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Chapter 1

Background and Motivation

1.1 The Internet of Things

The Internet of Things (IoT) is a network that allows objects to be remotely sensed

and operated. This connectivity has ushered in a new age of automation that impacts

all aspects of human life and industry. A smart grid enabled by the IoT dynamically

adjusts power generation as demand shifts over time and across regions. Connected

vehicles monitor their own state of health and communicate with other vehicles on

the road to mitigate accidents and traffic jams. Health tracking devices empower

their users and the users' doctors to make the best decisions to improve overall well

being. It is expected that this network will encompass 30 billion devices in 2020,

driving $6.2 trillion in value in 2025 [1].

One of the key enablers of the IoT is low power wireless technologies that have

been developed in the last 20 years. These technologies enable connectivity without

requiring a mechanical connection. The first of these modern low power networks

is the IEEE 802.11 standard which was initially released in 1997 and provides the

specification for Wi-Fi. IEEE 802.15.1 defined Bluetooth, and 802.15.4 is the basis

for ZigBee and 6LoWPAN. In addition, there are other wireless protocols spearheaded

by various industry players such as ANT and Z-Wave. Finally, the proliferation of

cellular networks across the country has provided connectivity out in the field.

The exploding proliferation of these networks allows devices to connect at a wide
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variety of ranges and power. However, all of these solutions suffer from the same

drawback; they require all remote nodes to have radio transmitters. Radio trans-

mitters drive up the cost of the remote node not only due to the expensive radio

frequency (RF) components but also due to the increased power requirements that

necessitate the use of onboard power storage or external power.

For high valued goods, like mobile phones and automobiles, where the added

expense is a small part of the bill of materials, this cost can be justified. However,

there is the potential for great value to be derived from connecting a large number of

low cost devices. These low margin devices cannot afford to include an active radio

and as a result must seek alternative solutions.

1.2 Backscatter Communication

In a backscatter communication system, a single transmitter provides the power for

communication to all remote devices in its field of view. In order to enable communi-

cation, each node only requires a means to reflect power, a much lower cost solution.

In addition, if the devices consume a small amount of power, it is possible for the

node to harvest all of its power from the incident power. Backscatter communication

challenges the notion that an active transmitter is required to participate in the IoT

by significantly lowering the cost to communicate. It is a cost effective way of bringing

a very large number of devices online.

A number of backscatter radio communication standards have been developed to

meet the needs of different applications and industries, but the most successful im-

plementation is the GS1 radio frequency identification (RFID) Air Protocol accepted

by the International Organization for Standards (ISO) as ISO 18000-6 . As its name

implies, the primary purpose of this protocol is to cheaply and cost effectively identify

objects. The remote devices are known as tags and they communicate an identifying

number when prompted. An interrogator serves as a power source and facilitates

communication between the tags and the clients who benefit from the identification

of items. By shifting the cost of communication to a single device, the marginal cost
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of identifying a new device approaches cents as the cost of a tag falls. RFID has seen

adoption by retail industry giants, causing the price of a tag to drop well below $0.25

USD [2].

With 8 billion devices connected the internet in 2013 [1], the combination of low

cost, low power and wide adoption make RFID a very attractive platform on which

to connect the next 22 billion devices.

Given the potential of RFID's role in the IoT, this thesis is structured as follows:

Chapter 3 will explore how RFID is used. Chapter 2 will explain how backscatter

communication works. Finally, Chapter 4 will explore how RFID can enable the IoT.
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Chapter 2

Backscatter Fundamentals

This chapter will answer the following questions with enough depth so that the rest of

the thesis can be understood: What problems can be solved by backscatter communi-

cation? What is backscatter communication and how does it work? How does RFID

utilize backscatter communication? How does a client interface with an iterrogator?

2.1 Brief History

The manipulation of a backscattered radio signal as a means of conveying information

dates back to World War II. In early attempts to distinguish friend from foe, German

Luftwaffe pilots would roll their aircraft when illuminated by a radar system. This

rolling maneuver changes how the radar energy reflects off of the aircraft, appearing

as a blip on the radar operators screen [3]. While this system was very rudimentary,

it demonstrates how radar backscatter could be used to distinguish objects. However,

this system is very insecure as any aircraft can be rolled and the resulting backscatter

does not identify the type of plane without further processing of the backscattered

signal.

The solution was to equip all aircraft with transponders. When the planes were

illuminated by radar pulses, the transponders, containing active transmitters, would

respond back with an identifying number. An implementation of this system is used

to this day on all aircraft. Air traffic controllers use these transponders to identify
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aircraft in the area for which they are responsible. In addition, aircraft use these

transponders for anticollision systems which operate independently of ground based

systems. The use of these systems is critical to maintaining the safety of private and

commercial aviation.

The need to automatically and cheaply identify objects is not unique to the aircraft

industry. This problem exists in a number of industries ranging from the electronic

toll collection to tracking of livestock. Due to the unique challenges in each instance

of the automatic identification problem, different, incompatible solutions have been

developed. These applications will be explored in Chapter 3.

In the late 1990's, research problems in robot localization and industry needs for

supply chain management met in a way that caused the automatic identification prob-

lem to be approached in a generic and unified manner. This collaboration between

academia and industry launched the MIT AutoID Center. The goal of this collabora-

tion was identify and develop standards in order to practically identify objects. Three

of the many innovations that came about are the electronic product code (EPC), the

standardization of the communication between a tag and the interrogator, and the

standardization of the communication between a client and an interrogator. In order

to enable the development of neutral standards which do not favor a particular vendor

or customer, the standards are maintained by an independent organization known as

GS1.

2.2 Electronic Product Code

At the heart of the efforts of the AutoID Center is the concept of the EPC. It is a

number that is assigned to every object, group of objects, location and document. On

a tag, the EPC is stored as a 96 bit number. The GS1 Tag Data Standard [4] defines

how this number should be interpreted. A number of bits are reserved to identify the

format of the EPC, the company, and product that the EPC describes. As a result,

although maximum number of items that could be identified with a 96 bit number is

7.923. 1028, the actual number objects that could be identified is fewer due to the use

18



of reserved bits.

2.3 Basic Operation

The most widely adopted GS1 RFID standard is in the Industrial, Scientific and

Medical (ISM) ultra high frequency (UHF) band. In the Americas, the UHF ISM

band has a center frequency of 915 MHz and a bandwidth of 26 MHz. At this

frequency power transfer occurs through radiative coupling, as opposed to inductive

coupling typically seen at much lower frequencies. The range as a result is much

greater than what is seen in inductive coupling and power is radiated whether or not

there is a remote device harvesting.

In order to develop an intuition for how RF radiation can be used in backscatter

communication, it is useful to draw an analogy between the RF radiation and visible

light. Imagine Alice, a ship captain and her crew, Bob, who has been washed over-

board in a late night storm. Unfortunately, Bob is very difficult to see from the boat,

even with the use of the onboard searchlight. Luckily, Bob remembers that he has a

mirror is his pocket. When Alice points her spotlight at Bob, Bob uses the mirror to

reflect some of the light back at Alice. Being well versed in morse code, Bob uses the

mirror and starts to tell Alice that he is tiring and to come quickly. Alice sees the

reflected light and recognizes it as morse code. Alice responds to Bob by turning the

searchlight on and off, telling him to remain calm and that she will be right over.

Exploring the analogy a little further, it becomes clear that Bob cannot commu-

nicate with Alice at the same time that Alice is trying to communicate with Bob. A

refinement of the analogy would be that instead of Alice seeing Bob reflecting light,

she is observing the output of a single pixel camera, or a photodetector at which

Bob aims his mirror. With this refinement, it becomes clear that if multiple people,

Bob and Charlie, are overboard, they cannot talk to Alice at the same time as their

communication would overlap at the photodetector. Finally, since Bob and Charlie

are aiming their mirrors at the photodetector, they are not able to see when the other

is attempting to communicate with Alice.
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Figure 2-1: Example of backscatter communication

With this high level understanding, we can start to assign names to different parts

of the analogy. Alice's searchlight and photodetector pair is known as the interrogator

in an RFID system. It radiates power while listening for a tag and communicates

with all tags simultaneously. Bob and Charlie's mirror is the analog of a tag antenna.

It communicates with the interrogator by reflecting, or backscattering, power back to

the interrogator. However, since the power reflected by the tag is much lower than

that radiated by the interrogator, tags communicating via backscatter do not interfere

with nearby tags attempting to communicate. Figure 2-1 shows what the output of

the photodetector may look like. The high section on the left is the interrogator

providing power for tags. In the middle section, the interrogator modulates between

high and low power states communicating to all tags in its field of view. Finally, on

the right side is the tag responding via backscatter.

In the analogy, Bob and Charlie sent information by physically moving the mirror.

Tags achieve the same result by modulating its antenna's reflectivity with the help of

the on board integrated circuit (IC). When the antenna is well matched, the incident
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Figure 2-2: Tag Modulation of Backscatter (From: The RF in RFID [3])

radiation is absorbed and can be used by the IC to power internal logic. In order to

reflect power, the antenna can be detuned by shorting it to ground. A transistor can

be used to electrically switch the short circuit path on and off. Figure 2-2 shows how

this works in practice.

2.4 GS1 UHF RFID Air Protocol

In order to exchange information, it is important to understand and define the symbols

that will be used to facilitate this exchange. Interrogators use pulse interval encoding

(PIE) to transmit information. As the name implies, the difference between a binary

0 and a binary 1 is how long the pulse is. The basic unit of timing is called a tari

and corresponds to the length of a binary 0. A binary 0 is defined as a period high

power followed by a period of low power. A binary 1 is defined as a high power pulse

greater than a tari in length and a period of low power. Figure 2-3 depicts how these

pulses are defined.

21



1.5 Tari s data-1 5 2.0 Tar - --

Tar 0.5 TarI s x ! Tard

PW PW

data-0

data-1

Figure 2-3: Interrogator Pulse Interval Encoding (From: EPC UHF Air Protocol
Standard [51)

There are many more details involved in the interrogator/process, but they are

not necessary for the understanding of the work in this thesis. For more details,

please refer to Tom Scharfeld's thesis [6], the RF in RFID [31, and the GS1 Class 1

Generation 2 (C1G2) Air Protocol [5].

2.4.1 Inventory Process

The inventory process is how an interrogator determines what tags are in its field

of view. Due to the fact that only the interrogator can see the tags, it is up to the

interrogator to decide when each tag communicates with the interrogator.

The inventory process takes place in rounds. Using the query command, the

interrogator announces how many slots there are in the current *round, n. When the

start of a round is announced, each tag will pick a random number that is between

zero and n-1. After a certain wait period the interrogator will announce the start of a

new slot. The tags will then decrement the random number they chose by one. When

the random number is equal to zero, the tag will backscatter a random 16 bit number.

If there are two tags that transmit a random number in that slot, the interrogator

will detect the collision and ignore the backscattered signal. If only one tag responds,

the interrogator will acknowledge the tag by responding with the random number

that the tag backscattered. Once the tag has been acknowledged, it will backscatter

its EPC. When all of the slots have been iterated through, a new round is started.

22
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This procedure is known as the Q protocol and it is a variant of the slotted Aloha

Protocol [6].

For this protocol to work efficiently, it is very import to pick the number of slots

in a manner that is proportional to the number of tags that are present in the field

of view. If the tag population is very large and the number of slots is very small, it is

unlikely that there will only be one tag responding in a time slot, resulting in a large

number of collisions. If the tag population is small and the number of slots is large,

it will take a long time to complete an inventory round.

The number of slots present in a round is determined by the Q parameter after

which the protocol is named [7]. It is a 4 bit number that ranges between 0 and

15. The number of slots is determined by 2Q. This allows the number of slots to

range from 1 slot all the way to 32768 slots, large enough to handle even the most

demanding applicatiOns.

2.4.2 Interrogator Commands

With an understanding of the theory of operation of backscatter communication and

how the inventory process works at a high level, the remaining portion of this chapter

will delve into some of the implementation details of the GS1 RFID Air Protocol.

Select Commands

Before an inventory round begins, the interrogator has the ability to limit which

tags can participate in the inventory round. For example, consider an interrogator

mounted at the entrance of a warehouse. Pallets contain 20 boxes and each box

contains 20 light bulbs. If the supply chain software only needs to know the EPC

of the pallet, it would be very time inefficient to inventory each light bulb and box.

By selecting only EPC's which correspond to pallets, the inventory process can be

greatly expedited.

In a select command, the interrogator specifies a bit pattern and mask. A tag

that matches the select command can be instructed to participate or abstain from
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Figure 2-4: Inventory Process (From: GS1 C1G2 Air Protocol [5])

the following inventory round. By issuing multiple select commands, an interrogator

can effectively winnow the tags that participate in an inventory round.

Inventory Commands

An interrogator has the following commands to control the inventory process: Query,

QueryRep, QueryAdjust, ACK, NAK. Of these commands, the most relevant com-

mands are the Query, QueryRep and ACK commands.

In a Query command, the interrogator announces the start of a new round, sets

the number of slots in this round, and sets the communication parameters of the tag

backscatter reply.

An interrogator uses the QueryRep command to delineate the slots in an inventory

round. Issuing this command causes each tag to decrement their internal counter and

backscatter a random 16 bit number, an RN16, when that counter reaches 0.

The ACK command is used by the interrogator to acknowledge a tag that has

backscattered a random number. The interrogator will repeat this random number

back to the tag. If the random number sent by the interrogator is the same as the

random number sent by the tag, the tag will backscatter its EPC.

Figure 2-4 shows how these commands work with tag responses to efficiently trans-

fer the EPC to the interrogator.
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Access Commands

Access commands allow the interrogator to access other parts of the onboard eeprom.

In order to accomplish these tasks, the interrogator has the RequestRN, Read, Write,

and BlockWrite commands.

The RequestRN command is used to have the tag backscatter a new random

number. This number can be used as a handle to refer to the tag or it can serve as a

key to encode information.

The Read command instructs the tag to backscatter a number of bits of its memory

starting at a specified memory location.

The Write and BlockWrite commands instruct the tag to commit a 16 bit number

to memory at a specified memory location. The difference between the Write and

BlockWrite commands will be explained in the following section.

2.4.3 Reading and Writing Process

For any access command, the RequestRN command is sent to the tag, causing it

to backscatter a new random number. This random number is used as the handle

to reference the tag. This handle is used in all subsequent access commands. This
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process is depicted in Figure 2-5.

For a Read command, the interrogator includes the address of where the read

should start, the length of the read and the handle of the tag.

For a write, after the handle is requested, a new random number is requested.

This random number is the key. This key is XOR'd with the data to be written. The

reason for this is that the interrogator radiates a large amount of power which can

easily be picked up outside of a building. Passive and semipassive tags, on the other

hand, are quiet. This means that the key is less likely to be leaked if eavesdroppers

are kept a reasonable distance away. As a result, an eavesdropper will not be able to

decode what written to the tag. This process is repeated for every 16 bits that are

written to the tags memory.

A BlockWrite is similar to a write but no cover coding is used. As a result, the

writes tend to be faster because a new random number does not need to be requested

for every word that is written.

2.5 Low Level Reader Protocol (LLRP)

LLRP defines how clients suchs as computers and mobile devices can communicate

with a interrogator. However, not all interrogators implement LLRP; devices such

as the Nordic ID Stix, the Impinj Indy RS400, and the Magic RF RFID module

implement their own proprietary interfaces.

When dealing with a interrogator that communicates using.the LLRP protocol,

there are three messages that the user needs to be aware of. The first is the Reader

Operation Specification (ROSpec). This defines the parameters of operation, such

as transmit power, number of antennas, and data rates to use. The second message

is the Access Specification (AccessSpec). This defines what niemory regions on a

tag to read and write. It is also possible to specify a target which allows the use to

specify which tags to write to. The last message is the RO Access Report. Unlike

the previous message which are sent form the client to the interrogator, this message

is sent from the interrogator to the client. It contains information such as the EPC
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of an observed tag, the time when that tag was seen and the recieved signal strength

indicator (RSSI). It also contains the result of any completed reads and writes. Details

of the LLRP protocol are available in the GS1 LLRP Specification [8].
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Chapter 3

RFID Applications

Chapter 2 focused on how RFID works and this chapter will focus on how RFID is

used. First, traditional use cases will be examined, then, potential future applications

relying on RFID technology will be explored.

3.1 Standard use of RFID

The inventory process has been optimized to transmit the EPC as quickly as possible

from the tag to the interrogator. Additional accesses to tag memory are considerably

slower. As a result, a tag will rarely contain any information other than that which

is required to identify the object. While applications in supply chain and inventory

management are relatively well known, applications outside of these areas will be

mentioned in order to show the versatility of RFID.

One of the earliest examples of the application of RFID technology is in electronic

toll collection. Human operated toll booths are known to increase congestion because

each car must stop for a small period of time. Increasing throughput requires more

human operated toll lanes to be added, an expensive proposition. Automated toll

lanes allow vehicles to travel through the toll gate, at times without stopping. As a

result, fewer automated toll lanes are required to serve a given level of traffic and they

are also cheaper to run, as no operator is required. The method of operation is very

simple. An interrogator is mounted in the toll booth and it looks for a transponder
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that is affixed to a car. The transponder will send its identifying number which the

interrogator will forward to the electronic toll collection software. The software will

associate the ID with an account and it will automatically deduct the toll. Automated

toll collection also enables dynamic pricing, allowing the toll to vary with time of day

or level of congestion.

RFID is also used in a variety of timing applications, such as marathons. For

short distance races on a track a computer vision system will be able to determine

who won the race. In larger races, such as the Boston Marathon, gun timing was used

until 1996. Gun timing, or time after the starting gun goes off, is accurate for those

who are near the start line, but as marathons draw more participants, it become less

accurate for those near the back. As waves were introduced to prevent congestion on

the course, this method of timing only became more inaccurate. RFID tags are now

affixed to the runners' bibs, allowing the time that the runner crosses the start and

finish to be accurately measured. With over 30,000 participants, RFID is the only

scalable way to provide accurate timing information.

RFID technology is also used in libraries to manage their massive collections of

books. Before RFID was implemented, the only information that librarians would

have are whether the books are checked out, received and waiting to be sorted, or in

the stacks. With visitors coming and going, it is not guaranteed that any book will

be in the place that it belongs. To mitigate this issue, some libraries have affixed

RFID tags to the inside cover of their books. This allows the books to be quickly

scanned by a person who has a hand held interrogator. This is still very tedious and

a libararians time is better spent helping people. Bookbot aims to solve this problem

[9] by scanning on behalf of the librarian. Bookbot traverses the aisles in a library,

cataloguing where books are in the library and is able to pinpoint any misplaced books

with centimeter accuracy. The books can also be used to help bookbot determine its

position within the library.
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3.2 Changing Landscape

Since the standardization of RFID, there has been significant interest in wireless sen-

sor and actor networks (WSAN). These networks are made of small nodes which range

in cost from a few to several hundred dollars. They have some onboard computation

power, a communications interface, a power management system, and some way to

interact with the enviroment. This interaction occurs in two methods, sensing and

actuation. Examples of common sensors are temperature, humidity, chemical concen-

tration, light, and sound. The actors in this network are often mobile robots, such

as R/C cars or unmanned aerial vehicles (UAV's). These actors could also be fixed

modules, such as a a valve or air vent.

When RFID was first standardized, the technology that implemented the specifi-

cation was very barebones. Reader sensitivity was poor and tag power consumption

was very high. Nulls, locations where the reader radiation has destructively inter-

fered, would cause tags to not be read. As the technology has matured, however,

these problems are not as limiting as they once were. This has allowed for RFID to

be considered for WSAN applications. While RFID does have some mechanisms for

transmitting information to and from the tag, they are not nearly as developed as

inventorying process. As a result, serveral nonstandard extensions to the protocol

have been developed.

3.3 Physical Layer Extensions

Tag Antenna Based Sensing (TABS) relies on physical phenomenon affecting antenna

performance in a way that can be detected at the interrogator. The mechanism

through which the antenna becomes detuned can vary dramatically. For a fluid level

sensor, it may be enough for the presence of liquid to detune an antenna [10]. Off the

shelf circuit components whose impedance changes in response to external stimuli is

another way to do it, as was done for a light detecting RFID Tag [111. Finally, circuit

elements can be constructed to respond external stimuli, as was done for moisture
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sensing in soil [12].

It is clear that in all of these cases, information is conveyed by means that are

outside of what is defined by the Class 1 Gen 2 protocol. It comes from the presence

or absence of a tag, the signal strength of a tag relative to a reference, or difference in

timing. For the purposes of this thesis, these means of communication are classified

as extensions of the physical layer.

3.4 Air Protocol Layer Extensions

Contrary to the physical layer extensions, which work outside of the RFID protocol,

air protocol extensions work within the protocol, but use certain mechanisms in ways

that they were not meant to be used.

The University of Washington has developed the Wireless Identification and Sens-

ing Platform (WISP) [131. The WISP is a tag where the air protocol is implemented

by a low power microcontroller. Given that there is an onboard microcontroller, it

allows the programmer to include features that were not originally in the specifica-

tion. An example of how this might be done is by a method they have named EPC

Modulation. In order to indicate an integer value, the tag may transmit a different

EPC for each state [14]. Another possibility is to reserve a number of bits in the EPC

in order to transmit information. When the tag is inventoried and the EPC is back

scattered, the data bytes will also be sent. The WISP will queue the next bytes to

be transmitted in the next inventory round.

Applications built around the WISP include transmitting accelerometer and tem-

perature information [15], transmitting audio [16], and transmitting images [17].

3.5 Quantifiying the existing mechanisms

Before suggesting changes to the protocol, it is important to understand what is pos-

sible within the current specification. Identifying the bottlenecks would allow a high

performance system to be developed, and resolving them in a backwards compatible
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manner would allow already deployed systems to participate with lower performance.

As all of the above described applications involve information transfer from the tag

to the interrogator, the author proposes to reverse the flow of information. In order

to test the extremes, two projects were pursued, an RFID controlled price display,

and an RFID controlled robot. These projects push the limits of what is possible

using the protocol in the amount of information that is transferred and how quickly

that information is transferred.

3.5.1 RFID Controlled Price Display

Whenever a manager in a retail store wants to change the price on an item, they

must change the price in the store database, and an employee must find the shelf

or rack where the item is displayed and change the label. As the number of items

becomes larger, the cost of changing an item's price becomes much more significant.

In addition, if there is a discrepancy between the price at the register and the price

on the shelf, many municipalities have declared that the consumer will receive the

lowest of the two prices. With items going on sale for one week and back to normal

price the following week, a mistake in changing the labels has an even greater cost

for store management.

As a result of all of these challenges, stores are beginning to adopt electronic

shelf labels. These devices sport an LCD or e-paper display [18]. They often contain

a coin cell battery and communicate using a Zigbee radio or may use an optical

communication method. These tags start at $5 dollars for an LCD based display

to slightly more for a more legible e-paper display. With an average super market

containing 20,000 price tags, this is a significant investment for store management to

make. If the tags used RFID instead of an active radio, the price for each label could

be reduced as a radio transmitter would no longer be required and the battery could

be eliminated.

In order to prototype the device, the following components were used. An NXP

RFID IC, SLS4021FHK [191, was used to act as the communication interface. It

acts like a normal tag, but it also provides a 12 C interface for a microcontroller and
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Figure 3-1: Electronic Shelf Label Prototype

appears as an external memory device. For the rest of the hardware platform, the

STM32L0538 Discovery Board [20] was used. The board has an STM32L053, a low

power microcontroller based on a 32-bit ARM Cortex-MO+ core. There is also a 2

inch e-paper display that has a resolution of 172 x 72 pixels and it has a depth of

2 bits per pixel. The means that a frame buffer of 3096 bytes is required to hold

the contents of screen. Figure 3-1 shows the hardware platform used to develop this

application.

The RFID IC offers two registers that can utilized for communication between

an interrogator and a microcontroller, a bridge register, and a configuration register.

When data is written to the bridge register from the radio interface, a flag known as

the download flag in the configuration register is set. A microcontroller can monitor

this flag and read the download register once data has been written by the interroga-

tor, receiving the word sent by the interrogator and clearing the download flag. An

interrogator can also monitor for when this flag is cleared so that data is not acci-

dentally overwritten before it has been read. A similar process can take place in the

reverse direction utilizing the upload flag. The use of tag memory as shared memory

enables communication between remote devices and an interrogator.
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In order to test the throughput of this system, a simple test was devised. A word

is written by the interrogator to the bridge register, at which point it is read by

the microcontroller, incremented, and written back to the bridge register. Using an

imprecise measurement setup, it was found that it took roughly a minute to complete

50 such transactions. This corresponds to a throughput of 26 bits per second, an

abysmal performance compared to the hundreds to thousands of kilobits per second

available using the wireless communication schemes mentioned in Chapter 1.

It is the author's belief that one of the major contributors to this poor performance

is how arbitration between the radio and I2C interface is handled. In order to avoid

a race condition, the tag memory cannot be read or written by one interface when it

is in use by the other interface. Because the configuration register is part of the tag

memory, polling this register on one interface prevents writing to the bridge register

on the other interface.

Using the estimate of 26 bits per second means that it would take roughly 950

seconds to transmit 3096 byte screen buffer for the e-paper display. This is an unrea-

sonable amount of time and it must determined why the throughput of this interface

is so poor.

3.5.2 RFID Controlled Roomba

A robot is not subject to many of the design constraints of a sensor node. Robots

often contain high power actuators that demand onboard power storage. Cost with

robots is typically significantly higher than a sensor node, making the cost savings

of using backscatter radio not as relevant. While this may be the case for many

applications, new research into low cost robotics has brought the issue back to the

forefront.

For this demonstration, the iRobot Create [21] robot is remotely operated through

the use of an Xbox 360 gamepad [22]. An Arduino Mega 2560 [23] connects to the

serial interface exposed by the Create. Using this serial interface, the arduino is able

to command the left and right motor speeds, and read the state of various onboard

sensors. The Arduino Mega 2560 then connects to the same NXP SL3S4021FHK IC
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Figure 3-2: RFID controlled Roomba prototype

used in the price display detailed in the previous section. The Arduino then interprets

bytes written to the bridge register as motor commands, allowing the Create to be

controlled by an interrogator. For the sake of convenience, a laptop interprets the state

of the gamepad and translates them to motor commands and uses a python library

[24] to forward those commands to the Create through an interrogator. Figure 3-2

depicts the hardware platform that was used to develop this functionality.

While the initial goal of building an RFID controlled robot was accomplished,

it did not perform entirely as expected; when driving straight and a right turn is

suddenly commanded, 1 to 2 seconds of delay was noticed before the Create responded

to the input command. A second test where the RFID interface was removed by

connecting the laptop over USB to the Arduino yielded a much better experience with

no perceptible delay. Clearly the RFID interface introduced a noticable amount of

latency into the system. For systems where real time control is important, time delays

limit the gain crossover frequency and ultimately the control bandwidth available. As

a result, quantifying the latency introduced by RFID is critical to understanding what

kinds of applications can benefit from the use of RFID as a control interface.

36



Chapter 4

GS1 Class 1 Gen 2 Protocol

Performance

Through the motivating examples in the previous chapter, it became clear that if

RFID is to be used for control, it is important to fully understand what drives the

latency and throughput of the air protocol. While it was not clear where latency is

introduced, this chapter will serve to shed some light on the issue. The background

in chapter 2 is critical to understanding the different stages in communication. By

identifying and measuring the different steps, it is possible to determine where the

bottlenecks exist and devise methods to work around them.

4.1 Latency Chain

In order for a write command to be successfully processed, the steps outlined in Figure

4-1 must occur sequentially. The write process involves four systems: the software

application, client library, the interrogator, and the tag. The application software

dictates the high level logic and instructs the client library what procedures it wants

exectued. The client .library facilitates communication between the application soft-

ware and the interrogator. Given that many procedures require multiple messages to

go between the interrogator and the client, the client library abstracts these details

away from the application software. The interrogator facilitates communication be-
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Figure 4-1: Write Operation Communication

tween a client and the tags. It notifies the client of any tags that are in its field of

view and also performs read and write operations as instructed by the client. Finally,

the tag listens for interrogator commands and communicates as required.

These four systems communicate over three layers: software, network and radio.

This poses two challenges, the first is how to instrument each of the layers. The

second challenge is how to synchronize the measurements made across layers. In the

following sections, these challenges will be addressed.

4.2 Instrumentation

The write process spans three layers: software, network, and RF. In order to accu-

rately time this process, coverage of these three layers much be achieved. Fortunately,

there are a number of tools that could be used to take measurements in each of these

layers.
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Figure 4-2: Screenshot of Wireshark

4.2.1 Software

Timing in the software layer is the simplest of the three. Modern computers have

accurate clocks so it is sufficient to compute the elapsed time. In Figure 4-1, software

timing would allow the measurement of time between steps 1 and 8. This information,

while very easy to collect, does not give very much insight to where bottlenecks occur.

4.2.2 Network

The next layer is the network layer. Communication between the interrogator and the

client library occurs using the client's network interface. This allows the use of tools

such as Wireshark, a network protocol analyzer. As shown in Figure 4-2, Wireshark

monitors the network interface and records any traffic that passes through. It can
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filter for traffic coming from particular sources and also has the capability to decode

the traffic. Wireshark offers a layer of detail that would be difficult to achieve in the

application software.

Using Wireshark allows the measurement of steps 2, 3, 4 and 7 in figure 4-1.

By measuring between steps 2 and 3, it is possible to determine how quickly the

interrogator responds to an Add AccessSpec message. Measuring between steps 3

and 4, the latency introduced by processing in the client library can be analyzed.

Finally, measuring between steps 4 and 7 gives the time required by the interrogator

to complete a write command.

4.2.3 Radio

The last layer is the RF layer. This layer is the most difficult to measure because

tools are not readily available. A spectrum analyzer can calculate received power at

a particular frequency, but it does not allow for the decoding of packets. National

Instruments can provide a solution for this decoding, but the hardware components

cost over $50,000 USD [25]. Fortunately, recent interest by the Maker community

in Software Defined Radio (SDR) equipment has brought a number of high quality

and low cost devices on to the market. These devices allow a certain region of the

RF spectrum to be recorded and stored to disk for later processing. Decoders and

analyzers can then be built using traditional tools, like C++, or- scientific computing

platforms such as MATLAB. For details on how this was done, the reader is invited

to read Appendix A.

The BladeRF SDR [26], shown in figure 4-3, is one of these new devices. It is

a direct conversion transceiver that can tune between 300 MHz and 3.8 GHz and it

can provide up to 28 MHz of bandwidth. As was mentioned in Chapter 2, the 915

MHz ISM band is 26 MHz wide meaning that it can capture the entire band. During

experimentation, it was found that using the SDR at its full .performance is very

taxing on the system. A stream of 28 MSPS of 64 bit complex samples corresponds

to a flow of 224 MB/s. Commercially available hard disk drives are incapable of

keeping up at this data rate [27]. Modern solid state drives were found to be able to
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Figure 4-3: BladeRF SDR [26]

cope with this strean. of information, but no other processing could be done on the

same computer. It was found that running the SDR software affected the performance

of the RFID application software to communicate with the interrogator. Due to these

considerations, the SDR software and the RFID application software is run on two

different computers.

Sampling the RF radiation exposes the communication between the interrogator

and the tag which occurs in steps 5 and 6 in figure 4-1. Measuring the time between

steps 5 and 6 reveals the time required for the tag to be identified in the inventory

process. Measuring step 6 reveals how much time is required to complete the write

command. It is this elapsed time that determines the throughput. The rest of the

elapsed time feeds into the latency of the system.

4.3 Synchronization

Each tool in the previous section functions independently. As a result, it is straight-

forward to compare when certain events occured within each layer, but comparing
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events in different layers requires more thought.

Synchronization between the software and network layer is simple because both

the application software and Wireshark get their timestamp information from the

system kernel.

Synchronization between the software and RF layers could ailso be similarly im-

plemented if the RFID application software and the SDR software were running on

the same machine. Unfortunately, performance requirements of the SDR make this

impractical. Accordingly, a mechanism that allows the computer running the RFID

application software to synchronize with the computer running the SDR software is

needed. The solution is a radio that allows the RFID application to emit a "ping"

in the RF layer when a write is initiated. The device that gives the RFID applica-

tion this ability is based on the STM32F4 Nucleo [28 and the CC110L Booster Pack

[29]. This device has a serial interface and a radio that transmits in the 915 MHz

ISM Band. The GS1 Air Protocol defines 500 kHz wide channels starting at 902.75

MHz and ending at 927.25 MHz for a total of 50 channels [5]. To avoid interfering

with communications between the interrogator and tag, the CC110L transmits on

an unused channel centered at 902.25 MHz. This method has the advantage of be-

ing embedded in the stream of sampled RF data where it can be extracted in post

processing.

4.4 Equipment overview

The pieces of hardware involved in this setup are outlined in Figure 4-4.

The client is a Linux machine running the Linux Mint 17.1 distribution. It has a

dual core 3.3 GHz Intel Core i3-2120 CPU and 8 GB of RAM.

The interrogator is an Impinj Speedway R420. It is capable- of outputting up to

30 dBm and has a network interface which implements LLRP.

The microcontroller is an STM32F401 running at 84 MHz and it contains 512 kB

of flash and 96 kB of RAM. It uses a UART peripheral configured at a baud rate of

115200 baud and communicates over SPI with the CC110L radio.
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RF

Figure 4-4: Diagram of test setup

The Texas Instruments CC110L radio transceiver is designed to work in a number

of sub-GHz frequency bands, including the 915 MHz US ISM band. It can be config-

ured to operate using many different modulation schemes including, 2-FSK, 4-FSK

and OOK. It has a maximum transmit power of 12 dBm.

The RFID tag which is written to is an Alien Squiggle Short 9662 with an Alien

Higgs 3 RFID IC. The tag is on a clear inlay and has an adhesive backing. The tag

contains a 512-bit user memory.

The BladeRF SDft is a direct conversion radio transceiver. It has a 28 MHz band-

width and a tuning range from 300 kHz to 3.8 GHz. The RF portion of the board is

based on the Lime Microsystems LMS6002D which contains all of the amplifiers, mix-

ers, oscillators and filters to implement a flexible RF frontend. This IC is connected

to an FPGA to through a two 12 bit parallel interfaces for receiving and transmitting

samples and is configured through an SPI interface. The FPGA provides buffering

between the LMS6002D and the Cypress FX3 USB 3.0 peripheral controller which

provides USB 3.0 corinectivity.

The Recorder is a MacBook Air runing Mac OS X 10.10.4. It has a dual core 1.3

GHz Intel Core i5-4250 CPU and 8 GB of RAM. It has two USB 3.0 ports which are

required for receiving. the full 28 MHz bandwidth from the bladeRF. It also contains

a 256 GB SSD flash drive which is capable of sustained writes in excess of 700 MB/s.
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Figure 4-5: Serial Ping Times. Left: Cumulative distribution of ping times. Right:
Histogram of ping times less than 600 Its.

4.5 Synchronization Latency Characterization

Before delving into the experiments, it is important to measure the elapsed time from

the moment that a byte is sent to the client until that byte is transmitted by the

CC110L radio. This process can be broken down into two steps: the time required

for a byte to be sent from the application software to the UART peripheral and the

time from byte reception at the microcontroller to RF packet transmission.

4.5.1 Serial Latency

The time required for the byte to be sent from the application software to the mi-

crocontroller can be approximated by measuring the round trip time for a byte to

be transmitted to the microcontroller and back. The latency that is introduced is

approximately half of this value. This procedure was repeated 100000 times and the

results are shown in figure 4-5. The left chart shows the cumulative distribution of

ping times. This plot shows that while the vast majority of serial pings take less than

500 ps, the measured worst case is approximately 5 times worse. This is the nature of

the USB as it is instrinsically a nondeterministic protocol. There is not much that can

be done to mitigate this latency, but it must be taken into account when measuring

against this reference signal. In the chart on the right a histogram containing the
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Figure 4-6: CC110L Packet Structure

ping times of the 99.5th percentile and below are plotted. Of these samples, it takes

408.81 ps on average which corresponds to an average latency of 204.21 As for a byte

to be transmitted over USB.

4.5.2 Radio Latency

The second component of the latency in the synchronization signal comes from the

reception of the serial byte and transmission of that byte over the radio. In order to

determine when the radio is transmitting, the CC110L can be configured to assert one

of its outputs after the sync word has been transmitted and deasserted once the CRC-

16 has been sent. Figure 4-6 illustrates the packet structure for a radio transmission

from the CC110L. With the knowledge of when the output is asserted and the packet

structure, it is possible to determine when the start of the preamble has been sent.

This output can be monitored using the Saleae Logic 16 [30] logic analyzer. This

logic analyzer is capable of sampling 2 inputs at up to 100 MHz, offering extremely

fine measurement of digital signals. The logic analyzer can also be used to sample

the serial stream frorn the USB to Serial converter. The difference in timing between

the serial stream and when the CC110L output is asserted can be used to determine

the latency introduced by this process.

This test was repeated 100,000 times and the results are shown in figure 4-7. It

takes 376 ps from the falling edge of the serial byte start bit to the start of the RF

packet preamble. The standard deviation of the distribution is 174 ns and a range of

1.16 ps. Unlike the USB communication, this section is very predictable.
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4.5.3 Synchronization Adjustment

In order to account for the latency in this synchronization symbol, all elapsed time

periods were adjusted upwards by half the average serial latency plus the radio latency.

Using the measurements made in the previous sections, this amounts to an adjustment

of 580 ps.

4.6 Experiments

It is expected that the performance of the C1G2 protocol is dependent on the number

of tags in the field of view of the antenna. In order to control for this, experiments

were run in the presence of 1, 5, 10, and 20 tags. For a latency test, the interrogator

was commanded to write 2 words to the tag's EPC memory 500 times. For the

throughput test, the interrogator was commanded to fill the 64 byte user memory

250 times. There are two ways to write to user memory, a Write command and a
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BlockWrite command. Both methods were measured.

4.7 Results

The results of the three different tests can be seen in Figures 4-8, 4-9, and 4-10. The

results are shown in a stacked bar chart with the amount of time spent by each step

appearing as a different colored segment. The cumulative sum is represented as the

height of each bar. There is also a segment of each bar that is meant to show the

amount of time that has not been accounted for in any of the measurements. For

almost all cases, the unaccounted for time is on the order of milliseconds, but in some

cases, it can be as high as 30 milliseconds. The steps in the figures below refer to

the steps found in Figure 4-1. Histograms of the individual steps can be found in

Appendix B.

All of the charts share some similarities. One of the most striking features is how

long step 7, which is' the time from when a write is completed to the time the RO
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AccessReport is emitted by the interrogator, takes to complete. The next observation

is how the time to complete step 5 increases as the number of tags increases. This

is expected as step 5 is the inventory step. In addition, there appears to be a large

amount of variability in step 3. This is the amount of time it takes for the Add

AccessSpec Response to be sent from the reader.

For the latency test, time spent writing is significantly shorter given the fewer

number of words written. Comparing a Write operation to a BlockWrite operation,

we find that the BlockWrite spends less time in the writing portion. For every word

written, a BlockWrite requires 6.65 ms and a normal Write requires 8.75 ms. Over

the 32 words written, this amounts to 67 ms in savings.

4.8 Implications for RFID IoT Applications

This work has shown that RFID is not the bottleneck for current implementations

of RFID IC's with microcontroller interfaces. This work suggests that the current

method of arbitration of access to tag memory may also be a significant source of

latency. New IC's with a better arbitration process would significantly improve the

performance of applications that use RFID as a communication method.
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Chapter 5

Conclusion

5.1 Contributions

RFID is a versatile platform upon which many new applications can be developed.

In order to maximize the number of applications built on RFID, it is important

to provide a low power, low latency, and high throughput connection. In order to

demonstrate the possibilities, these are the main contributions of this thesis:

" It has been demonstrated that RFID can be used to control remote nodes in

applications that are sensitive to latency and throughput.

" The protocol has been analyzed; bottlenecks have been identified and quantified.

5.2 Sources of Improvement and Future Work

While there are improvements that could be made to both LLRP and the Air Pro-

tocol, a large source of latency is in the reader implementation. It is the author's

suspicion that there is a periodic task on the interrogator that runs every 200 to 250

ms. This task collects tag observations, manages writing to the tag and manages com-

munication with the client. This periodic task would explain the stair step behavior

that is especially prominent in the latency test.

When considering improvement to LLRP, latency can be reduced by minimizing
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the number of messages required to execute a write. Including an "execute imme-

diately" option in the Add AccessSpec message eliminates the need for the Enable

AccessSpec message. There is precedent in the LLRP protocol for similar behavior

in starting the inventory process automatically.

While the Air Protocol does not seem to be an immediate bottleneck, improve-

ments can be made to reduce the overhead required. Figure 2-5 depicts the six steps

that must occur each and every time a tag access is performed. The result of these

six steps is the acquisition of a handle that is used in the next interrogator access

command, after which the handle is ignored by the tag. If instead the handle is

maintained for some time, the latency cost of identifying a tag before tag access can

be amortized over multiple accesses. Furthermore, this change can be made in a

backwards compatible manner.

Directions for future investigation are plentiful. Software defined implementations

of the tag and the interrogator allow changes in the air protocol to be quickly proto-

typed and validated. These will become invaluable tools when attempting to resolve

the issues raised in this work. Groups in the field are investigating what is possible

with a clean sheet redesign of the air protocol using similar tools [31]. Ideas from this

exploratory work is invaluable as it can inform how the air protocol evolves. However,

it is important to keep an eye towards creating a protocol which facilitates as many

use cases as possible, not just those requiring high throughput.

5.3 Beyond ID

RFID has had a tremendous impact and has seen adoption in many different indus-

tries. It is the author's belief that the next frontier for RFID is enabling commu-

nication in the IoT. In this future, interrogators move from being devices that find

tagged objects, to gateways which facilitate the transfer of information from Internet

Protocol (IP) to the remote tags. These tags become more than a means to identify

objects; they are communication interfaces for devices such as the electronic shelf

labels and autonomous robots detailed in Chapter 3.

52



As the devices and applications that use the Air Protocol evolve, the protocol

itself must also evolve. The inventory process can be integrated in to a larger Media

Access Control (MAC) layer as a device discovery mechanism. The EPC would then

become a MAC address that can be used to route packets to the remote devices. If

a more deterministic structure is required, Time Division Multiple Access (TDMA)

methods can be used to assign a remote device a slot in which it can transmit in.

These changes will require a more complex tag implementation, but Moore's law

should allow these devices to become smaller and more power efficient.

53



54



Appendix A

Software Defined Listener

A software defined listener is a device which can eavesdrop on the communication

between the interrogator and a tag and automatically decode it. A software defined

RFID interrogator was built by Buettner [32], but it does not implement frequency

hopping, uses a different hardware platform, and it is incompatible with the recent

versions of GNURadio. This chapter will describe the processing chain used to decode

interrogator and tag transmissions.

A.1 How the ISM Band is Used

As mentioned in Chapter 2, RFID operates in the UHF ISM band. FCC regulations

allow non-licensed intential radiator to transmit up to 1 watt of power if frequency

hopping with at least 50 channels are used [33]. As a result, the GS1 RFID Air

Protocol uses 50 channels with the first center at 902.75 MHz and a channel spacing

of 500 kHz [5]. The last channel is found at 927.25 MHz. The channels at 902.25 MHz

and 927.75 MHz are not used to in order to limit the amount of radiation emitted

outside of the ISM band.

The waterfall plot in Figure A-1 depicts the power contained at each frequency

over time. Figure A-2 contains a small portion of the captured signal.

55



Top Block

Co-vw swnp.1

-10000 -. 000 0.000 5.000 10000
FmenMy (w"

Figure A-1: Waterfall plot of signal frequency over time

0.8 r-

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
Time (s)

01
0.16 0.18

Figure A-2: Time series of signal magnitude

56

1,000401 -

T506400 -

&.04X3 -

Z500.4X -

0
-20

-80

40

-100

-120

-140

0.2

9g 0



A.2 Receiving the signal

An antenna which is tuned to the ISM band is required. In addition, due to the

unknown frequency hopping pattern of the interrogator, the entire ISM band must

be captured. The BladeRF provides 28 MS/s of I/Q samples, which corresponds to

28 MHz bandwidth which is just enough to cover the 25 MHz of the used spectrum.

A.3 Shifting to Baseband

When building a software defined listener, the first step is shift the active channel

down to baseband frequency. This is performed in two steps. First the active channel

must be detected. Next, the signal must be shifted down to baseband by the channel

center frequency.

Detecting the active channel can be done by computing the fourier coefficients of a

signal. While this is typically done by utilizing the fast fourier transform, significant

computational savings can be realized by recognizing that only the coefficients at the

center frequencies of each channel are of interest. Using this knowledge, the discrete

fourier transform is calculated at each of the channel centers and the channel with

the strongest contribution is the active channel.

Shifting the signal down to baseband is achieved by using the frequency shift

property of the fourier transform. The signal is multiplied by a complex exponential

that is the negative of the channel frequency. While the actual center frequency may

not exactly coincide with the expected center frequency, in practice it is close enough

to not pose a significant issue. GNURadio provides a rotator class which utilizes

optimized routines to perform this frequency translation.

Now that it is understood what computations are required to perform the required

shift, it must be considered when these computations are performed. While periodic

sampling is an option, a far more robust method is to determine when a frequency

hop has occured and then perform the required calculation.

How is it possible to determine when a frequency hop has occured without com-
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puting the fourier transform? Interrogator commands are visible in Figure A-2 as dips

in radiated power, however there are also longer dips in power. These dips in power

are known as blanking intervals and they correspond to the time required by the

Interrogator's internal RF hardware to adjust its local oscillator to a new frequency

when frequency hopping. If the signal power can be monitored and these long dips

in power identified, it stands to reason that significant computation reduction can be

achieved. Empirically, these dips in power are 2 ms in length. Dips in power due to

interrogator communication are significantly shorter. A low pass filter with a cutoff

frequency of 600 Hz should respond to the blanking intervals and reject the higher

frequency interrogator communication.

A further improvement can be made by recognizing that the full 28 MHz does

not need to be passed through the low pass filter. If one out of every 10000 samples

is passed through the low pass filter, the blanking intervals are still identifiable, but

the number of computations required is reduced. This process is a downsampling of

the signal which means that aliasing must be considered. Aliasing does occur, but

because the majority of the signal power in the magnitude of the received RF is near

baseband, the aliasing does not do much to distort the low frequency components of

the signal. However, aliasing does affect the much weaker tag response which is why

the frequency shifting is required. Figure A-3 shows a waterfall plot of a complex

signal and its magnitude. The concentration of power centered on 0 Hz shows why

aliasing does not significantly distort the output.

A.4 Signal Magnitude

Once the signal has been shifted to baseband, the magnitude of the signal is calcu-

lated.
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A.5 Decimation

We now have a magnitude signal stream that is 28 MHz wide. In order to reduce the

computation needed in later steps, the sample must be reduced through a decimation

process. This requires passing the signal stream through an anti-aliasing filter and

then a downsampling step. The width of the antialiasing filter should be informed by

the backscatter link frequency (BLF). While the GS1 Air Protocol allows for BLF's

greater than 1 MHz, in practice, a BLF in the 100 to 300 kHz range is standard. An

antialias filter with a passband of to 400 kHz is more than sufficient. This allows

the signal to be downsampled to 1 MHz without any significant concerns of aliasing.

Figure A-4 depicts the same signal found in Figure A-2 after the shift, filter, and

decimations have been applied.
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A.6 Interrogator Symbol Detection

The interrogator symbols are defined in Chapter 2. Two methods of interrogator

symbol detection are possible, a matched filter, and a threshold crossing detector.

A.6.1 Matched Filter

A matched filter is a filter that attempts to find a signature in a signal by correlating

the received signal with the signature. When the signature is found, the output of

the matched filter is maximal. A matched filter is implemented as a finite impulse

response filter with the taps set to the copy of the signal. The sum of the taps

correspond to the DC offset of the filter output and the sum of the absolute value of

the taps correspond to the gain of the filter.

The filter taps are set to match the the symbols in Figure 2-3. The output of the

filter can be seen in Figure A-5. Due to the shape of the symbols, a one is also detected

as a zero. However, while a zero does create a peak in the output of the matched filter

for a one, that peak is not as high as when a one is matched. The symbols can then

be decoded by finding the peaks in the respective filter output. Figure A-6 shows

the matched filter output depicted in Figure A-5 and also shows the result of the bit

detection algorithm. A one is represented as a green circle and a zero is represented

as a red circle. The reader data in binary is 1000110101101001011001.

A.6.2 Threshold Crossing

While the matched filter is very robust, it is computationally expensive. If the signa-

ture contains n taps, n multiplications and n - 1 additions are required to compute a

single output. A simpler approach is a threshold crossing detector. The threshold is

determined by passing the magnitude signal through a low pass filter and setting the

threshold at some fraction of the low pass filter output. The time between the positive

crossings of the threshold yields the length of the interrogator symbols. Given that a

one is longer than a zero, a threshold on the symbol length will yield whether or not

a particular symbol is a zero or a one.
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Figure A-7: Miller Subcarrier Sequences (From: GS1 C1G2 Air Protocol 15])

While this approach is simpler, it can yield unreliable results in noisy environments

or in the presence of a strong tag backscatter signal. The matched filter approach

will almost always provide a reliable output.

A.7 Interrogator Command Decoding

Once the reader symbols have been correctly decoded, the command decoding is

completed by identifying the command pattern and decoding the bits as described in

the GS1 UHF RFID Air Protocol [5]. In the case of the reader command depicted in

Figure A-6, this is a Query command with a Q value of 2, indicating that there will

be 4 slots in the following inventory round.
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A.8 Tag Symbol Detection

The tag symbols are defined in the GS1 UHF Air Protocol [5]. While there have been

many methods developed to decode the tag symbols with varying level of accuracy

and robustness, the simplest method is using a threshold crossing detector. As was

done in the threshold crossing detector for the interrogator, the tag backscatter signal

is low pass filtered. However, unlike the interrogator decoding, the filter output is

directly used as the threshold and the time between crossings can be used to detect

the tag symbols.

The pilot tone can be detected as a series of crossing that take a similar amount

of time. If a rolling standard deviation of the crossings is calculated, it can be seen

that it drops off very quickly. The pilot tone can be used to fine tune the BLF.

The tag uses miller encoding which encodes the bits as 1800 phase transitions.

These phase transitions appear as crossings that take twice as long as expected given

the BLF. The center of these phase transitions can stored for the next phase of

processing.

In order to decode a Miller encoded signal, it is necessary to determine where the

symbol boundaries occur. As shown in Figure A-7, a phase reversal occurs between

two consecutive zeros and in the middle of a one. However, only the location of the

phase reversals are currently known. If we instead focus on where phase reversals

occur, it can be seen that transitions occur at 1, , or 2 symbol widths away from

each other. If the transitions are one symbol width apart, the last decoded symbol is

repeated. If the transitions are I symbol width apart and if the.last decoded symbol

is a one, then a zero was just decoded. If the last decoded symbol was a zero, then

a zero and a one was just decoded. Finally, if the transitions are two symbol widths

apart and the last decoded symbol was a one, then a zero and a one were just decoded.

A transition that is two symbol widths apart after a zero has just been decoded is an

invalid state and points to an erroneous decoding of the signal.

Given that a tag response will always begin with the same preamble of 010111

[5], this appears as a set of 4 transitions. The time between the first and second
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Figure A-8: Decoded Tag Backscatter

transition should be twice as long as the length of time between the second and third

transition as well as the time between the third and fourth transition. Figure A-8

shows the output of this decoding process. The top plot contains the raw tag response

in blue. The orange line is the output of a 25 ps moving average which serves as the

threshold. The bottom plot contains the thresholded tag response; values greater

than the threshold are set to one and values below the threshold are set to negative

one. The row of black "x"'s indicate the detected edges. The black square at 750

ps indicates the detection of the pilot signal. The large red triangles indicate the

detection of the preamble. The smaller triangles are the bit decodings, a red triangle

is a zero and a green triangle is a one.

A.9 Interrogator Command Pattern Matching

The reader decoding was found to be very slow as it was implemented in MATLAB.

In addition, a bug in the channel selection code and a buffer overflow in the SDR

interface caused the interrogator decoding to be unreliable. By the time these issues
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were remedied, an insufficient amount of time was available to translate the reader

decoding to C++. As a result a different approach was used to detect the read and

write process.

It was observed that the length of a Write and a BlockWrite command are signif-

icantly longer than the commands that are typically used in the inventory process.

If the length of an interrogator command could be accurately measured, it stands

to reason that a write can be detected without explicitly decoding the interrogator

commands.

In order to detect the length of an interrogator command, a process very similar to

the threshold crossing method was used. Instead of storing every threshold crossing

however, any threshold crossings that occured within 500 pas of a previous cross was

deemed to be part of the same interrogator command. Once more than 500 ps has

elapsed without encountering a threshold crossing, the interrogator command was

complete and the process would be repeated. Once the interrogator command lengths

have been obtained, a pattern in the command lengths is searched for. The top plot
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in Figure A-9 depicts a Write command in the presence of 20 tags. The red line is the

threshold that is used to find the edges of a reader symbol. The bottom plot shows the

detected lengths of the reader commands. The irregular command lengths that occur

below command number 70 are the result of the inventory process. Once the desired

tag has been found, the write process is initialized, leading to a regular pattern of

alternating Write and ReqRN commands. The red triangle marker indicates that the

algorithm has found the start of a write process.

The procedure proved to be very reliable. All of the observed cases that yielded a

false negative were found to occur in the presence of a strong tag backscatter signal,

which crossed the threshold and interfered with the interrogator command length

detection. The occurence of this was very low and was deemed acceptable for the

purposes of the experiments carried out in this thesis.
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Appendix B

Extended Results

B.1 Latency Test
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