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Abstract

In this thesis, I consider the problem of designing a collision avoidance system for the scenario
in which two cars approach an intersection from perpendicular directions. One of the cars
is a human driven vehicle, and the other one is a semi-autonomous vehicle, equipped with a
driver-assist system. The driver-assist system should warn the driver of the semi-autonomous
vehicle to brake or accelerate if potential dangers of collision are detected. Then, if the system
detects that the driver disobeys the warning, the system can override the behavior of the
driver to guarantee safety if necessary. A hybrid automaton model with hidden modes is
used to solve the problem. A disturbance estimator is used to estimate the driver's reaction
to the warning. Then, with the help of a mode estimator, the hybrid system with hidden
modes is translated to a hybrid system with perfect state information. Finally, we generalize
the solution for the application example to the solution of safety control problem for general
hybrid system with hidden modes when the hybrid system satisfies some proposed constraints
and assumptions.
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Title: Associate Professor
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Chapter 1

Introduction

Improving driving safety is one of the main takes in developing road vehicles. Lots of atten-

tions have been given to vehicle safety since the 1960's 125, 31]. The introductions of passive

safety features such as seat belts, air bags and advanced lighting systems have substantially

reduced the rate of crashes [17, 221. However, despite the significant improvements, each

year in United States, collisions of motor vehicles still result in 40,000 deaths, more than

three million injuries, and over $130 billion in financial losses [4, 17]. Since the development

of passive safety system could not provide further significant improvements in vehicle safety,

the development of active safety protection system became the new trend of vehicle safety

system development [29J. Different from passive safety system that reduces injuries of pas-

sengers in crash; active safety protection systems prevent potential crashes by warning the

driver [261. One of active safety protection systems is automotive collision avoidance system.

Automotive collision avoidance system actively warns drivers of a potential collision event,

allows the driver adequate time to take appropriate actions to avoid the collision event [11].

Numerical analysis of collision data strongly suggests that automotive collision avoidance

system can tremendously reduce collisions [11]. Crash data collected by the U.S. National

Highway Traffic Safety Administration (NHTSA) show that automotive collision avoidance

system can theoretically prevent 37% to 74% of all police reported rear-end crashes [22, 35].

It can be seen that the introduction of collision warning systems resulted in significant re-

duction of crash fatalities, injuries, and property damage.

Intersection crashes account for 1.72 million crashes per year in the United States [25,
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27, 14]. Studies by Daimler-Benz and NHTSA suggest that additional one second warning

could reduce intersection accident rate by 50% to 90% [27, 30], and Eaton reported that the

actual truck fleet accident frequency was reduced by 73% after the fleets being equipped with

the VORAD Forward and Side Collision warning systems by Eaton [46, 19J. These results

demonstrate the importance and benefits of the research on intersection collision avoidance

system. However, due to the complicatedness of designing intersection collision avoidance

systems and the limitations of the radar technology, intersection collision avoidance systems

received less attention than the forward collision avoidance systems [471. Thanks to vehicle-

to-vehicle communication technologies, the development of intersection collision avoidance

systems became practical [21, 261. Previous research results show that it is possible to detect

threats of collision by vehicles cooperatively sharing critical information, such as location,

velocity and acceleration [30, 45, 28]. By sharing the information, each vehicle is able to

predict the potential collision [30, 45]. However, the effectiveness of this technology depends

on the percentage of vehicles on the road using it and the number of vehicles equipped

with navigation and communication systems [311. The Cooperative Intersection Collision

Avoidance System for Violations (CICAS-V) project conducted by Mercedes-Benz Research

and Development North America, Inc. developed a prototype system to prevent crashes by

predicting stop-sign and signal controlled intersection violations and warning the violating

driver [251.

In this thesis, we consider the design of intersection collision avoidance system involving a

normal human driven vehicle and a vehicle equipped with the intersection collision avoidance

system. When the potential of collision is detected, the system warns the driver (to accelerate

or brake) based on the positions and velocities of the two cars. After receiving the warning,

the driver has adequate time to react. Then, the system will estimate the driver's reaction to

the warning, and the system can override the behavior of the driver if the driver disobeys the

warning and a collision is about to happen. The scenario after the driver receives the issued

waring can be divided into three sub-cases depending on the reaction of the driver regarding

to the system warning of a potential collision. First, the driver obeys the warning and cross

the intersection safely. Second, the driver disobeys the warning but could safely pass the

intersection. Third, the driver ignores the warning in an unsafe condition and a crash is

12



possible. Then the driver assist system will give the vehicle a control input to avoid collision

by overriding the input from the driver. In some cases, the driver obeys the warning at the

beginning, and later he/she disobeys the issued warning. This case is regarded as that the

driver disobeys the warning from the assist system. In order to guarantee the effectiveness

of the system, the design of the intersection collision avoidance system needs to be provable

safe.

Also, in the collision warning system design, human factors play an important role [34].

The purpose of the warning is to alert the driver when there is a potential of collision

and the driver is unaware of it [47]. A collision waning system should detect both the

potential of collision and the driver's reactions regarding the collision warning and collision

possibility [461. If the driver has already taken an appropriate action, the intervention from

the collision avoidance system should be discarded to reduce the annoying factor 1221. Also,

a good warning system should minimize the additional attention load for the driver [46]. A

system that gives excessive warning or overriding may desensitize and distract the driver and

decrease the driving satisfaction [22]. Undesired warnings and overriding may also make the

driver turn off the system completely [461. Thus, it is important to design a collision system

which is least conservative. A least conservative system requires that the control actions will

only be taken when safety cannot be guaranteed otherwise.

Hybrid automaton is used to model the intersection collision avoidance system involving

a human driven vehicle and a semi-autonomous vehicle with the collision avoidance system

(driver assistance system) installed. Hybrid automaton can model continuous vehicle dynam-

ics as well as discrete human decisions and overriding decisions from the driver assistance

system [33, 361. These features make it an ideal framework for the modeling, since driver

usually switch between different driving actions [38]. Also, there are a lot of development of

modeling and control techniques for hybrid systems that can be utilized.

Research has been done in the safety control problem for hybrid systems with perfect

state information, with imperfect continuous state information, and with unknown modes

when all transitions are driven by unknown disturbance events [39, 24].

There are numerous research results on safety control problem for hybrid systems in

which modes and state information are well known [24, 20, 12, 2, 3, 37, 32, 141. The hybrid

13



control problem to guarantee safety is well formulated and solved using optimal control

and leads to the Hamilton-Jacobi-Bellman (HJB) equation, which implicitly determines the

maximal controlled invariant set and the least conservative feedback control map [6, 371.

However, exactly solving the HJB equation is computationally demanding. Thus, researchers

have been working on approximate solutions to calculate the maximal controlled invariant

set [18, 1]. Also, the termination of the computation of the maximal controlled invariant

set has been investigated and works have been done to find special cases of the systems, for

which termination can be proved [321.

The hybrid system control problem with imperfect state information has also been ad-

dressed [8, 9, 7, 15, 16, 131. In those works, the mode of the system is assumed to be

known but there are uncertainties in the continuous state. The controller is designed based

on a state estimator for finite state systems [8, 9, 15, 14, 131. Linear complexity state

estimation and control algorithms are proposed for hybrid systems with order preserving

dynamics [8, 9, 15, 131.

The intersection collision avoidance system design problem is formulated as a hybrid

controller design problem for hybrid automaton in which modes are hidden since driver's

decisions are unobservable and uncontrollable.

The hybrid system control problem for guaranteeing safety with unknown modes has been

investigated in [40, 39, 41, 42, 43, 44]. There are literatures studying Hidden Mode Hybrid

Systems (HMHSs), in which the mode is unknown and mode transitions are driven only

by disturbance events [40, 391. The lack of knowledge of mode and disturbance transition

event gives a control problem with imperfect mode information. The control problem with

imperfect mode information is translated to problem with perfect state information using

derived non-deterministic or probabilistic information state [40, 39, 41]. The derived non-

deterministic information state tracks all possible states compatible given the history of the

system [40, 39, 41]. With the update law for the derived information state, the control

problem can be reconstructed using the new derive states, and the problem becomes hybrid

control design problem with perfect state information [40, 39, 41J.

Control design problem for driver assistance system which gives driver warnings before

overriding can be modeled as hybrid systems with hidden modes. Hybrid systems with
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hidden modes are special cases of hybrid automata. In hybrid systems with hidden modes,

some modes are unknown and some mode transitions are driven by disturbance events. In

this document, we consider mode transitions can be either driven by disturbance events

or control events. Also, we consider the case such that the allowed ranges for continuous

input signals are mode and time dependent. Warning and active safety systems for vehicle

collision avoidance need to guarantee safety in the presence of human drivers, whose driving

decisions and behaviors are unknown and are modeled as disturbance transition events and

continuous disturbance signals. Also, in order to co-operate the design of warning the driver

and overriding when needed, control events are modeled to trigger transitions between some

modes. Continuous control signals are also involved in the system dynamics to fulfill the

functionality of overriding. Thus, we study hybrid systems in which mode transitions can be

driven by both unknown disturbance events and designed control events. Also, continuous

disturbance and control signals are both involved in the system dynamics.

To solve the problem, first, we propose a hybrid control solution assuming all states and

signals are well measured. Then, we consider the case in which disturbance transition events,

mode of the system, and continuous disturbance signals are not known. We assume that the

continuous state is well known. A disturbance estimator is used to estimate the continuous

disturbance signals and further its results are used to estimate the mode of the system given

the relationship between continuous disturbance signals, the disturbance transition events

and the mode of the system. With the estimated mode, a new hybrid system with perfect

knowledge about mode and transitions are constructed. Then, we modify the inputs to

the hybrid control calculation algorithm based on the estimated values. Finally, a hybrid

feedback control map is designed to prevent the flow of the system from entering the collision

set for the current time and all future time.

Continuous state information, i.e., positions and velocities of the two vehicles, is assumed

to be available. The continuous state information of the normal human driven vehicle could

be provided by cameras and vision systems located at the intersection [21, 34, 28]. Using

vehicle-to-infrastructure communication technologies, short range communications devices

(dedicated short range communication 5.9 GHz in the United States) can distribute the state

information to the driver assistance system installed on the semi-autonomous vehicle [47, 29,

15



281. The continuous state information of the semi-autonomous vehicle can be provided by

differential GPS and from the on-board computer of the semi-autonomous vehicle [45, 281.

Finally, the control algorithms would be executed with the on-board computers to help the

driver cross the intersection safely.
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Chapter 2

Motivation Example

We consider the scenario in which two cars approach an intersection from perpendicular

directions. One of the cars is a human driven vehicle, and the other one is a semi-autonomous

vehicle, equipped with a driver-assist system, referred to as controller in the following. The

controller takes measurements of positions and speeds of the two cars as inputs. If, based on

the inputs, the controller detects the potential of collision, it can issue braking or accelerating

warnings to the driver of the semi-autonomous vehicle. After issuing the warnings, the

controller uses its inputs (positions and speeds) to estimate whether the driver obeys the

issued warning. If disobeying is detected, the controller can override the driver whenever

this should become necessary.

In order to design the controller on the semi-autonomous vehicle, we model the whole

system as a hybrid automaton, which will be introduced in the next section. The continuous

dynamics of the system are the following.

The human driven vehicle is referred as Car 1 and the semi-autonomous vehicle is referred

as Car 2. For i = 1, 2, we use pi, vi, and ai to denote the position, speed, and acceleration

of car i along its path. For t > 0, we have

A (0) = Vi(0) (2.1)

,6i(t) = ay (t). (2.2)
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Figure 2-1: Problem scenario for intersection collision avoidance

We assume that the acceleration a1 (t) at time t E R+ of the human driven vehicle

is determined by a disturbance signal di(t). Similarly, the acceleration a2(t) of the semi-

autonomous vehicle at time t e R+ is determined by a disturbance signal d2(t) if the system

is not in override mode and by a control signal u(t) otherwise. Both disturbance and control

signals are assumed to be bounded, i.e., di(t), d2(t) E [-d, d] and u(t) E [-ii, i] for all

t E R+. Defining the intersection as Int = (L1, U1) x (L2, U2), the objective of the controller

is to guarantee that (p1(t), P2(t)) Int for all t > 0.

The warning and override mechanism is modeled as a finite state machine shown in Fig. 2-

2. Initially, both cars are human-driven, and we denote that mode as h. If the potential

danger of collision is detected, braking or accelerating warning will be issued to the driver of

the semi-autonomous vehicle. In the following, we describe warning/overriding mechanism

assuming an braking warning is issued, left branch of the tree in Fig. 2-2. The case of an

accelerating waring is analogous, except that in the notation a superscript 1 is replaced with

a superscript 2, right branch of the tree in Fig. 2-2. Issuing a braking warning results in

a mode transition from h to mode w'. We define the time instance at which a warning is

18



issued as t := 0. After receiving the warning, the driver of the semi-autonomous vehicle

needs time rRT to react, so the system will stay in mode w' for time [0, rRT). When t =TRT,

the reaction time has passed and the driver should react to the issued warning. Obedience

to the warning is represented by the discrete disturbance signal uo and will trigger the

mode transition from w' to ho'. Similarly, if the driver disobeys the braking warning, the

disturbance signal ar will trigger the mode transition from w' to hd'. hd1 means that the

driver has disobeyed the warning, and if necessary, the control system can override the driver

of the semi-autonomous vehicle to guarantee safety. If disobeying braking warning has been

detected, when necessary, a will be issued and the mode of the system will be switched ha1 .

iurl 2-2 Ss

Figue 2-: Sytem0
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Chapter 3

System Model

We start by introducing the notation of hybrid automaton.

Definition 1. A hybrid automaton is a tuple H = (Q, X, U, D, EU, Ed, R, f) in which Q is

the finite set of system modes with q E Q; X is the space of continuous states with x E X;

U is the set of continuous control inputs with u E U; D is the set of continuous disturbance

inputs with d E D; EU is the finite set of discrete control inputs with o- E Eu; Ed is the

finite set of discrete disturbance events with 0-d E Ed; R : Q x Eu x Ed -+ Q is the mode

update map; f : X x Q x U x D --+ TX is the vector field with I f(x, q, u, d) and TX is

a tangent space of X.

In the example discussed in Section 2, we have Q {h, w 1, w2, hol, hd1, ho2, hd2, ha', ha2}.

Pi

X C IV and x = . Eo1f2 d2}. D c R2 and U c R1. E =
P2

V 2

{wlf, og2 , oj, o-}. f is mode transition map in Fig. 2-2 and f is the longitudinal continuous

dynamics of the two cars given in Eq. 2.1 and 2.2.

In this thesis, we define the (Q, E = Ed x Eu) as a directed acyclic graph (DAG). In

the following, we will first introduce the structure of the hybrid automaton and then the

execution of it.
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3.1 The structure of hybrid automaton

The structure of the hybrid automaton can be described as a finite state machine. Each node

in the DAG is a state, and the links between states are transitions driven by either discrete

disturbance signals or discrete control signals. In DAG, there is a partial order property <.

For vertices u and v, we have u < v if there exists a directed path from u to v.

For a signal a and a time interval T, we define a(T) to be the sequence of signal a in the

time interval T. Starting from a state qo, we define #q(t, qO, Ou([0, t)), OdO([0, t))) := q(t) for

t > 0 as the discrete flow of the system. Based on the partial order property of DAG, we

have qO < q(t).

Definition 2. For a set of mode Q with partial order property, we define min(Q) = q if

Vq' C Q, q' > q. We define max(Q) = q if Vq' c Q, q > q'.

Here, we introduce some notations that are going to be used in the subsequent sections.

Definition 3. For a node q E Q, we define

i DisturbancefReach(q) = {q' I ]Ud s.t. R(q, 0, o-d) q'}.

ii Control Reach(q) = {q' I Bo-, s.t. R(q, o-, 0) q'}.

iii DSR(q) = {q' ] It and Od([0,t)) s.t. 0q(t,q,O, o-d([0, t)))= q'} U {q}.

For example, we have DisturbanceReach(w2) ={ho 2 , hd2} and DSR(w 2) {W 2,

ho2, hd2}. ControlReach(w2 ) =0 and ControlReach(hd2 ) = {ha2 1.

Definition 4. We say that a node q E Q is a head if ]q' s.t. q E ControlfReach(q').

In the example, tv1 and w 2 are both head.

For a node q which is a head, we call DSR(q) as a Connect(q).

Definition 5. For a node q which is a head, we define

i Branch(q) = {q' E Connect(q)IControl Reach(q') = 0}.

ii NotTran(q) = Connect (q) \Branch(Connect(q)).

22



We denote a mode q as a qlast if ControlReach(q) = 0 and DisturbanceReach(q) = 0.

In the example, hal and ha2 are both qiast.

Assumption 1. For each node q E Q, at least one of DisturbanceReach(q) and

ControlReach(q) is empty.

This implies that for all nodes q E Q, the links directed from q can be either a discrete

disturbance transition or a discrete control transition, but not both.

Assumption 2. For all q 1, q 2 C Q, Control Reach(q1) n Disturbance Reach(q 2) = 0.

Assumption 2 implies that a node cannot be reached by both a discrete disturbance signal

and a discrete control signal.

3.2 The execution of hybrid automaton

Here, we consider the execution of the hybrid automaton.

We define R(q, 0,0) = q for all q E Q. The sequence {Ti}ieN+ with 0 < Ti < Ti+1

represents the sequence of times at which node transitions occur with (o(Ti), Od(Ti)) 74 (0, 0)

and (ou(t), (d(t)) = (0, 0) for all t {Ti}iEN+. We define the discrete trajectory q(t) of system

H as follows.

Given q(0) = qo, we define q(t) = qO for 0 < t < T1 . If Ti # ri+1, then we define

q(t) = R(q(Ti),U.(Ti),o-d(Ti)) for t E (Ti,7ri+11. If for some i C N+, Ti = Ti+1

Ti+k = > 0 with k E N+ and finite, then k + 1 mode transitions occur at time T. For

J E {1, 2, 3, ... , k + 1}, we define (o-(T)j, -d(T)j) as the discrete signals triggering the j-

th mode transition occurring at time T. Also, we define q(T)j as the mode after the j-th

mode transition happening at time 7. Then we have q(T)1 = R(q(T), O-u(T)1, d(T)1), and

q(T)m+ = R(q(T)m, u ()m, Od(T)m) for m E {1, 2, 3,... , k}. We define q(t) = q(T)k+1 for

For the continuous trajectory x(t) E X of system H, given x(0) = xo, (t) =

f(x(t), q(t), u(t), d(t)) with u(t) E U and d(t) E D. Starting from xO and qO, we define

<x (t, xO, gO , u ([0,1 t)), d ([0,7 t)),I o-u([0, t)) , o-d ([0, t))) : = x (t)
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as the continuous flow of the system.

For each mode q E Q, we use DTF(q) E {0, 1} to indicate whether the mode q has dwell

time or not. For q E Q,

(1) if DTF(q) = 1, then mode q has dwell time, and we use DT(q) to denote the dwell time

of q. If at time instance ti, the mode of system H is transited to q, q(tj) = q, then

for T E [ti, ti + DT(q)), we have (o(T), -d(T)) = (0, 0), and (oa(ti + DT(q)), o-d(tl +

DT(q))) # (0, 0).

(2) if DTF(q) = 0, then mode q does not have dwell time.

In the example, DTF(wl) =1 and DTF(w 2) = 1 with DT(wl) = DT(w 2) = TRT. This

means that after receiving the issued warning, the driver has time rRT to react. Within the

reaction time, the driver's behavior is not used as driver's reaction to the warning. All of

the other modes do not have dwell time.

Assumption 3. For any mode q E Q, if DTF(q) = 1, then there exists q' C Q such that

q C CantrolfReach(q').

Assumption 4. For a mode q E Q, if DTF(q) = 1 and DisturbanceReach(q) $ 0, then

there exists a q' E DisturbanceReach(q) such that DisturbanceReach(q) C DSR(q').

Definition 6. For a mode q and q' E DisturbanceReach(q) with DTF(q) = 0, the boundary

between Ranged2(q) and Ranged2(q'), which is denoted as BRd 2(q, q') is defined BRd2 (q, q')

ORanged2 (q) n Ranged2(q).

For a mode q C Q and a mode q' C DisturbanceReach(q),

" if DTF(q) = 0, then the discrete disturbance signal od which transits the mode from q

to q' is applied if and only if the continuous disturbance signal d 2 cross the boundary

of Ranged2(q) and Ranged2(q'), BRd2 (q, q'), and go from Ranged2(q) to Ranged2(q')I

" if DTF(q) = 1, then the discrete disturbance signal Ud which transits the mode from

q to q' is applied if and only if DT(q) is reached and d2 go from a value in Ranged2(q)

to a value in Ranged2(q').
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Assumption 5. For a mode q C Q such that there exists a q' with DTF(q') = 0 and

q E DisturbanceReach(q'),

" Ranged2(q) V Ranged2(q');

" at least one of sup Ranged2(q) > sup Ranged2 (q') and inf Ranged2 (q) < if Ranged2 (q')

is true;

" furthermore, if sup Ran ged2(q) > sup Ran ged2(q'), then for qf C DisturbanceReach(q),

we have sup Ranged2(qn) > sup Ranged2(q); if inf Ranged2(q) < inf Ranged2(q'), then

for qf C DisturbanceReach(q), we have inf Ranged2 (q) < inf Ranged2 (q).

Assumption 6. For all qi,q3 E DisturbanceReach(q) with DTF(q) = 0, Ranged2(qi) n

Ranged 2(qj) C Ranged2 (q).

Definition 7. For each mode q E Q, we define Ranged(q) C D as the set of allowed

continuous disturbance signals associated with mode q, and we define Rangeu(q) C U as the

set of allowed continuous control signals associated with mode q.

For example, Ranged(ho2 ) = [-, d] x [j- e, d] and Rangeu(ha2) [-].

Assumption 7. We consider the continuous dynamic of system H to be composed by two

parallel systems S1 and S2. For i = 1, 2, we define system Si as the following:

xij(t) = Ai(q(t))xi(t) + Bi(q(t))di(t) + Ei(q(t))uilt) (3.1)

yi(t) = Cixi(t) (3.2)

where di, ui E R. x, EI R', A1(q) is a m x m matrix, B1(q) and E1(q) are m x 1 matrices, x2 E

Rn , A 2 (q) is a n x n matrix, B2 (q) and E2 (q) are n x 1 matrices. di(t) E Rangedi(q(t), t) C

R where Rangedi(q(t), t) is the allowed range for di(t) in mode q(t) at time t. ui(t) C

Rangeu2 (q(t), t) C R, and Rangeu(q(t),t) is the allowed range for ui (t) in mode q(t) at time

t. C 1 and C2 are 1 x m and 1 x n matrices respectively.

In the example, we have A 1 (q) = A 2 (q) = [ , B1 (q) - H and EI(q(t)) = for
0 0 0
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0 0
all q E Q. If q 7 hal and q f ha2 , then we have B2 (q) = and E2 (q) - If q = hal

1 0

and q = ha2 , then we have B2(q) and E2(q) []0
01

We define C = C Any composed signal a of S1 and S2 are composed in a
0 C2

way such that a (a,, a2). For example, x = (x 1 , x 2) is the composed continuous state

of the system and y = (yi, Y2) is the composed output signal. We have y = Cx. Also,

d(t) = (d1(t), d 2 (t)) E Ranged(q(t), t) = Rangedl(q(t), t) x Ranged2(q(t), t) and u(t) =

(ui(t), u2 (t)) E Ranges(q(t), t) = Range,,(q(t), t) x Rangen2(q(t), t).

Assumption 8. For any mode q E Q with the following properties

i 3q1 E Q with q E DisturbanceReach(q1 ) or Eq2 E Q with q2 E DisturbanceReach(q),

ii DTF(q) 0,

we require |d2 | < 3(q) where 3(q) E R+ defines the allowed range for d2 in mode q.

Assumption 9. For any Connect, we have Vq1, q2 G Connect,

i 13(qi) = /3(q2)-

ii A 2(qi) = A 2 (q2), B2 (q1) = B2(q2), and E2 (q1) = E2(q2).

Assumption 8 and 9 specify some requirements on S2, and for S1, there are no such

requirements.

Assumption 10. For Si, Vt > 0, if VT E [0, t), Uia(T) Uib(T), dia(T) > dib(T), and

Xia(0) > xib(0), then we have yia(t) > yib(t).
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Chapter 4

Problem Formulation

In this section, we formulate the problem we want to solve.

We start by defining a set Bad C R2 such that Bad = (L 1 , U1 ) x (L2, U2 ) with U1 > L, > 0

and U2 > L2 > 0.

Notice that the set Bad is an open rectangular set in R 2.

Problem 1. With (C1x 1 (0), C2 x2 (0)) V Bad, for any t > 0, given q(t), x(t) and d(t) with

d(t) c Ranged(q(t)), for all T > t, design a least conservative control map 7F : X x Q x D -+

U x E, i.e., (u([t,T)), o-u([t, T))) = 7r(x(t), q(t), d(t)), such that (CiX1(T), C2x 2 (T)) V Bad,

Vd([t, T)) and U-([t, T)).

Here, the least conservative control map means that the control actions will only be taken

if the continuous flow cannot be guaranteed to be kept outside Bad otherwise.
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Chapter 5

Solution to Problem 1

We define

B- = (-oo, UI) x (L 2, 00),

so we have Bad = Bt n Bt. We define the safe set for a set K given an initial disturbance

signal do and a mode qo as

W(K, do, qo) = {xoJVt > 0, ]u([0, t)), and o-,([0, t)) s.t. Vud([0, t)) and d([0, t)) with

d(0) = do, Cox (s, xo, qo, u([0, t)), d([0, t)), u([0, t)), d([0, t))) K Vs C [0, t)}.

Lemma 1. W(Bad, do,q) =W(B,do,q)U W(B,do, q).

Proof. The statement W(Bad, do, q) ; W(Bt, do, q) U W(B, do, q) follows immediately from

Bad c Bt and Bad C B1. Hence it suffices to show W(Bad, do, q) C; W(B, do, q) U

W(B , do, q).

We pick any xo = (xoi,X 0 2 ) E W(Bad, do, q).

Then, for all t > 0, there exists u([0, t)) and ou([0, t)) s.t. for all 0d([0, t)) and d([0, t))

with d(0) = do, C#x(s, xo, qo, u([O, t)), d([0, t)), o-([0, t)), od([0, t))) Z Bad = Bt n Bt for all

s E [0, t).

Let's assume C1 xo1 < U1 and C2x0 2 < U2. Otherwise, the proof will be trivial because

29
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Cixi(t) = yi(t) and C 2x 2 (t) = y2 (t) are increasing functions with respect to time.

For all t > 0, we consider that we apply the control signals u([0, t)) and a,([0, t)) s.t. for

all Oud([0, t)) and d([O, t)) with d(0) = do, C#x(s, xo, qo, u([0, s)), d([O, s)), ou([0, s)), Ud([O, s))) 

Bad = Bt nB for all s E [0, t).

We denote t1 as the first time instance such that Cixi(ti) > L1 . Then, because both

C1x1 (t) and C 2x 2(t) are continuous increasing functions with respect to time, we have either

C2x2 (ti) < L2 or C2x2(t1) > U2. Similarly, we denote t2 as the time instance with C1x 1(t2 )

U1. Then, we have either C2x 2 (t2 ) < L2 or C2x 2(t2) > U2.

Since both Cixi(t) and C2 x 2 (t) are continuous increasing functions with respect to time,

if C2X 2(t1 ) < L2 , then for all ti < T < t2 , we have C 2x 2(r) < L2. If C2 x 2 (t1 ) > U2 , then for

all t1 < T < t2 , we have C2 x 2 (T) > U2 .

In the case of C2 x 2 (t1 ) < L2 , for all 0 < t < ti and t > t2 , Cx(t) V B . When t1 < t < t 2 ,

Cx(t) V B . Thus, in this case, xo C W(B , do, q). Similarly, in the case of C 2 x2 (t1 ) U2 ,

c0 E W(Bt , do, q).

As a result, xo E W(Bt, do, q) U W(B4 , do, q). ]

For a set K and a point x, we define distK(X) - infkEK ix - ko. For a set K, we define

the oriented distance function from x to K as bK(X) distK(x) - distKc(x)-

Given a finite state machine H, a point xo, a mode q and do E Ranged2(q), we define the

value functions [10, 23]

VH (xo, q, do) = max min min bBad(Cx(t,xo,qou([O,t)),d([O,t)),
u([qoo)),o) ([,om)) d([m,oo)),mt([q,0()) t[E)[O,o()

07u([O, t)), 9d([0, O)))

Vt (xo, q, do) = max min min bBC2t xo, qo, u([0, t)), d([0, t)),

H ~u([,oo)),as ([o,oo)) d([o,oo)),0s ([0,0o)) t E [0,00) BT( (t

U([0, )), 1 ( [ 0, t))))
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V (xo, q, do) = max min min bi (Cx(t, xo, qo, u([0, t)), d([0, t)),
u([0,oo)),o. ([0,oo)) d([0,oo)),Oad ([0,oo)) tE [0,0o)

au([0, W), o-d([0, t))))

where o and gd trigger the mode transitions in H, u and d are selected in the allowed ranges

for specific modes in H, and d 2(0) = do.

Then, we have

W(Bad,do,q) =

W(BT, do, q) =

W(B1 , do, q) =

{xo|VH(xo, q, do) > 01

{x0 V$(xo, q, do) > 01

{xoV (xo, q, do) > 0}.

Corollary 1. For a finite state machine H, a point xo, a mode q and do G Ranged2(q)

compatible with q, {xo|VH(xo, q, do) > 0} {xoI max(V4 (xo, q, do), V' (xo, q, do)) > 0}.

Proof.

W(Bad, do, q) = {xoVH (xo, q, do) > 0}

= W(Bt, do, q) U W(B , do, q)

{xo0IV(xo, q, do) > 0} U {xoV (xo, q, do) 01

{xo Imax(V (xo, q, do), V (xo, q, do)) 01.

In the following, we will only show the case for Bt, and the case for B can be done

similarly.

For each Connect in the finite state machine, we consider a mode (denoted as q,) such

that for all q e Connect with DTF(q) = 0, qh Disturbance Reach(q), and DTF(qh) = 0.

If |DisturbanceReach(qh)I > 1, then for q* E DisturbancefReach(qh) with inf Ranged2(q*) >

inf

Ranged2(qh), we remove all q' with q' > q* from the finite state machine. We denote the

remained finite state machine as Hicu.

31



Given a mode q, we use CurrentConnect to denote the Connect q is in. We consider

the current continuous disturbance signal d2 to be do. We consider the current state of the

system to be xo. We use ChildConnect to denote the Connect the system can transit to from

the current mode. We use qnd to denote the mode from which CurrentConnect can transit

to ChildCOannect and we use qp to denote the mode such that gend E DisturbanceReach(qp)

and DTF(qp) = 0. We define qn to be the head of the ChildConnect, and we define

d* = inf Ranged 2 (qn).

Now, we consider two cases: DTF(q) = 0 and DTF(q) = 1.

(1) DTF(q) =0.

We define ttran do-infRanged2 (qp) if do > inf Ran ged2(qp), and we define ttay

d0-inf Ranged2(qend)

Then, we define u4 ran ([0, ttran)) (Utranl ([0, ttran)), Utran2 ([0, ttran))) and dXran([0, ttran))

(d'irani([0, ttran)), dtan2 ([0, ttran))) such that for T E [0, ttran)

(a) u'rani (T) = inf Range,, (q)

(b) Ulran2 (T) = sup Rangeu2(q)

(c) dani(T ) sup Rangedl(q)

(d) dXran2(r) = do - ,B.

We define

Xon Ox (ttrani xo, q, tran( [0, ttran) ), d,-an ( [0, ttran)), 1, 0 7 ran [0,1 ttran))

with o~tran([0, ttran)) being compatible with dpan([0, ttran)).

For t > 0, we define utay([0, t)) (U' ay([0, t)),tay 2 ([0,t))) and ditay([0,t))

(dtayi([0, t)),diay2 ([0, t))) such that for T C [0, t)

(a) usitayi(r) = inf Rangeui(q)

(b) U'tay2() = sup Rangeu2 (q)

(c) d'ay (r) = sup Rangedl(q)
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(d) dita,2 (r) = max(do - /3 r, inf Ranged2(qend)) -

For t > 0, we define

darstet) = de (Cst(y (1, q, 3,(0 1)) disay([0, 7 )), 0, 7 ,dtsay([0, t))))

with ,stay([0, t)) being compatible with dstay([0, t)).

Also, for t > 0, we define u'([0, t)) - (u' ([0, t)), u'([0, t))) and d,([0, t)) =

(dj,([0, t)), d'([O, t))) such that for T E [0, t)

(a) ut (T) inf Range,1 (q)

(b) Un (T) sup Rangeu2 (q)

(c) d'(-r) sup Rangedl(q)

(d) d 2 (T) max(do - Or, inf Ranged2 (q)).

For t > 0, we define

dB-tc(t) = dBT (C#x(txo, q, ul([0,t)), dic([0, t)), 0, a Q-(0, t))).

with oc([0, t)) being compatible with dc([0, t)).

It should be noted that if the current mode q is gend and ControlReach(q) # 0, then

being trapped in the current Connect is not possible . In this case, qp does not exist,

and we define mint dBTc(t) = 00.

(2) DTF(q) =1.

Definition 8. NoTranDT(q) = { q'Iq' E DisturbancefReach(q) and Control Reach(q') =

0}.

Now, we use qt to denote max(NoTranDT(q)).

We denote the time the mode has stayed in q as RT, and we denote RT = DT(q) - RT,

as the remaining time the mode will stay in q. We define ttran =

max(0, inf Ranged2(qt)-inf Ranged2(q)) and we define ttay =
inf Ranged2 (qt)-inf Ranged2(qend)

13
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Then, we define utran( [0, RT + ttran)) (Urani( [0, RT + ttran)), 4 Uran2( [0, RT + ttran)))

and dr an( [0, RT + ttran )) = (d' ani( [0, RT + ttran)), dr an2([0, RT + ttran))) such that for

T E [0, RT + ttran)

(a) urani (T) inf Rangeu, (q)

(b) uran2 (T) = sup Rangeu2 (q)

(c) d4 anI (T) sup Ranged 1 (q)

(d) dtran2 (T) inf Ranged2 (q) if T r [0, RT] and dctan2 (T) = infRanged2 (qt)-/3(T-RT)

if T G (RT, RT + ttran).

We define

XOn =#x(RT + ttran, tran ( [0, RT + ttran)),

d4ran( [0, RT + ttran)), 0, OJtran( [0, RT + ttran)))

with odtran( [0, RT + ttran)) being compatible with d4ran ([0, RT + ttran)).

For t > 0, we define ultay([Ot)) = (U'tayi([i, t)), Utay2 [0, t))) and ditay([O, t))

(datayi([, t)), ditay2 ([, t))) such that for T E [0, t) with t > RT

(a) ustayl (T) inf Rangeu, (q)

(b) U'1tay2(T) sup Rangeu2 (q)

(c) dtayl(T) = sup Rangedl(q)

(d) dtay2(T) inf Ranged2(q) if T E [0, RT1. If T > RT, then

i if gend DisturbanceReach(q), then ditay 2(T) max(inf Ranged2(qt)

- 3(T - RT),

inf Ranged2(qend));

ii if gend E DisturbanceReach(q), then ditay2 (T) inf Ranged2 ( qend).

For t > 0, we define

dBT stay (M dB-r (CO. (t, x0, q, ustay ([0, 1)), d'stay ([0, 0)), 0, o-tay([0,1 t))
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with atostay([O, t)) being compatible with dtay ([0, t)).

Also, for t > 0, we define u,([O, t)) = (Uz4([0, t)), u([0, t))) and d(0, t)) =

(d([O, t)), d 2([0, t))) such that for T c [0, t) with t > RT

(a) ut (T) = inf Ran geu (q)

(b) 'a (T) = sup Rangeu2(q)

(c) d' 1(T) sup Rangedl(q)

(d) dT2(T) inf Ranged2(q) if T C [0, RT] and d 9( ) =

max(inf Ranged2(qt) - O(T - RT), inf Ranged2 (qp)) if T> RT1 .

For t > 0, we define

dB~ctc dBT CX(t, X0, q, u ([0, t)), d c([0, t)), 0, a1Q0, t))).

with o([0, t)) being compatible with dl([, t)).

It should be noted that if qt or qp does not exist, then being trapped in the current

Connect is not possible. In this case, we define mint dBtc(t) = oo.

For any xo, do and H, we define VH(xo, 0, do) = -oo.

Proposition 1. V$(xo, q, do) = min(max(mint dBstay(t), MaXq, EControl Reach(qend)

VT (xon, qn, d*)), mint d c(t)), where end c DSR(q) and DisturbanceReach(qend) 0.

Given the current mode of the system, we can determine the Connect the mode is in.

Then, there are three options we have.

(1) The mode of the system transits within NotTran(q) and the mode of the system is

trapped in the current Connect without the ability to transit to other Connects. If stay-

ing within NotTran(q) gives a negative value function, which means that mint dc(t) < 0,

then the whole value function will have a negative value and no control map can guar-

antee safety.

(2) The mode of the system transits to Branch(q). Now, the controller can decide whether

to stay in the mode of Branch(q), or transit the next Connect, based on which way

provides a larger value function.
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(a) If staying in Branch(q) provides a non-negative value, then a non-negative value of

the whole value function is found and a control map exists to guarantee safety.

(b) If staying in Branch(q) provides a negative value, then it means that staying in

Branch(q) cannot guarantee safety and transiting to the next Connect is needed. At

the end, if the system reaches the Connect from which no more Connect transitions

are possible, and staying in that Connect is not safe, then the value function has a

negative value, and no control map can guarantee safety.

In order to prove Proposition 1, we will first introduce the following propositions. Based

on the following propositions, Proposition 1 is a direct result.

Proposition 2. For all t > 0, if for all 0 < s < t, we have ul(s) = (u'(s),u'(s)) and

u2(s) = (u2(s), u2(s)) such that ul(s) > u2(s) and ul(s) < u2(s), and d1 (s) = (d'(s), d'(s))

and d2 (s) = (d2(s),d2(s)) such that dl(s) < d2(s) and d'(s) > d2(s), then starting from

XO = (XOi, X02), using the same continuous dynamics, we have dB-((y'(t), y'(t)))

d ((y2(t), y2(t))), where (yl(t), y'(t)) is the point reached using ul and d', and (y2(t), y2(t))

is the point reached using us and d2

Proof. By the order preserving property, it is know that yj(t) y (t) and y' (t) K y (t).

By the definition of the oriented distance function, dBt ((yi (t), y2 (t))) either equals to L, -

yi(t) or y2 (t) - U2. Since L, - yl(t) < L, - y2(t) and y1(t) - U2 < y2(t) - U2 , we have

dBT ((Y1 M, Y2 (0) < dB-r (y2 (t, y2 (t)) -

What we have shown implies that staying in the same Connect (which means that the

same continuous dynamics are used), decreasing ul, increasing u2 will increase the value

function and increasing di, decreasing d2 will decrease the value function.

For any t > 0, if we are given u-([0, t)) and u([0, t)), then Proposition 3 follows directly

from Proposition 2.

For t > 0, if we are given od([0, t)) and uo([0, t)), then for each time instance t > 0, we

have ui(t) c [u'(t), u (t)], u2 (t) E [u'(t), uu(t)], d1 (t) c [d'(t), du(t)] and d2 (t) E [d'(t), du(t)].

If we are given the upper and lower bounds for u1, U2, d, and d 2, for t > 0, we define

'ut ([0,t)) = (ul(i0,t)),u'([0,t))) such that for all T E [0, t), we have ul(r) = u'(7) and
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u (r) uu (r). Also, we define d([0, t)) = (d ([O, t)), d([0, t))) such that for all r E [0, t),

we have d'(T) = du(r) and d4(r) = d'(T).

Proposition 3.

max min min but (C#,(t, xo, go, uT([0, t)), i([0, t)), O-u([0, t)), O-d([0, t))))
u([O,oo)) d([O,oo)) tE[O,oo)

=min bBT (C#x (tx o g,a QT(0, t)), jd([O, t)) , O-u ([0, t)), i -([O, t)))).
tE [O,oo)

Notice that if we are given U([0, t)) and uo([O, t)), then for each time instance, we need to

pick the optimal continuous control and disturbance signals to optimize the oriented distance.

If U-d([, t)) and o-,([, t)) are not given and we need to pick optimal od([0, t)) and ou([O, t))

to optimize the value function, then we optimize the value function by changing the bounds

for the continuous signals u([O, t)) and d([O, t)) using Jd([O, t)) and o- ([O, t)).

From Proposition 2, another result we have is the following proposition.

Proposition 4. Vlj;(xo, q, do) = V T  (xo, q, do).
Hcut

Proof. From Proposition 2, it is known that the disturbance signals minimize the value

function by picking the minimal continuous disturbance signal at each time instance. Thus,

the node removed from H will never be reached and considered in the calculation of the value

function because going through those removed nodes will increase the minimal continuous

disturbance signal we can pick. As a result, the value function calculated considering H will

be the same as the value function calculated considering H t.

Given the current mode of the system, the mode of the system will either get stuck in

the current Connect or reach a mode, from which either the mode of the system can go to

another Connect, or no more transitions are possible. The discrete disturbance signal will

select among getting stuck and go to "the last" mode of the current Connect in order to

minimize the value function. If the mode of the system reaches the last mode of the current

Connect, then the discrete control signal will select whether to stay or go to the following

Connect in order to maximize the value function. Thus, we have Proposition 1.
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Proposition 5. For all xo, q and d0 , if VH(xo, q, do) > 0, then there exists an s s.t.,

VH (#x (s, XO, U ([0,I s)),7 d([0, s )), 0, ad([0, s))),O #(q, 0, Ud([0, s))),I do (s)) > 0

for all d([0, s)) and Qd(0, s))).

Proof. If VH(xo, q, d0) > 0, then we know that there exist control signals, such that no

matter what disturbance signals are applied, on trajectories of (yi, Y2), the point which is

most closed to the set Bad has a positive distance from the set Bad. Among the trajectories,

let us pick the trajectory whose most closed point to Bad has the smallest distance. This

trajectory corresponds to the best case control and worst case disturbance. We denote that

point as CXd = (C1Xd1, C2 Xd 2 ). There exists a J > 0 and a neighborhood Ne(CXd)6 around

CXd such that for any point y* c Ne(Cd), I Cxd - y* I 6 and bBad(y*) > 0. Let's denote

infy*ENe(Czd)6 bBad(y*) Crid. For a trajectory of (Y1, Y2) (denoted as TJ), we define the

distance from the trajectory TJ to the set Bad as infpETj bBad(P). Because both yi and Y2

are continuous with respect to time and increasing, then there exists a neighborhood around

Cx0 , such that trajectories of (y1, y2) starting from any point in the neighborhood have a

minimum distance greater or equal than Crid. Since both yi and Y2 are continuous with

respect to time, then there exists an s s.t.,

VH (#x (s, X, U([0 , s)) , d([0 , s)), 0, -([0, s))), , (q, 0, a(Q0, s))), do (s)) > 0

for all d([0, s)) and ad([0, s))).

It should be noted that if the controller is able to apply discrete control signals to switch

Connect, then the mode of the system has arrived to a qend which is a Branch mode as

defined in Definition 5. When the mode of the system has arrived qend, and no discrete

control signals are applied, then in the future, applying the discrete control signals is still

possible.

Proposition 6. For all s > 0, there exists O([0, s))) and corresponding dt Q0, s)) such that

VH (x0, q, do) > H (0. (s, xo, it 0,s' Q(0 )) , 0, s))),0,qQ, , T-d0, s))), do(s))-
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Proof. This is trivial from the definition of the value function since by applying 0o', we try

to maximize the value function. El

In the calculation of the value function, it is assumed that q and d2 are measured. In

that case, given a finite state machine H, we can calculate the value function to find the

control map. However, if d2 and q are not directly measured, then we need to modify the

hybrid system so that we can still use the solution to Problem 1 to find the control map.

In the next section, we will introduce a disturbance estimator to estimate d2. Then,

based on the estimation of d2 , we will construct a hybrid system based on H with modified

Ranged2 and transition evoking events.
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Chapter 6

A Disturbance Estimator

In this section, we will introduce a disturbance estimator presented in [5].

6.1 Problem Statement and Assumptions

We consider systems described by

=Ax + Bd +Wu (6.1)

y = Cx (6.2)

where x(t) E R' is the system state and y(t) E RP is the measured output at time t E R.

The continuous control signal u(t) E R' models the control inputs to the system, and the

continuous disturbance signal d(t) E R'" models all uncertain in the system and it is regarded

as an unknown state-independent time-varying input. A, B, C and W are known constant

real matrices.

In order to estimate x(t) and d(t), we need the following two assumptions.

Assumption 11. rank(CB) = rank(B).

Assumption 12. For every complex number A with nonnegative real part,

A -AXI B
rank( ) = n + rank(B).

We C 0 
We design of matrices P, L, and G as the followings:
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(1) Find S and T such that A = T- 1AT =

S- 1 CT Cn 0
0 C22

(2) Find F, L, and C such that

P(A + LC)+(A + LC) T P < 0

f3Tfj - GC.

To do that, we need to follow the following steps.

(a) Choose L2 2 such that A 22 + L22C22 is Hurwitz.

(b) Choose P22 > 0, then P =
I*

0

(c) Define

Q22 = -[ P22 (A 22 + L 2 2 C22 ) + (A 22 + L 2 2 C22 )T P221 > 0

Qn - Al + AT + (A 12 + AT P22)Q 2
1 (A T + P22 A 2 1 )

Choose n > Ama(Q"). Then we have L

(d) Make C = BTC1 01

(3) The transformations

P = (T T P)-I T-1

L = TLS- 1

G = GS- 1.

transform F, Z, and C to P, L, and G.

42

All A12 B1
, B3 - T-'B =,and C =-

A 2 1 A 22 0

(6.3a)

(6.3b)

(6.3c)
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0

0

L22
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6.2 A State and Disturbance Estimator

We construct the state and disturbance estimator as follows.

x = A + Bd +Wu + L(C: - y) (6.5a)

d =--G(C - y) (6.5b)

where -y is a positive scalar, the initial estimate -(to) = o is arbitrary, and :(t) and d(t) are

the estimates of x(t) and d(t) respectively. We need j|d(t)I| < 01 and |ld(t)II < 2.

We define a = 2 > 0 and a = ( ) . Based on the analysis in [5], by making
22 o

-y > max {8, $- } where p1 and [2 are two non-negative real numbers which can be chosen

arbitrarily. We define

11 + (to)-Q ItoI

Bound(-y, t) = a{2Ba (A + LeC)[ ) +11e(to)11e- +-' B()]+ [()i + 11e(to)I e--)1}.

(6.6)

Then, we have d(t) E dRange(y, t) = [d(t) - Bound(-, t), d(t) + Bound(-y, t)].
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Chapter 7

Mode Estimation

In this section, we consider the construction of a mode estimator based on the result from

the disturbance estimator.

It should be noted that mode estimation is needed

* when the mode of the system is in a Connect, whose head qh does not have dwell time,

contains more than one mode;

" or when the mode of the system is in a Connect, whose head qh has dwell time, contains

more than two modes.

Let's consider the mode of the system is in a Connect which satisfies the two conditions

for requiring mode estimation, and we define the time instance at which the mode of the

system enters the Connect as T= 0. We record the time instance for entering the Connect

as t*. The disturbance estimator is started when T = 0. It should be noted that the time

instance in the Connect, r, corresponds to a time instance t for running the whole hybrid

system with the relationship t = t* + T.

Given the Connect q(t) is currently in, we use the following algorithm to calculate q(t).

Given a Connect, we use NoDT Mode(Connect) = { q E Connect|DTF(q) = 0}.

When the dwell time of the head has passed, we will begin to do the mode estimation.

If head does not have dwell time, then we start mode estimation as soon as the mode of the

system enters the Connect.

From Algorithm 1, Corollary 2 is a direct result.

45



Algorithm 1 Calculation of 4(t)
1: procedure PROCEDURE FOR CALCULATING q(t)(Connect)
2: ModeR = NoDTMode(Connect) and 4(t) = NoDTMode(Connect)
3: while q(t) E NoDTMode(Connect) do
4: 4(t) = DSR(min({qq E ModeR and Ranged2(q) n dfRange(r) # 0}))
5: ModefR - 4(t)

6: end while
7: end procedure

Corollary 2. For t > 0, we have q(t) E 4(t).

Corollary 2 shows that the mode estimator is a correct estimator since the true of the

system is always contained in the estimated modes.
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Chapter 8

Transformations from H to H

In this section, we consider how to construct the hybrid system H based on the structure of

H.

From system H to H, the structure of the finite state machine remains the same. The

ranges for ul, U2 and d, in corresponding modes are the same. We need to modify the

evoking conditions for discrete disturbance transitions and Ranged2 for each mode.

For each mode q E H, we label the mode of H at the corresponding position as q.

For the evoking conditions for discrete disturbance transitions, since the disturbance

transitions events and the continuous disturbance signals cannot be directly measured, we

use the mode estimation method introduced in the previous section to determine whether

there will be a mode transition in system H.

For each Connect, we define the time instance at which the mode of the system enters the

Connect as T = 0, and the disturbance estimation is started at T = 0. For two modes qi and

q2 in the Connect with q2 E DisturbanceReach(q1 ) and DTF(q1 ) = 0 and DTF(q2 ) = 0,

" if sup Ranged2(q 2) > sup Ranged2(ql), then the event inf dRange(r) > sup Ranged2 (q1 )

triggers the mode transition from qi to 2;

" if sup Ranged2(q2) < sup Ranged 2(qi), then the event sup dRange(r) < inf Ranged2(ql)

triggers the mode transition from 41 to 62.

For a mode q E Q with dwell time, the corresponding mode 0 E Q has the same dwell

time. Disturbance transitions leaving 4 is triggered by the dwell time and Ranged2 of the
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modes in the DisturbanceReach(q).

For modifying Ranged2 (q) of q Q, we consider the modification method introduced

below.

For q E Q such that

(i) ControlfReach(q) # 0

(ii) 3q' c Q s.t. Control Reach(q') {q}

(iii) DTF(q) =1

we have Ranged2 (d) = Ranged2 (q).

For other cases, we consider the modifications below.

Again, for each Connect, we define the time instance at which the mode of the system

enters the Connect as r 0. It should be noted that T= 0 is the time when we start the

disturbance estimation. Then, for each r > 0, Ranged2 for each mode is calculated as the

following.

For q E Q and DTF(q) = 0, we consider q' E DisturbanceReach(q).

" If BRd2(q, q') = sup Ranged2(q), then the corresponding bound

BRd2 ( i, q')= BRd 2 (q, q') + 2Bound(r).

" If BRd2(q, q') = inf Ranged2 (q), then the corresponding bound

BRd2 (4, q') - BRd2 (q, q') - 2Bound(T).

After the modification, the hybrid system H can be transformed to H. H and H share

the same finite state machine structure. Ranged2 (q) is modified for each mode. In order

to calculate the value function for H, we consider the following modifications to the input

signals.

The inputs to the algorithm of finding the control map at time instance t are q(t), x(t),

d2 (t), and a hybrid system H. In system H, at each time instance t, q(t) is known by mode

estimation. x(t) is measured. For the Connect which q(t) belongs to, we define the time

instance at which the mode of the system enters the Connect as r = 0. Then, d2 at time

instance t with corresponding T are determined as the following.
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" For calculating value functions with Bt, we use d2 (t)= inf dRange(r).

* For calculating value functions with B4 , we use d2 (t)-= sup dRange(T).

The block diagram in Fig 8-1 shows how to calculate the value function using the results

from disturbance estimator and mode estimator at each time instance t > 0.

" Using dRange(t), we modify Ranged2 (q) to get Ranged2 (4)-

" The same finite state machine structure is kept from H to H.

" Using mode estimator and dRange(t), we estimate the mode of the system, 4(t). (t)

is used as the input to the algorithm for calculating value function.

" We use inf dRange and sup dRange to calculate V t and V 4 respectively.

" The continuous state x(t) is used as input to the algorithm.

d(t)

Bound(-y, t)--+

Bound(, t)

d(t)
Bound(7 , t)

Modifying Ranged2

Keeping the same finite

state machine structure

from H to ft

q(t)

x(t)

1

Figure 8-1: Calculate the value function using results from disturbance and mode estimator
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In the simulation example, the system H is transformed in to H which is shown in Fig 8-2.

Figure 8-2: System H

From H to H, we modify the Ranged2 for ho', hd', ho2 , and hd2 . We have Ranged2 (ho') =

[-d, -d+ c + 2Bound(t)], Ranged2 (hd') = [-d, ci], Ranged2 (ho2 ) = [d - c - 2Bound(t), ci],

and Ranged2 (hd2) = [-_d,d .

For the mode transition events, we have:

* event0 1 : inf dRange(t) < -d+ c

* eventd1 : inf d Rarnge(t) ;> -d+ c

* event0 2 : sup d Range(t) > d - c

* eventd2 : sup d Range(t) <_ d - 6.

All of other parameter ranges and finite state machine structure remain the same from

H to H.
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Chapter 9

Simulation Example

In this section, we consider the solution to the motivation example. We define the intersection

as Int = (L1 , U1) x (L2, U2) and we need to design the control system such that (p1(t), p2 (t)) g

Int for any t > 0. Thus, the set Bad = (L1 , U1 ) x (L2 , U2 ) in this example.

9.1 Model of Finite State Machine H

We model the whole system as a finite state machine H as shown in Fig. 9-2. For all t > 0,

we have ai(t) = di(t). a2 (t) = U2(t) if the system is in the overriding mode (hal and ha2).

Otherwise, we have a2(t) = d2(t). Now, we introduce the allowed range for each mode.

For all modes q in the finite state machine, we have Rangedl (q) = [-J, d], and

Rangeu2 (q) =[-i, i]. We do not consider Rangeu1 (q) since u1 does not appear in the

system dynamics for all modes. For Ranged2(q), we have Ranged2(q) [-d, d] if q = hol

and q = ho2 . We have Ranged2(ho') = + c, ] and Ranged2 (ho2) _, -_

We need to construct a control map (0- U ([O, t)), uw 2([O, t)), ou([O, t)), or([O, t)), U2([0, t)))

such that for all possible (or ([0, t)), 0ol (0, t)), I 0, t)), o2 ( )0, t))),

(pi(t),p2 (t)) V Bad for all t > 0.
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Car I |

Ly U, U2

L2
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Car 2

P2

P1

Figure 9-1: Problem scenario

ho h 2 hos hd2

Figure 9-2: System H
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9.2 Construction of Estimation Finite State Machine H

Since we cannot measure the reaction of the driver of the semi-autonomous vehicle to the

issued warning, which means that or, , o o2 , and or 2 are not known, the system H is

a hybrid system with hidden modes. Thus, we consider to construct an estimation hybrid

system H. In order to construct H, we need to estimate the acceleration input from the

driver of the semi-autonomous vehicle, i.e., we need to estimate d2 in order to estimate

whether the driver has disobeyed the issued warning or not.

We consider to use the disturbance estimator defined in Eq. (6.5a) and Eq. (6.5b). For

0 1 0 0 1 0
this simulation example, we have A = , B H , W H and C = .

0 0 10 0 1

Running the disturbance estimator, we get d 2(t) E dRange(t) - (t)- Bound (t), d2(t) +

Bound(t)].

For t TT, we define

* evento1 inf dfRange(t) < - +e

" event1l: inf dfRange(t) > -i+ c

" evento2 sup dRange(t) > d -

" eventd2 sup dfRange(t) < d -

Let's assume that the braking warning is the issued warning. If eventdi happens at

t > rR, we know d2(t) V [-d, -+d e], which means that the driver must have disobeyed

the braking warning at time t. If evento1 happens at t > TRT, we cannot detect disobeying

braking warning since it is possible that d2 (t) E [-d, -j+E-]. It should be noted that event 1

taking place cannot guarantee that the driver of Car 2 obeys the issued warning.

Based on the disturbance estimation, we construct the finite state machine H as in

Fig. 9-3. In H, the boundary between h^oI and hdl and the boundary between ho2 and hd2

need to be modified. BRd2 (ho1 , hd1 ) = -d e + 2Bound(T) with T being the disturbance

estimator running time after braking warning is issued. Similarly, we have BRd2 (ho2 , hd2)

d - E - 2Bound(r) with T being the disturbance estimator running time after accelerating

warning is issued.
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Figure 9-3: System H

Fig. 9-4 and Fig. 9-5 show Ranged2(hol) and Ranged2(ho2) for each time instance t after

starting the disturbance estimator. For example, in Fig. 9-5, the region between d and the

red trajectory is Ranged2(ho2) for each time instance.

d

i

-ci

t

Figure 9-4: Ranged2 (hol)
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d2

-j

Figure 9-5: Ranged2(ho2)

In order to calculate the value function V, we need to consider two cases:

* issuing braking warning, which corresponds to calculating V;

" issuing accelerating warning, which corresponds to calculating Vt.

If the braking warning is issued, then the mode of the system may get trapped in the

mode hol without the ability to switch to the overriding mode hal, or it may transit to hd'

and the controller can choose whether to stay in hd' or switch to ha' based on which of the

two will provide a larger value for the value function. In the second case, when necessary,

the controller will issue the signal a' to switch to ha' since in hal, a 2 can take the value -i

for each time instance, and that will give a larger value for the value function. In the first

case, the worst case disturbance profile compatible with getting trapped in hol is shown in

Fig. 9-6. Since the value of a2 at each time instance equals to d2 , which is always larger

than -U, the value of the value function for getting trapped in hol will be smaller than the

value of the value function for the second case. The selection between the two cases are done

by discrete disturbance signal, which always selects the smaller one. Thus, the disturbance

profile for d2 shown in Fig. 9-6 will be used to decide when to issue the braking warning. For

the accelerating warning, the same analysis follows and the disturbance profile for d2 shown

in Fig. 9-7 will be used to decide when to issue the accelerating warning.
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-d

TRT

2Bv t

t

Figure 9-6: Worst case disturbance profile of d2 for getting trapped in ho1

_ ci
d-E

Tpp

t

Figure 9-7: Worst case disturbance profile of d 2 for getting trapped in ho 2

9.3 Simulation Results

We consider the simulation example shown in the following figures.

We have i = 4m/s 2, d = lm/s2, L1 = 22m, U1 = 26m, L2 = 22m, and U2 = 26m.

Vmin = 1m/s and Vmax = 32m/s are saturations for the speeds of the two cars. We have
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TRT= 0.5s and c = 0.2m/s 2 . Initially, we have P1(O) = Om, P2(0) = 4m, vi(O) = 3m and

v2 (0) = 6m. dt = 0.02s is the simulation time step.

Next, we will show the simulation results in Fig. 9-8 to 9-15. In the simulation, the

accelerating warning case is shown, and after receiving the warning, the driver will disobey

the warning. At the end, overriding is needed to guarantee safety. From Fig. 9-8 to 9-15

except Fig. 9-11, there are two plots in each figure.

" The left plot shows R2 space. The horizontal axis represents pl. The vertical axis

represents P2. The red rectangle is the Bad set. The black circle represents the point

(p1(t),p2(t)) for each t > 0. From the black circle, either a red trajectory or a blue

dashed trajectory is plotted. The red and blue trajectories represent the predicted

trajectory if the optimal control and disturbance signals are used. Thus, the distance

between the trajectories and the set Bad (in this simulation, it is the distance between

the trajectories and the point (L1 , U2 )) will represent the value of the value function.

If the red or blue trajectory in the plot is above the point (L 1 , U2 ), no discrete con-

trol signal is needed to apply. If the trajectory goes through the point (L1 , U2), the

corresponding discrete control signal should be applied.

" The right plot shows the two perpendicular lanes and the intersection. The blue asterisk

represents Car 1 and the black asterisk represents Car 2. For each time instance, we

cannot have both of the two asterisks inside the red rectangle, which represents the

intersection.

The simulation results are shown below.

(a) Initially, both of the two car will be human driven and the mode of the system will start

from mode h. We calculate the value function Vt using the disturbance profile for d 2 as

shown in Fig. 9-7. The corresponding predicted trajectory is shown as the red trajectory

in Fig. 9-8. The red trajectory is above the point (L 1 , U2 ), which means that Vf has a

positive value. This guarantees that the overall value function V has a positive value.

Thus, no control signal needs to be applied.
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0

5

0 5 10 15 20
Car, -+

Figure 9-8: Initially, both of the two cars are human driven and the mode of the system is

h.

(b) In Fig. 9-9, the red trajectory goes through the point (L1, U2), which means that Vt = 0

at this point. At the same time, V gives a negative value, which means that braking

cannot guarantee safety. Thus, the overall value function has a zero value and the

corresponding discrete control signal o,'2 needs to be applied. The controller gives the

driver of the semi-autonomous vehicle accelerating warning. Then the mode of the

system will be switched to w2.
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warning 1: 0 warning 2: 1

Bad
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Figure 9-9: When the red trajectory goes through the point (L 1, U2), the value of the value

function is 0, and the control signal u 2 should be applied.

(c) Now, the mode of the system has been switched to W2, and the system will stay in

mode w2 for time TR so that the driver can react to the warning. The blue trajectory

in Fig. 9-10 represents the predicted trajectory associated with the case in which the

driver disobeys the issued warning and overriding with the maximum control input is

performed by the controller.
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warning 1: 0 warning 2: 1
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Figure 9-10: The mode of the system has been switched to w 2. The system will stay in w 2

for time TmR.

(d) After the reaction time TR has passed, the controller needs to use the result from the

disturbance estimator to estimate whether the driver has disobeyed the issued warning

or not. In Fig. 9-11, the true disturbance signal d2 is plotted as the red line. The blue

trajectory represents d2 and the upper and lower bounds of dRange are plotted as the

black dashed lines. When the upper bound of dRange crosses the line d - c, disobeying

is detected and the mode of the system will be switched to hd 2 .
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d2 .

d

Disobeying
accelerating
warning is
detected

--d + Bond
d - Bound

t

Figure 9-11: Disobeying the accelerating warning is detected.

When the mode of system has been switched to hd 2, which means that disobeying

accelerating warning has been detected, the controller can decide to stay in hd 2 or

transit to ha2 . At this moment, the optimal trajectory corresponds to switching to

mode ha2 and applying U, and it is plotted as the blue trajectory in Fig. 9-12. The blue

trajectory is above the point (L1, U2), so a positive value function value is guaranteed

and no discrete control signal needs to be applied at this moment.
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Figure 9-12: After disobeying accelerating warning is detected, the mode of the system will

be switched to hd2. The blue dashed trajectory is generated using the maximum control for

a2 -

(e) When the blue trajectory touches the point (L 1 , U2 ) as shown in Fig. 9-13, a zero value

for the value function is given, and at this moment, of needs to be applied. The mode

of the system will be switched to ha2 and overriding mode is entered.
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Figure 9-13: When the blue dashed trajectory passes through (L1 , U2), the control signal ai2

will be applied and the system will transit to the overriding mode.

(f) In the mode ha2 , the maximum control input U will be used.

input d, is picked to be j, which is the worst case disturbance for

predicted trajectory will always pass through the point (L1, U2 )

This will always provide a zero value for the value function.

Since the disturbance

d, in this example, the

as shown in Fig. 9-14.
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warning 1: 0 warning 2: 1

2

2

I
S1

0 5 10 15 20 25
P I

5

0

5

0

5

0 5 10 15 20
Car, -

Figure 9-14: In the overriding mode, U will be applied to a2 .

(g) Finally, the intersection is passed and no collision occurs.

64

4: ha2

25-

20

15

10

5

0
25



warning 1: 0 warning 2: 1

Bad
2

2

1

0'
0 5 10 15 20 25

P1

5 . . . . . .

0

5

0

5

0 5 10 15 20
Car, -+

25

Figure 9-15: Finally, the two cars pass the intersection safely.
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Chapter 10

Conclusion and Future Work

In this document, a least conservative safety controller is proposed for the design of hybrid

control map for hybrid system with hidden modes and bounded disturbances. The control

map is provably safe and least conservative by solving the optimization problem of the value

function. Also, the design of the controller takes dwell time into consideration.

The limitation of the algorithm is that the functionality of the algorithm will be highly

affected by the complexity of the hybrid system.

" For hybrid system with complex structures, (for example, loops between modes, tran-

sitions leaving a mode being driven by both discrete control and disturbance signals,

and much more complex structure within a Connect), the algorithm may not work.

" The functionality of the algorithm depends on the shape of the set Bad. If the set Bad

is not a rectangle or convex set, the algorithm may not work.

" The estimation of an one-dimensional continuous disturbance signal is used for mode

estimation. For extension of the current work, a system affected by more high-

dimensional continuous disturbance signals may be needed to consider.
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