in the process:

TEA-MAn + 02 -> TEA-MnOO * (1)
TEA-MnOO e + H-Eosin o -> TEA-MnOOH + Eosin (2)

In this article, we systematically investigate the idea of including sub-micromolar concentrations of free
eosin in the monomer solution during a PBA reaction. The resulting reaction mixture contains eosin in
two forms: unconjugated eosin that is homogenously distributed throughout the system, and eosin
coupled to proteins that are localized at a test surface as a function of specific molecular recognition
events (
Figure 2-1). We show that this approach allows the detection of molecular recognition events without
inert gas purging. We demonstrate that sensitivity is not compromised relative to earlier reports on a
similar photopolymerization system with an inert gas-purge, and that no trade-off exists between
reaction time and assay sensitivity as has been observed in air-tolerant ATRP47 and enzymatic PBA
systems. 3 9

Figure 2-1. Molecular recognition events increase the local concentration of initiator (represented by a red
diamond) at the surface relative to the bulk. Bulk initiator concentrations that allow rapid hydrogel readouts
in an air environment only in regions of a biochip where molecular recognition occurs have been identified.
Without initiators in the bulk solution, inert gas purging is required for reaction.

2.3 Experimental

2.3.1 Materials
Poly(ethylene glycol) diacrylate (Mn=575), triethanolamine, 1-vinyl-2-pyrrolidinone, eosin Y disodium
salt, 10x phosphate buffered saline, Triton* X-100, and Tween* 20 were purchased from Sigma Aldrich
and used without further purification. Eosin 5-isothiocyanate was obtained from Marker Gene
Technology. Streptavidin was purchased from Rockland Immunochemicals Inc. 10x bovine serum
albumin blocker solution and EZ-Link Sulfo-NHS-LC biotin were purchased from Pierce/Thermo Scientific.
100x Denhardt's solution was obtained from Bioexpress. Biochip test surfaces containing biotin-
functionalized DNA were purchased from InDevR, Inc. Cy3 NHS ester was purchased from Lumiprobe.
UltraCruzTM Micro G-25 Spin Columns were purchased from Santa Cruz Biotechnology, Inc. Dulbecco's
Modified Eagle's Medium was purchased from Lonza Group, Ltd. Fetal bovine serum was purchased
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from ATCC and penicillin/streptomycin was purchased from EMD Millipore. A BCA Protein Assay Kit with
bovine serum albumin standards was obtained from Pierce/Thermo Scientific.

2.3.2 Preparation of Detection Reagents
Eosin initiators were coupled to binding events by reaction of eosin 5-isothiocyanate with a fraction of
the solvent-accessible lysine residues of streptavidin as previously described.6 Streptavidin (1 mg) was
dissolved in 100 uL of 0.1 M sodium bicarbonate buffer, pH9. Eosin 5-isothiocyanate (EITC, 1 mg) was
dissolved in 100 uL of DMSO. 10 uL of the EITC solution was added to the streptavidin solution (100 uL)
for a total reaction volume of 110 uL. After gentle pipetting to mix, the reaction was protected from
light and maintained at 4*C overnight. Remaining 10 uL aliquots of EITC in DMSO were stored at -80'C
for future use. Following overnight reaction, pre-packed Sephadex gel filtration columns for use in
microcentrifuges were used to separate unreacted EITC from SA-EITC conjugates. Performing a buffer
exchange of the column material into 0.1 M sodium bicarbonate buffer was important for obtaining
optimal product recovery, and 1/3 of the reaction mixture was loaded onto each of three Sephadex spin
columns. Three columns were used at this scale to avoid overloading the column with uncoupled EITC.
The recovered streptavidin-EITC conjugates were pooled and diluted with 890 uL of phosphate buffered
saline. UV-visible absorbance spectroscopy was used to determine the average number of eosin
molecules covalently coupled to each protein. Measured absorbance values at 280 nm and 525 nm and
measured extinction coefficients in the stated buffer system were used in the following equation to
determine an average number of EITC per protein:
nEITC/nSA : (AbsEITC,525/ EEITC,525)/[(AbSSA,280-AbsEITC,280)/ESA,280], and EEITC,525 = 90,200 M 1 cm 1, EEITC,280 = 26,800
M 1 cm , ESA,280 = 173,000 M 1 cm'. Following characterization, the streptavidin-EITC solution was diluted
(1:1 on a volume basis) with glycerol and stored in aliquots at -20*C for a period of up to six months
without an observed loss of binding activity when used as specified in the text of this paper.

Stock solutions of free, unconjugated eosin-Y solubilized at a concentration of 5 ptM in 1% methanol in
distilled water were used to facilitate preparation of three monomer solutions containing final eosin
concentrations of 0.3 IM, 0.5 IpM, and 0.7 ptM. The concentrations of PEGDA, VP, and TEA in these
monomer solutions were, respectively, 200 mM, 100 mM, and 150 mM with distilled water as a solvent.
PEGDA (Mn=575) as purchased contains 400-600 ppm MEHQ as an inhibitor, and additional purification
steps to remove this inhibitor proved unnecessary for polymerization. TEA was used as an alternative to
MDEA for its improved water solubility.

2.3.3 Quantification of test surfaces
Test surfaces consisting of 5' amino-50 mer ssDNA-TEG biotin 3' spotted onto aldehyde-functionalized
glass at various dilutions 2 0 were purchased from InDevR, Inc. We quantified the number of binding-
accessible ssDNA-biotin per square micron in each surface feature using a Cy3-streptavidin conjugate
and fluorescence analysis (Agilent microarray scanner) against a Cy3 calibration array (Full Moon
Biosystems). Prior to use, surfaces were rinsed with distilled water to remove residual salts and
unreacted oligos. The test surface was contacted with 7.5 pg/ml Cy3-streptavidin in 0.75% BSA in 1.5x
PBS, 5x Denhardts for five minutes in a humid chamber. This concentration is within the previously
determined range of concentrations (1-10 ug/mL) that ensure signals dominated by specific rather than
nonspecific binding.6'19 Sequential rinses with PBST (1x PBS, 0.1% Tween 20), 1x PBS, and ddH 20 were
used to remove unbound Cy3-streptavidin. Background-corrected fluorescence signals were compared
with a standard curve generated using the Full Moon Biosystems calibration array where features
containing only spotting buffer were used to calculate background signal.
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2.3.4 Detection of molecular recognition using PBA under ambient conditions
The design of the present study was modeled after previous studies of labeled oligonucleotides
covalently coupled to surfaces5',6 so that sensitivity and other observables with the monomer solution
and reaction conditions reported here could be compared with previous work.6 In order to identify air-
tolerant polymerization conditions, test surfaces containing a dilution array of biotinylated DNA features
were contacted with 40 pL of 7.5 pg/ml eosin-streptavidin in 0.75% BSA, 1.5x PBS and 5x Denhardt's
Solution for 5 minutes in a humid chamber. To remove unbound initiator, surfaces were rinsed with
PBST (1x PBS, 0.1% Tween 20), 1x PBS, and distilled water and wicked dry. Once dry, 40 p1L of the
prepared monomer solution was contacted with the surface and the surface was irradiated with 522 nm
light (30 mW/cm 2 , measured using a SPER Scientific Light Meter) from an array of LEDs (InDevR).
Unreacted monomer solution was removed by rinsing the surface with distilled water. Remaining
hydrogel surface features, if present, were stained with 25 mM eosin (50% methanol, 50% distilled
water) for 2 minutes and subsequently rinsed with water to allow visualization of the polymer on the
slide surface. Each condition was repeated a minimum of 5 times. To verify the specificity of binding,
competitive binding assays using eosin-streptavidin conjugates that were pre-incubated with an excess
of free biotin were performed. To pre-block the eosin-streptavidin conjugates with free biotin, biotin
dissolved in DMSO (22 mM) was added to the macrophotoinitiator solution to achieve a final
concentration of 550 lpM, a >1000-fold excess relative to streptavidin. The final DMSO concentration of
the solution incubated with biochip surfaces was 2.5% on a volume basis, and biochips were developed
as described above.

2.3.5 Assessing tolerance for complex analyte solutions
A431 cells were maintained in Dulbecco's Modified Eagle's Medium supplemented with 10% fetal
bovine serum and 1% penicillin/streptomycin. The cells were lysed with Triton X-100 using standard
protocols.7 6 In brief, A431 cells were grown to confluence on a 100 mm culture plate. The culture
medium was discarded and the cells were washed twice with 1xPBS prior to the addition of 1 mL chilled
lysis buffer (150 mM NaCl, 1% Triton X-100, 50 mM Tris-HCI, pH 7.4). The cells were incubated on ice
with occasional rocking for 25 minutes. The lysate was transferred to a microcentrifuge tube and
centrifuged at 18,000xg for 10 minutes at 4'C. The supernatant was then removed and the total protein
concentration, quantified with a BCA assay, was determined to be 0.9 mg/ml. The lysate was diluted to
0.5 mg/mL with BSA in 1x PBS (for a final concentration of 0.75% BSA in 0.5x PBS) and
macrophotoinitiator was added to a final concentration of 375 nM (or 7.5 ptg/mL streptavidin). The
surfaces were contacted with the macrophotoinitiator in lysate for 5 minutes and developed normally.
Macrophotoinitiator was also added directly to undiluted cell lysate for comparison.

2.3.6 Analysis
Each surface was imaged using the digital camera built into the IntelliChip Reader (InDevR) imaging bay.
Mean intensity and standard deviation values were calculated for every surface feature and for the
background in an automated fashion using software that accompanies the IntelliChip Reader. Hydrogel
thickness profiles were obtained using a Dektak Stylus Surface Profiler with a 2.5 ptm stylus applying a
force of 98 pN. Hydrogels were in the dry state.

2.4 Results and Discussion
Figure 2-2 demonstrates that the inclusion of 0.3 tM eosin in the monomer solution allows the
formation of visible hydrogels only in the regions of the dilution-series biochip where molecular
recognition events have localized additional eosin. The interfacial polymerization reaction proceeds in
an ambient environment without the need for inert gas purging or removal of MEHQ inhibitors used to
stabilize acrylate monomers. A colorimetric response was observed in all features where at least 15
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molecular recognition events per square micron were possible, and a complete lack of a response was
observed in negative control regions including the unmodified surface area between features and the
bottom row of features that were treated with oligo-spotting buffer only. In 7/15 cases, colorimetric
responses from the row of features containing 6 possible molecular recognition events per square

micron were observed (not shown in quantitative details below). Figure 2-3 provides characterization

data indicating that an average of three eosin molecules were coupled to each protein, and Figure 2-4

supports the assertion that the dilution series biochip contains the stated number of biotin-labeled

oligos per square micron. Figure 2-5 provides evidence for specific binding in all regions of the biochip
that showed a polymerization response; biochips treated with eosin-streptavidin initiators that were

pre-incubated with an excess of free biotin prior to contact with the surface did not yield polymerization
responses.

0*@* Position BIotinipm2  Average Intensity Average Thickness

0 110 66.7 + 11.6 597.6 +267.5

1 100 73.3 + 5.7 1007.7 + 68.5

2 50 61.7+6.0 531.9+73.5

3 27 41.7 + 2.9 230.4 + 30.2

4 15 35.8 + 2.0 117.8 + 9.2

5 6 25.8+1.2

6 23.6+ 1.0

7 0 (spotting buffer) 25 + 1.1

Background N/A 26 +1.8

Figure 2-2. Colorimetric detection of molecular recognition using PBA under ambient conditions. The
monomer solution contained a bulk concentration of 0.3 pM eosin and the irradiation time was 100 seconds
with 522 nm light from LEDs (30 mWlcm2). This table includes average thickness data as determined using
profilometry.
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Figure 2-3. UV-visible absorbance spectrum for Streptavidin-Eosin conjugate.
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Figure 2-4. The number of binding-accessible ssDNA-biotin in each set of features of the test surface was
quantified using a Cy3-Streptavidin conjugate, a scanner calibration array and fluorescence analysis. (A) A
streptavidin-Cy3 conjugate with a known average number of Cy3 molecules per streptavidin was prepared
using the same method outlined above, though with a NHS ester-functional dye in the place of an

isothiocyanate dye. An average of two Cy3 were coupled to each protein according to the provided spectral
data and the following extinction coefficients: Ecy3,552 = 150,000 M-cm 1 , Ecy3,280 = 12,000 M cm1 ESA,280 =

173,000 M-cm'. (B) A biochip test surface was reacted with the Cy3-streptavidin conjugate as described in

the text and imaged. The average signal to noise ratios (C) were compared with a standard curve generated
using a Full Moon Biosystems calibration array (D). The signal intensities on the surface were determined
using Metamorph Basic to compute average intensities within specified regions of constant area. The signal
to noise ratio is defined as the difference between the signal and the background (in this case, the average

signal of the three buffer spots) divided by the standard deviation of the background (slna1-backlround). The

fluorescence images were obtained using an Agilent microarray scanner with an excitation wavelength of
532 nm (20 mW) and emission wavelengths between 550 nm and 610 nm. The intensity scale is 0 to 10000
and the PMT setting was 10%.

Figure 2-5. Competitive binding assays using eosin-streptavidin pre-incubated with a 70-fold excess of free
biotin confirmed the specificity of the binding interaction. Displayed are the negative controls for monomer
solutions containing 0.3 pM, 0.5 pM, and 0.7 pM eosin, respectively.
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Figure 2-2 contains a table that collects average colorimetric intensity data and average polymer film

thickness data for each set of features in the biochip. The top row and left-most column of features

(boxed, position 0) were spotted with an identical concentration of biotin-labeled oligonucleotides; this

design provides a means to assess variability over the length and width of the array. DNA density

decreases in each successive row from the top with three replicate spots representing each dilution. A

t-test performed on the colorimetric intensity data suggests that differences between features in

positions 0, 1, and 2 are not statistically significant, while those between positions 2, 3 and 4 are

statistically significant. The average pixel intensity of the accompanying digital image correlates with the

average hydrogel thickness. The dried polymer films ranged between an average thickness of 0.12 + 0.01

im for a surface density of 15 biotin/Im 2 up to 0.60 + 0.27 im for 110 biotin/pm 2 for the surface shown

in Figure 2-2.

Monomer solutions containing higher concentrations of free eosin (0.5 pM and 0.7 pM) produced similar
results to those shown in Figure 2-2; however, the reaction time required to achieve these results decreased
with increasing dissolved eosin concentration (Figure 2-6). Without compromising sensitivity, it was possible
to decrease the reaction time from 100 to 35 seconds by increasing the free eosin concentration in the
monomer solution from 0.3 pM to 0.7 pM. Average film thicknesses and colorimetric intensities for all fifteen
samples (five samples for each of three monomer solutions with varying dissolved eosin content) are
collected in

Table 2-1 and Table 2-2. These tables include data for the features that presented 6 possible molecular

recognition events per square micron; this row generated a colorimetric response on seven out of the

fifteen samples that were tested. These tables include data for the features that presented 6 possible

molecular recognition events per square micron; this row generated a colorimetric response on seven

out of the fifteen samples that were tested. Including less than 0.3 iM of free eosin in the monomer

solution did not allow hydrogel growth in an air environment with irradiation times of up to 150 s, and

including 0.9 pM of free eosin resulted in difficulty finding a reaction time that led to surface-localized

rather than bulk polymerization.
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Figure 2-6. The reaction time required for interfacial polymerization decreases as the eosin concentration in
the bulk monomer solution increases in the range from 0.3-0.7 pM. A crosslinked hydrogel forms at the
interface only in regions where molecular recognition events have increased the local initiator concentration
with these monomer compositions and reaction times.
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Table 2-1. Average Film Thickness

Position Biotin/pm2  Film Thickness Film Thickness Film Thickness
(nm) (nm) (nm)

(0.3 pM Eosin) (0.5 pM Eosin) (0.7 pM Eosin)

0 110 747.3 +211.6 868.5 +226.2 560.6 +165.5
1 100 844.7 + 230.5 707.5 +55.3 546.1 + 344.5
2 50 468.0+90.3 744.0 +353.3 466.5+47.4
3 27 271.3+57.8 389.6 +246.6 401.8 +130.5
4 15 238.1 + 170.1 334.3 +42.1 336.8 +91.8
5 6 327.1 +18.4 533.0 + 334.9 440.7 + 249.5

Table 2-2. Average Pixel Intensity

Position Biotin/pm2  Average Pixel Average Pixel Average Pixel
Intensity Intensity Intensity

(0.3 pM Eosin) (0.5 pM Eosin) (0.7 pM Eosin)

0 110 63.5+6.0 49.5+5.5 56.1 +3.5
1 100 67.1 +9.0 47.5 + 7.6 54.8 + 3.1
2 50 59.1 +10.4 51.3 +10.3 49.8 +5.1

3 27 42.7 +5.0 44.8 +3.2 46.8 +6.0
4 15 39.6+6.6 41.9+7.8 38.6+6.6
5 6 30.2 +10.6 44.6 +10.3 37.0 +14.5

6 24.4 + 1.0 25.0 +0.7 25.4 +1.3

7 0 (spotting buffer) 24.4 + 0.8 25.0 +0.8 24.6 +0.9

Background N/A 25.6 +0.3 25.4 +0.3 25.5 +0.3

Figure 2-7 shows that monomer solutions containing free eosin and our reported reaction conditions are
compatible with lysates of an immortalized human cell line (A431), a representative complex analyte
solution. This representative complex analyte solution does not interfere with the readout; it did not
increase the level of background signal or cause false positive results.

0

ft

0

0
0
0

Position BIotIn/ipm 2  Average Intensity

0 170 69.6 9.0

1 150 69.1 4 3.6

2 80 67.6 4.7

3 40 61.4+8.7

4 20 38.5 +4.7

5 10 25.8 1.2

6 25.0 1.3

7 0 (spotting buffer) 24.6 + 1.0

Background N/A 25.0 1.7

Figure 2-7. Providing the macrophotoinitiator in a mammalian cell lysate solution rather than in buffer has a
negligible effect on the system sensitivity. The surface was contacted with macrophotoinitiator in A431 cell
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lysate diluted to 0.5 mg/mL with BSA in PBS. The surface was then developed using an aqueous monomer
solution containing 0.5 pM eosin and irradiated for 70 seconds. An identical sensitivity of ? 15 possible
molecular recognition events per square micron was observed without any increase in background (non-
specific signal). For macrophotoinitiator spiked directly into undiluted lysate, sensitivity decreased to ? 27
possible molecular recognition events per square micron without an increase in background signal.

Our results are consistent with the findings of Avens, et al., indicating that sub-micromolar eosin
concentrations may be used to overcome oxygen inhibition during polymerization of aqueous acrylate
monomers. These dissolved eosin concentrations are significantly lower than the expected dissolved
oxygen concentration in the monomer solution (1.5 mM 77), supporting the cyclic eosin regeneration
mechanism proposed in reactions 1 and 2 above. Our system differs from that reported by Avens and
coworkers: in addition to free eosin throughout the monomer solution, we have localized eosin-protein
conjugates at the surface of a biochip as a result of specific molecular interactions. High local eosin
concentrations lead to a decreased inhibition time in our system, <70 or <100 seconds for the 0.5 IM
and 0.3 pM cases, respectively, compared with the 150 second inhibition period observed by Avens.
One caveat of these comparisons is that Avens et al. used a high pressure mercury lamp and selected
wavelengths from 490 nm - 650 nm with a total intensity of 75 mW/cm 2 and used a monomer solution
containing 420 mM PEGDA, 35 mM VP, and 210 mM MDEA.

Previous work has shown that increasing the concentration of the tertiary amine co-initiator can result
in thinner films, a consequence of the amine's propensity to act as a chain-transfer agent, slowing
network formation and facilitating termination at higher concentrations.28 The lack of change in
hydrogel thickness in response to dissolved eosin concentration observed in this study suggests that
eosin does not act as a chain-transfer agent in a manner similar to the tertiary amine, at least not within
the range of concentrations tested.

In the context of previous reports of using visible light initiated polymerization reactions to detect
molecular recognition, our present implementation provides several advantages. The reaction proceeds
under ambient conditions within 35-100 seconds, a substantial improvement on the previously reported
20 minute reaction periods for argon-purged systems. 6 In addition, the threshold surface density of
targets required for a response (15 biotin/ptm 2 ) is comparable to that reported for previous systems (9.8
targets/im 2 

6 and 17 targets/pm2 20 ). Table 2-3 provides a compact comparison of our study with
previous approaches to PBA, including AGET ATRP and enzymatically-mediated polymerization. Both
AGET ATRP and enzymatically-mediated polymerization require reaction times on the hour time-scale
for maximum sensitivity with sensitivity losses at shorter reaction times.

Table 2-3. Comparison of PBA Methods

System Surface Inert-Gas Reaction Timet Thickness
Purge

Photopolymerization (this report) Glass No 35-100 sec. 0.12-0.60 pm

Photopolymerization (without Glass No (minutes) Not measured

inert gas purge)

Photopolymerization6 (with inert Glass Yes 20 minutes 0.12-0.54 pm

gas purge)

AGETATRP1 Gold No 10-120 minutes 4-16 nm
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Polystyrene No 15-60 minutes

polymerization
t Reaction time for greatest sensitivity. Shorter reaction times are possible with AGET ATRP and enzymatically-
mediated polymerization, but a dramatic trade-off between reaction time and sensitivity was reported in each case. $
Monomer composition and exact reaction times not specified.

The covalent model system used in this work allows comparison of amplification techniques without
confounding variables. Straightforward comparisons of sensitivity are complicated by differing
association constants for different binding events, additional assay steps that may increase or decrease
capture efficiency, and the fact that capture molecule density is not usually well-characterized but is
known to impact capture efficiency and detection sensitivity. A striking example of the impact of
capture molecule density on detection sensitivity of a target molecule captured from solution may be
found in Figure 5 of reference 26. Of course, in contrast to the covalent model system, real assays
require capture of a target molecule from solution. Previous work indicates that trends identified in
covalent model systems hold in real assays involving additional non-covalent binding events.13 17 ,9

The present covalent model system does have drawbacks. PBA has sufficient sensitivity so that it
reports on surface inconsistencies caused by variability in the SAM coatings of modified glass, small
differences in oligonucleotide spotting procedures, and post-spotting processing procedures used to
prepare biochips. Surface quality and uniformity are important factors in obtaining reliable results, and
we believe that these factors currently determine the degree of variation in the results presented herein
(i.e. standard deviations). Uniform, robust, low-cost test surfaces are a prime area for improvement. To
date, visible-light initiated PBA has detected binding events at SAM modified glass, polystyrene,
nitrocellulose and polysiloxane surfaces and should be easily adaptable to others.

2.5 Conclusion
The inclusion of sub-micromolar concentrations of free eosin in aqueous acrylate monomer solutions
has been demonstrated to successfully overcome oxygen inhibition and allow detection of molecular
recognition at biochip surfaces using surface-localized photopolymerization reactions. The reaction time
can be tuned by adjusting the eosin concentration, higher concentrations yielding shorter reaction
times. The system presented produces thicker hydrogels with shorter reaction times than other
implementations of polymerization-based amplification,39'47 and sensitivity is equivalent to a similar
previously reported system that required an inert gas purge and longer reaction times.6 In addition, the
introduction of a complex analyte doesn't negatively impact assay performance. The system's speed,
tolerance for complex analytes and ability to perform under ambient conditions suggest its utility for
point-of-care devices.
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3 Spectroscopic Investigation

3.1 Abstract
Techniques that promise real time monitoring of polymerization reactions in situ have the potential to
dramatically simplify the kinetic characterization of new reactions. A novel system for monitoring
photoinitiator consumption and double bond conversion for photopolymerizations in situ and real time
was recently reported. Here, we employ this system to investigate the eosin-activated
photopolymerization of hydrogels. In examining spectroscopic challenges associated with the
polymerization of largely aqueous systems, three metrics for quantifying the extent of light scattering
are identified and their relation to phase changes discussed. In addition, the dual-monitoring system is
applied to the study of dye regeneration by oxygen.

3.2 Introduction
Radical photopolymerization is an essential and commonly used tool in a wide range of industries
including microelectronics, laser imaging, and the production of coatings and adhesives.'' 9

Photopolymerization offers a number of advantages over alternative radical polymerization chemistries
such as reversible addition-fragmentation chain-transfer polymerization and atom transfer radical
polymerization; the reactions can be performed at room temperature and provide spatial and temporal
control. 9

Spectroscopic monitoring of polymerization allows for the elucidation of reaction kinetics and
characterization of the polymers as they grow. An early approach to monitoring polymerization kinetics
was to take periodic measurements; in an example of this, Shen et al. performed interval measurements
of the propagating radical concentration and the monomer conversion for the bulk polymerization of
methyl methacrylate.80 Real-time monitoring of polymerization, and particularly monomer conversion
using FT-NIR, has since become routine. Wayne Reed and colleagues developed an online
polymerization monitoring system that operated through the continuous withdrawal of a small stream
of the sample that was then diluted with solvent for light scattering and viscometric measurements. 8 1 ,8 2

A system based on light scattering for in-situ monitoring of parallel polymerization reactions was also
developed.83 84 Absorbance spectroscopy has been used to measure photoinitiator consumption and
track changes in refractive index during polymerization reactions. In a study examining the
polymerization kinetics of acrylic resins, Schmitt used a UV-Vis spectrometer to correlate changes in
refractive index with double bond conversion.85 Kang et al. presented a method for determining the
chemical cross-link density in real time using UV-Vis spectroscopy in the context of the redox reaction
between phenol groups and eosin for the polymerization of tyramine modified sodium alginate. In situ
UV-vis and FT-IR spectroscopy has been used to monitor the copolymerization of furan and thiophene;
polyfuran and polythiophene have characteristic absorption bands depending on their band gaps so the
UV-vis spectra provide an indication of the relative incorporation of thiophene and furan. 7 Decker
performed separate measurements with real-time UV spectroscopy and IR spectroscopy to study the
photolysis kinetics of a UV initiator and monitor conversion, respectively.8 8

Recently, Aguirre-Soto et al. demonstrated a custom coupled UV-Vis/FT-NIR set-up that permits
simultaneous monitoring of photoinitiator consumption and monomer conversion (Figure 3-1). This
system offers myriad advantages, including the ability to monitor a broad range of wavelengths
extending from the UV to the NIR in situ, without the need for sample extraction. This set-up has
previously been demonstrated for the polymerization of bulk monomer solutions. Here, we apply it to
the study of eosin-activated photopolymerization of hydrogels.
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Hydrogels are hydrophilic, cross-linked polymers that have been used extensively in tissue

engineering,89-9' protein delivery, three-dimensional cell culture, 93 and as adhesives for wound
closure.94 Because of their swelling properties as well as the reduced toxicity of aqueous monomer
solutions relative to bulk monomer solutions, hydrogel systems have also been used for

photopolymerization-based signal amplification reactions. ' These are reactions in which hydrogel
formation is localized at a surface as a function of molecular recognition events; a photoinitiator is
coupled to a molecule that specifically binds to a target molecule immobilized at a surface.

Hydrogels present a particular challenge in absorbance spectroscopy as the lower monomer
concentrations result in slower rates of polymerization and more gradual transitions from liquid to gel.
This often results in increased light scatter. Here, we demonstrate some of the spectroscopic challenges
unique to hydrogel polymerizations and how to address them. In addition, we show how the dual
monitoring set-up can be used to examine the effect of oxygen on radical polymerization reactions by
measuring eosin consumption in the visible range and monomer conversion in the near IR.

Eosin has gained favor as a photoinitiator for photopolymerization-based signal amplification reactions
as it is activated by visible light, contributes to the formation of gels that are firmly attached to the
surface,14 and is able to circumvent oxygen inhibition.' 0 Oxygen reacts with initiating or propagating
radicals to produce peroxy radicals that are unreactive towards propagation, '', and, thus, have the
effect of terminating the reaction. The exact mechanism through which eosin is able to overcome
oxygen inhibition is unknown, although a possible route through which eosin is regenerated in a
reaction between peroxy radicals and the semiquinone form of eosin has been proposed.15

Absorbance and fluorescence spectroscopy have been used previously to investigate dye regeneration.
Slower rates of absorbance and fluorescence decay have been associated with dye regeneration.' 95

Evidence of eosin regeneration in the presence of oxygen was presented by Chesneau and Fouassier.
Comparing the absorbance at 546 nm for purged and laminated solutions of eosin,
methyldiethanolamine (MDEA), and an oxime ester, they saw a plateau region during which the
absorbance of the nonpurged solution was constant before rapidly decreasing.45 By contrast, the
absorbance of the corresponding purged solution decreased immediately. The regeneration of eosin, as
indicated by the delayed decrease in absorbance for the nonpurged solution, was attributed to
hydrogen abstraction from the semiquinone form of eosin by peroxy radicals in solution and the
reaction between the semiquinone form and oxygen that produces eosin in its ground state and H00'. 45

Previous studies have been limited to monitoring either double bond conversion15 or photoinitiator
consumption4 5 in examining the role of oxygen in the photopolymerization of hydrogels. The advantage
of using a set-up that allows for simultaneous monitoring of the dye consumption and conversion is that
it becomes possible to measure how the dye is consumed specifically during the inhibition period. Here,
we will first discuss the treatment of the absorbance data for hydrogel systems before showing evidence
of eosin regeneration by oxygen.
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UVvis probing light

Figure 3-1. Set-up for simultaneous monitoring of near-infrared absorbance and uv/visible absorbance or

fluorescence. Monomer samples in a cuvette are place in a holder with pinholes to restrict light to the

detector which is transmitted by fiber optic cables. The curing light is shone from above and the entire set-

up is encased within an air-excluding case to enable purged polymerization reactions.

3.3 Experimental

3.3.1 Materials
Poly(ethylene glycol) diacrylate, triethanolamine, 1-vinyl-2-pyrrolidone, 1-ethyl-2-pyrrolidone, and eosin

Y disodium salt were purchased from Sigma Aldrich. PMMA cuvettes were purchased from Eppendorf.

3.3.2 FT-NIR and UV-Vis Monitoring

A multi-wavelength light emitting diode box containing a green 500 nm LED (FC8-LED, Prizmatix,

Southfield, MI) was used to excite the photoinitiator, eosin. Irradiance or power density was controlled

with a potentiometer and measured with a radiometer (6253, International Light Technologies,

Peabody, MA) within the 400-700 nm range.

A fiber optic coupled UV-Vis spectrometer (USB4000-FL Miniature Fiber Optic Spectrometer, Ocean

Optics, Dunedin, FL) was used to monitor absorbance within the 350-1000 nm range through a 10 mm

pathlength. The acquisition time for the UV-Vis spectrometer was set to - 0.5 s (50 ms integration time,

10 scans to average) and a boxcar width of 4 was used. A water reference spectrum was collected prior

to each experiment. The monomer solution consisting of 420 mM PEGDA, 35 mM VP, and 210 mM TEA

did not absorb over the range of wavelengths being probed. The probing light was consistently adjusted

to the same threshold intensity.

A fiber optic coupled FT-NIR spectrometer (Nicolet Magna-IR Series 11, Thermo Scientific, West Palm

Beach, FL) was used to track the vinyl group concentration. A pathlength of 2 mm was used for the NIR

spectroscopy to avoid saturation by the 0-H bands from the water. FT-NIR spectra were collected with a

resolution of 8, a gain of 1, and an optical aperture of 10 with 4 scans at each time point. Acquisition

time for the FT-NIR was between 0.5 and 3 seconds.

10 x 2 mm PMMA cuvettes were used inside an adaptor with custom-made optical apertures. A 3D

printed cap was placed on top of the cuvette to restrict the curing light to the sample volume. The

sample volume was 50 iL, which results in sample dimensions of 2 mm x 10 mm x 2.5 mm, where the

latter is the thickness in the direction of the excitation light from the LED. Samples were placed inside a

CUV-ALL-UV 4-Way Cuvette Holder (Ocean Optics, Dunedin, FL) with SMA connectors for fiber

integration. Fiber optic cables were connected perpendicularly for UV-Vis and FT-NIR analysis. For the

FT-NIR, two 1000 nm fibers were used to feed the IR light from the spectrometer to the sample, and

from the sample back into the InGaAs detector. The UV-Vis probing light was fed into the cuvette holder
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via a 600 nm solarization resistant fiber optic cable (QP-600-1-SR, Ocean Optics, Dunedin, FL), and a 50
micron receiving fiber optic cable (P50-1-Vis-NIR, Ocean Optics, Dunedin, FL) was connected to the UV-
Vis spectrometer.

Monomer solutions were prepared with 420 mM PEGDA, 35 mM VP, 210 mM TEA, and 5 pM Eosin Y in
water (equivalent to 21.6% PEGDA, 2.8% TEA, 0.4% VP, 75.2% water). In the case of the purged samples,
Argon was bubbled through the solution for 5 minutes prior to transfer to a PMMA cuvette for
polymerization. These samples were polymerized under Nitrogen flow (8 psi). Between three and five
replicates were performed at each condition.

3.3.3 Processing of UV-Vis Spectra
For each time point, baselines were fit to 10 points at each end of the wavelength range for peaks
between 430 and 650 nm. The baseline-adjusted absorbance at the wavelength corresponding to the
initial maximum peak height (523 nm) was monitored as a function of time.

During the polymerization reactions, the solutions underwent a phase change to a hydrogel, resulting in
significant light scatter. To determine the point at which the absorbance signal is dominated by light
scatter, the "cloudiness" of the solution was monitored by tracking the absolute absorbance at 430 nm.
In addition, to account for contamination from the curing light, the ratio of the baseline-corrected
absorbance at 500 nm to the absorbance at 523 nm was monitored. 500 nm is the wavelength of the
curing light. When the ratio of 500 nm to 523 nm changes substantially, it is an indication that there is
increased contamination from the curing light. The time point for this transition was found by fitting a
spline to the ratio as a function of time and then calculating the maximum second derivative.

Single exponentials were fit to the inhibition periods and the periods immediately following the onset of
polymerization. To ensure that the curing light infiltration and increased light scatter did not interfere
with the ground state eosin absorbance measurements, the end point of the second regime was
determined by finding the maximum of the second derivative of the absorbance at 523 nm and then
fitting 80% of the absorbance data between the end of the inhibition period and the second derivative
maximum. The maximum second derivative of the absorbance at 523 nm occurs before the change in
the ratio of the absorbance at 500 nm and 523 nm. Fitting 80% of the data in this regime serves as an
added precaution against inadvertently misinterpreting artifacts resulting from the light scatter caused
by the polymerization.

3.3.4 Processing of FT-NIR Spectra
The vinyl group concentration was determined by integrating the peak area between 6229 and 6128.8
cm-1 for the first overtone of the =C-H bond(s) associated with the acrylate group at approximately 6160
cm

The inhibition periods were determined by first plotting the conversion (defined as A -A) as a function of
A 0

time. The largest time for which a conversion of 0 was obtained was determined numerically and used
as the starting point for 200 points to which a second order polynomial was fit as well as the initial guess
to find the root (conversion=0) of the function. This fitting procedure was performed iteratively until the
difference between two consecutive roots was less than 0.1 seconds.
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The rate of polymerization was determined by differentiating the function generated by fitting a

smoothing spline with smoothing parameter=1x10-5 to the raw conversion data starting near the root

found through the iterative process. The resulting derivative was multiplied by the initial peak area to

give the rate of polymerization. The intercept of the spline was also calculated and found to agree with

the value determined through iteratively fitting a second order polynomial.

3.4 Results and Discussion
Eosin consumption was measured by monitoring the maximum absorbance peak for the ground state of

eosin at 523 nm. This process is complicated by the gelation of the monomer solution as the

polymerization progresses. As shown in Figure 3-2, the baseline shifts as the polymerization proceeds

and contaminating light from the 500 nm curing light passes through to the detector (Figure 3-3),

reducing the absorbance at 500 nm below the baseline. There is also an inversion in the absorbance at

the peak fluorescence emission wavelength of eosin, 550 nm. The increased baseline absorbance is a

result of increased probing light scatter as the polymer chains propagate and crosslink. The

accompanying phase change permits additional light from the curing light through to the detector. It is

necessary to account for these phenomena in interpreting the absorbance signal.
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AM0 4W0 50 550 600 40
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Figure 3-2. Baseline shifting and curing light contamination as polymerization progresses for solution of
eosin, TEA, PEGDA, and VP illuminated with 500 nm light (3.7 mWcm2).
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Figure 3-3. Absorbance spectra for the curing LED and the ground state of eosin in the monomer solution.

The fluorescence emission spectrum for eosin is also shown. The spectra are normalized to the maximum

peak absorbance.

As the polymerization proceeds, oligomers in solution scatter light, shifting the baseline absorbance

(Figure 3-2). A wavelength dependence of the scattering is apparent with higher absorbance at shorter

wavelengths (~430 nm) compared with longer wavelengths (~650 nm). This form of wavelength

dependence is frequently indicative of Rayleigh scattering, for which the intensity of the scattered light

scales with the inverse of X.
96

An examination of the absorbance spectra suggests that a combination of light scattering phenomena is

taking place. To account for the wavelength independent absorbance as well as the apparent

wavelength dependent scattering, the intensity of the transmitted light can be expressed as follows:

I = (alo) (1 - b/ 4 )

where lo is the intensity of the probing light, a is a constant that accounts for the amount of wavelength-

independent light scatter (a=O corresponds to complete scatter or zero transmission), and b

represents the fraction of the remaining light that is scattered with a Rayleigh wavelength

dependence.96 This expression can be rewritten in terms of absorbance:

A = log1 o (+) = -logio(a) - logo (1 _ b

If b/, 4 < 1, the second term can be approximated as

10lo0 (1 _ b 4  ln( ) -b

Reinserting into the expression for absorbance:

A = log10 = 1 +(b,14 ) = a + b'4A = 1 CIO) = log10 (D) + 1I(10) h/A 4
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Baselines were fit to the absorbance spectra, assuming the above dependence on wavelength. This
allows for an assessment of the relative contributions of the wavelength independent and dependent
scatter in the form of a' and b'. Figure 3-4 shows these constants as a function of time for the sample
presented in Figure 3-2. In order to permit a comparison of the magnitudes of the constants, b' was

normalized by the average of 1/A4. As shown, the wavelength-dependent scattering, as represented by

b', comprises less than 20% of the total scattering reflected in the increased baseline absorbance. The
wavelength-dependent parameter goes through a maximum at 235 seconds before decreasing. This
behavior was consistent across all of the samples, under different curing light intensities and purging
conditions, and suggests that the concentration and/or size of the light scattering oligomers is steadily
increasing, finally reaching a point where the oligomers exceed the size for which Rayleigh scattering is
possible, i.e. smaller than the probing wavelength, and the contribution from wavelength-dependent
scattering consequently diminishes. The maximum could correspond to the point at which a phase
change occurs and shorter oligomers react to form a cross-linked polymer network.

A 1  4  B 1
1.2- 0.14-

1 - 0.12-

0.8 - 0.1 -

0.6 - 0.08-

0.4 -: 0.06-

0.2- 0.04,

0 0.02-

0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time (seconds) Time (seconds)

Figure 3-4. Baseline fitting parameters for solution of eosin, TEA, PEGDA, and VP illuminated with 500 nm
light (3.7 mW/cm 2). A) Baseline fitting parameter, a', representing wavelength-independent scatter. B)
Baseline fitting parameter, b', representing wavelength-dependent scatter and normalized by the average of
1/A4 (1/521nm4).

The time at which b' reached its maximum and the conversion at that time are summarized in Table 3-1
for the different conditions tested. For both ambient and purged conditions, the time at which b' passes
through a maximum decreases as the light intensity increases and the rate of polymerization increases.
The conversion when b' is at a maximum is consistently between 0.27 and 0.37, further indicating that
the change in b' is reflective of a phase change.

Table 3-1. Wavelength-dependent parameter: time and conversion at b' maximum

Intensity Time (b'max) (seconds) Conversion (b'max) (seconds)

(mW/cm 2 ) Ambient Argon-purged Ambient Argon-purged
1.5 373 + 37.9 181 +29.5 0.27 +0.03 0.33 +0.02

3.7 230 +11.8 147 +12.6 0.37 +0.003 0.31 +0.01

6 173 +29.5 111 +6.4 0.33 + 0.01 0.30 +0.01

9.6 153 + 29.5 103 +9.8 0.30 +0.02 0.29 + 0.02

Figure 3-5 shows the absorbance at 523 nm and conversion as a function of time (A) and the rate of
polymerization and absorbance as a function of conversion (B) for a representative sample that was
irradiated with 500 nm light (3.7 mW/cm 2 ) under ambient conditions. The sample is the same one
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presented in Figure 3-2. The first 43 seconds during which there is no polymerization (the conversion is

0) is the inhibition period. During this time, the oxygen present in solution reacts with radicals to form

peroxy radicals,4 1 which are fairly unreactive towards propagation and thus effectively inhibit the

polymerization. Before the onset of polymerization, the absorbance at 523 nm decays at a nearly

imperceptible rate (Figure 3-5). Once the oxygen in the system has been depleted, the polymerization

begins and the maximum rate is achieved immediately, as shown in Figure 3-5B. The absorbance at 523

nm begins to decay more rapidly with the onset of polymerization. As the polymerization proceeds and

the double bond conversion increases, the rate of polymerization slows. This rate reduction occurs as

the polymer chains become cross-linked and a gel (polymer network) forms, slowing the diffusion of the

monomers and propagating radicals. After 240 seconds, the rate of absorbance decay increases. As

shown in Figure 3-2, at this point in the polymerization, an increase in the baseline absorbance and

contamination from the curing light are already evident. This transition corresponds closely with the

maximum in the wavelength-dependent parameter b', which occurs at 235 seconds, further suggesting

an increase in the size of oligomers in solution are contributing to significant light scatter.

A " '5 ' '0' 'B

0.1 O. 0.1

CC

0e 0.1 02 0.3 O4 0.

Time (seconds) Conversion

Figure 3-5. A) Absorbance at 523 nm and conversion as a function of time and B) absorbance and rate of
polymerization as a function of conversion for a solution of eosin, TEA, PEGDA, and VP illuminated with 500
nm light (3.7 mW/cm2).

In order to assess the extent of the probing light scatter during the polymerization, the absolute

absorbance (not baseline corrected) at a wavelength in the visible range was monitored. 430 nm was

selected for this purpose as none of the species present in solution absorb at this wavelength and also

because Rayleigh scattering effects are more pronounced at shorter wavelengths. As the reaction

proceeds, the polymer chains grow and form cross-links, scattering the probing light and thereby

increasing the absolute absorbance at 430 nm.

To determine the point at which infiltration of the curing light is first observed, the ratio of the peak

height at 500 nm (the wavelength of the LED curing light) to the peak height at 523 nm (the wavelength

at which the eosin absorbance is at a maximum) was tracked. A reduction in the absorbance at 500 nm

relative to the absorbance at 523 nm indicates that light from the LED curing light is reaching the

detector, altering the characteristic absorbance spectrum for eosin. It is worth noting that as eosin is

consumed and the absorbance decreases, some peak broadening is expected and, consequently, a

change in the ratio of the absorbance at 500 nm to that at 523 nm. However, peak broadening has the

opposite effect, contributing to a slight increase in the ratio of the absorbance at 500 nm to that at 523

nm.
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Figure 3-6 shows the absolute absorbance at 430 nm and the ratio of the absorbance at 500 nm to 523
nm for the sample in Figure 3-2. Around 240 seconds, where the rate of decay of the absorbance at 523
nm increases (Figure 3-5), the ratio of the absorbance at 500 nm to the absorbance at 523 nm begins a
precipitous descent. Referencing Figure 3-5, it is also evident that the absorbance at 430 nm begins to
increase when the conversion approaches -10% with an even sharper increase when the conversion

approaches 0.3 and the rate of polymerization begins to decrease. The rate reduction and the increased
absorbance are both indicative of the formation of larger cross-linked polymer chains that likely serve to
scatter light and hinder diffusion and consequently contribute to a reduced rate of polymerization.
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Figure 3-6. Monitoring baseline shifting (absorbance at 430 nm) and curing light contamination (ratio of
absorbance at 500 nm to absorbance at 523 nm) for a solution of eosin, TEA, PEGDA, and VP illuminated
with 500 nm light (3.7 mW/cm2).

The onset of the decrease in the ratio of the absorbance at 500 nm to 523 nm was determined by
calculating the maximum of the second derivative. For the curve shown in Figure 3-6, this onset occurs

at 250 seconds where the absorbance at 430 nm is equal to 1 (10% of the probing light transmitted). As

shown in Table 3-2 for different curing light intensities under both ambient and argon purged
conditions, there is a correlation between the change in the ratio of the absorbance at 500 nm to 523
nm and the absolute absorbance at 430 nm. The correlation between the absolute absorbance at 430

nm and the ratio of the absorbance at 500 nm to 523 nm suggests that a critical point is reached at

which some fraction of the monomers in solution have been incorporated into a light-scattering, cross-

linked polymer network.

Table 3-2. Baseline shift and curing light contamination: transition times

Intensity Time (A5oo/ A523 maximum of 2nd Time (A430=1) (seconds)

(mW/cm 2 ) derivative) (seconds)

Ambient Argon-purged Ambient Argon-purged

1.5 389 +22.5 195 33.0 414 + 42.7 211+ 37.1

3.7 235 + 15.1 178 +18.6 238 + 16.3 186 +14.8

6 191 + 23.6 120 + 6.8 207 +22.0 139 +3.9

9.6 184+52.1 98+16.9 214+45.9 138+6.5
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Table 3-3 shows the average conversions corresponding to the transition times summarized in Table 3-2.

The onset of the sharp decline in the ratio of the absorbance at 500 nm to 523 nm and the point at

which the absorbance at 430 nm is 1 consistently occur when the conversion is between 0.3 and 0.4,

closely following the maximum in the wavelength-dependent light scattering parameter b'. Beyond this

conversion, it is difficult to reliably determine the absorbance at 523 nm resulting from eosin in its

ground state. However, it is still possible to draw conclusions from the change in absorbance prior to

this transition and this analysis demonstrates the wealth of information contained within the

absorbance data.

Table 3-3. Baseline shift and curing light contamination: conversion at transition times

Intensity Conversion (A5oo/ A523 maximum of Conversion (A 43 0=1)

(mW/cm 2 ) 2nd derivative)
Ambient Argon-purged Ambient Argon-purged

1.5 0.31 +0.04 0.35 t 0.02 0.32 +0.04 0.37 +0.02

3.7 0.38 + 0.01 0.34 + 0.01 0.38 +0.01 0.35 +0.01

6 0.35 + 0.01 0.31+ 0.01 0.37 + 0.01 0.34 + 0.01

9.6 0.33 +0.04 0.29 + 0.03 0.37 + 0.02 0.35 + 0.01

As previously noted and shown in Figure 3-5, the rate of absorbance decay accelerates with the onset of

polymerization. As shown in Figure 3-7, this acceleration was captured quantitatively by fitting single

exponentials to the inhibition period (region 1) and the period immediately following the onset of the

polymerization (region 2), but prior to the infiltration of the curing light and the sharp increase in the

baseline absorbance (region 3). The single exponentials are shown in red and cyan.

For the representative sample shown throughout, the exponential decay constants during the inhibition

period (the first 43 seconds) and the initial polymerization are, respectively 2.3 x 10-4seconds- and 8.5 x

10-4 seconds-. The rate of decay increases 3.8x with the onset of polymerization.
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Figure 3-7. Fitting single exponentials to the inhibition period (region 1) and initial polymerization (region 2)
for a solution of eosin, TEA, PEGDA, and VP illuminated with 500 nm light (3.7 mW/cm2) under ambient
conditions. The black curve is the baseline-corrected absorbance at 523 nm. The red curve is a single
exponential fit to the inhibition period, the first 43 seconds preceding polymerization. The cyan curve is a
single exponential fit to the period immediately following the onset of polymerization, between 43 and 202
seconds. Curing light contamination affects the absorbance signal in region 3, which is excluded from the
single exponential fitting.
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Exponential decay constants measured under ambient and argon-purged conditions for increasing
curing light intensities are shown in Figure 3-8 and Table 3-4. The decay constants increase with light
intensity for both the inhibition period and initial polymerization period under ambient and argon-
purged conditions. The dependence on light intensity appears exponential; a linear relationship
between the decay rate constant and light intensity has previously been observed for photoinitiators
that undergo direct photolysis.88 A nonlinear dependence indicates that the number of photoinitiator
molecules destroyed per photon absorbed increases with light intensity.8" As more light reaches the
sample, more of the eosin is excited from its ground state to its singlet state. From its singlet state, eosin
can relax back to its ground state, react with TEA or oxygen, or undergo intersystem crossing to its
triplet state. Once in its triplet state, eosin can react with itself, oxygen, or TEA. The exchange of an
electron and proton with TEA produces the semiquinone form of eosin and a TEA radical, which can
react with a monomer to initiate polymerization or react with oxygen to form a peroxy radical.
Increasing the light intensity increases the rate at which eosin is excited and consequently the rates of
the subsequent reactions. Thus, more of the eosin is irreversibly photobleached as it is consumed in
termination reactions that convert it to its leuco form.

The onset of polymerization also has the effect of increasing the decay constant. The decay constants
during the initial polymerization are between 3-6.3x greater than those during the inhibition period. At a
curing light intensity of 1.5 mW/cm 2 , the increase is most pronounced with the polymerization decay
constant 5.5x higher than the inhibition period decay constant. As the curing light intensity is increased
to 3.7, 6, and 9.6 mW/cm 2, the decay constant increases by a factor of 4.5, 3.7 and 3, respectively, with
the onset of polymerization.

For the two higher curing light intensities (6 and 9.6 mW/cm 2 ), the average decay constant for the
polymerization under argon-purged conditions is 1.3-2.1x higher than under ambient conditions,
whereas at the other curing light intensities used, the polymerization decay constants for ambient and
purged conditions were similar.

The experiments performed under ambient conditions were conducted in open vessels, permitting the
diffusion of oxygen into the solution, although, as the polymerization progresses and the hydrogel
forms, the rate of oxygen diffusion will slow. The initial concentration of dissolved oxygen should be
close to 0.5 mM, the solubility in water; this is 100x greater than the concentration of eosin. For
polymerization to occur, the oxygen concentration must be decreased to a level at which radical
propagation reactions are favored over inhibition reactions. Independent of the curing light intensity,
the absorbance decreases by 1% during the inhibition period. The consistency of this decrease reflects
how the oxygen concentration must be reduced below a threshold level for the polymerization to
proceed.

The slower rate of absorbance decay during the inhibition period suggests that ground state eosin is
being regenerated in the presence of oxygen. In addition, the less rapid decay of the eosin absorbance
with the onset of polymerization under ambient conditions relative to purged conditions is likely a
consequence of the replenishment of oxygen by diffusion as it is consumed. This effect becomes more
apparent as the light intensity is increased and the initiation rate and rate of oxygen consumption
increase.

Slower rates of fluorescence decay have been associated with dye regeneration.' Xanthene dyes, such
as eosin, are well known oxygen sensitizers. Oxygen has been reported to react with the triplet state of
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eosin with a rate constant of 1.1x109 M's'.97 The two most commonly presented reactions between
triplet eosin and oxygen are as follows: 8

E 3* + 02 - E + 02
E3 * + 0 2  E + 102

Of these, the second is considered to be the predominant reaction with a rate constant at least two
orders of magnitude greater than the first reaction.99 This is one pathway through which ground state
eosin can be regenerated by oxygen. However, Avens & Bowman have presented an alternative route
through which eosin can be regenerated:1"

E 3* + TEA -+ EH' + TEA'
R' + 02 - ROO'

EH + ROO' ROOH + E

According to this mechanism, the semiquinone eosin (EH) resulting from the reaction with TEA is
susceptible to hydrogen abstraction by the peroxy radicals (ROO') that result from the reaction of an
initiating TEA radical or propagating radical (here, presented as R') with oxygen. This regenerates the
ground state eosin. Whether this reaction or the reaction that produces singlet oxygen is primarily
responsible for the regeneration of eosin depends on the relative concentrations of TEA and oxygen as
well as the rate constants for the reactions between the triplet state of eosin and oxygen and TEA. The
initial concentration of TEA is 210 mM, 700x the concentration of oxygen. Thus, the probability of a
triplet eosin encountering TEA is higher. However, the rate constant for the reaction between triplet
eosin and oxygen is reported to be at least two orders of magnitude higher than that between triplet
eosin and TEA,97'98 which means that these reactions occur at comparable rates and likely both
contribute to oxygen regeneration. This would be consistent with Avens & Bowman's suggestion that
additional regeneration pathways, beyond the peroxy radical hydrogen abstraction, available to eosin in
the presence of oxygen account for its ability to overcome 1000-fold excess oxygen as compared with
only 100-fold excess 2,2,6,6-Tetramethyl-1-piperidinyloxy (TEMPO) inhibitor.' 5
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Figure 3-8. Exponential decay constants (T, A(t) = Aoe-t) for ambient and argon-purged conditions as a
function of curing light intensity.
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Table 3-4. Exponential decay constants for ambient and purged conditions at different curing light intensities

Intensity Inhibition Time (seconds) T (inhibition period, T (polymerization, 1/s

(mW/cm 2) 1/s x104) x104)
Ambient Argon- Ambient Ambient Argon-

purged purged

1.5 142 +25 17.8 + 2.7 1.2 +0.5 6.6 +3.7 6.8 +1.5

3.7 42.2 + 1.2 5.6 +2.4 2.7 +0.5 12.2 +3.3 10.5 + 2.0
6 27.7 + 4.0 0 4.0 +1.0 14.6 + 0.5 19.6 +2.8

9.6 20.0 +3.5 0 7.0 +2.3 20.5 +5.0 43.9 + 17.7
Exponential Decay Constant, T, A(t) = Aoe~t

Assuming no primary termination reactions, the concentration of TEA radicals participating in initiation
reactions at the onset of polymerization is 1.5-2x higher with argon purging. The maximum rates of
polymerization (also the initial rates) are presented in Figure 3-9. The initial TEA radial concentration can
be approximated based on the following expression for the rate of polymerization: 25

RP= kP[M]( RI) 0 5 =k[M. (ki [M][TEA 0.5

Ry= p[]2kt = kpM 2kt

From this, it follows that =[ s. The lower rate of polymerization under ambient conditions
p,2 Q\TEA] 2 )

indicates that fewer TEA radicals are being formed as oxygen reacts with eosin in its singlet or triplet
excited state and/or that oxygen is reacting with TEA radicals, preventing them from reacting with
monomers and initiating polymerization. The lower polymerization rates and the lower absorbance
decay rates under ambient conditions suggest that oxygen is being replenished by diffusion even as it is
consumed and that it is regenerating eosin.
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Figure 3-9. Maximum
purged conditions.

rate of polymerization as a function of curing light intensity for ambient and argon-
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3.5 Conclusion
Dual monitoring with UV-Vis and FT-NIR allows for a more detailed understanding of polymerization
kinetics and the properties of the growing polymer network. Here, we showed how light scattering in
the visible spectrum can interfere with the absorbance signal from the photoinitiator in the
photopolymerization of hydrogels, presenting a strategy for baseline fitting that accounts for both
wavelength-dependent and wavelength-independent light scatter. In addition, we introduced three
metrics for monitoring the extent of light scatter: a wavelength-dependent baseline fitting parameter b',
the absolute absorbance at a wavelength in the visible range (430 nm), and the ratio of the absorbance
at the wavelength of the curing light to the peak absorbance of the photoinitiator. These three metrics
underwent significant transitions when the monomer conversion was between 0.3 and 0.4, implying the
existence of critical phase change. Practically, these metrics were used to establish an upper bound on
the reliability of the absorbance data. Having established a method for treating the data, we
demonstrated how the coupled technique can be effectively used to investigate oxygen inhibition and
dye regeneration. We showed that the consumption of eosin increases by a factor of 3 or more
following the inhibition period, a finding consistent with previous reports of eosin regeneration by
oxygen.
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4 Photoinitiation Kinetics: Spectroscopy and Kinetic Model

4.1 Abstract
Eosin, a photoreducible dye, has been instrumental in enabling photopolymerization-based signal
amplification reactions to be performed under ambient conditions; the mechanism through which eosin
is able to circumvent oxygen inhibition is poorly understood. As a commonly used photosensitizer, the
study of eosin's photochemistry dates back to the 1950s, and has revealed a complex network of
reactions involving various excited species and producing reactive oxygen species. Here, we use
absorbance spectroscopy to inform the development of a kinetic model, demonstrating the importance
of modeling the reaction between triplet state eosin and its tertiary amine coinitiator as a two step
process and hypothesizing the existence of additional photobleaching reactions as well as reactions
involving the semireduced form of eosin.

4.2 Introduction
In its original form, polymerization-based signal amplification required inert gas purging to overcome
oxygen inhibition. As described in earlier chapters, oxygen reacts with initiating and propagating radicals
to give peroxy radicals that are essentially unreactive towards propagation and thus have the effect of
terminating polymerization reactions.16'65 Many strategies for overcoming oxygen inhibition in radical
polymerization reactions have been investigated.' In addition to the common tactics of increasing the
initiator concentration and light intensity and purging oxygen from the system with inert gases, UV
initiators have been included along with visible-light initiators to consume oxygen and aid the

production of thick films with tack free surfaces.98 However, the majority of the UV initiators used also
served as radical traps, reducing the rate of polymerization. In an example of one such system,
Chesneau and Fouassier introduced an ct-oxo oxime ester into a solution of eosin and
methyldiethanolamine (MDEA) to mitigate the effects of oxygen inhibition.45 Strikingly, they showed
that the rate of photobleaching of eosin in a solution also containing oxime ester and MDEA was
reduced when the monomer solution was not purged.45 Avens and Bowman later published a study in
which they showed that eosin is able to overcome a 1000-fold excess of oxygen and proposed a
mechanism through which eosin is cyclically regenerated.15 In the proposed mechanism, the peroxy
radical abstracts a hydrogen from the semiquinone form of eosin produced in the reaction between the
triplet eosin and the tertiary amine. This has the effect of regenerating eosin in its ground state as
shown below.

R - 00 + EH' - R - OOH + E

In a recently published study, 00 we showed that this mechanism for eosin regeneration in the presence
of oxygen15 is insufficient for capturing the role of oxygen in the system. As hypothesized by Avens and
Bowman when they compared eosin's reduced ability to overcome a different inhibitor (2,2,6,6-
Tetramethyl-1-piperidinyloxy or TEMPO) with its ability to overcome oxygen inhibition, this suggests
that additional reaction pathways involving oxygen need to be included. Previous work has shown that
singlet oxygen generation competes with electron transfer in amine activated Rose Bengal sensitized
photochemistry.' 0 1 Oxygen quenching of Rose Bengal has been studied quantitatively, revealing singlet
oxygen as the main product with a small amount of superoxide radical anion produced as well.102-104 Like
Rose Bengal, eosin is a xanthene dye, and thus a singlet oxygen generator (the structures for both dyes
are shown in Figure 4-1). The difference in heavy atom substitution reduces eosin's singlet oxygen
quantum yield relative to Rose Bengal (0.39 vs. 0.76) as well as its triplet state quantum yield (0.28 vs.
0.75), while increasing its fluorescence quantum yield (0.63 vs. 0.08).98
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Figure 4-1. Eosin Y and Rose Bengal.

Eosin has been instrumental in enabling the performance of polymerization-based signal amplification
under ambient conditions.1021' 105 We have shown that the inclusion of a submicromolar concentration of
eosin in a monomer solution allows these reactions to proceed without inert gas purging, producing
sensitivities on par with those achieved with the original purged system.6

We are interested in developing an improved understanding of the role of oxygen in the eosin-activated
system not only to facilitate the construction of a predictive model, but also to identify characteristics of

eosin that may be shared by alternative photoinitiators. Steady-state fluorescence spectroscopy
experiments have been used previously to study initiation mechanisms of three-component

71,10,10771systems.' 6  Slower rates of fluorescence decay have been associated with dye regeneration. We
used absorbance spectroscopy to investigate the effect of oxygen on eosin/ triethanolamine (TEA)
initiation kinetics, measuring the decay in ground state eosin absorbance under irradiation and
examining the contribution of oxygen as well as each component of the monomer solution individually.

As part of our study of the initiation kinetics and the impact of oxygen, we wanted to more fully examine
the role of 1-vinyl-2-pyrrolidone (VP) in the system. Previous work has posited that VP functions as an
accelerant with a more pronounced effect for systems that are constrained by diffusion limitations. 24 VP
facilitates propagation through its high mobility and through the reactivity between N-vinyl amide and
acrylate functionalities.24 There is an optimum concentration both for accelerating the rate of

24 2polymerization and, in the context of PBA, maximizing film thickness.2 8 In addition to abstracting
hydrogen from the semiquinone form of eosin, it is possible that peroxy radicals formed through the
reaction of oxygen and propagating or initiating radicals may abstract hydrogen from VP. To test this
theory, we replaced VP with 1-ethyl-2-pyrrolidone (EP), thereby eliminating the reactivity towards
propagation while maintaining the potential susceptibility to hydrogen abstraction.

Here, we will first present the independent effects of oxygen, TEA, VP, EP, and poly (ethyleneglycol)
diacrylate (PEGDA) on the absorbance decay of eosin before showing the combined effects of these
various components. We will then summarize the reactions proposed in the literature relating to the
photoactivation of eosin and its reduction by TEA and compare the results of a kinetic model based on
the proposed reactions with the empirical observations.
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4.3 Experimental

4.3.1 Materials
Poly (ethyleneglycol) diacrylate (PEGDA), 1-vinyl-2-pyrrolidone (VP), 1-ethyl-2-pyrrolidone (EP),
triethanolamine (TEA), and Eosin Y were purchased from Sigma Aldrich. PMMA cuvettes were purchased
from Eppendorf.

4.3.2 UV-Vis Monitoring
A multi-wavelength light emitting diode box containing a green 500 nm LED (FC8-LED, Prizmatix,
Southfield, MI) was used to excite eosin to its singlet state. Irradiance or power density was controlled
with a potentiometer and measured with a radiometer (6253, International Light Technologies,
Peabody, MA) within the 400-700 nm range. In the case of the purged samples, Argon was bubbled
through the solution for 5 minutes prior to transfer to a PMMA cuvette for monitoring. These samples
were irradiated under Nitrogen flow (8 psi). A minimum of three replicates was performed at each
condition.

10 x 2 mm PMMA cuvettes (UVette, Eppendorf, Hauppauge, NY) were used inside an adaptor with
custom-made optical apertures. A 3D printed cap was placed on top of the cuvette to restrict the light
from the LED to the sample volume. The sample volume used was 50 PL, which lead to sample
dimensions of 2 mm x 10 mm x 2.5 mm, where the latter is the thickness in the direction of the
excitation light from the LED. Samples were placed inside a CUV-ALL-UV 4-Way Cuvette Holder (Ocean
Optics, Dunedin, FL) with SMA connectors for fiber integration. Fiber optic cables were connected
perpendicularly for UV-Vis analysis. The UV-Vis probing light was fed into the cuvette holder via a 600
nm solarization resistant fiber optic (QP-600-1-SR, Ocean Optics, Dunedin, FL), and a 50 micron receiving
fiber optic cable (P50-1-Vis-NIR, Ocean Optics, Dunedin, FL) was connected to the UV-Vis spectrometer.
A fiber optic coupled UV-Vis spectrometer (USB4000-FL Miniature Fiber Optic Spectrometer, Ocean
Optics, Dunedin, FL) was used to monitor absorbance within the 350-1000 nm range through a 10 mm
pathlength. The acquisition time for the UV-Vis was set to ~ 0.5 s (50 ms integration time, 10 scans to
average) with a boxcar width of 4. A water reference spectrum was collected prior to each experiment;
the lack of absorbance of a solution of 420 mM PEGDA, 35 mM VP, 210 mM TEA was verified. The
intensity of the probing light was adjusted to a threshold of ~5500.

Solutions consisting of 5 LM Eosin Y and 5 tM Eosin Y and 210 mM TEA were prepared and monitored
at 4 irradiance levels (1.5, 3.7, 6, and 9.6 mW/cm 2 ). To look at the combined effects of various
components on the absorbance of eosin, the following additional solutions were monitored at 3.7
mW/cm 2:

* 5 M Eosin Y, 35 mM VP

* 5 iM Eosin Y, 420 mM PEGDA

* 5 iM Eosin Y, 210 mM TEA, 35 mM VP

* 5 iM Eosin Y, 35 mM EP

* 5 iM Eosin Y, 210 mM TEA, 35 mM EP

An aqueous solution of 5 iM Eosin Y and 210 mM TEA was monitored with the deuterium bulb off (only
the halogen lamp emitting light) with the LED intensity set to 3.7 mW/cm 2 as well as turned off. These
experiments were performed in order to verify that the probing light was not exciting eosin and
contributing to spectra irregularities. This solution was also monitored in a diffusion experiment in
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which the solution was purged for the first 14 minutes, after which the system was opened to allow for
the diffusion of oxygen into the solution.

4.3.3 Processing of UV-Vis Spectra
For each time point, baselines were fit to 10 points at each end of the wavelength range for peaks
between 360 and 430 nm and 430 and 560 nm. For the peak between 430 and 560 nm, the baseline-
adjusted absorbance at the wavelength corresponding to the initial maximum peak height was
monitored as a function of time. Between 360 and 430 nm, the peak at 410 nm was monitored.

4.3.4 Model Development
A system of ordinary differential equations was solved using odel5s.m in Matlab. The reactions and rate
constants obtained from the literature are summarized in Table 4-1 at the end of the chapter.

4.4 Results and Discussion

4.4.1 Absorbance Spectroscopy
The absorbance spectrum between 380 nm and 600 nm was measured as a function of time under
constant irradiation. The effect of each component on the absorbance decay of the ground state of
eosin (517 nm) was assessed. A shown in Figure 4-2 and Figure 4-3, EP, VP, and PEGDA have an
imperceptible effect. As evident in Figure 4-2 and Figure 4-3, there was more variability across the
replicates in the purged experiments. This was likely a consequence of variations in the extent of oxygen
uptake during the process of transferring the purged solution to the cuvette for spectroscopic
monitoring.
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Figure 4-2. Effect of PEGDA (right) on the absorbance decay of eosin (517 nm) irradiated with 500 nm light
(3.7 mW/cm2) under argon purging (top row) and under ambient conditions (bottom row). The absorbance
has been normalized by the initial absorbance. Each plot shows several replicate measurements.
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Figure 4-3. Effect of EP (center) and VP (right) on the absorbance decay of eosin (517 nm) irradiated with 500
nm light (3.7 mWlcm 2) under argon purging (top row) and under ambient conditions (bottom row). The
absorbance has been normalized by the initial absorbance. Each plot shows several replicate measurements.

As shown in Figure 4-4, the rate of decay of eosin absorbance at 517 nm increases with increasing curing

light intensity; this could be a consequence of an increase in the rate of triplet-triplet annihilation

reactions relative to first-order deactivation reactions.03 The effect of light intensity is more

pronounced under ambient conditions (bottom row) than for purged solutions (top row). In fact, at the

maximum light intensity used (9.6 mW/cm 2 ), the profile for ambient conditions closely resembles that

for purged conditions. At the lowest light intensity (1.5 mW/cm 2 ), the effect of oxygen on the rate of

decay is more apparent; the rate is significantly reduced under ambient conditions. This could be a

result of eosin regeneration through the reaction between the eosin triplet state and oxygen that also

produces singlet oxygen.
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Figure 4-4. Effect of light intensity (increasing left to right) on the absorbance decay of eosin (517 nm)
irradiated with 500 nm light under argon purging (top row) and under ambient conditions (bottom row). The
absorbance has been normalized by the initial absorbance. Each plot shows several replicate measurements.
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Having ascertained the extent of photobleaching for eosin in response to irradiation with 500 nm light at

increasing intensity, a reducing agent, TEA, was introduced. It should be noted that the addition of TEA

increases the pH from 7 to 9. Although xanthene dyes are known to undergo color changes in response

to changes in pH,'08 it has been established that eosin is present only in its dianionic form at pH values

greater than 6.109 The addition of TEA also did not shift the maximum absorbance peak as would be

expected if the pH were causing the dianionic eosin to assume a different form. The amine reduces the

triplet state of eosin to give an amine radical cation and the semireduced form of eosin. The amine

radical cation can either transfer a proton to the semireduced eosin to give the semiquinone and an a-

aminoalkyl radical or back electron transfer can occur. As shown in Figure 4-5, the rate of decay of the

absorbance at 517 nm increases substantially as the amine reacts with eosin. At the higher light

intensities, the eosin is nearly completely consumed. It is evident that oxygen reduces the rate of decay

significantly. Similar to a previous report with eosin, methyldiethanolamine, and a UV initiator (a-oxo

oxime ester),45 the absorbance decay of eosin with the amine is slower in nonpurged solutions. This

suggests that eosin is being regenerated in the presence of oxygen.
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Figure 4-5. Effect of light intensity (increasing left to right) on the absorbance decay of eosin (517 nm)
irradiated with 500 nm light in the presence of TEA under argon purging (top row) and under ambient

conditions (bottom row). The absorbance has been normalized by the initial absorbance. Each plot shows
several replicate measurements.

Each absorbance decay curve consists of two regimes; slow decay followed by more rapid decay. It is

possible that oxygen is consumed during the first regime allowing for the much more rapid

photobleaching of the second regime. For the argon-purged samples, this would mean that the

appearance of the first regime is an indication that there is some residual oxygen present in the solution.

In addition to the peak for the ground state eosin at 517 nm, with the addition of the amine, a small

peak at 410 nm was evident. This peak corresponds to the semireduced form of eosin,110 which is the

intermediate formed following electron transfer from the amine. Figure 4-6 shows the absorbance at

410 nm for the samples shown in Figure 4-5. Here, we see that more of the semireduced species is

produced and more rapidly at higher light intensities. The absorbance of the semireduced species

increases as the ground state absorbance decreases. The semireduced species is also consumed more

rapidly at higher light intensities. As demonstrated in Figure 4-5, this is likely a result of the consumption

of the ground state eosin, from which the semireduced species is derived. The absorbance from the

semireduced species is significantly reduced in the presence of oxygen. It appears that oxygen either
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rapidly consumes the semireduced species or prevents its formation. Even in the cases in which the

ground state eosin absorbance decay is more rapid under ambient conditions, less of the semireduced

species is observed in the presence of oxygen (compare 6 mW/cm 2 with 1.5 mW/cm 2 with argon

purging). This suggests that the semireduced absorbance is not solely dependent on the amount of

ground state eosin that has been reacted, but that there is also a separate effect of oxygen. In 1962,

Oster et al. reported a reduced lifetime for an intermediate species (possibly the semireduced eosin) in

the presence of oxygen."' It has been proposed that the semireduced species will react with oxygen,

regenerating eosin and producing superoxide in the process. 2 The rate at which the eosin absorbance

decays is likely significant; faster rates result in a faster rate of formation of the semireduced species,

which could mean that the semireduced species is generated at a faster rate than it is consumed.
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Figure 4-6. Appearance of peak at 410 nm for solutions of eosin and TEA irradiated with 500 nm light at
increasing light intensities (left to right) under argon purging (top row) and under ambient conditions (bottom
row). Each plot shows several replicate measurements.

It should be noted that in the presence of amine, the absorbance peak underwent a hypsochromic shift

with in some cases, shifts from 517 nm to 493 nm (the absorbance maximum of fluorescein). This is

shown in Figure 4-7 for a solution of eosin and TEA that was irradiated under nitrogen purging for 14

minutes (840 seconds), after which the system was opened to the atmosphere, allowing for the

diffusion of oxygen into the solution. The absorbance spectra are shown for 6 different time points; for

the first 4 time points shown, the absorbance maximum shifts to shorter wavelengths and the

absorbance decreases as the eosin is consumed. Once the system is open to the atmosphere, the

absorbance increases at the shifted maximum. Such shifts have previously been attributed to eosin

debromination, which is a result of the photochemical decomposition of semireduced eosin. 111 , 1 3-
5

Kimura et al. reported that debromination requires the photoexcitation of the semireduced species,115

which could potentially occur as a result of excitation by the UV-Vis probing light. Loss of its bromine

atoms would decrease the triplet state quantum yield of eosin and, consequently, its photoinitiation

efficiency.98 Hypsochromic shifts have also been associated with dimerization;11 6 however, the

absorbance maximum of the eosin dimer occurs at 480 nm.
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Figure 4-7. Hypsochromic shift and regeneration upon introduction of oxygen for a solution of eosin and TEA
irradiated with 3.7 mWlcm2 500 nm light.

The results of three replicate experiments in which solutions of eosin and TEA were irradiated under

nitrogen purging for 840 seconds, after which the system was opened to the atmosphere are shown in

Figure 4-8. The normalized absorbance of the eosin ground state is shown in Figure 4-8A. Reintroducing

oxygen at 840 seconds results in an increase in the absorbance at 517 nm at ~900 seconds, indicating

that some of the ground state is regenerated. Figure 4-8B shows the normalized absorbance at 500 nm.

The hyposochromic shift results in a 20% increase in absorbance relative to the initial absorbance when

the reaction was stopped at 1200 seconds. The shift in the maximum absorbance is shown in Figure

4-8D, where it is apparent that under purging, the peak steadily shifts to shorter wavelengths, and stops

upon the reintroduction of oxygen. The effect of introducing oxygen on the semireduced species is

shown in Figure 4-8C. As the absorbance increases at 500 nm and 517 nm, the absorbance at 410 nm

decreases. This could indicate that oxygen reacts with the semireduced species and effectively competes

with the debromination reaction, for which the semireduced species is also the precursor. Alternatively,

the disappearance of the semireduced species once oxygen is reintroduced could indicate that the

semireduced species is not formed if the triplet state eosin preferentially reacts with oxygen rather than

TEA. Hypsochromic shifts were observed for purged solutions of eosin and TEA for each irradiation

condition, but only at higher light intensities (6 and 9.6 mW/cm 2 ) for solutions irradiated under ambient

conditions. This is consistent with the debromination reaction occurring as a result of the photochemical

decomposition of the semireduced species, which was only observed at higher light intensities under

ambient conditions.
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Figure 4-8. Regeneration by oxygen. Solutions of eosin and TEA were irradiated with 3.7 mW/cm 2 500 nm
light under nitrogen purging for 840 seconds, after which the system was opened to the atmosphere to allow
for the diffusion of oxygen into the solutions. A) The absorbance at 517 nm normalized by the initial
absorbance for three replicate measurements. B) The absorbance at 500 nm normalized by the initial
absorbance for three replicate measurements. C) The absorbance at 410 nm for three replicate
measurements. D) The hypsochromic shift of the maximum absorbance wavelength.

The absorbance at 517 nm and 410 nm for eosin and TEA solutions to which EP or VP have been added

are shown in Figure 4-9 and Figure 4-10, respectively. EP, which lacks a carbon-carbon double bond and

hence should be unreactive towards propagation, appears to accelerate the absorbance decay of eosin

slightly under both purged and ambient conditions. The increased decay under ambient conditions

would be consistent with the hypothesized peroxy radical hydrogen abstraction from EP. If peroxy

radicals abstract hydrogens from both the semiquinone form of eosin and EP, less eosin will be

regenerated when EP is added to the solution, as appears to be the case. The increase in the

semireduced species with the addition of EP under ambient conditions suggests that EP may also react
directly with one of the species competing for reaction with the semireduced species (namely oxygen

and the triethanolamine radical cation), and thereby inhibit the ability of that species to react with the
semireduced eosin. If EP reacts with the triethanolamine radical cation, the peroxy radical concentration
would decrease, which could also result in less regeneration of eosin.

VP accelerates the absorbance decay of eosin in a much more marked fashion, increasing the

percentage of eosin that is consumed from -15% to more than 40% under ambient conditions after 900
seconds. Under purged conditions, nearly all of the eosin is consumed in under 200 seconds in

comparison with between 50% and 80% after 900 seconds without VP (Figure 4-9). Whereas in the

absence of VP, an accelerated rate of disappearance of eosin appears to correlate with an accelerated
rate of appearance of the semireduced species, when VP is added to the solution, the semireduced

species is not observed. This suggests that, like oxygen, VP either reacts with semireduced eosin and

that eosin is not regenerated in the process or that VP reacts with a precursor to semireduced eosin.
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Figure 4-9. Effect of EP (center) and VP (right) on the absorbance decay of eosin (517 nm) irradiated with 500
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4.4.2 Model discussion and results
Flash photolysis experiments to investigate the photochemical reactions of eosin date back to the 1950s.

The primary reactions involving eosin, tertiary amines, and oxygen identified over the course of the last

several decades are summarized in Table 4-1 at the end of this section. The table is formatted so that

reactions involving only eosin species are listed first, followed by reactions involving eosin and oxygen,
eosin and TEA, and, finally, eosin, TEA, and oxygen. Reported rate constants, half-lives, and the

corresponding references are also listed.

Upon the absorption of photons, eosin is excited to its singlet state according to the following rate
expression:

EIO[E]

E'
where E is the absorptivity of eosin at the wavelength of irradiation, lo is the light intensity, [E] is the

concentration of eosin in its ground state, and E' is the photon energy at the wavelength of irradiation.

The values used in the model for these parameters as well as the initial concentrations of the reactants

are summarized in Table 4-2. As shown in Table 4-1, once in its singlet state, the excited eosin molecule

can either return to the ground state or undergo intersystem crossing to its triplet state. In the triplet
state, eosin can participate in quenching reactions with the ground state and the triplet state and form

semireduced and semioxidized eosin. The triplet eosin reaction with ground state eosin (reaction 8) was

proposed in 1956 when it was shown that the overall quantum yield decreased with increasing eosin

concentration.119 Only the reactions in black were included in the model; the reactions in gray are

included to give a complete picture of the reactions that have been proposed in the literature. Reactions
4, 5, 6, 10, and 11 were excluded because the concentrations of the participating species were so low

that the contributions from these reactions were imperceptible. Reaction 13 was originally proposed on

the basis of Lindqvist's early work studying fluorescein;12 0 however, Lindqvist did not include this

reaction in his later study of the transient species of eosin' 10 and we have found no other reports of

dimer formation, so this reaction was excluded. As the semireduced and semixoxidized species do not

decay by first order kinetics, 1 decay of these species to ground state eosin was not included in the

model, although approximate half-lives for these species are included in the table (14, 15 in Table

4-1).121

Reactions 20 and 21 were not included in the model as there is little evidence for these reactions in the
97,122

literature and they have been proposed by few sources. Reaction 22 was excluded as the eosin

species quenching the singlet oxygen was not identified and the reactions were conducted under

illumination.1,14 Second-order self-dismutation of superoxide has been found to be negligible,125 and

thus was not included. Reaction 26 was excluded as the excited singlet state of eosin is extremely short

lived and, therefore, this reaction makes no perceptible contribution. Finally, reactions 30 and 32 were

not included in the model as hydrogen abstraction from the semiquinone form of eosin by oxygen

(reaction 30) is expected to occur at a much slower rate than the peroxy radical hydrogen abstraction

and without this reaction generating hydroperoxyl radicals, reaction 32 cannot occur.
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Figure 4-11. Simulation of the effect of light intensity (increasing left to right) on the consumption of eosin
irradiated with 500 nm light (top row). The effect of adding oxygen is shown in the bottom row. The eosin
concentration is normalized by the initial concentration (5 pM).

The model's predictions for the consumption of eosin in a solution being irradiated with increasing light

intensity and with the addition of oxygen are presented in Figure 4-11. As observed experimentally, the

eosin concentration decreases more rapidly as the light intensity is increased. In the model, this is a

consequence of the increased concentration of semireduced eosin, which reacts with itself to give the

leuco form of eosin (reaction 12). The rate constant for reaction 12 is an upper estimate based on a

calculation of the encounter rate of two semireduced eosin molecules. 0 This reaction presents the only

route for irreversible photobleaching of eosin to the leuco form. The discrepancy between the model's

predictions for eosin consumption in the presence of oxygen with the experimental absorbance profiles

suggests the existence of additional photobleaching reactions or reactions involving semioxidized eosin.

The model does not predict the reduced consumption of eosin in the presence of oxygen observed
experimentally, which is a consequence of oxygen reacting with semireduced eosin (reaction 19) and

thereby preventing the semireduced eosin from reacting with the semioxidized eosin to produce two
eosin molecules in the ground state (reaction 9). This results in an accumulation of the semioxidized
species and less regeneration of the ground state. The existence of other photobleaching reactions is

implied by the model's prediction of less than 10% consumption of eosin at the highest light intensity as

compared with a 25% decrease in the absorbance (Figure 4-4) even with the rate constant for reaction

12 set at the encounter rate. It has been shown that the photobleaching of eosin is related to the

accumulation of the triplet state;1 26 this possibly suggests that additional photobleaching reactions

should involve the triple state eosin.
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Figure 4-12. Simulation of the effect of light intensity (increasing left to right) on the consumption of eosin
irradiated with 500 nm light with TEA (top row). The effect of adding oxygen is shown in the bottom row. The
eosin concentration is normalized by the initial concentration (5 pM).

The normalized eosin concentration profiles when TEA is added for increasing light intensity and with
oxygen are shown in Figure 4-12. The rate constant for reaction 25 was determined from literature
values reported for triplet state quenching by the amine where the decay of the triplet state was
monitored.1 27- 129 Rather than simplifying the eosin/TEA reaction to directly give the semiquinone and
TEA radical, reactions 28 and 29 were included in order to capture the appearance of the semireduced
species seen experimentally. Comparing the model predictions with the absorbance profiles in Figure
4-5, it is first apparent that the model overpredicts the consumption of eosin as well as the rate of
consumption. The time scales on the plots in Figure 4-12 have been adjusted to show the effect of light
intensity. The absorbance profiles all consisted of an initial plateau region followed by a more dramatic
decline in absorbance. This plateau region was likely due to residual oxygen, which would account for its
absence in the model results when the initial oxygen concentration is set to 0. For the simulations in
which oxygen is included, the model underestimates the duration of the plateau region by
approximately 50-70%. At 1.5 mW/cm 2, the model predicts ~300 seconds as compared with the
experimentally observed 900 seconds or more. At 9.6 mW/cm 2, the model predicts ~60 seconds relative
to ~100 seconds obtained experimentally. For every condition simulated, the model predicts complete
consumption of eosin. This is at odds with the experimental observations, where complete consumption
was only achieved at the highest light intensity. The accelerated consumption predicted by the model
could be a result of an overestimate of the activation rate Ro.
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Figure 4-13. Simulation of the concentration of semireduced eosin in a solution of eosin and TEA irradiated
with 500 nm light at the indicated light intensities. The effect of adding oxygen is shown in the bottom row.

The model's predictions for the semireduced species are shown in Figure 4-13. In order to capture the

experimentally observed trends, the uncertain rate constants (reactions 28, 29, 33, 34) had to be

adjusted to fall within certain ranges. The targeted experimental trends include the reduction in the

semireduced eosin concentration in the presence of oxygen, the increase in the semireduced eosin

concentration with increasing light intensity, and, for the cases in which oxygen is present, the

appearance of the semireduced species once the oxygen is sufficiently depleted. In addition, the model

was designed to capture the relative concentrations of semireduced eosin at the various conditions

simulated; for example, Figure 4-6 shows that the semireduced eosin absorbance for a solution

irradiated with 6 mW/cm 2 light under ambient conditions approached the absorbance measured for a

solution irradiated with 1.5 mW/cm 2 under purged conditions. The extinction coefficient for the

semireduced species has been reported as 40,000 M-cm." Using this value and assuming that Beer's

Law applies, the maximum concentration of the semireduced species varies between 0.25 p.M (1.25
mW/cm 2) and 1.5 p.M (9.6 mW/cm 2).

The accumulation of a detectable amount of the semireduced species when TEA is present in the

solution and its disappearance under ambient conditions imply a competition between several

reactions. The amine reduces the triplet state of eosin to give an amine radical cation and the

semireduced form of eosin. The semireduced species can then react with the amine radical cation to

give the semiquinone and an a-aminoalkyl radical (reaction 28) or it can transfer the electron back to

the amine radical cation (reaction 29). The reduction of the semireduced species in the presence of

oxygen suggests that oxygen also reacts with the semireduced eosin (reaction 19) and that this reaction

occurs at a faster rate than either of the reactions with the amine radical cation. Alternatively, as

previously noted, the reduction in the semireduced eosin concentration in the presence of oxygen could

suggest that oxygen prevents the formation of the semireduced species by reacting with its precursors.

We tested the first alternative.

In order to capture the concentration trends, it was critical that the reaction between the semireduced

eosin and oxygen (reaction 19) be favored over the reactions between the semireduced eosin and the

TEA radical cation (reactions 28 and 29). The rate constant for reaction 19 has previously been

estimated to fall within the range 107-109 M cm1.n2 Here, the value was set to 108 Mcm- as increasing

the rate constant to 109 M 1cm' decreased the maximum concentration of semireduced eosin at 9.6
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mW/cm 2 relative to 6 mW/cm 2. The rate constants for reactions 28 and 29 were set to 104 M 1cm-1.
Increasing either of these rate constants by an order of magnitude decreases the maximum
concentration of semireduced eosin by a factor of 4 or more when oxygen is included with less than 6%
decrease when oxygen is not included. This suggests that the rate constant for reaction 19 must be
several orders of magnitude higher than those for reactions 28 and 29 in order for the reaction between
the semireduced eosin and oxygen to occur preferentially and produce the experimentally observed
trend.

The final two reactions in the model are the reaction between the peroxy radical and the semiquinone
form of eosin to regenerate ground state eosin (reaction 33) and an additional reaction in which the
peroxy radical abstracts a hydrogen from TEA (reaction 34). The rate constant for reaction 34 was set to
104 M's4 in line with the slow oxidation rates reported for tertiary amines,13 0 while the rate constant for
reaction 33 was set at the diffusion limit.100 Increasing the rate constant for reaction 34 accelerated the
rate of oxygen consumption, reducing the duration of the initial plateau period. This is due to the fact
that the TEA concentration is several orders of magnitude higher than the semiquinone concentration.
In order to see any eosin regeneration, it follows, therefore, that the rate of reaction 34 must be smaller
that the rate of reaction 33. Otherwise, the oxygen would be completely consumed without any eosin
regeneration and the large excess of TEA would entirely prevent any oxygen inhibition. The sensitivity of
photopolymerization-based signal amplification reactions to small changes in eosin concentration
indicates that this is not the case.10 Reducing the rate constant for reaction 33 from 109 to 10' M'cm'
had the effect of reducing the duration of the initial plateau period slightly; the effect was not as
pronounced as for the case in which the rate constant of reaction 34 was increased. Both increasing the

rate constant for reaction 34 and decreasing the rate constant for reaction 33 led to a slight increase in

the semireduced species. Completely eliminating reaction 34 extended the plateau period by ~30%,
while the semireduced eosin concentration was unaffected. Thus, in order to achieve the longer periods

of slow eosin consumption and capture the trends in the concentration of the semireduced species

observed experimentally, it is important to minimize the reaction 34 rate constant relative to the
reaction 33 rate constant.

Table 4-1. Reaction summary

Reaction Range Rate constant References

1. E1* -> E 1x108 s-1 1.3x108 s1 (water) 13

_5 1.05 x108 s (water) 131

2. El* E* 8 x 10' s- 5.8x107 s- (water) 13

(8.4+0.8) x 108 s1 (water) 131

3. E 3* -+E 540s1 6x103 s-

420s51 113

540s- 110

550 s' (pH 8), 540 s (pH 133

11)
10 9 M-sj 1.2x10' M s- (pH 8),

9.8x10' M s (pH 11)
1.ix1i 9 M IsI

1.2x1 sM s 1.2x1.0' M s' (pH 8), -33
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1.3x10 VI s (pH 11)

ix1c8 M~s "LI I-0

<3x10 M s
1x1G M1 .9x10& M's

2k=2.4x10 M s

3 + E- + + 7 x107 M-s- 0.7x10 M s

7.3x10 7 M 1 s (pH 8), 133

7.1x107 M 1s 1 (pH 11)

8.E3 * + E 2E 3x108 Mus1 3x10" M1s1 110
3.3x108 M s' (pH 8), 133

7.9x108 M's1 (pH 11)

9. E- + E - 2E 8x10 M s 0.75x103 M1s1 (ethanol) 135

8x10 M s1 (pH 8.5) 120

V C ' k+k=1xi0 [V is (Fiuorescein)

1 6 + F

2.lxlO M sl 2.lxlO M s' (pH 8.5) 120 (encounter rate)
12. E + E - E + EH2  1x107M's' 137 (fluorescein)

3x+0 M"1x 10 m i (P identified as
possibly dimer)

1. E1 1980s 19805s (t =0 35 ms,
k I n i2)/ti

15. E 1155 s 1155s (t=0.6 m S,
k 1n(2)/t )

16. E3* + 02( 3Z) 1x109 Mus1 Wx' M1s1 (pH 8), 1.8x109 133

M's' (pH 11)
-*E + 02( 1A9 7x108 M1s1 99

(1.3-2.1) x 109 Ms4  112 aqueous, attributing
all of triplet/oxygen
reaction to singlet
oxygen

17. E 3* + 02( 3Eg) 109 Ms 5 <108 M1s

1.1x109 M1s-1 138139140

-> E + 021ll
2 1.56x10 9 M s1 136(Fluorescein)

1.6x106 M1s4 (water) 113

18. E 3* + 02( 3Eg) 104 M s- 6x106 M s(pH 6-8), < 107 138 139

->E+ + 02 < 107 Ms-1 99

9.1x103 M's' (water) 11386

19. E+ 02 -E+0. 108 M 1s4  10 7-109 M1s-1 112 (uncertain)

8x10 Ms (70% 9(P. unidentified)
o. 

E__+ o>, I_acetonitrile)
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21. + F + Hypothesi.7ed for

fluorescein 22

22. E + ( E0 M (methanol or

acetonitri e)
01( "E (50%

acetonitrile/water)
1 3y) 2.4x10 5 s-1 4.4x105 s1 (water) 142

5.2x104 s (DMSO) 143

3.3x104 s- (acetonitrile) 143

2.x1 5S-1 141
2.4x105 s "

24. 02( 'Ag ) + 02 109 Mas' 1.6x109 Mls'l (DMSO) 143

(3.6+0.1) 10' Mls" 14
2 ( 2 (7+6) x 10 9 Ms-' 143

(acetonitrile)

127
25.E3 * +TEA E + 4 x 107 7.3x107 M 1s' (water) 12

TEA+ 4.2x107 M~1s 1 (water, pH
9.5)
1.8x108 M's~1 (water, pH 129

9.5)
6x10 5 M 1s 1 (eythl 98

acetate/20% methanol)
26. ., + TEA 10 MS 3.4x109 M Is" (water, pH

9.5)
2.1x10 M's I (water, pH
9.5)

27. EH' + EH" 104 M's' 1.1x104Ms-1 147 (Fluorescein)

-+ EH2 + E 107145146

28. E- + TEA- EH + 104 M-s- 45

TE A'

29. E' + TEA-+ E + TEA 104 M 1 s 1

3 0. EL + -+ 1100 Proposed by 104

31. TEA -+02 -+TEA - 00* 5 x 109 M1s 4.9x109M's 1  149 (tertiary amine in
benzene or
cyclohexane)

32. 106 M s 7.6x10 M Is

102 110+ 2x10 M"s

-> 2 ( "E4 ) + 112O

33. 109 M~ 1s-

TEA - 00'+ EH' - TEA -
OOH + E4515
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34. 104 M's 1

TEA - 00'+ TEA - TEA -
OOH + TEA'

Table 4-2. Physical properties and model parameters

Parameter Value
E, Absorptivity of eosin in water at 500 nm 3.78 x107 M 1cm~
l, light intensity 1.5-9.6 mW/cm 2

E', photon energy at 500 nm 2.39 x108 mW s mol-

[E]o, initial concentration of eosin 5 x 10-6 M
[TEA]O, initial concentration of TEA 2.10 x 101 M
[02]o, initial concentration of oxygen 5 x 10-4 M

4.5 Conclusion
The effect of oxygen on the photoinitiation kinetics of a two-component system (eosin and
triethanolamine) was investigated spectroscopically and through the construction of a kinetic model
based on reactions reported in the literature. The spectroscopic investigation showed that oxygen has a
regenerative effect on eosin and suggested that semireduced eosin reacts directly with oxygen and 1-
vinyl-2-pyrrolidone in addition to the triethanolamine radical cation. These observations were crucial in
the development of the kinetic model. Although the model imperfectly captures the photobleaching of
eosin in response to irradiation, it has revealed some of the shortcomings of previous approaches to
modeling the photoinitiation kinetics of this system. The discrepancies between the experimentally
measured photobleaching of eosin and that predicted by the model suggest that additional pathways for
irreversible photobleaching are missing. In addition, the effect of oxygen on the semireduced eosin
reveals the importance of modeling the reaction between triplet state eosin and triethanolamine as two
separate steps (electron transfer followed by proton transfer).
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5 Impact of dissociation constant on the detection sensitivity of
polymerization-based signal amplification reactions

Some of the work, text, and figures presented in this chapter are reprinted or adapted from Kaastrup,
K.; Chan, L.; Sikes, H.D. Impact of dissociation constant on the detection sensitivity of polymerization-
based signal amplification reactions. Analytical Chemistry, 2013, 85, 8055-8060.

5.1 Abstract
Many studies have demonstrated the concept of using free-radical polymerization reactions to provide
signal amplification so that molecular recognition events indicative of disease states may be detected in
a simple and low-cost manner. We provide the first systematic study of how dissociation constant
impacts detection sensitivity in these assays, having chosen a range of dissociation constants
(nanomolar to picomolar) that is typical of those encountered in molecular diagnostic applications that
detect protein-protein binding events. In addition, we use experimental results to validate a mass-
action kinetic model that may be used to predict assay performance as an alternative or supplement to
the empirical approach to developing new polymerization-based amplification assays that has
characterized the field to date.

5.2 Introduction
Polymerization-based amplification has been established as a sensitive signal amplification technique for
use in molecular diagnostics. 5-1O,13,17-20,22,28,39,40,42,44,47,48,153-155 Amplification is achieved through the
initiation of radical polymerization coupled to molecular recognition at a surface. Initiating molecules
immobilized at a surface generate radical species that react with carbon-carbon double bonds of
acrylate monomers, a process that results in polymer formation. Various chemistries have been
implemented, including atom transfer radical polymerization (ATRP), 4 2 ,4 7,48,5 2,

5 3 photopolymerizations-
10,13,17,19,20,22,28J153 I- AAIrAIrreversible addition-fragmentation chain transfer polymerization (RAFT),44' 4" and
enzyme-mediated redox polymerization.39 4 0 Of these methods, photopolymerization has shown promise
as a point-of-care technology as it allows for the formation of micron scale hydrogels in as little as thirty-
five seconds under ambient conditions.'0

Photopolymerization-based amplification requires the localization of photoinitiators at a surface
through binding events (typically DNA hybridization or protein binding). Much of the previous work
studying photopolymerization-based amplification has explored the case in which signal amplification,
rather than the thermodynamics or kinetics of the binding event, is limiting.s1020 28 39 ,40 ,1 3 These studies
have made use of the high-affinity biotin-avidin interaction (dissociation constant~10-15 M)' 56 as a model
recognition event that is particularly well suited to studying the effects of varying different aspects of
the chemistry, such as monomer composition or initiator type. However, in order to implement this
technology for clinical diagnostics, it is necessary to employ biological recognition events for which
dissociation constants (Kd) are typically in the nanomolar to picomolar range (e.g. antibody-antigen
complex formation). 57

Although there are several examples of polymerization-based amplification studies involving antibody-
8,13,18-20,39,40,48,52antigen complex formation, a systematic investigation of the effect of varying the

dissociation constant on assay sensitivity has never been performed. In the absence of signal
amplification, it is expected that increasing the binding affinity should enhance the sensitivity of an
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assay. However, the coupling of a binding event with an amplification reaction introduces additional
complexities. For amplification processes, there are generally three distinct signal regimes. The first
regime, near the limit of detection, is set by the amplification threshold. In the case of
photopolymerization, this threshold corresponds to the minimum initiator density required to induce
polymerization. For enzyme-linked immunosorbent assay (ELISA), the threshold is set by the minimum
amount of enzyme necessary for sufficient substrate conversion for a detectable readout, and for
immuno-PCR, the threshold is the minimum DNA concentration required for PCR. The second signal
regime is characterized by dynamic change in the signal in response to initiator, enzyme, or DNA
concentration changes, and in the final regime, above a certain initiator, enzyme, or DNA surface
concentration, amplification based assays tend to exhibit signal plateaus.2 8 1 s8 In this final regime, there
may be no apparent difference between binding molecules with different dissociation constants
depending on the concentration used and whether that concentration results in a fraction bound that is
within the plateau region. For the purposes of bioassay development, quantitatively establishing how
these signal regimes relate to Kd values is useful, particularly in the nanomolar to picomolar range.

Binding affinity studies of ELISAs have predominantly shown that assay sensitivity improves as the
dissociation constant for the interaction decreases.159'60 However, in a study by Glass et al. in which the
least detectable concentration (LDC) was measured for four antibodies for estradiol with different
affinities (Kd=0.00 6 to 1.4 nM as measured by kinetic exclusion), the authors measured the same LDC for
the two highest affinity binders.160 In the absence of experimental details such as the length of the
incubation periods (data collection was contracted out to the biosensor manufacturer), it is difficult to
speculate as to why the LDC did not change when the Kd was reduced from 0.039 to 0.006 nM.

In this study, we investigate the impact of varying binding affinity on the sensitivity of
photopolymerization-based amplification using three fibronectin clones that have been engineered to
bind to the epidermal growth factor receptor (EGFR) ectodomain with different affinities (Kd=250 pM-30
nM). 161 The proteins are engineered such that mutations of a small subset of amino acids alter binding
affinity without dramatically changing other properties of the protein; this allows for an evaluation based
on binding affinity without the introduction of additional variables. Keeping other parameters constant,
the concentration of each of the clones was reduced until polymerization was no longer observed. We
then tested the applicability of a mass-action kinetic model of protein binding for predicting the minimum
surface initiator density required for polymerization.

5.3 Experimental

5.3.1 Materials
Poly(ethylene glycol) diacrylate (PEGDA) (Mn=575), triethanolamine (TEA), 1-vinyl-2-pyrrolidinone (VP),
eosin Y disodium salt, sodium (meta) periodate, HABA, 10x phosphate buffered saline (PBS), 4'-
hydroxyazobenzene-2-carboxylic acid (HABA), Triton* X-100, and Tween* 20 were purchased from
Sigma Aldrich and used without further purification. Eosin 5-isothiocyanate was obtained from Marker
Gene Technology. Streptavidin was purchased from Rockland Immunochemicals Inc. 10x bovine serum
albumin blocker solution, EZ-Link NHS-LC biotin, and a BCA Protein Assay Kit with bovine serum albumin
standards were purchased from Pierce/Thermo Scientific. 100x Denhardt's solution and Coomassie
Brilliant Blue were obtained from Bioexpress. Glass slides (75x25x1 mm) were purchased from VWR.
Seakem LE Agarose was purchased from Lonza. Imidazole (99%) was obtained from Alfa Aesar and
cOmplete Mini Protease Inhibitor Cocktail was purchased from Roche. Rosetta m host strains were
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purchased from Novagen. Sodium chloride, sodium phosphate monobasic, and sodium phosphate
dibasic were purchased from Mallinckrodt Chemicals. Bacto agar and Difco LB broth were purchased
from Becton, Dickinson, and Company. Chloramphenicol and kanamycin sulphate were obtained from
Calbiochem. Isopropyl P-D-1 thiogalactopyranoside (IPTG) was purchased from Omega Bio-Tek.
HisTrap TM FF crude 1 mL columns were purchased from GE Healthcare. Silicone isolators (9 mm
diameter, 1 mm well depth) were obtained from Electron Microscopy Sciences. Cy3 NHS ester was

TM
purchased from Lumiprobe. UltraCruZ Micro G-25 Spin Columns were purchased from Santa Cruz
Biotechnology, Inc. 4-15% Mini-PROTEAN® TGXTM Precast Gels were purchased from Bio-Rad
Laboratories, Inc.

5.3.2 Protein expression and biotinylation
Plasmids (pEThK-Fn3 clones B, D, and E)161 were obtained from the K.D. Wittrup Lab. To express each
clone, plasmids were transformed into Rosetta (DE3) E. coli, which were then grown on LB agar plates
(with 30 mg/mL kanamycin and 25 mg/mL chloramphenicol) at 370C. Starter cultures were prepared by
transferring single colonies to 5 mL of LB media (with 30 mg/L kanamycin and 25 mg/mL
chloramphenicol). These cultures were grown at 370C at 250 rpm for "16 hours and then added to 100
mL of LB media (with 30 mg/L kanamycin and 25 mg/mL chloramphenicol) in a 250 mL flask to be grown
at 370C and 250 rpm. Once the absorbance at 600 nm had reached ~1, expression was induced by
adding IPTG to a final concentration of 0.5 mM. The cells were then incubated for a further 24 hours at
370C and 250 rpm. At this point, the cells were pelleted at 15,000xg for 15 minutes (4"C). The
supernatant was decanted and the cells were resuspended in 25 mL wash buffer (300 mM NaCl, 50 mM
sodium phosphate, 10 mM imidazole, pH 7.4). A cOmplete Mini protease inhibitor cocktail tablet was
added to the cell suspension. The sample tube containing the cell mixture was placed in a container
packed with ice and sonicated 3 times for 60 seconds each (Branson sonifier 250, output control set to
5, 50% duty cycle). The sample was centrifuged at 15,000xg for 15 minutes (4"C) and the supernatant
was filter sterilized with a 0.2 pm filter in preparation for metal affinity purification. The proteins were
purified using an AKTAFPLC and HisTrap FF Crude columns. The elution buffer consisted of 300 mM

NaCl, 50 mM sodium phosphate, 300 mM imidazole (pH 7.6). The results are summarized in Figure 5-1.
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Figure 5-1. Fibronectin clone purifications. (A) Chromatogram for metal affinity purification of clone B
showing the absorbance at 280 nm and the introduction of elution buffer. The fractions eluted (in red) were
pooled and the amount of protein was quantified using a BCA assay. (B) Chromatogram for metal affinity
purification of clone D showing the absorbance at 280 nm and the introduction of elution buffer. The
fractions eluted (in red) were pooled and the amount of protein was quantified using a BCA assay. (C)
Chromatogram for metal affinity purification of clone E showing the absorbance at 280 nm and the
introduction of elution buffer. The fractions eluted (in red) were pooled and the amount of protein was
quantified using a BCA assay. (D) SDS-PAGE gel. Based on total protein quantification (BCA assay), 1.5 pg of

each of the protein purifications was loaded onto an SDS-PAGE gel, which was then run for 30 minutes at
150 V.

Following purification, the proteins were biotinylated with the EZ-Link NHS-LC-Biotin and subsequently

purified using UltraCruzTM Micro G-25 Spin Columns. Total protein was quantified using a BCA assay with

BSA standards.

5.3.3 HABA assay for determining relative degree of biotinylation

A standard curve for determining the degree of biotinylation was generated by adding varying

concentrations of biotin to HABA-streptavidin solutions. The standards were prepared in a 96-well

microplate format; 20 pL of various concentrations of biotin stock solutions in pH 6, 0.05 M sodium

phosphate, 0.15 M NaCl buffer were added to 180 pL HABA-streptavidin (175.6 iL 0.5 mg/mL

streptavidin in pH 6, 0.05 M sodium phosphate, 0.15 M NaCl buffer and 4.4 IL 2.42 mg/mL HABA in 10

mM NaOH). The samples were prepared by mixing 20 l of each biotinylated protein with 180 pL of the

HABA-streptavidin solution. The samples were mixed for 5 minutes prior to reading the absorbance at

500 nm using a Plate Reader. The standard curve was constructed by plotting the change in absorbance

for the biotin dilutions (relative to a sample to which 20 lpL of buffer had been added) as a function of

biotin concentration. The HABA assay results are presented in Figure 5-2.
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Figure 5-2. HABA assay on biotinylated fibronectin clones. (A) Standard curve for determining the degree of
biotinylation generated by adding varying concentrations of biotin to HABA-streptavidin solutions. The
change in absorbance for the biotin dilutions (relative to a sample to which no biotin was added) is plotted as
a function of biotin concentration. The change in absorbance for each of the clones is shown on the plot. (B)
Replicate HABA assay performed on a different day. (C) Table summarizing the number of biotin per protein
determined using the two separate standard curves. The number of biotin per protein is defined as the moles
of biotin (as indicated by the assay) divided by the moles of protein (based on a BCA assay and assuming
that there are not any contaminating proteins present). Because the proteins differ only with respect to a
small subset of amino acids, it is reasonable to assume that they are similarly reactive; therefore, we
hypothesize that the differences in the number of biotin per protein are attributable to differences in the
relative purities of the protein preparations.

5.3.4 Densitometry
Because the BCA assay determines the total amount of protein, the fraction of the total corresponding
to each of the fibronectin clones was estimated using densitometry. Duplicate samples of each of the
fibronectin clone protein purifications were run at a total protein concentration of 1.5 pig on an SDS-
PAGE gel along with BSA standards (2 pig, 1.5 pg, and 1 pig). Following Coomassie staining, the gel was
imaged and analyzed using ImageJ. The image was inverted and the integrated intensities of equal areas
fully encompassing each of the protein bands as well as an area removed from the bands (to be used as
the background intensity) were measured. The integrated intensities were then background corrected
and the quantity of each of the fibronectin clones was determined through normalization by the
integrated intensity of the BSA standard bands. The densitometry analysis is presented in Figure 5-3.
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Figure 5-3. Densitometric analysis. (A) SDS-PAGE gel. 1.5 pg total protein (based on a BCA assay) of each
fibronectin clone protein preparation was loaded in duplicate onto an SDS-PAGE gel along with a protein
ladder and BSA standards at the indicated quantities. The gel was imaged and densitometric analysis was
performed in order to determine the amount of each fibronectin clone in the respective protein preparations.
(B) Quantification of the SDS-PAGE gel presented in A. Using lmageJ, the image was inverted and the
integrated intensities of equal areas fully encompassing the bands as well as an area removed from the
bands (to be used as the background intensity) were measured. The integrated intensities were then
background corrected (shown above) and the quantity of each of the fibronectin clones was determined
through normalization by the integrated intensity of the BSA standard bands.

5.3.5 EGFR/FC purification
An EGFR (extracellular domain)-Fc receptor fusion was isolated from a mixture of EGFR-Fc fusion and Fc
receptor using size exclusion chromatography (Superdex 75 10/300 GL gel filtration column). The
resulting fractions were collected and run on an SDS-PAGE gel to identify the fraction containing the
fusion. Fraction 7 contained the fusion without any contaminating Fc. The purification chromatogram
and SDS-PAGE gel are shown in Figure 5-4.

A B

Elution Volume (mL)

Figure 5-4. EGFR-Fc fusion purification. (A) Chromatogram for size exclusion purification of the EGFR-Fc
fusion showing the absorbance at 280 nm. (B) SDS-PAGE gel of fractions collected during the size exclusion
purification. The fractions collected from the size exclusion purification of the EGFR-Fc fusion were diluted
1:1 with Laemmli buffer and loaded onto an SDS-PAGE gel (run at 150 V for 30 minutes). The fraction
collected of the EGFR-FC fusion and used in this study is labeled A7.
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5.3.6 Details of aldehyde functionalized agarose surface preparation

Aldehyde functionalized agarose surfaces were prepared according to published methods. 2 mL of a

solution of 0.2 wt% agarose in distilled water (briefly heated in the microwave) were pipetted onto a

glass slide and dehydrated overnight under ambient conditions. Activation of the agarose was achieved

by immersing the slides in 20 mM sodium (meta) periodate (in distilled water) for 30 minutes. Following

activation, the surfaces were rinsed with distilled water and dried under ambient conditions for 2 hours

prior to protein printing.

5.3.7 Test surface preparation
Each test surface consisted of duplicate spots of 0.1 ptL 250 ptg/mL EGFR (Figure 5-4) in PBS, one spot of

BSA (0.1 pt 250 ptg/mL in PBS) as a negative control, and one spot of biotinylated fibronectin clone B (0.1

pL 250 ig/mL in PBS) as a positive control for macrophotoinitator binding and polymerization. Post-

spotting, the surfaces were kept at ambient conditions overnight. Silicone isolator wells were applied in

order to confine the monomer to the test area during polymerization. The number of binding-accessible

EGFR molecules per square micron in each spot was quantified using a streptavidin-Cy3 conjugate and

fluorescence analysis.

5.3.8 Antigen density determination
We quantified the number of binding-accessible EGFR molecules per square micron in each spot using a

streptavidin-Cy3 conjugate and fluorescence analysis (Agilent microarray scanner) against a Cy3

calibration array (Full Moon Biosystems). The surfaces were developed according to the standard

protocol; in brief, the surfaces were blocked for 10 minutes with 1% BSA in 1x PBS and rinsed with 1x

PBS, 40 iL of each of the biotinylated fibronectin clones (10 ptg/mL total protein) was added to separate

isolators and the binding interaction was given 30 minutes to reach completion before unbound protein

was rinsed away using 1x PBS. At this point, the test surfaces were contacted with 0.1 pM streptavidin-

Cy3 in 0.75% BSA in 1.5x PBS, 5x Denhardts for five minutes in a humid chamber. Sequential rinses with

PBST (1x PBS, 0.1% Tween 20), 1x PBS, and ddH2O were used to remove unbound streptavidin-Cy3. The

background fluorescence was determined by preparing surfaces with the corresponding unbiotinylated

fibronectin clones in place of the biotinylated binders. The fluorescence intensity of the EGFR spots was

then quantified and subtracted from the fluorescence intensity of features contacted with the

biotinylated binders. These background-corrected fluorescence signals were compared with a standard

curve generated using the Full Moon Biosystems calibration array where features containing only

spotting buffer were used to calculate background signal. The arrays were scanned at 100% PMT with an

excitation wavelength of 532 nm (20 mW) and emission wavelengths between 550 and 610 nm.

5.3.9 Preparation of detection reagents
A macrophotoinitiator capable of binding biotin was prepared by coupling eosin initiators to streptavidin

by reaction of eosin 5-isothiocyanate with a fraction of the solvent-accessible lysine residues of

streptavidin as previously described.6 The aqueous monomer solution consisted of 0.5 lpM eosin, 200

mM poly(ethylene glycol) diacrylate (PEGDA) (Mn=575), 100 mM triethanolamine (TEA), and 150 mM 1-

vinyl-2-pyrrolidinone (VP).

5.3.10 Detection of molecular recognition using PBA
To reduce the incidence of nonspecific binding, the test surfaces were first blocked with 1% BSA in 1x

PBS for 10 minutes. Following a rinse with PBS, the surfaces were contacted with one of the three

biotinylated fibronectin clones at total protein concentrations ranging between 0.1 and 10 pg/mL. The
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total protein concentration (as measured with a BCA assay) was kept constant, rather than the
concentrations of the individual clones, in recognition of the fact that any contaminant proteins present
would have also been functionalized with biotin. Keeping total protein concentration constant ensured
that levels of non-specific binding would be held constant. To begin an assay, 40 p1L of one of the
biotinylated fibronectin clones (0.1-10 ig/mL with 1% BSA in 1x PBS) was added to each of the isolators
wells. After 30 minutes (at which point it was assumed that binding was complete), the surfaces were
rinsed once more with 1x PBS and contacted with 40 iL of 0.1 ptM (6 pg/mL streptavidin) streptavidin-
eosin in 0.75% BSA, 1.5x PBS and 5x Denhardt's Solution for 5 minutes in a humid chamber. To remove
unbound initiator, surfaces were rinsed with PBST (1x PBS, 0.1% Tween 20), Ix PBS, and distilled water
and wicked dry. Once dry, 40 tL of the prepared monomer solution was contacted with the surface and
the surface was irradiated with 522 nm light (30 mW/cm 2 , measured using a SPER Scientific Light Meter)

from an array of LEDs housed in an ampliPHOX® reader (InDevR) for 100 seconds. Unreacted monomer
solution was removed by rinsing the surface with distilled water. Remaining hydrogel surface features,
if present, were stained with 50 mM eosin (50% methanol, 50% distilled water) for 2 minutes and
subsequently rinsed with water to allow visualization of the polymer on the slide surface. Each condition
was repeated a minimum of 5 times. Two control experiments were performed to verify the specificity
of the interaction between surface immobilized biotin and the macrophotoinitiator as well as that
between EGFR and the three fibronectin clones. In the first experiment, 10 ptg/mL of each of the
unbiotinylated fibronectin clones was used in place of their biotinylated counterparts. In the second
experiment, the test surface development was performed omitting the fibronectin binding step so that
the surfaces were only contacted with streptavidin-eosin. These experiments were performed to assess
the specificity of the polymerization response; assay conditions must be chosen such that streptavidin-
eosin does not nonspecifically bind EGFR or the fibronectin clones at a level sufficient for the initiation of
polymerization.

5.3.11 Analysis
Each surface was imaged using the digital camera built into the ampliPHOX® Reader (InDevR) imaging
bay. Mean intensity and standard deviation values were calculated for every surface feature and for the

background in an automated fashion using the ampliVIEW® software that accompanies the instrument.

5.4 Results and Discussion
A schematic of the binding events resulting in polymerization is presented in Figure 5-5. As depicted,
biotinylated fibronectin binds to EGFR immobilized on activated agarose (Kd=0.25-30 nM depending on
the clone), and this is followed by the binding reaction between biotin and the streptavidin of the
macrophotoinitiator. Streptavidin is coupled to a photoinitiator, eosin, which, in the presence of a co-
initiator (triethanolamine), can induce radical polymerization in response to light in the visible range
(522 nm). The resulting hydrogel is stained with a dye for ease of visualization; the final result is
depicted in Figure 5-6 for fibronectin clone D. For the radical polymerization reaction, eosin is present
both at the surface as a function of the sequential binding events as well as in the bulk monomer
solution in order to circumvent the oxygen inhibition typical of radical photopolymerization reactions.10

The polymerization is a threshold process, and thus will be limited to the surface where the local
concentration of eosin is higher than in the bulk solution provided that local concentration exceeds a
minimum initiator threshold. Thresholds are also encountered in ELISA and immuno-PCR 158 for which
signal plateaus are observed above a certain enzyme or DNA concentration.
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Figure 5-5. Schematic of the binding interactions that lead to polymerization. Biotinylated fibronectin clones
engineered to bind with varying affinities to EGFR are bound by the surface-immobilized EGFR. A
photoinitiator, eosin, is then tethered at the surface through the binding of a streptavidin-eosin conjugate to
biotin. With the addition of a monomer solution containing a co-initiator (triethanolamine), eosin then
induces radical polymerization in response to light in the visible range (522 nm). This results in a visible
hydrogel confined to regions where initiating molecules have been immobilized.

GFR ECD
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Positive Negative0
Control Control

G00

Feature Mean Standard Recognition Event
Colorimetric Deviation
Intensity

1 135.1 3.5 EGFR: Fn3-b: SA

2 130.4 7.2 EGFR: Fn3-b: SA

3 131.7 3.7 Fn3-b: SA

4 23.4 1.1 BSA

Figure 5-6. Colorimetric detection of clone D binding to surface immobilized EGFR. The concentration of
clone D in solution was 1 uM. Features I and 2 are stained hydrogels generated in response to two
subsequent binding events. First, biotinylated clone D binds to surface immobilized EGFR. This is followed
by the binding of streptavidin-eosin. Feature 3 is a positive control for the polymerization reaction. In this
case, streptavidin-eosin binds to biotinylated protein immobilized on the surface. Feature 4 is a negative
control consisting of surface immobilized BSA. The mean and standard deviation values reported in the
accompanying table derive from the quantification of the pixel intensities comprising each feature in the
digital image and are based on areas incorporating the majority of each feature, but excluding edge effects.

Figure 5-6 shows that polymerization is restricted to those areas in which eosin has been immobilized as

function of the two binding events. There is no polymerization on the surface where BSA has been

immobilized; BSA should have little affinity for the EGFR binders and streptavidin-eosin. The positive

control spot consisting of biotinylated protein serves to validate the activity of the macrophotoinitiator

as well as of the monomer solution. To ensure that polymerization is obtained only in response to the

two sequential binding interactions, two control experiments were performed (Figure 5-7). In the first,

unbiotinylated fibronectin clones were used in place of the biotinylated clones to confirm that the

macrophotoinitiator binding is a result of the interaction between biotin and streptavidin. In order to

exclude the possibility of polymerization resulting from nonspecific binding of streptavidin-eosin to

EGFR, a second control experiment was performed in which the fibronectin was excluded.

A B C D

* S S

Figure 5-7. Negative and positive controls. (A) The test surface was prepared omitting the incubation with a
biotinylated fibronectin clone. This demonstrates that nonspecific binding of streptavidin-eosin to EGFR
does not result in a false positive. (B) The test surface was prepared with I uM unbiotinylated clone B in
place of its biotinylated counterpart. (C) The test surface was prepared with 1 uM unbiotinylated clone E in
place of its biotinylated counterpart. (D) The test surface was prepared with I uM unbiotinylated clone D in
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place of its biotinylated counterpart. The latter three cases demonstrate that nonspecific binding of
streptavidin-eosin to the fibronectin clones does not result in a false positive. In all cases, polymerization is
observed in response to the binding of the streptavidin-eosin conjugate to the biotin covalently coupled to
the surface as the positive control spot.

The colorimetric intensity of the stained hydrogels was averaged (5 trials) for the EGFR binders at each
of the concentrations assayed (Figure 5-8). The correlation between binder affinity and the
concentration required to achieve sufficient surface coverage to initiate polymerization is apparent.
Polymerization was observed for concentrations of the highest affinity binder (clone D, Kd=0.25 nM) at a
concentration as low as 6 nM. For both clones E (Kd=2.9 nM) and B (Kd=30 nM), no polymerization was
observed below 10 nM. However, sufficient binding for polymerization was achieved for surfaces
contacted with 20 nM clone E. It is noteworthy that both clone D and clone B performed inconsistently
at their respective concentration limits (6 nM and 47 nM), initiating polymerization in 3 of 5 trials. This
suggests that the complex concentration (number of biotinylated fibronectins bound) on the surface
approaches the initiator threshold that must be exceeded for polymerization at these concentrations
and the amount of active EGFR immobilized on the surface is limiting.

Clone B (Kd=30 nM) Clone E (Kd= 2 .9 nM) Clone D (Kd=0. 2 5 nM)

140 140 140

120 120 120

100 100 100

C

80 80 80

E

6- 0 60 60

40 40 40

20 1 20 f 20

5 12 24 47 470 4 10 20 41 410 2 6 12 24 240

Binder Concentration (nM)

Figure 5-8. Colorimetric intensity of the polymerization response for each of the fibronectin clones as a
function of concentration. The concentrations are calculated from the total protein concentration based on
SDS-PAGE gel densitometry. In the case of clone D at a concentration of 6 nM, a positive response was
obtained in 3 of 5 trials. Similarly, for 47 nM clone B, a positive response was obtained in 3 of 5 trials. The
colorimetric intensity of the agarose surface (the background) was -25.

Near the limit of detection, small differences in the number of protein molecules bound (or immobilized
on the surface) dictate whether or not the threshold for polymerization is exceeded. The threshold
nature of the polymeric amplification5 ,22 is also seen in the lack of correlation between the extent of the
polymerization (as indicated by the colorimetric intensity) and the binder concentration used, although
it is likely that the fractional surface coverage increases with binder concentration. Further indication
that a threshold limit based on the number of surface-immobilized protein molecules has been reached,
the concentration limit for clone B is approximately 1.5 times its dissociation constant, while the
concentration limit for clone D is more than an order of magnitude greater than its dissociation
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constant. This suggests that increasing the concentration of active surface immobilized EGFR would
allow for further reductions in the fibronectin clone concentrations necessary for achieving a surface
initiator density sufficient for polymerization. Johnson et al. demonstrated the effects of altering the
relative concentrations of the capture and probe molecules for a nucleic acid hybridization study.22 Near
the limit of detection (78 capture DNA/ pm 2 ), they found that a concentration of 10 nM target DNA is
necessary for the formation of a polymer film, while increasing the capture density to 6500/ pm 2 allows
for a reduction in the target DNA concentration to below 0.5 nM.22 Similarly, simulation shows that as
the EGFR surface density is increased, the fraction of available binding sites occupied remains the same,
but the overall number of fibronectin clones bound per unit area increases (Figure 5-9).
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458 molecules/square micron EGFR

-229 molecules/square micron EGFR
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Figure 5-9. Complex concentration increases as the concentration of immobilized EGFR molecules
increases. Complex concentration as a function of time is shown for the EGFR surface density determined
experimentally (229 molecules/m2 ) as well as double and triple this concentration. For the results generated
above, the concentration of fibronectin clone D (Kd=0.25 nM) was set to 2.4 nM. The experimental data
(Figure 3 in the text) shows that the initiator density achieved with a surface density of 229 molecules
EGFRsm2 and 2.4 nM of clone D in solution is not sufficient after a 30-minute incubation to initiate
polymerization. This simulation shows that one way to achieve an initiator density above the threshold
required for polymerization while holding the solution concentration of the target biomolecule (clone D)
constant would be to increase the surface density of EGFR.

In order to determine the surface initiator density threshold for polymerization, it is useful to calculate
the theoretical fraction of EGFR molecules bound for each of the clones at the concentrations assayed.
The reversible bimolecular interaction at the surface can be written as L + P ; C where L represents
the binding ligand, P the surface-immobilized protein, and C the complex formed at the surface.
Assuming mass action kinetics, the rate of association takes the form k0 n[L][P] and the dissociation
rate takes the form koff[C] (where brackets are used to indicate concentration and kon and koff are kinetic
constants with units of M's' and s-', respectively). The rate of change of complex can be expressed as
follows:

dC
= kon[L][P] - kof [C]

Provided that the ligand is present in excess of the protein immobilized on the surface and the rate of
ligand diffusion to the surface is faster than the rate of association, the ligand concentration can be

88



taken as constant. An analysis of the Damkohler number, which is defined as the ratio of the reaction
velocity kon[L] to the diffusion velocity D/h (where kon is the on-rate for ligand binding, [L] is the
concentration of ligand a distance h away from the surface, and D is the diffusivity of the ligand through

the medium) supports this simplification. An approximation for the Damkohler number (kon[L]h 2 D)

over the depth of the liquid was obtained by calculating the ligand diffusivity according to the Stokes-
Einstein equation (Figure 5-10). Over the range of ligand concentrations and depths assayed, the
Damkohler number is much less than 1, indicating that the rate of diffusion to the surface is significantly
faster than the reaction at the surface; binding is reaction-limited and the ligand concentration at the

surface is essentially constant.
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Figure 5-10. Damkohler number as a function of both fibronectin clone concentration and the distance
between the fibronectin clone in solution and the EGFR on the surface.

Assuming ligand excess and a typical order-of-magnitude value of 105 M's' for kon1 63 and using the

dissociation constant to determine koff (Kd = koff), a plot showing the complex concentration after a 30-
kon

minute incubation period as a function of fibronectin clone concentration for each of the three binders

was generated (Figure 5-11). Comparing the experimental results with the complex concentrations
output by this model indicates that the threshold for polymerization is 140 protein molecules/im 2. The

EGFR density on the surface was set at 230 molecules/pm 2 based on fluorescent labeling and

comparison with a calibration array (Figure 5-12). This model shows that the theoretical complex

concentration for surfaces contacted with 10 nM clone E is greater than that for 6 nM clone D, although

polymerization was only observed in the case of the latter. This discrepancy could be explained by the

assumption of an on-rate of 105 M's' for all clones. These clones were selected using equilibrium

screening and the on-rates were never directly determined,' 61 so it is possible that the on-rates could

differ slightly for any of the three clones. A reduced on-rate for clone E would result in a lower surface

complex concentration (Figure 5-13). Assuming an on-rate of 105 M's', the model predicts a complex
concentration of 160 molecules/pm 2, which is above the threshold for polymerization. However,

fluorescence-based surface density quantification (Figure 5-14) reveals that only 70 molecules/pm 2 are

bound, a result consistent with a lower on-rate and the absence of polymerization.
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Figure 5-11. Theoretical surface concentrations of the EGFR-fibronectin complex as a function of solution
concentration of the fibronectin clone following a 30 minute incubation period. The complex concentration is
calculated assuming that the rate diffusion of the fibronectin clones to the EGFR at the surface is faster than
the binding reaction (Da<<1), and thus, it can be assumed that the fibronectin concentration is constant. For
this simulation, in the absence of measured values, all clones were assumed to have the same association
rate (105 M 1s ).
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Figure 5-12. Protein surface density quantification. (A) A streptavidin-Cy3 conjugate with 3.5 Cy3 molecules
per streptavidin was prepared using the same method outlined above, though with a NHS ester-functional
dye in the place of an isothiocyanate dye. Extinction coefficients used in the analysis: Ecy3,552 = 150,000 M1cm~
1 1 -1 1 1
, Ecy3,280 = 12,000 M cm ESA,250"= 173,000 M cm . (B) Standard curve generated using a Full Moon

Biosystems calibration array. The signal intensities were determined using ImageJ to compute average
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intensities within specified regions of constant area. BCI (background corrected intensity) is defined as the
difference between the signal and the background (in the case of the calibration array, an array of buffer
spots). The array was scanned at 100% PMT with an excitation wavelength of 532 nm (20 mW) and emission
wavelengths between 550 and 610 nm. (C) (Top) A biochip test surface reacted with 10 p.g/mL (total protein)

of each of the biotinylated fibronectin clones (from left to right: clones B, E, and D) followed by 0.1 pM
streptavidin-Cy3 conjugate as described in the text and imaged using an Agilent microarray scanner with an
excitation wavelength of 532 nm (20 mW) and emission wavelengths between 550 nm and 610 nm. The PMT
setting was 100%. The top two features in each array correspond to the EGFR-Fc fusion immobilized on the
surface, while the bottom right feature is the positive control spot (biotinylated clone B). The rightmost array
demonstrates how surface defects (arising through contact with the end of a pipet tip, for example) can
result in false positives. (Bottom) A biochip test surface developed in the same way as the top image with the
exception that the surface has been reacted with 10 pg/mL (total protein) of each of the unbiotinylated
fibronectin clones (from left to right: clones B, E, and D). (D) Table summarizing the number of streptavidin
bound per square micron for the indicated surface features based on average signal intensities determined
using the images presented in (C). The bottom image in (C) was used as the background correction for the
top image and the intensity values were converted to the number of streptavidin bound per square micron
using the calibration array standard curve (B).
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Figure 5-13. Reducing the on-rate below 105 Mos1 results in a reduction in the complex concentration for
lower concentrations of the fibronectin clone. For the results generated above, Kd=2.9 nM (fibronectin clone
E) and the binding reaction time was set to 30 minutes. This simulation shows the extent to which slight
changes in the on-rate (which may occur from clone to clone as clones were selected using equilibrium
titrations rather than kinetic screens) result in changes in the surface concentration of the EGFR-Fn
complex. For example, looking at the 10 nM points, a deviation of the on-rate from the standard order-of-
magnitude assumption of 10 M"'s 1 could place the initiator density either well above or well below the
observed threshold required for polymerization.
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Figure 5-14. Protein surface density quantification for clone E. (A) A biochip test surface reacted with the
indicated concentration (total protein) of biotinylated fibronectin clone E followed by 0.1 pM streptavidin-Cy3
conjugate as described in the text and imaged using an Agilent microarray scanner with an excitation
wavelength of 532 nm (20 mW) and emission wavelengths between 550 nm and 610 nm. The PMT setting was
100%. The top two features in each array correspond to the EGFR-Fc fusion immobilized on the surface,
while the bottom right feature is the positive control spot (biotinylated clone B). Based on densitometry, 10
pg/mL clone E corresponds to 410 nM and 0.25 pg/mL corresponds to 10 nM. (B) A biochip test surface
developed as described for A, with the exception that unbiotinylated clone E was used in place of the
biotinylated clone. (C) Table summarizing the number of streptavidin bound per square micron for the EGFR
surface features based on average signal intensities determined using the images presented in A and B. The
fluorescence intensities of the relevant features in the image in B were used as the background correction
for the image in A and the intensity values were converted to the number of streptavidin bound per square
micron using the calibration array standard curve shown in Figure 5-12.

5.5 Conclusion
In the study of the impact of dissociation constant on the observed detection sensitivity using
polymerization-based signal amplification reactions presented here, our key findings are that within the

parameter space investigated, improvements in binding affinity lead to marked improvements in

detection sensitivity. Experimental findings were accurately predicted using a mass action kinetic

model. Combined model and experimental findings support the idea that in polymerization-based
amplification assays, detection sensitivity for a solution phase molecule is determined by whether a

threshold initiator surface density is attained as a result of the kinetic and thermodynamic

characteristics of the chosen recognition events and the chosen assay conditions (incubation time,

surface capture probe density). Bioassay development is typically an empirical process that can be time

consuming and costly. The ability to predict assay performance greatly enhances the efficiency of this

process. As presented here, a simple kinetic model can be used to predict assay performance given a
minimal set of experimentally accessible parameters (surface capture probe density and binding
affinity).

In addition, experimental validation of this simple model in the context of polymerization-based

amplification assays is valuable for future efforts to engineer binding reagents since improved assay

performance as a function of improvements in binding affinity may be quantitatively predicted prior to
committing resources to a protein engineering effort. This work also provides guidance in assessing
whether commercial binding reagents are likely to provide adequate sensitivity in a given application.
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6 Investigation of macrophotoinitiators for polymerization-based
signal amplification reactions

Some of the work, text, and figures presented in this chapter are reprinted or adapted from Kaastrup
and Sikes. Investigation of dendrimers functionalized with eosin as macrophotoinitiators for
polymerization-based signal amplification reactions. RSC Advances, 2015, 5, 15652-15659.

6.1 Abstract
Polymerization-based signal amplification, a technique developed for use in rapid diagnostic tests,
hinges on the ability to localize initiators as a function of interfacial binding events. A number of
strategies are available for increasing this local concentration, including increasing the capture probe
density, using higher affinity binding molecules, or, as presented here, directly conjugating additional
initiators to the detection reagent through the use of functionalized polymers. We have previously
considered poly(acrylic acid-co-acrylamide) backbones for this purpose; with eosin as the photoinitiator,
these efforts were hindered by solubility limitations. Here, we use a poly(amidoamine) dendrimer as a
scaffold to produce conjugates with enhanced solubility. Through an investigation into the surface
binding and solution-phase properties of these conjugates, we show that quenching effects impact the
efficacy of these conjugates as macrophotoinitiators.

6.2 Introduction

Photopolymerization-based signal amplification ,6,0,20 is an inexpensive and rapid technique that
presents an alternative to traditional methods for signal amplification1641 65 in molecular diagnostics. This
technique links a radical polymerization reaction with molecular recognition at a surface through the use
of photoinitiator-coupled affinity reagents. With an adequate dose of light and multi-acrylate
monomers, the resulting hydrogel is visible to the unaided eye and easy to interpret. This technique has
been demonstrated in a variety of contexts, including the detection of proteins, 8,13 ' -20 ' DNA

hybridization, 120,22,153 and epigenetic modifications of DNA using protein-DNA binding events. 105

The polymerization reaction in these assays is dependent on whether the minimum surface initiator
density required for propagation reactions to become competitive with inhibition reactions is exceeded.
Reducing the number of binding events required to achieve this threshold initiator density could
improve sensitivity and enable the extension of this technique to a number of clinical assays, including
epigenotyping assays, for which the currently reported sensitivity precludes analysis of samples derived
from needle biopsies.105

The relevant tunable parameters for improving assay sensitivity have been outlined in previous work; 1 66

these include kinetic and thermodynamic characteristics of the molecular recognition events, surface
density of capture probes, and assay conditions such as incubation time. We and others have made
efforts to improve sensitivity by increasing the number of initiators localized per binding event using
macroinitiators for both photopolymerization-based 5,9,11 and ATRP-based signal amplification
reactions.31 These macroinitiators consist of a poly (acrylic acid-co-acrylamide) backbone conjugated to
initiating molecules and neutravidin or streptavidin (proteins for molecular recognition). Streptavidin
and neutravidin are used for their high affinity for biotin (K'~10-15 M). As an alternative to molecular
recognition, the He Group has also employed electrostatic interactions in the construction of an ATRP
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macroinitiator for universal DNA detection with peptide nucleic acid probes. The ATRP macroinitiator
improved the limit of detection by 60 times in comparison with single-initiator tagged DNA detection.

Efforts to further improve the sensitivity of photoinitiated polymerization-based signal amplification
through the synthesis of more densely photoinitiator-labeled macroinitiators have been stymied by the
poor solubility of eosin, a photoinitiator, in water." A more water soluble xanthene derivative,
fluorescein, was used in the first demonstration of how sensitivity improves as the number of
photoinitiators localized per recognition event increases.9 However, in order to initiate polymerization
localized near a surface with 105 biotin/pim', it was necessary to couple more than 70 fluorescein
substituents to the polymer. This contrasts sharply with the sensitivity achieved using eosin; a conjugate
consisting of just three eosin coupled to avidin is able to initiate polymerization from surfaces with only
15 biotin/m'2. 1

0 Fluorescein is a less efficient photoinitiator as it lacks eosin's heavy bromine atoms and
thus less readily undergoes intersystem crossing to the triplet state, from which it can react with a
tertiary amine coinitiator to form tertiary amine radicals capable of initiating the polymerization
reaction.168

More recently, Lee and Sikes showed that for the same poly (acrylic acid-co-acrylamide) backbone,
solubility limitations restricted the maximum average number of eosin per chain to 15.11 Lee and Sikes
varied the number of eosin per polymer between 2 and 15, finding that the fluorescence intensity of the
target spots attained a maximum for a polymer with 10 eosin but, counter-intuitively, decreased when
the number of eosin was further increased to 15. In this case, poor solubility suggested the possibility of
solution phase aggregates that would be expected to decrease the level of specific binding of the
macroinitiator to the surface, leading to decreased sensitivity.

We hypothesize that an alternative scaffold may enable an increase in the number of initiators localized
per binding event while, critically, remaining sufficiently soluble to enable surface binding. Towards this
end, we conjugated eosin and neutravidin to poly (amidoamine) (PAMAM) dendrimers. Dendrimers
present an attractive scaffold for initiator coupling as their exterior layer contains functional groups that
lend themselves to modification. Dendrimers have been used in the construction of fluorescent probes
for biological applications, including the fluorescence labeling of antibodies,'69 as scaffolds for
conjugating two different dyes to produce a ratiometric sensor, 170'11 and as photostable nanoprobes for
high-resolution imaging.172 In addition to increasing the number of fluorophores per protein, one of the
potential advantages of using fluorescent dendrimers conjugated to proteins rather than directly
derivatizing the protein is preservation of its activity.169 Here, we varied the number of eosin
substituents conjugated per dendrimer and tested the conjugates in photopolymerization-based signal
amplification reactions. As hypothesized, using dendrimer scaffolds improved solubility and allowed for
a greater extent of eosin derivatization. However, photophysical factors interfered with their
photoinitiation capability. We used solution-phase spectroscopy to elucidate these factors.

6.3 Experimental

6.3.1 Materials
Poly (amidoamine) (PAMAM) dendrimer (ethylenediamine core, generation 7), N-(3-
dimethlaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC), dimethyl sulfoxide, poly(ethylene
glycol) diacrylate, triethanolamine, 1-vinyl-2-pyrrolidinone, Eosin Y disodium salt, succinic anhydride,
Tween* 20, and MES solution were purchased from Sigma Aldrich. N-hydroxysulfosuccinimide (NHSS),
no-weigh format, NeutrAvidin Protein, and Blocker BSA in PBS (10x) were purchased from Thermo
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Scientific. Eosin 5-isothiocyanate (EITC) was obtained from Marker Gene Technologies. Calibration chips
were purchased from InDevR. Amicon Ultra-4 Centrifugal Filter Units with Ultracel-100 membranes and
Amicon Ultra-0.5 Centrifugal Filter Units with Ultracel-30 membranes were purchased from EMD
Millipore. PD-10 desalting columns were purchased from GE Healthcare. UltraCruz'" Micro G-25 Spin
Columns were obtained from Santa Cruz Biotechnology. Black 96-well microplates were purchased from
Corning. Clear 96-well microplates were purchased from Grenier Bio-One. AMRESCO Denhardt's
solution (100x) was purchased from BioExpress. AMRESCO phosphate buffered saline (10x) was
purchased from VWR. ACS grade methanol and 2 N hydrochloric acid were purchased from BDH. Sodium
chloride, sodium phosphate monobasic, and sodium phosphate dibasic were purchased from
Mallinckrodt Chemicals.

6.3.2 Coupling of eosin to dendrimers
In order to improve water solubility, a generation 7 PAMAM dendrimer (0.043 pmol) was partially
carboxylated with a 512-fold excess of succinic anhydride (22 pmol) in DMSO (1:1 ratio of dendrimer
amines:succinic anhydride). The reaction was stirred overnight at room temperature, after which
unreacted succinic anhydride was removed by gel filtration. A 10, 16, or 40 fold excess (based on the
initial mass of dendrimer reacted) of eosin 5-isothiocyanate (EITC) was then introduced and the reaction
was once again stirred overnight at room temperature. Unreacted EITC was removed by gel filtration.
The eosin-conjugated dendrimers were then dialyzed against water for 2 days and lyophilized. As the
fold excess of eosin was increased, the fraction of conjugates that precipitated during dialysis increased.
Because of this solubility limitation, increasing the fold excess further did not produce conjugates with
higher eosin densities.

6.3.3 Conjugation of neutravidin to dendrimers
Prior to protein conjugation, -1 mg of the lyophilized product (conjugates 1-3) was dissolved in 50 pL
water and characterized using absorbance spectroscopy. 0.2-0.5 mg of 1-3 was then reacted with a 500-
fold excess of EDC and sulfo-NHS in pH 6 0.1 M MES, 0.5 M NaCl buffer. In the final reaction volume, the
dendrimer concentration was 6 IM with 3 mM EDC and 3 mM sulfo-NHS. After 15 minutes, a 2-fold
molar excess of neutravidin dissolved in pH 7.5 0.1 M sodium phosphate buffer was introduced and the
reaction was incubated at 4'C overnight. The reaction volume was doubled during the neutravidin
addition, thereby increasing the pH to favor the reaction between the neutravidin amines and the NHS-
ester. As described, this conjugation resulted in conjugates with between 0.5 and 2 neutravidin per
dendrimer. Variability in the number of neutravidin conjugated per dendrimer is likely a consequence of
uncertainty in the initial mass measurements of 1-3. To avoid complications due to potential avidity
effects, only conjugates with 1 or less neutravidin per dendrimer were used. For the purposes of
assessing signal from polymers bound to a surface, a lower coupling efficiency is preferable as
unconjugated dendrimers do not bind to the surface. All dilutions were prepared on a neutravidin basis
and, for the solution spectroscopy, absorbance and emission values were normalized by the number of
neutravidin per dendrimer. A scheme summarizing the preparation is shown in Figure 6-1.

Following the overnight reaction, the samples were purified using a 100 kDa molecular weight cut-off
centrifugal filter device to remove unreacted neutravidin. The samples were centrifuged at 4'C
according to the manufacturer's instructions and the filtration was repeated 5 times with pH 7 PBS.
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Figure 6-1. Preparation of conjugates 1-6. a) Generation 7 poly (amidoamine) dendrimers were partially
carboxylated via reaction with succinic anhydride. Following removal of unreacted succinic ahydride by gel
filtration, the dendrimers were reacted with 10, 16, or 40-fold excess of eosin-5-isothiocyanate. The
dendrimers were subsequently purified by gel filtration and dialysis and lyophilized prior to conjugation with
neutravidin using EDC/NHSS to activate the dendrimers' carboxylic acid functional groups. b) Summary of
the calculated number of eosin and neutravidin per dendrimer for conjugates 4-6.

DMSO: dimethyl sulfoxide, EDC: N-(3-dimethlaminopropyl)-N'-ethylcarbodiimide hydrochloride, NHSS: N-
hydroxysulfosuccinimide
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6.3.4 Conjugate characterization
The filtered solutions were characterized using absorbance spectroscopy with a Tecan Infinite m200
microplate reader and a NanoQuant plate (path length=0.05 cm). Extinction coefficients were
determined from absorbance standard curves for the dendrimer, eosin, and neutravidin in PBS (Figure
6-2). In each case, the absorbance standard curves were based on a minimum of two separate dilution
sets. Absorbance spectroscopy was favored over H-NMR as it has been shown to be a more reliable
method for quantifying the number of fluorophores conjugated per polymer. H-NMR analysis has also
been shown to suffer in accuracy for the analysis of dendrimers due to the large difference in the
number of dendrimer and dye protons. The number of eosin per dendrimer was determined from
absorbance spectra collected for the lyophilized eosin-dendrimer products (conjugates 1-3). Prior to
characterization, stock solutions were prepared with the lyophilized products; ~1 mg was resuspended
in 50 ptL water. These stock solutions were then diluted by at least a factor of 10 with PBS so as to be
within the linear range for absorbance measurements. The absorbance at 525 nm was used to
determine the eosin concentration and the absorbance at 280 nm was used for the dendrimer
concentration, accounting for eosin's absorbance at 280 nm. Following the neutravidin conjugation, the
absorbance spectra for the purified samples (conjugates 4-6) were measured. The eosin concentration
was determined from the absorbance at 525 nm and the concentration of the dendrimer was then
calculated based on the previously determined number of eosin per dendrimer (for the corresponding
conjugates 1-3). The 280 nm absorbance was used to determine the neutravidin concentration, this time
accounting for absorbance by both eosin and the dendrimer. For each conjugate, a minimum of three
absorbance spectra were collected and averaged. The concentrations, as calculated using the standard
curves, are presented in Table 6-1. Finally, the samples were diluted with an equal volume of glycerol,
aliquoted, and stored at -20'C.
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Figure 6-2. Absorbance standard curves. a) Absorbance standard curve for eosin at 525 nm (2 replicates). b)
Absorbance standard curve for eosin at 280 nm (2 replicates). c) Absorbance standard curve for the poly
(amidoamine) dendrimer at 280 nm (4 replicates). d) Absorbance standard curve for neutravidin at 280 nm (4
replicates). In all instances, the black squares represent the absorbances at the indicated wavelength for
dilutions prepared in PBS.

Table 6-1. Conjugate Concentrations from Characterization

Summary of concentrations for the components comprising each conjugate as calculated using the standard
curves based on absorbance measurements obtained using the Tecan Infinite m200 microplate reader and a
NanoQuant plate (path length=0.05 cm). The final row shows the concentration range of the standards used
for generating the standard curves.

Conjugate Eosin (mM) G7 PAMAM Dendrimer (mM) Neutravidin (mM)
1 0.102 0.015 N/A
2 0.103 0.0076 N/A
3 0.287 0.012 N/A
4 0.077 0.011 0.0056
5 0.091 0.0067 0.0080
6 0.186 0.0077 0.0092

NAv-Eosin 0.039 N/A 0.0066
Linear Range 0.005-0.725 0.005-0.0429 0.0004-0.017
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6.3.5 Preparation of neutravidin-eosin conjugates
To serve as a reference conjugate, eosin was conjugated directly to neutravidin. This reaction was
performed according to the protocol outlined previously for streptavidin. 1 mL of a 1 mg/mL solution of
neutravidin was concentrated with 30 kDa centrifuge filters and then diluted to 10 mg/mL with pH 9 0.1
M sodium bicarbonate buffer for a final volume of 100 pL. 10 iL of 10 mg/mL eosin 5-isothiocyanate
(EITC) was then added and the reaction was placed at 4C overnight. Finally, the reaction was purified by
gel filtration, characterized by absorbance spectroscopy (6 replicate measurements), and diluted with

glycerol for storage at -200 C.

6.3.6 Interfacial analysis using fluorescence
In order to verify the binding activity of 4-6 as well as compare the surface initiator density achieved
using the dendrimer conjugates relative to a neutravidin-eosin conjugate, glass surfaces consisting of
dilution arrays of biotinylated oligonucleotides were incubated with conjugate dilutions. The dilutions
were prepared based on the neutravidin concentrations in order to normalize for the number of
potential binding events as the biomolecular interaction of interest is neutravidin binding to surface
immobilized biotin. Three concentrations (5, 10, 20 pg/mL) were selected based on previous work in
which 10 ptg/mL of a streptavidin-eosin conjugate was shown to effectively saturate the binding sites on
the surface.10 The dilutions were prepared in 0.5% BSA, 1.5x PBS, and 5x Denhardt's solution. The test
surfaces were rinsed with water to remove residual salts prior to a 5-minute incubation with the
dilutions. Following the incubation, the surfaces were rinsed sequentially with 0.1% Tween* 20 in PBS,
PBS, and ddH 20 to remove unbound conjugates. Once dry, the surfaces were scanned with a GenePix
4000B Microarray scanner (Molecular Devices, LLC). The wavelength was set to 532 nm with 500 PMT
gain at 100% power. The fluorescence intensity of the arrays was later quantified in ImageJ. A minimum
of 2 arrays was scanned for each condition. On each array, the highest density of biotin (row 1) is
printed in an "L" comprising 11 spots. The following 7 dilutions as well as the final negative control row
consisting of spotting buffer each comprise 3 spots.

The specificity of the dendrimer conjugates for biotin was verified by repeating the surface incubation
with 0.27 pM of neutravidin-free dendrimer conjugate 3. This dendrimer was selected on the basis that
it has the highest number of eosin per dendrimer and is thus the most likely to nonspecifically adhere to
the surface. The concentration corresponds to the highest concentration of dendrimer used in the
surface binding experiments (the dendrimer concentration when 20 pig/mL of neutravidin is used).

6.3.7 Interfacial polymerization
An aqueous monomer solution consisting of 200 mM poly(ethylene glycol) diacrylate (PEGDA), 150 mM
triethanolamine (TEA), 100 mM vinyl-2-pyrrolidinone (VP), and 0.5 pM eosin Y was prepared. Following
incubation with the conjugate dilutions described above and the subsequent rinsing steps, each array
was contacted with 40 [tL of this monomer solution and irradiated for 70 seconds with 522 nm light (30
mW/cm 2 ) from an array of LEDs housed in an ampliPHOX reader (InDevR). The arrays were then rinsed
with water at room temperature and stained with a 50 mM eosin Y solution in 50% methanol, 50%
ddH 20 for 2 minutes, after which the surfaces were rinsed one final time with water at room
temperature and dried with compressed air. Each surface was imaged using the digital camera built into
the ampliPHOX reader (InDevR) imaging bay. Four surfaces were polymerized for each conjugate dilution
prepared at 10 pg/mL neutravidin (the concentration at which each conjugate saturated the available
binding sites). Two surfaces each were polymerized for 5 and 20 ptg/mL.
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6.3.8 Solution spectroscopy
The dilutions prepared above were analyzed by absorbance and fluorescence spectroscopy using a
Tecan Infinite m200 microplate reader. The concentrations for each component are summarized in
Table 6-2. 80 pl of the dilutions were added to clear and black 96-well plates for absorbance and
fluorescence measurements, respectively. A volume of 80 ptL results in a path length of approximately
0.23 cm. Absorbance was measured at 5 nm steps between 400 and 700 nm. Emission scans were
performed for excitation at 525, 450, and 260 nm with emission measured at 5 nm steps between 545-
650 nm, 500-600 nm, and 450-650 nm, respectively. 525 nm is eosin's peak absorbance wavelength, but
measurements were performed for excitation at 450 and 260 nm in order to obtain a complete emission
spectrum around the maximum emission peak at 545 nm. The absorbance at 525 nm and emission at
545 nm (for excitation at 450 nm) were normalized by the number of neutravidin coupled per
dendrimer. Three separate trials (performed on separate days) were averaged in each case.

Table 6-2. Conjugate Concentrations for Solution Spectroscopy

Summary of concentration ranges for the components comprising each conjugate for the solution
spectroscopy experiments, which were performed in 96 well plates (path length=0.23 cm).

Conjugate Eosin (mM) G7 PAMAM Dendrimer (mM) Neutravidin (mM)
4 5.83x1 0-4-2.33x1 0-3 1.67x1 04 -6.67x1 4 8.33x 10 5-3.33x104
5 1.17x10-3-4.67x10 3  8.33x10-5-3.33x10-4  8.33x10-5-3.33x1 0-4
6 2x1 0-3-8x1 0-3 8.33x1 0-5-3.33x1 0-4 8.33x1 0 5-3.33x1 4

NAv-Eosin 5x1 0 4-2x1 0- N/A 8.33x1 0-5-3.33x1 04

6.4 Results and Discussion

6.4.1 Conjugates
A gneratiron 7 (G7)A polyh (aioa e (PAMtAM)~ dendrimror was partiIlycroxltdpirt

reaction of the remaining amines with eosin 5-isothiocyanate (EITC). Carbodiimide coupling chemistry
was then employed to activate the carboxylic groups of the dendrimers for reaction with neutravidin.
The preparation of these conjugates is summarized in Figure 6-1. After thorough purification, the
conjugates were characterized by absorbance spectroscopy (Figure 6-2 and Figure 6-3). Dendrimer
conjugates (1-3) were prepared with an average of 7, 14, and 24 eosin per dendrimer, respectively.
Conjugation of neutravidin to conjugates 1-3 resulted in conjugates 4-6. On average, no more than one
neutravidin was coupled per dendrimer. In addition to the three conjugates, eosin was coupled directly
to neutravidin (Figure 6-3) to serve as a reference conjugate with an average of 6 eosin per neutravidin.
Because neutravidin binding to surface immobilized biotin is the relevant biomolecular interaction,
dilutions were prepared at neutravidin-matched concentrations and we report all concentrations
throughout on a mass of neutravidin per volume basis.
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Figure 6-3. Conjugate characterization. Conjugates 1-3 were coupled to neutravidin to produce the
corresponding conjugates 4-6. a) Absorbance spectra for conjugates I and 4. b) Absorbance spectra for
conjugates 2 and 5. c) Absorbance spectra for conjugates 3 and 6. d) Absorbance spectrum for Neutravidin-
eosin. Using the standard curves shown in supplementary figure 1, the number of eosin conjugated per
dendrimer for conjugates 1-3 was determined. The characteristic absorbance of eosin at 525 nm allows for
the subsequent determination of the number of neutravidin conjugated per dendrimer for conjugates 4-6 as
the eosin densities for each dendrimer are known.

6.4.2 Interfacial performance
In the assessment of new conjugates for polymerization-based signal amplification reactions, the

primary functional properties of interest include the level of specific binding and the level of nonspecific

binding. To date, the fluorescence signal of conjugates bound to surface- immobilized DNA labeled with

biotin (Figure 6-4 a) has served as a useful metric for comparing the performance of different

conjugates.' 11
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Figure 6-4. Interfacial binding. a) Schematic diagram of a test surface. The outer "IF" is designated row 1 and
contains the highest interfacial density of biotin-labeled oligonucleotides. The interfacial concentration of

biotin decreases with each subsequent row consisting of three spots. The final row contains three spots of
buffer without any biotinylated oligonucleotide. b) Fluorescence image of test surfaces following incubation
with neutravidin-eosin (left) and conjugate 6 (right), each 10 pg/mL on a neutravidin basis (intensity scale: 0-
1500). c) Summary of the mean fluorescence intensities for each set of replicate features from the array. The

mean fluorescence intensities comprise the surface features from two test surfaces with error bars denoting
the standard deviation about the mean.

Bkgd: background (area surrounding surface features)

Figure 6-4 b shows that binding of 4-6 was specific to those areas with chemically coupled biotin. This

specificity was further corroborated by the lack of surface binding observed for (neutravidin-free) 3

(Figure 6-5).

a) b)

Figure 6-5. Negative control experiment. To verify the specificity of conjugate binding as well as investigate
the possibility of eosin conjugation increasing the hydrophobicity of the conjugates and thus contributing to

nonspecific binding, a test surface was incubated with 0.27 pM dendrimer conjugate 3. Conjugate 3 was
selected as it has the highest number of eosin per dendrimer, and is thus the most likely to exhibit
nonspecific binding, and a concentration of 0.27 pM was used as it corresponds to the dendrimer
concentration present for 20 pg/mL of conjugate 6 (the highest concentration assayed). a) Fluorescence
image of test surface following incubation with conjugate 3 (intensity scale: 0-1500). The background
intensity level is 83 + 31. b) Polymerization result for test surface incubated with conjugate 3. No
polymerization was observed.
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To be sure that the concentrations used in Figure 6-4 were sufficient to saturate the available interfacial

binding sites, test surfaces were incubated with conjugate dilutions prepared at 5, 10, and 20 pig/mL

prior to fluorescence scanning. With 4-6, increasing the neutravidin concentration from 5 to 20 jig/mL

did not produce a statistically significant increase in fluorescence intensity across the surface

(Figure 6-4c and Figure 6-6), suggesting that binding site saturation was effectively achieved at 5 pg/mL.

For the neutravidin-eosin conjugate, however, increasing the concentration from 5 to 10 ig/mL resulted

in a doubling of the fluorescence intensity, while further increasing the concentration had no effect on

the specific signal, indicating saturation at 10 Ig/mL. Figure 6-4c shows that increasing the number of

eosin per dendrimer by a factor of 2 from 7 (4) to 14 (5) did not result in an increase in fluorescence

intensity, possibly indicating that 4 has a smaller hydrodynamic radius, thereby allowing more conjugate

binding at the surface relative to 5. Further increasing the number of eosin per dendrimer to 24 (6)

resulted in an increase in the fluorescence intensity. However, the signal from the neutravidin-eosin

conjugate was more than three times that of 6.

a) 600 conjugate 4 b) 1
ss Conjugate E

500Conjugate 6 i
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Figure 6-6. a) Summary of the average fluorescence intensities for each biotin dilution on test surfaces
contacted with 5 pg/mL of each conjugate. b) Summary of the average fluorescence intensities for each
biotin dilution on test surfaces contacted with 20 pg/mL of each conjugate. In both cases, the average
comprises the surface features from two test surfaces.

Bkgd: background (area surrounding surface features).

The average background fluorescence intensities are presented in Figure 6-7. The background

fluorescence intensity for the neutravidin-eosin conjugate increases with increasing concentration,

following the expected trend for nonspecific adsorption. In contrast with previous work in which

increasing the number of eosin per polymer from 2 to 15 resulted in an increase in nonspecific

adsorption," neither increasing the concentration of the conjugates nor the number of eosin

substituents resulted in an increase in the background fluorescence intensity. This deviation from the

expected trend could indicate fluorescence quenching or that the dendrimer conjugates are less

hydrophobic than the polymers prepared in earlier work or a combination of the two.
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Figure 6-7. Mean background fluorescence intensity for each conjugate for increasing neutravidin
concentration. The background fluorescence intensity for the neutravidin-eosin conjugate follows the
expected trend, increasing with increasing concentration. However, the background fluorescence intensities
for the dendrimer conjugates do not follow any clear trend.

Following interfacial fluorescence analysis, the conjugate-bound test surfaces were contacted with

aqueous solutions of monomers and amine coinitiators and initiating light as previously described.'0 The

binding of the dendrimer conjugates to surface-immobilized biotin and subsequent photopolymerization

are illustrated in Figure 6-8. At 10 ig/mL neutravidin, the limit of detection for the neutravidin-eosin

conjugate was 15 biotin/pm 2 (Figure 6-9a). As shown in Figure 6-4c, this limit corresponds to a

fluorescence intensity of 190 + 12, implying that for features with higher fluorescence intensities, the

initiator density should be above the threshold for polymerization. Only 6 produced fluorescence

intensities above this level and only for features with more than 100 biotin/pm 2. One of four surfaces

tested resulted in polymerization for these features (Figure 6-9b), suggesting that the initiator density is

near the threshold for polymerization 0 where inhibition reactions compete effectively with initiation

and propagation reactions. We have observed similar stochastic outcomes with replicates in past work
10,166

just below the reported limits of detection.

8 Biotin

+ Eosin 1.1
X Neutravidin 

Monomer
Triethanolamine

() G7PAMAM CHO cIO > CHO CHO ______CHO CHO

Figure 6-8. Using dendrimer conjugates for colorimetric detection of molecular recognition. Generation 7
poly (amidoamine) dendrimers conjugated to a photoinitiator (eosin) and neutravidin bind to biotinylated
oligonucleotides immobilized at a glass surface. Following the addition of an aqueous monomer solution and
522 nm light, a hydrogel forms in areas specifically bound by the conjugate.
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Figure 6-9. Polymerization results for surfaces incubated with a) neutravidin-eosin and b) conjugate 6 (each
10 pg/mL on a neutravidin basis). The hydrogels on the surface incubated with conjugate 6 are thinner than
those on the surface incubated with the neutravidin-eosin as indicated by the intensity of the staining.

6.4.3 Solution-phase spectroscopy
To better understand the results presented in Figure 6-4 and Figure 6-7, the conjugate dilutions were

evaluated using solution-phase spectroscopy. We wished to assess whether the formation of aggregates

in solution or a quenching phenomenon may explain the reduced surface fluorescence observed using 4-

6 relative to eosin coupled directly to neutravidin (Figure 6-4c). In comparison with much of the previous

work with modified dendrimers and in particular those looking at dendrimer aggregation,17 4 we were

operating in a relatively dilute regime (0.2 [tM versus 86 pM 4), precluding the use of common methods

such as dynamic light scattering for assessing whether aggregates were present. Both absorbance and

fluorescence measurements were performed. For the fluorescence measurements, emission was

monitored between 500 and 600 nm with excitation at 450 nm. Neither the presence of the dendrimer

nor the progressive increase in the number of eosin per conjugate produced spectral shifts (Figure 6-10),

which can be indicative of chromophore aggregation.17',176 Upon excitation, conjugates 4-6 and the

physical mixture of the dendrimer and neutravidin-eosin each emitted less light than neutravidin-eosin

alone, a finding that we investigated further as a function of concentration (Figure 6-11).
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Figure 6-10. Emission spectra following excitation at 450 nm for 5 and 10 pg/mL of the conjugates as well as
a dilution of neutravidin-eosin to which an equimolar amount of free dendrimer had been added. The spectra
are corrected for the background fluorescence of the buffer solution (left column) and then normalized by
peak height (right column). Note that these results are not normalized by the number of neutravidin
conjugated per dendrimer, which is why the fluorescence intensities for conjugate 4 are higher than for
conjugate 5. Conjugate 4 has approximately half the number of neutravidin conjugated compared with
conjugate 5, so there are unconjugated dendrimers present and these contribute to an increase in the
fluorescence intensity. a) Spectra for 5 pg/mL neutravidin. The normalized spectra (right) show that there is
no shift in the maximum peak wavelength. b) Spectra for 10 pg/mL neutravidin. c) Spectra for 20 pg/mL
neutravidin. Progressively increasing the concentration of eosin more clearly demonstrates that there is no
peak shift as the fluorescence intensity increases and the effect of noise is diminished. The higher
concentrations are also more relevant from the perspective that aggregate formation is a concentration
driven process and more likely to be observed at higher concentrations. The spectra are the average of three
trials.
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Figure 6-11. Solution spectroscopy. a) Peak absorbances (525 nm) for dilutions of conjugates 4-6 with
concentrations given on a neutravidin basis. b) Peak absorbances (525 nm) for dilutions of neutravidin-eosin
alone and, as an additional comparison, neutravidin-eosin to which an equimolar concentration of free
dendrimer (G7) was added. c) Fluorescence emission at 545 nm (excitation at 450 nm) for the dilution series
presented in (a). d) Fluorescence emission at 545 nm (excitation at 450 nm) for the dilution series presented
in (b). The absorbance and fluorescence emission values have been normalized by multiplication with the
number of neutravidin conjugated per dendrimer. Three trials were averaged in all cases. Mechanisms
underlying the observed trends are considered in the text.

Figure 6-11 shows the peak absorbance at 525 nm as well as the peak fluorescence emission at 545 nm
for the conjugate dilutions at 5, 10, and 20 pg/mL neutravidin (full emission spectra presented in Figure
6-10). For comparison, results for dilutions of neutravidin-eosin, both with and without an equimolar
amount of free dendrimer added, are included (Figure 6-11 b, d). Although the absorbance values for
5and 6 (Figure 6-11 a) were higher than for the corresponding neutravidin-eosin dilutions (Figure 6-11
b), in both cases, the emission was lower than for the neutravidin-eosin conjugate (Figure 6-11 c vs d).
The emission measurements suggest that, rather than relaxing from the excited state to the ground
state via fluorescence, the eosin molecules lost energy nonradiatively. The reduction in emission upon
the addition of the free dendrimer to the neutravidin-eosin dilutions indicates that the dendrimer
quenched eosin fluorescence. Quenching is frequently characterized using Stern-Volmer plots; these
have been used previously to characterize quenching of BSA fluorescence by PAMAM dendrimers.17 7

Here, the Stern-Volmer plot generated for eosin with increasing amounts of dendrimer added is
nonlinear (Figure 6-12), indicating that quenching is likely not the result of a diffusive process.178
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Figure 6-12. Stern-Volmer Plots. a) The concentration of free dendrimer in a 1 pM eosin solution was varied
between 0.1 and 1 pM (three trials). b) The ratio of the fluorescence intensity in the absence of quencher, FO,
to the fluorescence intensity, F, was plotted as a function of quencher concentration, |QI, in accordance with
the Stern-Volmer equation:

- 1 + kTOlQ1
178

F q

In the above expression, kq is the bimolecular quenching constant, and T 0 is the lifetime of the fluorophore in

the absence of quencher. The nonlinearity of the Stern-Volmer plot indicates that more than one type of
quenching may have occurred. The downward curvature of this plot suggests that the quenching observed
here might be better described by a modified Stern-Volmer equation that allows for two fluorophore
populations, one accessible to the quencher and the other inaccessible. In this expression (below), fa is the

fraction of initial fluorescence that is accessible to the quencher and Ka is the Stern-Volmer quenching
constant of the accessible fraction.

FO 1 1178

Fo-F - faKaIQ+ fa

c) The modified Stern-Volmer plot. While quenching was consistently observed, the linear fit for the modified
plot is not convincing. For each plot, the error bars represent the standard deviation of the dependent
variable across three trials.

To further investigate the mechanism of quenching, the pH of the dilutions was reduced. Previous work

has shown that the tertiary amines of dendrimers are capable of reductively quenching the excited

states of fluorescent molecules.179, 180 Approaching pH 4, all of the primary and tertiary amines are

protonated,'8 so the pH was reduced to 3.5. This reduction in pH increased the emission from mixtures

of neutravidin-eosin with free dendrimer added to the levels measured for dilutions of neutravidin-eosin

alone (Figure 6-13). However, reducing the pH did not have a similar effect on the emission from 6,
implying the existence of an alternative quenching mechanism for eosin covalently bound to a

dendrimer.
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Figure 6-13. Effect of pH on fluorescence intensity. Dilutions of neutravidin-eosin, both with and without an
equimolar concentration of free dendrimer (G7), and conjugate 6 were prepared at 10 pg/mL in the original
buffer (pH 7) and in a second buffer for which the pH had been reduced to 3.5 with HCL. The samples were
excited with 450 nm light and the resulting emission at 545 nm measured. Reducing the pH should protonate
the tertiary amines of the dendrimer and suppress quenching if the quenching mechanism involves an
electron transfer from the tertiary amines to the excited state of eosin. Reducing the pH increased the
fluorescence emission for the dilution of neutravidin-eosin with free dendrimer, but had no effect on
dendrimer conjugate 6.

The reduced fluorescence of the dendrimer conjugates relative to the neutravidin-eosin conjugate could
be an indication that locally high concentrations of eosin on the dendrimer surfaces promote self-
quenching. The reduction in fluorescence intensity observed when increasing amounts of fluorescein
were coupled to GO-G 2

169 and G5
182 PAMAM dendrimers was attributed to self-quenching. Here,

increasing the number of fluorophores enhanced the signal. Yet, if we normalize the emission by each
conjugate's absorbance, we see that the normalized emission decreased as the number of eosin
substituents per dendrimer increased (Figure 6-14). Kim et al. also observed a reduction in normalized
emission when the number of Cy5 coupled to G 5 PAMAM dendrimers was increased from 0.8 to 8; this
was attributed to weak excitonic coupling between the dye molecules on the dendrimers.7
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Figure 6-14. Emission normalized by absorbance. The emission at 545 nm (ex. 450 nm) was normalized by
the peak absorbance at 525 nm for each dendrimer conjugate. As the number of eosin substituents per
dendrimer increases, the normalized emission decreases.

Finally, for both the dendrimer and poly (acrylic acid-co-acrylamide) conjugates, the limit of detection
for the polymer conjugates was higher than for neutravidin directly coupled to eosin. For the poly

(acrylic acid-co-acrylamide) system, the observations of decreased solubility and increasing levels of

nonspecific binding with increasing eosin substitution suggested the possibility of solution phase
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aggregates. In this work, solubility was improved even for higher degrees of eosin labeling; however,

fluorescence quenching mechanisms were evident in solution-phase measurements. Susceptibility to

quenching is a feature that distinguishes photopolymerization from the other chemistries that have

been used for polymerization-based signal amplification; these include atom-transfer radical

polymerization (ATRP), 4 2,5 2 reversible addition-fragmentation chain transfer polymerization (RAFT), 44 and

enzyme-mediated redox polymerization.3 9 For both photopolymerization-based and RAFT-based signal

amplification, macroinitiators have been shown to contribute to an enhancement in photoinitiation

efficiency. 9,31,167 This work provides the first demonstration of a macrophotoinitiator for which a

quenching limit was encountered, highlighting the impact of complex photophysical phenomena on

macrophotoinitiator performance.

6.5 Conclusion

A body of work has established that the interfacial density of initiators determines the sensitivity

obtained when polymerization reactions are used to provide signal amplification in bioassays. It follows

that increasing the number of initiators localized per binding event may improve sensitivity. This

strategy has provided improved sensitivity for several combinations of initiators (2-hydroxy-1-[4-(2-

hydroxyethoxy)phenyl]-2-methyl-I-propanone, fluorescein/tertiary amine, bromoisobutyrate) and polymeric

scaffolds (poly (acrylic acid-co-acrylamide), polylysine) that present functional groups for modification

with both initiators and moieties that are capable of either molecular recognition or useful electrostatic

interactions. The eosin/tertiary amine initiation system is attractive in comparison with the above-

mentioned initiators because it allows for reaction times on the seconds timescale under ambient

conditions. However, eosin has exhibited more complex behavior than these other initiation systems

upon incorporation into macroinitiators. Coupling eosin directly to proteins has provided superior

sensitivity. The partially carboxylated G 7 PAMAM dendrimer scaffold solved the solubility limitation that

was encountered in past work with poly (acrylic acid-co-acrylamide) scaffolds, but a new quenching

limitation has been identified here and investigated mechanistically. Future efforts to design eosin

macroinitiators should include a feature that increases the separation between eosin molecules, or

conjugation of eosin directly to proteins should be accepted as the design that provides the greatest

sensitivity.
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7 Application to selective cell lysis

This work was completed in collaboration with Xiaocheng Jiang and Aimal Khankhel.

7.1 Abstract
Co-cultures are essential to the study of heterotypic cell interactions and for the creation of biomimetic
microenvironments that facilitate cell growth. Nucleic acid enrichment from co-cultures is important for

elucidating cell signaling mechanisms as well as verifying the accurate recapitulation of human cell

biology by model systems. Here, we present a strategy for the selective lysis of a target cell population

in a co-culture. Cells are labeled with photoinitiators and subsequently irradiated to induce crosslinking

of membrane proteins and photopolymerize a protective hydrogel barrier, allowing for RNA extraction

from the unlabeled cells. The process is complete within 5 seconds and selective even in closely
contacted cell aggregates.

7.2 Introduction
Co-cultures have been used to study heterotypic cell interactions in the context of tumor
angiogenesis,183,184 cell migration,18 cancer metastasis, 16-188 immune responses,'89 wound healing,190'191

stem cell maintenance,192 and the assembly of neural circuits.193 Micropatterned cocultures have also

enabled the creation of biomimetic environments for cell growth. 194

In some cases, the co-culture functions to facilitate the growth of a particular cell type by providing a

supportive microenvironment. The cocultivation of hepatocytes with nonparenchymal cells has proven

critical for maintaining hepatocyte viability and function.115'196 Microscale co-cultures of hepatocytes
with fibroblasts, 197 which synthesize the connective tissue of the stroma, have been developed for
studying the biology and treatment of malaria,198 hepatitis C,199 and hepatitis B.200 The ability of the co-
culture system to accurately recapitulate human hepatocyte biology has been verified through gene
expression profiling.

Co-cultures commonly feature in mechanistic studies of cell signaling. Co-cultures of cancer stems cells

and monocytes were used to elucidate the interactions between cancer stem cells and their

microenvironment.187 Following 3 hours of co-culture, the cells were separated using fluorescence-
activated cell sorting (FACS) in order to measure the expression of cytokine mRNAs.

The enrichment of nucleic acids from a single population of cells in a co-culture is complicated by the

need for trpysinization and separation by FACS. In the case of hepatocyte co-cultures, the fibroblasts

that are essential for stabilized function over longer periods of time contribute contaminating RNA when

the cells are lysed. Methods for selective lysis and RNA extraction in situ have the potential to vastly

simplify the nucleic acid enrichment process and improve signal-to-noise ratios, while also eliminating
complicating factors from trypsinization.

Photopolymerized hydrogels have been used extensively in tissue engineering to encapsulate
cells. 2,26,89-91 Photopolymerization has been favored over alternative polymerization chemistries for its

spatial and temporal control,89 low heat generation,25 and demonstrated cytocompatibility.2 01 Hydrogels
25,26

serve as immunoprotective barriers by enabling size selective transport, even in the case of
nanoscale films. 202 The targeted interfacial photopolymerization of hydrogels offers a route through
which selective lysis and RNA extraction can be achieved. Here, cells are pre-labeled with fluorescent
dyes that freely pass through the cell membrane into the cytoplasm, where they are converted into cell-
impermeant products. In addition, photoinitiator conjugated probes are used to label transmembrane

111



proteins in the targeted cell population. We show that the fluorescent dyes in the cytoplasm and the

membrane bound photoinitiators have a combined effect, protecting the target population from lysis.

The former produce singlet oxygen upon irradiation, resulting in cross-linking of the membrane, while

the latter initiate polymerization localized to the surfaces of the targeted cells.

7.3 Experimental

7.3.1 Materials
CellTracker Red CMTPX and CellTracker Green CM FDA were purchased from Life Technologies.

Poly(ethylene glycol) diacrylate, triethanolamine, 1-vinyl-2-pyrrolidinone, and Eosin Y disodium salt were

purchased from Sigma Aldrich. Lysis buffer was obtained from Qiagen. Poly-l-lysine, tissue culture plates,

phosphate buffered saline (PBS), dimethyl sulfoxide, neutravidin, eosin-5-isothiocyanate, and Hoechst

33342 were purchased from Sigma Aldrich. H1975 cells were obtained from ATCC. Biotinylated anti-

CD45 antibody was purchased from Abcam.

7.3.2 Cell culture and sample preparation
H1975 cells were maintained in RPMI 1640 medium supplemented with 10% fetal bovine serum (FBS) at

370C and 5% CO2. Whole blood from healthy donors was processed according to published methods 203

to isolate white blood cells from red blood cells and platelets. Following isolation, the white blood cells

were stained with 1 ig/mL (2.2 pM) CellTracker Green CMFDA in serum-free medium following the

manufacturer's protocol. In brief, CellTracker Green CMFDA was dissolved in DMSO to a final

concentration of 10 mM. A working solution with 2.2 iM CellTracker Green CM FDA in serum-free

medium was prepared from the stock solution. The cells were incubated in the working solution for 30

minutes at 37"C. The cells were then centrifuged and the working solution was removed. The cells were

resuspended in media supplemented with serum. The H1975 cells were stained with CellTracker Red

CMTPX in parallel. Once labeled, the cells were combined in a 5:1 ratio of white blood cells: H1975 cells

for a final concentration of 6x106 cells/mL in PBS. The nuclei were then stained with 1 pg/mL Hoechst

33342 in PBS for 5-10 minutes and rinsed.

Biotinylated anti-CD45 antibody was added to the cell suspension for a final concentration of 5 pg/mL.

The cells were incubated with the antibody for 30 minutes and then washed with PBS. Neutravidin-eosin

with 4 eosin per protein was prepared according to published methods.10 The cells were incubated with

neutravidin-eosin at a final concentration of 1 ptg/mL for 20 minutes and then washed three times with

PBS. The final concentration of cells in suspension was 1x106 cells/mL.

96-well culture dishes were coated with 0.1 mg/mL poly-l-lysine for 20 minutes and rinsed with water.

100 pL of the combined cell suspension was then added to the wells and the plates were centrifuged for

2 minutes at 100xg to accelerate cell attachment to the coated surfaces.

7.3.3 Polymerization and Lysis
A monomer solution consisting of 200 mM PEGDA, 150 mM TEA, 100 mM VP, and 0.3 pM eosin Y10 in

PBS was prepared. The cells were imaged prior to polymerization with the 20x objective and DAPI, FITC,

and Texas Red filters of a Nikon microscope. 10 IiL of the monomer solution was added to the well

containing the cells and 100 pL of PBS for a final concentration of 20 mM PEGDA, 10 mM VP, 15 mM

TEA, and 0.03 pM eosin in PBS. The well was subsequently illuminated using the Cy3 filter and the 20x

objective for 5-15 seconds with the lamp intensity at its maximum setting. The buffer and residual

monomer solution were removed from the well by pipette and lysis buffer was added and immediately

removed after 5 seconds. 100 pL of PBS was added to the well. The cells were then imaged again to

verify the specificity of the lysis.
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7.4 Results and Discussion
As depicted in Figure 7-1, white blood cells and H1975 cells were labeled with 5-chloromethyfluorescein

diacetate (CellTracker Green CMFDA) and CellTracker Red CMTPX, respectively. The structures of the

two dyes are shown in Figure 7-1A and B. CMFDA is a fluorescein dye with a chloromethyl group and

two acetate groups appended. The purpose of the chloromethyl group is to improve retention of the

dye within the cell by reacting with thiol groups in a glutathione S-transferase-mediated reaction that

produces membrane-impermeant glutathione-fluorescent dye adducts. The fluorescence of the dye is

activated when the actetate groups are cleaved by intracellular esterases to produce fluorescein.204 The

difference in polarity between fluorescein diacetate and fluorescein also contributes to retention of the

dye within the cell; fluorescein diacetate is nonpolar, while fluorescein is polar and, therefore, passes

more slowly through the cell membrane.204 Following labeling with the CellTracker dyes, the cells were

combined and incubated with a biotinylated anti-CD45 antibody that binds to CD45 antigen expressed in

the white blood cell membranes. The cells were subsequently incubated with a neutravidin-eosin

conjugate to localize eosin to the surfaces of the white blood cells (Figure 7-1C).

Fluorescein, like eosin, is a xanthene dye that is commonly used as a fluorescent labe1205,206 and tracer.98

Both fluorescein and eosin function as photoinitiators; 9,1 upon irradiation with green light, the dye is

excited to its singlet state, from which it can undergo intersystem crossing to its triplet state. In its

triplet state, it is reactive towards reducing agents, such as tertiary amines, which are included in a

monomer solution as coinitiators. Electron transfer to the triplet state fluorescein from the tertiary

amine is followed by proton loss from the tertiary amine radical cation.33 This sequence produces two

neutral radicals, of which the tertiary amine radical initiates polymerization by reacting with carbon-

carbon double bonds of monomers in solution. As schematically represented in Figure 7-1C, with the

addition of a monomer solution and exposure to light, only the cells labeled with CMFDA and eosin are

expected to be encapsulated within a hydrogel that protects them against subsequent lysis.
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Figure 7-1. Schematic for cell labeling, polymerization, and lysis. A) White blood cells are labeled with 5-
chloromethylfluorescein diacetate (CellTracker Green CMFDA) and H1975 cells are labeled with CellTracker
Red CMTPX. B) Once labeled, the cells are combined and incubated with a biotinylated anti-CD45 antibody,
washed, and subsequently incubated with a neutravidin-eosin conjugate. This series of steps results in eosin
localized to the membranes of the white blood cells. The cells are then plated in a poly-l-lysine coated 96-well
polystyrene plate. Upon the addition of monomer and light, the white blood cell membranes are crosslinked
and encapsulated within a hydrogel, so that only the H1975 cells are lysed when lysis buffer is added to the
well.
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Because fluorescein undergoes intersystem crossing less readily than eosin, its tetrabromo derivative,

with a triplet state quantum yield of 0.05 relative to eosin's 0.61,207 it is a less efficient photoinitiator.' 15

Its lower rate of intersystem crossing is why it is favored as a fluorescent tracer; its aqueous

fluorescence quantum yield, which increases with pH, 2 is 0.92 compared with 0.2 for eosin.20

Using CMFDA and CD45 targeting to immobilize eosin on the cell surfaces, it is possible to load a

sufficient level of photoinitiator in the cytoplasm and on the membranes of white blood cells to

selectively protect only the white blood cells in a mixed population of white blood cells and H1975

tumor cells in as little as 5 seconds (Figure 7-2). As shown in Figure 7-2B, more than 94% of the white

blood cells remain following lysis. Initially, we believed that a hydrogel interfacially polymerized on the

white blood cell membranes served as the only protection against lysis. However, control experiments

revealed that irradiation of the CMFDA in the cytoplasm without eosin immobilized on the surface and
98

in the absence of monomers prevented lysis. Both fluorescein and eosin are singlet oxygen sensitizers.

In the triplet state, these dyes react with oxygen to produce singlet oxygen and regenerate the ground

state. The singlet oxygen quantum yields in water are 0.03 (fluorescein) and 0.57 (eosin). 35 ,98 Singlet

oxygen has been implicated in the crosslinking of membrane proteins for cell membranes that have

been reacted with fluorescein isothiocyanate and irradiated with 488 nm laser light (1.9 W/cm 2 ) for 15-
165 seconds. 209 The addition of sodium azide, a singlet oxygen quencher, was shown to inhibit the

crosslinking.209 It should be noted that sodium azide can also react with sensitizer triplets and, as a

hydrophilic anion, is excluded from the membrane interior and repelled by the negative charge on most

biological membranes. Singlet oxygen is longer lived than the other excited states of oxygen,1 and

singlet oxygen lifetimes have been shown to be longer in model membranes, possibly facilitating

reactions with membrane proteins.2 In another example of photosensitizer initiated crosslinking,

membrane protein aggregation was induced upon the irradiation (15 W/cm 2, 488 nm) of fluorescein-

conjugated concanavalin A, a carbohydrate-binding protein, bound to erythrocyte membranes. 2 The

integrity of the membrane permeability barrier was not compromised and reducing the concentration of

oxygen was found to reduce the extent of the crosslinking. 2-mercaptoethanol was also shown to

disaggregate some of the crosslinked material, indicating the formation of oxidative crosslinks.m In a

different application, fluorescein-dextran conjugates were introduced intravascularly to induce platelet

aggregation in arterioles of the hamster cheek pouch in response to irradiation. 3 Singlet oxygen

scavengers (sodium azide, trans-beta-carotene) delayed the time to aggregate appearance while

hydroxyl radical scavengers had no effect. Rose Bengal, another xanthene dye, and more efficient singlet

oxygen sensitizer (quantum yield=0.75 98) has been used in a light initiated bonding technique intended

to replace suturing. 2 14 - 2 18 The protein crosslinking has been shown to be mediated by singlet oxygen;

Verter et al. showed that the extent of crosslinking decreased under nitrogen purging and increased in

D 2 0, in which singlet oxygen is longer lived.218

Efforts have been made to elucidate the mechanism for this photoinduced crosslinking. The

photooxidation products of histidine are thought to undergo crosslinking via a nucelophilic addition by

amino groups.211,219,220 These products can also react with cysteine or other histidine residues to form

crosslinks.2 1
1 The photooxidation products of tyrosine and tryptophan also react with amino

groups.211,220 In addition to the singlet oxygen mediated pathway, aromatic amino acids such as tyrosine

and tryptophan are oxidized in reactions with the triplet state and semioxidized form of eosin. 13 8,139

Radical formation can also lead to peptide bond cleavage.2 1
1 Aggregation via intermolecular disulphide

bond formation and radical-radical termination reactions can result as well.

Increasing the irradiation time from 5 to 60 seconds resulted in retention of the cells labeled with

CMTPX (Figure 7-2); the percentage of H1975 cells remaining post-lysis increases from 4% to 88%. This
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suggests that the CMTPX may also function as a singlet oxygen photosensitizer. It is also possible that as

the irradiation time is increased, nonspecific polymerization occurs. Radical polymerization is a

threshold process; a minimum concentration of initiating radicals is required for initiation and

propagation reactions to be competitive with inhibition reactions. For less efficient photoinitiators as

well as those present at lower concentrations, it is possible to increase the initiating radical

concentration by increasing the light dosage .
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Figure 7-2. Adjusting the lysis threshold. A) Cells are shown before irradiation and after lysis for

progressively longer irradiation times. The white blood cells (WBC) are stained with CellTracker Green

CMFDA and the H1975 cells are stained with CellTracker Red CMTPX. The nuclei are stained with Hoechst;

the signal from the Hoechst dominates post-lysis as the CellTracker dyes are photobleached during the

irradiation. B) Quantitative analysis of the percentage of each cell type remaining post-lysis for increasing

irradiation times.
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Figure 7-3A shows that the specificity of the technique is not impacted by varying the ratio of H1975
cells to white blood cells. As the ratio is varied from 1:2 to 1:25, only the white blood cells remain
following lysis for a 5 second irradiation time. This has important implications for applications in which
the cell type intended for RNA extraction is present at a much lower density than other cell types.

The strength of this technique for selective lysis lies in its ability to protect the target population from
lysis even in closely contacted cell aggregates (Figure 7-3 B and C). As shown, even white blood cells in
close proximity to H1975 cells remain intact following introduction of the lysis buffer. Figure 7-3C
presents SEM images of white blood cells before and after irradiation and shows white blood cells in
contact with an H1975 cell post-irradiation in a demonstration of the resolution achievable using this
method.

A H1975:WBC
1:2 1:4 1:12 1:25

After Irreddltion

Figure 7-3. Lysis in closely contacted cell aggregates of white blood cells (WBC) and H1975 tumor cells. A)
The ratio of H1975 tumor cells (red) to white blood cells (green) was varied. Varying the ratio of the cells did
not impact the performance of the technique; approximately 90% of the white blood cells remained post-lysis
for each ratio and an irradiation time of 6 seconds. The nuclei are stained with Hoechst (blue); the signal
from the Hoechst dominates post-lysis as the CellTracker dyes are photobleached during the irradiation. B3)
White blood cells and H1975 cells shown in close proximity. Only the white blood cells remain post-lysis. C)
SEM images of a white blood cell before and after irradiation (left) and crosslinked/polymerized white blood
cells in contact with an H1975 cell.

Pre-labeling cells with photosensitizers prior to co-culture allows for selective lysis of and nucleic acid
extraction from the unlabeled cells. This is a significant improvement over currently available methods
for nucleic acid analysis in co-culture, which require trypsinization and FACS or suffer from low signal-to-
noise ratios.

7.5 Conclusion
The enrichment of nucleic acids from a target cell population in a co-culture requires trypsinization and
cell sorting and is hindered by low signal-to-noise ratios when attempted in situ. Photoinduced
membrane crosslinking and targeted interfacial polymerization present efficient strategies for selective
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cell lysis and RNA enrichment in co-cultures. Cells are pre-labeled with a commercially available dye that
passes through the cell membrane and is converted into a cell impermeant product in the cytoplasm. In

response to irradiation, the dye converts oxygen to singlet oxygen, which induces crosslinking of the

membrane proteins. In addition, photoinitiators immobilized on the cell surface initiate polymerization

upon the addition of a solution of monomers and exposure to light, forming hydrogels that are localized

to the surfaces of the labeled cells, further protecting the cells against lysis. Future work will concentrate

on determining the relative contribution of the photoinduced crosslinking and interfacial polymerization
to protecting the cells against lysis.
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8 Conclusion and Outlook

8.1 Summary

Photopolymerization-based signal amplification (PBA) is an approach to biosensing that leverages the
amplification inherent to radical photopolymerization to enhance signal associated with specific
molecular recognition events. The main objective of this thesis was to expand the range of relevant
applications for PBA by addressing some the limitations of the technique as originally developed. In
addition, we sought to build a mechanistic understanding of the method, specifically examining the
effects of nonideal binding reactions and oxygen. Chapter 2 describes the development of an air-
tolerant monomer solution that allows interfacial photopolymerization reactions to proceed under
ambient conditions in as little as 35 seconds.'0 Previous implementations of PBA required inert gas
purging to eliminate the inhibitory effects of oxygen. We showed that the inclusion of submicromolar
concentrations of eosin, the photoinitiator, in the monomer solution mitigated these effects. The ability
to perform these reactions under ambient conditions increases their clinical utility by simplifying the
procedure and by removing purging gases that might be detrimental in some biological applications,
specifically those involving cells.

Chapters 3 and 4 detail spectroscopic investigations into the mechanisms underlying eosin's ability to
overcome oxygen inhibition. In Chapter 3, a dual-monitoring system for measuring eosin consumption
and monomer conversion is used to corroborate the hypothesized regeneration of eosin in the presence
of oxygen. A method for analyzing absorbance data for polymerizing hydrogels is also presented. In
Chapter 4, we examine the photoinitiation kinetics of the eosin/tertiary amine system and the effect of
oxygen using absorbance spectroscopy and kinetic modeling. The spectroscopic investigation revealed
that, in addition to the previously postulated reactions in which eosin is regenerated by oxygen,
additional reactions between oxygen and eosin in its triplet state and semireduced form occur and must
be taken into account. The formation and consumption of the semireduced species informed the
construction of a kinetic model, for which the importance of considering the reaction between triplet
state eosin and the tertiary amine as two separate steps was clearly demonstrated.

Chapter 5 considers the molecular recognition event, rather than the amplification chemistry examined
in the preceding two chapters. This chapter explores the concept of the amplification threshold in
photopolymerization-based signal amplification by investigating the impact of the binding affinity of the
molecular recognition event on the limit of detection. We showed that improvements in binding affinity
enhance detection sensitivity. A mass action kinetics based model was used to accurately predict
experimental findings and identify the key parameters for predicting the performance of PBA reactions:
surface capture probe density, incubation time, concentration and binding affinity of the target
molecule.

Chapter 6 evaluates the widely advocated strategy of developing polymeric macrophotoinitiators for
improving the sensitivity of photopolymerization-based signal amplification reactions. Building on earlier
work, in which solubility limits were encountered coupling eosin and neutravidin to a poly (acrylic acid-
co-acrylamide) backbone, we synthesized a more water-soluble polymeric macrophotoinitiator based
on a generation 7 poly (amidoamine) dendrimer scaffold. Although the solubility was improved, a new
quenching limitation was identified, demonstrating the complexity of designing polymeric
macrophotoinitiators that incorporate eosin as the photoinitiator. In lieu of viable photoinitiator
alternatives to eosin, we concluded that future efforts to design polymeric macrophotoinitiators should
include features that increase the distance between eosin molecules. However, it is also possible that
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the polymeric macrophotoinitiators are sterically hindered and that fewer bind to the surface.
Considering the excellent performance of the eosin-avidin conjugate, efforts to improve the sensitivity
of PBA reactions would be better spent on increasing the density of the capture probe.

Finally, in Chapter 7, we used PBA and photoactivated membrane crosslinking to selectively encapsulate
a target population of cells in a co-culture. In addition to labeling cell membranes with photoinitiator,
cells were pre-labeled with photoinitiators that are able to pass through the cell membrane into the
cytoplasm where they are converted to cell-impermeant products. This form of labeling and subsequent
illumination protects the cells against lysis, allowing for nucleic acid extraction from the unlabeled cells
without the need for cell sorting.

8.2 Recent advances
In the course of completing this thesis, a number of additional improvements reducing the cost
associated PBA were made. We found that coating glass slides with an activated agarose film16 2

facilitated a retention of binding activity for proteins that were denatured on SAM-modified glass.1 05'1 66

In addition to providing a more hydrophilic environment, we hypothesize that the agarose coatings
shield the proteins from the charged glass surface. These surfaces have the added advantage of being
significantly less expensive than SAM-modified glass (83% cheaper).

The agarose surfaces were critical to the development of a photopolymerization-based epigenotyping
assay using methyl binding domain (MBD) proteins.105 Photopolymerization-based signal amplification
enhances the suitability of MBD proteins for the detection of methylated DNA fragments by reducing
the cost and complexity of the assay relative to previously proposed methods.

More recently, photopolymerization-based signal amplification was demonstrated as part of a paper-
based immunoassay.2

1 Photopolymerization-based signal amplification was used to enhance the visual
contrast of the colorimetric readout and accelerate the color development process relative to existing
enzyme and nanoparticle based technologies. High visual contrast between negative and positive results
was achieved through the formulation of a pH-responsive monomer solution; 1.6 mM phenolphthalein
was incorporated into the acrylate monomer solution'0 and the pH was reduced to 7.9 to eliminate light
absorption by phenolphthalein during the polymerization. The phenolphthalein becomes entrapped
within the polymer network; a basic rinse post-polymerization permits visualization by the unaided eye
as the polymer goes from colorless to bright pink. The immunodetection of plasmodium falciparum
histidine-rich protein 2 in human serum was used as an example. This method was shown to be
quantitative when combined with cellphone-based imaging (Figure 8-1). Indicative of the flexibility of
this assay, it was also possible for the user to decouple the analyte capture from the amplification and
visualization; eosin is stable on the surface and is able to initiate polymerization after 130 days of
storage and the hydrogel post-polymerization can be rehydrated with NaOH after 130 days to generate
a strong colorimetric response.
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Figure 8-1. Photopolymerization-based signal amplification for a paper-based immunoassay. A) Hydrophilic
test zones were created by wax printing chromatography paper. Capture antibodies against PIHRP2 were
covalently coupled to aldehyde groups within the test zone, allowing for the subsequent capture of PIHRP2.
A second eosin-modified reporter antibody was introduced to form a complex with the surface-immobilized
PYHRP2 and restrict polymerization to test zones in which PfHRP2 was captured. In order to visualize the
polymer that formed, phenolphthalein was included in the monomer solution. As shown, the phenolpthalien
became entrapped within the cross-linked polymer network. A colorimetric readout was achieved when a
basic solution was dropped onto the surface, causing the phenolphthalein to become pink. A similar color
change was not observed on surfaces on which no PfHRP2 was captured and, consequently, no polymer
formed. B) Detection of PfHRP2 in a buffered solution at various concentrations. C) Quantitation of the
colorimetric results shown in (B). Images were taken using a cell phone camera and the colorimetric
intensity was calculated using ImageJ. The vertical line indicates the calculated limit of detection. Reprinted
with permission from Badu-Tawiah and Lathwal et al., Lab on a Chip, 2015, 15, 655-659. Copyright Q 2015,
The Royal Society of Chemistry.

8.3 Outlook
As a novel technology platform, the unexplored parameter space for PBA is vast. The photoinitiation

chemistry, monomer composition, and signal interpretation are all areas for continued research.

Alternative photoinitiation chemistries, in particular, are worthy of further exploration; to date, only

Irgacure 2959, Irgacure 184, fluorescein, and eosin have been tested. Eosin is one of several xanthene
98

dyes. Its superior performance as a photoinitiator relative to fluorescein has been explained by its
higher intersystem crossing quantum yield.98 The heavy atom content of erythrosin B and Rose Bengal

results in still higher intersystem crossing quantum yields, potentially indicating the potential of these

two xanthene dyes as alternative photoinitiators for PBA. It is generally accepted that to be considered

effective, photosensitizers should have high molar extinction coefficients at the wavelength of the

excitation light, high yields of intersystem crossing to the triplet state, and long triplet lifetimes to allow

sufficient time for reaction.2 However, the heavy atoms that drive intersystem crossing, also favor back

electron transfer from the semireduced eosin to the tertiary amine radical cation, ultimately reducing

the photoinitiation efficiency.207 The opposing effects of the xanthene dye heavy atoms highlight the

complexity of evaluating photoinitiators. The coupled system for dual-monitoring of UV-Vis and FT-NIR

presented in Chapter 3 presents an effective screening method for assessing photoinitiation systems.

120



Eosin's use as a photoinitiator dates back to the 1950s;m in the last 20 years, significant advancements
in photoinitiator efficiency have been achieved through the use of three-component systems. Three-
component photoinitiation systems include a light absorbing moiety (dye), an electron donor (amine),
and an iodonium salt.106'107 The hypothesized mechanism through which these reactions proceed
involves first the bimolecular initiation reaction between the dye and the amine, producing an amine
radical capable of initiating polymerization and an inactive dye radical. The iodonium salt is posited to
oxidize the inactive dye radical, regenerating the original dye, while also producing an active phenyl
radical.10 6 A more efficient photo-oxidizable mechanism has also been proposed; the route through
which the reaction proceeds depends on the reactants.12 4 Advantages of three-component systems
include better absorption, enhanced photochemical and chemical reactivity, higher polymerization rates

71,225and conversions, and lower oxygen sensitivity. Lower oxygen sensitivity is especially significant in
the context of photopolymerization-based signal amplification where the surface-to-volume ratio is
high, resulting in rapid replenishment of oxygen even as it is consumed in inhibition reactions. Replacing
the coinitiator also has the potential to yield significant gains in terms of photoinitiation efficiency. In a
study of the effect of coinitiator type on the initiation efficiency of two-component systems employing
eosin, Popielarz and Vogt showed that eosin used with an iodonium salt was 28x more efficient that

226eosin used with triethanolamine.

One of the disadvantages of employing eosin to overcome oxygen inhibition is that the limit of detection
is essentially set by the concentration of eosin in the monomer solution. When the effective eosin
surface concentration approaches the solution concentration, the entire solution polymerizes and no
surface localized polymerization is observed. Another alternative for overcoming oxygen inhibition is to
employ glucose oxidase to "scrub" oxygen from the system.50

Alternative methods for generating quantitative readouts have been explored in the context of AGET
ATRP. Photopolymerization has been most effective for enabling colorimetric readouts by producing
thick films that are readily visible to the unaided eye; the use of cell phone based imaging also allows for
quantitation with relative ease. Resistance-based measurements may permit quantitation with
increased sensitivity and precision. Chemiresistive biosensing is an area of growing interest as it allows
for label-free, rapid detection; analyte binding to the sensor surface changes the resistance, which can

227be measured using an inexpensive multimeter. Recently, conducting polymers have been used in the
fabrication of chemiresistive biosensors.227 In addition to providing mechanical flexibility (permitting a
range of novel substrates as surfaces), tunability, and low cost, these conducting polymers can be easily
modified to facilitate the covalent bonding of probe molecules. Photopolymerization-based signal
amplification has the potential to enhance the sensitivity of chemiresistive biosensors based on
conducting polymers. Polymer formation triggered by photoinitiators immobilized on the surface as a
function of binding events would amplify the change in resistance, enabling the detection of lower
concentrations of analyte.

In addition to resistance based sensing, we can also envision detecting the growth of polymer films using
microfluidic methods based on changes in size (film thickness), density, or surface friction. For these
applications, the polymerization may be performed on functionalized beads, rather than planar
substrates. Inertial focusing allows for the passive ordering of particles of different sizes at high rates in
microchannels. 2 28 PBA can be used to effect a change in size through the growth of a polymer film. This
change can then be detected using inertial focusing. Microchannel resonators can also be used to detect
changes in size.m Alternatively, the Manalis Group has developed microfluidic mass sensors capable of
measuring the density of single cells with a precision of 0.001 g/mL. 3 Provided the polymer is
sufficiently thick, polymer film growth is likely to alter particle density, enabling this form of sensing.

121



Surface friction is yet another possible metric and would depend on the hydrogel's surface friction being
different to that of the underlying substrate.

Two of the most critical parameters in determining the sensitivity of photopolymerization-based signal
amplification reactions are the capture probe density and its affinity for the target of interest. Efforts are
underway to engineer better capture probe molecules with higher affinities. However, as shown in
Chapter 5, the gains achievable using higher affinity capture probes are limited, and, ultimately, assay
sensitivity is determined by the capture probe density. Three-dimensional substrates, of which the
agarose surfaces are an example, offer a potential route towards increasing the density of capture
probes on the surface. The agarose-coated surfaces were optimized with the intent of minimizing stain
uptake on the surface. This resulted in a lower concentration of agarose being used than might be most
favorable for achieving high capture probe densities. The lower concentration of agarose implies a lower
concentration of functional groups and larger pores. As alternative staining strategies, such as the
phenolphthalein system, are developed, a reoptimization of the agarose-coated surfaces may be
warranted. Polymer brushes have been used extensively to produce functionalized surfaces. 2 However,
it is difficult to rival the simplicity and low cost of the agarose-coated surfaces.

There are a number of potential applications that can benefit from the selective cell lysis protocol
presented, including drug screening for liver toxicity9 as well as studies of tumor angiogenesis,183,184 cell

migration,185 cancer metastasis,186-1a3 immune responses,8 9 wound healing, 190 191 stem cell
maintenance,192 and the assembly of neural circuits.193 As presented, the demonstration of selective lysis
made use of a commercially available modified-fluorescein. This dye is only one of many commercially
available dyes, and further studies could identify an alternative that is retained for longer periods within
the cell, allowing for longer-term co-culture experiments.

The discovery of more efficient photoinitiators or the development of a water-soluble polymeric
macrophotoinitiator that is impervious to quenching could improve the reproducibility of molecular
recognition event-triggered cell encapsulation. This advance would widen the field of potential
applications for PBA. One application of particular interest is the selective extraction of nucleic acids
from circulating tumor cells (CTCs) in a mixed population with white blood cells. Over the past few years,
significant progress has been made in capturing CTCs from the peripheral blood of patients with
metastatic cancers.203,235 There is interest in RNA-based characterization of the isolated CTCs. This is
complicated by the presence of contaminating white blood cells.23 3 Photopolymerization-based signal
amplification offers a strategy for selectively polymerizing white blood cells in response to labeling with
photoinitiator conjugated anti-CD45 antibodies, thereby enabling the extraction of RNA from only the

236CTCs. By incorporating cleavable monomers, it should be possible to remove the polymers from the
encapsulated cells, allowing for molecular analysis of both cell populations.

Efforts are underway to model the interfacial polymerization activated by eosin. This is a challenging
problem due to the complexity of the photoinitiation kinetics involved. This thesis has provided some
clues as to which reactions must be included in order to more fully capture the behavior observed
experimentally. The development of a representative and predictive model would permit a design-based
approach, eliminating the need for tedious trial and error based experimentation. Strides have already
been made in this direction, in particular concerning the binding reaction at the surface.
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8.4 Concluding remarks
This thesis describes the development of photopolymerization-based signal amplification as a platform
technology for use at the point-of-care. The development of an oxygen tolerant monomer formulation
for radical photopolymerization provided the impetus for spectroscopic investigations into
photoinitiation kinetics and the effect of oxygen. The factors determining the sensitivity of
photopolymerization-based amplification reactions were elucidated and novel synthetic strategies for
macrophotoinitiators were explored. Finally, interfacial photopolymerization and photoactivated
membrane cross-linking was implemented for the selective lysis of a target cell population in a co-
culture. This thesis provides the basis for future work evaluating alternative photoinitiation chemistries,
monomer compositions, detection reagents, and signal interpretation methodologies.
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Appendices

Table A 1. Photopolymerization-based signal amplification: summary of reported limits of detection and the
detection method used

References I imit nf dpturtinn

10 biotinylated Microscope/CCD camera
oligonucleotides/Im 2

14 eosins/tm', 7 (increased
VP by 10x), 2.8 eosins/im
(acrylamide)

Same as enzymatic method
for flu

~40 initiators/pm1

'10 EITC nucleotides/ptm

Unaided eye on biosensor

Digital camera or
stereomicroscope

Visible (1 hr hematoxylin
stain)

1: 100,000 anti-NPC Fluorescence

166140 protein moleculesm 2

(BCI)

7.2 nM

By eye (stained with eosin)

By eye (phenolphthalein)

136

netectinn mpthnd



Table A 2. Summary of light sources, monomer compositions, and polymer film thicknesses for
implementations of photopolymerization-based signal amplification

Reference Light source Intensity Duration Monomer Maximum
polymer height
(initiator density)

400-500 nm, a 8 mW/cm' 20 min PEGDA 240 nm
Novacure
collimated light
cznirrP

260 mW/cm2 30 min
3

comparison <180 nm (PEGDA),
<1420 nm
(acrvlamide)

1i3 UV light centered 5 mW/cm 2  12 min 97 wt% Not measured
around 365 nm hydroxyethy
from a Blak-Ray B lacrylate/ 3
Series-100A lamp wt%

ethyleneglyc
ol
dimethacryl
ate

495-650 nm 40 mW/cm' 30 min comparison <1.6 mm (spotting
sa-eosin onto NC,

2 Collimated, 495-650-nm polychromatic light from Acticure light source, in-house 350-650-nm internal interference filter and

a 490-nm stopband limit filter. Avens 2008: Acticure (Exfo) high pressure mercury lamp with an in-house internal bandpass
filter (350- 650 nm) and an external 490 nm longpass filter (Edmund Optics) positioned at the end of a light guide and a

collimating lens
3 Light intensity increased to 540 mW/cm 2 for RT-IR
4 Source: http://www.biotechniques.com/multimedia/archive/00042/320_42287a.pdf
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PEGDA), <200 nm
(PEGDA) and <250
nm (acrylamide)
with hybridization
on sfb
surfaces/hydrazid
e oligos

2 495-650 nm 40 mW/cm2 30 min acrylamide ~300 nm (610+70
eosin/um2 )

495-650 nm

522 nm LED
(InDevR)

30 mW/cm'

30 mW/cm'

20 min PEGDA <250 nm (based
on filament
resolution)

100 sec

522 nm LED 30 mW/cm1  50/90 PEGDA n/a

(InDevR) seconds

inverted

Table A 3. Summary of PEGDA-based monomer compositions

Reference PEGDA (mM) MDEA/TEA VP (mM) Eosin (pM)

7 A, A -%ne RArsr A n I-L1 n\%

TEA
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420 210 M DEA 35 0

166 200 150 (TEA) 100 0.5

200 150 (TEA) 100 0.35 (and 1.6 mM

phenolphthalein,
pH 7.9)

Table A 4. Summary of Acrylamide-based monomer compositions

Reference Bisacrylamide Acrylamide MDEA/TEA VP

1s3 126 mM 5.2 M 225 mM MDEA 37 mM

126 mnM 5.2 M 218 mM MDEA 36 mM

Table A 5. Summary of xanthene dye reactions reported in literature

Reaction Rate constant Reference/notes
E- t1 / 2=.35 ins, k=ln(2)/t=1980 s1 121 Mills et al says there is 98%

recovery of ground state by
decay

E-+ t1 / 2=.6 ins, k=1155 s 121

E3* t1 / 2=.08 ns *decay constant of 121

2000 thought to be less
accurate than Kasche, k=8664
S-1

E- (1 st order relaxation) 9x102 S 132

cited by Fouassier 1991a,
p.251

E- (2nd order relaxation) 8.7x10 8 M-1S-1 132

cited by Fouassier
E-+( 2nd order relaxation) 8.8x107 M S 132

cited by Fouassier

E--(cdeca ) 6.5x10 3  97 (half-life=30 ps)

E+(decay) 9 (half-life=170 ps)

RB'-(decay) 2x104 M s Rose Bengal (PBS)

kdeact 103- 132
E6 >E6x
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E 3* kdeact 420 S113

E3* kdeact 540 S110

E 3 * kdeacE 550/540 s' 133 (pH 8/11)

kreiax 8.1 S-1 113

El* k E+heat 4.4x10 s
krelax 1.X8 S-1 113

El* k E+light 1.3x10 s

El* krelax </=1.05 x108 s-1 131 water

El* 3* 5.8x107 s-i 113

El* 3* (8.4+0.8) x108 S-1 131 water
E1* )E3*1kisc 3*18 97

k 110

E 3 * + E 3* E 3 * + E 1.2x109 /9.8x10 8 M s-1 33 (pH 8/11)

3 *ktt 3*1119 1 
IS1 110 E3 * + E3 - E3 * + E 1.lxlO M s

E 3 * + E 3 * E -E + E-+ 1.2x108 /1.3x10 8 Ms1 133 (pH 8/11)
3 *ktt, 8x18 M-1S-1 132

E3* E3- E - E-+ 8x108 Ms 32
rate constant summed with
that for TT -> 2E

E* + E3 E- + E-+ 1x0Ms 4

3* ktE + E+ <3x104

3 3* ktgr 2k=2.4x10 M s-1 13
E3* + E -- 2E

E 3* +E 3 * - E + E 1.9x10 M s1 14 Nonradiative decay of
triplet

E 3* + E 3* 1.lx109 M s-1 238

RB 3* + RB 3 * 1.5x109 M1s-1 238

3* kt - 0.7x 108 M1s1 110 Fisher et al. say that Kasche
E + E -E + indicates this reaction

accounts for 20% of
triplet/triplet

3* + tF -- + 7.3x107 /7.1x10 7 M s 133 (pH 8/11)E + E -- + E + E-

E3* + E -+ E + E-+ 8x,08 M-1 s-1 132 rate constant summed with
T+E->2E

3 ktgr 3x108 M-1-1 110
E *+ E - 2E
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E3 * + E 2E 3.3x108 /7.9x10 8 M's' 133 (pH 8/11)

E3* + E 4x108 M -is-i 121

RB 3 * + RB 7.6x108 M's'1 103

E + E-+ - 2E 0.75x103 Ms~ 1  135 ethanol
krd 7.xO M-1-1 132

E'- + E-+ - 2E 8.8x10 M s

krt 8 -1 -1 120 auosp .
E'- + E-+ - 2E 8x10 M~s aqueous pH 8.5

F3* + F- -F- + F k6+k7=1x10 9 M- s4  136fluorescein

F 3* + F'+ kF + F-+ 
3 6fluorescein

E- + EX Er E61M 1 120 aqueous pH 8.5
E +E- - E + EH2  2ll

E+ + E+ ' p lxlMs 2 say P could be dimer

RB3* +02( 3) 1.6x10 9 M's 1  
103 all oxygen quenching
reactions (20% superoxide
and singlet o2)

E 3 * + 02( 3Z-) 1.1x109 M's 1  97

3* 1 .1x10 9 M's 1  127 ethanolE3 *+02 ( 9 'E-*E +02(
kET

E + 02 ( A ))

E 3* + 02( 3Z ) 1x109 /1.8x10 9M's4  133 (pH 8/11)
kET

E + 02( Ap )
E 3* + 02( 3 2) 7x108 M^S- 99

kET 
'E + 02( 'g)

E 3 * + 02( 3-) (1.3-2.1)x109M's' 112 aqueous, attributing all of
kET triplet/oxygen reaction to
- )E +2('A 9 ) singlet oxygen

E3* + 02 ( 3Z 9~) -> E + 02 <108 Ms-I 7
3 *+( 3 EP\- E+O 1.1x10 9 M s-1  

138 (pH 6-8)
2 -) 2 139cite Kasche 1967

1-give value for physical and
chemical quenching and cite
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Kasche

F3 * + 02( 3Z-) 1.56x109 M's' "6 fluorescein, specify physical

->F + 02( 3 quenching

3 - 1.6x106 Ms 1 3 aqueous
E*+02( 9,)- E+

E3* + (3 k) E+ + 0- Low efficiency-couldn't 33 (pH 8/11)
E+02 ( Y-0 -+O2 determine

E 3* + 2( 3-) E+ + 2 6x106 M s,< 10 Ms 138 (pH 6-8) 139

E 3 * +02 ( 3 9- E+ + 0 < 10 M s-

E3 * + 2( 3E) + + 0- 9.1x103 M's' "3 (aqueous) 86

F 3* + 02( 3Z) 9 F+ + 02- 1.4x108 M's'/1x107  
1 fluorescein (aqueous, pH

12/2)

F3 * + 02( 32) 1.4x108 M's-' 136fluorescein

-> F-+ + o- (or HO2 )

E- + 02( 32: 6x107 M 's 1 (70% acetonitrile) 112
120

E'- + 02 -> E + H02
._ 107-109 M's' 112 low at low pH (based on

half life)

._ No rate constant reported 99,239,240

E-+ - E + 02 3.7x106M s- 241

->E+ + E + 027

F- + 0 - .F + 0 101 -109M s 122 fluorescein (aqueous)

RB- + 0 -. RB + _' 1.5x10 8M's' 237 Rose Bengal (PBS)

E-+ + 02( 3 2- ) 8x10 8 M-s - (70% acetonitrile)

7 120

E - + 02 -

F'+ + 02 ->F + 02 fluorescein

E + 02 ( 1Ag ) 10 7Ms 1 13 methanol/acetonitrile,
under illumination (so unclear
which species quenching)

2.7x107 M's' 141 (50% acetonitrile/water)
02 ('A 9 )+E-_+ 2 ( 3  ) 124123

+ E (E02)
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02( kd ( 3Z- 4.4x15 s-1 142water (average)

02 ( 1A ) - 2 ( 3E) 5.2x10 s

5 -1 14102 1 Ag + ( 3y-) 3.3x 104- s4
A g 0 'flacetonitrile

02 ( A)-+ 02 ( 3Z - 2.4x105 s-

E-+ + Q -E + Qox Semioxidized reduced to 133

ground with suitable reducing
agent

E3* k 7.3x107 M'S 4  127 triethanolamine in water5
E*+ TEA --->_ _ _ _ __ _ _ _ _ _ __ _ _ _ _ _ _

E3 * + TEA k 4.2x107 M's-1 128 triethanolamine in water,
pH 9.5

E3* + TEA k E- + TEA+ 6x105 98 p.341 triethanolamine in
eythl acetate/20% methanol

E1* + TEA k 3.4x109 M1s-1 128 triethanolamine in water,
pH 9.5

E 3* + MDEA - E- 4.3x106 M s

+ MDEA+ Table 8 of Neckers 1993

6*k .xO 97

E3* + MDEA - E- 4.3x10
+ MDEA-+

E 3 * + MDEA 4.2x104 s1 (how are these the 46acetonitrile

- E- + MDEA+ units?)

E1* + MDEA 8x408 M s 70% acetonitrile
k8x17 97

El* + MDEA -- E- 8x10
+ MDE A-+

E2 1.4x108 M 1  146 acetonitrile

+ MDEA-+

E- + MDEA 5.6x106 M s- 9 70% acetonitrile (semired.
not measurable)

E,+ + MDEA -. E + MDEA+ 2.3x10

Faster than in ethanol (also faster than with erythrosine)
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E H + O 2 - EH' + HOO07

EH + 02 - E + HOO. 1482424

. + .dLindqvist 1960 as specified byF+ + F+ -> dimer 120

FH* + FH-> FH- + F + H+ 1.1x104M-s1
107145

EH'+ EfH -> EH2 + E

E3* + A kM -> E'- + AM*+ 1x10 98 p.340 p-phenylene diamine

TEA - +02 -TEA - 00 4.9x109M s' 149-tertiary amine in benzene
or cyclohexane.

H+ 5x109 6x1011 120 waterE + ejg --- E-61

E + OH -- > E-+ + OH- 1.4+0.4 x10 Ms1 243 2

EH' + RH -*EH 2 + R 107 RH=MDEA

02( 1A g ) + 0 -- 1.6x109M s1 143

-*02( 3y -) +0 2 DMSO

02( Ag) + 0;- (3.6+0.1) 10 M's 1  144 citing Rosenthal

- 02( 
3 Z ~) + 0 2

02 ( 1 Ag ) + 02- (7+6) xlO M s 1 143

acetonitrile (expect some
-2( Zg) + 02 superoxide loss since not

stable in this solvent)

02( 1Ag ) +02( 3Z-) 9.7x102 M-1s 142 water, table 15, overall
rate constant 244

02( 1Ag ) + (C 2 H5 ) 3 N 1.3x10 M s-1 142 methanol, table 6

H02 + 02- + H2 0 9.14x107 Ms-1 245

-+02( 31 q ) + H202 + 0H-

02- + 07- 2 M s /<0.2/<0.3 1s0,1s1,246

-0 O2 ( 3 zq) + H2 02

HO + H02 7.6x10 Mls-l 150'151

-* 02( 3-) + H202

H02 + H02 2x106 M s-1 1s2

-4 02( 3E -) + H2 0 2
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