ARCHIVES

SETTS INSTITUTE]
MASS%?#.C HNOLOGY.

0CT 232015
LIBRARIES

Synthetic Tutor:
Profiling Students and Mass-Customizing Learning
Processes Dynamically in Design Scripting Education

by
Ju Hong Park

M. Arch., Harvard University (2005)
B. Eng., Hongik University (1998)

Submitted to the Department of Architecture in Partial
Fulfillment of the Requirements for the Degree of
Doctor of Philosophy in Architecture: Design and Computation
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2015

© 2015 Ju Hong Park. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute paper and electric
copies of this thesis document in whole or in part in any medium now known or hereafter created.

S|gnature redacted

ey gttt eeeaeee et

Signature of Authorc.oovviinn
Design an%u%(on Group, Department of Architecture
July 31, 2015

Slgnattvj.re redacted

Takemkcb}{gakura Ph.D.
Associate Professor of Design and Computation
Thesis Supervisor

Slgnature redacted

T Thehiko NaZaKira, Ph.D.
Associate Professor of Design and Computation
Chair, Department Committee on Graduate Students

Certified bycovvviviiii

Accepted byooiiiviiiiiiii

A
— — 77 Massachusetts Avenue

Cambridge, MA 02139

M "Libraries http://libraries.mit.edu/ask

DISCLAIMER NOTICE

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available.

Thank you.

The images contained in this document are of the
best quality available.

Synthetic Tutor

Dissertation Committee

Takehiko Nagakura

Associate Professor of Design and Computation
Massachusetts Institute of Technology

Chair, Department Committee on Graduate Students
Thesis Advisor

Terry Knight

Professor of Design and Computation
Massachusetts Institute of Technology
Reader

George Kocur

Senior Lecturer of Civil and Environmental Engineering
Massachusetts Institute of Technology

Reader

Tina Grotzer

Associate Professor of Education
Harvard Graduate School of Education
Reader

Synthetic Tutor

Synthetic Tutor:
Profiling Students and Mass-Customizing Learning
Processes Dynamically in Design Scripting Education

by
Ju Hong Park

Submitted to the Department of Architecture on July 31, 2015
in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy in Architecture: Design and Computation

ABSTRACT

Artificial intelligence is substituting human intelligence and robots are replacing
human workers. Instead of settling for this competitive relationship between
humans and machines, this thesis proposes a novel framework in which humans
and machines work together to solve the complex problems of design-scripting
education, problems which humans or machines alone cannot easily solve. In
design education, there are few clear guides and pedagogies that can effectively
teach students with diverse educational and professional backgrounds, some of
who may need individualized tutoring. This thesis specifically explores
applications of artificial intelligence (machine learning and computer vision
algorithms) in which humans and machines mutually improve their learning
performance. Humans can increase a machine's performance by providing
training-data sets that can be a foundation for intelligent decision-making.
Machines, on the other hand, can improve humans’ learning performance by
analyzing human study patterns and providing mass-customized instructions. This
thesis illustrates that the developed Synthetic Tutor provides novice students with
architectural precedents by analyzing their drawings and documents and
effectively teaches these students introductory computer programming skills in
the context of architectural design. Therefore, this human-machine collaboration
has proven an effective framework to solve these ill-structured problems.

Thesis Supervisor: Takehiko Nagakura, PhD
Title: Associate Professor of Design and Computation
Chair, Department Committee on Graduate Students

Synthetic Tutor

Acknowledgement

I would like to gratefully and sincerely thank to my committee members, Takehiko
Nagakura, Terry Knight, George Kocur, and Tina Grotzer, for their insightful guidance,
patience, understanding and limitless support on my training as a researcher and a thinker.

I am also grateful to William J. Mitchell and Federico Casalegno for providing
me with research opportunities at the MIT Design Lab and Mobile Experience Lab, and
for supporting my research in the Computation Group throughout my time with the
Department of Architecture. I would also like to thank the computation and architectural
design faculty, especially George Stiny, Larry Sass, and Mark Goulthrope, for their
friendship and mentorship.

I also want to thank my colleagues in the Computation Group and the Mobile
Experience Lab. Without them, I would not have made it through the dissertation process.
Thanks also go to Rizal Mouslimin, Derek Ham, Rachelle Villalon, Felecia Davis,
Sotirios Kotsopoulos, Duks Koschitz, Woong Ki Sung, Vernelle Noel, Katia Zolotovsky,
Leonardo Benuzzi, Sergio Araya, Daniel Cardoso, Onur Yuce Gun, Simon Kim, Namjoo
Lee, Carl Yu, Yang Yang, Orkan Telhan, Gaia Scagnetti, Kyoung Jun Lee, Moa Carlsson,
Dina El-Zanfaly, and Miho Chu.

Thanks also go to Michelle Addington, Ron Witte, and T. Kelly Wilson at the
Harvard University Graduate School of Design for their endless support and being my
role models as researchers and architects.

Finally and most importantly, I offer special thanks to my soul mate Jong Jin Lee
and son Henry Hyun Park. It was meaningful because of you. 1 thank my parents Seog-
hwi Park, Jung-sook Oh, Won-gu Lee, and Soon-ok Kim for their unyielding devotion
and love.

ZARGFI T ok), o] pj . A AL,

Synthetic Tutor

Table of Contents

1. INTRODUCTION ...ttt ettt e e 11
1.1 OVEIVIEW ..triiiiiriiienirce et sttt st cener e s ee e s e e et s e s aaa s s ras e s s ae s e abe e s enaesesnaee s 11
1.2 Study ProCeduresccceeveeiiiimiiiiiniiiiicn ittt 14
1.3 SUIMIMIATIES ...vveeiuvreeeesreesieesreeererteeeeseeene e sree et e et eeaaesenneeesensesaasssabesaas s sabbesabsesaeasaais 20

2. FIELD STUDIES ...ttt eiitte s e e iaasesss e s ssasbeaee s 23
2.1 Educational ThEOTIEScoiiiieiiiiiiiiieie e 23
2.2 WOTKSNOP STIUCLUTE ...eevuveeecrerireeeiieeereee e ste e et teetee e sennneesmaeesemeessnreeeeaeeesnneen 26
2.3 FINAINGS ettt ettt e s st eae s sraa e s 31
2.4 CONCIUSIONS .eeeiieiirieereiireerertereteeesseereteesesstreteeeaasassesaeeeeesesasaneeasssssseeesssnnsenessan 43

3. MACHINE LEARNINGoooitiiiiiiiieeerieeee et eeeeee s s eeiiaee e e e e s s saanaee e e e 45
3.1 Maching Learningccoceeverereeiniiciinieccee ettt s s 45
3.2 Clustering / Unsupervised Learningcccceeeeierierieneeineenieeseenienieeseeieeseesneeeenae 47
3.3 Classification / Supervised Learningcoccceevereerenneeinesenneenieeeeessre e esveeenees 52
3.4 IMage ReCOZNMIIONevveeruiriireiere ettt st ene s neae 54
3.5 CONCIUSIONS .eeiuuvirieiieertteriieeestrereeeesre e s reete e e st eseseer e s ssareesrsneesnsaesesanessannesannne 62

4. SYNTHETIC TUTOR ..ottt eeeciennteeeee e ssrrneeessesssannnaees e 63
4.1 SYNTNEHC TULOT....ciiiiiiiiieeie ettt ettt e sre e e b e b e 63
4.2 Design-Scripting EAUCAtionc..c.ccouiivireiiirciiriec et 67
4.3 Profiling and Mass-CustomizZationc..ceeeeeerueeeneerieeeineennereereneeesree e eneeeennee 71
4.4 Computational Design Feedbackc.ccceoveverreiiiininniiiiiniiiiciiiniens 80

5. TESTS AND ANALYSIS .ottt eaee e s e e 83
5.1 MethOdOIOZY ...oviiivieeriiiiie ettt st st as e 83
5.2 Machine Learning TULOLocceiviveeriieineceieniietieen et cnee e 86
5.3 Computer ViSION TULOT ..cc.coveuuiirereierenteteeeeecee ettt s 104

6. CONCLUSIONS ..ottt ettt s e eeenrree e e e s e e e s e seaan e e e s smaaneeesesanns 113
6.1 CONIIIDULIONS. ..c.tveetteeieesteeer ettt et e et e eetr et e et e e st e st e e e s bt et e sabe e bt e e sbeeeabeeensesaees 113
6.2 DiISCUSSION c.ueieiiiieeiee et et se it ereeessrtees e nreeesssreeessneressabaeessaneessnnsaessnnrerane 116
6.3 CONCIUSIONS ...veetveeieeceesteeraestetee et eesreesssaessaeassssessseesssessssseesssersnaesseessnsessssesnseenes 119

LIST OF FIGURES ...ttt ettt e e e e e e e e aneee e e s s aneaaeeseas 121

BIBLIOGRAPHY ...ttt eeereceeeee e et eeerrtee e e s s snmeeennassnas 123

APPENDIX A oottt ettt e e e e es et eeee e e e e e s s sabttaaees s e s nssaneaanns 129

APPENDIX B ..ottt st e sree s eereeeeree s sate e seneeesenssse e s nraesnaesases 131

APPENDIX €ttt e ettt e e e ree e e e s ettt e e e e ene e e e e saeaeessnaaas 655

Synthetic Tutor

APPENDIX Do.ooiiiiiiiiiiiei et 657
APPENDIX E. .o 659

10

Chapter 1. Introduction

1. INTRODUCTION

This thesis explores a computational method in which computers and humans
work together to solve the complex problems associated with design education,
problems which humans or machines cannot easily solve alone. I explore artificial
intelligence (machine learning and computer vision algorithms) in which both
humans and machines mutually improve their learning performance and increase
their capabilities. Throughout this collaborative process, it is shown that machines
can improve humans’ learning by analyzing their behaviors and supporting
customized needs; at the same time, humans can improve a machine's
performance by providing increased amounts of data that can be a foundation for

the machine’s intelligent decision-making.

1.1 Overview
It is widely known that teaching computer programming language to novice

students is not easy and that many students have failed to learn in introductory
programming courses.’ Many schools provide online computer programming
courses, yet these courses are not always compatible with human learning styles.
Students in architecture schools are not exceptions; they also experience
difficulties in learning design scripting.

To solve this problem in computer education, I developed an intelligent
tutor system called the ‘Synthetic Tutor’ that can teach computer programming

and architectural design by utilizing machine learning and computer vision

! Every year about 650,000 students fail out of introductory computer programming courses (Bennedsen and Caspersen
2007).

11

Synthetic Tutor

algorithms. This study hypothesizes that the Synthetic Tutor will have a greater
positive effect on the learning performances of its participants than would a non-
machine learning tutor, which is currently the prevalent form of online education.
With its artificial intelligence, the Synthetic Tutor can analyze participants’
learning patterns and provide customized teaching materials. Tailoring and
customizing teaching materials in order to make intelligent decisions requires
large amounts of user behavior data, so as more students participate over the
course of the experiment, the machine tutor will collect more learner-behavior
data and its own performance will improve.

This thesis shows that the Synthetic Tutor effectively taught novice
students introductory computer programming in the context of architectural
design. These students learned how to write a computer program in order to
design simple building typologies, and how to draw architectural documents for a
residential building project. To review students’ projects and provide feedback,
computer vision algorithms are developed and tested as an initial attempt to
develop a machine tutor that can review students’ sketches and models and guide
their further design directions as human instructors do.

Although computational technology has successfully extended the
boundaries of architectural design, design communities have not taken full
advantage of the potential of computational power in design education. The
dominant educational method for teaching architectural design is still through
person-to-person interaction: small numbers of pupils, guided by their instructors’
critiques and suggestions, learn architectural processes by working on design
projects. This instructional model, apprenticeship learning, has not changed much
since its inception at the Ecole des Beaux Arts in the 1860s.

Deviating from this conventional studio teaching method, this study

12

Chapter 1. Introduction

explores the potential of computational technology to utilize student-generated
information in order to provide better education. One good example of utilizing
user-generated data can be found in Amazon's recommendation system, which
suggests additional books based on a user's matrix of past and current behaviors.
The recommendation system consists of two filtering components: the first is user
profiling, which predicts users’ preferences by analyzing their book searches and
purchase history. The second filter customizes the users recommendations based
on an analysis of similar purchases made by other comparable customers. During
design instruction, students also produce a large amount of observable data,
including study time, learning patterns, sketches and prototype models.

Computational profiling and customization can solve the problems of
design scripting education. A growing body of literature suggests that
programming is increasingly valued for its use as a mental tool to enhance
heuristic reasoning, abstraction, and decomposition, instead of computational
execution (Bundy, 2007; Denning, 2005; Wing, 2006 and 2008). Many pioneers
have also explored the potential of using computational power in architecture
(Frazer, 1995; Knight, 1994; Mitchell, 1975, 1977, and 1990; Nagakura, 1990 and
1996; Negroponte, 1973 and 1976; Stiny, 1980, 1981, 1985, and 2006; Stiny and
Gips, 1972). Their studies clearly show that the rapid development of information
and computer technology have let architects experience a ‘paradigm shift” (Kuhn,
1996) in design. Negroponte (1973 and 1976) and Mitchell (1975 and 1977)
envisioned that designers and computational machines could work together and
produce higher-level designs that could not be achieved by designers or machines
alone.

However, regardless of the benefits of learning design scripting, 1

observed clear barriers in teaching design scripting in architecture schools. Unlike

13

Synthetic Tutor

the vast amount of research on the teaching and learning difficulties associated
with computer programming, there has been relatively little research regarding
programming education intended for design students who have minimal
programming experience and relevant knowledge (Amiri, 2011; Burry et al., 2000;
Celani, 2002 and 2008; Duarte, 2007; Krawczyk, 2008; Leitao et al., 2010;
McCullough et al., 1990; Mitchell, 1977; Mitchell et al., 1987; Wurzer et al., 2011,
Yakeley, 2000).

In addition to this research problem, few signature pedagogies and
standard curriculums for design exist. Despite the uniqueness and tradition of the
design discipline, relatively few programming courses for architects have
followed the computer science teaching model. The design curriculum cannot
provide enough courses and as much computational knowledge for their students
as computer science curriculums do. This lack of research and courses may have
excluded design and architecture students from a computer programming

education that could benefit them.

1.2 Study Procedures
This study proposes the development of the Synthetic Tutor, including functions

such as learner profiling and mass-customized instructions. Students’ past and
current learning records, such as a series of study patterns over time for given
exercises, identify their learning styles and problematic content areas. The
statistical analysis of a student’s performances on certain design exercises that are
effective for other students with similar learning styles makes it possible to offer
customized pedagogic solutions for that student.

The developmental process of making the Synthetic Tutor included two

educational studies: one qualitative and one quantitative. First, the qualitative

14

Chapter 1. Introduction

experiments informed my preparation of course materials and curriculums for
teaching architecture students introductory computer programming, and helped
me to understand students’ various leaning progress during their study of the
provided materials. These experiments also helped me define a computational
model of learning patterns and teaching models in later phases. Second, the
quantitative experiments enabled me to measure the effect of the Synthetic Tutor

at teaching programming as compared to a non-machine learning tutor.

1.2.1 Qualitative Studies: Field Studies
Before I set up a computational model for students and teaching, which would

become an essential part of computational instruction, I conducted qualitative
studies to understand the nature of design education in the context of an
introductory computer programming course. This study also investigated the
learning process of students, and it yielded a design-scripting curriculum for
architecture design. It was comprised of three educational experiments that were
conducted at MIT from the fall semester in 2011 to the fall semester in 2012.

A three-credit computational design workshop, using a project-based and
architecture-design-studio-based teaching model, was provided in each semester.
The workshop required three hours of lecture and six hours of assignments
weekly. During the workshop, students attended lectures and submitted their daily
programming code, their three modular projects, and their final projects.
Additionally, all forms of correspondence during the semester were collected.
Twenty-four students successfully completed the course and five students
dropped.

Throughout these workshops, I gained knowledge and experience about

students’ learning styles while developing effective teaching methods of my own.

15

Synthetic Tutor

The collected data provided a foundation upon which I could establish a
computational instruction system in the next phase. Detailed processes and

findings are described in Chapter Two.

1.2.2 Quantitative studies

Synthetic Tutor
Based on my teaching experiences and observations of students’ progress in the

three workshops, I developed a computational tutor and teaching materials using
The Art of COMPUTER GRAPHICS Programming: A Structured Introduction for
Architects and Designers (Mitchell et al., 1987). The book offers historical
examples of architectural design and computational procésses that connect
programming processes and architectural logic with geometric uniqueness. The
authors introduce possible problems that could occur during the architectural
design process and provide code samples to solve these problems. More
importantly, they propose new possibilities in computer programming that extend
the boundary of graphic programming into problem-solving procedures. These
attempts to develop ways to teach computer programming languages to designers,
along with the authors’ association of coding structures with structures of
architectural design, led me to choose this book as a primary source for my
research.

Chapters three and four of The Art of COMPUTER GRAPHICS
Programming describe the algorithms and processes used to develop an online
tutor, giving particular attention to the exploration and implementation of
machine learning algorithms. The tested algorithms include both unsupervised
and supervised learning. The unsupervised learning could cluster groups of

students based on their educational and programming backgrounds, while

16

Chapter 1. Introduction

supervised learning could customize tutorials using previously identified
characteristics in students’ learning as well as their real-time learning preferences.

Chapters three and four of this thesis provide information on how to
profile participants’ learning patterns and provide dynamically customized
tutorials that include the normalization of variables and determination of the
weight of parameters for user clustering and classification. Additionally, the work
describes a computer vision system that can recognize architectural plans and
their underlying algorithms and data structures. These systems include global and
local feature-based computer vision algorithms and descriptions of how the
algorithms calculate and identify image-data similarities.

After using the techniques described in these chapters to develop the
Synthetic Tutor quantitative studies were conducted to measure the effectiveness
of the tutor in teaching design scripting to architecture students. The first
prototype was developed and tested with 87 participants in the summer of 2013.
An experiment with two updated variations, one with machine learning
algorithms and the other without, was conducted with 78 participants between
May and June 2014. Figure 1 shows the different interactions between these -
participants and the two versions of the Synthetic Tutor.

Architecture students in the United States, Brazil, India, and Singapore
participated in the experiments. Participants took the course for two weeks, and
their learning patterns and performance changed over the period of the experiment.
The main parameters analyzed were participants’ studying time (in minutes),
number of visits (in page views), sample codes, and project documents.

After the initial quantitative study was complete, a cross-sectional and a
longitudinal data analysis were conducted. Overall, two analytical questions were

asked: 1) How effective was the machine learning tutor compared to the non-

17

Synthetic Tutor

L4
_ 7 Exercises

Machine Leaming Tutoring Non-Machine Learning Tutoring
Figure 1. Machine Learning and Non-Machine Learning Tutorial Interactions.

machine learning tutor in terms of participants’ learning performance as measured
by their study time and the number of programming exercises submitted? 2) What
is the feasibility of a computer vision tutor that is able to analyze participants’
designs through their hand-drawn sketches or computationally generated

architectural representations?

Computer Vision Tutor
Developing a machine learning tutor that can mass-customize instruction is the

main work of this thesis. Additionally, this study explores a computational
feedback system that utilizes computer vision algorithms to analyze and provide
relevant information from a user’s drawings. Computer vision-based architectural

drawing recognition is the starting point for the computational design process;

18

Chapter 1. Introduction

these algorithms could be applied to various academic domains and industries.

The developed computer vision (CV) tutor system takes pictures of
participants’ drawings using a camera attached to a laptop and saves those
pictures on a hard drive. The CV tutor then extracts local feature information from
these saved images and compares that information with information gained from
the training-data sets to calculate similarities among them. The CV tutor finally
selects the most similar image in the training-data sets and then uses that image’s
metadata to search for relevant projects, which the tutor will then provide to the
participant. This type of information is a popular kind of instructional feedback in
the traditional architecture design studio, particularly during the initial conceptual
design process.

Each training-data set includes 320 floor plans from 39 residential
buildings designed by 15 different architects; all of this data is used to train the
computer vision algorithm. This study developed an image-crawling algorithm to
prepare these training-data sets. Image crawling is an automated process to collect
image data; it utilizes the image search engines already installed in many search
engines. This study can use its image-crawling algorithm to rapidly collect many
residential projects and their metadata, which include architects, completion years,
locations, and sizes. All of this metadata could then be applied as design feedback.

The main image recognition algorithm developed for the CV tutor is a
local feature-based algorithm. The algorithm identifies a set of easily detectable
pixels that have high contrast in their brightness or color values compared to that
of surrounding pixels. It stores the differences in values in the form of a vector
and uses that vector to calculate the ‘distances’ among images. Two images with a
negligible distance are identified as identical. These vector-based transformations

and calculations enable the algorithm to identify the semantics of images

19

Synthetic Tutor

regardless of their representational styles and sizes. For example, the algorithm
can precisely detect the face of a person in various pictures, regardiess of his or
her skin tones, camera angles, and light conditions.

The CV tutor exhibits a 97% correct matching rate when it uses the
training-data sets. Participants who use their own floor plans and sketches receive
relevant architectural precedents from the CV tutor. However, due to the noise
and distortions of image files that can occur when participants take pictures of
their drawings, the CV tutor’s matching rate may decrease. After each test,
participants answered survey questions about the performance of the CV tutor and

the effectiveness of the feedback they received.

1.3 Summaries

This study proposes a computational design instruction system, the Synthetic
Tutor, that can seamlessly teach computer programming and architectural design.
The Synthetic Tutor includes a machine learning (ML) tutor that can provide
mass-customized teaching of computer programming languages for architecture
students. Additionally, within a limited scope and implementation, the tutor can
analyze a student’s hand-drawn or computer-generated plans and provide that
student with relevant architectural projects.

The findings of this study illustrate how collaborations between computers
and humans are critical to successful learning. This study identifies methods for
human-computer collaboration that will mutually improve both parties’
capabilities. In this study, human participants improved their programming
capabilities, while at the same time the Synthetic Tutor improved its teaching and
customizing performance. Further, the ML tutor proved to be a more effective

teacher of programming than the non-ML tutor.

20

Chapter 1. Introduction

This study has successfully explored computational methods for teaching
architecture students design scripting; it has also established collaborative
methods between humans and machine instructors for solving highly ill-structured
educational problems. The process of developing the intelligent tutor - along with
this study’s subsequent findings - could be useful for educators who want to build
a computational model of their instruction, and especially for those educators
teaching difficult subjects or subjects that resist easy transformation into an online

format.

21

Synthetic Tutor

22

Chapter 2. Field Studies

2. FIELD STUDIES 2

The purpose of these qualitative field studies is to explore the educational theory
and tendencies by which architecture students learn computer programming.
There is plenty of research identifying the difficulties of learning computer
programming in computer science schools. However, there are but a small
number of studies concerning computer programming education in design
contexts. There are even fewer studies in schools of architecture. Accordingly, it
is necessary to directly explore the learning process of participants in introductory
computer programming and architectural design. This study used a participant-

observation research method.

2.1 Educational Theories

The main educational theory explored in these field studies is bricolage. Bricolage
is a method of constructing a new object or solution for a problem by using
available tools and materials on hand. Real-life examples of bricolage include
using broken branches instead of chopsticks to pick up food, sitting on a flat rock
instead of a chair, or burning dried leaves for fire while camping. Useful
examples in the fine arts are Marcel Duchamp's ‘Fountain’ (1917) and Andy
Warhol's pop art, including ‘Marilyn Diptych’ (1962) and ‘Campbell's Soup’
(1968).

In the context of architecture, Le Corbusier's projects, Christopher

Alexander's design process, and post-modern architecture could all illustrate the

2 Reprinted with permission from The Proceedings of the 2nd International Conference for Design Education Researchers
- Design Learning for Tomorrow, 14-17 May 2013, Vol. 1, pp 144-155, Copyright 2013, DRS//CUMULUS.

23

Synthetic Tutor

meaning of bricolage. Rowe and Koetter (1984) explain Le Corbusier's design
process as the selection and re-assembling of historical elements of architecture
into new projects while identifying the project's contexts and redefining the found
historical elements. Louridas (1999), meanwhile, has explained that anyone could
use Alexander’s design patterns to create buildings and cities that fit together as
harmoniously as organically grown towns. Alexander’s design process identified
new design patterns through iterative manipulations of classic patterns. A design
could evolve into a new norm by selective overlaying, juxtaposition, combination,
and recombination of existing patterns.

In contrast to a modern architecture that utilized monotonous and
hierarchical design, postmodern architecture allowed a single project to
incorporate pluralistic design approaches and multiple design elements borrowed
from historic buildings. Postmodern approaches freely manipulate the original
meanings and functions of traditional architectural elements following the
characteristics and the site contexts of a project (Louridas 1999). For example,
The Arthur M. Sackler Museum (1985) by James Stirling displays pluralistic uses
of historic elements sensitive to a project’s environment. Due to these selective
and pluralistic processes, postmodernism is considered bricolage.

Claude Levi-Strauss first described bricolage in his book, The Savage
Mind, to illustrate the nature of mythological thinking. He explained that
mythology was a result of human invention and is composed of previous human
experiences. Thus, mythological stories are assemblies of elements from human
lives that were re-composed and redefined within a new context. Levi-Strauss
(1968) described a bricoleur as a problem solver in a primitive tribal society. He
had few available tools and limited materials. In contrast, the problems that he

needed to solve varied widely. Bricolage was probably a natural result in this

24

Chapter 2. Field Studies

harsh environment. The essential process of bricolage was a dialogue between a
bricoleur and his tools and materials. Through this conversation, he could re-
conceptualize the purposes of tools and restructure the nature of materials so that
they became useful parts of a solution for varying problem contexts within his
confined situation.

For the purposes of this study, a bricolage method of instruction should
allow diverse ways of learning to program. Much research has focused on
students who are not familiar with canonical or hierarchical thinking and are
experiencing ‘intellectual wars’ throughout the introductory programming course.
These students are in essence forced to become another person, and these
experiences lead them to refuse canonical instruction (Turkle and Papert 1990).
Architecture students should be able to learn to program by following their mental
models of programming as an extension of their design processes. For example,
some students understand programming as city planning, some as a fabrication
process, some as data processing, and some as the mathematical manipulation of
pattern making. Design students may prefer to develop their own ideas instead of
solving given problems.

In terms of learning processes, students should experience an evolutionary
thinking that they cannot imagine through the dialogues between themselves and
a programming language. Students need to organize and reorganize their design
thinking and programming repeatedly. In terms of instructional method, students
should vicariously experience coding. Accordingly, they can be asked to watch
the instructor's live-coding, or the developmental process of an algorithm, instead
of simply hearing the instructor’s explanations of its finished forms (McLean and
Wiggins 2010). In bricolage instruction, students need to visualize or materialize

their design thinking (Stiller 2009).

25

Synthetic Tutor

Lakoff and Johnson (2003) argue that metaphors structure the way people
perceive and understand the world around them. This workshop uses the practice
of computer programming as a metaphor by which to understand design and the
creative design process. The incrementally iterative software design process will
provide novice designers with a mental model of design as an evolutionary

process, overcoming the prevalent waterfall model.

2.2 Workshop Structure

After surveying the theoretical backgrounds of bricolage and of educational
experiments that utilize bricolage in programming education, six educational
strategies have been identified to teach introductory computer programming to
architectural design students:

1. Object to Think With: Students propose projects in which they
transform their design ideas into programming language. In
contrast to an instructor's typical problem set, student-driven
projects increase the level of engagement and personalization.
After students propose their initial design ideas, they will continue
to develop concrete ideas throughout the workshop. Any radical
changes in design ideas are welcomed and encouraged.

2. Atelier Environment: Students are asked to learn to program as if
they were learning to sketch or paint in an atelier. Spending time
programming is the most critical factor when learning to program,
as is the case when learning to draw. Structured programming
would still be introduced as a framework, as it is in a standard
programming course; however, the use of structured programming

would be suggested as a template, as if it were an empty

26

Chapter 2. Field Studies

sketchbook within which students could build their own codes.
Daily Coding Exercises: Cognitive changes require time. Instead
of attempting to foster radical changes in mental models of
programming, in this strategy incremental iterations are applied.
Students learn programming through daily coding exercises instead
of biweekly problem-sets or examinations. The exercises reduce
the burden of ‘cognitive wars’ that many novice learners might
experience (Turkle and Papert 1990).

Sketching and Diagramming: To externalize students’ design
thinking and to provide cognitive aids while developing a
computer program, this strategy prompts sketching and
diagramming exercises, which make students’ coding processes
easier by externalizing their design and encouraging analytical
understandings of their design thinking.

Limited Range of Programming Syntax: This strategy calls for the
selection of the Python programming language because of its
unusually minimal syntax. Of that small amount of syntax, only the
base forms of structured programming are taught. This limited
syntax lessens confusion and allows students to reconfigure the
meaning of programming syntax in the context of their projects.
Students can re-conceptualize the purpose of programming while
identifying new uses for the given programming language.
Students learn computational concepts through trial-and-error
approaches by repeatedly completeting short coding assignments.
Online reading material is provided for students who seek

additional references.

27

Synthetic Tutor

6. Real-time Development: The instructor's real-time coding provides
a chance for students to experience the development process of
algorithms as if they were writing the code.

The main goal of these strategies is to accommodate students’ varying
learning styles so that they can have cognitively comfortable experiences while
learning computer programming. The workshop consisted of three modules. The
main content of the first module was procedural programming, and it included
topics such as variables, functions, and structured programming. The second
module taught object-oriented programming (OOP), and it covered class, instance,
inheritance, and association. The last module taught the software development
process using examples of biological systems such as cellular automata, the
Lindenmayer system, and the flocking algorithm.

The study was composed of three single semester-long workshops and ran
from September 2011 to December 2013 in the form of a series of computational
design workshops at the Department of Architecture at the Massachusetts Institute
of Technology. Each workshop consisted of two sections with 14 weekly classes
that ran three hours each. The first section included a lecture explaining the theory
of computer programming and related design theories. To promote design
thinking, the lectures presented many architectural precedents that featured
elements similar to computational design, such as the recursive garden design of
the Taj Mahal (1653), the modular theory of Durand (Villari 1991), and
contemporary projects using generative algorithms.

In the second section, the instructor explained programming practices with
real-time coding to show computational concepts in demo codes. The

instructional goal was to illustrate the developmental process of various

28

Chapter 2. Field Studies

Caki (k10 R —
t) Wi Rb oy ‘5"3**""*”""1‘“ [0 Bomelila | [t s
] ‘;}' "_/"? { 7' ’L d-‘*&}ﬁ[e e
| '/ | o i’/ }” e ‘-—*5"_‘_.._.,;-? ,Aqhﬁ;d‘

sl : 3 . Vi - i
’%——---mwa & e ey | ‘ ﬁ--f*-‘;‘ Gord) Priabo
g 7 ‘ [=
/ 7 : #4 } B ’U J‘msg, ks
s Pulvt § selet fornd s Drarcivgdd —(;,._p.ms l i ’ :.:)J;Jf“&dl 3
----- ; k =Ty
g ! i B Al s gy o 4 vl ¢
Dwu"c‘l | Reninant N"LT ’ s gt Lot < Li;‘ nﬁ{r‘-’f-s{:
e e ! ¢ 1 Lownsnd: R e
. sof r»}u” el ;wr" » ‘*?q f %;&;wﬂ‘p ods
| egls vadinh e el firedin { L= 0 tﬁi jeot s
e AT] masmrew '1 i r. ;".«(ut
I c’.w H { | #\M.&u-u(;
; AL *‘;‘:‘ . (_,r—:ivecl;‘wﬁ / l i,_| [amen?
i Jaww i foeclasl) : | Eometolts | ,,_ "'

! spiit Civgla! } t I

Figure 2. Example of a student’s daily sketches and unified modeling language diagrams.

algorithms, not to construct finished code. To achieve this goal, the instructor
showed students demonstrations using developmental diagrams and analytical
sketches. At the same time, students were prompted to create their own sketches
and diagrams for software design.

After each class, daily coding exercises were assigned (Figure 2 and
Figure 3). Students were asked to write short codes every day using a function
that is the base module of structured programming. Novice students might take
approximately an hour to complete these exercises. Decomposing an assignment
from a medium-size program into small chunks of daily exercises helped students
to identify their logical errors and programming mistakes more easily.
Consequently, students could focus more clearly on their programming. This
method prevented students from generating messy code with logical errors that
exhausted both the instructor and the students, thus helping the instructor

understand students’ work quickly and easily.

29

Synthetic Tutor

hodulel: Procedural Programm ng

student ks student

Tea#29 py a9 i Hmibal92% gy

Sdi9i0 pr Kevedid py 20 gy

Sail00] gy Kovalfil gy

Led93d gy

Skl 007
ailG0%apy Jel 001 gy tanbdicio py

Sebi |00 py Jisl 002 py

FochPiac gy Haabal | 004epy
1064

AL Fach| 004 gy Maskdll 004b gy
Sakl005 gy Kach1005 gy Maskdl 1005 gy
HaFraghimpy

ln.lliul‘w
K b0d py
$ 005 py
Eoval 008 gy

Lgr askdl 1606 gy

Kach! 006 gy

dComh oz gy Kech!0607 py

spluCurvahiaidane gy

oo | 002 Suunwie py d4ombiaci0Ul py

Loy {009k ach

datambiocl 009 gy

@mprmdspy

Sl 01 0Suvamc gy

¥ aaioc| 004
Sabil 01 0Mamalphi gy ddleakioci UL¥ gy

; ! x iankdCaded gy
Sl 01 Suvamis py 101 {Fuscuam py lacéi gy Lavian | 004Fad

1007 gy
Pl Ko 002 gy
01 tuvaaspry

1101 thSuwauns gy
S 101 2 unmuns gy

Kevial 009 gy
Kevalllapy
Keovallll gy

el FdabFum gy

omlll? gy

1005 py
hel 008 py

01 daSuvous py

e hel 02 p
01 dhSuwaunc

\4
Jiel 004 gy
Jel@10 gy
Lel@li gy
heltl2py

\uf."'umnap' 'n-l'ﬂ[.“!y Anoyidabfax py

10/ 4Fuscuas py Laviem 014300

Figure 3. An archive of students’ daily coding exercises in the first workshop.

This data shows that those students who consistently submitted daily exercises had higher levels of programming capability
than students who submitted their exercises sporadically. The length or amount of submitted code influenced students’
learning curve less than their frequency of submissions.

Chapter 2. Field Studies

The overall purpose of these assignments was to let students incrementally
develop a computational model of their non-computational design ideas. They
completed small parts of their original design within the range of their limited
programming knowledge. Students were first asked to develop an error-free
skeletal code, one that was almost empty but still had logical functions that could
illustrate the main algorithm of the program using only their limited programming
syntax and fluency. Students were then asked to redevelop their code while in the
process gaining more programming knowledge (Figure 4).

From the bricolage perspective, students need to bi-directionally redefine
their design thinking and their programming structures. On the one hand, they
might need to extract only small chunks of the original design and complete code
that could be tested quickly. On the other hand, students might selectively re-
organize certain parts to test the overall computability of their original design.

Students’ programming fluencies were measured in two ways. First, the
instructor evaluated students’ code to measure whether they could purposefully
organize a program using functions, classes, and data structures, and whether they
could add comments appropriately. Second, students’ final design projects were
evaluated to measure whether students could successfully transform their design

ideas into programming structures.

2.3 Findings
In total, eighty-five students applied for the three workshops, twenty-nine students

were randomly selected, and twenty-four students successfully completed the
workshops. These students came from a wide spectrum of academic and
professional backgrounds. One had taken an introductory programming course

three years ago, and two had minor experience with the visual programming

31

Synthetic Tutor

Module 1: Procedural Programminge

. " .

Figure 4. Example of students’ daily sketches and diagrams in the first module.

language, Grasshopper. Most students had no background in Python, the target
programming language.

In each workshop, most students successfully completed the course, yet at
least one student dropped in the middle of each semester. One student stated that

the main reason for dropping was her lack of experience using the 3D modeling

32

Chapter 2. Field Studies

software, Rhinoceros 3D°, which was the main tool for programming. Another
student explained that she had dropped the course because the unfamiliarity of the
software substantially increased the difficulty of learning the language.

It is widely reported that novice programmers find object-oriented
programming (OOP) difficult to learn (Bennedsen and Caspersen 2007). However,
most students involved in the study successfully learned the ideas of abstraction
and modularity and wrote working code for their design projects. Two students
gained almost instant insight into modular thinking on the first day of learning
OOP. It appears that a concrete understanding of modular concepts in procedural
programming might improve their ability to learn OOP.

While students naturally showed varying learning processes, their learning
curves were highly dependent on the frequency with which they completed
coding exercises. A positive relationship between the frequency of code
submissions and the number of lines of code was observed. The more frequently
students submitted their code, the more lines they could handle; ultimately,

students showed they could handle many hundreds of lines of code (Figure 3).

2.3.1 Advantages

Students displayed an increased level of engagement when programming student-
driven projects. A direct relationship between students’ personal motivation and
their development of programming skills was clearly observed. One student used
her programming exercises to work on her master’s thesis project, which enabled
her to focus on her own work; she showed a consistent increase in the complexity
and sophistication of her programming. Another student worked on jewelry

making, which significantly increased her level of engagement throughout the

* Rhinoceros 3D is a computer-aided design tool for 3d modeling and visualization. The software’s multi-language
scripting tools include Python, Visual Basic, and Grasshopper.

33

Synthetic Tutor

workshop. Although physical models were not necessary, she fabricated her
project, even going so far as to create two additional projects, neither of which
were required. Her motivation drove her to continue her work outside of the
boundary of the workshop. This use fabrication exercises as tools to motivate
students became a formal exercise in the third workshop.

Another student worked on his architecture design studio project, a
simulation of the internal patterns of the urban condition in a building. The
number of lines of code he could handle successfully exceeded three hundred,
which is impressive, especially considering that this workshop was his first
programming course. Most importantly, he extended his coding without
increasing its complexity. He later told the instructor that the daily coding
exercises with OOP were highly effective and conceptually clear, allowing him to
continue his work without difficulty.

For novice students, conventional biweekly problem sets can be difficult.
Even when problems are designed for novice programmers, the size of the
problem often is still too large for many new students to easily solve. Students’
coding may have accumulated syntax and/or logical errors, and their approaches
to the problem vary and are not straightforward. The weekly feedback during
office hours or lab sessions often comes too late to be timely and may cause
frustration for students. Accordingly, students spend many hours trying to identify
trivial errors, such as typos and misuses of syntax.

The daily exercises eliminate these errors. Students’ learning processes
becomes highly effective, and they can speed their progress. Some students need

to change their projects frequently while their understanding of programming

34

Chapter 2. Field Studies

§
]

A

5
=

]
B
=
y =
:
&
E
>
&

Figure 5. Three Students’ Four Projects Developmental Processes.

Three students’ examples show their project developments over three modules (module 0 shows
the students’ initial project proposal).

35

Synthetic Tutor

increases. These students reconfigure their learning goals and the scope of their
projects considering their limited time and programming knowledge. At the same
time, some students extended their understanding of programming from this
workshop to other classes and combined multiple course projects successfully.

The process of externalizing students’ thinking through sketching and
diagramming effectively corrects defects in students’ code and helps them to
identify logical errors. The unified modeling language (UML) was especially
useful to students struggling to understand the complex relationships between
their programming code and their design ideas. Many students identified and
corrected their own errors and were able to independently extend their code while
drawing UMLs. Diagramming and analytically sketching ideas made the process
of transferring design thinking into programming structure both smooth and
transparent.

While students’ programming backgrounds were different and their
learning curves covered a wide spectrum, their small daily exercises improved
their learning processes and freed the instructor to devote more time to supporting
the students’ diverse learning styles (and less to correcting their coding errors).
Understanding the various styles of students’ learning, design thinking, and
programming logic is a time-consuming process. These varying cognitive

processes could not be managed without modular and timely feedback.

2.3.2 Disadvantages
Students who were familiar with canonical thinking showed conceptual

misunderstandings of the bricolage-based structure. They needed to have concrete
final goals even before they started the workshop. It appeared that they had

difficulty understanding the concept of the evolutionary process and could not

36

Chapter 2. Field Studies

Figure 6. Students’ Project Examples.
These are examples of students’ projects during the second workshop in the spring of 2012. The

workshop used an architectural design (a high-rise residential building in Cambridge, MA) as a
main class project. All students’ projects and codes were collected on a class blog that externalized

and visualized students’ programming processes.

37

Synthetic Tutor

AUTOMATA TOWER ’;'-"’

Figure 7. A sample final project completed in the second Spring 2012 workshop.
These images show different perspectives of a high-rise building that was designed and generated
by using a cellular automata algorithm.

38

Chapter 2. Field Studies

Figure 8. The project archive of the third workshop in the fall of 2012.
The third workshop used fabrication as a learning tool, which was inspired by a student who
showed a high level of motivation in the first workshop.

39

Synthetic Tutor

Figure 9. Examples of three students’ projects in the third workshop.
Students developed algorithms that mimic organic forms found in deep-sea fish and bone
structures.

40

Chapter 2. Field Studies

Figure 10. Examples of three students’ projects in the third workshop.

The top project was to create a bacterial-like growth pattern using the Lyndenmeir system. The
middle one aimed to develop a 3D printed deep-sea creature. For the bottom project, a student
made a physical visualization of 1) Boston climate data, 2) his own weight information from his
first semester, and 3) the cellular automata algorithm, from left to right.

41

Synthetic Tutor

easily accept bricolage as a proper learning and design process. These students,
who expected a traditional style of programming lecture, spent more time
searching for sample code and reading online tutorials than they did directly
learning by doing.

Not all students submitted their daily codes regularly. Students in the
architectural design program explained that due to their heavy studio workload
they lacked the necessary time on weekdays. First-year students, especially,
experienced a hard time because of their intensive core studio requirements.
Accordingly, their learning performance progressed relatively slowly compared to
students in non-architectural design programs.

Students’ initial learning curves were dependent on their familiarity with
the programming environment. Students who rarely used the computer-aided
software package, Rhinoceros 3D, had problems, and they needed additional
exercises before they were comfortable with the software. Other students who
were already fluent with the software took advantage of their knowledge by
transforming advanced geometry into a programming structure.

Students who had experience with visual programming languages such as
Grasshopper showed a tendency to resist physical sketching and diagramming
exercises. Some students preferred to work with a visual programming language
and then translate their graphical code into Python. Some students actually
submitted their visual code instead of sketches. For them, the graphical codes
were sketches and diagrams. These tendencies disappeared when they started to
learn object-oriented programming; visual programming languages do not support
OOP, and thus translation no longer works. Although this habit of translation
slowed some students’ acquisition of OOP (as compared to those students who

did not have any programming experience), these students’ previous

42

Chapter 2. Field Studies

programming knowledge enabled them to accelerate their learning processes

during later stages.

2.4 Conclusions
Several questions have been identified. The first is how to extend this pilot study

into a standard full semester-long course that could be offered as a part of any
architecture school’s curriculum. It is necessary to consider additional computer
science contents. Fundamental algorithms, numerical modeling, and simulation
may all be reasonable fits. The second is how to collaborate with traditional
architectural design studio education. The design-scripting instruction could be
independent, as it is in other technology and history classes, or it is possible that
architecture schools will create collaborative computer programming design
studios.

Although developments in online and mobile technology make the time-
consuming management of students’ code a minor issue, dealing with students’
varying learning styles is still not an easy problem for instructors. There is no
dominant way to understand the design process, and the spectrum of students’
design thinking is extremely wide. The standard engineering and science school-
based, so-called problem-solving approach to teaching computer programming
may not be an effective way to teach design-school students.

The use of a bricolage approach significantly improved novice
programmers’ learning of computer programming. The reconfiguration and
externalization process of students’ various design work and the iterative
development of programming structures made student progress transparent, and
incremental iteration is at the center of this success. Daily exercises compress

debugging and make the error-finding process quick and easy while reducing the

43

Synthetic Tutor

burden on instructors by permitting easy detection and correction of students’
erTors.

Stiller (2009) used a bricolage approach to introductory programming in a
computer science department, but she did not recommend it for students in that
kind of department. However, the successful results of this study recommend the
inclusion of bricolage in introductory computer programming courses in design
schools. Bricolage has historically been used for art and design education, and
accordingly it might fit well in architectural design education. Design, as
Alexander (1964) maintained, is a problem-setting and problem-defining process.
The bricolage approach to teaching computer programming may be a good

solution for this unique domain.

44

Chapter 3. Machine Learning

3. MACHINE LEARNING

This chapter provides detailed descriptions of the machine learning and computer
vision algorithms that are surveyed and utilized in this study”*. Machine learning is
a discipline focusing on developing a system that can learn as humans do. The
term 'machine’ is used to distinguish the system from living things. I define
learning as a process that changes the inner state of a machine or a system and
enables a machine or system to do something that it was previously unable to do. I
specifically discuss two aspects of learning in this section: acquiring new
knowledge from unknown (i.e., unsupervised learning) and improving proficiency

based on knowledge already acquired (supervised learning).

3.1 Machine Learning

Learning is generally applicable only to intelligent living animals, including
humans (Odaka, 2012). Machine learning (ML) is a branch of artificial
intelligence that focuses on developing a computational model of a human-like
learning system that can generate behaviors using collected empirical data, such
as user interactions and real-time sensor inputs. The goal of ML is to develop an
algorithm that by identifying relationships among given complex data can update
itself and continue to improve its performance in new environments (Alpaydin,
2004). Examples include algorithms that distinguish spam from emails, select
potential clients from previous customers, and control vehicles without human

drivers by analyzing real-time camera images.

* These machine learning and computer vision algorithms were developed for this study based on the ‘Learning —Library-
for-PHP (https://github.com/gburtini/Learning-Library-for-PHP)’ and ‘OpenCV (www.opencv.org)’ libraries.

45

Synthetic Tutor

Since Rosenblatt (1958) first developed an artificial neural network,
Perceptron and Samuel (1959) used the term ‘Machine Learning,” the ML field
has become an essential component in many areas, from manufacturing and
robotics to bioinformatics and biometrics. The convergences of statistics and
artificial intelligence in the 1980s, and emerging information technologies and
data-mining in the 1990s led to a rapid expansion of the field of ML. Computer
vision, natural language processing, medical diagnosis, and brain-machine
interfaces are just a few ML applications that indicate a bright future in science
and engineering (Negnevitsky, 2004).

ML is a relatively new approach in both architectural design and
computational learning. Few studies have been conducted that link ML and design
education. In the field of educational technology, intelligent tutoring systems (ITS)
are considered an ideal instructional model, yet they cause highly challenging
problems (Corbett et al., 1997). Most critically, learning is not a single process;
rather, it has multifaceted problems, and students have diverse motivations and
goals. The range of learners’ cognitive styles varies from subject to subject and
changes over time while learners’ cognitive capacities are improving.
Additionally, students’ learning patterns are more complex than instructors’
teaching styles (Turkle and Papert, 1992).

Implementing learner modeling involves a great deal of time and
substantial data complexity. By collecting learners’ empirical data through
channels such as sensor inputs and user interactions, analyzing and categorizing
users’ learning patterns, and providing customized feedback in real-time, ML
shows a high potential to provide solutions for customized tutoring and
individualized education.

However, the majority of research in the field of ML still focuses on

46

Chapter 3. Machine Learning

improving the performance of machines, not that of humans. Even though the
development of intelligent tutoring systems, especially in linguistics, mathematics,
and science education, has been researched for a long time, the use of ML for
improving human creativity in arts and design has only recently been highlighted.
In arts and design, the focus has been mainly on the role of ML in improving
human learners’ engagement (Denis, 2004; Mills and Dalgarno, 2007; Vlist et al.,
2008) and lessening learning difficulties (Morris and Fiebrink, 2011; Patel, 2010;
Widmer 2005).

This study utilizes two machine learning algorithms. The first algorithm
identifies students’ learning patterns using clustering (unsupervised learning). It
finds a pattern of relationships among students’ learning behaviors. The second
provides a customized tutorial utilizing classification (supervised learning). This
algorithm specifically uses the results from clustering to determine the appropriate

content to provide for each group of learners.

3.2 Clustering / Unsupervised Learning

Clustering (unsupervised learning) may solve one specific issue that this study
encountered: understanding and identifying users’ learning patterns without
advanced knowledge of their learning styles. This useful algorithm aids in the
discovery of unknown patterns that reside in data sets. For example, retail stores
can find daily, monthly, and seasonal sales patterns by analyzing their annual
sales database. Based on these analyses, store managers can order especially
popular items in varying seasons, targeting different age groups and income levels
within their clientele.

In this study, clustering was used to identify groups of students who

showed similar learning patterns. In the later phases of the study, this information

47

Synthetic Tutor

on learning patterns could be used to provide customized tutorials. Not many
design schools teach their students introductory computer programming, and there
are few studies on students in architecture schools teaching computer
programming; for these reasons, data about these students is difficult to find.
Accordingly, this study uses an unsupervised learning algorithm to group students
based on their learning patterns without requiring a pre-existing set of data. As a
first step, I prepared an initial online workshop to collect participants’ behavior
information. This experiment was conducted between May and July 2013 at MIT.
86 students from MIT, Harvard University, and Wellesley College joined the
workshop through online announcements using a student email list.

I included in my data collection parameters such as participants’ daily
study time in terms of minutes, their programming and math educational
backgrounds, the number of modules they completed, and the number of sample
codes they submitted. Based on the analysis and clustering algorithms, I identified
five unique learner groups, and this result was used by the classification
algorithms to classify participants in the second workshop. Identifying
participants’ learning patterns requires the collection of user behaviors, the
analysis of these behaviors, and the identification of groups of students with
similar learning patterns. Before participants begin the tutorial, they answered
questions on: 1) educational history, 2) motivation level, 3) previous computer
programming experience, 4) any computer science courses a participant took in
the past or is currently taking, 5) any college-level mathematics courses a
participant took or is currently taking, and 6) their fluency in the 3D software
(Rhinoceros 3D).

Collectable information on participants’ learning patterns measured

throughout the workshop includes: 1) a participant’s online visiting time, 2) time

48

Random Poeint 1

C Randomp Point 2

o

Cluster 1

™

Clus

Chapter 3. Machine Learning

Figure 11. The initial clustering procedures of k-means algorithm.
The k-means algorithm first generates random center points (left) and conducts clustering based
on the center points (right).

o New Centroid | o
L o o
L)

°

o

* New Centroid 2

3 Cluster 1

Cluster

Figure 12. Computing centroids of initially clustered data.
After the initial clustering, the algorithm generates updated centroids of data (left) and re-

computes updated clustering (right).

° New Centroid 1 o
.o -
o

©

o

* New Ceijtroid 2

Cluster

B

Figure 13. Repeated procedures to compute updated centroids of k-means clustering.
The k-means algorithm repeats the process in Figure 12 until updated centroids converge.

49

Synthetic Tutor

spent for each tutorial, 3) whether a participant studied provided sample code, 4)
participants’ submitted assignments, 5) users’ comments on each tutorial, and 6)
users’ evaluations of each tutorial.

Clustering identifies unknown patterns in a data set by comparing
statistical similarities of data values. At first, it uses a present value of k to
generate k-number of random center points and computes k-clusters by
calculating the distances between collected data and the center points (Figure
11Figure 11 left). From each data point, the algorithm calculates the distances
between the data and each center point, and then it assigns the data to a closest
center point (Figure 10, right). After this first iteration, the algorithm computes
new centroids for the k-clusters and recalculates the distances between data and
centroids (Figure 12). It repeats this process of generating new centroids and
computing distances until updated centroids converge (Figure 13).

The k-value increased with the number of participants over the course of
the experiment. This increased k-value implied improvements in the precision of
clustering of users and identification of users' learning patterns. A clustering with
a high k-value does not always mean a precise analysis; rather the finding of k-
value with low error would be the target goal of an unsupervised learning
algorithm.

This algorithm is able to calculate an unlimited number of variables and
identify unlimited groups. In this study, the algorithm computes eight variables’
from initial survey questions that quantify users’ educational and programming

backgrounds (Table 5) in order to initially group participants into k-value groups.

* The survey questions are attached in Appendix A.

50

Chapter 3. Machine Learning

Variable Unit Data Type
ID Number Integer
Program Number Integer
Graduate/Undergraduate Number Integer
Year Number Integer
Programming Experience Number Integer
Previous Programming Courses Number Integer
Previous Mathematics Courses Number Integer
3D Software Experience Number Integer
Available Daily Study Time Number Integer

Table 1. Initial survey question variables.
Based on these values, the clustering algorithm initially divides participants into k groups.

Variable Unit Data Type
1D Number Integer
Day 1 Study Time Minute Float
Day 2 Study Time Minute Float
Day 3 Study Time Minute Float
Day 15 Study Time Minute Float
Number of Studied Modules Number Integer
Exercised Daily Codes Number Integer
Daily Assignments Number Integer
Final Project Yes/No Boolean

Table 2. User behavior variables and their data types collected throughout the workshop.
The k-means clustering algorithm uses the normalization values of this study-behavior data.

51

Synthetic Tutor

It then clusters participants by using their behavior data acquired throughout their

tutorial experience (Table 6), excluding the independent variable (ID).

3.3 Classification / Supervised Learning

While the above experiment provides information about both participants’
behavior parameters and corresponding labels (i.e., group information), the
second experiment uses previous participants’ behavior data and classification
algorithms to identify students’ behavior patterns in real-time. Students’ learning
patterns, including study time, visit numbers, and coding work, are parameters
that define students’ learner groups. At the beginning of the second experiment,
the ML tutor did not have enough data about the students and accordingly it could
not recommend customized tutorials. Data from the previous experiment was used
to provide customized tutorial sets for participants who joined the study in the
early period of the second experiment until the ML tutor could collect enough
current student behavior data.

The classification of participants by their learning patterns and their
corresponding tutorial contents could support each specific learning style. This
customization process (matching sets of tutorials with an appropriate group of
participants by using pre-collected data) is known as supervised learning. This
second experiment uses classification algorithms alongside supervised learning
algorithms. Supervised learning is like learning from an instructor; in this kind of
learning, an instructor teaches both labels and related information together, such
as the name of an animal and its characteristics. Before it can execute, this
algorithm requires a set of pre-acquired data, called a training set, which includes
both pre-analyzed parameters and their values.

Using the training set, supervised learning algorithms compute labels for

52

Chapter 3. Machine Learning

the newly acquired data. For example, an algorithm used by real estate agents
might calculate the value of a house that is newly on the market by comparing the
number of rooms and the properties of its address with those of other houses, and
then approximating proportional differences from similar houses.

This calculation method, finding an approximate value or category of a
new instance by comparing instances of similar properties, is called
‘classification’. The simplest method in statistical modeling to cluster data is
‘regression’. In the case of a sales-decision problem, a manufacturing company
may want to send advertisements only to customers who had previously
purchased their products, have a certain range of income, or specific types of
family members—that is to say, those who are highly likely to buy their products
in the future. By analyzing the similarities of their customers’ properties, this
company would be able to label each potential buyer and focus the company's
advertisements on them.

Spam mail filters provide us with a similar and popular example. The filter
compares the properties of emails and then labels them as spam or normal mail.
The algorithm first needs a set of emails that are pre-labeled as spam. When a new
email arrives, the filter compares each word in the email. For example, a sample
spam email may have words such as ‘free’, or ‘coupon’. The filter may need
another set of samples, non-spam email, which includes words such as ‘birthday’,
‘special’, ‘prefer’, and ‘want’. A new email with words likes ‘free’ or ‘offer’
could then be labeled as spam.

One simple linear parametric model could be described as below:
Y=aX1+bX2+CX3+...+jXN, (D)

where Y is the probability of an email being a spam, X ... Xy are 1 or 0 when an

53

Synthetic Tutor

email includes a corresponding word, and a through j are the probability of a word
which could be in a spam mail. Although many practical models use non-linear
parametric models, this linear model could calculate Y. When the training set is
small, the calculation of a probability (Y) may have a high rate of error. As the
size of training sets increases, the error rate will decrease and the performance of
the filter will increase.

In the first experiment, the clustering/supervised-learning algorithm
computes information to identify participants’ learning patterns and recommend
tutorial contents. In the second experiment, this profiling information then
becomes a training set for the post-customization process using the

classification/supervised-learning algorithm.

3.4 Image Recognition
This study required the development of an automated method for providing

instructor-like feedback on participants’ designs. In an actual architectural design
studio, participants’ sketch plans, sections, and perspectives while instructors
offer commentary on their work: any corrections on circulation issues, ideas for
daylighting or ventilation solutions, suggestions for architectural references, and
questions for further consideration. All of these feedback processes require the
common initial step of recognizing the meanings of the participants’ drawings.
Such tasks as understanding shapes and colors, reconstructing 3D geometries, and
recognizing objects in image data can be processed and automated by using
computer vision technology. Computer vision research is also concerned with the
technologies used to extract meaningful patterns from image data, and to
reconstruct 3D spatial information from 2D pixel data.

The extraction process in computer vision includes methods for collecting

54

Chapter 3. Machine Learning

and pre-processing raw images; pre-processing includes re-sizing, enhancing, and
manipulating an image data set. This thesis especially focuses on developing
computer vision algorithms that can extract spatial and structural meaning from
architectural data, such as plans, sections, or perspectives. In the workshop
experiment, computer vision algorithms are used to analyze image data gathered
from participants’ projects.

CV research goes back to Roberts’ study of machine perception in 1963. It
has since then developed core technologies for image processing, and its
contemporary theories are consistent with recent advances in machine learning,
statistics, physics, and robotics. The discipline focuses on teaching a machine how
to see things and understand their meaning. Accordingly, the technology explores
methods of developing computational models that mimic human perception and
recognition systems; this is accomplished through research on the retina and the
optic nerve in the eye and the cerebral cortex of the brain. Computer vision
applications include (Szeliski, 2010):

1. recognition of faces and objects in imagery,

2. extraction of coordinates from moving objects,

3. tracing motions from a series of films,

4. diagnosing symptoms and diseases from medical images, and

5. searching for identities from hair shapes, skin colors, and
clothes.

This study aims to develop an algorithm that can understand participants’
designs and provide feedback on their design progress. This algorithm should be

able to compare participants’ architectural drawings to existing architectural

55

Synthetic Tutor

Figure 14. Three shapes as two-dimensional array data types.

drawings. The algorithm should find the existing drawings with the greatest
similarity to the participants’ drawings, and then provide participants with their
matching drawings’ metadata.

This study started by exploring global feature-based CV algorithms and
extended their range into local feature-based algorithms. Global feature-based CV
algorithm, such as Euclid distance-based pattern matching, could recognize
overall shapes in image data. Local feature-based pattern matching algorithms
analyze image data at more detailed levels, such as patterns of rooms, walls, and
windows. The developed local feature-based CV algorithm showed outstanding
performance in distinguishing and comparing various architectural plans in
various graphic styles. The next section will describe in further detail the machine

learning and computer vision algorithms mentioned here.

3.4.1 Euclidian Distance-Based Image Recognition

One simple way for a machine to find similarities among images is k-means
clustering. Clustering, as described above in Section 3.2, is a method for finding
similarities among instances in a data set with no access to pre-defined data. This
algorithm assumes that the dimensions of all images are the same and finds
statistical similarities by comparing the values of pixels at the same location in
each image. If the images are not the same size, it becomes necessary to pre-

process the images in order to map their varying sizes into one common size. For

56

Chapter 3. Machine Learning

example, two gray images with a 10 x 10 resolution each have 100 pixels, and
each pixel has a value of between 0 and 255 (for an RGB image, each pixel would
have three color values). In other words, both gray images have a 10 x 10 matrix
with a value ranging between 0 and 255. When a k-means algorithm compares
multiple images, it computes each numeric difference between corresponding
pixels, and then it calculates the sum or average of all differences. Finally, the
algorithm would select the two images with the smallest differences.

Figure 14 shows three images with different shapes. The data type for the
three images could be understood as a two-dimensional array. In these images, the
values of pixels are zero when the brightness of a pixel is black and 255 when the
brightness of a pixel is white. The average distance between two images is
calculated as the average of the summation of the Euclidian distances of each
pixel in two images.

This algorithm, which calculates similarity using Euclidian-distances, is a
fundamental process for advanced computer vision algorithms built to compare
complex images. It can effectively recognize primitive shapes, such as triangles,
rectangles, or circles, and its underlying calculations are easy to understand.
However, although the algorithm shows good computational performance and a
low rate of error, it is not an effective method for recognizing complex

architectural drawings that include many sub-elements.

3.4.2 Local Feature-Based Image Recognition
Euclidian distance-based image recognition can effectively recognize an overall

similarity of images, yet it cannot compare partial components within images. For
example, the algorithm may efficiently compare primitive shapes, yet it shows

high error rates in comparing multiple elements within images, such as mixtures

57

Synthetic Tutor

of rectangles and triangles against mixtures of rectangles and circles. To compare
multiple elements of varying sizes, rotations, and positions in images, the machine
tutor needed more sophisticated algorithms than Euclidian distance-based image
recognition. To recognize architectural drawings, which can include plans,
sections, and perspectives, the machine tutor needed an algorithm that could
recognize various elements within drawings, such as rooms, walls, windows, and
doors in plans; or stairs, entrances, and ceilings in sections.

The Synthetic Tutor required an algorithm that could compare the
similarities in partial images in order to recognize participants’ architectural
drawings. In computer vision algorithms, these partial images are called local
features. Computer algorithms can define local features in many different ways.
The simplest method is to use a region with a predefined size and to then
sequentially check all these partial regions. For example, if there were an image
with 100 x 100 pixels and a predefined partial region-size of 10 x 10, then the
algorithms would check the similarities of all 10 x 10 sized images from the top
left corner to the bottom right corner, region by region.

One practical algorithm first finds several unique points in an image
(called ‘interest points’) that have high contrast in brightness or color, and then
selects a surrounding area as a local feature, instead of selecting all partial regions
as local features. This method can significantly reduce the computing load by
limiting the areas compared. However, the algorithm used to select unique interest
points significantly influences the overall algorithm’s performance when

recognizing images.

3.4.3 Interest Points
Not all pixels in an image are of use when describing the characteristics of the

58

Chapter 3. Machine Learning

image. As such, instead of considering all local regions in an image, it is effective
to find a number of unique parts that are critical to understanding an image and to
use those unique parts in a comparison. These critical pixels are called ‘interest
points.” There are various algorithms that specify and select these interest points
in an image. A pixel whose values differed greatly from those of the surrounding
pixels would be a good candidate for an interest point. These value differences are
frequently observed at the corners of shapes, including both primitive geometries
(such as rectangles, triangles, and hexagons) and building plans, sections, and
perspectives.

The algorithmic process to calculate interest points is as follows:

1. For each pixel in an image, select the surrounding 8 pixels:
three on the row above, two on the same row (on the left and
right of the selected pixel), and three on the row below. If there
is no row above or row below, as would occur at the edge of an
image, then the value of those missing pixels is considered
equal to the value of the selected pixel. This assumption
prohibits those pixels on the edge of an image from being
interest points.

2. Calculate the differences by comparing the values of the
selected pixel with all 8 surrounding pixels.

3. Select the highest difference value among the eight values and
mark the value as the highest variance of a pixel.

4. Sort the pixels based on variance.

5. Select the pixels that have variance within the top 25%.

6. Collect the coordinates of these pixels as the interest points. An

interest point thusly calculated defines ‘local features’ in the

59

Synthetic Tutor

following section.

3.4.4 Local Features

Local features are partial images that are used to compare the similarities of
objects in different images. They are distinctive parts of images that represent the
characteristics of objects. These local features are robust indicators used to detect
general objects (e.g., cars, people, airplanes, or trees). Detecting general objects is
difficult because such objects vary in terms of scale, rotation, position, color, and
brightness. To compare images while considering these variants, rather than using
direct color or location values, this local-features based CV algorithm first
calculates the changes in values in the form of a vector. For example, the vector
of changes in colors or brightness makes the detection of an edge of a rectangle
easy, even when the rectangle appears in varying locations, sizes, and colors.

The change in brightness values at the corner of a black rectangle on a
white background ranges from 255 (white) to 0 (black). A computer vision
algorithm can easily detect this high contrast in brightness in both the right and
downward directions from the rectangle’s top left corner. These two directional
changes are maintained even when the size and position of a rectangle are
changed and its orientation has rotated; the corner can be easily detected even
when the rectangle’s color has been changed. This numeric representation of
graphic information in the form of a vector is called a ‘feature vector’. The
algorithm to calculate feature vectors is as follows:

1. For each interest point, the algorithm makes a descriptor that
consists of three by three pixels centered on the interest point.
The descriptor is composed of 8 radial arrows (vectors)

centered on the interest point (north, north-east, east, south-east,

60

Chapter 3. Machine Learning

south, south-west, west, north-west).

2. The algorithm determines the scale of each arrow by
calculating the differences in brightness or color values
between the interest point and the surrounding pixels.

3. For each descriptor, the algorithm includes 8 directional
vectors, accordingly becoming 128 dimensional vector data (4
x 4 x 8).

4. The algorithm stores the descriptors of all interest points in an

array or a list.

3.4.5 Scale Invariant Feature Transform (SIFT)
Lowe (1999) first developed an algorithm that could identify objects when they

were projected in 3D space, as can neurons in the human inferior temporal cortex.
Global feature-based human face recognition algorithms (which directly compare
faces to other faces) performance poorly when attempting to recognize general
objects. Therefore, many face-detection algorithms in current smart cameras and
social network services use local feature-based image recognition. A popular
example is a face recognition algorithm that compares sizes and colors of facial
elements, such as eyes-to-eyes, nose-to-nose, and mouth-to-mouth comparisons.
Since this algorithm is able to detect an object regardless of changes in size,
rotation, and brightness, it is called the Scale Invariant Feature Transform (SIFT)
algorithm.

SIFT compares the local features of objects that have been collected into
vector features. The input data is the matrix (or the list, when the matrix is
flattened) of vector features; the matrix represents the changes in colors or

brightness in 8 radial directions from a given interest point. The differences in

61

Synthetic Tutor

local features in two different images can be calculated in terms of distances,

which is similar to Euclidian distance-based clustering.

3.5 Conclusions

This chapter describes the technical algorithms of machine learning and computer
vision used in this thesis. Two machine learning algorithms (clustering and
classification) are described, and two computer vision algorithms (Euclidian-
distance and local feature-based image recognition (SIFT)), are illustrated. The
two machine learning algorithms are used to profile participants’ learning styles
and customize tutoring materials, and the two computer vision algorithms are
explored to analyze image data from participants’ projects and provide design
feedback. In the following chapter, I will describe how these four algorithms are
used in the developed Synthetic Tutor, and also how the tutor was operated during

the workshop.

62

Chapter 4. Synthetic Tutor

4. SYNTHETIC TUTOR

This study proposes a Synthetic Tutor, a computational design instruction system,
which can teach computer programming and architectural design seamlessly. The
synthetic tutor provides a bricolage instruction in which participants iteratively
exercise design scripting to generate architectural design solutions and receive
feedback on their solutions. To provide these instructions and feedback, the
Synthetic Tutor has two computational tutors: the machine learning (ML) tutor
and the computer vision (CV) tutor. The ML tutor consists of design scripting and
architectural design exercises to teach designerly ways of programming. The CV
tutor provides feedback on participants’ design projects after each exercise. This
chapter describes algorithms and procedures for developing and testing the ML
tutor and the CV tutor. It describes how the ML tutor understands the educational
needs of each learner and customizes teaching materials. It illustrates how the ML
tutor updates its instructional recommendations throughout a learner's workshop
period. The illustration includes the composition of the developed CV tutor
explaining the human-machine collaborative learning process to recognize a

participant’s submitted design project and provide human-like design feedback.

4.1 Synthetic Tutor
The Synthetic Tutor was developed over the course of two experiments. First, I

developed online teaching materials and conducted a workshop experiment in
which I evaluated the effect of those materials on participants’ learning; this

occurred between May and July of 2013 (Figure 15 and Figure 16). After

63

Synthetic Tutor

Cmmtman | Legesi|

Maben
17 Poaspanee S1Commen S hyim § W ey 511 Summary il ALy A3 Vanmte) Grdtas AT
[TT w— Q. rTesY 72 Bosatiag Tinte) UPsmctim] TABmdieed tiPwmew Tlest! DERCED
Midrsat f
THied¥n? TTlagecmesy N temamy gt . 1Pw USBersten] 3Mceln? Sfawmcim §3Bwaml
Frp— Ty — 17 Pt [T iy [T + e Liusim! pEREL)
-
Vvl Mabsex: Livmmew) Dibogene iiSemm hwst UDSesy Uitedwe Woteme filpess
82 Oomtnt T Bitemt $3tom2 $awa ey 3tuimions S4Cempniinl §iCampenieel FRERCHES

Figure 15. The main page of the online workshop, which shows the first 30 units.
The workshop contains teaching materials, including daily exercises.

s - o
n A ———R
—
Bl e
155 ROTATIONAL SROTRY FRE) .
[t A
ot s e ey b
- s, s
[on. D gt] -—-'=:L'ﬂ e
i T
ey o for Nembe d-l'q-lul--_h
T e
e
s plae thas s presrnd <y iy

|
g
i

e
i
|

@ %~ -
i

- smmTar
Figure 16. A sample page explaining repetition.

Each unit includes short descriptions, a video-lecture, sample codes, and images that show the
results of running the sample codes.

64

Chapter 4. Synthetic Tutor

completing that workshop, I surveyed participants’ reviews, analyzed participants’
learning patterns, and developed supervised learning algorithms to analyze data
for profiling (clustering) participants’ learning styles and educational needs.

Then, from May to June of 2014, I conducted the second experiment using
the machine learning tutor and the non-machine learning tutor. In this second
experiment, I applied a classification algorithm that used student behavior data
from the first experiment to calculate the input parameters for the profiling
algorithms.

During these two experiments, the participants followed these overall
procedures:

1. Initial Registration: A participant registers her user name and
password. This process prevents the collection of any identifiable
personal information.

2. Background Survey: A participant starts the tutorial by completing
an introductory background survey. The ML tutor uses the survey
results to identify a participant’s initial educational needs.

3. Working with Tutorial Sets: Based on a participant’s initial
profiling, the ML tutor recommends for that participant a set of
color-coded tutorial modules (out of 200 sets available). Red-titled
modules indicate that participants with similar learning styles liked
that module®. Violet-titled modules indicate that participants spent
a sufficient amount time studying that module. Blue titles indicate
that users almost skipped that module entirely. A gray-colored title
indicates that the participant has already completed that module. It
should take a participant an hour each day to study a set of

¢ “Like’ and ‘Dislike’ buttons are provided for learners to provide their feedback.

65

Synthetic Tutor

66

recommended modules. Each tutorial module contains a partial
section of the book (The Art of Computer Programming), and
using various teaching methods (including texts, images, diagrams,
and sample codes) the module focuses on explaining only a single
computer programming concept. A participant can complete a
module within 5-10 minutes. Teaching modules have varying
lengths and levels of difficulty. The ML tutor produces various
combinations of these teaching modules with various levels of
difficulty and provides them to a participant according to his or her
preferences and learning performances.

Daily Progress: There is no guided instruction for participants to
follow. On each day, a participant may follow her preferred
schedules and freely learn on her own. A participant’s learning
behaviors (including study time, the number of visits, whether a
participant works with the provided sample codes or skips certain
modules, and their evaluations of the provided modules) are
collected for analysis and become critical data for further learner
customization.

Analysis of Learning Patterns: The ML tutor analyzes how a
participant studies the tutorial. The tutor checks whether each
module is completed or not. The tutor compares the length of time
a participant spent on a module with the average time other
participants spent, and it recognizes whether a user spent enough
time to study the module or if the participant skipped ahead. The
tutor also remembers how many times a participant visited each

module to repeat it. The number of visits could be used to identify

Chapter 4. Synthetic Tutor

whether a participant likes the module. The ML tutor collects data
from many participants by using a supervised learning algorithm
and compares each participant’s learning behaviors with other
participants’ behaviors.

6. The machine learning tutor uses the collected data from the first
experiment to sort all participants into five learner groups. By
using a classification algorithm to compare the values of user
parameters such as study time, the number of visits, user ratings,
and the patterns of these values, the ML tutor can identify the
participant’s learning style and educational preferences and match
the participant with a similar group of participants.

7. Repetitions of steps 3 - 5: A participant repeats this customized
tutoring process throughout the workshop or until he or she decides
to stop. For as long as the participant is attending the workshop,
the machine learning tutor will continue to recommend
dynamically selected and customized sets of tutorials based on its

analysis of his or her learning patterns.

4.2 Design-Scripting Education
When an experienced instructor explains a difficult concept to his/her students,

that instructor may at first attempt to explain the concept by invoking a widely
known definition. The instructor will then try to identify whether his/her students

understand this definition by watching their eyes and body language, and by

67

Synthetic Tutor

12.

HIERARCHICAL STRUCTURE

EXERCISES

1. All of the elements and subsystems of the Daric order have names (fig. 12-33). Draw a tree diagram that depicts

this hierarchy. Then write a program, structured in the same way, that generates the order. (Simplify the details
where necessary to reduce the task to manageable proportions.)

Doric Order

Stylobale

12-33. Well-defined hierarchy
names—in the Doric order.

Figure 17. A sample problem set given to participants.
This image shows a sample workshop exercise in which participants can learn programming
structure by using a historic architectural example.

looking for changes in their facial expressions. If the instructor sees signs that
his/her students are having some difficulty understanding the concept, the
instructor may repeat the explanation, or immediately change teaching strategies
in order to try to explain the concept with examples, easy descriptions, or the use
of metaphors that the student may more readily relate to. If the instructor sees
signs of confidence in a student, then they may instead provide more difficult
exercises and accelerate their teaching to challenge the student’s intelligence. If
the instructor encounters signs that a student’s learning is slowing down (i.e., that

the student may be having difficulty following the material), then the instructor

68

Chapter 4. Synthetic Tutor

9.4.1 INCREMENTING A SINGLE POSITION PARAMETER (continued)

It is common for building codes to limit the heights of buildings by specifying the maximum angle Max_angle that
can be formed at the center of a street (fig. 9-17). As an architect, you might be particularly interested in the
maximum floor area that you can fit on a site. Let us assume that the floors of our building are rectangular. The
fellowinsinmcﬁwmmmdshvdusfmﬂombmgmmwm,ﬂow_w_ﬂomheigm.udfmme
mmmm_tnﬂemsm_ﬁdﬁ,ﬂmmmmmmmdﬁwhys&emﬂoormNoticelhc
use of two functions: raster, which converts feet to raster units so that the section can be drawn to appropriate scale on
the screen; and Max_height, which calculates the maximum allowable height for given Street_width and Max_angle.
Here is the complete code:

[sample codes on the right side]

Some typical output is illustrated in figure 9-18.

This program introduces an important new idea. There is a function called Total_area, which calculates the total floor
area of a building and is invoked after the building is drawn. This is an analysis function and is executed to tell us
something useful about the object that has been drawn. So the structure of our program is essentially as follows:

def declare_function():

Read values of independent variables
Calculate values of dependent variables

Draw the design

Perform analysis
This is not just a graphics program, then; it is a simple example of a computer aided design program. It assists the
designer not only by rapidly drawing the building, but also by automatically performing some of the problem solving
that is necessary before the building can be drawn, then by automatically performing some of the analysis that is

necessary after the building has been drawn. This allows a very rapid trial-and-error design process, as shown by the
flow diagram in figure 9-19.

Figure 18. A sample section of workshop modules.
This sample module illustrates an algorithmic approach to architectural design and a trial-and-
error design process.

may begin spending more time with a single lesson.

These acceleration and deceleration processes are likely to occur during
one-on-one instruction with an experienced instructor. It is easy to observe such
versatile teaching practices in everything from physical and sports education to
education in music and the arts. It is, however, uncommon to see this synthetic

instruction from computer-aided tutors.

69

Synthetic Tutor

CODE

import rhinoscriptsyntax as rs
import math

def

drawRectangle(x,y, length,width):
caloulate vales for x2 and y2
x2 = x + length

¥2 = y + width

ptl = [x,y,0)

pt2 = [x2,y.0]

pt3 = [x2,y2,0)

ptd = [x,y2,0)
re.AddLine(ptl,pt2)
rs.AddLine(pt2,ptd)
re.AddLine(pt3,pté)
re.hddLine(ptd,ptl)

gotMaxBeight (street_width,max_angle):

radians = 0.01745

max_angle = max_angle * radians

angle_factor = math.cos(max_angle) ¥ math.sin(max_angle)
max_height = (street_width/2) / angle_factor

return max_height

draw floors of highrise

def

drawBighrise(x,y,
length,thickness,
floor_to_floor,street_width,
max_angle):

calculate max hight of building

max_height = getMaxHeight(street_width, max_angle)
total_height = max_height - thickness

height = 0

loop to draw floors

while (height < total_height):
drawRectangle(x,y,length,thickness)
height = height + £loor_te_floor
y = y + floor_to_£floor

drawHighrise(100,100,500,20,100,1000,60)

Figure 19. A sample code showing a generative approach to the design of a high-rise

building.

The main content of the Synthetic Tutor came from The Art of COMPUTER
GRAPHICS Programming: A Structured Introduction for Architects and
Designers (Mitchell et al., 1987), drawing most heavily on the second part of the
book, ‘Elementary Graphics Programs.” The book is filled with historical
examples of architectural design and computational processes that connect
programming processes and architectural logic with geometric uniqueness. The
authors introduce problems that could occur during the architectural design

processes and provide sample programming codes to solve them. More

70

RESULT

Chapter 4. Synthetic Tutor

importantly, they propose an algorithmic design approach that extends the
boundary of graphic programming into problem-solving procedures (Figure 18
and Figure 19).

The book, however, was written twenty-seven years ago, and the main
programming language, Pascal, is not widely used in the current architecture
community; hence, in the tutorial some outdated chapters were removed and
replaced with material teaching a relatively recent educational computer
programming language, Python. Following the original book’s main theme,
though, the proposed tutorial’s primary goal is to teach computer programming

for the architectural design process.

4.3 Profiling and Mass-Customization

To initially identify learner types, the machine learning tutor uses participants’
survey results. The tutor identifies patterns of similar backgrounds within the
survey results, looking closely at as participants’ current programs, the
programming and mathematics courses they had completed, and previous
experience with programming and 3D CAD software.” In order to identify these
groups without any previously collected data, the machine learning tutor uses a
clustering algorithm. The algorithm first calculates the distance between
participants’ data points, and then it classifies those participants based on the
distances between them.

The group number (k-number) begins at one and, over the course of the
workshop, increases with the number of participants; as the k-number increases,
the tutor can use a greater amount of user data. The first workshop had eighty-

seven participants. From these participants, I identified five distinct groups. In the

7 The survey questionnaire is attached in Appendix A.

71

Synthetic Tutor

second workshop, I expected to have a similar number of participants ¥ and set the
k-number at the power of 2.2 so that the second workshop could also show similar
clustering and classification results. The resulting five learner groups were as
follows:

1. Group 1: The first group is comprised of extraordinary users.
In the entry survey, they stated that they had a high level of
motivation. Participants in this group submitted most of the
provided exercises; however only a small number of
participants (five out of seventy-eight) completed the final
architectural design project.

2. Group 2: Users in this group studied consistently and spent five
times longer than participants in Group 3. These participants
completed most modules and assignments. They spent a
relatively long time working on each module, as well as overall.
Considering their completion rate, customized learning might
not improve the performance of this type of participants;
however, it might accelerate their learning curves.

3. Group 3: Participants in this group started off working hard,
but after the first two or three days their study time had begun
to diminish. This group of participants completed many
modules, yet many did not complete the tutorial. Participants in
this group might increase their study time, and they could
complete the tutorial with proper customization.

4. Group 4: Participants in the fourth group showed a similar

& Some participants did not provide their login names and some identifiers were lost. Due to this missing data, only data
from seventy-eight participants was analyzed.

72

Chapter 4. Synthetic Tutor

pattern to those in the third group but displayed lower
performance in many aspects. Participants in this group worked
steadily, studying each module carefully and completing
assignments at the end of every chapter, and yet they rarely
increased their performance. Interestingly, some participants in
this group elongated their study time and became Group 3.
However, other participants in this group decreased their study
time and developed similarities with Group 5.

Group 5: Participants in this group quit studying the workshop
even before they finished the first chapter. One possible cause
could be that the workshop did not meet their expectations. In
this group, I observed one unusual participant who completed
the whole workshop in two days. This person had visited all the
modules, yet the average study time for each module was less
than one minute. It would be highly desirable for this study to
develop an ML tutor capable of motivating participants to shift

from Group 5 into Group 4, or from Group 4 into Group 3.

Clustering effectively finds unknown patterns among data elements in

studies such as this one, where the field of research (computer programming in

design education) has only recently begun and few findings exist. Clustering

algorithms can identify unknown groups of participants who show similar

learning styles and performances. By analyzing the tutorial contents and

participants’ behaviors, the machine tutor can customize tutorial contents that

may improve participants’ learning performances.

Similar to search engines like Google, which measure the credibility of a

webpage by its reference numbers, and similar Amazon’s recommendation engine

2

73

Synthetic Tutor

which uses past customers’ purchases and product evaluations to establish current
customers’ purchasing patterns, the machine tutorial uses the learning patterns of
previous participants who have showed similar learning patterns to current
participants.

The machine learning tutor recognizes whether a participant likes a
tutorial module when:

1. aparticipant evaluates a teaching module highly,

2. a participant spends more than the average amount of time on a
teaching module, or

3. a participant visits a teaching module multiple times.

Even though multiple people may learn a computer programming
language by reading the same book, they learn through different components of
that book. Some participants like to read the textbook from the first page to the
last; some like to skim through the book first and then check its detailed contents
only after seeing the whole picture; some prefer to work on parts selectively, such
as sample codes and experiential coding: some search book chapters for their
projects; and some only use the book to compare their knowledge of other
programming languages.

For this study user profiling and mass customization starts with an
analysis of the book that is the basis for the workshops. The workshop material
has different combinations of varying elements, and participants’ preferences
have shown what combinations of tutorials work together most effectively.
Identifying a participant’s preferences and customizing the combinations of

teaching materials for that a participant does not comprise a static problem.

74

Chapter 4. Synthetic Tutor

DaATH e 3 Sampls Code ¥ i A Ry 2 reogre— A Ly 41 Mo 33 e 33 g 53 Fenling.
SibmTpe Simmssk Mhmpme SfAdmerl ASAMesl 33Ames] S6keel Sipui SEe) momomn

= = == = e
Dars L T B e 30t Ve G0 e
Gl nivedls TIMel 73Rt TIMAI Tilesm] TAPesmi OSTems Tsledvel mmacss
Bavs TlemiVel T gty 1S [re 1P I Vbt Uk G

[IpeY [T [T ey T 3 kg Giremt Mpese: DR
oars MiTwmr] RATwmewl MAPwmem] L3P [Ve L Dating U Vouiady A5 By Rapeion
3 Comed L Siapt Satap 2w 220.t 23 Vet

$Omdl fsCemdl diCesd) dSCemd filmmi Mblewd o) ATNemi] aTMemit
Bzt
ave g e Dl Mg HiGrm BlfmsmXl BlfesemX lfeseXl RlfeseXi 03P
Mihemks WifmsmXl Bifmse Wi SO s i TSy LG SOROSES
-
Bary LI b e DAk (e ay AN A Ay iAW
AT AT 113 ottt 1130t LS Wi | 1S Rt 3 L O 1186Cwva | XERCISE Y
ave HiGmm] lSOmem Wibewwy RiSemm Dl e Mivest Bt Db
;‘.
Dillawdy 133 Benen MATe) D DSAbe RS
Dars 115 Top Down 126 Sammary A Prosmbern W) Prmston & 3 Prosders 3 M3 Comet 1
WiGmmi Wiode WO WiMeedy WAt WSty Wil WSS WSDhed ERONS
v WPl WPl MWl WSWiew] WiWew) Wifmmw W7hpeiml Wlhesiml H7kpeim) 47 it

e [T A3 M

Figure 20. Screen-captured images of the non-ML tutor. °
The non-ML tutor, which simply delivers the tutorial contents.

* Appendix B includes the workshop materials.

75

Synthetic Tutor

Dare 1 bt 3 b Con S 4 e 1 Progremm— A Longng 1 Nm— L) 43 O 13 Hending
Abmhe b Mimpes GAbe | S (A L6l Shbpml daps) mmom

. = = =3 = e
bavy A7 P 8 o A8 bote ANy 811 Sey L 3 Ly & Vb 41 Ol L
L T Tama1 Giresml ibmdmd Treees Tledvel Escss
Bavs Timival Vil M Lot [TE= e Uifete] USPmmbmt LM ESPma

AP e Lhmad [T 3P [Libwien] MdPmimi RO

Dave L T] [7" neey Ve A9 Sy .

Bary

Figure 21. Screen-captured images of the ML tutor (Day 1).

The image shows an example the ML tutor’s recommendations for a participant on his first day of
the workshop. He was one of Group 3 participants. Highlighted contents were: 5.3 Data Types, 5.7
Punctuation, and Exercise 2.

76

Chapter 4. Synthetic Tutor

=1 [L Y ety Mgy Mlimpep SiNem L e]
Ibmige et MAuess AASe| AAdem) SSAde) st Ay e oo
= - P oy o
& B aE=
= Lihesms A8Cum— oo 4ROy Ll b C A3 Lty e G0 e
A3 Sy 11 Ve T 13 Bending 1) ek 3 VA Petien | Rel 1] 15 Pe— W L o) URCEE T
. ~
Dars TlemiVal DDty My Lo R T L L L T
(-
r— A MRt Gy Ot - e [T
Bave Mt | Garemar? tdPemer) AiPwms WV Ve by MV Wty e
3 Cod boor: ot Syt Sllep2 e prue 3 Ve

Bavs

[yres— — 4 g
25 Commed | 3 Commt 3 93 Cmmd 3 23 Contenl 4 Ly | Palaem) S g
Bave T T e I]
[rrrs—— YL macs TSy . TSy LI Conent DOmCIES
par? TS ik ARy kg [T, Ddddiy by Bl
DAV AN T) 1L Coiiberd SO S i | 1S Wiy 1 S R 4 O b G | R T
- =
: 5 s
Bars HiCmml MiGme ey Ritms Gty Dilees Glleds BiVeds Dl SiPede
Bty D3 Bibae Dithete Somose
ar Hitplem Dbt [t RPN Y
N i Msbhay mmcEm
i
o
v Woheet sre

7 |
i

Figure 22. Screen-captured images from the ML tutor (Day 3).

The image shows an example the ML tutor’s recommendation for a participant on his third day.
Newly highlighted contents included: 9.2 Loop 1, 9.4 Incrementing 3, and 9.7 Nested 1.
Recommendations from the first day have disappeared.

77

Synthetic Tutor

oari Lkt MdmphCuln S iy (e M 8 Sl WO Ay
Obmtys Gt Glhee Skl Al GSAEek) M asnpa Sdpat mmoEm
= - e a=r Eu
i &= B
(= Clhsie 33 Cm— [Ty N - Ly N T
Wt v - 23 g I TAlmtm] TAPeal femer TSlediVel EOEOND
Bavs Tl Vard TV M Se— SO At T L
!
3 r— L - [ere B3P Ay e L e T
oav4 CPmml iPwma AT §S e v v Dy GiVeeky ey e

WANBml ANTE] LGt nsow L T R T NAOM MScwwi EOmONT

3 o § e

DA A Pt S P
bire

IR

s [T

Figure 23. Screen-captured images from the ML tutor (Day 6).

The image shows an example the ML tutor’s recommendations for a participant on his sixth day.
There were only minor changes. Recommendations included: 11.4 If Then 3, 11.5 Rhythm 2, 1 1.6
Curves 2, and 12.1 Relation.

78

Chapter 4. Synthetic Tutor

oa [Toey P — JYee—— ¥ g 5 Frogremig U= 51 o T

Dbmlye USeth Sl (el Sl S A preeT Frresy Frre— [=1
- = = -2 o

AT 47 P 24 Commmen Ayl 10 Chety) By Sl 62 Lhwwry A Verniim A O L
&3 By A Vel i TAN- 13 g TIMak i T Punton | -.Nw 13 P 76 L Vo | OO

bav) T8 Lo Y 3 -':-ll-! ¥ by L B P L A3 P | ll_l 0 Aten RSP
[T) [T [T AP ry—— :A;.— abmel GiPwim) EXERCESY

b S| Uil cléwmem] LS Pt v T Ve 48 Datning ety 0 Sy D
L il Salanpd sawni T 3 Vs

07

230wt 3G S3Cmmd) RSCumaid e Lot [

v et i by BIORS Sifmemll RifedeX BifeeD B 3R

[TTeE - nia- N)
oarr Nikd— (LT Ny P S
A AN T 1S Comtit e L5 Ry | L8 Nl 3 LS B L 8 G | DO

’“’!"{\ B
pave T T S .

pavi S Pt P

LT [rreny

Figure 24. Screen-captured images of the ML tutor (Day 9).

The image shows an example the ML tutor’s recommendations for a participant on his ninth and
final day. The tutor suggested previous modules, including: 9.4 Composition 3, 9.5 Control 2, 10.2
Function X1, and 11.4 If Then 3.

79

Synthetic Tutor

Participants’ learner groups change throughout the workshop period, and
solutions vary depending on each participant’s educational background.

Initial customizations are determined through an analysis of participants’
initial survey answers. Subsequently, every time a participant finishes a tutorial
module, the participant’s study behavior information is updated and the machine
learning tutorial also dynamically updates its selection for the next tutorial
modules. This customization process occurs collaboratively between the
participant’s learning behaviors and the tutor’s suggestions. Whenever the
participant completes a module, the tutor updates that participant’s preferences
and, at the same time, updates each module with information regarding its level of

fitness for that participant’s learner group.

4.4 Computational Design Feedback
In conventional architecture design studios, students produce sketches and

architectural drawings. Instructors then try to understand students’ design
intentions and guide them to achieve their design goals. Instructors’ design
feedback includes instructional sketches and verbal descriptions regarding
relevant precedents with which students can further develop their designs. As
human instructors provide comments based on their visual inspections and using
their architectural knowledge, the computational tutor system developed for this
study provides relevant precedents based on its visual recognition of images.
Once a participant submits a drawing of his or her project, the computer
vision (CV) tutor analyzes the image data and provides design feedback. In order
to generate design feedback, the CV tutor uses an image recognition algorithm,
the scale invariant feature transformation (SIFT). SIFT algorithms collect vector

information from the images’ unique local features (such as corners of rectangles,

80

Chapter 4. Synthetic Tutor

any disconnected openings on plans, or the repeated step lines of stairs). The
algorithms then compare these vector-transformed features and identify their
similarities in terms of Euclidian-distances. The two images with the closest
distance are identified as identical projects.

This design feedback system is in its inception, and the current CV tutor
can provide only a narrow range of feedback. Ideally, the CV tutor will identify
similar historic projects that could be useful to consider for further design
developments. The design feedback system is composed of a three-step process.
The first step requires a machine training process; the second is an image
recognition process that extracts image search keywords using the SIFT algorithm;
and the third is an automated image search process using those extracted
keywords.

I used an image crawling algorithm to train the computer vision tutor.
Image crawling is an automated process that collects image data using the same
scripts that image search engines use in many web browsers. Using this image
crawling algorithm, I then collected housing projects and added metadata about
the projects, such as architects, completion years, locations, and sizes, which
could be used for design feedback content. I trained the machine tutor with 320
images from 200 residential projects designed by 15 popular architects. Given a
student drawing, the tutor can now identify the most similar image in its database
and extract the image’s metadata in the form of text. Using this text information,
the tutor can then search additional images and provide those results to the student

who submitted the drawing.'’

1 The full list of architects and project names are in Appendix C.

81

Synthetic Tutor

82

Chapter 5. Tests and Analysis

S. TESTS AND ANALYSIS

This chapter evaluates the effect of the machine learning (ML) tutor and the
computer vision (CV) tutor on participants’ learning behaviors. In order to
evaluate the effect of the ML and the CV tutors, this study conducted an
experiment with two types of tutoring systems: one using ML and the other not
using ML. The non-ML tutor, as a control group, used identical instructional
materials and interface design; however, it did not provide any recommendations
or computational feedback as the ML tutor did. I also tested the usefulness of the
developed computer vision algorithm-based design feedback system (CV Tutor)
that provided computational architectural feedback based on participants’

sketches.

5.1 Methodology
In order to evaluate the effectiveness of using machine learning (ML) to teach

computer programming, both cross-sectional and longitudinal experiments with
two types of tutoring systems were conducted using a two-by-one factorial design.
The experiments were conducted at MIT between May and July of 2013, and May
and June of 2014. Participants were recruited with flyers posted around the school
and via emailed invitations. Seventy-eight participants were randomly assigned to
one of the two instructional models (that is, to either the ML tutor or the non-ML
tutor'"). Both groups were given an entry-survey and a series of tutoring sessions,
tests, and exercises. After participants finished their learning experiences with

their respective tutorials, a multilevel data analysis with an individual growth

"' I supported the training-data set for the ML tutor with learning-behavior data from participants using both the ML and
the non-ML tutor. The non-ML tutor, however, provided no feedback to participants (as shown in Figure 20).

83

Synthetic Tutor

model was conducted (Singer and Willett, 2003). The hypothesis stated that the
ML tutor would more effectively help the participants learn computer
programming than would typical non-ML computer-aided teaching. Further, the
participants who received the ML instruction would perform better over time in
the proposed programming exercises than would those who received instructions
from the non-ML tutor.

Participating students were either senior-year undergraduates or graduate
students in architecture schools. They represented a general group of students who
do not have programming experience, yet do have some design studio experience.
I invited students from U.S. architecture schools at which architecture students
were offered few computer programming courses.

The independent variable (i.e., the predictor) was an instructional model
with two different technologies: one with machine learning and one without. Both
the ML and the non-ML tutors used HTML webpages with hyperlinks. However,
only the ML tutor used dynamically colored text. The non-ML tutor functioned as
a control group to examine the effectiveness of the ML tutor as an instructional
model. A dummy variable, ML, for these two tutors was used. The value of the
ML tutor was 1, and the non-ML tutor was 0.

The dependent variables included participants’: 1) study time during the
workshop, 2) number of modules studied, and 3) number of exercises submitted.
After each daily session, students would be asked to write Python code for given
exercises (Figure 25 and Figure 26). Classification algorithms using the values of
the dependent parameters would then calculate the learning types of each
participant; these values fell on a scale running from 1 (for Group 1) to 5 (for

Group 5).

84

Chapter 5. Tests and Analysis

5. Below figure shows Paul Klees active line, limited in its movement by fixed points. Write a program to draw a
line of this type.

7 §
ﬂ 3 ¢
? /
' 7
Lines as introduced by Paul Klee in his Pedagogical Sketchbook.

Please upload your python file: | Choose File | No file chosen (_submit |

Figure 25. A sample coding exercise.

4, The French architectural theorist Jean Nicholas-Louis Durand produced many beautiful plates demonstrating how
architectural compositions could be understood as -combinations- built up from lower-level vocabulary elements.
Figure 12-36 shows an example. Select one of Durand's combinations for careful analysis. What are the parts and
subparts? What are the essential spatial relations? What are the design variables? On the basis of your analysis, write
a program that generates an interesting series of variants on this architectural theme. Use a top-down programming
strategy that parallels the sequence of refinement steps by Durand.

1
e !
e - -
s B
e
4 3.4 |
4 L —
I Ry T A
—t+—
Tt
T +— LA T

12-36, The combié of wocahalary ek »s llweratod by Durand

Please upload your python file: No file chosen

Figure 26. A sample exercise to be assigned after the daily session.

85

Synthetic Tutor

5.2 Machine Learning Tutor
The primary data analysis model is a longitudinal data analysis with a multilevel

model, especially the individual growth model (Singer and Willett, 2003). This
study asks questions such as: How does a participant’s learning patterns change
over time? How does one individual’s learning path compare with other students’
learning paths? Can I predict the impact of machine learning algorithms on
students’ learning while they are taking the proposed tutorials? A longitudinal
data analysis can appropriately address these questions. This method was
especially effective in this case because participating students improved at various
speeds and reached certain proficiencies at different times. This longitudinal study
can identify how the predictor (i.e., machine learning) is affecting both within-
individual and inter-individual learning patterns.

This multilevel model is composed of a level-1 model (which considers
within-individual changes over time) and a level-2 model (which looks at inter-
individual differences). The level-1 model uses linear regressions to identify how
each student’s learning changes over time. The level-2 model identifies how one
student’s learning pattern differs from other students’ patterns by determining
whether the intercept and slopes of the average fitted line are systematically

correlated with the predictor.

5.2.1 Explorative Data Analysis

In this explorative analysis, the main research question asks how the ML-tutor
and the non-ML tutor differently influence the learning behaviors of the study’s
participants. Participants who used the ML-tutor studied for a longer time,
submitted more exercises, visited the workshop more frequently, and accordingly

showed more intensive learning patterns than participants who used the non-ML

86

Chapter 5. Tests and Analysis

D DAY ML Study Time (ST) Log.-Study Time (LST)
5 1 0 43.50 3.773
5 2 0 70.00 4.248
5 3 0 75.50 4.324
5 4 0 40.00 3.689
5 5 0 62.50 4.135
[1 1 127.04 4.845
7 1 0 7.15 1.967
7 2 0 5.90 1.775
8 1 1 91.50 4.516
8 2 1 244.59 5.500
8 3 1 41.32 3.721
8 4 1 106.43 4.667
8 5 1 115.71 4.751
8 6 1 22.62 3.119
8 7 1 26.77 3.287

Table 3. Examples of a person-period data set (ST and LST in minutes).

tutor.

First, I analyzed the data using a level-1 model and identified how each
participant’s learning behavior changed over the course of the workshop. Next, I
conducted a level-2 model analysis to understand how participants who used the
ML tutor learned differently from the participants who used the non-ML tutor. In
the final step.

I collected between 1 and 15 samples of longitudinal data on 78
participants (Table 3)'2. Every day, the participants studied online tutorials. A
time-measuring script recorded participants’ daily study time, the number of visits,
and their evaluations of each module. The daily assessment period had been

determined based on the previous three introductory-programming teaching

' The workshop was offered as an online course. Therefore, it was difficult to have balanced data in which each participant
had the same number of waves.

87

Synthetic Tutor

Study Time (min./day) Log. Study Time
Mean 111.86 4.139
Median 62.87 4,141
Standard Deviation 153.83 1.071
95% Confidence Upper Bound 131.34 4274
Interval for Mean ~ Lower Bound 92.38 4.003
Maximum 940.00 6.850
Minimum 3.00 1.100
Range 937.00 5.750
Skew 327 -0.006

Table 4. Descriptive statistics for the Daily Study Time and the Daily Log. Study Time of
all participants (n = 242).1

1000 4 227

€0¢r]

400

Figure 27. Boxplots of participants” daily study time in its original scale (left) and in its
natural logarithm scale (right)."

experiences from 2011 to 2013. After attending the daily lectures, most students
still needed additional exercises to fully understand the concepts in computer
programming. In the previous experiments, students who were writing code
showed a significantly improved understanding of programming compared to

those students who just watched the instructor’s presentations or listened to

" This study collected non-balanced data, as participants had different numbers of study days.
" See the full size graphs in Appendix F for more details.

88

Histogram

Chapter 5. Tests and Analysis

1204

60

Frequency

407

204

.00 200.00 400.00 600.00

StudyTIME

800.00

1000

OM
Log_TIME

3.00

5.00 6.00 7.00

Figure 28. The histogram of a participant’s daily study time in its original scale (left) and

in its natural logarithm scale (right).

Normal Q-Q Plot of StudyTIME Normal Q-Q Plot of Log_TIME
4
¥ (3
o
- i.
o,
-
-
- -+
200 H 00 200 00 %0 1000 0 H H 6 T
Observed Value Observed Value

Figure 29. The normality test plots participants’ daily study time in its original scale (left)
and in its natural logarithm scale (right). As seen on the right Q-Q (normality test) plot,
the normality is improved. The log-transformed sample points lie closer to the diagonal
line than the sample points in their original scale.

89

Synthetic Tutor

Initial status Rate of change

1D Estimate se Estimate se Residual variance R’ ML
5 4.001 0.255 0.017 0.104 0.325 0.008 0
7 1.967 0.000 -0.192 0.000 0.000 1.000 0
8 4.766 0.423 -0.148 0.089 3.315 0.284 1
19 4.269 0.375 0.033 0.153 0.704 0.081 1
27 3.984 0.209 0.026 0.162 0.052 0.025 0
36 3511 0.446 0.060 0.345 0.238 0.036 1
47 3777 0.271 0.143 0.210 0.088 0.316 1
53 3.417 0.145 0.690 0.112 0.025 0.974 1
57 4.882 0.965 -0.320 0.748 1.118 0.155

58 4.578 0.567 -0.114 0.303 0.918 0.201

Table 5. Randomly selected results from fitting separate within-person exploratory OLS
regression models as a function of exponential time."

lectures. The data set also includes one potential predictor of study time, TUTOR,
a dichotomy indicating whether a participant studies with the ML tutor or the non-
ML tutor.
A person-period data set (Table 5) was used to systematically measure

changing student outcomes. There were five variables in the data set:

1. Identification Number (ID) - subject identifier

2. Day (DAY) - a time indicator

3. Machine Learning (ML) - a predictor variable (time-invariant)

4. Study Time (ST) - outcome variables in minutes

5. Log. Study Time (LST) - the natural logarithm of Study Time
I transformed the outcome values of Study Time (ST) into the natural logarithm of
their values. The outcomes in their original scale followed a non-normal
distribution. Accordingly, this logarithmic transformation allowed me to assume

linearity with DAY at level-1, and intuitive interpretation of its analysis (Figure 27,

" The results of fitting separate within-person exploratory OLS regression models as a function of time (in their original
scale) are attached in Appendix F.

90

Chapter 5. Tests and Analysis

The collection of th nonpar ric trajectories The collection of fitted OLS wrajectories

7.004 7004

.00 6001
w 300 5,004
i i 5
! 4.0 y 5 a0

3.00- 1.004

2,00 2,001

i 100 T T ¥ v

H H H 10 fi! H H H 1 13
Days Days

Figure 30. OLS trajectories overlapped in a single plot.

The left figure shows the collection of smooth nonparametric (n = 242 for 78 participants) and the
right the collection of fitted OLS trajectories across participants in the workshop (n = 202 for 49
participants). The red lines represent an average change trajectory.

Figure 28, and Figure 29). Having established an overall pattern of learning
performance, the next step was to find a parametric model that best fit each
individual’s learning pattern. The ordinary least squares (OLS) regression was
used for the exploratory analysis of the data. The regression provided the simplest
illustration of the functional form of the patterns of change, addressing questions
such as: does the participant’s learning improve, decrease, or remain steady?
Table 1 shows partial-sample results from an OLS-estimation of
participants’ intercepts and slopes. A detailed calculation of standard errors,

residual variance, and R? statistics follows in the next sections.
Level-1 Inspection

Figure 31 shows empirical growth plots. It includes OLS-estimated linear

trajectories for six randomly selected participants. These trajectories show the

91

Synthetic Tutor

INDIVIDUAL GROWTH MODEL INDIVIDUAL GROWTH MODEL INDIVIDUAL GROWTH MODEL
L - e
s » u
L iy oy
ssed D ase] '__‘__f___'_l..,__-——-———'— o
Pl i P jray o
§ o - ° §aw * fuol 7 A
o B °
2004 1001 100
T H H I i] H HEE T H T e ow o
Days Days. Days
INDIVIDUAL CROWTH MODEL INDIVIDUAL GROWTH MOODEL. INDIVIDUAL GROWTH MODEL
L21] 17 L 10
" » “
noed 00
7 %
word oo oo
5 °
°
B e [P
o
[P Semrys T fool = o [
°
10e] 200] 100
"o H 1 T b 4 on R H H HEEE R R H T]
Days Days Days

Figure 31. Empirical growth plots for six randomly selected participants in the workshop.
These plots show examples of participants’ varying learning progress. Among six participants, one
shows a significant increase in their study time (ID 17), two show moderate increase (ID 9 and 61),
two show significant decrease (ID 8 and 13), and one does not show any change in his/her study
time (ID 61). One participant shows high intercepts (ID 61), four show moderate intercepts (ID 8,
9, 13, and 16), and one shows low intercepts (ID 17).

linear relationship between the transformed values of Study Time and the values
between Days 1 and 15. From this visual inspection, I can confirm that most
participants showed a linear relationship between transformed Study Time and
DAY over the course of the workshop.

By overlaying the results of all participants’ individual growth patterns in
a single plot (Figure 30), an averaged change of all participants is illustrated and
the patterns of change of each individual can be compared to the others. Once

intercepts and slopes are estimated, descriptive statistics (using means and

92

Chapter 5. Tests and Analysis

Initial Status Rate of Change

(Natural logarithm) (min.) (Natural logarithm / day) (min./day)
Mean 3.941 51.47 0.038 1.04
Standard Deviation 1.134 3.11 0.439 1.55
95% Confidence Lower Bound 3.615 37.15 -0.879 0.42
Interval for Mean Upper Bound 4.266 71.24 0.164 1.18
Minimum 1.410 4.10 -1.630 0.20
Maximum : 6.760 862.64 1.830 6.23
Range 5.350 858.55 3.460 6.03

Table 6. Descriptive statistics for the individual growth parameters.

These data were obtained by fitting separate within-person OLS regression models for Study Time
as a function of exponential time (» = 202 from 49 participants’ data; any participants’ data with
fewer than 2 samples are eliminated during analysis).

variances), and univariate summaries (using correlation coefficients) were
explored (Table 6). To identify the systemic changes in participants’ learning
patterns, the effects of machine learning (the predictor) were examined.

The level-1 model analysis illuminates how an individual participant
changes his or her study pattern over time. This analysis shows how each student
starts the workshop differently and how he or she increases or decreases his or her
study time and exercise submission frequencies.

The level-1 submodel for this research (a linear function of DAY-1) is:
Yij = [moi + mi (DAY - 1)] + [&;] (2)

In equation 2, Yj is the value of study time for a student i on day j. In this
equation, it is assumed that the trajectory is linear in DAYj; - 1. mo; is an intercept
and my; is the slope of the student’s learning performance. g;; is a random
measurement of student error.

The average study time on the first day is 130.36 minutes, and its median

is 72.10 minutes. The top five percent’s study time is 464.50 minutes. Some

93

Synthetic Tutor

Study Time (min./day) Log. Study Time
Mean 130.36 4288
Median 72.10 4.278
Standard Deviation 169.14 1.133
95% Confidence Upper Bound 158.94 4.479
Interval for Mean Lower Bound 101.79 4.097
Maximum 940.00 6.850
Minimum 3.00 1.100
Range 937.00 5.750
Skew 3.04 -0.342

Table 7. Descriptive statistics for daily Study Time and the daily Loge Study Time of the
ML participants (n = 137).

o Histogram Norml 0-Q Plot of Study TINE

“ L
T e

B

i

Figure 32. Descriptive statics for daily Study Time (top) and daily Log. Study Time
(bottom) of the ML participants (n = 137) showing boxplots (left), histograms (middle),
and Q-Q (normality test) plots (right).

The six figures above show the improved normality of sample data after log-transformation. See
the full-size figures in Appendix F for greater detail.

94

Chapter 5. Tests and Analysis

Study Time (min./day) Log. Study Time
Mean 87.72 3.944
Median 49.00 3.892
Standard Deviation 128.01 0.955
95% Confidence Upper Bound 112.49 4.129
Interval for Mean Lower Bound 62.94 3.760
Maximum 865.00 6.760
Minimum 5.64 1.730
Range 859.36 5.030
Skew 3.64 0.477

Table 8. Descriptive statistics for daily Study Time and daily Log, Study Time of the
non-ML participants (n = 105).

. Histogram _ Normal Q-Q Plot of StudyTIME

PEFe o 5 @-{ "i.tl'“l'r et | s

=, == Log_TiME ‘Observed value

Figure 33. Descriptive statics for daily Study Time (top) and daily Log. Study Time
(bottom) of the non-ML participants (n = 105) showing boxplots (left), histograms
(middle), and Q-Q (normality test) plots (right).

The six figures above show the improved normality of sample data after log-transformation. See
full-size figures in Appendix F for greater detail.

95

Synthetic Tutor

Initial Status Rate of Change

(Natural logarithm) (min.) (Natural logarithm / day) (min./day)
Mean 3.788 44.17 0.232 1.26
Median 3.937 51.26 0.071 1.07
Standard Deviation 1.167 3.21 0423 1.53
95% Confidence Lower Bound 3.306 27.28 0.057 1.06
Interval for Mean Upper Bound 4.270 72.52 0.407 1.50
Minimum 1.410 4.10 -0.150 0.86
Maximum 6.050 424 11 1.830 323
Range 4.640 420.02 1.980 5.37

Table 9. Descriptive statistics for individual growth parameters in the ML tutor (n = 137
from 25 participants).

Initial Status Rate of Change

(Natural logarithm) (min.) (Natural logarithm / day) (min./day)
Mean 4.100 60.34 -0.164 0.85
Median 4.085 59.44 -0.078 0.92
Standard Deviation 1.100 3.00 0.362 1.44
95% Confidence Lower Bound 3.635 37.90 -0.317 0.73
Interval for Mean ~ Upper Bound 4.564 95.97 -0.011 0.99
Minimum 1.800 6.05 -1.630 0.20
Maximum 6.760 862.64 0.310 1.36
Range 4.960 856.59 1.940 6.96

Table 10. Descriptive statistics for individual growth parameters in the non-ML tutor (n =
105 from 24 participants).

participants just visit one time and quit the workshop; their average study time is
3.00 minutes, which is 42.45 times lower than average study time and 23.03 times
lower than the median study time. The range is 724.44 minutes, which indicates a
wide spectrum among participants.

The observed average rate of change is 0.038 per day (on a natural

logarithmic scale), meaning a typical participant increases his or her study time

96

Chapter 5. Tests and Analysis

Test Statistics

Median Initial Status 4.169 (ML participants, n = 119)
3.912 (non-ML participants, n = 83)

Mann-Whitney U 253.00

Asymp. Sig. (2-tailed) 0.347 (> 0.05)

Table 11. Mann-Whitney U test results for the initial statuses of two groups (ML and
non-ML).

Test Statistics

Median Rate of Change 0.071 (ML participants, n = 119)
-0.078 (non-ML participants, n = 83)

Mann-Whitney U 93.50

Asymp. Sig. (2-tailed) 0.000 (< 0.05)

Table 12. Mann-Whitney U test results for the rates of change of two groups (ML and
non-ML). :

1.04 minutes every day until the end of the workshop. The highest daily increase
was 1.83, meaning that participant increased his or her study time by 6.23 minutes
per day. The lowest increase was -1.630, meaning that participant increased his or

her time 0.20 minutes per day.

Level-2 Inspection
After considering individuals’ learning behaviors, I analyzed the level-2 model

that reveals how participants in the two groups (the ML tutor and the non-ML
tutor groups) behave differently (Figure 34). The level-2 sub-model for this
research is:
Toi = Yoo + YorMLi + Coi (3)
mi = yio + YuML; + Gy (4)
In equations 3 and 4, the my; (intercept) and the my; (slope) result from the impact

of the predictor (ML) and have their own individual residuals ({oi and {;;). The

97

Synthetic Tutor

The collection of fitted OLS trajectories The collection of fitted OLS trajectories
7.00 100
.00 6.00
- 5.0 w 5.0
i g
! 4.00] 5 o e e N
3.00 3.00
2.00r 200
Lo0=— T T T T 1 T T T T T T
o 3 5 L] 10 13 o] 5 1 10 13
Days Days

Figure 34. Fitted ordinary least squares (OLS) trajectory of ML (left) and non-ML (right)
tutor superimposed on empirical growth plot.

Two red lines represent average population trajectories. (ML: n =119 from 25 participants’ data,
non-ML: n = 83 from 24 participants’ data, any participants’ data fewer than 2 samples are
eliminated during analysis. Their descriptive statistics are in Table 11, Table 12, Figure 32, and
Figure 33.

four level-2 parameters (Yoo, Yo1 Y10, and y11) are calculated separately by setting
ML to 0 and ML to 1 and illuminating the level-2 fixed effects.

The findings of this longitudinal study are that the median initial status
(intercept) of the ML tutor participants and the non-ML tutor participants are
4.169 and 3.912 respectively (Table 9 and Table 10). The distributions in the two
groups’ intercepts do not differ significantly (Table 11)'S. The median rates of
change (slopes) of participants who use the ML tutor and the non-ML are 0.071
and - 0.078 respectively (Table 9 and Table 10). The distributions in the two

6 1 conducted Shapiro-Wilk tests of normality, and the result showed that the distribution of the initial status of the ML
tutor participants appeared to follow a normal distribution (p = 0.259 > 0.05; its null hypothesis was that the data are
normally distributed, and it was not rejected); however, the initial status in the non-ML tutor participants did not follow a
normal distribution (p = 0.006 < 0.05; its null hypothesis was rejected). Accordingly, I used the Mann-Whitney U test
instead of an independent t-test to compare the distributions.

98

Chapter 5. Tests and Analysis

groups’ slopes differ significantly (Table 12). 17

These findings illuminate the fact that the ML tutor does not influence
participants’ learning at the beginning of the workshop. However, the ML tutor
does improve participants’ learning by maintaining their study time through the
course of the workshop. This improvement stands in contrast to the non-ML

participants, whose study time decreased more rapidly.

5.2.5 Additional Findings
In this section I describe additional cross-sectional analyses of the collected data

and illustrate different effects of the ML tutor and the non-ML tutor on the study’s
pafticipants. I focus on those participants who use the ML and the non-ML tutor
similarly on the first day. The ML tutor does not influence these participants’
learning at the beginning. However, participants who use the ML tutor increase
their study time more rapidly than participants who use the non-ML tutor over the
course of the workshop.

The ML tutor successfully influenced the learning behaviors of
participants and improved their learning more than did the non-ML tutor. The ML
tutor identifies a participant’s learning patterns and recommends a set of
customized tutorials. In the recommended tutorial set, participants can see how
previous participants studied the material, and how many participants liked the
tutorial. On the other hand, participants who use the non-ML tutor did not get any
extra information. The non-ML tutor participants had to study the tutorials
without receiving any feedback, just as they might do for a conventional online

course. Accordingly, the learning process of an ML tutor participant showed a

' The two distributions of rates of change in the ML and the non-ML tutor did not appear to follow a normal distribution
when I tested them using Shapiro-Wilk tests (p < 0.05). Accordingly, I also used the Mann-Whitney U test instead of an
independent t-test to compare the distributions. See Appendix F.

99

Synthetic Tutor

Figure 35. Visiting patterns of participants.

The image on the left shows the visiting patterns of all ML-tutor participants, and the image on the
right shows all non-ML tutor participants’ visiting patterns. The circles above the horizontal lines
indicate that users moved forward from a current module to a higher module. The circles beneath
the horizontal lines show that a user moved backward from their current module. Small circles
indicate a user’s movement to nearby modules, and large circles indicate a user’s movement to a
more distant module. The largest circle above the horizontal line on the right indicates that a
participant moved from module 1 to module 200, visiting the final project immediately after
visiting the first.

relatively more dynamic pattern than that of students who used the non-ML tutor
(Figure 35).

Participants using the ML tutor visited the tutorial 8,828 times in total,
which is 2.26 times more than the 3,902 visits made by participants using the non-
ML tutor. The average number of visits made by ML tutor participants was
215.32, while non-ML tutor participants made only 97.55 visits (and the median
visiting numbers are 132 and 60 respectively). The ML-tutor groups’ standard
deviation in visit numbers was 223.8, and the standard deviation for the non-ML
tutor group was 97.6 (Figure 36).

An independent-sample t-test was conducted to compare the visit numbers

100

Chapter 5. Tests and Analysis

= =
T T
] 1
ML

Figure 36. The distribution of the number of visits by participants of non-ML (left; n = 39)
and ML tutors (right; n = 39).

for both groups of participants. The effect of the ML tutor on the number of visits
is relatively large. These results suggest that the ML tutor has a considerable
effect on participants’ visiting number. Specifically, this result suggests that when
participants study with the ML tutor, their number of visits increases.

By observing the visualization of a student’s learning pattern, I can tell
whether that student studies with the ML tutor or the non-ML tutor. In contrast to
participants who use the ML tutor to dynamically study the workshop materials,
participants who use the non-ML tutor show linear study patterns. Participants
who use the ML tutorial re-visit the same tutorial multiple times and complete
many tutorials by moving forward and backward (Figure 37, top). Students who
learn with the non-ML tutor, on the other hand, complete tutorial sets linearly and
rarely re-visit the same tutorial (Figure 37, bottom).

The ML tutor successfully demonstrates the possibility of minimization or
full or partial replacement of human instructors in design-scripting education.

Based on the daily exercises submitted by the participants, I can conclude

101

Synthetic Tutor

Figure 37. An example of two learning patterns.
The top image shows the dynamic learning pattern of a participant who uses the ML tutor. The
bottom image shows the linear learning pattern of a participant who uses the non-ML tutor.

that participants successfully learned essential programming concepts, such as
functions, repetition, and conditional statements. Participants’ submitted code and
questions show that not only did they understand the principles of computer
programming; they could independently write code for design work (Figure 38).
Their clearly organized code used functions, effectively generated complex
shapes using repetitions, and controlled boundary conditions. This shows how
successfully and independently these participants can learn.

The examples below show a participant’s questions regarding workshop
exercises. This participant had difficulty understanding the meaning of the
exercises. However, as soon as she understood that the exercise simply required

participants to draw a triangle, she quickly completed her code work.

102

Chapter 5. Tests and Analysis

import rhinoscriptsyntax as rs
import math

def drawTrianglel(xc, yl, base, altitude):
x1 = xc - (base)
x2 = x1 + base
y2 = yl + altitude

ptl = [x1,y1,0]
pt2 - [x2,y1.0]
pt3 = [xc,y2,0]

rs.AddLine(ptl,pt2)
rs.AddLine(pt2,pt3)
rs.AddLine(pt3,ptl)

def drawTriangle2(xc, yl, base, altitude):
x1 = x¢ - (base)
x2 = x1 + base
y2 = yl + altitude

ptl = [)(113'110]
pt2 = [x2,y1,0]
pt3 = [xc,y2,0]

rs.AddLine(ptl,pt2)
rs.AddLine(pt2,pt3)
rs.AddLine(pt3,ptl)

| de

-

myTriangleComposition():

Xc = 10

count = ronge(1,8)

for i in count:
drawTrianglel (xc, @, 108, 3)
drawTriangle2 (xc, 3, 10, 6)
XC = XC + 3

myTriangleComposition()

Figure 38. A participant’s sample code.

The submitted code shows that the participant successfully used multiple functions, input
parameters, and repetitions without any instructor assistance. She did, however, make two almost
identical functions (‘drawTriangle1()" and ‘drawTriangle2()’). If she better understood the
purpose of using functions, she could eliminate one.

The first is 2.4. I do not understand how to arbitrarily place the
coordinates that define the vertices of the triangle before applying math. 1
would understand if I input two variables and then solved for the height
and midpoint to find the apex. I am missing something here.

The second is 3.6. I am not sure how to approach this question. I know the
golden ratio formula, but can't figure out how to approach this either.

The third is 3.7. I am not sure what is being asked here.

Participants who used the ML tutor studied more intensively and were

103

Synthetic Tutor

more likely to complete the workshop than participants who used the non-ML
tutor. They submit more exercises and visited the tutorials more frequently, and
they studied for longer periods than participants who used the non-ML tutor. As
opposed to the linear approach taken by the non-ML tutor participants,
participants who used the ML tutor completed it dynamically, by navigating the

whole tutorial and reviewing previous tutorials iteratively.

5.3 Computer Vision Tutor
The computer vision (CV) tutor is an algorithm designed to search for relevant

architectural projects using a captured image of a user’s sketch or floor plan. In
this section, I describe the developed CV tutor, a test method designed to measure
its performance, and the survey results showing what participants think of it. This
section also includes the algorithms used by the CV tutor, its hardware settings,
and its test environments. Forty-two participants joined the experiment, tested the
tutor, evaluated the usefulness of its computational feedback, and compared that

feedback with the feedback they received from their previous human instructors.

5.3.1 Experimental Design
During desk critiques, instructors check students’ drawings and provide relevant

architectural precedents in the forms of images or the instructors’ own sketches.
The purpose of the computer vision tutor (CV tutor) is to develop an automated
design-education system that can support novice students’ architectural design
processes in a similar way. Specifically, the CV tutor can recognize students’
architectural drawings, regardless of their visual styles, and provide design
feedback in the form of drawings, model photos, and perspectives. These kinds of

feedback are popular in conventional architectural design-studio education.

104

Chapter 5. Tests and Analysis

Figure 39. Computer vision tutor process.
The left image shows a user taking a picture of his floor plan, which had been pinned to a wall.
The right image shows the captured image of the floor plan on the screen of a computer monitor.

This experiment tests the possibilities of transforming human-oriented
education into a computational process. This experiment utilizes a computational
tutor in design education and evaluates its performance. The experiment asks
participants to evaluate the performance and usefulness of the developed CV tutor,
and it also asks them to compare the CV tutor’s feedback with human instructor’s
feedback (Figure 39).

The algorithms used to recognize participants’ architectural drawings were
developed using the SIFT algorithm. The SIFT algorithm collects the local
features of an image and transforms them into vector data. I then provide labels,
including the names of architects, the titles of the projects, and additional features
of an image and transform them into vector data. I then provide labels, including
the names of architects, the titles of the projects, and additional information. The
algorithm can then recognize new images regardless of their orientation, scale,
and visualization style, and it can match them with the provided labels. The
algorithm performs well, with a greater than 98 percent matching rate. It

accurately finds the same architectural drawings with different styles, matching

105

Synthetic Tutor

o a8 b sy e b

Figure 40. The hardware and software setting of the developed computer vision tutor
system.

The left image shows a camera attached to a computer. The right image shows the CV tutor
interface, composed of two buttons (*start the camera’ and ‘close’), and a camera viewer (lower
left corner screen) that shows the camera view in real-time.

Figure 41 The feedback from the computer vision tutor.
The CV tutor has recognized the users’ plan’s similarity to the floor plan of Le Corbusier’s Villa
Le Lac, and it shows image-search results for that floor plan.

drawings with hard lines, gray-scale perspectives, or computer-generated color

renderings. 18

18 Section 3.4 provides descriptions of these algorithms.

106

> Chapter 5. Tests and Analysis

X
'Efu
= o |
=y
i

LE PLAN e

Figure 42. A participant’s floor plan and the CV tutor’s suggested floor plan.

These two images show the result of suggested design feedback. The left image is a participant’
floor plan and the right is a floor plan that the CV tutor suggests (Le Corbusier’s Villa Le Lac
floor plan).

Figure 43. A participant’s second attempt and CV tutor’s suggested floor plan.
A participant takes a picture of the right part of his floor plan and the CV tutor suggested Le
Corbusier’s Villa Shodhan floor plan.

The CV tutor consists of a high-resolution camera and a computer that
runs the CV tutor software (Figure 40). The overall operating sequence is:
1) The tutor activates the camera, and it recognizes an image.
2) It runs the SIFT algorithm and identifies the most similar image
among its training-data sets.

3) The software retrieves the image’s textual metadata, which

107

Synthetic Tutor

includes project title, architects, construction year, and site.

4) The tutor uses this information to initiate an image search.

5) Finally, the tutor provides the user with the image feedback that
had been retrieved by the image search engines.

The CV tutor learns architectural design using a Web crawler. A Web
crawler is an automated search algorithm that iteratively collects relevant images
based on given search keywords. This machine learning process is a collaboration
between human instruction and a machine’s automated data collecting and
labeling processes (i.e., supervised learning). A human instructor provides a list of
architects and their projects, and the CV tutor then gains architectural knowledge
from the collected images and their labels. For the CV tutor’s initial learning
process, I included only housing projects and their floor plans'®, and this data was

used to provide design feedback.

5.3.2 Findings
Forty-two students volunteered to join the experiment and test the CV tutor.?’

Most participants (40 out of 42) were majoring in architecture, and the other two
students were majoring in urban design. They brought their current and previous
architectural studio-design projects and showed them to the CV tutor. Many
participants used their printed drawings, although some students used digital files
(e.g., AutoCad or PDF files) opened on their computer monitors.

The CV tutor recognized participants’ drawings and identified the most
similar architects’ projects. It then searched for images on the Web and showed its
search results, including project pictures, models, and drawings. Participants

could repeatedly use the CV tutor to get multiple design feedback results. After

' Appendix C includes the full list of architects and their projects.
* The survey questions are attached in Appendix B.

108

Chapter 5. Tests and Analysis

Overall, how do you evaluate the feedback of the CV-Tutor?

DSomewhat Satisfied (52%)

OHighly Satisfied (33%)

ONeither Satisfied nor Unsatisfied (10%)
BAHighly Unsatisfied (5%)

® Somewhat Unsatisfied (0%)

Figure 44. Overall satisfaction rate.

How useful is the feedback to improve your design?

OSomewhat Useful (45%)
OHighly Useful (40%)

DONeither Useful nor Useless (12%)
BSomewhat Useless (2%)

W Highly Useless(0%)

Figure 45. The usefulness of the CV-tutor feedback.

the experiment was finished, participants evaluated the effectiveness of both the
CV tutor and their feedback results.

Overall, many participants evaluated the feedback from the CV tutor as
satisfactory. Fourteen participants (33%) reported that they were highly satisfied,
and 22 participants (52%) were somewhat satisfied. These participants
commented that the CV tutor could be useful for their projects, and that they were
excited about the potential of using their sketches and drawings for developing

their projects (Figure 44).

109

Synthetic Tutor

How related is the feedback to your design?

OSomewhat Related (57%)

ONeither Related nor Unrelated (21%)
OHighly Related (21%)

B Somewhat Unelated (7%)

B Highly Unrelated (0%)

Figure 46. The relevance between the feedback and participants’ projects.

Many participants found the design feedback to be highly useful or
somewhat useful for their design (17 and 19 out of 42, respectively; Figure 45).
Some participants also considered the design feedback to be relevant to their
design sketches (3 out of 5). No student thought the feedback was useless or
unrelated to his or her design. Eleven participants wrote that the tool could be
more effective if it had more data than did the current version (Figure 46). I
consider this performance acceptable, and I believe it may be worth developing
the CV tutor further and testing it with a larger number of participants.

About half of the participants (20 out of 42) considered the machine
design feedback and the instructors’ feedback equally useful. Some participants
(16 out of 42) evaluated the human instructors’ feedback as better than the
machine’s. Two participants commented that image results were less interesting
than an instructor’s verbal explanations and dynamic feedback. One student
remarked that the lack of human feeling from the tutor made the design feedback
less effective. Not surprisingly, human interaction during design education is an
important part of the design development process and an architectural studio

education (Figure 47).

110

Chapter 5. Tests and Analysis

How do you evaluate the feedback of the Machine Tutor
compared to your previous instructors' feedback?

OBoth are equally useful (48%)

Olnstructor's feedback is somewhat better
than Machine's feedback (38%)

OMachine's feedback is much better than
Instructor's feedback (7%)

BMachine's feedback is somewhat better than
Instructor's feedback (5%)

H]nstructor's feedback is much better than
Machine's feedback (2%)

Figure 47. Comparison with human instructors.

Participants, most interestingly, considered the design feedback similar to
human design feedback. They commented that they couldn’t distinguish some of
the design feedback from the CV tutor from that of a human. In a few cases, some
participants commented that the computational feedback was highly unexpected
when compared to that of a human instructor. At the same time, a small numbers
of comments reported that the CV tutor’s feedback was related to their design, yet
was not as dynamic and offered less insightful information than did their human
instructors’ feedback.

Unlike text-based searching, image searching is still underdeveloped and
therefore less effective. Image search results from various search engines
sometimes do not find what they are looking for, even when they use many
keywords. An image’s metadata frequently does not convey its meaning, and
when people do not know appropriate keywords, it can be difficult to find
searched-for images.

The CV tutor develops a method for finding relevant images from students’

drawings and architectural visualizations. The CV algorithm used in this study

111

Synthetic Tutor

conveys proper search keywords from architectural drawings that humans have
provided, and it implements image-search engines to use that retrieved metadata
to operate their search processes. The CV tutor’s main search algorithm is SIFT,
which finds similar images based on the semantics of images rather than visual
styles. This allows the CV tutor to recognize participants’ architectural plans and
provide relevant design feedback in the form of images.

This CV tutor experiment shows the possibility of providing
computational design education in architectural-design studios. Design education
is one of the areas in which it is difficult to utilize computational automation due
to the high level of customization that individual students require. The findings of
this study open the possibility of automating customized design education, and
may make online education more effective and useful in subjects where high

customization is required.

112

Chapter 6. Conclusions

6. CONCLUSIONS

This study explored collaborative human-machine approaches to solving the
complex problems associated with design education, problems which humans or
machines could not easily solve alone. I proposed and developed the Synthetic
Tutor that showed a superior teaching performance to the non-machine learning
tutor (such as a conventional online tutor). These results illuminate how the
Synthetic Tutor can influence its users: they study a longer time, complete more
learning materials, and learn more actively than participants using the non-ML
tutor. These findings can be used to develop a new type of intelligent tutor that
can profile users’ learning needs and provide them with a mass-customized

education.

6.1 Contributions

I conducted three workshops to understand the difficulties that students might
experience during their learning, and I prepared teaching materials and hands-on
exercises as part of those workshops. I researched pedagogies and the bricolage
educational model for effective teaching. I explored machine learning algorithms
that could be used to profile learners and customize teaching materials for
individuals with diverse learning curves.

Based on the findings from these three workshops and using the developed
Synthetic Tutor, I conducted an experimental design to test the effect of the
Synthetic Tutor on participants. I observed and traced how these participants, who
had various educational backgrounds and programming experience, applied their

learning of design scripting into architectural design projects. The experimental

113

Synthetic Tutor

design shows improvements in learning from both the Synthetic Tutor and the
participants. From a human learning perspective, it is significant that this study
has found that the Synthetic Tutor changes the learning behavior of participants.
After identifying the influence of the Synthetic Tutor on participants’ learning,
this study attempted to find the causes of these behavioral changes.

In order to accomplish this, the first attempt was to prepare an exit-survey
and to ask participants directly about whether they followed the recommended
tutorials, whether the recommended contents improved their learning, and how
they evaluated the usefulness of these recommendations. The exit-survey,
however, was not successful due to the many participants who stopped learning in
the middle of the workshop period and did not respond to the survey.

In the second attempt, I analyzed each individual participant’s study
pattern. For example, as Figure 37 shows, this participant in the ML tutor
dynamically moved backward and forward through different modules. When I
compared different participants’ study patterns, this dynamic pattern is commonly
observed regardless of the participants’ iearning groups. At the same time, the
participants who studied with the non-ML tutor commonly showed a linear study
pattern.

While participants were improving their learning, the Synthetic Tutor also
improving its performance. For this machine learning perspective, the
improvement of the tutor could be explained in two different ways. The first is the
increasing amount of participants’ learning data. On the first day, the ML tutor
could only utilize six participants’ data. The number of participants increased to
28 by the end of the first week, 45 by the end of second week, and it reached 78 at
the end of week 4. In the beginning, the ML tutor could only compute

recommendations based on participants’ study time and their number of visits.

114

Chapter 6. Conclusions

When more participants joined the workshop, the ML tutor could utilize
participants’ evaluation data and acquire additional data from the new participants
that might improve the quality of recommendations.

The second explanation for the Synthetic Tutor’s improved performance is
the increasing k-value of the k-means clustering, which makes the
recommendation more useful. Within a narrow range of k-values (between 1 and
5), this study shows a high k-value can refine the clustering results. Among the
five identified learner groups (see Section 3), participants in Group 1 (extra-
ordinary group) were particularly benefited by the ML tutor. Although there were
not many participants in this group, they received useful recommendations from
the ML tutor due to their longer study time and larger number of visits than
participants in other groups. On the contrary, the participants in Group 4 and
Group 5 did not get useful instruction from the ML tutor. Because of their short
study time and brief enrollment in the workshop, the ML tutor could not provide
them with effective recommendations.

This study also developed computer vision (CV) algorithms to provide
computational design feedback. The performance of the implemented CV
algorithm showed high precision and low error rates. Participants commented that
the feedback from the CV tutor was relevant to their projects, and they stated that
although the feedback was not as insightful as that of human instructors, it was as
highly useful as the humans’ feedback. One participant even stated that the CV
tutor’s feedback identified a project that he studied during his conceptual design
process that no human instructor recognized.

This study illustrates the explorative process I conducted in order to
identify students’ learning difficulties and find the appropriate teaching materials

for these participants. This study illuminates how a human-machine collaborative

115

Synthetic Tutor

process could solve difficult problems in design education. Accordingly, this
study provides a new framework for the developmental process and for the role of
artificial intelligence in design courses—particularly when those courses still need
to be developed, as would be the case for an introductory course in computer
programming for architecture students. This new framework could also contribute
to current online education, which is heavily content-based, by providing features
that could convert static information delivery into an interactive, dynamic, and

customized experience.

6.2 Discussion
Statistical analysis shows the effectiveness of the developed Synthetic Tutor. The
results illustrate that small changes in online education can significantly improve
participants’ learning performance. However, there are several identified issues
that are outside of this study, and could be highly valuable for further studies.

With more data, this study could have provided in-depth findings on how
the Synthetic Tutor’s students’ improvement related to their educational and
motivational backgrounds. Seventy-eight participants joined the experiment, and
that was sufficient to analyze the overall impact of the Synthetic Tutor. However,
that number was not large enough to analyze the Synthetic Tutor’s different
impacts on participants in the five learner groups identified by the machine
learning algorithms. If the study were to collect more data for each user group, the
study could then identify the various impacts of the ML tutor. These findings
could provide useful insights for designing effective online courses and
interactive machine tutors.

This study collected unbalanced data that consists of between one and

fifteen waves from 78 participants. At the beginning of this study, I designed the

116

Chapter 6. Conclusions

experiment to have the same amount of data from each participant: 14 waves
during two-week periods. However, the course was offered online and |
participants showed highly irregular study patterns. Longitudinal data analysis is
flexible enough to estimate this unbalanced data; however, balanced data (in
which all participants have the same amount of data) could improve the precision
of estimation and model fitting. If the workshop could generate balanced data by
being offered as a formal online course through a university for a certification or a
grade, or if it could have a higher number of participants, then this study could
achieve greater precision.

The workshop offers a final assignment to evaluate participants’ design-
scripting capability. This assignment is taken from a sample question on the
architect registration examination (ARE) that asks participants to design a two-
story residential building. However, only a small number of students submitted
final architectural design projects. Accordingly, this study is not able to prove the
effectiveness of the CV tutor’s feedback during the workshop; rather, the test had
to be conducted separately after completing the experiment. A future project
should develop a computational instruction that can teach computer programming
language and architectural design seamlessly, and which can provide design
feedback from computationally generated architectural drawings.

Three students emailed their feedback on the ML tutor after they
completed their learning experience. All three stated that the ML tutor’s color-
coded suggestions were neither effective nor useful for their learning. Regardless
of these low evaluations of the ML tutor’s interventions in their learning, this
study shows that the learning performances of participants who used the ML tutor

were higher than that of those participants who used the non-ML tutor. This

117

Synthetic Tutor

contradiction may imply that there is a high potential for improvement in
participants’ learning if the ML tutor is continuously researched and improved.
This study could also benefit by including in its teaching materials recent
developments in programming languages. I prepared the workshop contents
mainly from Mitchell’s The Art of Computer Graphics Programming: A
Structured Introduction for Architects and Designers, which was published in the
1970s. The book lacks content in recent programming knowledge, such as object-
oriented programming and visual programming languages. This study may need
to include these recent changes in computer programming technologies to
accurately research the impact of the Synthetic Tutor on learners’ performance.
The high drop rate in conventional online education is a common
challenge, and I observed that both the ML tutor and the non-ML tutor did not
improve that condition in this study. Many participants stopped their learning at
the early stages of the workshop. Providing a graduation certificate or official
record of student participation upon completion of the workshop could address
the early drop-rate problem and improve the tutor’s teaching performance.
Computer vision-based architectural drawing recognition is the starting
point for the computational design process and can be applied to various
educational domains and industries. For example, in music education, novice
musicians could be recorded and given real-time feedback. In athletic training,
novice learners’ body movements could be corrected with instant camera-based
feedback. In medical studies, the CV tutor could be used in screening and
treatment, using a visual inspection of the skin or eyes.
The developed CV tutor shows high precision in analyzing participants’
hand-drawn plans, and this suggests the possibility of using the tutor to evaluate

these drawings and provide relevant project information. If the CV tutor could

118

Chapter 6. Conclusions

read local features in the same way as it reads global features, it could extract
useful information from those features and provide in-depth feedback as closely
as human instructors do. The perception of architectural sketches in various scales
and typologies is a critical capability of human architects. Many professionals can
read various forms from a simple dot on a piece of paper. The single dot could be
a pipe on a roof, a column on a floor, a spherical glass dome on a greenhouse, or a
tubular high-rise building in a city. Human architects’ insight comes from their
ability to learn from drawings and buildings in various scales and contexts.

These multi-scale and multi-contextual readings of drawings and sketches
are crucial to an experienced instructor’s methods in an architectural design studio.
These capabilities may also enable a future CV tutor to evaluate an architectural
design from multiple scales and perspectives and to provide purposeful
recommendations from this multilevel analysis. For example, a future CV tutor
could individually recommend different sets of projects depending on a student
plan’s analyzed design issues (e.g., circulation design, spatial organization, or
structural behavior). However, the computational algorithms developed in this
thesis do not easily implement this spatial insight and are heavily dependent on
direct data comparisons. The development of high-level (trans-scale or trans-
typological) comparison and clustering could improve the current research in

computer vision and introduce an important missing component into the CV tutor.

6.3 Conclusions

Instead of seeing humans and machines in a competitive relationship, this thesis
proposes a novel framework in which humans and machines work together to
solve the complex problems associated with design education. This thesis

specifically explores an application of artificial intelligence (machine learning and

119

Synthetic Tutor

computer vision algorithms) in which both humans and machines mutually
improve their learning experiences and capabilities. Humans can increase a
machine’s performance by providing training-data sets that can be a foundation
for intelligent decision-making. Machines can improve humans’ learning
performance by analyzing their behavioral patterns and providing customized
instructions. This study shows that the Synthetic Tutor can improve current on-
line education systems, and offer an effective alternative to off-line education by
solving inherent problems in human-oriented educational environments.

Design education is a particularly promising area in which both students
and instructors could benefit from this study. There are no clear guides or
pedagogies that could be used to effectively teach students from all various
educational and professional backgrounds, many of whom may need
individualized tutoring. Students’ levels of motivation, study purposes, and
learning styles are all different and are changing in real-time; however, this
human-machine collaboration offers an effective framework for solving these ill-

structured probiems which neither humans nor machines could easily solve alone.

120

List of Figures

LIST OF FIGURES

Figure 1. Machine Learning and Non-Machine Learning Tutorial Interactions. . 18
Figure 2. Example of a student’s daily sketches and unified modeling language

QIAGTAINIS. ...uvvrrieeireeeeritee e et e eetteeetteeaeteeaesaaeeesauseeeeeeassnsaneeessnnneneeaaraeeesssrteneamaeesns 29
Figure 3. An archive of students’ daily coding exercises in the first workshop... 30
Figure 4. Example of students’ daily sketches and diagrams in the first module. 32

Figure 5. Three Students’ Four Projects Developmental Processes.c....... 35
Figure 6. Students’ Project EXamples.cceiveviieiiiiniiiiiieeeceiiieencrieesenieeeseneens 37
Figure 7. A sample final project completed in the second Spring 2012 workshop.
... 38
Figure 8. The project archive of the third workshop in the fall of 2012............... 39
Figure 9. Examples of three students’ projects in the third workshop.................. 40
Figure 10. Examples of three students’ projects in the third workshop............... 41
Figure 11. The initial clustering procedures of k-means algorithm...................... 49
Figure 12. Computing centroids of initially clustered data............ccoceeeviicernnnnne. 49
Figure 13 Repeated procedures to compute updated centroids of k-means
CIUSEETING. .eveeeieieeireee ettt sttt ettt s e e s ebesaneeentesaneeseesane 49
Figure 14. Three shapes as two-dimensional array data types..........ccoeceeeeveeeennenn. 56
Figure 15. The main page of the online workshop, which shows the first 30 units.
... 64
Figure 16. A sample page explaining repetition.c.ceevuvvcrereerieceereesinnnnceenne. 64
Figure 17 A sample problem set given to participants.c.ccoeeereereeceevecenuennen 68
Figure 18 A sample section of workshop modules.ccocceeiiiiiinniiniiininnnenne. 69
Figure 19 A sample code showing a generative approach to the design of a high-
FISE DULIAING. .eviiieiieeieeee ettt sttt 70
Figure 20 Screen-captured images of the non-ML tutor.cccceceevveriiiccinncnne 75
Figure 21 Screen-captured images of the ML tutor (Day 1).......cccecevvevieveencnen. 76
Figure 22 Screen-captured images from the ML tutor (Day 3).ccccceveevveernennne. 77
Figure 23 Screen-captured images from the ML tutor (Day 6).cccccecveverrunee. 78
Figure 24 Screen-captured images of the ML tutor (Day 9).......cccceecvevevenvennnnnee. 79
Figure 25 A sample coding €XEICISE.c.veeuirreeeeiiraieeernieeeteenieesesreeesssesreesseenns 85
Figure 26 A sample exercise to be assigned after the daily session. 85
Figure 27. Boxplots of participants’ daily study time in its original scale (left) and
in its natural logarithm scale (Tight).cccocerevriiininieninenee e 88

121

Synthetic Tutor

Figure 28. The histogram of a participant’s daily study time in its original scale
(left) and in its natural logarithm scale (right).cccooeviviiiiniinin, 89
Figure 29. The normality test plots participants’ daily study time in its original
scale (left) and in its natural logarithm scale (right). As seen on the right Q-Q
(normality test) plot, the normality is improved. The log-transformed sample
points lie closer to the diagonal line than the sample points in their original scale.

... 89
Figure 30. OLS trajectories overlapped in a single plot.ccoceeeeerveeiiccnnencnns 91
Figure 31. Empirical growth plots for six randomly selected participants in the

WOTKSIOP. -ttt sttt ettt et a b s s e as bt s ascenrne s 92

Figure 32. Descriptive statics for daily Study Time (top) and daily Log, Study
Time (bottom) of the ML participants (n = 137) showing boxplots (left),
histograms (middle), and Q-Q (normality test) plots (right).......ccccoevereveieencncenns 94
Figure 33. Descriptive statics for daily Study Time (top) and daily Loge Study
Time (bottom) of the non-ML participants (n = 105) showing boxplots (left),

histograms (middle), and Q-Q (normality test) plots (right)..........cccveeveenveeenncen. 95
Figure 34. Fitted ordinary least squares (OLS) trajectory of ML (left) and non-
ML (right) tutor superimposed on empirical growth plot.......cccccccoeeoiiiiiennnnnnn. 98
Figure 35. Visiting patterns of participants..........cc.cceeeeerieroieeenieiininecieeninnee 100
Figure 36. The distribution of the number of visits by participants of non-ML (left;
n =39) and ML tutors (right; 1 =39). ...ccceoriririiririeeeeeeeccececen 101
Figure 37. An example of two learning patterns.........ccocceeveeeveeervurncieineennncennnen. 102
Figure 38. A participant’s sample COde.ccocevvirriicieeiiniieniinniienieeecieeccnes 103
Figure 39. Computer viSion tUtOT PTOCESS.ccoverrrercereriiiieiiiriniieinee e 105
Figure 40. The hardware and software setting of the developed computer vision
TULOT SY ST 1eiiiiriiiiiiiieeeiee et ite ettt et s e e s sme e e s e ebeeee s s ennneeeesennnnenes 106
Figure 41 The feedback from the computer vision tutor.ccceceeeeeeereerreernecen. 106

Figure 42. A participant’s floor plan and the CV tutor’s suggested floor plan. . 107
Figure 43. A participant’s second attempt and CV tutor’s suggested floor plan.107

Figure 44. Overall satisfaction rate.cccceveveiiiniiinininiiiecciciiiecnee 109
Figure 45. The usefulness of the CV-tutor feedback.coceeceeeinniininiinnniies 110
Figure 46. The relevance between the feedback and participants’ projects. 110
Figure 47. Comparison with human instructors..........ccceccevvveeeriieeeereieeceneeenn. 111

122

Bibliography

BIBLIOGRAPHY

Abbeel, P. (2008). Apprenticeship learning and reinforcement learning with application
to robotic control. Stanford University, Stanford, CA, USA.

Alpaydin, E. (2004). Introduction to Machine Learning. The MIT Press.

Argall, B., Chernova, S., Veloso, M., & Browning, B. (2009). A Survey of Robot
Learning from Demonstration. Robotics and Autonomous Systems, 67, pp. 469-483.

Amiri, F. (2011). Programming as Design: The Role of Programming in Interactive
Media Curriculum in Art and Design. International Journal of Art & Design
Education, 30(2), pp. 200-210.

Bundy, A. (2007). Computational Thinking is Pervasive New Kinds of Question ; New
Kinds of Answer New Hypotheses ; New Theories New Thinking ; New Angles.
Thinking, 1(2), 1-3.

Burry, M., Datta, S. and Anson, S. (2000). Introductory Computer Programming as a
Means for Extending Spatial and Temporal Understanding. in Proceedings of
ACADIA 2000, pp.76-86.

Celani, M. G. C. (2002). Beyond analysis and representation in CAD : a new
computational approach to design education. PhD Thesis. MIT. Cambridge.

Celani, M. G. C. (2008). Teaching CAD Programming to Architecture Students, in
Gestao & Technologia de Projetos, Vol. 3, No 2.

Chernova, S., & Veloso, M. (2008). Teaching collaborative multi-robot tasks through
demonstration. 8th IEEE-RAS International Conference on Humanoid Robots, 2008.
Humanoids, pp. 385-390.

Churchman, C. W. (1967). Guest Editorial: Wicked Problems. Management Science,
14(4), pp. 141-142.

Coates, A., Abbeel, P., & Ng, A. Y. (2009). Apprenticeship learning for helicopter
control. Commun. ACM, 52(7), pp. 97-105.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.).
Hillsdale, NJ: Lawrence Earlbaum Associates.

123

Synthetic Tutor

Corbet, A., Koedinger, K., & Anderson, J. (1997). Intelligent Tutoring Systems.
Handbook of Human-Computer Interaction. (2nd Ed.) Elsevier Science B.V.

Coyne, R., (2005). Wicked problems revisited. Design Studies, 26(1), 5-17.

Denis, G., & Jouvelot, P. (2004). Building the Case for Video Games in Music Education.
In Second International Computer Game and Technology Workshop, pp. 156-161.

Denning, P. J. (2005). Is computer science science? Communications of the ACM, 48(4),
p. 27.

Duarte, J. (2007). Inserting New Technologies in Undergraduate Architectural Curricula:
A Case Study, in 25th eCAADe Conference Proceedings.pp.423-430.

Frazer, J. (1995). An Evolutionary Architecture. Architectural Association Publications.

Harel, 1. (1988). Software design for learning: Children's construction of meaning for
fractions and Logo programming. Unpublished doctoral dissertation, MIT,
Cambridge, MA.

Knight, T. W. (1994). Transformations in Design: A Formal Approach to Stylistic
Change and Innovation in the Visual Arts. Cambridge University Press.

Kolter, J. Z., Abbeel, P., & Ng, A. Y. (2008). Hierarchical Apprenticeship Learning, with
Application to Quadruped Locomotion. Retrieved from
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.110.4186.

Krawczyk, R. 1. (2008). The Codewriting Workbook: Creating Computational
Architecture in AutoLISP (1st ed.). Princeton Architectural Press.

Kuhn, T. S. (1996). The Structure of Scientific Revolutions (3rd ed.). University Of
Chicago Press.

Lackney J. A., (1999). A History of Studio-based Learning Model. Retrieved January 20,
2012, from http://www.edi.msstate.edu/studio.htm.

Leitao, A., Cabccinhas, F. and Martins, S. (2010). Revisiting the Architccture Curriculum:

The programming perspective, in Proceedings of eCAADe 2010, pp.81-88.

McCullough, M., Mitchell, W. J., & Purcell, P. (Eds.). (1990). The Electronic Design
Studio: Architectural Education in the Computer Era (2nd Printing.). The MIT Press.

124

Bibliography

Mills, C., & Dalgarno, B. (2007). A conceptual model for game based intelligent tutoring
systems. Citeseer, pp. 692-702.

Mitchell, W. J. (1975). The theoretical foundation of computer-aided architectural design.
Environment and Planning B: Planning and Design, 2(2), pp. 127-150.

Mitchell, W. J. (1977). Computer-aided architectural design. Petrocelli/Charter.

Mitchell, W. J. (1990). The Logic of Architecture: Design, Computation, and Cognition.
The MIT Press.

Mitchell, W. J., Liggett, R. S., & Kvan, T. (1987). The Art of Computer Graphics
Programming: A Structured Introduction for Architects and Designers. Van
Nostrand Reinhold.

Morris, D., & Fiebrink, R. (2011). Using machine learning to support pedagogy in the
arts. Presented at the CHI 2011 Child-Computer Interaction Workshop at CHI 2011,
Vancouver, May 7, 2011.

Nagakura, T. (1990). Shape Recognition and Transformation: A Script-Based Approach.
Retrieved September 2, 2011, from http://cumincad.scix.net/cgi-
bin/works/Show?_id=e8fe&sort=DEFAULT&search=%2fseries%3a%22CAAD%20
Futures%22&hits=612.

Nagakura, T. (1996). Form-processing: A system for architectural design. Harvard
University, United States. Massachusetts.

National Council of Architectural Registration Board. (2011). ARE 4.0 Study Guide:
Schematic Design. Retrieved Feburary 27, 2012, from
http://www.ncarb.org/Publications/~/media/Files/PDF/Guidelines/ARE_Guidelines.p
df.

Negnevitsky, M. (2004). Artificial Intelligence: A Guide to Intelligent Systems (2nd ed.).
Addison Wesley.

Negroponte, N. (1973). The Architecture Machine: Toward a More Human Environment.
The MIT Press.

Negroponte, N. (1976). Soft Architecture Machines. The MIT Press.

Odaka, T. (2012). First-Time Machine Learning (in Korean). Hanbit Media Inc.

125

Synthetic Tutor

Patel, K. (2010). Lowering the barrier to applying machine learning. Proceedings of the
28th of the international conference extended abstracts on Human factors in
computing systems, CHI EA 10 pp. 2907-2910.

Perkins, D.N., & Grotzer, T.A. (2005). Dimensions of causal understanding: The role of
complex causal models in students' understanding of science. Studies in Science
Education, 41, pp. 117-166.

Raudenbush, S. W., & Bryk, A. S. (2001). Hierarchical Linear Models: Applications and
Data Analysis Methods (2nd ed.). Sage Publications Inc.

Rittel, H. (1972). On the planning crisis : systems analysis of the first and second
generations. Berkeley: Institute of Urban and Regional Development.

Rittel, H. W. J. & Webber, M. M. (1973). Dilemmas in a general theory of planning.
Policy Sciences, 4(2), pp. 155-169.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological Review, 65(6), pp. 386-408.

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. In
Feigenbaum. E.A. & Feldman. J. (Eds), Computers and Thought. New York:
McGraw-Hill. pp. 71-105.

Singer, J. D., & Willett, J. B. (2003). Applied Longitudinal Data Analysis: Modeling
Change and Event Occurrence (1st ed.). Oxford University Press, USA.

Simon, H. A. (1973). The structure of ill-structured problems. Artificial Intelligence, Vol.
4, pp. 181-201.

Simon, H. A. (1995). Problem forming, problem finding, and problem solving in design.
In Collen, A. & Gasparski, W.W. (Eds.), Design and systems: General applications
of methodology Vol. 3, pp. 245-257.

Simon, H. A. (1996). The Sciences of the Artificial (3rd ed.) The MIT Press.

Qesanes f? /1(\0/\\ n: 7 g | PRl of AP B of NPy o I)
».)Llll.)‘ «\170V). 1 l»bl,UI lut arna .l U/II[UL 1‘1;)1}6(4[/] OF id arna oriape rammniars. Un
Computer Generation of Aesthetic Objects (1st ed.). Birkhduser Basel.

Stiny, G. & Gips, J. (1972). Shape Grammars and the Generative Specification of
Painting and Sculpture. Information Processing, pp. 1460-1465.

126

Bibliography

Stiny, G. (1981). A note on the description of designs. Environment and Planning B:
Planning and Design, 8(3), pp. 257-267.

Stiny, G. (1985). Computing with Form and Meaning in Architecture. Journal of
Architectural Education, 39(1), pp. 7-19.

Stiny, G. (1990). What designers do that computers should. The electronic design studio
(pp- 17-30). MIT Press.

Stiny, G. (2006). Shape: Talking about Seeing and Doing. The MIT Press.
Sutherland, I. E. (2003). Sketchpad: A man-machine graphical communication system

(No. UCAM-CL-TR-574). University of Cambridge, Computer Laboratory.
Retrieved from http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-574.pdf

Syed, U., Bowling, M., & Schapire, R. E. (2008). Apprenticeship learning using linear
programming. Proceedings of the 25th International Conference on Machine
Learning, 307, pp1032-1039.

Turing, A. (1936). On Computable Numbers, with an application to the
Entscheidungsproblem. Proceedings of London Math. Soc., 2(42), pp. 230-265.

Turkle, S. & Papert, S. (1992). Epistemological Pluralism and the Revaluation of the
Concrete. Journal of Mathematical Behavior, 11(1), pp. 3-33.

Vlist, B., Westelaken, R., Bartneck, C., Hu, J., Ahn, R., Barakova, E., Delbressine, F., et
al. (2008). Teaching Machine Learning to Design Students. In Z. Pan, X. Zhang, A.
Rhalibi, W. Woo, & Y. Li (Eds.), Technologies for E-Learning and Digital
Entertainment Vol. 5093, pp. 206-217.

Voss, J. & Post, T. (1988). On The Solving of Ill-Structured Problems. The Nature of
Expertise. Lawrence Erlbaum Associates.

Walsh, T. J., Subramanian, K., Littman, M. L., & Diuk, C. (2010). Generalizing
Apprenticeship Learning across Hypothesis Classes. ICML’10, pp. 1119-1126.

Weber, E. P., & Khademian, A. M. (2008). Wicked Problems, Knowledge Challenges,
and Collaborative Capacity Builders in Network Settings. Public Administration
Review, 68(2), 334-349.

Widmer, G. (2005). Studying a creative act with computers: Music performance studies
with automated discovery methods. Musicae Scientiae, 9(1), pp 11 -30.

127

Synthetic Tutor

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), pp. 33-
35.

Wing, J. M. (2008). Five deep questions in computing. Communications of the ACM,
51(1), p.58.

Wurzer, G., Alacam, S. and Loren, W. (2011). How to Teach Architects (Computer)
Programming: A Case Study, in 29th eCAADe Conference Proceedings. pp.51-56.

Yakeley, M. (2000). Digitally mediated design : using computer programming to develop
a personal design process. PhD Thesis. MIT. Cambridge.

128

Appendix A

APPENDIX A.

Workshop Survey Questions.
1. What is your current program?
1. Architecture 2. Interior Design

3. Landscape Architecture 4. Design Studies

2. Are you a graduate or an undergraduate student?
1. Undergraduate student 2. Graduate student

3. What year are you in?

1. 1st Year 2.2nd Year
3.3rd Year 4. 4th Year
5. 5th Year 6. 6th or more Year

4. Do you have any programming experience in: (check all that apply)?
1. Python 2. Visual Basic

3. Grasshopper (Rhino3D) 4, C/C++

5. Java / Processing / Arduino 6. Other

5. Have you taken any college level introductory computer programming course?
1. I took multiple computer programming courses.

2. 1 took one programming course.

3.1 am taking a programming course this semester.

4. No I have not. But I have some programming experience.

5. No. I have not. I don’t have any programming experience.

6. Have you taken any advanced (college or graduate level) mathematics course
before?

1. I took multiple advance mathematics courses.

2. I took one advanced mathematics course.

3. T am taking an advanced mathematics course this semester.

4. No, but I took related course(s).

5. No, I did not take any advanced mathematics courses.

7. What best describes your Rhinoceros 3D experience?
1. No experience.

2. Minimal experience - completed simple 2D drawings.
3. Some experience - made simple 3D models.

129

Synthetic Tutor

4. Substantial experience - made complex 3D models.
5. Extensive experience - made-models and used the tool for fabrication.

8. How long can you study this workshop every day?
1. More than 2 hours

2.1~ 2 hours

3. 30 min. ~ 1 hour

4. less than 30 min.

5. Not sure.

130

Appendix B

APPENDIX B.

This appendix includes the whole set of tutorial modules including the entry and
content page. The original format uses Hyper Text Markup Language (HTML)
and is designed horizontally following a monitor screen’s proportion. The layout
of tutorials is converted into an image file format to be positioned in this thesis.
Accordingly some pages do not fit well and they are rotated to be fit properly.

Entry Page

“Thanks for, the MIT Design

m-um-w- mhmmdmw

It is especially designed for novice programming users. The ttorial contains detailed descriptions and step-by-stcp sample codes.

You may need to work about an hour every day and can complete the workshop within iom
b not

“This tutorial works best with FIREFOX or
If you have any questions, comments, or suggestions, please coniact at juhong@mit odu

Intemnet Explorer).

Please register your E_MAIL and PASSWORD below.
Password: T

I you already registcred, please login below.
Email: i
Password:

e

idagh |

131

(43

DAY L
L Intreduction _w
&3 Duta Types 5.3 Exccumble
DAY 2
5.7 Punctuation 5.8 Comments
63 Ll
DAY 3 i
26 local Var2 12 Tugonomelry
SiPaam2 EdPam3d
DAY 4
2.4 Parameter | 8.4 Parameter 2
4s

His

6.3 GefReal

aeJ sjuayuo)

Jon, o1_yIuis

£el

SR V-
' w \ T

94 Compmition 3 SAlogemeting] G4 locrementingl Y4 lmrementiogd 94 locrementingd 94 Incementingd 24 Incrementing & 95 Math 1 9.5 Mh 2
2.5 Control 1 2.3 Control 2 25 Coatrol 3 2.5 Conprpld 2.6 Looos) 26100032 S Nesied] 7 Nesied2 27 Nested 3 EXERCISE §
DAY 6 * s o

- - - - —
101 Curves 10.2 Function X1 102 Function 22 D2 Function X3 l02FunctionXd l02KunctionXS
.52
104 Circle 105 A 106 Bllipse 107 Summary Ll Conditionals EXERCISE 6
DAY 7
LLLICEse 112 Boolean 113 Boolean 114 Aleroatives Ll4 Panty 114 ¥nding 114 Asbitmary. 114 Selecting LlaifThen]
114{Then2 LL41(Then} 103 Conditional 1L5.Grid AL5 Rhythma | 115 Rhythms 2 106 Onher L8 Qurves L EXERCISG?
DAY S
L6 Curves2 116 Genees 122 Imsrfacs 122 Varighle 12.2 Syniax 12.2 Procedurs
Aﬁ EHEE BEAE
i 53H3 RER
s e
BN EARE RRRE
123 Hicrarchy 1.3 Structure J24 Tmmes 3 123 s 125A EXERCISE 8

g xipuaddy

PEl

DAY S

DAY 10

IomngJ, oroyuis

Appendix B

Module 1: Introduction

INTRODUCTION

w 10 usa this workshop?

Destgn Scripting \Aidu‘vp

S =)

This tutorial consists of ten days sessions. Each daily session contains twenty small modules. Each daily work may
take about one hour.

Click a text or a thumbnail image to enter the module. Any module with a thumbnail image contains a sample
python code that you can run and test. Modules without a thumbnail do not have sample codes.

Each module has four parts: 1. Description, 2. Diagram (figures), 3. Sample Code, and 4. Code Results.
To see the result images of sample codes, you need to use a scroll bar on the bottom to see a result image.
Some modules only have Descriptions and Figures.

135

Synthetic Tutor

[vt mmartas 1 5 0 T e
‘-"n_-'-. e e————— -
1333 KITAHRL MO TLY P ii:-?_ a::‘
ape i pmat e eyl Ry _"""' __
rodig i i
e N] el —-:__?_.—.'3,_
O U i e 1 il e 0 _,_E.__,
o e e s farvns gmannd e Sy =4 L :._.:........,'_-""":
e
Description Figur% Sample Code Result Image

- mmEme

i
i s

.
o B2

Pows vl a3y bop oien, wad omasen tod wand i fa OB bomn,

To go back to the main content page, click Back to Contents button.
You can alternatively use Back button in menu.

You may see a confirmation window. Simply click Leave this Page button.

Thank ¢ for finethang this module. Please rate thes module i
yeou don't.

fre you sure you want 10 leave this page?

E_Bodxbcomnqa:‘:—{-.-.u-}r.-yf.-n-:;:-.:!'ﬂ::-w,:ﬂ.!-‘ Ugeless €1 <52) V4 05 Maghly Usefd

6. 1f you have any problems, or are experiencing any delays, just refresh your page by clicking FS button. You may
need to re-login sometimes.

136

Appendix B

Module 2: Sample Code

EXERCISING SAMPLE CODES

Exercising and running the provided sample codes will significantly improve your learning programming. Here are the
instructions for you to follow to run the provided sample codes.

For MAC users, before trying this module, please install the IronPython.macrhi plug-in. check this link:
iki /

. After installing Rhinoceros 5, open the software.
2. To open a text editor

Type EditPythonScript on the command line.

a
T8t s { stion emaining)

an ano Rmﬂt.vemmtw 319'5 2012 lo 19 |3
‘Command: EdifPythonScript

“Swndard CPianes | SetView | Disglay

v A¥EAE ARAR

3. You will see the Python Script Editor below.

137

Synthetic Tutor

¢ Rhino Python Editor - {untitied}*

Fe ER Deby Toos Hep

D -J0d 2- &
45 <python> (urctled)”

4. You can drag and copy (use ctrl + ¢) sample codes from this tutorial (use the sample code on the right side)

CODE

Sopy

Select Al

Search Yuhoo for "Svansble defi..”
Vigw Stlection Source

Inspect Elemnent ()
Zatero L]

5. Then, paste codes into the Rhino Python Editor (use ctrl +v).

¢ Rhino Python Editor - {untitled}*

6. To run the sample code,
a. HitF5.

b. Or, click the green triangle to start debugging.

138

Appendix B

Rhino Python Editor

{untitled}*

Fle Ed Debwy Tods feb

Des-EE 2
I T

.

3

SR

A throtciptiyntas

import rhinoscriptayntax as rs
4 pt = [0,0,0)

cs.AddPaint (pt)

7.
mouse).

You can see the generated shapes. If you cannot see anything, just zoom out your screen (use a scroll wheel on your

139

Synthetic Tutor

Module 3: Interface

INTERFACE

140

The purpose of this workshop tutorial is measuring the effectiveness of teaching materials for novice programmers in
the context of architectural design. Please evaluate each contents. Your evaluations are invaluable information that
identify the learning performace of this tutorial.

This workshop tutorial contains many modular teaching contents. If you click a title or an image, you can access the
corresponding content.

[Important] Please use [Goto Index | button to go back to the index page. It is important because the button
makes this tutorial remember the contents you visited. Please do not use the [Back] button of your browser.

Whenever you finish your learning, please logout from the tutorial.

This workshop will finish at May 31, 2013, The upgraded version will be published in this Fall.

Module 4: Rendering

HOW TO MAKE A RENDERED IMAGE OF YOUR SHAPES:

(You may need to render your work to submit a JPG file for daily exercises and the final test project)

1. After generating a form, click Render > Render Properties to change your rendering settings.

e T3t Vew Cuve Sufoce Sl Mesh Omenson Diwiom Tech Andhas |Render Penek Heb
i»»> (Debugging=On) Debugyng=08 Shade
Debugging=0m b

wort Layot + Visilay - Tr

By PALEPEAP BE ammnd

8. * Tresputne oo eh M o
 End [Moy 7 Pont 7 M [Cen [et [Pew ™ Yan 17 Guad I Kot 7 Vistex _JProeet _| Dinable
e SR s i 2 ;

2. To change resolution, click the Resolution box in the Resolution and antialiasing section.

We recommend a maximum resolution of 1024 x 768.

plocks - Solet Todka Mesh Tooks Render T

o WG W

(XL
SYRe
Zu

Tage
X1
Pive

kit

Appendix B

141

Synthetic Tutor

3. Set the value of DPI as 72 and Antialiasing as High(10x)

T e e e 2

D011 Tutonal_ PyhomiC

1]
Command _Documentt |
Page 1o Griplay «Render

Commart.
g
AL

=N

SHOROVEF T 5
ReQ9) 000

o b

T 8 fer e 10
D011 Tutonal_PyenoniC

SLPHOROVEZ 7 &
s RRA®S JOBN,

1
g

g

5. Select White color.

Appendix B

e £8 vew G f

|1 Tutonial_PymoniC
)
:agem @ssplay <Render 7 h Linelypes Gnc
Command: z

Sundod CPlanes ' 5 | g Gy : - . hYesis. Render T
O +PLL] = et ’ ; pEE-
B e i or
A o
(G it via
:\q b2 e
7 | Py
x9, [

1%

g.d', by
9@, f2u
b i
*é ‘[X1
a = fivr,
7 £t [Now P ot

; : :

(D011 Tutonal_PYoniC [Document Prepesiies
}
c Do - :;am
Page 1 drsplay *Render by
Coerumand: Noter
e i ® Unti
¢ 2 9 & ‘Wb Browa
o -
Ahyims
,\‘:1 * Appmuace
& Contert Merus
O " fo
-
Q" Kegbowd
o9 ravesd
o % Modelng Axh
gdod Mowse
a2, e
Q&!{. Fotwno Rerder Dptions
& b Seow
Sedochon Mers
a = % Toobsrt
Persptctive Usdates and Starhcs
FEnd [New B Pon | & Vom
CPane | x T T

7. Then, select OK and finish settings.

143

Synthetic Tutor

8. Finally, to render your image, click Render > Render menu.

D011 Tulonal_PymoniCade_Cleane@iah 14024 py h :

Command. _DocumentPropersesPage
-rmmm-mm(mwmnmwmmnm Dimensions Defaull Hakn Linelypes Gaic

Commandt |
A +PASPEAD NI

koo

N

o i

-1,3.

e‘) 'ﬂxu

&2, 2

@iy i

of, b x.
- B %] : ; ot < A

Con it [Pop ™ Ton [~ Qunt I Kot ™ Vesex _{Prect _{ Dt

9. You will see the rendered image in the Rhino Render window.

144

P T S P A I P S T IR O e S i

& 3 P EE——

(m ;' n.llll a]u[4

£ B - e 1=t

& = P F Sovinpeiy ded

B £rd ™ Mow PG T WET TonT T Fop T TanT Taad T W T Vs TP IDiass e

CPuane 4403 | yEGS1 | 20000 | Mmmeters [Oefaut | GreSnap Ontho Flana Osnap Smartlcack Oumbad

10. To save your rendered image, click File > Save As... menu.

T T R T S Y O S e S T e B e R S

D

rADOROVET T By
QRO IO ot

& - WP e
4 okted, ondarg e 000N T e K0 g1z R® 7
ﬂmrmmﬁrﬁ‘fﬁm_)

CPlane | x4403 | y4951 | 20000 | Mameters [Defsut | GridBnsp | Oho Planas | Osnap Smartleack | Gumbal

11. Save your file as JPG type under a folder where you can easily remember.

Appendix B

145

Synthetic Tutor

T T o s e Ve

Ve v

-
-

[omcenn =] s
Seanitpe [FEC P ConpiniTon pos 0ol 3] O

rRAHO2JOOH

2 B0 &0

146

Appendix B

Module S: Programming

5.
THE PYTHON
PROGRAMMING LANGUAGE

5.1 WHAT IS A COMPUTER PROGRAM?

We have introduced computer programs as sequences of instructions that computers follow in order to produce
useful results - much as a cook might follow a recipe, a musician a score, or a cab driver a sequence of directions.
The remainder of this book will focus on how to write programs that, when executed by a computer, generate
pictures on some kind of display or plotter. But before going into the details, we will describe more precisely what a
computer program really is.

5.2 THE LANGUAGE

Any computer program is written in some particular language. The language (unlike a natural language such as
English) has a precisely specified vocabulary and syntax that must be followed rigorously. The semantic properties
are also well defined; any syntactically correct statement causes the computer to perform some specific action. Thus
a programming language provides a very precise means of communication and requires you to express yourself
exactly; there is no latitude for the vagueness, incompleteness, ambiguities, and errors that we tolerate in everyday
speech.

Hundreds of computer languages have been developed for different types of applications, different styles of

expression, and different types of computers. Ideas about computing have progressed over the years, so modern
programming languages are often more sophisticated than older ones.

147

Synthetic Tutor

Module 6: Language

5.
THE PYTHON
PROGRAMMING LANGUAGE

5.2.1 NOTATION AND VOCABULARY

Python, like any computer language, has a vocabulary of symbols and reserved words that are used to form
meaningful statements. The symbols used in Python are shown in figure 5-1.

They consist of operators and delimiters. The operators +, -, *, and / (add, subtract, multiply, and divide,
respectively) are familiar to everybody who has worked with four-function hand calculators. Notice that the asterisk
is used instead of a multiplication sign to denote multiplication; this avoids confusion with the letter x and is
standard in programming languages. We will explain the other operators later in this chapter, as the need arises. The
delimiters function much like punctuation marks in English sentences, or parentheses in mathematical expressions.
The reserved words used in Python are listed in figure 5-2. We will explain each of these as we proceed.

Python statements may contain not only symbols and reserved words, but also identifiers. These are names chosen
by the programmer for programs, variables, and other entities to which a user must refer. For example, a program
that draws a square might be called. Square, and a variable might be called x. Think of memory as an array of
pigeonholes containing entities that you will want to manipulate and identifiers as labels placed on the pigeonholes
so that you can refer to them by name (fig 5-4).

Under the conventions of Python, an identifier must begin with a letter, which may be followed by a string, of any
length and in any sequence, of letters and digits. Since use of longer identifiers often improves the readability of a
program, we will use identifiers of up to sixteen characters in this book. Sometimes it is typographically convenient
to insert a break in an identifier. Blank spaces are not allowed, however, so you must use an underscore thus:
Villa_Malcontenta. The following are examples of acceptable identifiers:

X

y

root2

h20

tom_kvan

triangle
very_very_very_long

The following are examples of unacceptable identifiers:
2nd (begins with a numeral)

Robin liggett (contains a blank space)
Sheet.3 (contains a symbol)

148

HIEE
5-2. The keyboard of a four-function hand cal-
culator, showing the four operator keys.

5-4. Identifiers are labels used to refer to entities stoved in memory.

Appendix B

149

Synthetic Tutor

Module 7: Notation

5.
THE PYTHON
PROGRAMMING LANGUAGE

5.2.1 NOTATION AND VOCABULARY continued.

Python also has some standard identifiers, which refer to entities predefined in Python. The list and form of standard
identifiers may vary a little among programming languages. In this book, we will use those shown; you should
check them against the list for the language that you will be using. We shall return, later, to the uses of these
standard identifiers.

and del from not while
as elif global or with
assert else if pass yield
break except import print

class exec in raise

continue finally is return

def for lambda try

Standard identifiers List

Python statements may also contain numbers. We shall be concerned here with two types of numbers-integers
written in the standard way, for example,

1

23
992
1024
-10

and real numbers written in decimal notation thus:

0.0
3.14159
1000.001
-10.0

At least one digit must precede the decimal point, where it is used, and one must follow it, but whole numbers may
be written without the decimal point. Do not include commas when writing numbers.

Blanks and line breaks are used in Python as separators. At least one separator must be inserted between any pair of
consecutive words or numbers, in order to avoid ambiguity. But separators cannot be inserted within words or
numbers. Aside from these necessary restrictions, separators should be used freely to achieve typographic clarity in
programs.

Standard Python allows the free use of both uppercase and lowercase characters for iegibility and to accommodate
stylistic preferences. Some Python programmers confine themselves to lowercase, others to uppercase, and some
like to capitalize according to their own rules of typographic style.

We shall also find it convenient to use boldface and italic as well as standard characters. In particular, Python
reserved words and standard identifiers will be printed in boldface. Special text editors used for Python
programming often do this automatically, which improves the legibility of a program. Interpreters and compilers
ignore the distinction when processing Python code.

150

Appendix B

The following is an example of a simple Python statement that illustrates the conventions of notation and vocabulary
that have now been introduced:)

Sum=2+3

This means that the variable Sum is given the value of the result of adding the integers 2 and 3. The components of
the expression are:

Sum (name of a variable)
= (the assignment operator)
2 (integer number)

+ (the addition operator)

3 (intcger number)

Figure 5-6 illustrates the memory location denoted by SUM before and after execution of this statement. Here is
another example:

Circumference = Diameter * 3.1417
In this case, the components are:

Circumference (name of a variable)

= (the assignment operator)

Diameter (name of a variable)

* (the addition operator)

3.1417 (real number)

Notice (fig. 5-7) that the value of the variable Circumference after execution of this statement will depend on the
value of the variable Diameter before execution.

151

Synthetic Tutor

SUM

b. After execution.

5-6. Value stored in the memory location
denoted by Sum.

CIRCUMFERENCE CIRCUMFERENCE

a. Belore execution b. After execution.

5-7. The result of execution of a statement.

152

Appendix B

Module 8: Syntax

5.
THE PYTHON:-
PROGRAMMING LANGUAGE

5.2 THE LANGUAGE
522 SYNTAX

The symbols, reserved words, identifiers, and numbers that constitute Python statements are put together according

to certain rules of syntax. Rules of syntax also govern the ways in which statements themselves may be put together
to form larger units of Python code. In other words, Python is a language, like English or French, with its own rules
of grammar.

All of our examples will be programs and parts of programs that generate drawings on display devices, and we will
approach programming from the viewpoint of the designer or graphic artist. That is, we shall analyze the logic of
pictorial composition, then show how graphic compositional rules and principles correspond to constructs available
in Python. You will learn to think about drawings in terms of these programming constructs - not only a useful
technical skill, but profoundly illuminating in itself.

153

Synthetic Tutor

Module 9: Organization

5.
THE PYTHON
PROGRAMMING LANGUAGE

5.3. THE GENERAL ORGANIZATION OF A PYTHON PROGRAM

Any Python program has two essential parts: a description of the data to be operated upon, and a specification of the
actions to be performed upon the data to achieve the desired result. Data are described by statements called
declarations and definitions, whereas actions are specified by statements called executable statements or commands.
In other words, declarations and definitions, like declarative English sentences, describe how something is. But
executable statements, like imperative English sentences, specify something to be done. Both declarations and
executable statements may be referred to, more generally,

as statements.

A Python program is sometimes divided into a heading and a body. The heading includes information about the
program and external libraries such as rhinoscriptsyntax and math. The body, in turn, consists of a declaration and
definition part followed by an executable statement part. Declarations and definitions are thus clearly segregated
from executable statements. Figure 5-8 illustrates this organization.

154

Import exteraal
libraries aad
e brief overview

Body

:
Y

ALY,

5-8. APython program comprises a heading
and a body. The body consists of the decla-
ration and definition parts, followed by an

executable statement part.

oun : N\\\QL_——-;Q Rt
iz

Appendix B

a. A program with inpit and oulpal.

5-9. Programs and duta.

,\s_\

7‘:._"_‘> Result

b A program with oulput only.

155

Synthetic Tutor

Module 10: Heading

5.
THE PYTHON
PROGRAMMING LANGUAGE

5.3. THE GENERAL ORGANIZATION OF A PYTHON PROGRAM

5.3.1 THE HEADING
Here is an example of a heading:

import rhinoscriptsyntax as rs
import math

The purpose of this program is to draw a window.
Date: May 20, 2013
Author: James Kee

Headings normally has two information: 1. external libraries and 2. an overview of the program. External libraries
start with a reserved word - import - comes first followed by chosen library names (in this case rhinoscriptsyntax
and math). A brief overview uses comments that describe basic information about the program such as purpose,
date, author, and any information that you may want to remember. # is used to denote that the sentence is a
comment. Comment is for human understanding. It will be ignored while other codes are being executed.

156

Appendix B

Module 11: Data Types

5.
THE PYTHON
PROGRAMMING LANGUAGE

5.3. THE GENERAL ORGANIZATION OF A PYTHON PROGRAM

5.3.3 PYTHON DATA TYPES

Python recognizes certain very specific types of data that may be stored in memory and operated upon by a program.
We have already encountered the type's integer and real. Let us now consider these in more detail. The arithmetic of
integers has certain rules, and these are reflected in the definitions of Python operators that can apply to integers .For
example, the operators

* multiply
+ add
- subtract

always yield integers when applied to integers, but the operator

/ divide
will yield a real number.
When at least one of the operands (numbers operated upon) of the multiply, add, or subtract operators is of type real,
the result is always a real number. With the divide operator, the result is real even if both operands are integers, and
the result turns out to be a whole number. Logical inconsistencies and errors follow if such rules (and there are many

more of them, as we shall later see) are not rigorously followed. You will generate an error message if you attempt
to inappropriately apply an operator.

Real numbers can have an indefinitely long decimal part, but can be represented only to a finite number of decimal
places (that is, to finite precision) in a computer. Thus the value of

1.0 /3.0
in Python is not the infinite sequence

0.333..
but a finite sequence, the length of which may vary from computer to computer.
A third data type in Python is called Boolean. A variable of this type stores the logical values false and true. You
cannot apply arithmetic operators, such as * and + to a Boolean variable, and of course you cannot give an integer or
real value to a Boolean variable. But you can, for example, form expressions out of Boolean variables and logical
operators such as:

and - logical conjunction

or - logical disjunction

not - logical negation
In other words, you can do Boolean logic in Python programs with Boolean variables - just as you can do integer

arithmetic with integer variables and real arithmetic with real variables. We shall consider some interesting
applications of Boolean variables and logical operators in chapter 11.

157

Synthetic Tutor

A fourth Python data type is char (character). A variable of this type stores a single text character. Char variables are
used in programs that manipulate text. Since this book is mostly concerned with graphics, we will rarely use char
variables.

There is much more to be said about Python data types, but this will suffice to introduce them. We will take up the
topic again in chapter 13 when we consider the storage of drawings in data structures.

158

Appendix B

Module 12: Executable

5.
THE PYTHON
PROGRAMMING LANGUAGE

5.3. THE GENERAL ORGANIZATION OF A PYTHON PROGRAM
5.3.4 THE EXECUTABLE STATEMENT PART

The executable statement parts of a Python program are sentences that Python executes line by line. In our example,
the first two executable statements give values to the variable's Length and Width, respectively. The computer is
then instructed to calculate the Area of the rectangle and print the results.

Length =20
Width =20
Area = Length * Width

Note the way that the variables are handled. First they are named in the declaration and definition part. This sets
aside space in memory for storing values. Within the executable statement part of a program, variables should be
given values. When a variable is given a value, an integer, a real number, a Boolean value, or a char value
(depending on the type of variable) is stored in the corresponding location. Once a variable has been given a value,
this value may be used in executable statements. When a variable's value is used, the computer looks in the memory
location identified by the variable name and retrieves the value stored at that location. Finally, in this example, the
statement written (Area) causes the computer to look in the memory location labeled Area and print out what it finds
there.

To understand our example program in these terms, imagine three empty memory locations:

The variable definition part of our program labels each one and specifies the type of data that can be stored there:
(Python takes care of this type handling operation internally)

Length (integer)
Width (integer)
Area (integer)

Execution of the statement Length = 50 generates the following result:

50 | Length (integer)
Width (integer)
Area (integer)

Then execution of Width = 20; gives the result:

50| Length (integer)
20 | Width (integer)
Area (integer)

Next, execution of Area = Length * Width; gives the result:
1

159

Synthetic Tutor

50 | Length (integer)
20 | Width (integer)

1000 | Area (integer)

Some basic rules of program organization and use of variables have now been illustrated. They may be summarized
as follows:

160

A variable cannot be given a value or otherwise used in an executable statement until it has been named and
typed in the declaration and definition part. If an attempt were made to use a value of a variable that had not
yet been declared, the computer would not know where in memory to look for it. If an attempt were made to
store a value of a variable that had not yet been declared, the computer would not know where to put it.

The type of a variable in Python actually is flexible and can be changed. A value of one type may be given to
a variable of another.

A variable may not be used in an executable statement unless the execution of the statement gives it a value,
or unless it has already been given a value by the execution of a previous statement. If it were used without
having been given a value, the computer would look in the memory location identified by the variable name
and find nothing there.

Certain rules, following from the logical properties of various types of data, must be followed in expressions
that manipulate the values of variables.

Appendix B

Module 13: Assignment

S.
THE PYTHON
PROGRAMMING LANGUAGE
5.4. ASSIGNMENT
Against this background, let us now look more carefully at the sorts of executable statements that appear in our
example program. The most fundamental of all executable statements is the assignment statement, which assigns a
value defined on the right side of the statement to the variable named on the left side. Here is an example:
Length = 50
We have, first, the name of a variable, followed by the assignment operator =, then a number. The assignment
operator = should not be confused with the equality operator =, which as we shall see later, has its uses in logical
expressions. The assighment operator is pronounced gets, while the equality operator is pronounced equals. In this
example, an integer value is assigned to an integer variable. Similarly, a real value can be assigned to a real variable,
A_Real =3.14159

a Boolean value can be assigned to a Boolean variable,

Beautiful = True
Maybe = False

and a character can be assigned to a char variable,
Answer =y’
Notice that the character must be delimited by single or double quotes, as shown.

Whereas declaration of a variable is like creating and labeling an empty pigeonhole, assignment is the operation of
putting something in that pigeonhole.

161

Synthetic Tutor

Module 14: Arithmetic 1

S.
THE PYTHON
PROGRAMMING LANGUAGE

5.5. ARITHMETIC

Instead of a single number on the right side of an assignment statement, as in the examples above, there may be an
arithmetic expression constructed using the arithmetic operators available in Python:

Length=3+4-5

In this case, the expression is first evaluated by the computer, then the result is assigned to the variable. So this
statement is equivalent to:

Length =2

In general, an arithmetic expression is a rule for calculating a value by applying arithmetic operators according to
the standard conventions of algebra. The most fundamental arithmetic operators in Python are those of a four
function calculator:

* multiply
/ divide
+add

- subtract

Expression
2+3*4
3.785/9.001
2*3-4*5
17/3%3
1/2

Another operator provided by Python, which we sometimes need in integer arithmetic, is % (mod). This function
yields the integer division remainder, for example:

Expression
33%4
22% 10
10% 11

Mixed node arithmetic, in which some operands in an arithmetic expression are integer and some are real, is allowed
in Python and is sometimes convenient. Here are the rules that govern:

These rules may seem arbitrary at first, but they follow directly from sound mathematical thinking. The integers
forin a proper subset of ihe real numbers, s0 we can always use an inieger as an operand. But you can oniy be sure
of an integer result under certain circumstances. If it is not certain that a result will be an integer, then Python takes
the safe position and presumes that the result is real.

Parentheses may be used, in the usual way, to group sub expressions- either where this is necessary to define how

the expression is to be evaluated, or where it is not strictly necessary, but makes the expression easier to understand.
Here are some examples:

162

Expression
2+(3*4)
2+3)*4
2+3)-(4*%5)
2*¥(3-4)*5

2%((3 -4) +(5%6)) -7

B Duns Pyon Lanw - €Lt puong O g D1 Artherat 3.9y
Fie Lda Dubug Tooch belp

Ns-d@E £ p-@m-200a

'-‘
-
o
Iy
ey
¥
s
5,

SeRDAENI PN

® Mafirng

=1 ORI e gy 3]

» arithmat
$ oo %N

result = 2 @+ (3 * &)
print result

Appendix B

Synthetic Tutor

Module 15: Arithmetic 2

5

THE PYTHON
PROGRAMMING LANGUAGE

5.5. ARITHMETIC (continued)

Certain conventions of operator precedence are followed in the evaluation of expressions. These may be
summarized as follows:

The computer scans the expression from right to left.

Whenever an operand has an operator on both sides, for example, the number 2 in the expression 1 +2 * 3, a
priority scheme is applied. The multiplying operators *, I, and, div all have the same, highest priority. The
adding operators + and - both have the same lower priority. Thus, the expression 1 +2 * 3 is equivalent to 1
+(@2*3).

Parentheses may be used to remove ambiguity, or to change the priority that would result from the
conventions of lefi-to-right evaluation and the priority scheme. For example, use of parentheses in the
expression 1 + (2 * 3) merely removes ambiguity, whereas the use of parentheses in the expression (1 + 2) *
3 changes the priority.

An expression enclosed within parentheses is evaluated independently of succeeding or preceding operators.
Expressions with nested parentheses are evaluated from the inside out. Thus the expression:

2*((3-4)+(5%6))-7
Is first reduced to:
2%(-1+30)-7
Then, by left-to-right scanning and operator priority, we get:
58-7
Finally, subtraction yields the result:
51
This is illustrated by the tree diagram in figure 5-11.
Consecutive multiplication and/or division operations are performed
from left to right.

Consecutive addition and/or subtraction operations are performed
from left to right.

Novice programmers often contuse these rules. When in doubt, use parentheses for ciarification. Never write an
expression that leaves you unsure about how it will be evaluated. And never make the reader of a program puzzle
about what an expression means.

Provided that values have been assigned to them, variables may be used in arithmetic expressions, for example:

164

Length * Width
X+Y)*5

Appendix B

2 * P1 * Radius
A name appearing in an expression may also be a constant that has previously been defined.
It is often clearer (and therefore better) to write a sequence of assignment statements with simple arithmetic

expressions on the right-hand sides, rather than a single assignment statement with a complicated expression on the
right hand side. For example, we might write:

X=A+B-C
Y=D*(E-F)
Z=(X+Y)*5

in place of the equivalent:
Z=((A+B-C)+(D*(E-F)))*5

Where there are many parentheses, as in this last example, you have to make sure that they balance. Each left
parenthesis must have a corresponding right parenthesis. An expression like the following, with unbalanced
parentheses, infringes on the rules of Python syntax, has no clear meaning, cannot be evaluated, and generates an
erTor message:

Z=((A+B-C)+(D*E-F)))*5
In general, as a matter of good programming style, code describing arithmetic calculations should read easily and

naturally and should explain itself to the reader. You should express well-known formulas in familiar ways, use
parentheses judiciously, and break up complicated expressions.

1

-1 30
A A
2 % {3 -4) + (6x8) ~ 7

§-11. Evaluating an arithmetic expres-
sion according to the rules of operator
precedence.

165

Synthetic Tutor

CODE RESULT

3

a 307.692307892
= 355.789230769
-8

-1

= {{a+b-¢c)+(d*{e-£)))*5

print z

(I]

LN

x=a+b-c¢c
y=d* (e - £)
T = (x+ty)*S5s
print z

B trens Bymon Laar - (O srspuhong Dediop O] Adthrass 15y
Fis Gde Dwdg Tooh Helg

..
o
Wb

L |
L)
9.9
=S,
DL
o, &
a8 5%
o
T
-
@,
i
#v

.

&
)

166

Appendix B

Module 16: Arithmetic 3

5.
THE PYTHON
PROGRAMMING LANGUAGE

5.5. ARITHMETIC (continued)

So far we have, for clarity, used simple examples to illustrate the use of arithmetic expressions in Python. You do
not need a computer to evaluate them. But the point, of course, is that a computer can evaluate even a very complex
arithmetic expression extremely rapidly, and that it can repeatedly evaluate an expression for different values of the
variables. Here, for example, is a program that does some fairly complicated arithmetic (fig. 5-12);

[sample code on the right side]

To get a feel for the amount of work that the computer must do to execute this program, you should work through
the code line by line using a hand calculator. Now imagine executing it thousands of times for different pairs of lines
(that is, different initial values for the variables X|, Y1, X2, Y2, X3, Y3, X4, Y4).

It was a desire to eliminate the drudgery of routine, repetitive arithmetic calculations that motivated the nineteenth-
century mathematician Charles Babbage to attempt to construct the first working computer. Draftsmen frequently
have to perform routine arithmetic to find the correct coordinates for points and lines in drawings. In the past they
used slide rules, now they mostly use pocket calculators. We shall see here how the powerful arithmetic capabilities
of Python enable us to automate the draftsman's calculations needed to produce drawings.

X4.Y4

5-12. The intersection of two lines.

167

Synthetic Tutor

:

=1
vl
x2
2
x3
3
x4
ré

bl
b2

al
«2

BB B E B YL Y

£

*

-

100
200
500
500
200
450
600
100

(y2 - yl) 7 {x2 - x1)
(yéd -~ y3) /7 (x4 - x3)

¥yl - bl * x1
y3 - b2 * x3

x » {al -~ &2} / (b2 - bl)
y =~ al + bl * x

print x
print y

168

RESULY

307.692307832
3567892307892

Appendix B

Module 17: Input 1

5.

THE PYTHON
PROGRAMMING LANGUAGE
5.6. INPUT

All of the programs that we have considered so far have output but no input. Programs may also be written to
process data; these take data as input and operate on it to produce output (fig. 5-13).

A Python input statement to get a value from a user in its simplest form looks like this:
import rhinoscriptsyntax as s
rs.GetInteger()
rs.GetReal()

Here is an example of a program that reads in three integers, adds them, and outputs the result:

[Sample codes on the right side]

SR AN
r g
LAY G- |

5-13. A program that processes data—a sequence of numbers is the input, and their sum is
the output.

169

Synthetic Tutor

CODE RESULT
import rhinosecriptsyntax as rs

priat ‘Type in three integers’

a = rs.Cetlnteger('T n the first integer')
b = rs.Cetlnteger('Ty t integer')
¢ = ra.CetInteger{'Type in the integer')
Type in three integers
L Type in the first intnger: $
Type in the second infeger: 3
print 'The sum is', d Type in the third integer: |

The sum is 9

Type @ Too Pard wileper 3
The byeis &
«

Sarcwd CFaman StViee Dingley Seivet Manh Touks Merdr Tac Oroling M=

DSl Xxb0~t+2L0RT 9.9 "9,

[fan Gdn ey

| [o 2
De-dd £- p-w- 505 @
5 & poe 0 et by
- B rrscnnm

» @ sovicoted import rhinoscriptsyntax a&s Is

& -3 Wwe

= rs.GetInteger(’ 7] 1 £F
= rs.GetInteger (" Type in Tl
= rs.Getinteger(’ly;

d=a+*pbecg

print 'the sum iz ' d

SERIAN
Sk §5

170

Appendix B

Module 18: Input 2

S.
THE PYTHON
PROGRAMMING LANGUAGE

5.6. INPUT (continued)
The GetReal statement may be used for inpul of real numbers. So we might rewrite our example program as follows:

[sample code on the right side]

171

Synthetic Tutor

CODE RESULT

import rhinoscriptsyntax as rs
Typa in hee real numbers

Type in the first real: 10

print 'Type in three real numbers

a = rg.CetReal{ ' Type in the first real’) T)‘DE in e first realk 20
b = re.CetReal{ 'Type in the fi al') _
¢ =~ rp.CetReal{ Type in the fir al') Type in the fiest real: 30

dendlsu The sumis 80.0

print 'The sum is', d

e e Aol S 008 T evgr Tomp SOt e

Claren SniView Cagiey * Select Viewpen Lapout Vsl Tranwiom | Corvs Tocln

B X DO~ B 3 200 DO e g o

sbscC

p se functios Seibesl be suduls Thimssesipt sesinterfese

Setlasl messipes Meles ', Seateielune, imadions heslsaelee Pacbas Bid wbsd Sigek - §|
Frrasetecs
mmstage Logiasnsil = & premps n Sesespe
wasbar |SpiLEES A defaals nembes valus

172

Appendix B

Module 19: input 3

5.
THE PYTHON
PROGRAMMING LANGUAGE

5.6. INPUT (continued)

You can see from these examples how a computer might save a draftsman a great deal of work. Imagine, for
instance, that an architectural draftsman is designing a series of elliptical rooms and must know the floor area and
perimeter of each. The following program takes as input the lengths of the minor and major axes and prints out the
area and perimeter:

[sample code on the right side]

The draftsman can use this program, whenever needed, to perform the tedious, time-consuming, and error-prone
process of evaluating the complex formula for each new set of input values.

173

Synthetic Tutor

CODE

import rhincscriptsystax as rs
import math

pi = 3.1415

maj ~ re.CotReal{'Type in the length of the major axin')
min = ro.CetReal{'Type in the length of the minor axis')
area = pi * min * maj

perimeter = 2 + pl * math.sqrt((min*min + maj*maj) / 2)

print 'The area is ', area
print ‘'The perimeter is', perimeter

174

RESULT

Type in the length of the mejor axis of the ellipse: 50
Type in tha length of the minor axis of the ellipse: 20
The areais 31415

The penmeteris 239249512121

Appendix B

Module 20: Exercise 1

5.

THE PYTHON

PROGRAMMING LANGUAGE

14. EXERCISES

1. Write a program that, when executed, displays your name on the screen.

Please upload your python file: | Chaose File | No file chosen | Submit |

2. Write a program that assigns integer values to the Length, Width, and Height of a rectangular box, calculates
Volume and Surface_area, and writes out the values of all five variables.

Please upload your python file: |_Choose File | No file chosen |_Submit |

3. Modify this program (No.2) to read in the values for Length, Width, and Height.

Please upload your python file: | Choase File) No file chosen l Submit f

4. The area of a triangle is half its base multiplied by its height. Write a program that reads in integer values for
these dimensions.

Please upload your python file: { Choose File | No file chosen [m&? }

5. The formula for the volume of a sphere is 4/3 * pi * R3, where R is the radius, and pi is 3. 1415.

The formula for surface area is 4 * pi * R,

Write a program that reads in a real number value for the radius and writes out values for volume and surface area.
N

Please upload your python file: | Choose File | No file chosen | _submit |

6. Figure 5-14 shows the plan and two elevations of a hip roof, with associated design variables.
Take the cost per square foot of roofing material as an additional variable.
Write a program that reads in values for the variables and calculates the cost of a roof.

175

Synthetic Tutor

;1,

L -4 1w
+
< 3 N
S-14. A hip roof.
Please upload your python file: | Choose File | No file chosen { Submit |

176

Module 21: 5.7 Punctuation

5.
THE PYTHON
PROGRAMMING LANGUAGE

5.7. PROPER PUNCTUATION

Appendix B

We have now introduced enough of the basic features of Python to enable you to write simple programs. You should
try a few to get the feel of programming; the exercises at the end of this chapter offer some suggestions. You must,
however, make correct use of the symbols and words that function as delimiters in Python, or errors will result.

€ Uy GOS0 0) FOpsties ty

P P S — e T)":"

e ik Oebug lTook Hep

D@-dod P p-o- -

P @ oo (0} momtahor 2y
+ B sveacrinrim

¥ 3 Rva

A ot - def afunction():

p =

tmed s Julany, Susitey’ P43 badeen

shion py®. Liee 8

| Speneaterss emisdemt doer bat watoh eny cnter sndesterion level

177

Synthetic Tutor

Module 22: 5.8 Comments

5.

THE PYTHON

PROGRAMMING LANGUAGE

5.8. EXPLAINING A PROGRAM WITH COMMENTS

You will have noticed in our example programs text after # , like this:

This is a comment

Such text is known as a comment. The interpreter or compiler simply ignores everything after # when executing a
program. This provides a way to insert explanatory English text into Python code.

Since comments are in English, not in Python, we shall follow the convention of using characters with normal
English capitalization and printing them in italics to clearly distinguish them from Python code.

A program should include enough comments to make it self-documenting. In other words, it should be possible to
read a program and see immediately what it does and how.

178

Appendix B

Module 23: 5.9 Styles

5.
THE PYTHON
PROGRAMMING LANGUAGE

5.9. TYPOGRAPHIC STYLE

Python allows a great deal of freedom in the layout of a program on the page. You should take advantage of this to
achieve maximum readability and typographic attractiveness. In particular, make use of blank lines and indentation
to clarify the organization of your programs. A standard convention, which we have followed in our examples so far,
is to indent, inside a function. As we introduce additional programming constructs, we shall illustrate the associated
indentation conventions.

If you work with a general purpose text editor, you must know the indentation conventions and take care to follow
them. Some special editors for Python remove this burden by automatically indenting lines.

179

Synthetic Tutor

Module 24: 5.10 Clarity

5.
THE PYTHON
PROGRAMMING LANGUAGE

5.10. CLARITY AND VERIFIABILITY

Just as there are usually many ways to express the same thought in English, there are usually different but logically
equivalent ways to write Python code. Some programmers delight in writing masses of complex, impressive looking
statements, the effects of which are almost impossible to decipher. This makes errors difficult to find and correct,
causes considerable frustration to a reader trying to figure out what programs do and how they work, and is
inconsiderate to those who may later have to work on your programs to modify or correct them. Complex statements
should be avoided; a good programmer has a Zen-like reverence for perfect simplicity of expression.

A program must not only work correctly, you must also be able to demonstrate that it does so. To this end, a good
general principle to follow is to break down the code into short, easily understandable and verifiable pieces, which
reflect the logic of the computation that is to be carried out. Judicious use of functions and procedures-Python
constructs that we shall introduce in later chapters-facilitates this.

Be particularly careful about the names you choose for programs, variables, constants, functions, and procedures.
Wherever possible, names should be descriptive. (It is infuriating to attempt to read a program in which variable and
other names make no sense.) Where there is any possibility of ambiguity in names, write comments to make things
clear.

You may have heard from computer enthusiasts that programmers must spend a lot of time debugging-tracking
down and eliminating errors in programs. Good programmers do not; they eliminate bugs by programming in a style
that minimizes the possibility of errors and that makes finding and correcting any errors that do occur a quick and
simple process. In programming, as in other crafts, good style pays off.

180

Appendix B

Module 25: 5.11 Summary

5.
THE PYTHON
PROGRAMMING LANGUAGE

13. SUMMARY
We have now introduced the basics of Python: how a program is set out; how variables and constants are declared;
how numbers may be input; how arithmetic may be performed; and how results may be output. At this point you

know enough to write a simple Python program. Try a few before going further to make sure that you understand the
fundamentals. In the next chapter, we shall begin to consider programs that generate drawings. Good luck!

181

Synthetic Tutor

Module 26: 6.1 Line

6.
PROGRAMS TO GENERATE
SIMPLE LINE DRAWINGS

Now that you know the notational conventions of Python and the way to organize a Python program, you can write
some elementary programs to generate drawings. We will begin with very simple, two-dimensional line drawings
constructed from vectors in a screen coordinate system.

6.1 PRIMITIVE GRAPHIC COMMANDS

We shall be using a command called rs. AddLine() to create drawings by using two point lists. To draw a line, first
set two points (this type is called, list, which has multiple variables or values in one type. We will frequently use this
type to handle multiple point coordinates at once), we write a statement of the form

[100, 100, 0]
[500, 500, 0]

To draw a line from the two point coordinates, we write a statement of the form

import rhinoscriptsyntax as rs
rs.AddLine([100, 100, 01,[500,500,0])

Thus the sequence of statements to draw the square shown in figure 6-10 is written:
[sample code : draw a rectangle]

The sequence of statements to draw the cross shown in figure 6-11 is written:

Adding a line with two points, then, is a primitive marking operation, much as a hand movement with the pencil
raised, and a hand movement with the pencil lowered to the paper surface, is the primitive operations in making a
pencil drawing. This allows us to construct a drawing directly out of graphic primitives; that is, vector by vector. If
the output device is a storage tube, the drawing instrument controlled by two points is, in fact, the electron beam;
vectors are actually traced out by the electron beam in the sequence specified by the code. With a refreshed vector
display, the effect is to store data describing vectors in the display memory from which the screen image is
generated and refreshed. If output is on a raster display, the effect is to write pixel values into the frame buffer, so
that vectors mapped onto the raster grid are displayed. In any case, however, it is convenient to think of move and
draw as commands for moving the point of a drawing instrument across the surface of the screen.

182

Appendix B

500,500

|]
00,100!

MOVE(100,100);

DRAW(500,500);
6-9. The use of move and draw commands
to draw a vector between two points.

6-10. A square produced by move and
draw operations,

X

6-11. A cross produced by move and
draw operations.

183

Synthetic Tutor

CODE RESULT
import rhinoscriptsyntax as rs

draw a line
rs.AddLine([100,100,0], [500,500,0])

draw a rectangle

ra.MddLine([400,200,0], [700,200,01)
rs.AMddLine([700,200,0), [700,500,0]))
rs.MddLine([700,500,0], [400,500,0))
rs.MdLine([400,500,0), ([400,200,0])

draw a cross
rs.MdLine(]400,200,0], [700,500,0))
rs.AddLine([700,200,0], [400,500,0])

CUH TRt FOrt dretol | pased

B Brnc Pymcn Fons - Ol g Oethiog DI0Y sdfing py ’?“

Fin fdr Oebup Tesh ey

D-d0H 2- prou- =0 @
* @ ope PR e 0]
. prcariierte

" sowmcorten import rhinoscriptsyntax as rs

& -2 Rwa

angle

§ draw a1
e Addzine (RIS .

ra.Addrine ({70 00,01

¢ drav a cro:
ra.Addrine (|
ra. AddLine ({

184

Appendix B

Module 27: 6.2 Library

6.
PROGRAMS TO GENERATE
SIMPLE LINE DRAWINGS

6.2 ANNOUNCEMENT OF EXTERNAL GRAPHICS PROCEDURES

These basic graphic commands - AddPoint, AddLine, AddCurve, AddRectangle - are not part of the Python
language itself. Technically they are known as external procedures, and any program that uses them must contain the
following announcement at the beginning of a code:

import rhinoscriptsyntax as rs

These external procedures must be implemented on your computer before you can use them in Python programs.
This is done in different ways for different Python systems. rs - is an abbreviation of rhinoscriptsyntax. Graphic
commands can be used with . (dot notation). Here show some examples:

import rhinoscriptsyntax as rs

rs.AddPoint([0,0,0])

rs.AddLine([0,0,0], [100,100,0])

rs.AddCurve([[0,0,0], [100,100,0], [50,100.0]])
rs.AddRectangle([0,0,0], 5, 20)

C Lty i ORI P00 oAV Bne CUvl By

C ey guiorag D sbiog D00 powed e corve oy
Fie (dt Oebeg Tosh ey

Neg-@0@ £P- p->»-“0oa
+ B owe | DROG2 powrs hew Curem By 8]

5 B brcwmenrie i

« # sorptomims import rhinoscriptayntax as r3
4 D Fpew

il-.’ a0 Pancrica Motlectengle Lt Baduls Friscecyipr curve
I
i

AdsBastangla (plase, width, Baight Ride & sactaaguias Suive G Lha Socumeat
-

vidan, baght = withd and Beight of rertasgle sa messared sleng vhe plese’s
»ownky aues |
Bararna o
34 ot sav rarienglie

Cusps Vs | ol hack

Al
RY |
-1
b
E
/l
3,

SSHIXNIP

L

185

Synthetic Tutor

Module 28: 6.3 Variables

6.
PROGRAMS TO GENERATE
SIMPLE LINE DRAWINGS

6.3 A COMPLETE GRAPHICS PROGRAM

We are now in a position to write a very simple but complete graphics program. The following is our example. It
announces the graphics tools that will be used (the external procedures), makes the necessary preparations to draw a
picture, uses rs.AddLine() to produce our example square (see fig. 6-10).

[sample code: draw a rectangle]

6.3.1 USING VARIABLES

Notice the use of variables in this version of the program. Write variables X1, X2, Y1, and Y2, assign values to these
variables. Repeatedly, write variables to make point lists: pt1, pt2, pt3, and pt4, and assign point coordinates within
a bracket (making it a list) to the variables.

x1 =400
x2 =700
y1 =200
y2 =500

ptl =[x1,y1, 0]
pt2 =[x2,y1, 0]
pt3 =[x2,y2, 0]
pt4 = [x1, y2, 0]
pt5 =[x1,y1, 0]

rs.AddLine(ptl, pt2)
rs.AddLine(pt2, pt3)
rs.AddLine(pt3, pt4)
rs.AddLine(pt4, pt5)

6-10. A square produced by move and
draw operations.

186

Appendix B

CODE RESULT
import rhinoscriptsyntax as rs

draw a rectangle
ptl - [400,200,0)
pt2 = [700,200,0)
pt3 - [700,500,0)
ptd = [400,500,0]
pts = [400,200,0])
re.hddLine(ptl, pt2)
re.AddLine(pt2, ptl)
ro.AddLine(ptd, ptd)
ro.AddLine(ptd, pts)

C Users ptotgDes dep 0800 poat W Curve Bv

y

Comma

it CPanen el View Disginy - Seiect ViewpadLamad | Vbl Trawlorm . Curve Yous | Suriece Yook - Sl Tanks | Mah Tooks - Bender Tocks Crwfing * e

DEE@TXDOnd + FLH2ATH- 70090000 "0LO

a

=
£
?,
&
&,
"
eh S
o
*
o
Iy
-,
.9
v,

) 5'“‘9 p.. ..‘. & O :,‘, ‘
[yt — m-—.-n-', =
i import rhinoscriptayntax as rs

ptt -
ptz =
ptl =
ptd =

r3.AddLline (ptl,
rs.Addline (pr2,
rs.AddLine(ptl,
ra.Addline (ptd,

5)
e‘
X,
9,
=
Lo
£
‘l
-
T
o
L
B

88

187

Synthetic Tutor

Module 29: 6.4 GetReal

6.

PROGRAMS TO GENERATE

SIMPLE LINE DRAWINGS

6.3 A COMPLETE GRAPHICS PROGRAM
6.3.2 READING IN COORDINATE VALUES

Instead of assigning values to our variables X1, X2, Y1, and Y2 by statements in the code of the program, we might
choose to read in these values. ')

The significant difference here is that values are given to the coordinate variables at execution time, rather than by
being specified in the code of the program. the dialogue by which coordinate values were entered appears in the text
window, and the corresponding square appears in the drawing window. By re-executing the program and entering
different values for the four variables, the user can generate drawings of many different squares and rectangles.

[sample code: draw a rectangle]

188

Appendix B

CODE RESULT
import rhiposcriptsyntax as rs

get user inputs

xl = rs.CetReal(Enter real
yl = ra.CetReal('E r real
x2 = ra.CetReal('Enter real
y2 = rs.CetReal('Enter real

draw a rectangle
ptl = [x1, y1, 0]
pt2 =~ [x2, yl. 0]
ptd - [x2, y2. 0]
ptd = [x1, y2, 0)
pts = [x1, yl, 0]
rs.MddLine(ptl, pt2)
rs.AddLine{pt2, pt3)
rs. MddLine(pt3, ptd)
rs.hddLine(ptd, ptS)

CiraruhaeglesniepDOt utimg vinaties by

Corernasd
Giwaws CPane SetView ' Dgley Vi Traroken Curvs Tonin Surbeon Tooks - Scied Tockn Mk Tooly Mo ¥, Oroteg Nea i

Sabwer hwepart Ligout !
DEEST X0 d + AL LR H=«-%7.030000 €546,

e e L

L} T:f,w.;-' ¥
ptl = { xi,
pt2 = [x2,
ptd = [%2,
prd « [x1,

¢ draw a rects
rs.AddLine
rs.AddLine (
rz.AddLine (
rs. Addrine (. ptl

Y=
2,7
NP
P
STA
L4
kL, B
a4
i
T
®niy
5
v

R

189

Synthetic Tutor

Module 30: 6.5 Parts

6.
PROGRAMS TO GENERATE
SIMPLE LINE DRAWINGS

6.4 THE THREE ESSENTIAL PARTS OF A GRAPHIC PROGRAM

It should now be clear that there are two essential parts of a graphic program. First, we must declare the variables, so
that space is set aside in memory to store the coordinate data needed to generate our drawing. We must give values
to all of these variables, which can either be done with assignment statements or by reading in values. Second, we
use these values in rs.AddLine() commands to generate the image. For clarity and simplicity, we shall mostly give
values to variables by means of assignments in our examples. But keep in mind that you can always replace the
assignment statements (=) by reading statements (rs.GetInteger() or rs.GetReal()) if you want to experiment with
the effects of different values. You will find that it is more interesting in your own programming projects to allow
for user input in this way. If your computer is equipped with a mouse or graphic tablet, you can probably use these
devices for input of coordinate values (rs.GetPoint()), and you may want to explore this alternative to typing in
numbers.

190

Appendix B

Module 31: 6.5 Summary

6.
PROGRAMS TO GENERATE
SIMPLE LINE DRAWINGS

6.5 SUMMARY

You now know how to write the simplest kind of program to generate a line drawing. Before going on, you should
do some of the suggested exercises. You will find that it is very tedious to program this way, and you may wonder
whether it is worth it. If you know all the coordinates of a figure, why not just draw it yourself, instead of writing
down a lot of functions?

The problem, here, is that there is a great deal of effort with little reward. It does not make very much practical sense
to program this way; you have to write a relatively long program to generate a relatively simple figure. But, as you
learn more sophisticated programming techniques in succeeding chapters, you will be able to write concise, elegant
programs to generate large and complex drawings. When you can do this, you can begin to exploit the potential
power of computer graphics.

191

Synthetic Tutor

Module 32: 7.1 Variables

7.
COORDINATE CALCULATIONS

So far we have considered graphic programs in which coordinate values are either assigned directly or read in. As
you will have found when doing the exercises, you must calculate coordinates to enter, or to type in when prompted,
in order to produce a picture. Perhaps you used a pocket calculator to do this. You probably needed something a bit
more sophisticated than a four-function calculator, since calculation of coordinates often requires evaluation of
trigonometric functions such as sine and cosine, and perhaps others such as square root. Consider, for example, the
equilateral triangle of side length 200 shown in figure 7-1. In order to generate it using rs.AddLine(), we must know
its height to establish the Y coordinate of the apex. From the Pythagorean theory we know that the height will be the
square root of 200 squared minus 100 squared, which comes to 173.2050. Alternatively, we can use a trigonometric
function and calculate the height as 200 multiplied by the sine of 60 degrees.

7.1 INDEPENDENT AND DEPENDENT VARIABLES

An alternative to performing such calculations outside the program is to write code to perform them within the
program. If we want to draw a square parallel to the coordinate axes, for example, we can give values to X1, Y1, and
Side, then calculate all the other vertex coordinates from these (fig. 7-2). That is, we first assign or read in values for
our independent variables, then calculate values for dependent variables and finally use the values in move and draw

commands. Here is an example of a simple program that does this:

[sample code on the right side]

192

Appendix B

T,ﬁm:emmum—mx 100);
| HEIGHT: =200 x SIN(P/3);

7-1. An equilateral triangle.

| X1+ SIDE

Y1 +SIDE

XY SiDE

7-2. The vertex coordinates of a square
as dependent variables.

193

Synthetic Tutor

CODE RESULT
import rhinoscriptsyntax as re

independent variables
x1 = 400

y1 = 200

side = 300

#dependent variablea
x2 = x1 + side
¥2 = yl & side

draw square

ptl = [x1, y1, O]
pt2 = [x2, ¥1, 0]
pt3 = [x2, y2,0}
ptd = [x1, ¥2,0}
pts - [x1, ¥1,0]
ro.MddLine(ptl, pt2)
rs.MddLine{pt2, pt3)
rs.MddLine(ptld, ptd)
rs.MdLine({ptd, ptS)

W #inc yton Eaitor - CAAMONG, FOLDEIT 01 RITLARCIOTD) THESES: Yo Tube ity 1007
B bor Dubug Toos Help
= o - - - 53 " & =
De-d@d P+ p-@-50%4
o B e S
v B recoorte ==
5 mosertnt side = 304
2 Rwe

[

#1. calc
x2 = x1
y2 = yl

L‘
L 3 gy

e

L L

#4.1
ptl
pt2
ptl
pté

2.7
LRy
XA |
SUA
Ls
L &
aanl
%
T
- {0
[
HiE
o,v,
@ 5,

194

Appendix B

Module 33: 7.2 Math 1

7.

COORDINATE CALCULATIONS

7.2 STANDARD ARITHMETIC FUNCTIONS

In this example we used the Python's arithmetic operators to obtain the desired result-much as we might use a four-
function calculator. In addition to these, for use in more complex calculations, Python provides certain standard
arithmetic functions analogous to those of a scientific calculator. To use additional arithmetic functions, we need to

import - math - library in your code. To get the square root of 317.835 you write the statement:

import math
Height = math.sqrt(317.835)

The result of taking the square root of 317.835 is thus assigned to Height.

Different implementations of Python may provide more or less extensive sets of standard arithmetic functions, but
these are the basic ones that you will need and that should be available in any implementation:

abs(X): Computes the absolute value of X. The type of the result is the same as that of X.

math.sqrt(X): Computes the square root of X. The type of the result is always real.

math.sin(X): Computes the sine of X, where X is specified in radians. The type of the result is always real.
math.cos(X): Computes the cosine of X, where X is specified in radians. The type of the result is always real.
math.atan(X): Computes the arctangent of X. The result is in radians, and its type is always real.

[sample code on the right side}

195

Synthetic Tutor

CODE RESULT
import rhinoscriptsyntax as rs
import math 317.485
result = abs(-317.485) 17.8279275296
priamt result

-0.509102730554
result = math.sqrt(317.835)
priat result -0.860705762583
result = math.sin(317.835) 1.56765005058

priat result

result = math.cos{317.835)
priat result

result = math.atan{317.835)
print result

B P Pysven boter - CAURONG_ FOLDEAS 31 RESEARCHAD0! THESS: vouubaTuasaf 17003 math fumctions oy

: T
D-@0E £+ P& 20%a
& B e
o« B apcrrarie
N ges— import math
o L #1. abs
result - abs(-4)
print result

S0 mad huncmons by 5]

Einess =» Fisad

196

Appendix B

Module 34: 7.3 Rounding

7.
COORDINATE CALCULATIONS
7.3 ROUNDING, CEILING AND FLOORING
You will notice that, in many cases, these functions yield real results. Yet you may need an integer to substitute in
functions. A real number can be converted to an integer either by truncating it- throwing away the decimal part-or
rounding it to the nearest whole number. To perform these operations, Python and Mathematics Library provide
transfer functions:

round(X): X must be a real number. The result, of type integer, is the value of X rounded.

math.ceil(X): X must be a real number. The result, of type integer, is the ceiling of X.

math.floor(X): X must be a real number. The result, of type integer, is the floor of X.
Here are some examples of rounding and truncating and their results:

Expression

2 =round(1.732)

2 =math.ceil(1.732)

1 = math.floor(1.732)

[sample code on the right side]

197

Synthetic Tutor

CODE RESULT
import rhinoscriptsyntax as rs
import math 1
result = math.trunc(1.732) -1
print result

20
result = math.trunc(-1.732)
print result -2.0
result = round(1.732) 1.0
print result

]
result = round(-1.732)
print result 0.0

result = round{l1.01)
print result

result = math.trunc(0.0)
print result

result = round{(0.0)
print result

B Breec Bvon Eetor - CoIUHONS FOLDERS S RESEARCHN 001 THESE Voo TubeTtesat/ 0700 basc matlpy
| Fe B8 Oubeg Tosh ey
D& @O A p-o- o
b s Ehem i S
= M ercamnn
v B wmpcorvad ¢ trunc, rou
8 e import math
result = math.trunc(l.732)
result = math.trunc(-1.732)
result = roundfi.
print result

[Belp e wurin-in fumevion rownd

reusa

- Ghoat
> Flaes
“» fleet

198

Appendix B

Module 35: 7.3 Math 2

7.
COORDINATE CALCULATIONS

7.3 ROUNDING, CEILING AND FLOORING (continued)
Here is an example of a simple program that uses standard arithmetic functions to compute coordinate values.
[sample code on the right side]

Note that in the above program, the Height of the equilateral triangle calculated to two decimal places is 346.41.

a. Real coordinates rounded 10 a raster grid.

®
b. Real coordinates truncated to a raster grid.

7-3. Enlargements of the of
i, s apex of a

199

Synthetic Tutor

CODE

import rhinoscriptsyntax as rs

import math

independent variables
radians = 0.01745

x1 = 300
yl =~ 300

side = 400

dependent variables

x2 = xl + side

x3 = (x1 ¢+ x2) / 2
height = side * math.sin(60 * radians)

¥2 = yl + height

ptl
pt2
pt3
pta

rs.MdLline{ptl, pt2)
rs.addLine{pt2, pt3)
rs.MddLine{ptl, ptd)

200

-
-
-
-

[x1,
[x2,
{x3,
(=1,

¥l, 0]
¥i, 0}
¥2, 0]
yl, 0]

RESULT

Appendix B

Module 36: 7.4 Function 1

7.
COORDINATE CALCULATIONS

7.4 WRITING YOUR OWN FUNCTIONS

If Python does not have the function that you need for a calculation, you can write it yourself. The following, for
example, is a function that computes the cube of X:

def cube (x):
result=x *x *x
return result

The first line is analogous to a program heading. It begins with the reserved word - def -, followed by the identifier
(name) of the function-in this case cube. The variable X is referred to as the formal (input) parameter of this
function. The formal (input) parameter is named and typed within the parentheses as shown. Then, following a colon

o).

The indented code specifies how the value of the function is to be calculated for a given value of the formal
parameter. It must contain at least one assignment statement, assigning a value to the function identifier. The
indented statements that follow are called a block. A four space tab indent width is the preferred coding style. If the
block statements do not indented properly, Python will cause an error.

A function must be declared before it is invoked in the program-just as a variable must be declared before it can be
used in an executable statement. Here is an example of a simple program that calculates the volume of a cube of side
length 3:

[sample code on the right side]

Notice how the function is invoked-in exactly the same way as Python's built-in functions such as abs() and print().
When it is invoked, it calculates the cube of 3. The result is substituted for the expression getCube(3) and assigned
to volume,

The value 3 in this program is referred to as the actual (input) parameter of the function getCube(). When getCube(

) is invoked, this value is assigned to the formal parameter x. This is the way that the function is given an input value
on which to operate.

201

Synthetic Tutor

CODE RESULTY
import rhinoscriptsyntax as rs

1000
def getCube(x):
result = x * x * x 27
returan result

volume = getCabe({l0)
print volume

dof getVolume{):
volame = getCube(3)
print volums

getVolume()

cd

-
Cq B Do Pymen Edter - COAMW0ND KRIERTOT RELEARCH00T THEDS Vou Tt Tutorats LTI sorr mpwt = poer St ton oy

Sl | Fie Bde Debug Tesh Hep

Olps-@od 2+ p->-90%a
[5 B guren GRCT smar ot = your Archon py”

R

o B oeare

» 3 Rwe X):

¢

)
x,
9,
&
@,
ok
a}

SSHDEN

202

Appendix B

Module 37: 7.4 Function 2

7.
COORDINATE CALCULATIONS
7.4 WRITING YOUR OWN FUNCTIONS (continued)

The actual parameter need not be a value; it might be a variable to which a value has been assigned. This is
illustrated in the following program, which reads in the side length of a cube then calculates the volume:

[sample code on the right side]
In essence, declaring a function in this way allows us to use a short, meaningful name in our program in place of a
longer, more complex, and less meaningful expression. Once the function is declared, we can invoke it repeatedly in

a program, without having to write it out in full each time, or to worry about the details of its internal operation. The
construct of a function, then, provides us with a very powerful abstraction mechanism for use in programming.

203

Synthetic Tutor

CODE RESULT

i tsyntax as rs
import rhinoscriptsy: 1000000
def gotCube(x):
result = x ¢ x * x
return result

def getVolumaInput()a
side = re.CetInteger({ Entor integer for e
volume = getCube(side)
priant volume

getVolumeInput({)

-
B Proeo Pymon Edaer - O UnDRed FOUDERS ST RESELRC 0] THESS You ! st Tutor et D007 saer gt o pour Aincion gy
Fie Bt Debug Towh by

&-H0E 2 p@-o0ow
» & ppen L ————
. s
= @ woncerred

2 Rve def getCube(x):

result = x * x * x

return result

9,
X
9,
a 1
b
o,
a.
o
T
a
o,
B
o,
@,

204

Appendix B

Module 38: 7.5 Parameter

7.
COORDINATE CALCULATIONS

7.5 FUNCTIONS WITH SEVERAL PARAMETERS

In computer graphics programming, we are often interested in functions that return an X coordinate or a Y
coordinate of a point in a drawing. Consider, for example, the bisection of a line defined by its endpoints (X1, Y1)
and (X2, Y?2) (fig. 7-4). The following function, which computes the midpoint between any two integers Low and
High, might be used to find the midpoint coordinates:

The code to calculate the midpoint (Xmid, Ymid) using this function is as follows:

Xmid = getMidPoint(X1,X2);
Ymid = getMidPoint(Y1,Y2);

Notice that Midpoint has two formal (input) parameters, Low and High, and that each invocation of Midpoint lists
two actual parameters. A function may, in fact, have as many formal (input) parameters as we wish. Whenever the
function is invoked, there must be an actual parameter for each formal parameter. The correspondence is established
by position in the parameter list; the value of the first actual parameter is assigned to the first formal parameter, that
of the second actual parameter to the second formal parameter, and so on.

The following program illustrates use of this Midpoint function to draw a smaller triangle within a larger triangle
(fig. 7-5):

[sample code on the right side]

205

Synthetic Tutor

Y2
i AT
| ///’
AR
R . ’ Yi
Xt XMID X2

7-4. The bisection of a line defined by
its endpoints.

i B

7-5. A drawing produced by Nest_
triangles.

206

Appendix B

CODE RESULT

import rhinoscriptsyntax as rs

def getMidPoint{low, high):
midpoint = (low + high) / 2
retura midpoint

dof drawNestTriangle():
set coordinates of outer triangle
x1 = 100
yl = 200
x2 = 500
yZ = 600
x3 = 600
¥3 = 300

calculate midpoints of sides
x12 = getMidPolint(xl, x2)
y12 = getMidPoint(yl, ¥2)
x23 = getMidPeoint(x2, xJ)
y23 - getMidPoint(y2, y3)
x31 - getMidPeint(x3, x1)
y31 = getMidPeint(y3, yl)

set points

ptl = [x1, yl1, 0]
pt2 = [x2, y2, 0]
ptd = [x3, y3, 0]
pt12 = [x12, yl2, 0]
pt23 = [x23, y23, 0)
pr3l ~ [x31, y31, 0)

draw outer triangle
re.MddLline(ptl, pt2)
ro.AddLine(pt2, ptl)
ro. AddLine{ptd, ptl)

draw inner triangle connecting midpoints
ra.Mddline(ptl2, pt23)
ro.Mddline{pt23, ptil)
rs.AddLine{pt31l, ptl2)

drawNestTriangle()

Estar viee fof Side gl 10
100
[

B g Bye ltti(4 o 28 x_uaﬂ»m-.us-.;-;w"

Q Fie ldn t-o-i REs

Det-dd Ca uxam OZOO 4 =
» @ oo 1 y 70 Thess) Rmasech [l Hema [Tesching -
+ B rrcereres
N —
¥ o Bes

CO— -

T4 T bt of & Yo i Sy
- rdgeais

1o & dowwing posband by Nt
[———

&
e,
&1
2
o,
a
2
) 4
E
e‘
B
@,
@,

207

Synthetic Tutor

Module 39: 7.6 Local Variable 1

7.
COORDINATE CALCULATIONS

7.6 LOCAL VARIABLES

Now consider the simple coordinate calculation problem illustrated in figure 7-6. We have a point (X1, Y1), an angle
Theta, and a Length; we want to calculate the coordinates (X2, Y2). We know from elementary trigonometry that
the Base of the triangle is given by the formula Length * cos(Theta), so a function to return X2 can be written as
follows:

[sample code on the right side]

Note that we are invoking functions from within a function; the Python standard function cos is invoked from within
X2. In this way, you can also invoke functions that you have declared yourself. Also note that since the angle Theta
is expressed as a real number of radians, the function X2 has both integer and real formal parameters in its parameter
list. The cos function returns a real value, and since the result of multiplying an integer by a real number is real, the
value of the expression Length * cos(Theta) is real.

Finally, note that we have declared a real variable Base within the function. Whenever a variable is declared within a
function, it is local to that function. In effect, it does not exist outside the function; it cannot be referenced from
outside the function; its value is unknown outside the function; and in fact, it exists only during the time that the
function is activated. After the function returns its result value and terminates, the program has no way of knowing
that the local variable ever existed. The functions formal parameters are all local in this same sense.

If we wanted to eliminate the local variable Base, we could easily do so by rewriting the function like this:
[sample code on the right side]

Here, instead of using the variable Base, we have used the expression Length * cos(Theta). In general, we can use
expressions as actual parameters when we invoke procedures. This is more concise, but it usually makes programs
more difficult to follow. In most cases it is better to introduce local variables, break complicated expressions down
into several separate lines, and provide explanatory comments at each step, as we did in our first version of this
function.

You can now see that strict rules govemn the use of functions. The local nature of the formal parameters, and of
variables declared within the function, ensures that nothing done to these variables during the execution of the
function can have any effect on anything outside the function. That is, the internal workings of a function are
completely insulated from the rest of the program. This discipline may seem restrictive, but you will find that it
clarifies your programs and keeps you out of trouble.

208

Appendix B

i
i
|
1

Xt

7-6. A coordinate calculation problen to
find X2, given X1, Y1, Theta, and Length.

209

Synthetic Tutor

CODE RESULT

import rhinoscriptsyntax as rs
import math

def X2_verl():

x1 =0
length =~ 100
theta = 30

base = length * math.cos(theta)
round and add to x1

x2 = x1 + base

return x2

dof X2_veor2():

%1 =0
length = 100
theta = 30

round and add to x1
x2 = x1 + length * math.cos(theta)
return x2

| 870TY el casaties 2y o P R

T & et aie ol g s e
Bl K2, e K3, V1. Whota, wnd Lot

210

Appendix B

Module 40: Exercise

6.
PROGRAMS TO GENERATE
SIMPLE LINE DRAWINGS

6.6 EXERCISES

1. Draw two figures defined by the following two sets of coordinates.

[200, 200, 0]
[600, 200, 0]
[300, 300, 0]
[500, 300, 0]
[200, 200, 0]
[400, 250, 0]
[200, 200, 0]
[600, 200, 0]
[400, 250, 0]
[300, 300, 0]
[500, 300, 0]
[400, 250, 0]

Please upload your python file: im} No file chosen lm'

2. Write a program to draw an equilateral triangle.

Please upload your python file: | Choose File | N file chosen |_submit |

3. Write a program to draw your initials.

Please upload your python file: { Choose File | No file chosen | submit |

4. Write a program to read in the coordinates of the vertices of a triangle, then draw the triangle.

Please upload your python file: | Choose File | No file chosen | submit |

5. Below figure shows Paul Klees active line, limited in its movement by fixed points. Write a program to draw a
line of this type.

211

Synthetic Tutor

t 7
Lines as introduced by Paul Klee in his Pedagogical Sketchbook.

Please upload your python file: (_Choos—c FAle_| No file chosen {_submit }

212

Appendix B

Module 41: 7.6 Local Variable 2

7.
COORDINATE CALCULATIONS

7.6 LOCAL VARIABLES (continued)

To conclude, here is a program that uses functions X2 and Y2 to calculate coordinates, then draws a line of length
Length at angle Theta from point

[sample code on the right side]

213

Synthetic Tutor

CODE

import rhinoecriptsyntax as ra
import math

def x2(xl, length, theta):
calculate real value for base
base » length * math.cos(theta)

round and add to xl
22 = x1 + base
return x2

def ¥2(yl, length, theta):
calculate real value for base
beight ~ length * math.sin{theta)

round and add to yl
¥2 = y1 + height
return y2

def drawLine({):
set variables defining line
radians ~ 0.01745
angle = 45
x1 « 300
¥y o~ 200
length » 400

calculate dependent variables
theta « angle * radians

x = X2(x1l, length, theta)

Y = Y2(yl, length, theta)

draw line
ptl = [x1, yl, O)

pt2 - [x, y, O}
rs.AddLine{ptl, pt2)

drawiine()

214

RESULY

Appendix B

Module 42: 7.7 Trigonometry

7.
COORDINATE CALCULATIONS

7.7 FUNCTIONS FOR TRIGONOMETRY AND ANALYTIC GEOMETRY

In technical drafting it is often necessary to use theorems of trigonometry and analytic geometry in order to find
points needed in construction of figures. If we want to write programs to find points automatically, it is useful to
have at our disposal a library of functions to evaluate the relevant formulas. Only a few of those that we need are
built into Python. You will recall, from the discussion earlier in the chapter, for example, that standard Python does
not have enough math library. You will probably need to write a few functions of your own for use later as building
blocks of your graphic programs.

You may find it more convenient, for example, to specify angles in degrees rather than radians. A function to
perform the conversion is: ’

[sample code on the right side]

Here is an example of something a bit more complicated. Surveyors often find a distance by triangulation (fig. 7-10).
They measure an angle Theta and distances X and Y to obtain data necessary to calculate Distance. The function-
needed to obtain Distance may be written:

[sample code on the right side]
So a useful program to read in Theta (in degrees) and the distances X and Y can be written as follows:
[sample code on the right side]

One subtle technical point should be noted here the formal parameters Theta, X, and Y of Distance have the same
identifiers as the corresponding actual parameters. However, the formal parameters are local to the procedure
Distance and are not the same thing as the actual parameters. When Distance is invoked, the current values of the
actual parameters are assigned to the corresponding formal parameters. But, if Distance assigned a value to one of
its formal parameters, this would have no effect on the actual parameters; a function can never create a side effect by
assigning values to its formal parameters. In other words, the formal parameters of a function are like valves that let
data into a function, but do not let modified data back out.

+*.
h\ /(
;“\ THETA
/, y Mo

7-10. The principle of triangulation.

215

Synthetic Tutor

CODE RESULT

import rhinoscriptsyntax as res

import math distance = B1.5416847127

def radians(degree):
pi = 3.1415
radians = degree * 180 / pi
return radians

dof distance(theta, x, y):
dist = math.sqre(x*x + y*y - 2*x*y*math.cos{theta))
return dist

dof triangulation():
prompt for and read in data
angle = rs.CetReal(
length_l = rs.CetReal('cn
length_2 = ro.CetReal(' e:

convert angle
theta = radians(angle)

calculate distance
dist - distance(theta, length_l, leagth_2)

write out result
print ‘distance s dist

triangulation()

YR e e e T——

Fie it Debeg Tosks Hep

D&-WPd 2 p-m-"0%a
: B gyrer pe
LR
i B omacireet
FL

3 Togoramed; weat weabybe goomery 0"

10 Tho primeph: of waglsiom

216

Appendix B

Module 43: 7.8 Summary

7.
COORDINATE CALCULATIONS

7.8 SUMMARY

We have seen, in this chapter, how Python standard functions and functions that you write yourself can be used to
clarify, simplify, and shorten programs that carry out complicated calculations. You should make sure that you
thoroughly understand the rules for declaration and invocation of functions as well as for the passing of data. You
should structure your programs logically by breaking them down into short, easily understandable functions.

You will find that this modularization helps you to write correct programs and to quickly trace and fix errors that do
occur. The insulation around a function localizes the effect of any error within it and prevents the propagation of
mysterious side effects. You will also find that building up a library of carefully written, generalized functions
provides you with reusable program modules that can serve as building blocks in later programs.

The functions that you build for calculating coordinates will become your tools for correctly sizing and placing

elements of a graphic composition. As such, they will encode both technical knowledge (of how to calculate the
tangent of an angle or the midpoint of a line, for example) and aesthetic rule - in particular, rules of proportion.

217

Synthetic Tutor

Module 44: 8. Graphic

8.
GRAPHIC VOCABULARIES

We began our discussion of line drawings by observing that they are composed of individual primitive marks, such
as pencil or pen strokes. For our purposes here, we have taken the primitive mark to be a vector-a straight line
segment defined by the coordinates of its endpoints.

A drawing is made by executing a sequence of primitive marking operations, such as movements of a pencil held in
the hand. Thus you can specify a picture by giving a sequence of commands to execute primitive marking operations
one after the other. This works, although it is very tedious-much like instructing, over the telephone, a draftsman
who cannot understand any task more complicated than drawing a single line.

218

Appendix B

Module 45: 8.1 Picture

8.
GRAPHIC VOCABULARIES

8.1 PICTURES AS PROGRAMS

We have now seen how a computer can be programmed in exactly the same laborious, step-by-step way to generate
a picture composed of vectors. You write a sequence of points and commands. When the computer executes these
commands, one after the other, the specified drawing is generated on the screen. In other words, a picture is encoded
as a Python program that specifies the sequence of primitive marking operations (rs.AddLine()) needed to create it.

If we want to refer to a picture, we usually give it a name, such as square, triangle, squiggle, north elevation, or
Mona Lisa. It makes sense to give the same name to the program that generates the picture. In Python, this name
becomes the heading of the program.

In summary, then, we have seen that you can write a Python program to generate a line drawing as follows:

-Import rhinoscriptsyntax library as rs, so you can use built-in functions such as rs.AddLine()

-Declare the constants and variables that will be needed, much as you might provide a draftsman with a
scratchpad to jot down numbers and an electronic calculator with a useful array of function keys.

-Assign or read in values for the independent variables.

-Calculate values of any dependent variables.

-Write rhino's built-in commands/functions to generate the picture.

You must always have values for independent variables before you can calculate values for dependent variables, and
you must always have X and Y coordinate values before you can execute a move or draw. One logical way to
organize code, then, is in distinct steps, as in the following code to draw an equilateral triangle.

[sample code on the right side]

The choice between these alternatives, and among possible combinations of the two, is a matter of programming
style, not of Python syntax. You should always choose the clearest, most expressive method.

219

Synthetic Tutor

CODE RESULT
import rhinoscriptsyntax as rs

import math

assign values to independent variables

x1 = 300 # bottom-left vertx coordinate

yl = 300 # bottom-left vertx coordinate

side = 400 # side length

calculate values of dependent variables
%22 = xl1 + side # bottom right vertex coordinate
x3 = (x1 ¢+ x2) / 2 # apex x-coordinate

radiance = 0.01745
height = pide * math.sin{60 ¢ radiance)
¥2 = yl + height # apex h-coordinate

ptl = [x1, y1l, O]
pt2 = [x1, y2, 0]
ptl = [x3, y2, 0]

draw triangles

ra.AddLine(ptl, pt2)
rs.MddLine(pt2, ptl)
ro.MddLine(pt3, ptl)

o angn T 61
GILACH 15 &5 XL TORITY] B o Pyshon Egter - CUUHOND_FOUHRS 21 RESLARCHO0L T 525 05 ! e Turtor W DECD) pucture 45 Brogranisy

—— Fie Edr Deleeg Tooh Help
Garcues | CPioeem Sat Virw

T puchre wn prigr e " 8]
x1 = x1 + side
yZ = yl
x3 = (x1 » x2)/2
radiance = 0.01745
height = side * math.sin(€0*radiand
y3 = yl » height

.
»

- ix1, yi, O]
1x2, yz, ©
{x3, y3, 0l

.\:.!:l.i
8 tl, pt2)
rs. MddLine (pt2, prd)
rs.MddLline (pt3, ptl)

5,
L
amn
3,
8.
& &,
L
of L
as
"
o
o

DY

Balp oa fusstiss Baslite 38 Beduls FRIASeEipt Surve

| AaLiss (#adt, el Mads 5 Like Suive L4 The Seriees sedsd

sem
o]

.
aad * ekt painie of the Liss

vers
8 of WAa smv ruree ket

220

Appendix B

Module 46: 8.2 Parts

8.
GRAPHIC VOCABULARIES

8.2 PARTS OF PICTURES AND PARTS OF PROGRAMS

So far we have considered only very simple figures, composed of a few vectors. When we look at more complex
pictures, we usually find that they have a number of distinct parts. Figure 8-1, for example, is composed of a
triangle, a square, and a hexagon.

It is convenient to break down a graphic program to draw such a picture in corresponding distinct parts-one part of
the program draws a triangle, one a square, and one a hexagon. The program then has an internal structure that
reflects the structure of the image. (This mirroring of structure is a very important general principle, and we will
come back to it later). One way to do this is simply to insert appropriate points in a list using brackets (like ptl =
[400, 200, 0}) and list statements as follows:

[sample code on the right side]

Thus we can immediately see what each group of points and statements do.

g—l.a\pictumuunposedoﬂhree%is-
nct parts: a triangle, a square, and a
hexagon.

221

Synthetic Tutor

CODE

import rhinoscriptsyntax as rs
import math

draw a triangle
ptl =~ [100,200,0]
pt2 = [300,200,0])
pt3 = [200,400,0)
ro.MddLine(ptl, pt2)
ro.AddLine(pt2, ptl)
ra.AddLine(pt3, ptl)

draw a sgaure

ptl = [400,200,0)
pt2 = [600,200,0)
pt3 = [600,400,0)
ptd = [400,400,0)
re.AddLine{ptl, pt2)
rs.AddLine(pt2, pt3)
ro.AddLine(pt3, ptd)
rs.AddLine(ptd, ptl)

draw a hexagon
ptl = [758,200,0)
pt2 = [874,200,0)
pt3 - [932,300,0]
pt4 = [B74,400,0]
pts = [758,400,0)
pté = [700,300,0)
rs.AddLine(ptl, pt2)
ra.AddLine(pt2, ptd)
rs.hddLine(ptd, pté)
ra.AddLine(ptd, pit5)
rs.AddLine{ptS, pté)
rs.AddLine(pté, ptl)

BL & gt com g of feve Sn
ot gt & twnghe. & sgunen. mod 4
e

222

RESULT

B Koo Bythos Ltar - CAUMONG_FOLDUIDOT MEEARCH 0T THE U151 ¥ou T Tetorans! SH00M Abswactom Pag
Fe Gt Dubug Tesh ey

O0g-dod 2+ b=

|+ 8 v DI04 Abavectw Prag e,

| + @ reocumnm

|4 @ womscmses ¢ mostfa
| & 2w
|
;

Appendix B

Module 47: 8.3 Procedure 1

8.
GRAPHIC VOCABULARIES

8.3 PROCEDURES

A more sophisticated approach is to write a separate procedure for each part. A procedure in Python has a similar
organization as a program, with a heading, a declaration part, and an executable part. For example, a procedure to
draw a square looks very much like a program to draw a square:

[sample code on the right side]

Note, however, that this reflects the fact that a procedure is a distinct part of a program, not a complete program in
itself.

As you can see, Python does not actually distinguish between procedures and functions (In this workshop,
procedures and functions are used interchangeably). Like functions, procedures are first declared, then used
(invoked) within a program. The following example, in which the program Draw square invokes the procedure
Square, illustrates the logical distinction between declaration and invocation (You can think a procedure as a
function without an output).

[sample code on the right side]

The procedure Square is declared by writing the code to draw a square and then invoked by name in the executable
part of the program. There are a couple of rules to be followed here. Just as you cannot use a tool until you have it in
your hand, you cannot invoke a procedure (just as you cannot invoke a function), unless you have already declared
it. In our example, declaration of the procedure Square, in effect, makes a tool to draw a square available to the
computer. Then, by giving the command Square in the executable part of the program, we instruct the computer to
use this tool. Once a procedure has been declared, it may be invoked any number of times, just as a tool, once in
hand, may be used over and over again.

223

Synthetic Tutor

CODE RESULT

import rhinoscriptsyntax as rs
import math

ptl - [400,200,0)
pt2 = [600,200,0)
pt3 - [600,400,0)
pt4 = [400,400,0)
rs.MdLine(ptl, pt2)
rs.AddLine(pt2, ptd)
rs.MdLine(pt3, ptd)
rs.MddLine(ptd, ptl)

def drawSquare():
ptl = [400,200,0)
pt2 = [600,200,0)
pt3 = [600,400,0)
pté4 = [400,400,0)
rs.MdLine(ptl, pt2)
rs.MdLine(pt2, pt3)
rs.MdLine(pt3, pté)
rs.AddLine(ptd, ptl)

drawSquare()

B Bruno Pythen [ditar - CUUHONG FOLDERSAD RESTARCHO0] THESIRYouTube Tutonak:\OB00S Hom to make a £ L2
"M Fae tde Debog Tooh MHep
3 P -an-
D = =
¢ Abstraction: Frep.
import rhinoscriptsyntax as rs

¢ definition
- def drawSquare():
a triangle
‘¢ variable
ptl = [100,200,0]
pt2 = [300,200,0]

pt3 = [200,400,0]
rs.AdgLineffptl, ptaf]
‘rs.hddLine (pt2, ptl)
‘rs.Addbiine (pt3, ptl)
drawsquare() ¢ calling

a sqaure

ptl = [400,200,0]

pt2 = [€00,200,0]

nt3 = [ADO_4NN 01
"

224

Appendix B

Module 48: 8.3 Procedure 2

8.
GRAPHIC VOCABULARIES

8.3 PROCEDURES (continued)

To draw our example picture, now, we might declare procedures Square, Triangle, and Hexagon, then invoke them
to create the picture:

[sample code on the right side]

The invocations now consist of commands at a higher level than rs.AddLine(). Instead of specifying primitive
marks (points) one by one, it specifies more complicated figures consisting of sets of primitive marks. The
procedures that have been declared tell how these more complicated figures are put together out of primitive marks.
In other words, the construct of a procedure provides us with an extremely powerful means of abstraction we can
associate a name with an arbitrarily complex arrangement of vectors.

225

Synthetic Tutor

CODE RESULT
import rhinoscriptsyntax as rs

def drawSqguare{}:
ptl = [400, 200, 0]
pt2 = [600, 200, 0]
pt3 = [600, 400, 0]
pt4 - [400, 400, 0)
rs.AddLine{ptl, pt2}
rs.Addline{pt2, pt3)
rs.AddLine(pt3, ptd)
rs.AddLine(pt4, ptl)

def drawTriangle(): ’ N\
ptl = [100, 200, 0] / \
pt2 = [300, 200, O] / \ \
pt3 = [200, 400, 0] ‘ - —smed e
rs.AddLine(ptl, pt2)
rs.AddLine{pt2, ptl)
rs.AddLine(pt3, ptl)

dof drawHexagon():
ptl = [758, 200, O]
pt2 = [B874, 200, 0]
pt3 = [932, 300, 0]
ptd ~ [874, 400, 0)
pts - [758, 400, 0]
pté - [700, 300, 0]
rs.AddLine{ptl, pt2)
rs.AddLine(pt2, ptl)
rs.AddLine(ptl, ptd)
rs.AddLine(pt4, ptS)
rs.AddLine(ptS, pté)
ro.AddLine{pté, ptl)

drawTriangle()
drawSguare()
dravilexagon()

Fizida

' Breng Pymuen famo - COKONG FOLDERS'OL BLTARCMO0T THETS Vou T ube T utonaly OB00Y Sow b wake » ¢
fin Lde Dwbug Tooh Mg

Des-dod P- p-om- =0

& 008 How = mabe 1 bercher By

A reinmiarin
P

3 Rwe

“r
BAAT S mm (0 F Y

226

Appendix B

Module 49: 8.3 Abstraction

8.
GRAPHIC VOCABULARIES

8.3 PROCEDURES
8.3.1 THE ART OF ABSTRACTION

In the example that we have been discussing, we have broken our drawing down, in the most obvious way, into a
triangle, a square, and a hexagon. But there are many other possible ways to separate this picture into parts. Figure8-
2 shows just a few of these possibilities. We could, of course, write a procedure to generate any one of these parts.

The crucial point here is that a way of breaking a picture down into parts is not somehow given, but represents a
choice among alternatives-usually many of them. We choose the method that seems most natural and useful to us. In
our example, we recognized familiar, closed, symmetrical figures that have well-known English names and did not
consider the more bizarre possibilities.

Sometimes, however, the choice is not so obvious. Figure 8-3 shows a simple line figure and a variety of plausible
and interesting ways of breaking it into parts. The method that is chosen is the result of artistic vision, not of the
mechanics of computer technology. The structuring of a Python graphics program as a set of procedures merely
reflects a commitment to a particular vision and makes it explicit.

227

Synthetic Tutor

_
/)

b. Several different ways lo break it into dis-
tinct parts.

8-2. Alternative decompositions of a
picture,

228

a. The original composition.

b. The composition viewed as four squares
connected at their comers.

¢. The composition viewed as two overlap-
ping rectangles.

e

d. The composition viewed as a square sy-
perimposed on a cross.

8-3. A variety of ways to see the same
composition.

Appendix B

Module 50: 8.3 Parameter 1

8.
GRAPHIC VOCABULARIES

8.3 PROCEDURES
8.3.2 PARAMETERIZATION OF GRAPHIC ELEMENTS

If the unintelligent human draftsman that we considered at the beginning of this chapter at least understood the
concepts of a triangle, square, and hexagon, we could give him concise telephone instructions that sound much like
the main part of our program. We could say:

Draw a triangle
Draw a square
Draw a hexagon

But he would ask some questions:

. How big is the square?
. Where is it placed on the surface?
etc.

The issue that emerges here is the distinction between the essential and accidental properties of an object. All
squares share certain properties:

. Four straight sides
. Parallel and equal opposite sides
. 90-degree vertex angles

These properties are essential to a square they define a square. But size and position are accidental properties they
may vary from square to square. So, if somebody tells you to draw a square, you know what shape to make it, but
you must determine how big it will be and where to put it. In other words, the essential properties of an object are
those that it shares with all others of the same type, whereas accidental properties may vary among the instances of
the type and must be specified to identify a particular instance.

To depict a general type of graphic element (rather than one of its instances), a diagram that shows the essential
properties is used. It is labeled with variable names and dimension lines, according to the standard conventions of
technical drafting, to identify the accidental properties. Figure 8-4a, for example, diagrams a square with sides
parallel to the coordinate axes and indicates that X and Y (coordinates of the bottom-left corner) as well as side
Length are accidental properties. That is, the diagram stands for all the squares, of any size, that may be instantiated
in the coordinate system. A particular instance of this type can be specified by substituting values for variable names
(fig. 8-4b), as in an unsealed architectural drawing, or by redrawing the element to the correct scale as indicated by
these values (fig. 8-4c).

229

Synthetic Tutor

a. A type diagram given variablio
names.
Y- e eetl]
X LENGTH
b. An instance specilied by sub-
stinuting values for variable
names.
200 —
. 300
400

¢. The same instance redrawn
corectly to scale.

s . SO . M. 5, NP b, v

8-4. A square with sides parallel to the axes of the coordinate system.

230

Appendix B

Module 51: 8.3 Parameter 2

8.
GRAPHIC VOCABULARIES

8.3 PROCEDURES
8.3.2 PARAMETERIZATION OF GRAPHIC ELEMENTS

The type diagram depicts the spatial relation between vectors that characterize the type (that are essential and found
in all instances). These relations are of connection, direction, and length. A pair of vectors may have any one of
three connectivity relations (fig. 8-5). They may be connected end-to-end, intersect, or be disjoint. We also
commonly recognize three possible relations of direction. Vectors may be parallel, perpendicular, or angled in
relation to each other.

The lengths of pairs of vectors may be related in particular ratios. The Pythagorean philosophers, for example, and
following them Renaissance architects, like Andrea Palladio, attached particular aesthetic importance to ratios of
small whole numbers such as in figure 8-6:

. 1:1 identity
. 1:2 octave
. 2:3 fifth

. 3:4 fourth

231

Synthetic Tutor

Parafiol Perpendicular Angled
Intersocting @ >t * + ~7£-0

3157, 1 RN —— ~— o—-——-——»—--c/

8-5. The relations of connectivity and angle between vectors.

232

Appendix B

-

a. identity.
1
2
s
b. Octave.
2
3
2]
¢. Fifth,
3
4
-8
d. Fourth.

8-6. The lengths of vectors related by
ratios of small whole numbers.

233

Synthetic Tutor

Module 52: 8.3 Parameter 3

8.
GRAPHIC VOCABULARIES

8.3 PROCEDURES
8.3.2 PARARNETERIZATION OF GRAPHIC ELEMENTS

These ratios often govern Palladio's plans and elevations (fig. 8-7). Coordinates of endpoints may also be related in
specified ratios (fig. 8-8). This amounts to specifying a ratio of the lengths of "invisible" vectors.

A square, then, is characterized by the following connectivity relations (fig. 8-9a):

. side 1 is connected to side 2
. side 2 is connected to side 3
. side 3 is connected to side 4
. side 4 is connected to side 1
. no sides intersect

It also has the following relations of direction (fig. 8-9b):

. side 1 is parallel to side 3
. side 2 is parallel to side 4
. side 1 is perpendicular to side 2
. side 2 is perpendicular to side 3
. side 3 is perpendicular to side 4
. side 4 is perpendicular to side 1

Finally, the lengths of all sides are related in the ratio 1:1 (fig. 8-9c¢).

234

Appendix B

57, Phm and clevation of the Villa Maloostonta, fonas lssae Ware's edition of Audsea Palledis’
Four Books of Architecture lmportant ratos of keatle are marked.

235

Synthetic Tutor

®

§-8, Ratios of the length of 2 vector to
the distance from a parallel vector.

236

Appendix B

2 2
] 3 3 1
4 4
a. Connectivity.
2
1 3
4
2 2
O [
1 3 3
] 0
4 4

¢. Ratios of side lengths.

8-9. Relations of vectors that characlerize a square.

237

Synthetic Tutor

Module 53: 8.3 Parameter 4

8.
GRAPHIC VOCABULARIES

8.3 PROCEDURES
8.3.2 PARARNETERIZATION OF GRAPHIC ELEMENTS

The variables associated with the diagram are called the parameters of the graphic element. Each parameter has a
name (for example, Length), a type (for example, integer or real number), and a range (for example, integers from 0
to 1,000). A graphic element with parameters is called a parameterized or parametric element. When specific values
from their ranges are assigned to the parameters, a particular instance is defined. Figure 8-10 illustrates some of the
many possible instances of our square, all defined by assigning values to the parameters.

Composition of a motif can be understood, then, as a process of specifying essential relations of connectivity,
direction, and ratio in a set of vectors. All instances of the same type of motif will consist of vectors related in the
same way. This formalizes, in a fashion suitable for our purposes here, a famous definition of design given by the
Renaissance architect and theorist Leon Battista Alberti in his Ten Books on Architecture: the right and exact
adapting and joining together of the lines and angles which compose and form the face of the building (fig. 8-11).

238

Appendix B

8-10. Squares instantiated within a
screen coordinate system.

sopicioio el

ofe ot

= I ""
- oEa $ojoh Y

T T R i . s S —— —a

CORERE LEEE - DB

8-11. "A right and exact adapting and joining together the lines and

angles which compose and form the face of the building™: a composi-
tion of parallels, perpendiculars, simple whole number ratios, and in-
stances of squares by Alberti.

239

Synthetic Tutor

Module 54: 8.3 Parameter 5

8.
GRAPHIC VOCABULARIES

8.3 PROCEDURES
8.3.3 PARAMETERIZED PROCEDURES

Just as we used procedures Square, Triangle, and Hexagon earlier to generate the corresponding figures, we can use
parameterized procedures to generate instances of parametric objects, such as our square (fig. 8-12).

The first step in writing a parameterized procedure is to list the formal parameters in parentheses after the procedure
name and declare their types. For example, we might begin a parameterized procedure to draw a square:

def Square (X, Y, Length):

Next we express our commands/functions (rs.AddLine()) in terms of the three formal parameters (fig. 8-13). The
coordinates X and Y are given directly by the formal parameters. The coordinate X2 is given by X + Length, and the
coordinate Y2 is given by Y + Length. Using these coordinate values, we can write the procedure as follows:

[sample code on the right side]

Notice that the code within this procedure produces any square with sides parallel to the coordinate axes, (as
specified by the parameter values) and only such squares, so it expresses the essence of the type Square. This is done
by means of arithmetic expressions and assignments that define the appropriate connectivity, direction, and ratio-of-
length relations. Then each rs.AddLine generates a line that is spatially related in the appropriate way to its
predecessors. The first rs.AddLine produces a line starting at point (X, Y, 0), parallel to the X axis, and of the
specified Length (fig. 8-14a). The second produces a second line connected to the end of the first, perpendicular to
it, and in a Length ratio of 1:1 (fig. 8-14b). The third produces a third line, connected to the end of the second,
perpendicular to it, and once again, in a Length ratio of 1:1 (fig. 8-14c). Finally, the fourth rs.AddLine produces a
fourth line that connects the end of the third line back to the beginning of the first (fig. 8-14d).

The formal parameter list, on the other hand, specifies whatever it is that we want to vary about squares-the
accidental properties of squares that we want to control. If we want to make a composition out of squares, the formal
parameters establish our graphic variables. In this case, the parameters are X, y, and Length, corresponding to the
variables shown on our diagram.

Once such a parameterized procedure has been declared, it may be invoked with defined parameter values to
generate an instance. The following statements first assign values to X, Y, and Length, then invoke Square with
these values as actual parameters to generate the corresponding instances:

x =400
y =200
Length =300

Square(x, y, length)
Instead of using separate assignment statements, we can more concisely write:
Square (400, 200, 300)

That is, we can specify values for X, Y, and Length directly in the list of actual parameters.

240

i
7

J

§ & 8

\ |
&IlMWMumw&wa square; parameter values are passed
in, and the ing instance is passed out.

242

Synthetic Tutor

Xy x2Y
——)
LENGTH

a The type diagram.

Y

b. Independent and dependent variables.

§8-13. Veﬂumudlmaolamu.
pressed in terms of X, Y, and Length.

Xy x2y

a First vector drawn from point (X,), per-

allel 1o the X axis, and of specified
Length.
o X2.v2
N

S

XY X2y

b. Second vector connected to end of first,

perpendicular o i, and in ratio 1:1.
XV x2.v2
xy X2.Y

¢. Third vector drawn in the same relation-
ship to the second as the second is to

the firsL
xye X2z
XY X2.¥
d. Fourth vector connects to the beginning
ol the first.

8-14. The procedure Square spatiall
relates four vectors.

Appendix B

CODE RESULT
import rhinoscriptsyntax as rs

def drawSquare(x, y, leagth):
calculate values for x2 and y2
x2 = x 4 length
¥2 = y + length

set the porints of Eour corners
ptl = [x, y, 0)

pt2 -~ [x2, y, O)

ptd = [x2, y2, 0]

pté = [x, y2, 0]

draw line

ra.AddLine(ptl, pt2)
ro.AddLine(pt2, ptld)
re.AddLine(pt3, ptd)
rs.AddLine(ptd, ptl)

drawSquare(10, 10, 100)

wwiwr. youtube.com is now full screen.

JORESEARCHADOIH20THESS e 0 O (S5 © & B TR auanceoo: nemivou et e 08015 Hos & s pars
3
B V. e s paes e o e

LOW §_SESSIONT chap™) = "08014". %~

DEACEAM

- [

B The wrtion of 3 paetetond prado b du § e pram—t b @ o
[PO e -

Y -

& P v S e g (1. ¥,
oare

243

Synthetic Tutor

Module 55: 8.3 Parameter 6

8.

GRAPHIC VOCABULARIES

8.3 PROCEDURES

8.3.3 PARAMETERIZED PROCEDURES (continued)

If we repeatedly invoke Square, with different X, Y, and Length values, we produce a picture composed of many
instances of squares.

[sample code on the right side]

We could produce exactly the same result with the following, which specifies each line directly by a rs. AddLine:
[sample code on the right side]

But this program is lengthy and difficult to follow, and unlike the program that invokes the parameterized procedure
Square, it does not take advantage of our knowledge that the picture is composed entirely of instances of squares

with sides parallel to the coordinate axes. So the program that invokes Square is more concise and tells us more
about the structure of the drawing that it generates.

8-15. A stack of shrinking squares.

244

Appendix B

CODE RESULY
import rhinoscriptsyntax as rs

def drawlquare({x, y, length):
calculate values for x2 and y2
%2 = x + length
y2 = y + length

set the porints of four corners
ptl = [x, y, 0)

P2 ~ [%2, v, 0)
pt3 » [x2, y2, O)
pté ~ Ix, y2, 0)
draw line

rs.MdLine(ptl, pt2)
rs.MdLine{pt2, pt3)
ra.MdLine(pt3, ptd)
ra.MddLine{pté, ptl)

def main()s
drawsquare{400, 50, 200)
drawSquare (420, 270, 160)
dravSquare{ddo, 450, 120)
drawSguare(460, 550, B8D)
drawSquare(483, 650, 40)

main()

245

Synthetic Tutor

def drawFivefSiquares{):
draw the first square with side =~ 200
= = 400
y = 50
x2 = x + 200
y2 = y + 200
ptl = [x, ¥, 0}
pt2 = [x2, y, 0}
pt3 = fx2, y2, 0]
ptd = [x, y2, 0]
rs.AddLine(ptl, pt2)
rs.AddLine{pt2, pt3)
rs.AddLine(pt3, pt4)
rs.AddLine{ptd, ptl)

draw the first square with side =~ 160
x ~ 420

Yy ~ 270

x2 = x + 160

y2 =~y + 160

ptl = [x, y, O}

P2 = [x2, y, O}

pt3 = [x2, y2, 0)

ptd ~ [x, y2, 0}

rs.AddLine{ptl, pt2)

rs.AddLine(pt2, pt3)

rs.MddLine{pt3, ptd)

rs-Addlineiptd, ptl)

draw the first square with side = 120
x = 440 .
y = 450

x2 = x ¥ 120

Yz =y 4+ 120

ptl = [x, y, 0]

pt2 « [x2, y, 0}

pt3 - [x2, y2, 0)

ptd = [x, y2, 0]

rs.AddLine{ptl, pt2)

rs.AddLine(pt2, pt3)

s . MdLine({pt3, ptd)

rs.AddLine(ptd, ptl}

draw the Eirst square with side =« 80
x = 460

y = 590

x2 = x 4+ 80

¥y2 =y + 8D

ptl « [x, y, 0)

pt2 « [x2, y, 0)
ptd - [x2, y2, 0]
ptd » [x, y2, 0)
rs.AddLine(ptl, pt2)
ra.AddLine{pt2. pt3)
rs.AddLine{ptl, pt4)
rs.AddLino{pts, ptl)

draw the first square with side ~ 40
x = 480

y = 630

x2 » x + 40

y2 « y + 40

ptl = [x, ¥, 0]

pt2 = [x2, y, 0]
pt3 =~ [x2, y2, 0)
ptd » [x, y2, O}
rs.Addline(ptl, pt2)
rs.AddLine{ptz, pt3)
rs.AddLline{ptl, pt4)
ra.AddLins{ptd, ptl)

drawFiveSquares()}

246

Appendix B

B e ! iptasyntax as s
a e
drawSquare (¥. length):
x2 = x + le
¥y2 =y ¢+

Ix, ye
(x2, ¥,
ix2, y3

x, y2,

e

A vaerd of g g

247

Synthetic Tutor

Module 56: 8.3 Invoking

8.
GRAPHIC VOCABULARIES

8.3 PROCEDURES
8.3.4 INVOKING PROCEDURES

The concept of a parameterized graphic procedure and its uses should now be clear. Before going on, though, it will
be useful to pause and summarize the rules that must be followed when invoking procedures. These are much like
the rules that apply to the invocation of functions.

We have seen, first, that a procedure is invoked by giving its name and the actual parameters. This causes the values
of the actual parameters to be assigned to the corresponding formal parameters. The procedure is then executed, and
the computer returns to process the next statement following the procedure invocation. The values of the actual
parameters can be specified directly in the list as

drawSquare (400,200,300)
or by assigning values to variables that are then listed as actual parameters, for example:

x =400

Y =200

Length = 300

drawSquare (X, Y, Length)

In this latter case, these variables must be declared in the main program and are local to it. It is not necessary for
these variables to have the same identifiers as the formal parameters of the procedure drawSquare. For example, we
might write:

X_Corner =400

Y_Corner =200

Side =300

drawSquare (X_Corner, Y_Corner, Side)

It is the positions these variables occupy in the actual parameter list that are important. In this case the value
assigned to the variable X_Corner will be passed to the formal parameter X the value assigned to the variable
Y_Corner will be passed to the formal parameter Y and the value assigned to Side will be passed to the formal
parameter Length. The only requirement is that the type of the variable must match the type of the corresponding
parameter. In this case X_Corner, Y_Corner, and Side must all be declared as integer variables.

The following program illustrates these points by showing yet another way to create the stack of squares in figure 8-
15:

[sample code on the right side]
Noie ihai in order io draw a diifereni set of siacked squares, one need change oniy the initiaiiy assigned vaiues of the

variables (X_Corner, Y_Corner, Side, and Increment). Notice also that several statements are repeated each time a
square is drawn. In chapter 9, we will see how to eliminate this redundancy.

248

CODE RESULY
import rhinoscriptsyntax as rs

def

drawSquare{x, y, length):

calculate values for x2 and y2
x2 = x + length

¥2 = y + length

set the porints of four corners
ptl = [x, ¥, 0)

pt2 = [x2, y, 0]

ptd - [x2, y2, 0]

ptd - [x, y2, 0]

draw line

rs.AddLine(ptl, pt2)
zs.AddLine{pt2, pt3)
re.MdLine(ptl, ptd)
rs.hddLine(ptd, ptl)

drawPiveSquaresIncremental{):
x = 400

y = 50

oide = 200

inerement = 20

draw the first square
drawSquare(x, y. side)

draw the second sguare

side = spide - 2¢increment
drawSquare(x, y, side)

draw the third square
x = x + increment

y = ¥y + side + increment
side = side - 2¢increment
drawvSquare{x, y., side)

draw the fourth square
x = x + increment

y = y + side + increment
side = side - 2*incremesnt
drawSquare(x, y, side)

draw the fifth square
% = x + incremeat

¥y = ¥ + side 4+ increment
side = side - 2*increment
drawSquare{x, y, side)

dravFiveSquaresIncremental()

Appendix B

249

Synthetic Tutor

yntax as rs

DERS/OINIORESE?
Toweg LIS S BF

www youtube com is now full screen.

HESS Yo, T) RO 6

3
B\ 2t e e e A
2

DRAGRAM

-aly
—

B2 The aien o 3 prrmsstmnd pramios b deve § ngrs it st @ e
e e repmed i 4 et

R

ay =y

& P e e YO oA (2 Ve
B e O e
L

250

Appendix B

Module 57: 8.4 Shape

8.
GRAPHIC VOCABULARIES

8.4 SHAPE AND POSITION PARAMETERS

In the remainder of this chapter we shall assume that you have a sound grasp of parameterized procedures that
generate a line figure, and we shall concentrate on the logic of parameterization. Specifically, how do you choose
and express the parameters of a graphic element?

It is useful to begin by distinguishing between the shape and position parameters of a graphic element. Shape
parameters control size, proportion, and other such properties, whereas position parameters control the location on
the drawing surface. In Square, for example, Length is a shape parameter x and Y are position parameters (fig. 8-
16).

8.4.1 ALTERNATIVE PARAMETERIZATION SCHEMES

Usually there are different, though mathematically equivalent, ways to specify shape and position parameters. For
example, we could locate a square by its center point, rather than its bottom-left corner (fig. 8-17) and rewrite
procedure drawSquareFromCenter() as follows:

[sample code on the right side]

Or we might want to specify squares by giving the coordinates of the top-right corner and the length of the diagonal
(fig. 8-18). In this case, drawSquareFromCorner() could be written:

[sample code on the right side]

Choice of the parameterization scheme depends on the intended compositional use of the motif. If you intend to fit
squares together with edges aligned (fig. 8-19a), you will probably find it convenient to specify position by corner
coordinates and shape by side length. Concentric nesting (fig. 8-19b), on the other hand, is easier if position is
specified by center coordinates. And corner-to-corner diagonal connection (fig. 8-19c¢) is easier if shape is specified
by the length of the diagonal. If you intend to use a motif in several different ways, you may find it convenient to
write a procedure for each.

251

Synthetic Tutor

b. Position parameters of a square.
8-16. Shape and position parameters.

Y s
’
s
4
4
4
Fd
F'd
7
I/ !
rs Ix
8-18. Another way to p teri:
8 square.

252

i
T, T . O

|

1

I

XC

8-17. A square located by its center point.

a. Edges of squares related.

b. Centers of squares related.

c. Diagonais of squares related.

$-19. Different

CODE RESULT
import rhinoscriptsyntax as rs

def drawSquarcFromCenter(xc, yc, length):
xl = xc - {length/2)
x2 = x1 + length
yl = ye - {(length/2)
y2 = yl + length
ptl = [x1, ¥l, 0]
pt2 = [x2, yl, 0]
ptd = [x2, y2, 0]
pté = [x1, ¥2, 0]
rs.AddLine(ptl, pt2)
rs.AddLine(pt2, pt3)
rs.AddLine(pt3, ptd)
rs.MddLine(ptd, ptl)

drawSquareFromCenter(100, 100, 200)

import rhinoscriptsyntax as rs
import math

dof drawSquareFromCorner{xd, yd, diagonal):
radiance = 0.01745
theta = 45 * radiance
pide = diagonal * math.sin(theta)
x = xd - side
y = yd - side
ptl =~ [x, ¥y, 0]
pt2 = [xd, ¥, 0]
pt3 = [xd, yd, 0]
pté = [x, yd, 0]
re.MdLine(ptl, pt2)
re.MdLine(pt2, ptl)
ro.AddLine(ptd, ptd)
re.AddLine(ptd, ptl)

drawvSquareFromCorner (100,100,200)

©tate Kl -DII o Oy~

WOI ! e @ ram g prens bpary Lovho gy

Appendix B

253

Synthetic Tutor

B oo Fyion Losor - CUUMORG FOLDERS 2 RESEARCI D01 ThE S0 0w T b Tutor sl DRI How 1 drew rotanondl pers. |

Fie Bt Dby Tosh Moy

D -@OE £+ P-&-<0oa
. e P —— e ——
[Y ————
S et I
3 W

254

Appendix B

Module 58: 8.4 Position 1

8.
GRAPHIC VOCABULARIES

8.4 SHAPE AND POSITION PARAMETERS
8.4.2 CHOOSING POSITION PARAMETERS
We can establish many or few position parameters to a graphic element, depending on the number of degrees of
freedom that we want in positioning the element within the boundaries of the screen coordinate system. In Square
we have used two position parameters, X and Y, so that we have two degrees of freedom, which enables us to move
instances in directions parallel to the x and Y axes. But we could have fewer. In the following procedure,
drawSquare(), Y is made a constant within the procedure, and the only position parameter is X:
[sample code on the right side]
In other words, a certain Y coordinate becomes an essential property of the element, and we have fewer design
variables. We can invoke this procedure to generate compositions of aligned squares. The following statements, for
example, generate the composition shown in figure 8-20:

drawSquare (150, 50)

drawSquare (250,100)

drawSquare (400,150)

drawSquare (600,200)
The next version of a procedure to draw a square has no position parameters:

[sample code on the right side]

This procedure drawsVaryingSquare() starting at a certain point, and Length is the only design variable. The
following statements use it to generate the composition shown in figure 8-21:

255

Synthetic Tutor

8-21. A composition in which squares
are fixed at their bottom-left comer, but

side lengths vary.

256

CODE RESULT

import rhinoscriptsyntax as rs
import math

def drawSquare(x, length):
¥y = 200

calculate values for x2 and y2
x2 = x + length
¥y2 = y + length

set the porints of four corners
ptl = [x, y, 0]

pt2 = [x2, y. 0]

pt3 = [x2, y2, 0]

ptd = Ix, y2, 0]

draw line

rs.AddLine{ptl, pt2)
rs.AddLine{pt2, pt3)
ro.AddLine{ptd, ptd)
rs.AddLine(ptd, ptl)

def drawAlignedSquare{):
drawSquare(150, 50}
drawSquare{250, 100)
dravSquare{400, 150)
drawSquare{£00, 200)

drawAlignedSquare()

import rhinoscriptsyntax as rs

def drawSquare(leagth):
x = 200
¥y = 300
calculate values for x2 and y2
x2 = x + length
¥2 = y + length
set the porints of four corners
ptl = [x, y. 0]
pt2 = [x2, y, 0]
ptd = [x2, y2, 0]
ptd = [x, y2, 0]
draw line
rs.AddLine{ptl, pt2)
rs.AddLine{pt2, ptl)
rs.AddLine(pt3, ptd)
rs.AddLine{ptd, ptl)

def drawVaryingSquare():
drawSquare{250)
drawSquare{300)
drawSquare{150)
dravSquare{400)

drawVaryingSquare()

Appendix B

257

Synthetic Tutor

Bl v youtube.com is now full screen.

e Ide Debey fock ley
Dis-WOB £+ b-o- 00w
s n LS e 1 s Brchiong b par e CompORSors By

258

Appendix B

Module 59: 8.4 Position 2

8.
GRAPHIC VOCABULARIES

8.4 SHAPE AND POSITION PARAMETERS

8.4.2 CHOOSING POSITION PARAMETERS (continued)

Another possibility is to define not only X and Y as position parameters, but also an angle Theta of rotation from the
X axis (fig. 8-22). It is thus no longer an essential property that a square has sides parallel to the coordinate axes, and
we have an additional position variable to work with in design. The code of the procedure now becomes more
complicated and involves use of some trigonometry:

[sample code on the right side]

(Do not be too intimidated by this. Later we shall explore much more convenient ways to handle rotations.)

The following code assigns values to all three position parameters and the shape parameter Length, for each
instance, and generates the composition 8-22. The introduction of Theta as a shown in figure 8-23: third position
parameter.

The effect of introducing additional position parameters is much like that of introducing additional drawing
instruments. If you have only a parallel rule and a ninety-degree set square, you can only construct squares parallel

to the coordinate axes. But, if you introduce an adjustable drafting triangle, or a drafting machine, you can construct
squares at any angle.

259

Synthetic Tutor

§8-22. The introduction of Theta as a
third position parameter.

§-23. A composition of rotated squares.

260

CODE

import rhinoscriptsyntax as rs
import math

dof drawSquarae{x, y, leagth, theta):
k = 0.01745
calculate valueas for x2 and y2
x2 = x + length * nmath.cos{theta * k)
y2 = y + length * math.sin(theta * k)

theta = theta + 45

diagenal = math.sgqrt{length * length * 2)
x3 = x ¢+ diagonal * math.cos{tbeta * k)
y3 = y ¢ diagonal * math.pin{tbota * k)

theta = theta ++ 45
x4 = x 4+ length * math.cos(theta * k)
y4 = y + length *+ math.sin{theta * k)

set the porints of four corners
ptl = [x, y, 0]

pt2 = [x2, y2, 0}

pt3 = [x3, y3, 0]

pté = [x4, yi, 0]

draw line

rs.Addline(ptl, pt2)
rs.AddLine(pt2, pt3)
rs.AddLine{ptl, ptd)
rs.AddLine{ptd, ptl)

def drawRotatedSquares():
draw an outer square
x1 = 200
¥yl = 200
lengthl = 500
drawvSquare(xl, yl, lesgthl, 0)

draw rotated second square

%2 = x1 + (leagthl / 2)

length2 «» round(lengthl/math.sgrt(2.0))
drawSquare(x2, yl, length2, 45)

draw an outer sguare

x3 = x1 4 {(lengthl [/ 4)

¥3 = yl + {lengthl / 4)

lengthd = round{length2/math.sqrt(2.0))
drawSquare(x3, y3, length3, 0)

draw an outer squarc

lengthé = round{length3/math.sqgrt(2.0))
drawSquare(x2, y3, lengthd, 45)

drawRotatedSquares{)

RESULT

Appendix B

261

Synthetic Tutor

B Bhuro Python dor - € JOMORG_FOLDERSES RESLARCHO0T THELE YouTabeTutonedf CH0TS Mow 12 draw sotmonsl pars. |

Fie Edt Duebeg Tooh ey

Ds-E@0E £2- p-@m-=0ua

[& @ oo e e o et b
| 6@ seesen

| | pe— |

HI = 2w

262

Appendix B

Module 60: Exercise 3

7.
COORDINATE CALCULATIONS

7.9 EXERCISES
1. Python does not have a function to calculate the reciprocal of an integer. Write one.

Pleasc upload your python file: | Choose fite | N file chosen |_Submit |

2. Python does not have an exponentiation function. Write one.

Please upload your python file: | Choose Fife i No file chosen {_Submit |

3. Write a function that calculates the area of a circle of specified radius.

Please upload your python file: | Choose File | No file chosen |_Submie |

4. Write a function that calculates the perimeter of a circle of specified radius.

S—— P

Please upload your python file: §”a;oose File | No file chosen Submit |

5. Write a function to return the mean of two real numbers.

Please upload your python file: {_Choose File_j No file chosen {_submit }

6. A line is divided into the so-called golden ratio when AB/BC = BC/AC (fig. 7-11a). Figure 7-11b shows a
geometric construction for dividing a line in this ratio. Write a function that accepts the coordinates of A and C, and
returns the X coordinate of B.

Write a second function to return the Y coordinate.

263

Synthetic Tutor

) |
! i
/" ' |
P |
0 = &
A B Cc
b. lis geomelric construction.
7-11. A line divided in the golden ratio.
Please upload your python file: | Choose File | No file chosen | Submit |

7. Consider the following function:
def change_Y(Y):
result = (1024 - Y) /2
return result

What would be the effect of using Change_Y to change every Y coordinate of a drawing in a 1,024 by 1,024 screen
coordinate system?

Please upload your python file: |_Choose File | No file chosen { Submit |

264

Appendix B

Module 61: 8.4 Parameter 1

8.

GRAPHIC VOCABULARIES

8.4 SHAPE AND POSITION PARAMETERS

8.4.3 CHOOSING SHAPE PARAMETERS

We can also establish many or few shape parameters, with corresponding degrees of freedom to vary the shapes of
instances. By definition, a square has only one shape parameter, which we have taken to be Length. We might even
eliminate this, as in the following procedure that draws squares of fixed size at different positions parallel to the
coordinate axes:

[sample code on the right side: drawSquare()]

Our only design decisions now are about values of the position parameters X and Y for each instance. The
composition shown in fig. 8-24 was generated by the following statements, which assign values to these parameters
for each instance:

[sample code on the right side: drawSquareWithPositions()]

A rectangle, by definition, has two shape parameters, which we usually think of as Length and Width (fig. 8-25). We
can modify our Square procedure to become a Rectangle procedure:

[sample code on the right side: drawRectangle()]

Note that this represents a generalization of the idea of a square. Rectangle can still produce squares if we choose to
relate Length and Width by assigning each the same value, but it can also produce rectangles that are not squares. In
other words, the square is a specialized subtype (with a more restrictively defined essence) of the rectangle. The
following statements, which invoke Rectangle, generate the composition shown in figure 8-26.

[sample code on the right side: composeRectangles()]

A rectangle with sides parallel to the coordinate axes can also be parameterized in terms of the coordinates of its
diagonally opposite comers (fig. 8-27).

265

Synthetic Tutor

8-24. A composition in which the 8-25. A rectangle with sides parallel to
squares are of fixed size but vary in the coordinate axes. Length and Width

8-26. A si of 8-27. A rectangle parameterized by the
mumple composition coordinates of its diagonally opposite
corners.

266

CODE RESULT
import rhinoscriptsyntax as rs

def drawSquare(x, y):
length = 100

calculate values for x2 and y2
%2 = x + leagth
y2 = y + length

set the porintse of four corners
ptl = [%, y. 0]

pt2 = [x2, y, 0]
pt3 = [x2, y2, 0]
ptd = [x, y2, 0]

draw lines

re.AddLine{ptl, pt2)
re.AddLine{pt2, pt3)
re.AddLine(pt3, ptd)
re.hddLine(ptd, ptl)

def drawSquarcWithPositons():
drawSquare{200,400)
drawSquare(340,360)
drawSquare(480,320)
drawSquare(620,280)

drawBquareWithPositons()

import rhinoscriptsyntax as rs

def drawRectangle(x, y, length, width):
x2 = x + length
y2 = y + width

ptl = [x, y. 0]

pt2 = [x2, y. 0)
pt3 = [x2, y2, 0]
ptd = [x, y2, 0)

ra.AddLine(ptl, pt2)
ra.AddLine(pt2, ptl)
rs.AddLine(ptl, ptd)
ro.AddLine(ptd, ptl)

def composeRectangles()i
drawRectangle(200,200,100,200)
drawRectangle(350,200,100,250)
drawRectangle(500,200,100,300)
drawRectangle(650,200,100,350)

composcRectangles()

Appendix B

267

Synthetic Tutor

Trvee Pyshan Eater - CUMONG BOLDERS St RELUARCH 0T THESED Yoo T uba Tutorat SH0CS Hom 13 dvea rotesone pera.

Fie F41 ODuey Tosh Hey

Ds-@OE £ P& 508

|5 @ wwe 7% i 1 &9 st g § 3 P
| # @ swonwrren

| & @ sonboorted l

ey

]

e

BB The miswbestion of Thets =+
ol rrwn

268

Appendix B

Module 62: 8.4 Parameter 2

8.

GRAPHIC VOCABULARIES

8.4 SHAPE AND POSITION PARAMETERS

8.4.3 CHOOSING SHAPE PARAMETERS (continued)

Introduction of the additional shape parameter Shear angle (fig. 8-28) yields the type parallelogram. The following
procedure draws parallelograms:

[sample code on the right side]

This represents another generalization. Parallelogram will draw rectangles when Shear is set to 90 degrees, and it
will draw squares when Shear is 90 degrees and Length has the same value as Width.

Here, for the ambitious, is a procedure with X, Y, Theta, Length, Width, and Shear_angle (fig. 8-29) as parameters:
[sample code on the right side]

This involves some fairly complicated trigonometry. The following statements invoke it to generate the composition
of rotated parallelograms shown in figure 8-30:

269

Synthetic Tutor

€ Y
| &
X X
8-28. A parallelogram with two sides §-29. A rotated parallelogram.
parallel to the X axis.

8-30. A composition of rotated
parallelograms.

270

CODE RESULT

import rhinoscriptsyntax as rs
import math

def

drawParallelogram(x, ¥, length, width, shear angle):
randiance = 0.01745

shear_angle = ghear_angle * randiance

x2 = x + length

x4 - x + width * math.cos(shear_angle)

x3 = x4 + length

y2 = y + width * math.sin{shear_angle)

ptl = [x,¥,0]

pt2 = [x2,y,0]
ptd = [x3,y2,0)
ptd = [xd4,y2,0)

re.AddLine{ptl, pt2)
rs.AddLine(pt2, ptl)
ro.AddLine{pt3, ptd)
rs.MdLine(ptd, ptl)

dravParallelogram(10, 10, 100, 100, 45)

import rhinoscriptsyntax as rs
import math

def

drawParallelogram({x, y, length, width, shear angle, theta):
radiance = 0.01745

shear_angle = shear_angle * radiance

theta = theta * radiance

x1 = width * math.cos(shear_angle)

yl = width * math.sin(shear_angle)

length_x1 = length ¢ xl

diagonal = math.sqrt{yl * yl + length xl1 ¢ length xl)
angle = math.atan(yl / (length + xl))

x1 = x + length * math.cos(theta)

¥l = y + length * math.sin(theta)

x2 = x + diagonal * math.cos(thota + angle)
y2 = y + diagonal * math.sin(theta + angle)
x3 = x + width * math.cos(shear_angle + theta)
¥3 = y + width * math.sin(shear_angle + theta)
ptl = [x,¥,0]

pt2 ~ [x1,y1,0])

pt3 = [x2,y2,0)

ptéd = [x3,y3,0)

ro.AddLine{ptl, pt2)
ro.AddLine(pt2, ptl)
re.AddLine(ptd, ptd)
re.AddLine{ptd, ptl)

a tedParallel 0):
drawParallelogram(400,300,400,200,45,0)
drawParallelogram(400,300,300,150,45,90)
dravParallelogram(400,300,200,100,45,180)
dravParallelogram(400,300,100,50,45,270)

drawRotatedParallelogram()

Appendix B

27

Synthetic Tutor

272

XCIUHONG FOLDERS/D] RI0RESEARCH/D0T H20THESIS YouTube Tutoriale/Mtmi/chDe

vosne] Tesneng — Bua® B0E - [l ety detme. — @RNE RRLA.

git =

Saf S1awFarailelsgras
pasiance = 1743

Appendix B

Module 63: 8.4 Parameter 3

8.
GRAPHIC VOCABULARIES

8.4 SHAPE AND POSITION PARAMETERS
8.4.4 THE MAXIMUM POSSIBLE NUMBER OF PARAMETERS

We can generalize the idea of a four-sided figure to the ultimate by allowing the coordinates of each vertex to be set
independently (fig. 8-31). Thus we have eight parameters, giving us eight degrees of freedom. The following
program generates a composition of such figures (see fig. 8-32):

[sample code on the right side]

Notice that the procedure drawFourside() does not necessarily generate polygons. It can also generate —bow tie-
figures (fig. 8-33).

In general, the maximum number of parameters for a figure composed of n vectors is 4n (fig. 8-34a). If the vectors
are connected head to tail (Klee, active line, limited in its movement by fixed points) the maximum is 2(n + 1) (fig.
8-34b). If they are connected to form an n-sided figure, the maximum is 2n (fig. 8-34c). Our task in parameterizing a
procedure to draw a figure composed of n vectors, therefore, is to choose some appropriate number of degrees of
freedom between 0 and 4n, then to work out a convenient way to define the parameters and express the code of the
procedure in terms of them.

Figures with few degrees of freedom are subtypes of figures with more. We have seen, for instance, that the square

is a subtype of the rectangle, and the rectangle of the parallelogram. Thus hierarchies of types and subtypes emerge
(fig. 8-35).

273

Synthetic Tutor

AN

a. Composition 0f four vectors.

Y4

s

b. Four-sided figure.

¢. Four-sided polygon.

o —

8-32. A composition of quadrilaterals. . Paraligiogram.

1. Rectangle.

g Square

8-33. A “bow-tie” figure.

g

. A typical hierarchy of types and

i

274

Appendix B

X7.¥7
x3.x3
o \
/‘XS.YG X8.Y8

X4yvs X5.Y5
X1.Y1,

a. A figure composed of 4 vectors can have 4n = 16 parameters.

X4,Y4
xa.yz

—g X5Y5

X1,Y1
X3.¥3

b. A chain of 4 vectors can have 2{n + 1) = 10 parameters.

X1.¥1

X4.Y4

¢. A 4-sided figure can have 2n ~ 8 paramelers.

8-34. The maximum number of parameters for a figure composed of a vectors.

275

Synthetic Tutor

CODE RESULT

import rhinoscriptsyntax as rs
import math

def drawFoursideixl, yl, x2, y2, x3, y3, x4, yd):
ptl = [x1,y1,0]
pt2 = [x2,y2,0]
ptd = [x3,y3,0]
ptd = [x4,y4,0]
ro.AddLine(ptl, pt2)
rs.hddLine(pt2, ptl3)
re.AddLine(ptd, ptd)
re.AddLine(ptd, ptl)

def drawCompositionQuadrilaterals():
drawFourside(200,100,350,275,300,400,100,300)
drawFourside(350,125,500,100,500,325,400,300)
drawFourside(600,250,625,500,425,500,475,450)
drawFourside(350,400,450,450,425,500,375,450)

drawCompositionQuadrilaterals()

T Z T T e T T T T T T I I TR
B Brimg e boor - CUUMONS BOLTERTO BESEARC HII0] THELS ¥ensTube Tumomsals BOIT siom b dhina Quadela .

Fie Bt Duieg Tesh Melp

De-E0WE L- b-@- 208

LA e 12 e undieter st By

276

Appendix B

Module 64: 8.5 Proportion

8.
GRAPHIC VOCABULARIES
8.5 RULES OF PROPORTION
Where there are n vectors and we choose d degrees of freedom for a figure, 4n-d coordinate values must be
generated within the procedure. This can be done either by setting coordinates to constants, or by making
coordinates dependent on the parameters. Such dependencies often express rules of proportion. For example, this
procedure incorporates the rule:
Width = Length /2
and generates rectangles of proportion 2:1.
[sample code on the right side]
The next procedure incorporates the rule:
Width = (3*Length) / 5
and generates rectangles of proportion 5:3.

[sample code on the right side]

Both of these procedures have the same parameters X, Y, and Length, but the different functions relating Length and
Width make them different subtypes of the type Rectangle.

277

Synthetic Tutor

LENGTH

2. Type dwgram.

——— ————

8-36. A rectangle of proportion 2: 1.
]
!
LENGTH

b. Some

8-37. A reclangle of proportion 5:3.

278

Appendix B

CODE RESULT

import rhinoscriptsyntax as rs
import math

def drawRectangleTwoToOne(x, ¥. length):
calculate width as function of length
width = length / 2

calculate vales for x2 and y2
x2 = x + length
y2 = y + width

ptl = Ix,¥.0]

pt2 = [x2,y.0]
pt3 = [x2,y2,0)
ptd = [x,¥2.0)

rs.AddLine(ptl,pt2)
ro.MddLine(pt2,ptd)
rs.MdLine(pt3,ptd)
ra.hddLine(ptd,ptl)

drawRectangleTwoToOne(100,100,100}

import rhincscriptsyntax as rs
import math

def drawRectanglePiveToThrec(x, y, length):
calculate width as function of length
width = (3 * leagth) / 5

calculate vales for x2 and y2
x2 -~ x + length
¥2 = y + width

ptl = [x,y.0]
pt2 = [x2,y,0)
ptl - [x2,y2.0)
ptd = [x,¥2,0]

rs.AddLine(ptl,pt2)
rs.AddLine(pt2,ptl)
rs.AddLine(pt3,ptd)
ro.Mddline(ptd,ptl)

drawRectangleFiveToThree{100,100,100)

e B drgoss §) Rade ¥ ¥ 1 3 Fiw JeIe M) 0
L | i FORDERTEL B GLARCHAOCT THELED Vot ute Tutoeatd GBI How W3 Smw progon

0 OF BOOY weacy_wary' $ RPCHTANT ! DONT FORUST

i >] = ’.m-

a
P s gm0

279

Synthetic Tutor

Module 65: 8.6 Vectors

8.
GRAPHIC VOCABULARIES

8.6 WAYS TO CONNECT VECTORS

Types of motifs can be constructed systematically by considering all the different ways to make a connected figure
out of n vectors (fig. 8-38). Two vectors can be connected end to end. There are three ways to connect three vectors.
With four vectors the possibilities expand. There is, as one might expect, a combinatorial explosion as the number of
vectors grows (see Harary 1969). The essential point, though, is that the number of possibilities for a given number
of vectors is finite, and you can systematically enumerate all of them. If vectors are the atoms, these connected
figures are the molecules of line drawings.

The pattern of connection of vectors in a graphic element is expressed in the generating procedure by the sequencing
of points (Pts is a nested list of four points and each point is a list of three coordinates). Let us consider, for example,
the shapes composed of three vectors. Code for a triangle (fig. 8-39a) may be expressed:

import rhinoscriptsyntax as rs

Pt0 =[x1, y1, 0]

Ptl =[x2, y2, 0]

Pt2 =[x3,y3, 0]

P33 = [x1, y1, 0]

Pts = {Pt0, Pt1, P2, Pt3]
rs.AddPolyline(Pts)

Note that six variables are used to save X, y coordinates here (x1, y1, x2, y2, x3, and y3), indicating that there are six
potential degrees of freedom. Code for a chain of three vectors (fig. 8-39b), which has eight potential degrees of
freedom, may be expressed:

import rhinoscriptsyntax as rs

Pt0 =[x1, y1, 0]

Ptl = [x2, 2, 0]

Pt2 =[x3, y3, 0]

P13 =[x4, y4, 0]

Pts = [Pt0, Pt1, Pt2, Pt3]
1s.AddPolyline(Pts)

The only difference is that the last vector does not connect back to the point (X1, Y1), but ends at independently
established coordinates (X4, Y4). Finally, code to draw the radial pattern (fig. 8-39c) may be expressed:

import rhinoscriptsyntax as rs

Pt0 = [x1, y1, 0]

Ptl =[x2,y2, 0]
P2 =TIx1 w1 01
Sle T X1, ¥, v
Pt3=[x3,y3,0]

Pt4 =[x1, y1, 0]

Pt5 = [x4, y4, 0]

Pts = [Pt0, Pt1, Pt2, Pt3,Pt4,Pt5]
rs.AddPolyline(Pts)

Once the pattern of connectivity is established, we might want to restrict ourselves to some subtype by introducing

280

Appendix B

direction and ratio of length relations. In the triangular pattern, for example, we might require a pair of sides to be
perpendicular, defining a right triangle (fig. 8-40a). Or we might require a pair of sides to be of equal length to
produce an isosceles triangle (fig. 8-40b). If we require a pair of sides to be both perpendicular and of equal length,
we obtain a right isosceles triangle (fig. 8-40c). And if we require all sides to be of equal length, we produce an

equilateral triangle (fig. 8-40d).

281

Synthetic Tutor

L —

~————e >

8-38. All the possible ways to connect four or fewer vectors.

X3Y3
x2y2

x1.¥1

a Triangle.

X1.¥1
X4 N4
X3.¥3

X4y4

xX1.¥1

X2z xX3Y3

. Radial pattern.

8-39. Patterns of three vectors.

282

a Right triangle.

b. Isosceles triangle.

c. Right isosceles triangle.

d. Equitateral triangle.
8-40. Subtypes of the triangle.

Appendix B

283

Synthetic Tutor

Module 66: 8.7 Variables

8.
GRAPHIC VOCABULARIES

8.7 How Much Variation Is Needed?
How much variation should there be within a type? More precisely:

. How many degrees of freedom?

. How should these degrees of freedom be expressed in terms of parameters and dependencies?
. What should be the ranges of the parameters?

. What should be the increments of variation within these ranges?

At one extreme, a type might have only one instance. At the other extreme, for a figure of n vectors, there might be
4n parameters, each with a range of 1,024 values, yielding 1,024 instances. This, however, is a reduction to
absurdity we are back to having n independent vectors. Unless we can see some particular advantage in composing
vectors n at a time, instead of one at a time, we do not gain anything.

The trade-off, then, is that if we write procedures with few shape and position parameters, we will have few graphic
variables to manipulate in generating a composition, and we will be able to generate only highly structured,
disciplined drawings of a very specific kind. But if we allow too many shape and position parameters, then the
method of thinking in terms of types and instances begins to lose its power.

In fact, most of the drawings that we want to generate do turn out to be structured and disciplined in identifiable
ways. The point is to recognize the rules that apply, or that we want to apply, and to express these rules concisely
and elegantly in Python code. Conversely, you should avoid coding in restrictions that, work against your graphic
intentions. Once again, the fundamental issues here are not ones of computer technology, but of an artists or a
designers stylistic choices.

284

Appendix B

Module 67: 8.8 Defining

8.
GRAPHIC VOCABULARIES

8.8 DEFINING VOCABULARIES OF GRAPHIC ELEMENTS

So far we have considered examples of programs that generate compositions from one type of graphic element, such
as a square, a rectangle, a trapezoid, or a triangle. But there is nothing to stop us from declaring procedures to draw
several different types of graphic elements, then instantiating these to create a composition. The next program, for
example, draws the composition of rectangles and triangles that is illustrated in figure 8-42.

[sample code on the right side]

A graphic vocabulary may now be defined as a set of graphic element types that can be instantiated to gencratc
drawings. Each element in the vocabulary is defined by the declaration of a parameterized procedure, and an
instance is created whenever the procedure is invoked by name with appropriate actual parameters. In our example,
then, we have a vocabulary consisting of rectangle and triangle.

We have seen that the parameters to a procedure that generates a vocabulary element establish the design variables
associated with that element. There may be many or few of these, depending upon whether you want many features
of an instance to be -given- or whether you want to be able to vary many features from instance to instance.

The code within a procedure that generates a vocabulary element defines the essential properties. rsAddLine express
how vectors are connected. By setting constants and writing code that makes coordinate values dependent on the
parameters, you establish essential dimensional properties. And, by declaring subranges, you make it essential to
comply with certain limits.

We have also seen that you can take a systematic approach to defining a vocabulary element. First, decide how the
vectors are connected. Next, decide what degrees of freedom you want in shaping and positioning instances, and
develop a convenient scheme for expressing the shape and position parameters. Write expressions making
coordinates in rs.AddLine dependent on these parameters. Finally, express any dimensioning discipline that you
want to impose by means of constants and subranges.

Once the vocabulary has been declared, you can specify a composition by writing commands in the main program to
create instances. The composition can very easily be modified by adding or deleting such commands or changing
parameter values.

There are several ways to organize the code. You might first assign or read values for all the independent variables,
then calculate values for all dependent variables, and finally make a procedure after you have established all the
necessary parameter values. Alternatively, you might read and calculate parameter values immediately before you
need to pass them into a graphics procedure, or you might use some combination of the two alternatives.

Each approach has its advantages and disadvantages. Strict segregation of the three steps keeps clear the logical
distinction between independent and dependent design variables, but makes it more difficult to trace through the text
of the program how a value is derived for a particular shape or position parameter. Conversely, calculation of values
as needed usually makes it easier to trace the derivation of a parameter value, but obscures the distinction between
independent and dependent variables. You must decide what is most important in a given program and choose an
approach accordingly.

285

Synthetic Tutor

LHDIFH

——— o

XC

Y- —

8. Vocabulary elemenis.

b. Composition of instances.

8-42. A composition of rectangles and

triangles.

286

Appendix B

CODE RESULT
import rhinoscriptsyntax as rs

def drawRectangle(xc, yc, length, width):
xl = x¢ - (length 7/ 2)
x2 = x1 + leagth
yl = ye - (width / 2)
¥y2 = yl 4 width

ptl = [x1, yl, 0}
pt2 = [x2, yl, 0]
ptl = [x2, y2, 0]
pté = [x1, y2, 0]

rs.AddLine(ptl, pt2)
re.AddLine{pt2, ptl)
ro.hddLine({pt3, ptd)
rs.AddLine(pt4, ptl)

def drawTriangle{xc, yl, base, altitude):
xl = x¢ - (base / 2)
%2 = x1 + basc
y2 = yl + altitude

pt2 = [x2,y1,0)
ptd = [xec,y2,0)

rs.AddLine(ptl,pt2)
rs.AddLine(pt2,ptd)
rs.AddLine(pt3,ptl)

def drawWindow():
drawRectangle(450,125,300,50)
drawRectangle(450,375,200,400)
drawRectangle(450,375,250,424)
drawTriangle(450,612,200,67)
drawTriangle(450,600,300,100)

drawWindow()

B Wre Pytror dner - {RMONG FOLDIRSG] FESLARTMAONL THEIT o Tube Tt af OB b V5 oyt roct

Fia G40 Debeg Toch reip
De-do 2 b=
| 5 8 oers A1 Mo T ComEoa IS Bt g Iy
[5 @ pwsecs
~ N womeooe

-+ ey

287

Synthetic Tutor

Module 68: 8.8 Vocabulary

8.
GRAPHIC VOCABULARIES

8.8 DEFINING VOCABULARIES OF GRAPHIC ELEMENTS
8.8.1 EXAMPLES OF GRAPHIC VOCABULARIES

A graphic vocabulary allows us to avoid writing long, tedious lists of instructions at the vector-by-vector level. It,
instead, allows us to write instructions at the vocabulary element-by-vocabulary element level. We make use of our
knowledge of the structure of the drawings that we want to produce in order to achieve this, and the structure of the
program expresses this knowledge. Thus the program becomes shorter, more elegant, more informative, and easier
to change.

If you want to write graphics programs, then, one of the first steps is to put together an appropriate library of
graphics procedures. These can be used as building blocks for producing programs very quickly.

You must, of course, think carefully about the kind of graphic vocabulary that you will need. It should be
appropriate to your particular graphic purposes and extensive and flexible enough to allow you to accomplish the
results that you want, yet it should not be too large. Let us consider some examples.

If you want to generate compositions of simple geometric figures, you might put together the following vocabulary
(fig. 8-43):

Line
Circle
Arc
Rectangle
Square

At this point you can write procedures for all of these except Circle and Arc. We will introduce procedures for
drawing circles and arcs in chapter 10.

To create lettering, you might define procedures to instantiate each element of an alphabet. You might allow only
position parameters X and Y (fig. 8-44a) or you might allow size to be varied as well by introducing one shape
parameter (fig. 8-44b). You might also allow compressed or extended versions by introducing a fourth parameter,
allowing height and width to be varied independently (fig. 8-44c). Finally, you might allow the detailed adjustment
of each character form (figure 8-44d).

Where the graphic task is to draw furniture layouts, you will need a vocabulary of furniture types: chairs, desks,
tables, and so on. Or, where the task is to draw architectural elevations, you will need a vocabulary of architectural
elements: doors, windows, columns, arches, and the like. You might develop different vocabularies for elevations in
different architectural styles, such as classical or gothic. A landscape architect might develop a vocabulary of
different types of trees. To draw people you might define a parameterized man, a parameterized woman, and a
parameterized child.

When you establish a graphic vocabulary, the consideration of how instances will be put together to produce
compositions will suggest appropriate parameterization schemes. An architect composing a floor plan, for example,
usually wants to specify columns by center point (XC, YC) and Width (fig. 8-45a). It is usually most convenient to
specify walls by start point (X1, Y1), endpoint (X2, Y2), and thickness T (fig. 8-45b). Windows in elevation are
conveniently specified by Width, Height, center line XC, and sill height Sill (fig. 8-45¢). And arch voussoirs might
reasonably be specified by arch Radius, voussoir Thickness, voussoir Angle, and center-line angle Theta (fig. 8-
45d).

288

Appendix B

- O,

a. Vector, b. Circle
<N
& N d. Rectangle.
o 8 . f. Right triangle.
g Equilateral triangie. h. Triangle.

8-43. A vocabulary for generating compositions of simple geometric figures.

289

Synthetic Tutor

¢. Compressed and extended versions become possible.

AN

d. Detailed adjustments of character form are introduced.

8-44. The parameterization of a character.

290

Appendix B

vc E

Xc

a. Column in plan.

I

x1.¥1 X2,y2
b. Wall in plan.

>
XCYC

¢. Window in elevation.

ANGLE
THICKNESS
- THETA
-
XC.YC
d. Arch voussolr.

8-45. Parameterization schemes for
some architectural vocabulary elements.

291

Synthetic Tutor

Module 69: 8.9 Summary

8.
GRAPHIC VOCABULARIES

8.9 SUMMARY

We have introduced the fundamentally important idea of a graphic vocabulary expressed as a set of parameterized
procedures. We have seen, too, how such procedures may be invoked within a program to generate a composition.
The nature and extent of your graphic vocabulary and appropriate schemes for parameterization of its elements are
established by carefully analyzing the ways that the drawings you intend to produce can be decomposed, the ways
that these parts can be classified into types according to their commonalities and differences, and the ways that
instances are varied and related in compositions.

292

Appendix B

Module 70: 9.1 Repetition

9.
REPETITION

We began by looking at pictures simply as sets of vectors, and we saw how they could be generated by sequences of
procedures. Then, in the last chapter, we saw that pictures may have more structure; they are often composed of
instances of elements from some limited vocabulary of graphic types.

To write a Python program to draw a picture that is structured in this way, you must first declare the vocabulary
clements that you intend to use. This is done by declaring a set of parameterized procedures in the declaration part of
the program. Then, in the executable part of the program, you specify what vocabulary elements are to be
instantiated (by giving procedure names) and the shape and location of each instance (by assigning values to the
actual parameters of procedures). This is analogous to graphic design by first creating then using some vocabulary
of templates or stencils, or to architectural design by first creating then using some kit of parts-an industrialized
component building system, for example.

In other words, the procedure declarations establish the parts of the picture; the variable declarations to the main
program establish the design variables that must be assigned values in order to create a picture; and the code
(invocated procedures) actually specify how the parts are to be put together in a particular graphic composition. By
varying this code, you can create different compositions from the same vocabulary.

9.1 PRINCIPLES OF REGULAR COMPOSITION

Now let us consider a particular kind of composition: the plan or elevation of a building (fig. 9-1). We can see
immediately that, in this example, there is a limited vocabulary of standard columns, windows, and so on.
Furthermore, the composition is not merely a random collection of instances. On the contrary, it is very highly
ordered,; it exhibits regular repetition of elements, consistencies of proportion, and numerous symmetries. Not all
drawings are as highly ordered as this, but most do display at least some obvious regularities.

293

Synthetic Tutor

the Piarxa di Sora, Nome,

using & lisuted vocabulary (Palace w
‘s Edifices de Roma Moderne)

1. An ordeved composition
a3 depicted tn Pau® 1

294

Appendix B

Module 71: 9.2 Control

9.
REPETITION

9.2 USE OF CONTROL STRUCTURES TO EXPRESS COMPOSITIONAL RULES

If we were to write a Python procedure to generate this drawing, we would need to express the regularities of the
composition in the code that specify the composition. How might this be done?

A good way to approach this problem is to consider how you might execute the drawing by hand, with pen on a
piece of tracing paper. You could begin at the bottom-left coner and draw the lines one by one, until you reach the
top-right corner-but you would not. Almost certainly (especially after reading the last chapter) you would begin by
making templates for repeating vocabulary elements, such as windows and columns, so that these could be
instantiated rapidly by tracing. Then you might recognize that whole bays repeat. This suggests first using the
templates to create a bay, then slipping the bay along and tracing it repeatedly to produce the whole elevation.
Probably you would first lay out regular grid lines to control placement. There are special conditions at the end bays
and at the center, so you would have to handle these a little differently. You might notice, too, that many elements
are bilaterally symmetrical. For these you need only a half template, which can be flipped over to produce a mirror
image.

An important general principle emerges. Analyzing the principles of the composition 's organization (its vocabulary,
the nesting of smaller units within larger units, the regular repetition of units, the symmetries that appear, and the
special conditions that must be handled) allows you to organize your work intelligently. This would enable you to
produce the drawing much more quickly and easily than would otherwise be possible. Similarly, in writing the
Python code to generate a graphic composition, we should take advantage of our insights into the principles of the
composition in order to minimize our effort. The use of control structures available in Python enables us to do this
very effectively.

The role of control structures in a program is to express the flow of control-the sequence in which operations (for
example, instantiation of vocabulary elements) are executed. So far, without explicitly discussing it, we have been
making use of the most elementary control structure-textual sequence. That is, operations are executed, one after
another, in the sequence in which they are written in the text of the main program. If we want to change the
sequence in which operations are performed, we simply change the sequence of statements in the main program.

More precisely, Python syntax provides the possibility of writing not just single statements, but compound
statements as well. A compound statement begins with, def, and the component statements within it are executed in
the same sequence as they are written. This, for example, is a compound statement:

def function():
rs.AddLine([100,100,0], [500,100,0])
rs.AddLine([500,100,0], [300,300,0])
rs.AddLine([300,300,0], [100,100,0])

The result is a triangle, with sides drawn in counterclockwise order (fig.9-2a). If we were to flip the first and second
draw statements, as follows, we would obtain the same triangle, but it would now be drawn in clockwise order (fig.
9-2b)

def function():
rs.AddLine([100,100,0], [300,300,0])
rs.AddLine([300,300,0}, [500,100,0])
rs.AddLine([500,100,0], [100,100,0})

For typographic clarity, it is customary to align the components of a compound statement and indent them, as shown
in the examples above. This enables us to read a compound statement easily as a sequence.

295

Synthetic Tutor

We can, then, always encode a picture as a compound statement or invocations of procedures that instantiate
vocabulary elements. Note, too, that the body of any Python program, any function, or any procedure takes the form
of a single compound statement.

Python, however, provides several other useful control structures in addition to the compound statement. We shall
be concemed, in the next few chapters, with structures of repetition, branching, nesting, and recursion and with
using these to express principles of regular graphic composition. Intelligent use of these structures not only enables
us to write very concise and elegant graphic programs to generate large and apparently complicated compositions,
but also to clearly portray the regularities of a composition in the text of its generating program.

EANVAN
JANWAN

a. Counterciockwise b. Clockwise from left
from left vertex. vertex,

82, Sequences for drawing a triangle.

296

Appendix B

Module 72: 9.2 Repetition

9.
REPETITION

9.2 USE OF CONTROL STRUCTURES TO EXPRESS COMPOSITIONAL RULES
9.2.1 REGULAR REPETITION

Let us begin by considering the row of columns in plan, illustrated in figure 9-3. This is created by regular repetition
of a vocabulary element, a specific number of times, along an axis.

To generate this composition, we might first declare a procedure to draw a square parallel to the coordinate axes,
then invoke it in the main program the required number of times to generate the instances, arranged in the
appropriate way. The program looks like this:

It is not difficult to identify the textual redundancy in our main program. The only thing that changes in each
successive statement is the value of the x parameter. It would be much more concise, elegant, and expressive of the
composition s organization simply to say that the square is to be instantiated a specified number of times, starting X
at a specified value and incrementing it by a specified amount at each successive step in the process.

9-3. A row of six square columns (drawn in
plan) in the screen coordinate system.

297

Synthetic Tutor

CODE RESULT
import rhinoscriptsyntax as rs

def drawSquare(x,y,length):
calculate width as function of length
width = length/2

calculate vales for x2 and y2
x2 = x + length
y2 = y + width

ptl = [x,y,0]

pt2 = [x2,y.0]

ptd = [x2,y2,0]

ptd = [x,¥2,0] p— p— —

ro.MddLine(ptl,pt2)
re.AddLine(pt2,ptl)
rs.hddLine(pt3,ptd)
ra.hddLine(ptd,ptl)

def drawRowSquares():
drawBquare(100,100,30)
drawSquare(200,100,30)
drawSquare(300,100,30)
drawSquare(400,100,30)
drawSquare(500,100,30)
drawSquare(600,100,30)

drawRowSquares()

e Txail, oo
DL%IORESEART X

auzngogh: §§ Camand

B Ereno Pytvon Bitor - (CUHONG FOLDERS DS RESEARIH 00T 7-(2.:fm7.htu_-=: DO Hew & wtn
e e g = gl -
T
De-E0E £~ b-on-

|+ O e [0o s i vt costes Bt thow baret amery
| & B svoe

| & @ wwcon import rhincscrip
/ | & 2 B
1 1

AN
AL

& Cltntes b 8 |
e -

A b s b gt ¢ Vg

298

Appendix B

Module 73: 9.2 Loop 1

9.

REPETITION

9.2 USE OF CONTROL STRUCTURES TO EXPRESS COMPOSITIONAL RULES
9.2.2 THE COUNTED LOOP

Python provides a control structure that enables us to write the program in just this way. It is called the counted loop
or the for statement. Here is our main program rewritten with a for statement

Before a for statement, make a list that has a range of numbers. At the right sample code, count = range(1, 7)
generates a list of numbers from 1 to 6 (not 7). Accordingly, count becomes a list, [1,2,3,4,5,6]. The for statement
begins with the reserved word - for. This is followed by the name of the control variable, in this case - i. Next comes
- in (checking operator) - with a variable of a list (count in this sample code), checking whether a value is in the list
(in the sample code, count). The for statement is ending with colon (:) such as a function. In this case, we begin
counting at 1 and end with counting at 6. It all means - for i given an initial value of 1 and incrementing to 6, do the
following compound statement. Notice that the compound statements are indented. Everything within the indented
block is within the loop; everything else in the program is outside the loop.
The loop is controlled by the initial and final values specified for the control variable. For our purposes here, we
shall assume that the control variable, the initial value, and the final value are always of type integer. (The control
variable may, more generally, be of any ordinal data type, but we shall not make use of ordinal data types other than
integers in this context). It usually makes sense to begin a count at 1, so that the for statement looks something like
this

for i in range(1, 7):
But we could begin the count at 0

for i in range(0, 6):
We could even begin at a negative integer

for i in range(-2, 3):
It is possible and often necessary to use variables like this

for i in range(Initial, Final+1):

In this case, of course, Initial and Final must be declared of type integer, and they must be assigned values before the
for loop is processed. It is even possible to use integer-valued expressions and functions in the following manner

initial=A /B
final = math.sin(C)+ 1
for i in range(initial, final):

This can become very confusing, however, and we do not recommend it. Where such expressions are used, they are
evaluated once when the loop commences.

Here is yet another variant

foriinrange(10,1, -1):

299

Synthetic Tutor

In this case the count is down to a lower final value from a higher initial value. The usefulness of this will become
apparent when we consider functions of the control variable.

What happens if, in counting to a value, the initial value is greater than the final value, or in counting down to a
value, the initial value is less than the final value?

Notice that the variable X in our example program is assigned an initial value outside the loop. It is then
incremented the required amount by the following statement within the loop

X=X+100

The initial value of X specifies where the first instance of square is to be placed, and the assignment within the loop
controls the placement of each successive instance relative to its predecessor.

You should study figure 9-4 carefully. It traces the execution of this loop by showing, at each iteration, the values of
the control variable - i - and the position parameter X, and the state of the drawing.

In order to avoid confusion, you must pay careful attention to the values of variables such as i and X on exit from
the loop. The convention followed by Python is that the value of a control variable, such as i, is undefined on exit
from a for statement. This means that you cannot use the variable again before resetting its value. The value of X on
exit is the last value that was assigned to it. You may use this value in subsequent parts of the program, or you may
choose to reset it to another value.
Another rule that must be followed to avoid confusion is that the value of a control variable, such as i, cannot be
changed by a statement within a counted loop; the computer would lose track of where it was in the count. You can,
however, use the value of the control variable within a counted loop, for example, in something like

DISTANCE =i * 100

Finally, for loops that include only one statement may be written in simplified form

for 1 in range(i, 10):
print i

The inner block must be indented.

300

go0oocooo

co0oDOO H

i e 4
SRS g e e v

R s A e R
o0 I

A o e

|

st v

200

100

Appendix B

9-4, States of the drawing, with values of Count and values of X at cach iteration.

301

Synthetic Tutor

CODE RESULT
import rhinoscriptsyntax as rs

dof drawSquare(x,y,length):
calculate width as function of length
width = length/2

calculate vales for %2 and y2
x2 = x + length
y2 = y + width

ptl = [x,¥.,0]
pt2 = [x2,y.0)
ptl = [x2,y2,0] S > s y
ptéd - [x,¥2,0) L L LJ L

re.AddLine{ptl,pt2)
re.AddLine{pt2,ptd)
re.AddLine(pt3,pté)
rs.MdLine{ptd,ptl)

def dravRowSguares():
x = 100
count = range(6)
for i im count:
dravSquare(x,100,30)
x = x + 100

drawRowSquares(}

www.youtube.com is now full screen.

IAR0CT How o dew e 5. D52

wd
2ame cOLmTE g § b bap 3
Addrine (pt2, pt3)
s.hadLine (pt3, ptd)
s.MddLine (pt4, ptl)

- def drawSixColumns():
drawSquare (100,10
drawSquare (2
drawSquare |
drawSquare (40
drawSquare (5
drawSquare €

dxn*txcolum: §]

B e o e s o s o ot s o8 8

302

Appendix B

Module 74: 9.2 Loop 2

9.
REPETITION

9.2 USE OF CONTROL STRUCTURES TO EXPRESS COMPOSITIONAL RULES
9.2.4 THE WHILE STATEMENT AND CONTROL EXPRESSIONS

The use of a control variable to keep count of repetitions, as in a for statement, is not the only way to control a loop.
Python provides another possibility: the while statement.

Here is an example of a loop (to draw a row of squares) that uses the while statement:
[sample codes on the right side]

The while statement consists of the reserved word while, followed by an expression, then ending with colon, and
finally the statement that is to be executed repeatedly (the use of parentheses is optional).

Here it is the control expression Total_X <= 1,023 that controls the loop: This control expression is constructed
using Python's Boolean operators:

and : conjunction

or : disjunction

not : negation

== equal (two equals)
<>: unequal

<:less

> greater

<=:less or equal

> = greater or equal

The syntax of the expression is the normal syntax used in Boolean logic. Here are some examples:

X ==
X<>Y
X<Y
X>=Y
(X<=Y)OR(A>B)

Integer, Real, Boolean, and character variables may all appear in these statements. However, you must be careful
about type. It would be meaningless, for example, to state that a real variable is equal to a character variable. When
such a control expression is evaluated, the result is a Boolean value: true or false. Thus we say that the type of the
control expression is Boolean. The variables in a control expression must all have defined values when the while
statement is entered. The statement is evaluated before each iteration. If it is true, then the statement within the loop
is executed, if it is false, the loop is exited. In other words, the loop is repeated while the control expression is true.
To put this in yet another way, the loop is repeated until the control expression is false. If the control expression is
false at the beginning, then the loop is not executed at all.

This construct makes sense, of course, only if the control expression can (sometimes or always) be expected to be
true at the beginning, and if something happens within the loop that can change the value of the control expression
to false. If nothing within the loop can make the control expression false, the loop can never be exited. In our
example, the control expression is:

TOTAL_X <= 1023

303

Synthetic Tutor

The value of Total_X is incremented within the loop, so we can be sure that it will eventually become equal to or

greater than 1,023, resulting in exit from the loop. The effect of this is to draw a row of squares while we have space

on the screen to do so; that is, until we run out of space at the right-hand edge of the screen (in this case drawing

nine squares as shown in fig. 9-6).

When the while statement is evaluated for the tenth time the value of Total X is 1,030, so the expression
TOTAL_X <=1023

now evaluates to false, and the loop is exited. If the expression

x<=1023

had been used to control the loop, it would have evaluated to true on the tenth iteration, and a tenth square
intersecting the right-hand side of the screen would have been drawn.

9-5. Another row of squares, produced
by varying the parameters.

304

Appendix B

CODE RESULT
import rhinoscriptsyntax as rs

def drawSquare(x,y,length):
calculate width as function of length
width = length/2

calculate vales for x2 and y2
x2 = x + length
y2 = y + width

ptl = [x,y,0]
pt2 - [x2,y.0]
ptd = [x2,y2,0]

pti = [x,¥2,0]] 1] [|] L]

rs.Addline(ptl,pt2)
ro.AddLine(pt2,ptd)
ro.AddLine(pt3,ptd)
re.AddLine (ptd,ptl)

def drawRowSquares(x, x_increment, y, length, num):
count = range(num)
for i in count:
drawSquare(x,y,length)
x = x + x_increment

drawRowSquares(100,200,300,100,5)

T

£ AMENG_FOLDERSO RESEARCHO) Y THE ST o Tude TuAun sty 9008 Hom 10 484 8.5 o 2Py

B Soinc Pymon 6o - CLUMONG JOUDSRTET RELEARCHZG] EHERN Yo TobeTuneahs ORC10 How 13 e 4 whid

Fla % Cebuy Teesk Mol

D&-d@d P- p-e- = E
3 s,
& somrr import 1
4 Res
def drawsSquare(x, y, lengthi:

X

305

Synthetic Tutor

Module 75: 9.2 While

9.
REPETITION

9.2 USE OF CONTROL STRUCTURES TO EXPRESS COMPOSITIONAL RULES
9.2.4 THE WHILE STATEMENT AND CONTROL EXPRESSIONS

The use of a control variable to keep count of repetitions, as in a for statement, is not the only way to control a loop.
Python provides another possibility: the while statement.

Here is an example of a loop (to draw a row of squares) that uses the while statement:
[sample codes on the right side]

The while statement consists of the reserved word while, followed by an expression, then ending with colon, and
finally the statement that is to be executed repeatedly (the use of parentheses is optional).

Here it is the control expression Total X <= 1,023 that controls the loop: This control expression is constructed
using Python's Boolean operators:

and : conjunction

or : disjunction

not : negation

== equal (two equals)
<>: unequal

<:less

> : greater

<=1less or equal

> = greater or equal

The syntax of the expression is the normal syntax used in Boolean logic. Here are some examples:

X=Y
X<Y
X<Y
X>=Y
(X <=Y)OR (A>B)

Integer, Real, Boolean, and character variables may all appear in these statements. However, you must be careful
about type. It would be meaningless, for example, to state that a real variable is equal to a character variable. When
such a control expression is evaluated, the result is a Boolean value: true or false. Thus we say that the type of the
control expression is Boolean. The variables in a control expression must all have defined values when the while
statement is entered. The statement is evaluated before each iteration. If it is true, then the statement within the loop
is executed, if it is false, the loop is exited. In other words, the loop is repeated while the control expression is true.
To put this in yet another way, the loop is repeated until the control expression is false. If the control expression is
false at the beginning, then the loop is not executed at all.

This construct makes sense, of course, only if the control expression can (sometimes or always) be expected to be
true at the beginning, and if something happens within the loop that can change the value of the control expression
to false. If nothing within the loop can make the control expression false, the loop can never be exited. In our
example, the control expression is:

TOTAL_X <=1023

306

Appendix B

The value of Total_X is incremented within the loop, so we can be sure that it will eventually become equal to or

greater than 1,023, resulting in exit from the loop. The effect of this is to draw a row of squares while we have space

on the screen to do so; that is, until we run out of space at the right-hand edge of the screen (in this case drawing

nine squares as shown in fig. 9-6).

When the while statement is evaluated for the tenth time the value of Total_X is 1,030, so the expression
TOTAL_X <=1023

now evaluates to false, and the loop is exited. If the expression

x <=1023

had been used to control the loop, it would have evaluated to true on the tenth iteration, and a tenth square
intersecting the right-hand side of the screen would have been drawn.

307

Synthetic Tutor

CODE RESULT
import rhincscriptsyntax as rs

def drawSquare(x,y,length):
calculate width as function of length
width = length/2

calculate vales for x2 and y2
x2 = x + length
y2 = y + width

ptl = [x,y,0]

pt2 = [x2,y,0]

pt3 = [x2,y2,0)

ptd = [x,¥2,0] G [am] = =] i = (o]

rs.MdLine(ptl,pt2)
rs.AddLine(pt2,pt3)
re.AddLine(pt3, ptd)
ra.AddLine(ptd,ptl)

def drawRowSquares{):
x = 100
total x = x + 30
while (total_x < 1023):
drawSquare(x,300,30)
x = x + 100
total_x = x + 30

drawRowSquares()

HC/IUHONG_FOLDERS/O1Y

b [0 Mo) Tasiteng =~ BL

B e Pynoe bta - L ;\%Wl:mg m‘?“f’”“““"'fyﬁf_ﬁﬁ e2as
I -
HB0E 2 p-@- o
TN | 3011 Mo wha & whde locs 5 e Cokemrn By 0

ptayntax

Y, 1

length

sesessnsn ¥ ; length

B A e of s frees wbde
B

ts.addLine {ptl, pt2}
rs.MddLine {(pt2, ptI)
rs.AddLine (pt3, ptél
£s.AddLine {pt4, ptl

308

Appendix B

Module 76: 9.2 Break

9.

REPETITION

9.2 USE OF CONTROL STRUCTURES TO EXPRESS COMPOSITIONAL RULES
9.2.5 THE WHILE BREAK STATEMENT

A third way to control a loop in Python is to use a while - break statement. Here is an example of a loop to draw a
row of squares controlled in this way (fig. 9-8):

[sample codes on the right side]
The sequence of statements between the reserved words while and break is always executed at least once.

Execution of the loop is controlled by the Boolean expression that follows if. This is evaluated after every iteration.
Initially we expect this expression to be true. Something happens within the loop that can make it false. When
evaluation shows it to be false, the loop is exited.

Tt is generally feasible to write both a while and a while-break version of a loop. Choice of one or another is a matter
of clarity of expression, and of whether or not we want to guarantee that there will always be at least one iteration.

Notice that the control expressions used in our examples of while and while-break loops must be evaluated at every
iteration. In these examples, there are few iterations, and the control expression is simple, so the amount of
computation required for this is insignificant. But it is possible to write very complex control expressions, and if
there are many iterations, the amount of computation can then become significant. It is good programming practice,
then, to keep control expressions as simple as possible.

o000 00AQOQ

8-8. A row of squares drawn until there
is no space leR on the screen.

309

Synthetic Tutor

CODE RESULT
import rhinoscriptsyntax as rs

def drawSquare(x,y,lengthj:
calculate width as function of length
width = length/2

calculate vales for x2 and yZ
x2 = x + length
y2 = y + width

ptl = [x,¥.0]

pt2 = [x2,y.0]
pt3 = [x2,y2,0)
ptd = [x,y2,0]

rs.AMddLine(ptl,pt2) (] [o (=] o (o] o =] o
rs.MdLine{pt2,pt3)

re.MdLine{pt3,ptd)

re.hddLine(ptd,ptl)

def drawRowSquares({):
x = 100
total x = x + 30

while True:
drawSquare(x,300,30)
x = x + 100
total x = x + 30
if (total_x > 1000):
break

drawRowSquares()

hostye Pardes

| .
B B Pymon Lo - CUUHONS IO
o b by

fie o Oebug Took Hep

Des-H0E P- b=
| 3 Do i i sl

i .

3 Prve

- def drawRowSquares(x_min, x_max,
x = x_min
total x = x 4 length
| while (total x < x _max)i
B4 A mw of wpuaes B while Sam 1 drawSquare{x, y, length)

> ol e o oo nerewn 2
x=x + x_ind

total_x = x + length

drawRowSquares (100, 1023,

310

Appendix B

Module 77: 9.3 Variations

9.
REPETITION
9.3 PROGRAMS TO EXPLORE VARIATIONS

Code to read in parameter values and draw the corresponding instance of a motif may be placed within a while -
break loop as follows:

[sample codes on the right side]

Satisfactory must be declared as a char variable. The advantage of this arrangement is that a user of the program can
keep cycling through the loop until a satisfactory variant of the motif is obtained.

You can always convert a program that generates a drawing of a motif into a program that allows you to explore

variants of the motif by introducing a repeat until loop in this way. We suggest that from now on you do so in your
own programming projects.

311

Synthetic Tutor

CODE RESULT

import rhinoscriptsyntax as rs

def

drawSquare(x,y,length):
calculate width as function of length
width = length/2

calculate vales for x2 and y2
x2 = x + length
y2 = y + width

ptl = [x,¥.0]

pt2 = [x2,y,0)
pt3 = [x2,y2,0]
ptd = [x,¥2,0)

rs.AddLine(ptl,pt2)
rs.AddLine(pt2,ptd)
rs.AddLine(pt3,ptd)
re.hddLine({ptd,ptl)

drawRowSquares()s:
x = 100

while True:
drawSquare(x,300,30)
x = x + 100
type = rs.GetString('type y or n and Enter’)
if (type == "y')s
break

drawRowSquares({)

312

Appendix B

Module 78: 9.4 Composition 1

9.
REPETITION

9.4 THE COMPOSITIONAL USES OF REPETITION

Now that we have established the basic modes of repetition provided by Python, we can go on to consider various
types of repetitive graphic compositions, and how these may be generated using loops.

We shall begin by considering compositions made by incrementing a single position parameter of a vocabulary
element within a loop. Then we shall go on to consider incrementing two and three position parameters. Next, we
shall look at incrementing a single shape parameter of a vocabulary element. Finally, we shall put all of this together
and consider incrementing multiple parameters of a vocabulary element within a loop. Various kinds of
mathematical progressions (arithmetic progressions, geometric progressions, and so on) are frequently used to
structure architectural and graphic compositions. We shall consider how such progressions may be constructed
within loops. We shall ultimately look beyond single loops to see what happens when we combine loops. There are
two cases of this: compound loops and nested loops.

Always, though, we shall be concerned with two basic compositional issues. What is it that remains constant in the
repeating motif from instance to instance? And what is the pattern of change from instance to instance across the
composition? In other words, what are the variables, and what are their increments?

9.4.1 INCREMENTING A SINGLE POSITION PARAMETER

In all the examples provided so far, we have been incrementing a single position parameter-the X coordinate of the
bottom-left corner of our column- within a loop. This produces a horizontal row of regularly spaced columns (fig. 9-
9a). An obvious alternative is to keep the X coordinate constant, while incrementing the Y coordinate, to generate a
vertical row (fig. 9-9b).

def incrementing():
Y =100
for i in range(1, 7):
square(300, Y, 30)
Y=Y+100

A third possibility is to increment the rotation of the column about some specified center point to produce a
regularly spaced ring of columns (fig. 9-9c). You can write code to do this, using trigonometric functions, but it will
be better to defer detailed consideration of this kind of composition until after we have discussed circles and arcs (in
the next chapter) and the rotation transformation (in chapter 14).

It is worth noting that the most ancient architectural compositions that we know are based on this elementary idea of
incrementing a single position parameter-perhaps to create settings for processional rituals. The Megaliths of
Carnac, in Brittany, are regular rows of stones (fig. 9-10a), and at Stonehenge, the stones are regularly spaced around
circles (fig. 9-10b).

Architects have often made use of the device of regularly spaced rows of openings in wall planes. This shows up
both in plan (fig. 9-11a) and in elevation (fig. 9-11b). The following procedure instantiates this architectural type. It
takes as parameters the Y coordinate of the wall, its starting X coordinate, its ending X coordinate, the wall
thickness, the number of openings, and the width of each opening (fig. 9-12a).

[sample codes on the right side]

Notice how this procedure automatically calculates the X increment that is to be used at cach step. Notice, too, the

313

Synthetic Tutor

trouble that will be caused by invoking this procedure with parameter values that specify too many openings, or
openings that are too wide so that they overlap. For the moment you will have to avoid such values. Later, in chapter
11, we shall see how to write code to check automatically for -illegal- parameter values and respond appropriately.
Figure 9-12b shows some results generated by invoking this procedure with different parameters.

If you look closely at these results, you can discover an interesting change in the architectural meaning of the type as
the values of the parameters vary. Where the voids are narrow relative to the solids, we interpret the objectas a
regularly pierced wall. Conversely, where the voids are wide relative to the solids, we interpret it as a colonnade-that
is, as a regularly subdivided opening. If wall thickness is larger than the spacing of openings, we read parallel walls
running in the perpendicular direction. There are also versions where the reading is ambiguous.

WIDTH

N f-‘\\‘-:i-i R
TS " LS

5 P X START
a. The type diagram.

| s § s | cusmes | ot

oooonooao

= =
b. Elevation. cooo

0oo0o

[— 3

¢. Perspective. b. Some instances.

8-11. A regularly spaced row of openings 9-12. A wall with regularly spaced
in a wall plane. openings.

314

Appendix B

- = L]
a« 8 & = & &

« 8 s 8 & 8 &

-
* ® & - 4 8 & s EmE & s

-
.

@ & ®» & A8 44 8 8 4 & % 8 26 " 8" =88 8

B e e P a8 %8 4 8% wes saes es s s a8 an =

4 @ A& s s &8 % & s 8 8 a8 a® s88= e @

¥ e S amMe BE 84 Sy a8 8l s NS Nes s s e

-

-

- "e 5 8 s

@8 B 8 S S 48 @ 4 8 = & w8 =

® 48 & w8 g8 & Al s Fse 8 8 =" s s B8 e

a® 8 & &

® 8 ® 8 28 & 4 = A8 &% s e W 8w

e & & " s a & 8 &

+ & & @ w g 8

~-8 -8 8888 —

;@ % 8 " 3" = s " s e & &8

a. Horizontal row.

- & » av

a. Rows of stones at Camac, Brittany.

--9-B 0 8-8 -8 -

b. Vertical row.

N

-

-3

0 __o

9-10. Mcgalithic compositions produced
by the regular repetition of elements.

c. Circle.

9-9. Simple compositions of squares
generated by incrementing a single po-

sition parameter.

315

Synthetic Tutor

CODE RESULT
import rhinoscriptsyntax as rs

def drawRectangle(x,y,length,width):
calculate vales for x2 and y2
x2 = x + length
¥2 = y + width
ptl = [x,¥.0)
pt2 = [x2,y.0]
ptd = [x2,y2,0]
pté = [x,y2,0]
ra.hddLine(ptl,pt2)
za.MhddLine(pt2,ptd)
ra.hddLine(pt3,ptd)
rea.hddLine (ptd,.ptl)

dof drawWall(y, x_start, x_ond, thick, width, num):
calculate length of wall segme
length = x_end - x_start
open = width * num
solld = length - open
wall_segment = solid / num
x = x_start

loop to draw wall segments

count = range{num)

for i in count:
drawRectangle(x, y, wall_segment, thick)
x = x + wall_segment + width

drawWall(100,100,600,200,10,12)

MO0 THEUTS Von Tt T vy’ OB1 18 mm W e ¢ walt o

o

™

{x, y, length):

jength

o« O

B gl st o e T]
By e O rrgdar rowbows of ele
o et

316

Appendix B

Module 79: 9.4 Composition 2

9.
REPETITION

9.4 THE COMPOSITIONAL USES OF REPETITION
9.4.1 INCREMENTING A SINGLE POSITION PARAMETER (continued)

Another common architectural device, based upon the idea of incrementing a single position parameter, is that of the
enfilade-a sequence of parallel wall planes with aligned openings. The following procedure takes the parameters
defining a boundary rectangle, the wall thickness, the width of the opening, and the spacing between walls as
parameters (fig. 9-13a) and fits an enfilade within the specified rectangle:

The architectural logic followed here is that the last wall should occur just before the boundary of the rectangle is
reached. Figure 9-13b illustrates some examples of enfilades specified by different sets of parameter values. (The
boundary rectangle is not drawn by this procedure, but is shown for clarity in the illustrations. We have also added
poche in the traditional manner.)

Notice that if the boundary rectangle is too small, no wall will be drawn. If we wanted to follow a different
architectural logic, and guarantee that at least one wall would always be drawn, we could use a while-break instead
of a while loop. We might also handle the relation of the last wall thickness to the boundary rectangle in a different
way, by substituting the control expression

Y <= Y_MAX
for the control expression
Y + THICKNESS <= Y_MAX

This allows the last wall to overlap the end of the boundary rectangle (fig.9-14), but never to be completely outside
the boundary rectangle.

Now consider a row of rectangular wall panels shown in elevation as illustrated in fig. 9-15. It is clear that you can
control widths, numbers of repetitions, and the termination condition in several different ways, depending on what is
the most appropriate architectural principle to follow. You can let width vary and have your procedure automatically
fit a specified number of panels into the boundary rectangle using a for loop (fig. 9-15b). If you keep width constant,
then you can use a while or while-break loop, so that there is undershoot at the right side (fig. 9-15c). Alternatively,
you can control the loop, so that there is an overshoot at the right side (fig. 9-15d). The procedure can be modified
so that the undershoot is at the left side (fig. 9-15¢), or so that the overshoot is at the left side (fig. 9-15f). A final
pair of possibilities is to divide the necessary undershoot in half at both ends (fig. 9-15g), or to do the same with
overshoot (fig. 9-15h).

High-rise office buildings typically consist of parallel, regularly repeated floor planes (fig. 9-16). These can be
drawn in section by a procedure that takes location coordinates for the ground floor, floor length, floor thickness,
floor-to-floor height, and the number of floors as the parameters (fig. 9-16a). Alternatively, an architect might find it
more convenient to use floor-to-ceiling height as a parameter (fig. 9-16b). Should you start with a floor plane (fig. 9-
16c), or with a floor-to-floor space (fig. 9-16d)? That is a question of architectural principle that you must resolve
before writing the procedure. You must then express your resolution appropriately in the code. Similarly, should you
count the last (top) plane as a floor (fig. 9-16¢), or as a roof (fig. 9-16f£)?

317

Synthetic Tutor

8-14. The use of a repeat until Joop to generate an enfilade.

318

'E'
L
:ﬁ
::3.

]
=0 ey
[——— (e]
WIDTH SPACING
)
MIN K__MAX
a. The type diagram,
r TR T oty
'_ —I
|]

b. Instances of enfilades fitted
specified rectangles.

wilhin

8-13. The use of a while loop to generate
an enfilade.

Appendix B

a. The variables. ¢ Undershoot at the left.
b. A tor loop fils a specified number of I. Overshoot &1 the leh
panels into the boundary rectangle.
c. A while loop stops adding panels before B et witshoct
the boundary is
d. The last panel overshoots the boundary h. Balanced overshoot.
in a repeat until loop.

9-15. A row of rectangular wall panels with different conditions governing termination.

- LENGTH
FLOOR__TO__FLOOR FLOOR__TO__CEILING
1
g | L |
]
; o ——
a. The type diagram. b. Floor-to-celing height as a parameter.

9-16. A schematic section of a high-rise office building.

319

Synthetic Tutor

CODE RESULT
import rhinoscriptayntax as rs

dof drawRectangle(x,y,length,width):s
calculate vales for x2 and y2 [=
x2 = x + length
¥2 = y + width
ptl = [x,v,0]
pt2 = [x2,y,0]
ptd = [x2,y2,0)
ptd = [x,y2,0)
ro.Addline{ptl,pt2)
rs.AddLine(pt2,ptd) =
re.AddLine(ptld,ptd)
ra.AddLine(ptd, ptl)

de

=Y

drawEnfilade(x_min, y_min, X_max, y_max, thiek,width, spacing):
calculate length of wall acgm
gap = (x_max - x_min) - spacing
length = gap /2

ine = thick + spacing

x1l = x_min
x2 = x_max - length
y = y_min ,

loop to place parallel wall planes

while ((y + thick) < y_max):
drawRectangle(xl,y, length, thick)
drawRectangle(x2.y, length,thick)
Y =y + inc

drawEnfilade(100,100,1000,1000,10,600,100)

Garcws CHams Seives Daglny Sdes Viespotiasa iebisy Teesiew CoveTods Sofece Yook Soid Tone 1
r - ¢ .“n e
DRl x0rnd + A0 L 2T H=» 7900900~
CRAONG_FOLDERSO 1 RESEARCHO0 1 THESS ¥ ou Tube Tulonas 06017 Hiw 1o O 3 #liate 3y

Eil’

B e Python Laase - COLMONG FOLIERS ARCIOUL THE ST Fon T utoe Ttor @l OR0LT g 1o Srmm o ol

Fie fdt Debup Tosh bep

D&-dod P- Pp-m- ¢

|« O omer | a0 g o e o slimte iy [

v O ooy

s B pompacen import rhinoscriptsyntax as rs

2 Frwe

320

Appendix B

Module 80: Exercise 4

8.
GRAPHIC VOCABULARIES

8.10 EXERCISES

1. Take the graphic programs that you have developed so far and create procedures from them, so the figures that
they draw can be used as vocabulary elements. Put them together in a program that generates a simple composition.

Please upload your python file: | Choose File | No file chosen | Submit |

2. The following procedure generates a simple line figure.
import rhinoscriptsyntax as s
def cross_box (xc, yc, length, width):

x1=xc-length/2
yl=yx-width/2
x2 = x1 + length
y2 =yl + width

pt0=[x1,yl, 0]
ptl =[x2,y1,0]
pt2 =[x2,y2, 0]
pt3 =[x1, y1, 0]

pt4 =[x2,y2, 0]
pt5 =[x1,y2,0]
pt6 =[x2, y1,0]

pts = [pt0, ptl, pt2, pt3, pt4, ptS5,pt6]
rs.AddPolyline(pts)
The following invocations generate instance of this figure:

cross_box(450, 50, 200, 50)

cross_box(400, 200, 100, 200)

cross_box(500, 200, 100, 200)

cross_box(400, 400, 100, 100)

cross_box(500, 400, 100, 100)

Draw these instances.

3. Many graphic artists and designers have been fascinated by the generation of highly disciplined but interesting
compositions, using nothing more than a square as the vocabulary element. Think about the graphic variables that
you might want to use in producing such a composition, and write a Square procedure with these as the formal

parameters. Use this procedure in a program to generate a composition.

Please upload your python file: {_Choose File_} No file chosen { Submit |

321

Synthetic Tutor

4. Repeat this exercise with progressively more general types of four-sided figures: rectangle, parallelogram, and
polygon.

Please upload your python file: { Chosse Fite | No file chosen Submit |

5. Try the same exercise with triangles. Remember that there are four recognized subtypes: equilateral, right,
isosceles, and scalene. Do you want to use all of these? Should they all be parameterized in the same way?

Please upload your python file: { Choose File | No file chosen | submit i

6. Consider the uppercase characters needed to draw your initials. How might these be parameterized to allow a
wide variety of altematives? Write the necessary procedures, and use them in programs to draw monograms.

Please upload your python file: | Choose File | No file chosen | submit |

7. Take one of your procedures to draw a graphic element, and use it in an interactive program that reads in values
for the parameters, then displays the corresponding instance. Use the program to generate a series of variations of
the motif.

Please npload yonr python file | Chosse Fila | No file chosan { submie

8. The Star of David (fig. 8-46a) is a well-known two-dimensional line figure. We usually think of it as two
superimposed triangles, but there are many less obvious ways to decompose it. Think of an interesting
decomposition, write appropriately parameterized procedures to generate each of the parts, and use these in
programs to generate variations on the Star of David. You may find it interesting to repeat this exercise for different
decompositions and different parameterization schemes. Repeat the exercise for the line drawings shown in figures
8-46b and 8-46¢.

a L3

8-46. Some geometric figures to be decomposed.

Pilease upload your python file: {"Chooss File | No file chasen { submit }

322

Appendix B

9. Figure 8-47 shows four instances of a type. What properties are constant from instance to instance? What
properties vary? Write a procedure to generate figures of this type.

>
><]
>
o\

Please upload your python file: | Choose Fih_l No file chosen | Submit |

10. Figure 8-48 shows a well-known floor plan by Mies van der Rohe. Write a parameterized procedure to generate
the basic vocabulary element. Use this in a program to replicate the plan. Then use it in programs to produce
variations on this theme.

. B A st i viiatoliry ket bum shch
Ll e wall wiemarts can be genecated

B8 Murs v dhew R’y “Projeet for & ek Country Howe,” 1923

Please upload your python file: | Choose l’lh-i No file chosen Submit |

11. Clothing designers often establish a motif, then produce a series of parametric variants to fit the motif to

323

Synthetic Tutor

different figures. What are the usual parameters of hats, shirts, trousers, and shoes? What varies when a new value is
given to one of these parameters? What remains constant? Other designed artifacts (for example, steel beams,
bathtubs, and pen nibs) are also produced in series of parametric variants. Write an analysis of the role of parametric
variation in design(write your analysis as comments(with #) in a python file).

Please upload your python file: | Choose File _| No file chosen Submit |

12. Metafont system for typographic design (Knuth 1986) is one of the most sophisticated explorations of the idea of
parametric variation by computer yet to appear. Study its characteristics carefully, compare it to more traditional
tools for typographic design, and write a critique (write your critique as comments(with #) in a python file).

Please upload your python file: [Choose File | No file chosen {_Submit }

324

Appendix B

Module 81: 9.4 Composition 3

9.
REPETITION

9.4 THE COMPOSITIONAL USES OF REPETITION
9.4.1 INCREMENTING A SINGLE POSITION PARAMETER (continued)

It is common for building codes to limit the heights of buildings by specifying the maximum angle Max_angle that
can be formed at the center of a street (fig. 9-17). As an architect, you might be particularly interested in the
maximum floor area that you can fit on a site. Let us assume that the floors of our building are rectangular. The
following interactive program reads in values for floor Length and Width, foor_to_floor height, and for the
constraints Max_angle and Street_width, then draws the building section and displays the total floor area. Notice the
use of a function: getMaxHeight, which calculates the maximum allowable height for given Street_width and
Max_angle. Here is the complete code:

[sample codes on the right side]

Some typical output is illustrated in figure 9-18.

This program introduces an important new idea. There is a function called Total_area, which calculates the total
floor area of a building and is invoked after the building is drawn. This is an analysis function and is executed to tell
us something useful about the object that has been drawn. So the structure of our program is essentially as follows:

def declare_function():

Read values of independent variables
Calculate values of dependent variables

Draw the design
Perform analysis

This is not just a graphics program, then; it is a simple example of a computer aided design program. It assists the
designer not only by rapidly drawing the building, but also by automatically performing some of the problem
solving that is necessary before the building can be drawn, then by automatically performing some of the analysis
that is necessary after the building has been drawn. This allows a very rapid trial-and-etror design process, as shown
by the flow diagram in figure 9-19.

We shall generally restrict our attention to computer graphics, rather than explore the much larger topic of
computer-aided design. But it is useful to remember that, in practice, graphics procedures are often embedded in
computer-aided design programs, and that the code of a computer-aided design program basically consists of
problem-solving functions and procedures, graphics procedures, and analysis functions and procedures.

325

Synthetic Tutor

7

R4

J NN

STREET_WIDTH LENGTH

9-17. Max_angle and street_width as parameters controlling the height of a building.

326

Appendix B

ENTER LENGTH OF FLOOR:
200

ENTER WIDTH OF FLOOR:

150

ENTER THICKNESS OF FLOOR:
7

ENTER FLOOR_ TO_FILOOR HEIGHT
35

ENTER STREET WIDTH:

300

ENTER MAXIMUM ANGLE:

56.5

TOTAL FLOOR AREA IS: 180000

Il

——

9-18. An interactive program 10 draw and analyze a high-rise office building.

327

Synthetic Tutor

Generate
drawing

| Evaluate

No Unti
M satisfactory

Yes

N2

End

8-19. A flow diagram of a trisl-and-error
design process.

328

Appendix B

CODE RESULT

import rhinoscriptsyntax as rs
import math

def drawRectangle(x,y,length,width):
calculate vales for x2 and y2 —_—
x2 = x + length
¥2 = y + width

S
ptl = [x,¥,0) —_—
pt2 = [x2,y,0] o
pt) = [x2,y2,0] T At % Sk
pté = [x,¥2,0]
rs.AddLine{ptl,pt2) [s e
rs.AddLine(pt2,ptd)
rs.AddLine(ptl,ptd) o s s e |
ra.AddLine({ptd,ptl)

———
def gotMaxHeight(street width,max_angle):
radians = 0.01745

max_angle = max_angle * radians

angle_factor ~ math.cos(max_angle) * math.sin(max_angle)
max_height = (street_width/2) / angle_ factor

return max_height

draw floors of highrise

def drawRighrise(x,y. ey
length,thickness,
£loor_to_fleor,street_width, (L s ey

max_angle):

calculate max hight of building

max_height = getMaxBeight{street_width, max_angle)
total height = max_height - thickness

height = 0

loop to draw floors

while (height < total height):
drawRectangle(x,y,length, thicknesa)
height = height ¢ flecor_to_floor
y = y + floor_to_floor

drawHighrise(100,100,500,20,100,1000,60)

CARMONG FOLDERDAT R SEARCHADE] TR Vou fube T utorial! @928 Mow to gene_

[
CSIIHO O 0 &m [e Ty
") e (] Tambing
T s GEresam & eghrias Busideg B 0

import rh Criptsyntax as rs

Y T e e pan——— A

PRI LINGTH OF 1008
VLR W OF FLO08

L

DV Pt el OF B00R

¥

BATER FLOUS TG, P OOM me T
»

PR AR T T
=

329

Synthetic Tutor

Module 82: 9.4 Incrementing 1

9.
REPETITION

9.4 THE COMPOSITIONAL USES OF REPETITION

9.4.2 INCREMENTING TWO POSITION PARAMETERS

Figure 9-20. shows some section drawings of stairs. They were generated by the following procedures
[sample code on the right side]

The parameters of this procedure specify a starting point, the dimensions of the tread, the X and Y increments at
each step, and the number of stairs. That is, we now increment two position parameters at each iteration.

A number of important architectural variables are involved here. The principal ones are (fig. 9-21)

. tread length

. tread width

. numl)er of treads

. number of risers

. tread increment

. Tiser increment

. tread/riser increment ratio

. angle formed with horizontal
. length of run

. floor-to-floor height

These are interrelated by functions in obvious ways, so not all of them can be taken as independent. You can
parameterize a stair procedure in a variety of ways, then, depending on how you might want to use it in generating
architectural drawings. You might reasonably assume, for example, that length of run and floor-to-floor height will
usually be givens, so you would express these as parameters. Then you might choose to take number of treads as an
independent design variable, so this too would be a parameter to the procedure. These three parameters, together
with tread length and width and starting coordinates, are sufficient to define fully an instance. Alternatively, you
might take the number of risers, riser increment, and tread increment as parameters. There are other reasonable
possibilities as well in any case, there will be seven independent design variables, and others will become
dependent.

Not only are there different ways to parameterize stair procedures, but also different ways to handle termination. Do
you want to begin with a tread or with a riser? Similarly, do you want to end with a tread or with a riser? Figure 9-22
shows the four possible combinations of cases. The choices that you make will have implications for how the length
of run and floor-to-floor height are defined and calculated. They will also determine whether you will always have
an odd number of treads, or an even number, or whether you can get either one. The question can be of some
architectural importance. It was a rule of Roman temple architecture, for example, that there should always be an
odd number of steps. In the context of actual construction, the termination rules determine where the change of
material from that used to construct the floors to that used to construct the treads takes place, which can have
important structural and acsthctic conscqucnces.

The risers in stairs should generally be exactly the same height and all the treads the same length. Anything else is
dangerous. This means that you cannot end a stair with a short or long riser or tread in order to make it fit into a
specified space. The implication for a stair procedure is that you will always have a for loop, rather than a while or a
repeat until loop that can produce an undershoot or overshoot condition. The number of iterations of the for loop
might be specified directly, or it might be calculated from information about length of run, floor-to-floor height, and
either tread increment or riser increment.

330

Appendix B

There is an important lesson to be drawn from these detailed analyses of procedures to draw simple, repetitive
architectural compositions. If you want to write really useful procedures to draw repetitive compositions, you must
think very carefully about the logic of parameterization and about the desired end conditions. The Python distinction
between for, while, and repeat until loops provides a useful framework for this and enables you to express the
principles that you have chosen to follow in a clear and explicit way.

LENGTH

—— IY__NGFEMENT

Y__INITIAL .-I—-"", - o N
X__INITIAL

a. Type diagram.
—
—
c—

—

b. Instances.
0-20. Section drawings of stairs.

331

Synthetic Tutor

7
-~
LENGTH o 1 F
i -i/
2 7~ om——
WIDTH S5, €20
THFJD_MREMEN‘I’ m NUM__OF__RISERS
o
FLOOA__TO__FLOOR
NC“E"‘E“‘ TREAD_| RISER RATIO
e /
g
NUM_OF_TREADS
o
RUN
9-21. The principal architectural variables associated with a stair.
Troad Riser
|
@
Tread | Tread '
a. Tread/tread. b. Tread/riser
c. Riser/tread. d. Riser/riser.
Tread Riser
|
B 2 |

9-22. Possible starting and finishing conditions for a square.

332

Appendix B

CODE RESULT
import rhinoscriptsyntax as rs

dof drawRoctangle(x, y, length, width):
x2 = x + length
y2 = y + width
ptl =~ Ix, ¥. 0] =1
pt2 = [x2, y, 0]
ptd - [x2, y2, 0] -
pté = [x, y2, 0] —
rs.AddLine(ptl, pt2)
AddLine (pt2, ptl) e |
rs.AddLine(ptd, pté)
rs.AddLine(ptd, ptl) —

def drawBtairs(x_initial, y_initial,
length, width, —
x_increment, y_increment, ==
num_of_steps):

x = x_initial
y = y_initial [S—
count = range{mum_of_steps)
for i in count:
drawRectangle(x, y, length, width)
x = x + X_increment
¥y = ¥y + y_increment

drawStairs(l0, 10, 12, 3, 12, 7, 10)

B S0 e Eihot - CUUMONS FOLDERSS AESEARCIAD0] THERS Vo Tobe Tumonaks SR Hhow B

Toe [Deluy Tesh Hep

KT o b e @ e By

import rhin

333

Synthetic Tutor

Module 83: 9.4 Incrementing 2

9.
REPETITION

9.4 THE COMPOSITIONAL USES OF REPETITION

9.4.3 INCREMENTING A SINGLE SHAPE PARAMETER

Another very interesting class of compositions can be generated by keeping position constant, but incrementing a
single shape parameter at each iteration. The following procedure, for example, takes as parameters coordinates of a
starting point, a starting side length, a length increment, and the number of repetitions incorporates a for loop and
generates compositions of concentric squares as illustrated in figure 9-23.

[sample code on the right side]

We have used here a procedure Square that locates a square by its center point, but the fixed point might be
anywhere. Figure 9-24 illustrates examples of compositions of squares generated by taking the fixed point at a

cormer, at an arbitrary point along an edge, at an arbitrary point inside the initial square, and at an arbitrary point
outside the square. Similar games can be played with triangles (fig. 9-25).

334

& AL 3 comer.

.

©b. On an edge.

e Xjim

8-23. A composition of nested squares. .24 itions of squares about dif-
points.

ferent

AANTN

a Equilateral viangles fixed b. Equilateral tiangles fised c. Isosceles trangles of con-
o ape. ot canter of basa. stant width foed a1 apex.

A M

d. Isosceles riangles of con- . Isosceles triangles of con- I, Height and width vary, with
“M“Iw stant height fixed at apex. fixed poiet at center of
base.

825, wmammm.wmwm

Appendix B

335

Synthetic Tutor

CODE RESULT

import rhinoscriptsyntax as rs

dof square(x_center, y_center, length)s
pass
x1+x_center - length/2
yl=y_center - leagth/2

calculate vales for x2 and y2
x2 = x1 + length
y2 = yl + length

ptl - [x1,y1,0)
pt2 = [x2,y1,0])
ptd = [x2,y2,0)

ptéd ~ [x1,y2,0) [j]

rs.AddLine{ptl,pt2)
rs.AddLine(pt2,pt]d)
ra.AddLline(pt3,ptd)
rs.AddLine(ptd,ptl)

def nestSquares(x_center, y_center,
length, increment,
repetition):

count = range(repetition)

for i in count:
square{x_center, y_center, length)}
length = length + increment * 2

nestSquares(0, 0, 100, 100, 10)

s w Lo - CUUMONG FOLDLES L RELLARCHNOOT Pul'l,'vu.fdn—!u’\v.‘: \";&-H Tow %
e Debug Teck Help
HOE 2 P o0
Bt s] | 08071 o i smant gevghe shage paritemas Fy 0
a7
pue o import rhinoscriptayntax as rs
<
- def drawRectangleix, y, le thick):
x2 = x + length
y2 = y + thick

ptl
pt2
pt3
ptd

rs.AddLine (ptl, pt2)
ra . AddLine (pt2, ptl)

ra.AddLine (pt4, ptl)

336

Appendix B

Module 84: 9.4 Incrementing 3

9.

REPETITION

9.4 THE COMPOSITIONAL USES OF REPETITION

9.4.4 INCREMENTING MULTIPLE SHAPE PARAMETERS

We saw in chapter 8 that a figure can have not just one, but many shape parameters. Where there are multiple shape
parameters, any number of these may be incremented within a loop.

We have seen, for instance, that a rectangle parallel to the coordinate axes has two shape parameters Length and
Width. The following iterative procedure takes as parameters an initial Length and Width, a Length and Width
increment, and a lower limit on the value of Length

[sample code on the right side]
At each iteration, this procedure subtracts the increment from Length (that is, it decrements), and it adds the

increment to Width. The control structure is a while loop, controlled by the lower bound on Length. It generates the
kind of composition shown in figure 9-26.

-

9-26. Composition produced by incrementing Length and Width of concentric rectangles.

337

Synthetic Tutor

CODE RESULT

import rhinoscriptsyntax as rs

def drawRectangle(x, y, length, width):

x2 = x + length

y2 = y + width

ptl = [x, ¥, 0]

pt2 = [x2, y, 0]
ptd -~ [x2, y2, 0]
ptés = (x, y2, 0]
re.AddLine(ptl, pt2)
rs.hddLine(pt2, ptld)
rs.hddLine(ptd, ptd)
rs.hddLine(ptd, ptl)

deof drawCrossRectangle(x, ¥,
length, width,
length_inc,width_ine,
limit)s

xl = x
yi=y

while (length > limit):
drawRectangle(xl, yl, length, width)
x1 = x1 + length_inc
y1 = y1 - width_ine
length = leagth - length_inc * 2
width = width ¢ width_ine * 2

drawCrossRectangle(0,0, 500,100, 10,10, 100)

CAROMG, FOUOERSADT RS SEARCHO0) THESES) tos Tute Titoiak

e (dt Debup Took Iy

_ - o ©
| & -l 2- b o0
B o | 500 How x mcrerars mUADE 1ase Sersreny
X

wopazon

3 Pwe

RS/0LW20F
Ny

- def drawRectangle (x, Y, length, width):
X2 = x + 1 <
y2 = y + width

-
__{'_..Ei I
I

2. MdLine (ptl
a.AddLine (pt2,
s.AddLine (pt3,
=.AddLine (ptd,

—

T
PR P e— P e | N T
4

338

Appendix B

Module 85: 9.4 Incrementing 4

9.

REPETITION

9.4 THE COMPOSITIONAL USES OF REPETITION

9.4.4 INCREMENTING MULTIPLE SHAPE PARAMETERS

Now consider the general four-sided object shown in figure 9-27a. It has eight shape parameters the X and Y
coordinates of the four vertices. We can associate an increment, which may be a positive or a negative number, with
each of these. The following procedure with seventeen parameters (including a parameter controlling the number of
iterations) changes all eight shape variables at each iteration

[sample code on the right side]

Some of the many compositions that this procedure can generate are shown in figure 9-27b. Notice that, as the

quadrilateral changes with each iteration, each vertex moves along a straight line. The angle of this line and the
direction of movement are determined by the relation between the X and Y increments.

339

Synthetic Tutor

|
X3,Y3
a Parameters ol the quadrilateral element.

b. Some instances.

9-27. Compositions produced by incre-
menting vertex coordinates of a

340

Appendix B

CODE RESULT

import rhincscriptsyntax as rs

def four_side{p0,pl,p2,p3):
points = [p0,pl,p2,p3,p0)

rs.AddPolyline(pointa)
dof drawNestFigure(xl, yl,
x2, y2Z,

x3, y3,

x4, y4,

x1_inc, yl_inc,
x2_inc, y2_inec,
x3_inc, y3_ine,
x4_inc, y4_inc,
repetitions):

count = range{repetitions)
for i in count:
p0 = [xl, 'yl, 0)
pl = [x2, y2, 0]
p2z = [x3, y3, 0]
p3 - [x4, y4, 0]
four_side(p0,pl,p2,p3)

x1 = x1 + x1_inc
¥l = yl ¢+ yl_ine
x2 = x2 + x2_inc
y2 = y2 + y2_inc
x3 = x3 + x3_inc
¥3 = y3 ¢ y3_inc
x4 = xd + xd_inc
yd ¥4 ¢ yd_inc

dravNestFigure(0, 0O,

100, 100,
50, 200,
-50, 100,
10, =15,
-12, 21,
31, 34,

-19, 21,
10)

B fie 64t Ve Cwve Sofere Sobd Mobh Omsersen Tordbies Toshs drulie Resde Poneh V-llay Vep

oo

wesa Bthon [citer - CARMONG FOLDERZGT RESLARCH 03 m-.n'\n‘mv,m'.m SR T
Fie (8t Debuy Tech ol

D@-d@d P p-Im- 50w

B GO | A b 1 et Ouibgle Shgas pirietert Ot iptey alasants Py
i @ eweacg

o B oo import rhinoscriptsyntax as r2

2 fres

341

Synthetic Tutor

Module 86: 9.4 Incrementing S

9.

REPETITION

9.4 THE COMPOSITIONAL USES OF REPETITION

9.4.5 INCREMENTING BOTH POSITION AND SHAPE PARAMETERS

Sometimes in nature we find that the shapes of instances of some type of object vary systematically with position. In
a grove of trees, for example, the trees in the interior grow tall and narrow in order to reach the light, whereas trees
on the outside are shorter (fig. 9-28). Alternatively, instances may be sorted and arranged spatially according to
shape. Children might be lined up for a photograph, for example, in strict order from the shortest to the tallest.

In architecture it is very common for position and shape to vary regularly in a correlated way. A regular row of
columns supporting a pitched roof must grow in height (fig. 9-29a). Structural logic suggests that columns will also
become thicker as they get taller (fig. 9-29b).

[sample code on the right side]

The logic of this kind of composition can often be captured with a procedure that increments both shape and position
parameters within a loop. The following simple procedure, for example, generates column rows of the type shown in
figure 9-29b

Note that the parameters specify initial position and dimensions, center-to-center column spacing, number of
columns, height increment, and thickness increment. You should be able to think of other, perhaps more convenient,
parameterization schemes.

Here is an analogous procedure to draw a stepped pyramid in elevation

[sample code on the right side]

342

Appendix B

9-28. A grove of trees; interior trees grow taller and narrower in order to reach light.

a. Height varies with position.
T
1 | 1

i l

1

| | I t |
! | 1 ;]
! 1 ! i |
! i 1 f |
! § ! !
|] .

1

! i

l [I

| 1 I i 4
1 1 } 1 1

b. Thickness varies with height.

9-20. A row of columns supporting a
pitched roof.

343

Synthetic Tutor

CODE
import rhinoscriptsyntax as rs

def drawColumn(x, y, helght, thickness):
%2 = x + thickness
¥y2 = y + height
ptl = [x, y. 0)
pt2 = [x2, y, 0)
pLd - [x2, y2, 0]
ptd = [x, y2, 0]
rs.AddLine(ptl, pt2)
rs.AddLine(pt2, ptl)
ra.MddLine{ptd, ptd)
ro.AddLine(ptd, ptl)

dof drawRowColums(x, y, height, thickness
spacing, height_inc, thickness_inc,
num_of_columns):

count = range(num_of_columns)

for i in count:
drawColumn(x, ¥, helght, thickness)
%X = x + spacing
height = height + height_inc
thickness = thickness + thickneas_inc

drawRowColums (0, 0, 3000, 300,

3000, 200, 200,
10)

C/IIHONG FOLDERS DL

Home Taackng

NERVINE
DY
PO Y Y P

A ove of e, insmrien teevs e tller god mammen i snder &5 vewch by

& TPt caran gt

! H i::

B Dahemss s o gt

BB A e of eobenas seprering »
e i

344

RESULT

e o wmeen F 0
riptsyntax as rs
ctangleix, y, 1 th,
+ length

+ hoight

[%,¥,0]

(x2,y,0]

(x2,y2,0]

pt2)
Pt3)
pté)

ptiy

height):

Appendix B

Module 87: 9.4 Incrementing 6

9.
REPETITION

9.4 THE COMPOSITIONAL USES OF REPETITION
9.4.5 INCREMENTING BOTH POSITION AND SHAPE PARAMETERS

Here the parameters specify length, width and position of the lowest layer, and the amount by which the length of
each successive layer is to be decremented. Iteration continues until the length of the layer becomes zero (fig. 9-30).

We considered, in chapter 7, a function to find the Midpoint of a line. We can use this function in the following
iterative procedure that takes parameters specifying center point coordinates, an initial side length, and the total
number of squarcs to be nested and produces compositions like the one shown in figure 9-31.

[sample code on the right side]

Notice what happens if we specify too many squares a square of side length 1 will be repeated until the loop
terminates.

Another interesting way to look at this figure is as a square that is rotated through a quarter circle and scaled down
by a factor of sqrt (2) at each iteration. That is, shape varies together with rotation, rather than with translation of the
element, as in our earlier examples. The beautiful radial spiral shown in figure 9-32 is generated in a very similar
way. Here a line with a fixed endpoint is rotated and lengthened by a fixed increment at each iteration.

Finally, figure 9-33 illustrates a type of floor plan very much like that of Le Corbusier's famous Spiral Museum. The
repeating element is a 45-degree trapezoid. Plans of this type can be generated by a procedure that lengthens the
element by an appropriate increment, translates its origin forward, and rotates it through a half circle at each
iteration.

345

Synthetic Tutor

9-30. Stepped pyramids. 9-33. A5 formed by repeating in-
stances of a 45-degroe trapezoid.

9.32. A radial spiral.

346

CODE RESULT

import rhinoscriptsyntax as Is

def MidPoint(xl, x2):
mid = (x1 + x2)/2
return mid

Appendix B

def drawNestSquares(x_center, y_center,
length, num_squares):

x1 = x_center - (length/2)

¥l = y_center - (length/2)
x2 = ml

¥2 = yl + length

x3 = x2 + length

y3 = y2
x4 = x3
yé = yl

<count = range{num_squares)

for i in count:
ptl = [x1, yl, 0]
pt2 = [x2, y2, 0]
ptd = [x3, y3, 0]

ptéd = [x4, y4, 0]
pts = [ptl, pt2, pt3, pt4, ptl]
rs.AddPolyline(pts)

new_x1 = MidPoint(x1, x2)
new_yl = MidPoimt(yl, y2)
x2 = MidPoint(x2, x3)

y2 = MidPoint(y2, y3)

x3 = MidPeint(x3, x4)

y3 = MidPoint(y3, y4)

x4 = MidPoint(x4, x1)

yd4 = MidPoint(y4, yl)

x1 = new_xl

¥l = new_yl

drawdestSquares(0, 0,
1000, 10)

D T R i P R
o Pythce Laor - €L UMONG FOLDHRESS RESEARC H0L EHESENTou bubeTumonalalill] How 10 momrent bos post.

Bt Dby Tesh Help
&

L T

B30 A putiern of i gt
L8

347

Synthetic Tutor

Module 88: 9.5 Math 1

9.

REPETITION

9.5 CONSTRUCTING MATHEMATICAL PROGRESSIONS

So far we have focused mostly on repetitive compositions in which an element dimension is changed by a specified
increment or decrement at each iteration, or in which a line of elements is lengthened by a fixed amount whenever a
new element is added. In these compositions, dimensions form arithmetic progressions. Here is a procedure, for
example, that generates a row of equally spaced vertical lines.

[sample code on the right side]

Let us assume that the initial value assigned to X is 10. At each iteration, a new value is assigned to X by the
following statement

X=X +INCREMENT

Let us further assume that Increment is set to the value 10. Values taken by X will now be in the arithmetic
progression

10, 20, 30, 40, 50, 60, . .

The result is the pattern shown in figure 9-34a.

NN

a. X coordinates form an arithmetic progression,

b. X coordinates form a geometric progression.
8-34. The spacing of paralle] lines.

348

Appendix B

CODE RESULT
import rhinoscriptsyntax as rs

deof drawlinesRatio{start_x, starty,
length, ratio, numberj:
X - ptart_x
y = start_y + length
count = range(number)

for i in count:
pt0 - [x, start_y, 0]
ptl = [x, y, 0]
ro.AddLine(pt0d, ptl)
x = x * ratio ﬂ“ ‘ I | i |
|

drawLinesRatio(2, 0, 100, 2, 10)

Brimes Py bainoe - CUUMONG FOUDERDOL RPSEARC HAD0] oD Vou Tabe Tumriel U009 How ® ie math O30
& - g ~hy bt g

Fie G8n Debug Teoh Helg

&-dOE P b
» @ gyren
N Y —

- # e import rh
: I

e e e = T

I

R

I

B R Gaatrates e 8 g g——
B The wping of poalied buew

349

Synthetic Tutor

Module 89: 9.5 Math 2

9.

REPETITION

9.5 CONSTRUCTING MATHEMATICAL PROGRESSIONS

We do not need to restrict ourselves to arithmetic progressions, however. We can use geometric progréssions of
dimensions, in which each successive term is in a specified ratio to its predecessor. Consider, for example, this
procedure to generate another row of vertical lines

[sample code on the right side]

Let us once again assume that the initial value assigned to X is 10. Now, at each iteration, a new value is assigned to
X by the statement

X =X*RATIO

Let us assume, further, that Ratio is set to the value 2. Values taken by X will now be in the geometric progression
10, 20, 40, 80, 160, 320, . .

The result is the pattern shown in figure 9-34b.

In this example, Ratio is of type integer. But it is more generally useful to make it of type real. The assignment
statement then becomes

X = ROUND(X * RATIO)

The sizes of objects, too, may increase in either arithmetic or geometric progression. The next procedure, for
example, generates concentric squares with side lengths forming an arithmetic progression (fig. 9-35a).

Nest squares can be modified slightly to generate concentric squares with side lengths forming a geometric
progression (fig. 9-35b).

350

Appendix B

a. Side lengths In arthmetic progression.

]

b. Side lengths in geometric progression,
9-35. Compositions of concentric squares.

351

Synthetic Tutor

Module 90: 9.5 Math 3

9.
REPETITION
9.5 CONSTRUCTING MATHEMATICAL PROGRESSIONS
9.5.1 EXPRESSIONS CONTAINING THE CONTROL VARIABLE
Where the values of more than one parameter of some object are changed within a loop, different expressions may
assign the successive values to each one of these. This produces differential change. In the following procedure, for
example, different expressions assign values to X, Y, Length, and Width of a rectangle.)
[sample code on the right side]
Figure 9-36 illustrates some results produced by the execution of this procedure. In summary, the Python code to
construct a sequence of instances of some type of object, with position or shape values forming arithmetic or
geometric progressions, generally looks like this
Assign initial values to position and shape variables. Loop control statement (FOR or WHILE)

def loop_control_statement():

Draw instance with current position and shape values.

Assign new values to position and shape variables using
incrementing variables.

352

Appendix B

i

9.36. Some results produced by the
procedure Vary_rectangles.

353

Synthetic Tutor

CODE RESULT

import rhinoscripteyntax as re

dof drawRectangle (x1,yl,length,width):
x2 = xlilength
y2 = yléwidth

ptl = [x1, y1, 0]
pt2 = [x2, yl, O}
pt3 = [x2, y2, 0]
ptd = [x1, y2, 0]

ro.Mddline(ptl, pt2)
re.AddLine(pt2, ptl)
rs.hddLine(pt3, pt4)
re.MddLine(ptd, ptl)

def drawVaryingSquares(x, y, length, width,
inc_x, inc_y,
inc_length, inec_width,
number) :

count = range(number)

for i in counts
drawRectangle(x, ¥, length, width)
x = x + inc_x
¥y =y + inc_y
length = length + inc_length
width = width + inc_width

drawVaryingSquares(0,0, 1000,800, 100,100,
100,100, 10)

Vi v Wi 300 - b
iewpert Lagps abiley Traratre . Cora T

Senlet
YY T LR Vs e
3

B Breng Pythom Eitor - CAATHONG FOLDOATOL RESTARIIADDL T 15 Vims Tk Tunortal/ 9901] How W wrie math.

I-MYM lwnh-h ilnl‘-io &.-a-

fhs fGde Debuy Took Hegp

D-W@PE P- P--208

: S | 0TS o o et b prigressecn ged) vuliple pavete's py T P ———

-

¢ A o rs. AddLine (ptd, pti)
2 Bwa I

D L L
prndnse Van sovtemgie

354

Appendix B

Module 91: 9.5 Control 1

IQI.EPETITION
9.5 CONSTRUCTING MATHEMATICAL PROGRESSIONS
9.5.1 EXPRESSIONS CONTAINING THE CONTROL VARIABLE
A When we employ an assignment of the form
X =X+ INCREMENT
within a loop to construct an arithmetic progression, or an assignment of the form
X =X*RATIO
within a loop to construct a geometric progression, we make the position or the shape of each instance of the
repeating element depend upon that of its predecessor. In other words, we directly specify how shape or position
changes from one instance to the next. An alternative approach is to specify the nature of the change indirectly, by

making the value of a position or shape variable depend upon the value of a for loop's control variable.

Where i is the control variable of a for loop, we can, for example, generate arithmetic progressions by employing
assignments of the form

X =1i* INCREMENT

We can make a value of a position or shape variable grow exponentially, rather than arithmetically or geometrically,
by using assignments of the form.

X =EXPONENT(i, POWER)

Where exponent is an integer function that raises i to the integer exponent specified by Power. For example, if i
begins at 1, and Power is set at 2, successive values of X are

i 1 2 3 4

X 1 4 9 16
If Power is set at 3, then successive values of X are

i 1 2 3 4

X 1 8 27 64

The Exponent function can generate very large values even when i is small, so you must take care. If Power is 2, for
example, Exponent will reach a value of 32,768 when i is 15 this is larger than the largest integer representable in
many Python systems.

[sample codes on the right side]

355

Synthetic Tutor

CODE RESULT

import rhinoscriptsyntax as rs
32
def getExponent (base, power):
e = base
n = power -1
count = range(n)
for i in counts
e = ¢ * base
exponent = e
retura exponent

exp - getExponent(2,5)
print exp

; p—_— P | Toon | A .

CH fi C/HMHONG_FOLDE } Corve Toln . Surtece Tooks ' Scha Tosls Mes® Tosks

N A N
g E [

T b1 ety QI IE Mow %) wse ik

S Rraner femaw PrwE
Cd Teamn O3 £ Fome 1) Taachng
X = X = INCREMENT

withis & loop 8 CORIINICT an arthmet progresiedn, Of Bn Akt of the form ;9-»' T b = Mwn: s rea
X = X *RATIO Friptsyntax as rs -
withes 8 koop 10 conifinuct & promec progreicn, we make e postos of the shape
of each mstance of the repesting clesrnt depomd upon that of £ predecesso In othey
wonds we drecth specls bow shape on posison chasges from cor mstance 1o the
wext An skersative approach o 8o specls the nanare of e change mdrecth, b

maaking e vador of & posmon of shape varisbie depend wpon the value of 2 for boop's
control variabie

Where o is the contal variable of & for kot we cas, e evamgle, poncrate arithenrtsl
propeimon: by mmplovng ssagments of the form

X =i ® INCREMENT

We can moake & value 8 & poution o shape variabie grow exposcnnaly, faber tha
arithenetic s or ;«-nuhth‘- gung e sgmnenty of e form

X = EXPONENTR POWER)

Wheve ciponent is an integer Sancton that rases 1 30 the wieget expeotent specfied by #
Posrs For cvmngle, fibegns 2 1 md Ponarnscaal mccesive vales of Xwe *

¥ F Iaes sef dwn)
b ies 1o an
] 16 . "
- 3ash ief ban
, Wtep: fan) =» List iof imt

356

Appendix B

Module 92: 9.5 Control 2

9.

REPETITION

9.5 CONSTRUCTING MATHEMATICAL PROGRESSIONS

9.5.1 EXPRESSIONS CONTAINING THE CONTROL VARIABLE

Sometimes it is useful to use periodic functions of the control variable. Consider, for example, a row of columns to
support a saw tooth roof (fig. 9- 37). The following procedure employs the % (mod) function to generate
compositions of this type:

[sample codes on the right side]

Note that the % (mod) function is used to produce the remainder that results from dividing a dividend by a divisor.

For example, the result of 5 % (mod) 2 is 1 the remainder when dividing 5 by 2 is 1. In our example, we used the %
(mod) function to determine the start of a period.

937. A row of columns, in a sawtooth pattern, generated with the mod function.

357

Synthetic Tutor

CODE RESULT
import rhinoscriptsyntax as rs

def drawColumns (x1, yl, height, thickness):
x2 = x1 + thickness
y2 = yl + height
ptl ~ [x1, ¥1, 0]
pt2 = (x2, yl, 0]
ptd = [x2, y2, 0]
ptd = [x1, ¥2, 0]
rs.AddLine(ptl, pt2)
rs.AddLine(pt2, ptl)
rs.AddLine(pt3, pt4d)
rs.AddLine{ptd, ptl)

def drawRowColumns(x_start, y, min_height,
thickness, height_inc, spacing,
period, num_columns):

height = min_height

x = x_start

count = range(l,nam_columns)

for i in count:s
drawColumns(x, y. height, thickness)
mod = i & pericd
height = min_height + mod * height_inc
x = x + spacing

drawRowColumns{0, 0, 1000, 200, 100, 500, 5, 20)

www.youtube.com Is now full screen.
i Banka. k- Pai Y.
" . FOLOREEE RILARCHAD0T THE T Ve Tobur Tutasial DH0TS Mo 10 dem wiryrg G0l
OLDERS/0I%20RESEs . 0 Ba © & Songir

Tesching — BUSk gEgY
i . gm- ©
g o b

N e b i L

- def drawRectangle(x, th, height):
x2 = x + length
Yy + height

[x,¥,90]
[x2,¥.0
ix2,y2,
[x,y

.AddLine (ptl, pt2)
ptid

r=.AddLine (pt3, ptd)
rs_Addrine (ptd, ptl)

|

A

358

Appendix B

Module 93: 9.5 Control 3

9.
REPETITION

9.5 CONSTRUCTING MATHEMATICAL PROGRESSIONS
9.5.1 EXPRESSIONS CONTAINING THE CONTROL VARIABLE

In figure 9-38 the roof takes a sine curve rather than a saw tooth form. To generate this type of composition, we
simply modify our procedure to employ the sin function

[sample codes on the right side]

8-35. A row of columns generated with the sin function.

359

Synthetic Tutor

CODE RESULT

import rhinoscriptsyntax as rs
import math

dof drawColumns (x1, yl, height, thickness):
x2 = x1 + thickness
y2 = y1 + height
ptl = [x1, yl, O]
pt2 = [x2, yl, 0]
pt3 - [x2, y2, O]
pté = [x1, y2, O]
rs.AddLine(ptl, pt2)
rs.AddLine(pt2, ptl)
rs.AddLine(ptl, ptd)
rs.AddLine(ptd, ptl)

def drawSineColumns({x_start, y,
min_height, thickness,
height_inc, spacing,
period, num_columns):

radians - 0.01745
angle = 180 / period * radians
theta ~ 0
x = x_start
count = range(l, num_columns)
for L im count:
height = min_height 4 height_inc * math.sin(theta)
drawColumns(x, y, Reight, thickneas)
x = x + spacing
theta = i * angle

drawSineColumns(0, 0.
3000, 100,
1000, 600,
12, 30)

.youtube.com Is now full screen.

P T

Corvn Tochy Sortece Tooks Sobd Tacls Wlest e |

e 1 FC/IIHONG _FOLDERSAC
T Ressarch (0] Harma T Tenchong
rge -

3

s v

h scriptsyntax as rs
h

i

[R —— T

360

Appendix B

Module 94: 9.5 Control 4

9.
REPETITION

9.5 CONSTRUCTING MATHEMATICAL PROGRESSIONS
9.5.1 EXPRESSIONS CONTAINING THE CONTROL VARIABLE

Our earlier procedure for drawing a row of squares can be modified to make X dependent on the contro! variable
index (see index in the sample code). This allows us to draw portions of a row of squares by starting and finishing
index at different values. The parameters to this modified procédure now include the initial and final values of
index.

[sample codes on the right side]

Figure 9-39a shows the resulting row of squares when the initial and final values of index are set at 1 and 9
respectively. Figure 9-39b shows just a portion of the row when the loop is specified to go from 3 to 6.

Should you add an increment to the value of X at each iteration, or should you make X depend on the last value of
the control variable index (as in these modified versions)? If integer arithmetic is used to calculate the value of X,
the choice is one of style. If real arithmetic is used, however, there is an important practical difference - round off
errors will cumulate as increments are added to X at each iteration, but they will not if X depends on the value of
index. Just as a craftsman must watch out for cumulative error when fitting elements together in a row, we must do
the same when writing programs to generate repetitive compositions.

A wide variety of expressions containing the control variable may be employed within loops to construct repetitive
compositions. But the code always takes the same general form.

def general_form():
for index in range(initial, final):
Evaluate expressions containing - index - to assign values to position and shape variables
Draw instance with current position and shape values

361

Synthetic Tutor

CODE RESULT

import rhinoscriptsyntax as ra
import math

deof drawSquare(x_center,y_center,length):
xl = x_ecenter - length/2
yl = y_center - length/2
%2 = x1 + length
y2 = yl + length
#draw square
ptl = [x1, yl, 0]
pt2 ~ [x2, yl, 0]
ptd - [x2, y2, 0]
ptd4 = [x1, y2, 0]
rs.AddLine(ptl, pt2)
i:"f‘mf’fi:ﬂ:ti it:; DCooOoOODODODODODOOOODOO0OO0D0D
rs.AddLine(ptd, ptl)

dof drawRowSquares(x_initial,x_increment,y,length,initial, final):
indices=range(initial,final)
For index in indices:
x=x_initial + (index-1)*x_increment
drawSquare({x,y,length)

derﬁﬂHEqulreﬂ‘0,300,3000.100,3.20)

‘www.youtube.com Is now full screen.

Yooy SerimceTosls Sche Tocls | Mest=
L

T U1

import rh
import matl

8 Conrt pcremmwamy vom Y 0

Appendix B

Module 95: 9.6 Loop 1

9.
REPETITION

9.6 SEQUENCES OF LOOPS

So far in this chapter we have considered repetitive compositions that are generated by single loops. But not all
repetitive compositions can be produced in this way. The grid shown in figure 9-41a, for example, cannot. We can
decompose it, however, into overlaid vertical and horizontal parallel lines (figs. 9-41b,c). Here is a simple procedure

to generate parallel horizontal lines.

[sample codes on the right side]

il

a, The compiete grid. b. Vertical componant. ¢. Horizontal component.
9-4). The decomposition of a grid of lines.

363

Synthetic Tutor

CODE RESULT
import rhinoscriptsyntax as rs

def drawHorizontals(start_x_h, start_y_h,
length_h, spacing_h, number_h):

x - start_x_h + length_h
y - start_y_h
count = range{l, number_h)
for i in count:
ptl = [start_x_h, ¥, 0]
pt2 = [x, y, 0]
rs.MdLline{ptl, pt2)
y = y + spacing_h

drawBorizontals(0, 0,
1000, 100, 10)

T Cabiy SRR SR e - DR TAETTE TIAG AAAREE eese beoee @ b
Gaces CPasen SwVies Dupley Semct Slewporiiaed Vabley Trwwhrs < Corw Voo - Sufece Took SebdTosls Seal = L
o M e N i P S LY - B R s
Srmc Pyfom Edbnor - CAAMONS_FOLOEREAT REARSH00T THEDS Yo Tabe Tiioaety QUOTE Hom 13 doww hosaetel fm 2 75 el

Fae [Oebug ook belp

Ng-dPd £P- P 2058

import rhincacriptayntax as rs

Appendix B

Module 96: 9.6 Loop 2

9.
REPETITION

9.6 SEQUENCES OF LOOPS

Now consider the simple frieze pattern shown in figure 9-42. It can be decomposed into several simpler repeating
patterns, and each of these patterns can be generated by a procedure that executes a loop. The following program,
which invokes the appropriate procedures one after the other, generates the complete frieze:

[sample codes on the right side]

Notice that the sequence in which the procedures are invoked controls the sequence in which the component patterns
are actually drawn on the screen, but does not have any effect on the final drawing. If we were to change the
sequence of procedure invocations in our program to the following,

ROW_TRIANGLES (50, 200, 60, 20, 60, 6)
ROW_RECTANGLES (60, 115, 40, 80, 80, 6)
ROW_RECTANGLES (50, 100, 60, 10, 60, 6)

The effect would be to reverse the order in which the component patterns are drawn on the screen, but the end result
would be exactly the same.

In this program, we have taken care that the overlaid rows of triangles and rectangles are in phase with each other.

By passing different values for the parameter Spacing into the procedures Row_rectangle and Row_triangle, we can
also generate compositions in which the rows are out of phase (fig. 9-42e).

365

Synthetic Tutor

S S ke A
] ; [)
& Tre coegele palen
- . L L b
.] | s | | e | [« — C 3
> v otvonger <o g_’._s .4;:» . 4;:;. A
e D D D D D U
e - = e e e 153
e

e [IT] ooon

$42. The devommgunition of a fc2e pattera.

366

0gn

CODE RESULT
import rhinoscripteyntax as ro

def

def

drawRectangle{xl, yl, length, width):
x2 = %1 + length

¥2 = yl + width

ptl = [x1, yl, 0]
pt2 = [x2, yl, 0]
ptd = [x2, y2, 0]
pt4 = [x1, y2, 0]
rs.AddLine(ptl, pt2)
rs.MdLine(pt2, pt3)
rs.MddLine(pt3, ptd)
ra.MddLine(ptd, ptl)

drawTriangle(xl, yl, base, altitude):
x2 = x1 + base

x3 = x1 + base / 2

y2 = yl + altitude

ptl = [x1, yl., 0]

pt2 = [x2, yl, 0]

ptd = (x3, y2, 0)

re.AddLine(ptl, pt2)

rs.AddLine(pt2, pt3)

ro.AddLine{pt3, ptl)

drawRowRectanglos(start_x, y, leagth, width,
spacing,number):
x = start_x
count = range(number)
for i in count:
drawRectangle(x, y, leagth, width)
x = x + spacing + length

drawRowTriangles{start_x, y, base,
altitude, spacing, number):
x = ptart_x
count = range(number)
for i in count:
drawTriangle(x, y, base, altitude)
x = x + spacing + base

frieze():

drawRowRectangles (50, 100, 60, 10, 60, &)
drawRowRectangles(60, 115, 40, B0, B0, €)
drawRewTriangles (S0, 200, €0, 20, 60, 6}

friese()

Appendix B

367

Synthetic Tutor

www.youtube com is now full screen. Exit full screen (Esc)

» =1 Edtor - CARSIONG FOLDERDAT RESEARCH 003 THETIS ton Tute T vtoriuts 090)
FODERs0l; D SO0 & & ""m"r"*' o - X -

Fim (@2 Dedeg Teoh Malp

L;'ﬁag p' .'G' SRR

1 Tenceeyg —~ SUSH gk -

0L Wi 16 Ao seralioun gEsern Py”

import rhinoscriptsyntax as

El
£
E
;
;
!‘.
£
El
#

Cudgns | Wniiien | Col Soack

368

Appendix B

Module 97: 9.7 Nested 1

9.
REPETITION
9.7 NESTED LOOPS

Figure 9-43 illustrates a rectangular column grid, which often appears in plan drawings of buildings. To draw it, we
might first write a procedure to generate a row of columns as follows

[sample codes on the right side]

We might then invoke this procedure the requisite number of times.
ROW (100,500,30,100,4)
ROW (100,400,30,100,4)
ROW (100,300,30,100,4)

The effect is to draw rows, one after the other.

369

Synthetic Tutor

9-43. A grid of columns drawn in the

sereen coordinate system.

.L:.‘:-_‘:‘ e oass sl el

KA

944, States of the d

370

oo
coo
oooo
12 TR T TR
13 > s AT TR AT
14
oooo
oo oooo
oooD oooo
oooDoD
e o '
22 R IR
23 SIS L SESS
l 24
ocoooo
cooao oooo
ao oooGo ocoo@o
ooao oooag
apoo
hwre s T TIOT T
e T 2 ImeT

Appendix B

CODE RESULT
import rhinoscriptsyntax as rs

def drawColumn(x_center, y_center, diameter):

x1 = x_center - diameter/2
yl = y_center - diameter/2
x2 = x1 4 diameter

¥2 = yl + diameter

ptl = [x1, yl, 0]

pt2 = [x2, yl, 0)

pt3 = [x2, y2, 0]

ptd = [x1, y2, 0]
rs.AddLine(ptl, pt2)
rs.AddLine(pt2, pt3)
rs.AddLine(pt3, ptd)
rs.hddLine(ptd, ptl)

dof drawRow(initial_x, y, diameter,
spacing, num_columns):

x = inicfal x
count = range({num_columns)
for 1 in counts:
drawColunn(x, y, diameter)
x = x + spacing

drawRew (500, €00, 30, 100, 6)

OO0 0O OoO0OO0Oagao
O 0 0o 0 o0 a0 0
O O 0O O 0 0 O

www youtube com is now full screen. Exit full screen (Esc)

IAHONG _FOLDERS 20RESEARCHD OO % B Biwepert Lams inbeiey Trammbrm Corve Todn Surtern Tooks Sokd Touls © Mewt = (2
LB L 9.02009 -
Ol Home () Teachng ~ & SuEs . B T ape of ot Lol b e 2N 0.8 0.5 -

i O 5 w2 8 ested Cop By

joscriptsyntax as

371

Synthetic Tutor

Module 98: 9.7 Nested 2

9.
REPETITION

9.7 NESTED LOOPS

A more concise way to express this, however, is to invoke the Row procedure from within a loop.

The effect is to nest one loop within another. The inner loop repeatedly invokes the procedure Column to produce
horizontal rows, and the outer loop repeatedly invokes the procedure Row to produce the grid. Figure 9-44 shows
the step-by-step construction of the grid along with the values that the counters of the inner and outer loops have at
each step. You should study this carefully before going on.

It is good practice to indent as shown this visually expresses the idea of nesting and clearly distinguishes the inner

from the outer loop. This approach should be employed only when the inner loop does something very simple and
straightforward.

372

Appendix B

CODE RESULT
import rhinoscriptsyntax as I8

dof drawColumn{x_gcenter, y_center, diameter):

x1 =~ x_center - diameter/2
yl = y_center - diameter/2
x2 = x1 + diameter

y2 = yl + diameter

ptl = [x1, y1, 0}

pt2 = [x2, yl, 0]

ptd « [x2, y2, 0]

ptd - [x1, y2, 0]
re.hddLine(ptl, pt2)
re.AddLine(pt2, ptl)
rs.AddLine(pt3, ptd)
rs.AddLine(ptd, ptl)

dof nostedlLoop():
x
y = 500
count_rows = range(3)
count_eolumns = range(6)
for rowIndex in count_columns:
for collndex in count_rows:
drawColumn(x, ¥y, 30)
x =~ x + 100
Yy -y - 100
x = 500

O 0 O 0O g a d
O 00 oo 000
O O o o o o 0O

nestedLoop()

wrw.youtube.com I now full screen. Exit full screen (Esc)

‘f’_;,s - B Layod - Veelabty ' Trwwkee - Curve Toshs Siriace Yook SobdTock Wesf w13
g} top o Y

5 Voo hape of etrme LR -:‘.a"'. g ory, 519.0.‘, >, -

SELAAC 051 THESIE vouT i Tetar s RS s & vtsticopny, > B 0

iptsyntax as 1>

Hw(x_start,y, length, hei
| = range(num)

lstart

fan count:

ifavRectangle(x,y, length, hoight)

b
2
[
|
|
:
!

373

Synthetic Tutor

Module 99: 9.7 Nested 3

9.
REPETITION
9.7 NESTED LOOPS

We are now in a position to write a very general program to draw rectangular column grids. The design variables are
shown in figure 9-45a.

[sample codes on the right side]
This program first prompts for and reads in values for the design variables, then executes the loops to draw the

required number of columns of the specified size and at the appropriate locations. Some of the many possible results
are illustrated (fig. 9-45b).

374

Appendix B

S e
#——u-+--
T

.

—_—

BAYS__WIDE

0O o o0 o
g o oo

b. Some instances drawn In the screen oo~
ordinate system.

9-45. Rectangular grids of square columns.

375

Synthetic Tutor

CODE RESULT
import rhinoscriptsyntax as rs

dof drawSquare(x_ecenter, y_cester, length):
x1 = x_center - length/2
yl = y_center - length/2
x2 = x1 +length D D |:| D
¥2 = yl + leagth
pti = [x1, yl, 0]
pt2 = [x2, yl, 0]
pt3 = [x2, y2, 0]
pté - [x1, y2, 0]
rs.AddLine(ptl, pt2)
rs.AddLine(pt2, ptl)

re.AddLine(ptd, ptd) [:‘ D D D
rs.AddLine(ptd, ptl)

def grid ()1
x_center = rs.CetReal(’
y_center = rs.CetReal(’
diameter = rs.CetReal{’
bays_long = rs.CetInteger(
bays_wide = rs.CetInteger('ec
bay_length = rs.CetReal(’
bay_width = rs.CetReal(’
print 'wo J

y = y_center
count_rowssrange(l, bays_wide+l)
count_columns-range(l, bays_leng+1)
for rowlndex in count_rows:
x - x_center
for columnIndex in count_columns:
drawSquare(x, y, diameter)
x = x + bay_length
¥ = y + bay_width

sh drawing'

print 'f

grid()

Srderd CPwen St View Duptey Suit Viewpes Lot Wabliey Treewhors | Corvw Toole Surbsci® |
Pytteon Tt s CARBHONG FOLDERDO1 BEYEARTS O] THETIS (¥ um Tl T storiafy DU How bo & .
Cebeg Tock Melp
-d0d 2 b-o-
I VT S ———
| o
. hir rs
s

x2 = x + length
y + width
X, ¥, 6
x2,¥,0
x2,y2,0
X, y2,(
.AddLine (pl,p2}
AddLine (p2,p3)
AddLine (p3, pd)
.AddLine (p4,pl)

ode W Ry s b

MRRRTTT T

PR

376

Module 100: Exercise 5

9

REPETITION

9.10 EXERCISES

Appendix B

1. Assume a procedure to draw a square positioned by X, Y at the bottom left corner of side length Length. Execute
the following code by hand. Record the value taken by each variable at each iteration, and draw the graphic output
on grid paper. Write your values as comments in a python file.

a.

x=100
y =100
length =10

for count in range(1, 6):
square(X, y, length)
x =x+2 *length
length = length * 2

x =100
y=100
length = 200

while (length <20):
square(X, y, length)
length = length / 2
x =X + length
y =y +length

X_initial = 100
y_initial = 100
length_initial = 100

for count in range(1, 4):
X =x_initial
y =y_initial
length = length_initial

while (length < 10):

square(X, y, length)
length = length - 10

x=x+5
y=y+5

x_initial = x_initial + 100
y_initial =y_initial + 100

Please upload your python file: { Choose File | No file chosen

{ submit |

2. Assuming a Rectangle procedure positioned by X, Y at the bottom-left corner with Length and Width defining
horizontal and vertical dimensions respectively, draw the picture that would be produced by the following code.

377

Synthetic Tutor

import rhinoscriptsyntax as rs

x_initial = 100
y_initial = 100

length = 100
width =30
nx =28

y =vy_initial

while (nx=0):

x = X_initial

for count_x in range(1, nx):
rectangle(x, v, length, width)
x = x+ length

nx=nx- |

x_initial = x_initial + length / 2

y=y+ width

Please upload your python file: |_Choose File | No file chosen Submit |

3. Write procedures to draw the types of grids of squares shown in figure 9-49.

aod
ooo

hh R
b h

9-49. Some grids of squares.

Please upload your python file: | Choose File | No file chosen | submit |

378

Appendix B

4. Consider radial patterns of the type illustrated in figure 9-50. Write a general procedure to generate them.

—

S
N
9-50, A radial pattern.

Please upload your python file: | Choose File | No file chosen

5. Figure 9-51 illustrates some common types of building sections. Consider how each one should be parameterized,
and write procedures to generate them.

9-51. Some schematic sections for multistory buildings.

Please upload your python file: | Choose File | No file chosen [Submit |

6. There are various standard patterns for placement of the chords in a roof truss. Some of the most common are

shown in figure 9-52. Choose one of these and, taking span, depth, and the number of subdivisions as parameters,
write a procedure to lay out the chords correctly and draw the truss.

379

Synthetic Tutor

Module 101: 9.7 Nested 4

9.
REPETITION

9.7 NESTED LOOPS

It is simple to modify this program to draw another type of column at the grid locations it is only necessary to
substitute a different procedure for Square. The following procedure, for example, draws a cross-shaped column.

[sample codes on the right side]
If this is substituted in the column grid program, then the type of drawing shown in figure 9-46 is generated.

The object that is drawn at grid locations may itself be generated by a loop. Figure 9-47, for example, shows a grid
of nested squares.

B a0 B
O00a0
O 000

- e PR PR A e e o

a. Grid of square columns.
p— ! PESEE |

|
e ¢ P P B E B

|
3
§
i
l

|

s e T R e 2 R e T e

b. Cross-shaped columns substituted at the 9,47, Patterns of nested
. squares re-
same locations. peated on a grid.
9-46. Substitution of motifs within aloop.

380

Appendix B

CODE RESULT

import rhinoscripteyntax as rs
dof drawCross{x,y,longth):

width = length / 3
x0 = x - {length / 2)

x1 = x0 + width {; EDJ EL‘:I CB:I
x2 = x0 ¢ (2 * width)

%3 = x0 + length

y0 = y - {length / 2)

¥yl = y0 + width

y2 = y0 # (2 * width)

¥yl = y0 4 length

ptl = [x0, yl, 0]

pt2 = [x0, y2, 0] CDJ #:lr-l {i}] C::
pt3 = [x1, y2, 0]

pté = [x1, y3, 0]

pts = [x2, y3, 0]

pté = [x2, y2, 0]

pt? = [x3, y2, 0]

pt8 = [x3, yl, 0]

pt9 = [x2, yl, 0]

ptlo = [x2, y0, 0)

ptil = [x1, y0, O) E

ptl2 =~ [x1, yl, 0] S l:IJ:LI;)
ptlld = (x0, yl, 0)

pts = [ptl, pt2, pt3, pt4, ptS, pté, pt7,
pte, pts, ptl0, ptll, ptl2, ptlld)
rs.AddPolyline(pts)

def grid ()
x_center = rs.CotReal('entcrx_coordinate of center of grid',0)
y_center = re.CetRoal('enterx_coordinate of center of grid’,0)
diameter = rs.CetReal('enter column diemeter’,40)
bays_long ~ rs.OetInteger(’cnter number of bays long' ,4)
bays_wide = rs.CetInteger(’'enter number of bays wide',3)
bay_length = rs.CetReal('enter bay length',200)
bay_width « rs.CetReal('cnter bay width',200)
print ‘working...’

¥y = y_center
count_rows-range(l, bays_widetl)
count_columns-range{l, bays_long+l)
for rowlIndex im count_rows:
x = x_center
for columnlndex im count_columns:
drawCross(x, y, diameter)
x = x + bay_length
y = y + bay_width

print 'finish drawing’

grid()

381

Synthetic Tutor

www.youtube.com is now full screen.

m R T
SLARCYODY THELE o Ve st DO Fom 1o Srew & g of cron .

C/IUMONG _FOLDERSO1

e o

EoTlE Ty

vome () Taschg

noscriptsyntax as rs

.GetReal (
Bt = r3.0etReal (’
rs.GatReal ('
GetReal ('

GetReal ('

= r5.GetInteger('!
f_nund = rs.GetInteger(’

= range (bays x_numb
in countX:
punt Y range (bays
< nuu * k- y_input
© < N] Br iY in countY:
i ¥ drawRectangleffx, y, dianeter, dianet
y=y* baysy
- X ¢+ f‘—i','ﬁ‘ul’

M N

|

Em shomgunt oy Wit m P

BT Peeons of seoad sy o
e s

e
8 Sdairnine of i b s by

382

Appendix B

Module 102: 9.7 Nested 5

9.
REPETITION

9.7 NESTED LOOPS

The inner loop of this program invokes the procedure Square to generate nested squares. The middle loop invokes
the procedure Nested squares to generate rows of nested squares. Then the outer loop invokes the procedure Row to
generate the grid. Alternatively (but less clearly), the nesting could be expressed using begin and end statements and
indenting as follows.

[sample codes on the right side]

In general, you can nest loops as deeply as you want to generate repetitive compositions such as regular rows,
stacks, nested objects, and combinations of these. The only restrictions are that successive loops cannot overlap, and
an inner loop must always be contained completely within an outer loop. The syntactic conventions of Python make
it difficult to write code that violates these rules. Figure 9-48a illustrates some examples of legal nesting, whereas
figure 9-48b illustrates some examples of illegal nesting. They are 1llegal because they could result in ambiguous
values of control variables or expressions.

-
i -
a Logal b. Blegel.

9-48. Nesting of loops.

383

Synthetic Tutor

CODE RESULT
import rhinoscriptsyntax as re

dof drawSquare(x_center, y_center, diameter):

x1 = x_center - diameter/2
yl = y_center - diameter/2
x2 = x1 + diameter

¥y2 = yl + diameter

ptl = [x1, yl, O]

pt2 = [x2, yi, 01

pt3 = [x2, y2, 0]

ptd = [x1, y2, 0]
rs.hddLine(ptl, pt2)
rs.AddLine(pt2, pt3)
ra.AddLine(pt3, ptd)
rs.AddLine (ptd, ptl)

daf drm--tmqu-ﬂ-(x.y.dimur.in:x—mnt.nen) '
indices=range(nest)
for index in indices:
drawSquare(x,y,diameter)
diameter=diameter-increment

deof grid ()
x_center = rs.CetReal(' enterx_coordinate of center of qrid',0)
y_center = re.GetReal('entorx_coordinate of center of grid',0)
diameter = rs.CetReal(cnter column diameter',40)
bays_long - re.Cetlnteger('entor number of bays long'.4)
bays_wide = ro.CetInteger(enter number of bays wide’,3)
bay_length = re.CetReal('enter bay length',200)
bay_width = rs.CetReal('cnter bay width',200)
print 'working...'

y = y_center
count_rows=range(1, bays_wide+l)
count_columns~range(l, bays_long+l)
for rowIndex in count_rows:
»x = x_center
for columnIndex in count_columns:
drawNestedSquares(x, y, diameter, 10, &)
x = x 4 bay_length
y = y + bay_width

print ‘finish drawing ‘

gridq)

384

Appendix B

‘wyww.youtube.com is now full screen. Exit full screen (Ese)

PO 008 THESTS e T ute Totimiaie' GI0L3 Hom 9 8 & il of ~eal

file/1/C/ REAONG_FOLDERS/D1 %20R

7 Basansch rime Teaany

tReal (i
rs.GetReal (')

= rs.GetReal ('
rs.GetReal ("tay
rs.GetReal (

> = rs.GetlInteger(’
g ~ rs.Gatinteger(’

zange (bays x_numb
g countX:
Y = range(bays y_numb
_input
Y im <o
jravRectangle (x,y,diameter,dianeter)
frawCross (X, y,dianeter)
“y ¢ baysy
e

385

Synthetic Tutor

Module 103: 9.8 Elements

9.
REPETITION

9.8 VOCABULARY ELEMENTS WITH REPETITION PARAMETERS

It should now be obvious that the use of loops allows us to declare graphic vocabulary elements that have not only
position and shape parameters, but also repetition parameters. That is, the amount of repetition may vary from
instance to instance. Consider our procedure Row, to generate a row of square columns in the program Grid. The
position parameters are the coordinates of the starting point. There is a shape parameter controlling the diameter of
the column. Then there is a repetition parameter-Num_columns-controlling the number of columns. Finally, there is
a parameter controlling the spacing of columns.

Where for loops are employed, repetition parameters may specify initial and final values for the control variable.
Where while or repeat until loops are employed, repetition parameters may specify values for variables that appear
in the control expressions. Where an arithmetic progression is employed, the initial value may be treated as a design
variable and so may the value of the increment. Similarly, the initial values and ratios that define geometric
progressions may be treated as design variables. Where functions of the control variable are employed, the values of
any coefficients may also be treated as design variables.

In summary, any or all of the following may be treated as design variables and represented as parameters of
procedures that generate repetitive compositions

. position of the entire composition

. shape variables of the repeating element

. initial and final values of control variables in for loops

. values for variables in control expressions for while and repeat
until loops

. initial values and increments for arithmetic progressions

. initial values and ratios for geometric progressions

. values for coefficients appearing in functions of control variables

386

Appendix B

Module 104: 9.9 Summary

9.
REPETITION

9.9 SUMMARY

In this chapter we have made use of the knowledge that a composition may be generated not only from a limited
vocabulary, but that there may also be regular repetition of vocabulary elements. Where this is the case, we do not
need to explicitly specify each instance of the repeating element. It suffices to specify what element is repeated,
where the repetition starts, what changes at each step, and where the repetition ends. We can do this by writing a
loop from within which a procedure to generate the repeating element is invoked.

We have seen that Python provides two kinds of loops the counted for loop, and the while loop that is controlled by
the evaluation of expressions. These can be used to write concise programs that generate simple repetitive
compositions. More complicated repetitive compositions can be generated by writing loops that execute one after
the other, or that are nested one within the other.

The first step in writing a program to generate a repetitive composition is to identify the repeating graphic element
and declare an appropriately parameterized procedure to generate it. This procedure can then be invoked from within
a loop (or a structure of nested loops). Consideration of how you want to control the way that the loop begins and
ends and the number of iterations should indicate whether a for or a while is most appropriate. You may want the
successive values of the repeating element's shape and position parameters to form arithmetic or geometric
progressions.

In this case, you can initialize values outside the loop and calculate new values from old values at each iteration.
Alternatively, you may want successive values of the shape and position parameters to be functions of the control
variable. In this case, you must evaluate these functions at each iteration.

Whereas Python provides concise, convenient ways to express rules of repetition, establishment of those rules is up
to the designer, who must decide if there are practical or aesthetic reasons to repeat some elements within a
composition, and if so, how the repeating pattern should be started and terminated, what shape or position properties
should change at each iteration, and what should remain the same.

387

Synthetic Tutor

Module 105: 10.1 Curves

10.
CURVES

We have taken a straight line segment to be the primitive element of graphic composition we have considered
drawings as sets of straight line segments in the picture plane and we have treated composition as the relation of
straight line segments by connection, angle, ratio, and repetition. But this does not seem an adequate framework for
analysis of a composition like Botticelli's Birth of Venus (fig. 10-1) the only straight line is the horizon (parallel to
the x axis), and all the others are curves . Different types of curves are used to construct the shell, waves, hair,
drapery, foliage, and outlines of human bodies, and the composition relates curves to each other and to the horizon
line. Sharp inflections contrast with shallow sweeps curves accompany each other or diverge in the shell, there are
waves and hair repetitions with variation from instance to instance.

Ezra Pound once wrote, with considerable scorn "Give your draughtsman sixty-four stencils of 'Botticelli's most
usual curves.' And will he make you a masterpiece?" We cannot guarantee the masterpiece, but we can approach the
composition of curves by considering different types of curves, parameterized procedures to generate these types,
and visually important relations between curves of various types.

10.1 THE APPROXIMATION OF CURVES BY STRAIGHT SEGMENTS

Consider the smooth curve shown in figure 10-2a. Since we have no primitive to draw a line of continuously varying
slope, we cannot write a Python program to replicate it exactly. But we can approximate it, more or less closely,
with sequences of vectors generated by draw commands. Here is a procedure that produces the coarse approximation
illustrated in figure 10-2b

And here is a procedure that produces the finer approximation illustrated in figure 10-2c:
[sample codes on the right side]

We can ultimately make the approximation as close as the resolution of our display device allows. How many points
are needed for an adequate approximation? The answer will depend on the amount of information needed for
recognition of the end of the curve (fig. 10-3), the aesthetic importance of smooth curves, and the available
resolution. You should experiment.

Fortunately, many of the types of curves of most interest to us-circles, arcs of circles, ellipses, parabolas, and so on-
do not need to be described in this cumbersome, point-by-point fashion. It is possible to write loops that repeatedly
invoke functions to generate X- and Y-coordinate values of successive, closely spaced points on the curve. These
values can then be used in draw commands to generate a vector approximation of the curve. In this chapter, we shall
explore this approach to generating the kinds of curves that we most often need in drawings.

388

Appendix B

10-1. Sandro Botticelli, The Birth of Vesus c. 1480, Uz Gallery, Florence.

8. A smooth curve.

=T S~ |
b. A coarse approximation with
straight line segments.

c) |

Lsr.ﬂ SREs Sl S saus

€. A finer approximation with straight
line segments.

10-2. Approximations of a curve.

éggggggg |

18-3. The curve of a buman profile soproseated by succossively greater amounts of information.

389

Synthetic Tutor

CODE RESULT
import rhinoscriptsyntax as re

def drawCurve():

ptl = [481, 354, 0]

pt2 =« [518, 195, 0]

ptd - [&77, 290, O)

pt4 = [605, 472, O)

pts = [404, 471, 0)

pté =~ [306, 324, 0)

points = [ptl, pt2, pt3, pt4, pts5, pté)
ro.MdPolyline(points)

drawCurve()

B Ede Dvbug Tech Help

D& @OE £ B2 ¢
| o @ e 5

| & 8 woscny -

b o B apncor import rhinos ptayntax as s
{4 -2 %we |

i

e T

390

Appendix B

Module 106: 10.2 Function X1

10.
CURVES

10.2 FUNCTIONS OF X

In many cases, the Y coordinate of a point on a curve can simply be represented as a function of the X coordinate. A
sequence of points can then be generated by a loop that increments the value of X through some range and invokes
the appropriate function at each iteration to return the corresponding Y value. The following procedure uses the
standard Python function math.sqrt() (which computes the square of a number) in this way to generate a parabolic
curve

[sample codes on the right side]

Notice how this procedure is parameterized. There are parameters that specify the starting X coordinate, the
finishing X coordinate, the location of the curve in the screen coordinate system, and the number of segments. Some
examples of output are given in figure 10-4.

A very broad class of curves, which includes the straight line and the parabola, is the class of polynomial curves. A

straight line is a polynomial of degree one, and a straight line composed of a specified number of segments is
generated by this procedure (figure 10-5a)

391

Synthetic Tutor

392

b. Examples of instances.

10-4. A parabola generated using the
function sqr.

-

L.:u-'..tf e T T

b. Dotted straight line.

g |

bz e Tt SR AT

¢. Parabola {degree two).

d. Cubic (degres three).
10-5. Type diagrams for polynomials.

Appendix B

CODE RESULT
import rhinoscriptsyntax as rs

def parabola{xD, y0,
start_x, finish x,
n_segmeonts):

x_increment ~ (finish x - start_x) / n_segments

x = ptart_x

y=x°*x

pt0 = [x, ¥, 0] A

count = range(n_segments) \‘ 4

for L in count: \ /
x = x + x_increment \ /
Y = x*x \ /
ptl = [x + x0, y + y0, 0] \
rs.AddLine(pt0, ptl) \\
pto0 = ptl "\

parabola(0,0,-1,1,100)

Clons Seivier Dughey Seiss Viewpod Layowr Vaddty Tewwlom Corvs Tods Surbce Tosh ScbgTecle el
- 5 * i 28 - - o
I B Mo Pton Later - CAMONG, FOLDEIS\D] FESEARCHODT THESIS FensTue Tutoras 1000 Wow 16 s L5

Fie [Debvy Toch el

@-dod P p-om-
{ :«:.; YK Hom & dww & pursivcla
| + @ scmpoon import rhino
3 freo i

e

EQ % -fJa S @ﬁ‘, ‘(w =

e

s

393

Synthetic Tutor

Module 107: 10.2 Function X2

10.
CURVES
- 10.2 FUNCTIONS OF X
This procedure is pointless (or rather, generates too many points) as it stands, because we could simply draw a
vector from the first point to the last without generating those between. But it can easily be converted into a useful
procedure to draw a dotted line (fig. 10-5b), as follows
[sample codes on the right side]
A parabola is a polynomial of degree two and is generated by the following procedure (fig. 10-5¢)
[sample codes on the right side]
Here the value of Y is assigned by the statement
Y =A0+Al * X+ A2 * EXPONENT(X,2)

Exponent is the exponentiation function that was introduced in chapter 9. The coefficients A0, Al, and A2 determine
the location in the coordinate system and the precise shape of an instance.

394

Appendix B

AT R A I LR T

¢. Parabola (degree two).

| iy

d. Cubic (degroe three).
10-5. Type diagrams for polynomials.

395

Synthetic Tutor

CODE RESULT
import rhinoscriptsyntax as rs

dof oxponent(base, power):
e = base
count = range(l, power)
for 1 im count:
e = ¢ * base
retura ¢

def poly 2(a0, al, a2,
x0, y0, start_x, Linish_x,
n_segments}:

x_inerement - (£inish_x - start_x) / n_segments
x = start_Xx

y - a0 4 al * x 4+ a2 * exponent(x,2)

pto = [x + x0, y + y0, 0]

count = range(n_scgments)

for i in count:
x = x + x_increment
y = a0 + al * x + a2 * exponent{x,2)
ptl = [x + x0, y ¢ y0, 0]
ro.addLine(ptd, ptl)
pto = ptl

poly_2(0.123, -3.43, 0.13,
0, 3, -10, 30,
30)

a0 Vimw ek Sutecs Skt - W Dunnonn - uvakom -Tou
Grdws | CPiase - SaView Ciagisy ' Sl < Viewpor Lagout, Viskiey - Tewwlom - Curve Todls -~ Sorece Tech Sk Tocky - hm |
e PR T W = . Reciicntiin S B

B S Phon Eliass - CLAWONG_FOLDERSE R SLARDY 001 THESIS Vo Tube Tutonalz\ 10005 How o dm & pefpmoms by b

Ansiyse Fente Paod oy g

ubeTuterialsr 2 O &4 £

Fie @d1 Doy Teoh Help
&-ddd £- b
B oo | 100 nos u Ses) plyraal Segree I coroe gy
. rroun
e import rhinoscril

3 Frwe

396

Appendix B

Module 108: 10.2 Function X3

10.

CURVES

10.2 FUNCTIONS OF X

In similar fashion, a polynomial of degree three is generated by this next procedure (fig. 10-5d)
[sample codes on the right side]

In this case, the value of Y is assigned by the statement

Y = A0+ Al * X + A2 * EXPONENT(X, 2)
+ A3 * EXPONENT(X, 3)

Now there are four coefficients AQ, Al, A2, and A3.

Similarly, for a fourth degree polynomial, we would have coefficients A0, Al, A2, A3, and A4 as well as a
correspondingly expanded assignment statement. For a fifth degree polynomial we would have six such coefficients,
and so on. Note that if some of the coefficients of a higher-degree polynomial are set to zero, a lower-order curve is
generated. So we could, if we wished, employ one general polynomial procedure with n parameters to draw
polynomial curves of any degree up to n. However, this would be inconvenient for use in drawing lower-order
polynomials.

397

Synthetic Tutor

LA T e D LA LN

¢ Parabola (degree two).

d. Cubic (degree three).
10-5. Type diagrams for polynomials.

398

Appendix B

CODE RESULT

import rhinoscriptsyntax as rs

def exponent(base, power):
e = base
count = range(l, power)
for i in count:
e = ¢ * base
return @

def poly_3(a0, al, a2, a3,
x0, y0, start_x, finish x,
n_segnents):

x_increment = (finigh_x - start_x) / n_segments
x = start_x

expl exponent(x,2)

expZ = exponent(x,3)

y = a0 + al * x + a2 * expl + a) * oxp2

pPt0 = [x ¢+ x0, y + y0, 0]

count = range(n_segments)
for 1 in count:
x = x + x_increment
expl = exponent(x,2)
exp? = exponent(x,3)
y = a0 + al * x + a2 + cxpl + a3 * exp2 [
ptl = [x + x0, y + y0, 0]
rs.AddLine{pt0, ptl)
ptl = ptl

poly_3(3, €.23, 0.2, 0.3,
0, 3, -5, 10,
30)

‘www.youtube.com Is now full screen. Exit full screen (s

Chanes St View - Guplay Safect - Vigwpor Layot Vil * Tewkiem - Coive Fody ' Surkscy Toaks * St Ty - B (2
Oxpermd + 2L 2 CHe - =§ 89000~

als/htenl 0 ﬁ W Wnen Pytron Eiher - CLRMONG FOLDIRTD) 51 AACM 00 T

fie Bt Debug look Help
- |De-Edd P- b
- 1R e e @ e § peymirng degee] curve b
qsr poly Z(au,di,ay,
%0, y0,

ab + a1 * x + a2 * exponent(x,?}
aex0, y+yo,o

4 Cnton chagrwe S

WL Tipe dupen be pob el

399

Synthetic Tutor

Module 109: 10.2 Function X4

10.
CURVES

10.2 FUNCTIONS OF X

Polynomial procedures can be invoked from within loops to produce repetitive compositions of curves. The
following procedure, for example, invokes Poly_2 to generate a pattern like Botticelli's waves (fig. 10-6).

[sample codes on the right side]

NA A A

10-6. A composition of parabolas
like Botticelli's waves.

400

Appendix B

Module 110: 10.2 Function X5

10.
CURVES

10.2 FUNCTIONS OF X
A pattern like Botticelli's shell (fig. 10-7) is generated by:
[sample codes on the right side}

In the case of the waves, position varies from instance to instance, whereas shape remains constant. In the shell,
position is the same, whereas shape varies.

Are polynomials adequate approximations of Botticelli's curves, or are they too "mechanical"? This depends on the
desired level of abstraction. If you want to emphasize similarity, repetition, and the clear, simple relation of graphic
elements, then simple polynomials, with few parameters, are appropriate. But if you want to inflect curves in
complex ways and create subtle variation from instance to instance, you will need more complex polynomials with
more parameters, giving you more degrees of freedom. The works of Piet Mondrian explore this issue early
paintings use a vocabulary of several different types of curves in a rich variety of relations, but later paintings reduce
this to straight lines in just a few simple relations. At the same time, his early palette was wide and was developed to
create complex relationships of tone, hue, and saturation. He then reduced his palette to black, white, and saturated
primaries. Sometimes this process of simplification is illustrated particularly strikingly by successive versions of the
same motif. The sketch of a church in figure 10-8a, for example, contains many curved lines, and there is
considerable variation from line to line. The later version, shown in figure 10-8b, is reduced almost completely to a
grid like pattern of horizontal and vertical straight segments fewer graphic variables are used and simpler relations
are formed.

401

Synthetic Tutor

402

10-7. A composition of parabolas like a. Skelch of an architectural motil, with sev-
Botticelli's shell. eral different types ol curves related in

b. A later version consisting almost entirely
of straight lines in 4, L, and T
relationships.

10-8. Levels of abstraction in the work
of Piet Mondrian {1917).

Appendix B

CODE RESULT

import rhinescriptsyntax as rs

def

exponent (base, power):
e = base
count = range(l, power)
for i in count:

e = o * base
return ¢

poly_2(a0, al, a2,
x0, y0, start_x, finish x,
n_segments)s

x_inerement « (finish_x - start_x) / n_segments
x = ptart_x

y ~ a0 + al * x + a2 * exponent(x,2)

pto = [x + %0, y + y0, 0]

count = range(n_segments)

for i im count:
x = x 4+ x_increment
y = a0 + al ¢ x + a2 * exponent(x,2)
ptl = [x + x0, y + y0, 0]
re.AddLine(pt0, ptl)
pto = ptl

shell()s

start drawing
at = 0

al = 0

a? = 0.012

inc = 40
start_x = «90
finish x =~ 0
x0 = 300

yo = 10

count = range(l, 6€)
for i in count:
poly_2(a0, al, a2, x0, y0, start_x, finish x, 20)
start_x ~ start_x - inc
inc = inc - 10
a2 -~ a2 * {1 -1/ {i +1))

shell()

‘www.youtube com is now full screen. Exit full screen (Esq)

Borer Poeals N Ruy Mg
- Penmtes - st = Wi | e hiadntitne. . Frnsadasa. A i, . Mg e, B b Wt Vi
L ONG_FOLDERDOT MUILARCH 00T TRUUS SouTubefatoneis' 1000 Fow to drae » Tgttaed 1 ©

£°- o=

« IMPORTANTY DON B 8 0m 4 Bt vt 1,

BT A comgrinm of puralucler it 3 Bheh of o S e
s e e g e

403

Synthetic Tutor

Module 111: 10.2 Function X6

10.
CURVES
10.2 FUNCTIONS OF X
Polynomials are not the only kinds of functions that can be employed to generate curves. Trigonometric functions
can also be used. Our next procedure illustrates this by drawing a sine curve (fig. 10-9), the coordinates of which are
found by evaluating the Python's math.sin() function.
[sample codes on the right side]
Here the value is assigned by the statement
Y = AC + HEIGHT * SIN(THETA)
Where
THETA = (FREQUENCY * X + SHIFT)* RADIANS
Height specifies the amplitude, Frequency specifies the number of cycles for a given range of X, Shift specifies the

displacement from the origin (where a value of 0 gives a standard sine curve), and A0 is the vertical displacement of
the origin.

Y

-

|
START_X

10-9. Type diagram for a sine curve.

404

Appendix B

CODE RESULT

import rhinoscriptoyntax as rs
import math

def sine_curve(x0, y0, start_x, finish x,
n_segments, height, frequency,
shift, al)s

radians 0.01745

x_increment ~ (finish x - start_x) / n_segments
x = start_x

theta = (frequency * x + shift) * radiane

y = a0 + (height * math.sin(theta))

pto = [x + x0, y + yO, 0]

count = range(n_segments)

for 1 in count:
x = x + x_incremen
theta = (freqguency * x 4 shift) * radians
y = a0 + (height * math.sin(theta))
ptl = [x + x0, y + y0, 0]
ro.Addline(pt0, ptl)
pt0 = ptl

sine_curve{0, 0, 0,100,
100, 10, 10,
10, 0)

www.youtube.com is now full screen. Exic full screen (Esc)

TR

[P — VT e i B o gy S8 How 5 e petyneet aom 3 o By |
1

import rhinoacriptsyntax as ra

405

Synthetic Tutor

Module 112: 10.2 Function X7

10.
CURVES

10.2 FUNCTIONS OF X

The following code invokes Sine_curve within a loop to generate a repetitive composition

[sample codes on the right side]

Figure 10-10 shows some output. The axes of the curves are parallel and evenly spaced, and they are all in phase,
but height varies. More complex compositions could be produced by varying additional parameters within the loop.

As these examples illustrate, there is a general form for code to plot curves that are described as functions of X

[sample codes on the right side]

/
AYAVAVAVAY,

10-10. A repetitive compeosition
of sine curves,

406

Appendix B

CODE

import rhinoscriptsyntax as rs
import math

—
—

def sina_curve(x0, y0, start_x, finish_x,
n_segments, height, Irequency.
shift, al0)a

radians = 0.01745

x_increment - (finish x - start_x) / n_segments
X = ptart_x

theta = (frequency * x + shift) * radians

y = a0 + (height * math.sin{theta))

pt0 - [x 4 x0, y + y0, 0)

count = range(n_segments)
for i in count:
x = x + x_increment
theta = (frequency * x + shift) * radians
y = a0 + (height * math.sin(theta})
ptl = [x + x0, y + y0, 0]
rs.AddLine(pt0, ptl)
pt0 = ptl

def sinc_curve_repeat()s

¥yo = 20

hoight = 25

count = range(5)

for i in counts
sine_curve(10, y0, 0, 1000, 1000, height, &, 0, 0)
height = height + 2
y0 = y0 + height

sine_curve_repeat()

B Round Pyson Lbter - € AMOMS, FOLEIEL RESIARIAO0 T 25 o Pube weriai 30008 Mo te i adpacind .+ 10 S0 NI

Fie U8t Deby Tosh ey
Dg-EPd P- b= 4
: P | o ke B e e Gt $ AT Mo e 3w Somcm was gy lm'u--a--—.v-—-'-h;
recam i -

B oo
3 Av

%
f
1

407

Synthetic Tutor

Module 113: 10.3 Function Y

10.
CURVES

10.3 FUNCTIONS OF Y

A similar approach can be taken to curves in which X is a function of Y. Figure 10-11, for example, shows an
elevation of spiral stairs the outer ends of the treads trace out sine curves. Simplified figures of this type arc
generated by the following procedure (fig. 10-12)

[sample codes on the right side]

Figure 10-13 shows a beautiful section drawing of an elliptical spiral stair by Paul Letarouilly. It is a composition of
instances of vertical sine curves, contrasted with the regular horizontal rhythms of the treads and the vertical
rhythms of columns and balusters. Its richness is generated by overlaying variations on the theme of the vertical sine

curve.

408

Appendix B

$LOOR_TO_ FLOOR_MEIGHT /
= N_TREADS

P
g t |
e

g

d

2. xeyci

Wl_unbw
a Type dagram.
1 E hxe
L | —i = g b instances.

10-11. Circular spiral stairs, from Isaac i -
Ware's edition of Andrea Palladio’s Four 1015 Simphiiod spiral stairs
Books of Architecture.

———

10-13. A section of the elliptical stair at the Barberini Palace, Rome,
from Paul Letarouilly’s E&tﬂ de Rome Moderne.

409

Synthetic Tutor

CODE RESULT

import rhinoscriptsyntax as rs
import math

def spiral_stair(xc, ye¢.
floor_to_£loor_height, n_treads,
max_length, [requency):

radians - 0.01745
y_increment ~ floor_to_£loor_height / n_treads

y = yc

count = range(n_treads) i
for 1 in count: = —
theta = frequency * y * radians
x = xc + (max_length * math.sin{theta))
pt0 = [xc, ¥, 0]
ptl = [x, ¥, 0] i
rs.AddLine(pt0, ptl) e
y = y + y_increment = = =

spiral_stair(100,100,100,50,120,8)

4{* Ry Py (e - €A SO LRE L SR G T o, P s i ST) M Ve e ey e Py
eipe

2
Syntax as ra

& w—

111, Camvallar apisn! stawes, looms Euas ol vy
Ware's edition of Avdems Palladhe's Fome B0 B el syl e
Boks of Archidecters.

410

Appendix B

Module 114: 10.4 Polygon

10.
CURVES

10.4 REGULAR POLYGONS AND CIRCLES

The most frequently used type of curve in architecture and most other fields of design is the circle. For our purposes,
a circle may be regarded as a regular polygon with a sufficiently large number of sides to appear smooth. It is useful,
then, to have a procedure that draws a regular polygon with any specified number of sides, of any specified radius,

and centered at any specified point (X, Y) (fig. 10-14).

We cannot simply evaluate a function of X to find the Y coordinates of points on a circle, because for any given
value of X there will always be two Y coordinates (fig. 10-15). We must therefore find some other approach.

Figure 10-16 illustrates the principle that we will employ. An Angle is measured from a vertical line. We know,
from elementary trigonometry, that the X coordinate of a point on the circle is assigned by

X_COORD = XC + RADIUS * MATH.COS(ANGLE)
Similarly, the Y coordinate is assigned by
Y_COORD =YC + RADIUS * MATH.SIN(ANGLE)

So, to produce an n-sided regular polygon, we need a procedure that executes a loop from 1 to N_sides, calculates a
value for Angle at each iteration, and calculates X_coord and Y_coord

[sample codes on the right side]
Some examples of output from this procedure are shown in figure 10-17. You should experiment with it to find how
many sides you need to draw smooth-looking circles of various sizes. You should avoid specifying more sides than

you really need, because this will result in unnecessary computation and will slow down the process of displaying a
circle.

411

Synthetic Tutor

YC

xC

b
4 1

10-14. The parameterization of & regular 10-15. For any X coordinate on the cir-
polygon by center coordinates, radius, cumference of a circle, there are two Y-

and number of sides. coordinate values,

412

Appendix B

| X_COORD : = XC + RADIUS x COS(ANGLE);

10-16. The geometric construction for drawing a regular polygon.

413

Synthetic Tutor

414

O00000S
OO000O0O000

10-17. Polygons with increasing num-
bers of sides that will eventually approx-
imate a circle.

Appendix B

CODE RESULT

import rhinoscriptsyntax as rs
import math

def polygon(xg, ye¢, radius, n_sides):
ptlist = (]
radians ~ 0.01745
increment = (360 / n_sides) * radians
angle = 0
x_coord = xc + radius
pt0 = [x_coord, ye, 0]
ptlist.append(pt0)

count = range(l, n_sides+l)

for i in count:
angle = angle + increment
x_coord = xc + (radius ¢ math.cos{angle})
y_coord = yc + {radius * math.sin{angle})
pt = [x_coord, y_coord, 0]
ptList.append(pt)

re.AddPolyline(ptList)

polygon(1,1,100,11)

Srterr CPaten - Su'tue Dngbey | Selwel - Vepen Lot Waibbay | Towwten Corve ¥ Sortuin Tods b Tools Whaoh Touks Bam e
) EH - ., 57009000 "®-

@ | P rton i Sie avem st s i S

| T S —— !

| ™

E

415

Synthetic Tutor

Module 115: 10.4 Circle

10.
CURVES

10.4 REGULAR POLYGONS AND CIRCLES

It is usually most convenient to specify a circle by its center point and radius, but you may want to specify a circle
by the coordinates of three points on its perimeter (fig. 10-18). Here is a procedure that takes these coordinate values
as parameters and invokes our previous circle procedure to generate the required result

[sample codes on the right side]

Because circles are perfectly symmetrical, we can create only simple relations between instances in compositions
ratios of diameters and relations of center points (fig. 10-19). Certain simple relations of the circle and the straight
line are very common in architectural and graphic compositions (fig. 10-20) diametrical, radial, chord, and
tangential. The combination of repeating straight line patterns and repeating circular patterns yields many common
motifs, such as the radio concentric web (fig. 10-21).

416

Appendix B

IO-I!. Acbek ptdlodllyliwupoinh

= O
@ A

b. Simple relationships of center points.

417

Synthetic Tutor

CODE RESULT

import rhinoscriptsyntax as rs
import math

def polygon(xe, yc, radius, n_sides):
ptlist = []
radians = 0.01745
increment = (360 / n_sides) * radians
angle = 0
x_coord = xc + radius
pto = [x_coord, yc. o)
ptList.append{ptD)

count = range(l, n_sidestl)

for 1 in count:
angle = angle + increment
x_ecoord = x¢ ¢ (radius * math.cos(angle))
y_coord = yo + (radius * math.sin(angle))
pt = [x_coord, y_coord, 0]
ptList.append(pt)

re.AddPolyline(ptList)

def circle3(xl, yl, x2, y2, x3, y3, n_sides):
tx2 - x2 - xl
ty2 = y2 -yl
tx3 = x3 - x1
tyd - y3 -yl
templ = tyd * (tx2 * ex2 + ty2 * ty2)
temp2 = Ly2 * (tx3 ¢ tx) + ty3 ¢ ty3)
tempd = (tx2 * tx3 - tx) * ty2) / 2
xe = (templ - temp2) / templ
templ - tx3 * (tx2 * Ex2 + ty2 ¢ ty2)
temp? = ty2 * (tx3 * tx] + tyd * tyd)
tempd = (ty? * tx3 - tyl * tx2) / 2
ye = (templ - templ) / templ
radius = math.sqrt(xc * xc + yc * yc)
xe = x¢c + x1
yc = yo + yl
polygon(xe, yc, radius, n_sides)

cireled(0,0, 100,30, 10,200, 300)

ienpw! Laved - bilty * Topmshmm * G Tain Surtene Tosle o Tesis Mo Tauis * Pl Tusks ~ Contheg o '

DeR@Tx00~0 + 20 2 TH="0090000 0L
oo ot o 1709

< O
rs MddCircledPt(po, pl, p2)

X
b 3 d
e
5
@ 5

418

Appendix B

Module 116: 10.5 Arc

10.
CURVES

10.5 ARCS

Our circle procedure can be generalized to create an arc. In figure 10-22a an arc is defined by specifying the center

point and Radius, together with an angle Theta_1 degrees to specify where it starts and an angle Theta_2 to specify

where it ends. To draw this arc, we can modify our circle procedure to go from Theta_1 to Theta_2 in appropriately
sized increments, instead of from 0 degrees to 360 degrees, as follows

[sample codes on the right side]

Somc cxamples of output for different values of the parameters Radius, Theta_1, Theta_2, and N_sides are shown in
figure 10-22b.

Arcs have convex and concave sides and can vary in their curvature. A straight line segment may be considered a
degenerate case of an arc with infinite radius and zero curvature. A common compositional principle, then, is to
contrast convexity with concavity and high curvature with low. The Plaza of the Three Powers at Brasilia (fig. 10-
23) is a simple relation of horizontal, vertical, concave, and convex, and Aldo van Eyck-s Amheirn Pavilion plan
(fig.10-24) breaks parallel straight lines with semicircles, three-quarter circles, and complete circles of varying sizes.

419

Synthetic Tutor

CODE RESULT

import rhinoscriptsyntax as rs
dof anddEllipso()s
plane = rs.WorldXyPlane()
radiveX = 6

radigeY = 3
rs.AddEllipse(plane, radiusX, radiusY)

addEllipse()

Sawterd P " o e " Dl S - ooget Ayt ity Tatuliom © Corve Vonle Surbuue Vacks Skt Tsle Minsh Tois, P Tisdn Dol Hiowm .

NeR@D D0~d + 20 2TH= .x9.090099 T®Le,

CAIMONG_FOLLERTET RESEAROMD0T THE SET ol ute Totasy' 100U Hon T S9s 30 9% 0y
i

e
RO%s I 0005

2
o,
u,
@,
%

(=1
2

o &
s

Ds-HOE 2 P c0E
. | St 0 e 08 4 B 5]
import rhiposcriptayntax as rs
- def sddArci):
plase = rz.WorfdYZIFlane(}
radius = 100
angle = 45
rs.MidAre(plane, radius, angle)

addhre ()

420

Appendix B

Module 117: 10.6 Ellipse

10.
CURVES

10.6 ELLIPSE
Another generalization of our circle procedure is a procedure that generates an ellipse. This is analogous to the
generalization of a square procedure to generate a rectangle. In both cases, we generalize by introducing more

parameters.

As figure 10-25 shows, we no longer have a single Radius, but an X_Radius and a Y_radius. Coordinates are now
assigned by the expressions

X_COORD = XC + X_RADIUS * MATH.COS(ANGLE)
Y COORD = YC + Y _RADIUS * MATH.SIN(ANGLE)

So the procedure now becomes

[sample codes on the right side]

An ellipse, unlike a circle, has a major axis, two different dimensions, and two foci rather than a single center point,
so a richer variety of relations can be constructed in a composition of ellipses than in a composition of circles.
Baroque architects realized and made extensive use of elliptical geometry in their plans, where their more classically

inclined predecessors would have preferred the simplicity of the circle. Figure 10-26 shows a more recent
exploitation of the complexities of the ellipse Charles Moore-s design for the Beverly Hills Civic Center.

421

Synthetic Tutor

10-25. The elipse.

422

Appendix B

TN s
LY
— >
- .,
‘.
¢

N/ | .
g} 3
1L A AR

& Readors of alipess. b Sae plar

1086 Charles Moore and Urban Insamalions Gooup, Beverly Mk Civie Costes, Caliirnis

423

Synthetic Tutor

Sewsws CParws G Vs Diaginy Salet ﬁ-mmwhhﬁ urture Tosls S Tt Vst Toda Panes Tovie Doy Wi W
NeR@FT X0~ 0+ 25 2T H= 0090000 &L

SO FOLDPREGT REEARCHO0! T et s T T i 108 11 bave W4 B B4 BG40 B

-«

®%.J 05!

T VI How e e W WBgwe By o]
import rhinoscriptayntax as Is

12,
b2
< ot
&% |
%
xS
b

- daf addEllipse(}:

radx = 40

rady = 25

plane = r3.Worldplane ()
r3.AadELlApse (plane, redx, rady)

o
Dt

424

Appendix B

Module 118: 10.7 Summary

10.
CURVES

10.7 SUMMARY

Curves are drawn by loops. Each iteration of a loop that draws a curve enervates one straight segment, the beginning
point and the end point of which lie on the mathematically defined curve. Coordinate values are returned by

functions that are invoked from within the loop. We have seen how polynomial and sine curves can be generated by
functions of X or of Y in this way and how circles, arcs, ellipses, and spirals can be generated by functions of Angle.

425

Synthetic Tutor

Module 119: 11.1 Conditionals

11.
CONDITIONALS

An artist or designer constantly chooses among sets of alternatives-colors from a palette, line weights provided by a
set of pens, or shapes in a graphic vocabulary. Sometimes the designer makes choices such that the sizes, or shapes,
or colors of elements in the composition are uniform. A regular composition results, and there is a danger that it will
become boring. Conversely, the designer-s choices may be entirely random or willful. The result, then, is an
irregular composition, and there is a danger that it will become chaotic. Most interesting compositions, though, are
neither uniform nor haphazard. Instead, the shapes, positions, and other attributes of the compositional elements
vary conditionally, according to context. That is, variation is controlled by conditional rules.

Consider the three compositions of circles shown in figure 11-1. In the first, the circles are of uniform diameter and
spacing, and it is easy to see that the composition can be generated by the execution of loops as follows:

[sample codes on the right side]

In the second, the circles are of random diameter and spacing, and the coordinates and diameter of each must be
explicitly specified:

[sample codes on the right side]

There is variation from circle to circle in the third composition, too, but it is according to rule, rather than random.
How can we write programs to generate compositions with conditional variations? We must be able to identify
conditions that we want to respond to and specify what response to make when a condition is identified. In Python,
Boolean expressions and Boolean functions can be evaluated to determine the existence of specific conditions of

interest, and if and case statements (generally known as conditionals) can be used to relate conditions to responses.
In this chapter, we shall discuss these constructs and explore their applications.

426

Appendix B

a. Uniform circles on a regular grid.

¢. Variation according to a simple rule.

11-1. Unity and variety.

427

Synthetic Tutor

CODE RESULT

import rhinoscriptsyntax as rs

def circle(x, y. radius): O O O O O O

plane = [x,

rs. mckclo[pllrlm radius) O O O O O O

dof uniform():
s 0O0O00O0O0
increment = 200
radius = 50
NY - range(10)
NX = range(1l0)
for count_y im N¥s
x=0
for count_x in BX:
circle(x, y, radius)
% = x + increment
y = y + increment

uniform{)

dof random|):
circle(250, 850, 175)
circle(350, 680, 100)
circle(600, 600, 225)
circle(425, 250, 175)
cirele(675, 350, 100)
circle(400, 400, 25)
cirele (900, 500, 50)
circle(700, 800, 60}

O0O000O0000O0
O0O0000000O0
O0O0000000O0
O0O0O0O00000O0

random()

o e it \h-n-mu mh Tawssham Corve Toche S Tnole i Vool + Wowh Tomly | Flareies Tosls Crwieg []
Dedalx iﬁtl-"‘ s AL SR T R 9.090008 T0LE

SI0CI g Woronns Pharts et

P W S]

]
prsyntax as 1>

428

Module 120: Exercises 6

10.
CURVES

10.8 EXERCISES

\

1. On grid paper, make accurate plots of the curves generated by the following code:

a.
import rhinoscriptsyntax as rs

x=10
y =10000/ x
pt0={xy,0]

while (x <1023):
x=1+10
y = 10000 / x
pt1=[xy,0]
rs.AddLine(pt0, ptl)
pt0 =ptl

b.
import rhinoscriptsyntax as rs
import math

pt0=[0,0,0]

for count in range(1, 11):
x =100 * count
y = math.sqrt(x)
ptl1=[x,y,0]
rs.AddLine(pt0, ptl)
pt0 = ptl

c.
import rhinoscriptsyntax as rs
import math

def polygon(xc, yc, radius, n_sides):
radians = 0.01745

increment = (360 / n_sides) * radians

angle =0
x_coord = xc + radius
pt0 = [x_coord, yc, 0]

for sides in range(1, n_sides+1):
angle = angle + increment

x_coord = xc + radius * cos(angle)
y_coord = yc + radius * sin(angle)

ptl ={x_coord, y_coord, 0]
rs.AddLine(pt0, ptl)
pt0 =ptl

radius = 300

Appendix B

429

Synthetic Tutor

while (radius > 10):
polygon(500, 500, radius, 4)
radius = radius / math.sqrt(2)
polygon (500, 500, radius, 8)

2. Write a procedure to generate Fresnel circles as shown in figure 10-29. (The area enclosed by each larger circle is
twice that enclosed by its predecessor.) Write procedures as comments in a python.

10-29. Fresnel circles; each larger circle
encloses twice the area of its
predecessor.

Please upload your python file: |_Choose File | No file chasen Submit_|

3. Write a procedure to generate compositions of concentric ellipses (fig. 10- 30). Let the X_diarneter and
Y_diameter vary independently. Write procedures as comments in a python.

10-30. A composition of concentric
ellipses.
Please upload your python file: |_Choose File | No file chosen |_Submit_|

4. Write a procedure to generate curves of the type defined by the formula. Write procedures as comments in a
python.
Y =X * SIN(X)

Please upload your python file: |_Choose ﬁl':i No file chasen { submit |

430

Appendix B

5. Generalizing the idea of a circular spiral, write an appropriately parameterized procedure to generate elliptical
spirals. Write procedures as comments in a python.

Please upload your python file: | Choose File | No file chosen Submit_|

6. The construction of a well-known ancient architectural motif, the Ionic volute, is illustrated in figure 10-31. Write
a procedure to generate this curve. Write procedures as comments in a python.

10-31. The construction of an Jonic volute
from quarter circles.

i

Please upload your python file: [Choose File_| No file chosen

7. Figure 10-32 illustrates the footprint of Alvar Aalto-s Baker Dormitory at Massachusetts Institute of Technology.
What are the important relations between straight lines and axes in this composition? How might you generate
interesting variations on on this theme? Write a parameterized procedure to do so. Write procedures as comments in

a python.

> A
TR
(]
10-32. The footprint of Alvar Aalto’s
Baker Dormitory at Massachusetts Insti-
tute of Technology.
Please upload your python file: | Choose File | No file chosen i_SLMiI |

8. Take the procedures that you have written to generate curves and use them to write simple interactive programs
that prompt for and read in parameter values. Then invoke the procedurcs to generate the corresponding curve
instance. Experiment with the effects of inputting different values. Write procedures as comments in a python.

Please upload your python file: | Choose File | No file chosen |_Submit |

9. Figure 10-33 shows how to construct the shape of an egg from four arcs. Write an appropriately parameterized

431

Synthetic Tutor

procedure to draw eggs. Write procedures as comments in a python.

10-33. The construction of an egg from four arcs.

Please upload your python file: [Choose File_| No file chosen | Submit |

10. The schemata of four paintings by Georges Vantongerloo are shown in figure 10-34. What types of curves are
used, and how are they related? Write procedures to generate the curves, and use them in programs to generate
variations on Vantongerloo scheme. Write procedures as comments in a python file.

10-34. Schemata of four paintings by Georges Vantongerkoo from the 1930s.

Please upload your python file: | Choose File_| No file chosen [submit_|

11. In The Stones of Venice, John Ruskin discussed the abstraction of different types of lines from nature (fig. 10-
35). How might each of these types be generated? What are the parameters? Investigate ways to write procedures to

generate them. Write procedures as comments in a python file.

432

Appendix B

10-35. Some curves sketched by John Ruskin in The Stones of Venice.

Please upload your python file: [Cheose File_| No file chosen Submit |

433

Synthetic Tutor

Module 121: 11.1 If Else

11.
CONDITIONALS

11.1 TWO ALTERNATIVES: if, else

The simplest possible kind of design choice is between just two alternatives. Rules for making this kind of choice
can conveniently be expressed in the following form:

if some condition is true:

choose the first alternative
else:

choose the second

The inner block must be indented. If the block statements do not indented properly, Python will cause an error.
A typographer, for example, might follow this rule:

if this is the first character of a sentence:
uppercase

else:
lowercase

We can represent this graphically, as illustrated in figure 11-2, as a choice between two branches. The proposition
stated after if is either true or false. When it is true, the first branch is taken. When it is false, the second branch is
taken.

Python provides the if... else... statement for specifying that one of two alternative actions is to be chosen, depending
upon the truth value of an expression in this way. It takes the form:

if Boolean expression:
Executable statement 1
else:
Executable statement 2

Here is a simple example:

ifX<0:

print (X IS NEGATIVE)
clse:

print (X IS POSITIVE)

In executing this, the computer first evaluates the Boolean expression x < 0. Depending on the value that has been
assigned to the variable X, the result will either be true or false. If the result if true, the message

x IS NEGATIVE
will be output. If the result is false, then the message:
x IS POSITIVE
will be output. The computer then goes on to execute the next statement in the program in the normal way.

Note that an if . . .else statement always ends with : (colon).

434

Appendix B

if Boolean expression:
Executable statement 1
Executable statement 2
else:

Executable statement 3
Executable statement 4

It is usual to indent, according to the convention shown, for clarity.

True First False

: ga———y

ra NS
Upper Lower
case case

b \ M s

/1 operation
v

11-2. A flow diagram representing a choice
between two branches in a program.

435

Synthetic Tutor

CODE RESULT
import rhinosoripteyntax as re

x Is positive
dof simpleConditiomal():

x = ro.CetReal('type any n between -10 ~ 10')
if x<0 &

print 'x is negative'
elso:

print 'x is positive'

simpleConditional()

ot CPigan St Virs: © Cogity Seeet ' ‘ipprt Lyl - Vit Tl Corve Togly furtore Toaks * Sl Touin ugh Touln ' P Tomke oafieg * Siwm 0 ¥

NeEa@lx00 0+ 20 AT M= 770090000 €L

1 bt b S
10000 oy Whmhorery Pt Wogrme s i

Ge v Puer v fesl B ¥ Opes '}

L=]

112 A flow disgram ropresenting @ choiee L
between two branches in a program —

436

Appendix B

Module 122: 11.2 Boolean

11.
CONDITIONALS

11.2 THE EVALUATION OF BOOLEAN EXPRESSIONS

As we have seen, an expression of type Boolean always appears after if in an if... else... statement. True and false are
the only two possible values for such expressions. When a Boolean expression is evaluated, one of these values is
substituted for the expression in the statement in which it occurs. We have encountered such expressions before,
particularly in our discussions of a while loop, but only in its very simplest form. It will now be useful, before we go
further, to look at them in more detail.

The simplest Boolean expression is a single Boolean variable. More complicated Boolean expressions consist of a
constant, variable, or arithmetic or Boolean expression on the left-hand side, followed by a relational operator then a
constant, variable, or arithmetic or Boolean expression on the right-hand side. Boolean expressions are evaluated by
comparing the lefi-hand side to the right-hand side to see whether the specified relation holds (in which case the
value is true) or does not (yielding a value false).

The relational operators, which are used to compare the left-hand side to right-hand side were introduced along with
arithmetic and other operators in chapter 5. To refresh your memory, they are:

= equal

= not equal

< less than

> greater than
<=less or equal
>= greater or equal

Here are some examples of their use in Boolean expressions:

A+B = MATH.SQRT(X)
MATH.SIN(X) < MATH.COS(Y)
TRUNCATE(X) = 0

The values of the left-hand side and the right-hand side must be of the same type, or the comparison would make no
sense. We shall be concerned mostly with comparing integer values to integer values, but you can also compare to
reals, Booleans to Booleans and characters to characters. You have to be particularly careful, incidentally, when
using and != to compare real values to real values, since round off errors may generate unexpected results.

Compound Boolean expressions can be formed from simple Boolean expressions by using the Boolean operators:

not: negation operator
and: conjunction operator
or: disjunction operator

If you know a little elementary logic, you will be familiar with these. If you are not, you should study the following
definitions carefully. Where P and Q are Boolean variables, the meaning and effects of the Boolean operators are
defined as follows:

Expression: (Value)

not P: (FALSE if P is TRUE, TRUE if P is FALSE)

P and Q: (P AND 0 TRUE if both P and 0 are TRUE, FALSE otherwise)
P or Q: (FALSE if both P and 0 are FALSE, TRUE otherwise)

437

Synthetic Tutor

Parentheses can, and sometimes must, be used to make compound Boolean expressions read unambiguously. Here
are some examples of the use of Boolean operators to form compound Boolean expressions:

(X >=0) and (X <= 1023)
(Y <0) or (Y > 780)
(X < 10) and (Y=500) and P

Values of Boolean expressions can be assigned to Boolean variables in the same way that values of integer
expressions can be assigned to integer variables, or values of real expressions to real variables:

value = (X >= 0) and (X <= 1024))

and
((Y >=0) and (Y <= 1024))

438

Appendix B

Module 123: 11.3 Boolean

11.
CONDITIONALS

11.3 BOOLEAN FUNCTIONS

Sometimes a considerable amount of code must be executed in order to determine the existence of some condition.
In this case, it is usually clearest and most convenient to express that code as a Boolean function.

Consider, for example, the task of determining whether a specified integer is prime-that is, whether it is exactly
divisible only by itself and 1. An obvious (though inefficient) way to do this is to attempt division by every integer
from 2 to the specified number minus 1. The following Boolean function takes an integer argument Number,
determines in this way whether Number is prime, and returns a value of true or false accordingly:

[sample codes on the right side]

Incidentally, there are many much cleverer ways to write this function. If you are interested, you should be able to
discover some obvious improvements for yourself.

Boolean functions are employed in if...else... statements in the obvious way:
if PRIME (NUMBER):
print ("NUMBER IS PRIME")

else:
print ("NUMBER IS NOT PRIME")

439

Synthetic Tutor

CODE RESULT

import rhinoscriptayntax as rs
True
def primeo(number):
flag = True
divisor = 2

while (£lag == True) and (divisor < number):
if ((number % divisor) == 0):
flag = False
divisor = divisor + 1
prime = flag
print prime
return prime

prime(23)

gt Ayt Vishiity Tipmbn - Corve Taoks | Burtre Tomks okt Tomy - Muosh Tasty Fondr Toult unfiong Mo n'S§

ROt s 2L HRPTH= 20090000 240

L1303 M 85 chach I 8 Aariber & 8

VI b 1 e b & 0 et iy 3

import rhincscriptayntax as rs

- daf isPrime (nuaber):

lag = True

s b =2

while(flag == True) and (di
1f ((numberidivisor) == 0

flag =~ Talse

giviaor = divisor « 1

prime = flag

print prime

return prime

isirime (25)

o0 |
L)
LX
=12
R4
A b
&l
S
T~
0>
o,
B 3
&

58

440

Appendix B

Module 124: 11.4 Alternatives

11.
CONDITIONALS

11.4 PAIRS OF DESIGN ALTERNATIVES

Now that we have the means to express rules of choice between two alternatives in Python, let us return to the
design and graphic issues. The primary use of if...else... statements in graphics programs is to specify that either one
graphics procedure or another is to be invoked, depending on circumstance, in order to instantiate either one or
another graphic type. An architect drawing a floor plan, for example, might have a choice between square and
circular columns and might express the rule of choice like this:

if condition:

SQUARE (X,Y,DIAMETER)
else:

CIRCLE (X,Y,DIAMETER)

An artist or designer may take a great many things into consideration when choosing vocabulary elements to
instantiate in a composition, but Python is much more limited. The universe that it can consider consists of the
variables that have been declared in the program and the values that have been assigned to them. Rules of choice
must always be formulated in terms of these variables and must take the form of Boolean expressions constructed
using the relational and Boolean operators. This seems and is very restrictive, but some surprisingly powerful and
useful design rules can be expressed in this way.

In a graphics program (as we have seen in the examples considered so far) we will typically have variables
describing the shapes, positions, and numbers of instances of various types of graphic elements in a composition.
These variables, then, can be used in decision rules. It is often necessary, as well, to introduce additional variables
specifically for the purpose of storing values that we want to use in decision rules, plus functions to assign values to
these variables. Remember, Python cannot inspect a partially completed drawing in the way that you can when you
are making a graphic decision it can inspect only the values currently assigned to declared variables, evaluate
functions of these, and compare values.

441

Synthetic Tutor

Module 125: 11.4 Parity

11.
CONDITIONALS

11.4 PAIRS OF DESIGN ALTERNATIVES
11.4.1 ODD OR EVEN: PARITY CONDITIONS

Consider the row of columns shown in figure 11-3. Beginning at the left, the odd columns are square and the even
columns circular. This composition can be generated by a loop that instantiates the required number of columns and
chooses either a square or circular one at each iteration, depending on whether the count is odd or even. We can
build a Boolean function odd(X), which takes an integer argument X and returns a value true when X is odd and
false when X is even. Using this function, a procedure to generate the row of alternating square and circular columns
can be written as follows:

[sample codes on the right side]
The zigzag illustrated in figure 11-4 can be generated in a very similar way. Here the decision rule is:

if ODD(COUNT):

ZIG (COUNT * INCREMENT)
else:

ZAG (COUNT * INCREMENT)

Figure 11-5 shows the elevation of a Renaissance palace. You will notice that the window types alternate. (This was
a very common device for enlivening the rhythms of what could otherwise be fairly static compositions.) The
general form of the decision rule for such rows of windows is:

if ODD(COUNT):
WINDOW _1
else:
WINDOW _2

442

Evy

sod4y mopun Suprewssife qum ovped
DUESSIEUII B JO UORBAI(D INEWIYPS ¢

gesenjessss

Sz v oyl

AV VAV VA VAV VAV

“SUMIN[OY JE[ROIID pue Ssenbs FUNRUIANE JO MOL Y "g-[]

" O RO B OB OB OMS

g xipuaddy

Synthetic Tutor

CODE RESULT

import rhinoscriptsyntax as rs
import random

def

square(x, y, diameter):

xl = x - diameter / 2

¥l = y - diameter / 2

plane = [x1, yl, 0]
rs.AddRectangle(plane, diameter, diameter)

circle(x, y, diameter):
center = [x, ¥y, 0]

radius - diameter / 2
rs.hddCirele(center, radius)

odd{number):
if (number % 2) I= O
return True

row(initial_x, y, diameter, spacing, n_columns)s
x = initial _x
eount = range(n_columns)
for 1 in count:
if odd(i):
square(x, y, diameter)
alsa:
circle{x, y, diameter)
x = x + spacing

row(0, 0, 20, 100, 11}

444

amted P ot Ve oty et napest Loyt Vielibty | Tomesbin v Tike Sotnie Towbe St Touly - Mish Ty - Floiche T

Dedaxbd~f+ 2070 \ 259090000 &y,

om0 o om o

1EL & e o deaton . ironle sabnes

Appendix B

Module 126: 11.4 Ending

11.

CONDITIONALS

11.4 PAIRS OF DESIGN ALTERNATIVES

11.4.2 EXTERIOR OR INTERIOR: END CONDITIONS

Figure 11-6 illustrates another row of circular and square columns. Here square columns are at the ends, and circular
columns are everywhere else. The decision rule needed to generate this type of composition can be expressed:

[sample codes on the right side]

i is the control variable of a for loop from First to Last, and a Circular column at the center of an odd End_condition
is the following Boolean function: row.

[sample codes on the right side]
The procedure to generate the complete composition is:

[sample codes on the right side]

,_N'_ O. .O O,.-_O,.O _,OO.M.OO...

11-8. A row of circular columns terminated by square columns.

445

Synthetic Tutor

CODE RESULT

import rhinoscripteyntax as xs

def square(x, y, diameter):
xl = x - diameter / 2
yl = y - diameter / 2
plane - [(x1, yl, 0]
rs.AddRectangle(plane, diameter, diameter)

dof circle(x, y, diameter):
center = [x, ¥, 0]
radius = diameter/2
rs.AddCircle{center, radius)

def odd({number):
if (numbexr % 2) I~ 0: r NN Y NN N YOO YO OO
roturn True 4R b A S \ L

def cndCondition({count, first, last):
if count -~ first or count ==~ last:
return True
else:
return False

def rowWithEndCondition(initial_x, y, diameter,
ppacing, n_columns):
x = inicial_x
count = range{n_columns+l)
for §{ im count:
if endCondition(i, 0, n_columns):
square(x, y, diameter)
olsa:
circle(x, y, diameter)
x=x+apacing

rowWithEndCondition{0, 0, 25, 50, 13)

www.youtube com i now full screen.

St | CPigtme S Voras ~ Cligh Selnet
DedalxaD~h
o L -
T 11008 g - Mo P Ve

2 Y1,
pangleiplane, wi
sdiameter):

s ¥

I A oo of i et Sl by s et jiancter

ble (cente

e 0 O0O0O0CO0COO0ORNR

446

Appendix B

Module 127: 11.4 Middle

11.

CONDITIONALS

11.4 PAIRS OF DESIGN ALTERNATIVES

11.4.3 CENTER OF SLIDE: MIDDLE CONDITION

Yet another type of row of square and round columns is shown in figure 11-7a. There is an odd number of columns,
and the center column is round those on either side are square. The decision rule needed here is:

[sample codes on the right side]
The Boolean function Center_point is as follows:
[sample codes on the right side]

Note that this function will work correctly only if the total number of columns in the row is odd. If the total is even,
there is no center point.

[sample codes on the right side]

The case of an even number of columns is illustrated in figure 11-7b. Here the rule is to make the middle pair of
columns circular instead of square. The decision rule is:

[sample codes on the right side]

The necessary Boolean function Middle_pair can be written:

[sample codes on the right side]

If we want a general procedure that will work for either an odd or an even number of columns, we can use a decision
rule like this,

[sample codes on the right side: if...clse...statements in the main() function]
where Oddrow and Evenrow are procedures that draw odd and even rows of columns respectively.
The following is an interactive program that prompts for and accepts input specifying the starting coordinates of the

row, the column spacing, the diameter, Note that this function will work correctly only if the total number of
columns and the number of columns, then chooses whether to invoke Odd row or Even row:

447

Synthetic Tutor

oOoOoOo0coe oo o 0o

o Circular column at the center of an odd
ow.

i
'
i
]
i
i
1
i
1

o oo oce:e 00 O O
b. Paw of Grcular cokamns at the contor of

AN OVenN row, :

11-7. The treatment of middle conditions.

448

CODE RESULT

import rhinoscriptsyntax as re

def

square(x, y, diameter):

xl = x - diameter / 2

¥l = y - diameter / 2

plane = (x1, yl, 0]
rs.AddRectangle(plane, diameter, diameter)

circle(x, y, diametexr):
center = [x, y, 0)

radius « diameter / 2
rs.AddCircle(center, radius)

odd{number) i
if (oumbexr % 2) - 03
return True

ondCondition(count, first, last):
if count == first or count == last:
return True
olse:
return False

center_point{count, first, last):
middle = int((last + Eirst) / 2)
isCenterPoint = (count == middle)
return isCenterPoint

middle_pair{count, first, last):

left = int{{last + Eirst) / 2)

right = left + 1

is_middle_pair = ((count == left) or (count =~ right))
return is_middle pair

oddRow({initial_x, y, diameter, spacing, n_columns):
x = initial x
repeat = range(l, n_columns+l)
for count im repeat:
condition = center_peint(count, 1, n_columns)
if condition:
eircle(x, y, diameter)
else:
square(x, y, diameter)
x = x + spacing

evenRow(initial_x, y, diameter, spacing, n_columns):
x = initial_x
repeat = range(l, n_columnsil)
for count inm repeat:
condition = middle_pair(count, 1, n_columns)
Lif condition:
circle(x, y, diameter)
else:
square(x, y, diameter)
x= x + spacing

main{)a

x = rs.GetReal('cnter X coordinate', 12)

y = ra.CetReal('enter Y coordinate’, 4)

spacing = rs.CetReal{'enter column spacing’, 100)
diameter - rs.CetReal('enter column diameter’, 20)
n_columns = rs.GetInteger('enter number of columas’, 10)

if odd(n_columns):

oddRow({x, y, diameter, spacing, n_columns)
else:

evenRow(x, y, diameter, spacing, n_columns)

main()

Appendix B

449

Synthetic Tutor

P :ﬁ: S Doagtay et Vianget Layodt | Vorkiin Tk Corve Tasky h"hntﬁ St T bt Touin Pt T Crgleg Mmoo
DeEaF a0~ + 20 2 = ~>0.090000 "84,

g o1

- =
oo 31600 v to @w o e of v by raboan oy

Joor B2 2

ppeter /2
Picenter, radius)

) & & O 0 0O 0

TR IR Speem—pperRpE .

450

Appendix B

Module 128: 11.5 Arbitrary

11
CONDITIONALS

11.4 PAIRS OF DESIGN ALTERNATIVES
11.4.4 ARBITRARY EXCEPTIONS

Sometimes a designer wants to make an arbitrarily chosen element in a repetitive composition different from all the
others. For example, an architect might want to make the nth column in a colonnade round instead of square. The
following procedure takes N as one of its parameters and produces the required results.

[sample codes on the right side]

Some examples of output are shown in figure 11-8.

oo00eOoo oo ooOo0
0000000000 e

oO0000e OO0 00O
11-8. Rows with circular columns at arbitrarily chosen locations.

451

Synthetic Tutor

CODE RESULT
import rhinoscriptsyntax as rs
import random

def square(x, y, dlameter):
x]l = x - diameter / 2
¥l = y - dianeter / 2
plane = [x1, yl, 0]
rs.AddRectangle(plane, diameter, diameter)

def circle(x, y, diameter):
eenter = [x, y, 0]
radius ~ diameter / 2
re.AddCircle{center, radius)

def odd(nunber): PN s - . e g oy
if (number % 2) I= 03 1J L L) (.} L } L
roturn True

def arbitary row[initial x, y, diamoter, spacing, n_columns, n):
x = initial x
count = range(n_columns)
for i im count:
i€ i == nm
rcle(x, y, diameter)

els
square{x, y, diameter)
x=x+ppacing

rnd = random.randint(0,11)
arbitary_row(1l, 1, 30, 100, 12, rand)

B 11000 g - Wimdons Pk Verwe

b
Pret = Gowd e . e "uroras- L HIOH Mo to Srow s OF CoTM a0 NG Py
1

a ”
e b 4]

Priptsyntax as 2

o width) 2
pidth/2
pidth/2
$¥1,0
Bangle (plane, width, width)
f,dianater):
2 ¥l
118 & s of b st et by gt Sebemmes jamoter/2
Wple (center, radius)

" 00O 0COOCOO0ON

452

Appendix B

Module 129: 11.6 Selecting

11.
CONDITIONALS

11.4 PAIRS OF DESIGN ALTERNATIVES
11.4.5 SELECTING SIZE AND SPACING

An architect might want to vary not only the type of column according to rules based on the value of the for-loop
control variable, but also the diameter and spacing. For example, odd and even columns might be of different
diameters, end columns might be smaller, or middle columns might be larger (fig. 11-9a). Spacing might be handled
in similar ways (fig. 11-9b).

All this can be handled, straightforwardly, within the framework of if... else... statements. Here, for example, is a
rule to vary the type, size, and spacing of odd and even columns (fig. 11-10):

if odd(count):
circle(x, y, odd_diametere)
x =X + odd_spacing
" else:
square(x, y, even_diameter)
X =X + even_spacing

453

Synthetic Tutor

o 0o e 06 0o O
¢ QD QOQQ0DO
b6 ¢ v 0 o W e o 0 O
;o;nio_n:'{‘_}-[j-%o o ofo;

&
o
6

a. Size varied by parity, end, and center conditions.

g E}C} DU a0 - OU
éaaln o o bim 0 :
am&aﬂuuﬁaummﬂmu
DDDBGDDE}UDDDDDD

n.mwwm,mwmm

11-9. Further variations by condition.

Ci)‘ ______ O' _O.+ O*

11-10. Type, size, and spacing vary by parity.

454

Appendix B

Module 130: 11.7 If Then 1

11.

CONDITIONALS

11.4 PAIRS OF DESIGN ALTERNATIVES

11.4.6 CHOOSING NO ACTION: if . ..

Sometimes a designer must choose between the alternatives of doing something and doing nothing,. If walls are close
together, for example, beams can economically span a space with nothing in between to support them (fig. 11-11a).
But if walls are further apart, intermediate columns must be introduced (fig. 11-11b). The rule that applies here can
be expressed:

[sample codes on the right side}

Span specifies the width of the space, and the value of Limit specifies when the span is sufficiently great to require
columns.

This is an unnecessarily clumsy way of expressing the rule, though. When the decision to be made is whether to
execute an action or not, Python allows contracted if statements of the form:

if Boolean expression:
Statement

So our rule could be rewritten more clearly and cogently as:

if (span < limit):
To illustrate the use of this rule, the following interactive program prompts for and reads in the length and span of a
space, and the number of equally spaced beams that are to span between the walls. If the span is greater than the
distance between beams, it introduces columns. There are also proportioning rules walls and interior columns are
one-fifth as wide as the distance between beams, and end columns are one-tenth as wide (since they support only
half as much roof area as interior columns).

[sample codes on the right side]

Figure 11-12 shows some examples of output from this program.

455

Synthetic Tutor

O ——
1 i I i I
W i n i i | ik R

K K 0 K K

[———— i vl i i
1" " I !] 1 ! i i 1"
_____ M b——— s R
a. Beams can span closely spaced paralel b. M the spacing exceeds some lmit, inter-
walls. modiato columns must be introducod.

11-11. The genesis of the hypostyle hall, as explained in Auguste Choisy’s
Histoire de UArchitecture, 1899.

e —] —————————
| dese J

[e —
C = e O O 0O =

e O O O O O ¢

(= 3 | o ' | | 4 . |
——
= —
. =] -
—
. o 0 0O O O e
L] (=] -
—— —_—— [~= J

11-12. Plans of hypostyle halls generated by the program Support.

456

CODE RESULT
import rhinoscriptsyntax as rs

def end_condition{count, first, last):
if (eount == first) or (count == last):
retura True
elses
return False

def wall{x, y, leagth, width)a
x2 = x + length

Appendix B

y2 - y + width :

ptl = [x, ¥, 0]
pt2 = [x2, y, 0)
pe3 = [x2, y2, O] %
ptd = [x, y2, 0]

rs.hddLine(ptl, pt2)
rs.AddLine(pt2, ptl)

a

o o o 0o O

rs.hddLine{pt3, ptd)
rs.hddLine{ptdé, ptl)

def square(x, y, diameter):
x1 = x - diameter / 2
¥yl = y - diameter / 2
plane = [x1, y1, 0O}
ro.AddRectangle({plane, diametex, diameter)

def row(initial_x, y, diameter, spacing, n_columans):
x = initial x
balf _diameter = diameter / 2
count = ranga(l, n_columns + 1)
for i in count:
if end_condition(i, 1, n_columns):
square(x, y, half_diameter)
olso:
square(x, y, diameter)
x = x + spacing

def main():
length = re.CetReal(enter length of space’, 100)
span = re.CetReal('enter width of space’, 30)
n_beams = rs.CetInteger('enter number of beams’, 20)
spacing ~ length / (n_beams - 1)
diameter = 0.2 * spacing
x = 100
y = 100
¥l = y + span + diameter

wall(x, y, length, diameter)
wall(x, yl, length, diameter)

if (span > spacing):
¥y =y + span / 2 + diameter
row(x, y, diameter, spacing, n_beams)

main()

457

Synthetic Tutor

S P S | Doty St
DeEarxni 2

< .uu(g g B, bt - (AN, POV DER
)

Fin

5 11080 g S Pt Ve

B * Pk v Ll Bew v O

e

& Bams o e ey apaisd o vt B P apetng sscaedy sirte bl S
p—y s 1> e e e pmcn

AL Vi g of the Mypirls B, = suplumed o Sagpate Chusey's
[y Lo e

“ @

T b e 0 byt Sl

e

& B e shey e .y
—y s o b et

1L Ve grmeni of the sle B, m expiosned i Mmgpese Chosry s
Wionmms de Pashamenrs o }

458

Appendix B

Module 131: 11.7 If Then 2

11.

CONDITIONALS

11.4 PAIRS OF DESIGN ALTERNATIVES

11.4.6 CHOOSING NO ACTION: if . ..

This program assumes that one central row of columns will suffice. A more general program might first determine
how many rows were needed, then insert the required number. The following function takes Span and Limit as
parameters and returns the required number of rows:

[sample codes on the right side]

Assuming equal spans, this next procedure now draws the required number of rows (fig. 11-13).

[sample codes on the right side]

11-13. H hall with multiple
rows of m:

459

Synthetic Tutor

CODE

import rhinoscripteyntax as rs

dof

™

460

end_condition(count, first, last):

if (count == first) or (count == last):
return True

elso:
return False

square(x, y, diameter):

x1 = x - diameter / 2

yl = y - diameter / 2

plane = [x1, yl, 0]
rs.AddRectangle(plane, diameter, diameter)

row(initial_x, y, diameter, spacing, n_columns):
x = initial x
balf_diameter ~ diameter / 2
count = range(l, n_columns + 1)
for 1 in count:
if end_conditlen(i, 1, n_columns):
square(x, y, half_diameter)
elso:
square(x, y, diameter)
x = x + spacing

wall(x, y, leagth, width):
x2 = x + length
y2 = y + width

ptl = [x, ¥, 0]

pt2 = [x2, y, O]
pt3 - [x2, y2, 0]
ptd - [x, y2, 0]

re.AddLine(ptl, pt2)
ro.AddLine(pt2, ptl)
rs.AddLine(pt3, ptd)
ra.AddLine{pt4, ptl)

main():
length = rs.GetReal(’enter length of space’, 100)
span = re.CetReal('cnter widih of space', 30)

n_beams - rs.CetInteger('cnter number of beams’, 20)

spacing - leagth / (n_beams - 1)
diameter =~ 0.2 * spacing

x = 100

¥y = 100

yl = y + span + diameter

wall{x, y, length, diameter)
wall(x, yl, length, diameter)

if (span > spacing):
y =y + span / 2 + diamster
row(x, y, diameter, spacing, n_beanms)

end_condition(ecunt, first, last):

if (count == first) or (count == last):
roturn True

elso:
return False

square(x, y, diameter):

x1 = x - diameter / 2

¥l = y - diameter / 2

plane = [x1, yl, 0]
rs.AddRectangle{plane, diameter, diamcter)

n_rows(span, limit):
result = int((span-1)/limit)
return result

RESULT

Appendix B

Saeaws CPiges . G Vipw - Disginy - St Vomapant Lyt Vit * Tawpham Corv Tohs ~Bhoticn Tools Solid Tosis Mt Touly Ponder Toks Drvfing Lob
DeE@DYXQ0rd + AL 2T H=- " 0090009 T840
T AN F ALESEET RESEARLHOU) MU T i utie T i | i T 2w A ek Al

B s Pyon T - C I MOMD OUOERIN EUTEARCHOCT TIESED T b Tumar LS Siom A i & Pugpiityle bl b s sows 3 cxumen, 7y

g b -

i Lasl Bem v Opm

113, Mypostylo hall with mubtiphe
rowy of columns

461

Synthetic Tutor

Module 132: 11.7 If Then 3

11.

CONDITIONALS

11.4 PAIRS OF DESIGN ALTERNATIVES

11.4.6 CHOOSING NO ACTION: if . . .

We have now produced a program to generate a well-known plan type (found, for example, in ancient Egyptian
architecture) known as the hypostyle hail. Figure 11-14a illustrates some instances of another familiar and very
similar plan type, that of the classical temple. Here we have a column grid surrounding a cella, rather than parallel

walls surrounding a column grid. Columns in an interior rectangle are left out to provide room for the cella.

The limits of the cella can be specified by values for X_start, X_finish, Y_start, Y_{inish (fig. 11-14b). The
following function is true for a grid point outside the celia and false for a grid point within it:

[sample codes on the right side]

The column grid can be drawn by a pair of nested loops (see chapter 9), and space for the celia can be left out of the
center of the grid by application of the rule:

[sample codes on the right side]
Here is a complete procedure to draw column grids with appropriate space left for the cella (fig. 11-15).
[sample codes on the right side]

The nested loops enumerate column positions. The subset of positions at which columns are actually drawn is the
union of the four subsets specified by the four conditions:

COUNT_X <X_START
COUNT _X > X_FINISH
COUNT_Y <Y START
COUNT_Y > Y_FINISH

This is illustrated in figure 11-15.

462

Appendix B

Y_SsTaaT

00 0 Y_FNEM

© 000000000

o000
000000000 O

o

© 0060000000
L]

o000 0O0QOO

v
|
|
|
i

000000000000000 000 000000000000 000
000000000000000 coo A 000000000000000
o 000 £ ooo0 o000 s
£ oco #2 o000 600 4
mm 000] ooo 000]
ooo0 Q> ooo 000 = §
e 000 g 000000000000000
R Diiniiiiiresss Q00 ©000000000000000 .m
-
f - - . 000 3] .m.
[v 000 P g "
X 000 > 000000000
” = 600 um 000000000
mm 000 R 000000000 =
| 8 000 85 000000000 3
'000000000000000 4 000 p v
000000000000000; (X - L - S _ I Yy
ey I XX eeseee i
L L] .
‘ L] L] L]
= “ - L] L
.ﬂ m i) Om L]
m | i . - L b
i 1 |- . L]
.u m 1 “o_ L .
ch K _ _o” _- .
.W seesss T!ooooo XXX 0
a

463

11-14. The classical temple plan.

Synthetic Tutor

CODE RESULT
import rhinoscriptsyntax as rs

def column(x, y, diameter):
xl = x - diameter / 2 m] u] =] [m] o o o a (u] o
yl = y - diameter / 2
plane = [x1, yl, 0]
rs.AddRectangle(plane, diameter, diameter) o (] (=] o a O [u] a [s] [m]

def outside(count_x, count y,
x_start, x_finish, o o o o
y_start, y_£finish):

condl = gcount_x < x_start o
cond2 = count_x > x_finish o o o
cond3 = count_y < y_start

cond4 = count_y > y_finish o o o o

outside_cond = condl or cond2 or condd or condd
return outside_cond

def grid(initial x, initialy,
diameter, spacing,
nx, ny,
x_start, x_finish, u] n] u] D o [m] (u] (] o n]
y_start, y_finish):

y = dnitial_y
repeat_nx = range(l, nx+l)
repeat_ny - range(l, my+l)
y = initial y
for count_y in repeat_ny!
x = initial x
for count_x im repeat_nx:
conditien = outside(count_x, couat_ y,
x_start, x_£finish,
y_otart,y_finish)
if condition:
column(x, y, diameter)
x = x + spacing
y = y ¢ spacing

grid(0,0, 200,1000, 10,8, 3,8, 3,6)

Sowded CParws | SotVoew Duatiny et gt Laghd Vimislty - T < Cutva Tolde * Suece Tosle Subd Tl Wh Toit Puser Tiils Dowlbeg Voo '8
NEE@Txa0~8 + 20 AR TH=»"0030000 "®4L0
CLMOnl FOADERT RESEAROST THE

[W Pt B - € ARG, FORDERS] BEEARCHIT THER P T et ST M e ot 8 simes g Ty

prt,x_end, y

0000C 00

-]
(-]

-]
-]
o
L]
(-]
L3
°
<
o
o
o
-]
c
-}
o

20000000000 0C00
20000000

-]
°
o
o
Q
e
e
-]
<
o
-]
o
o
o
a

L]

a. Coam X «
Xostart

otoo0000l

464

Appendix B

Module 133: 11.5 Conditional

11.
CONDITIONALS
11.5 CONDITIONAL CHOICES AMONG MANY DESIGN ALTERNATIVES

There are often more than two design alternatives to choose from. Else if chains and the case statement are two ways
to express rules for choosing from many alternatives.

11.5.1 elif (else if) CHAINS
The following type of statement chooses one alternative from n possibilities:
if Boolean expression 1:

Statement 1
elif Boolean expression 2:

Statement 2

elif Boolean expression 3:
Statement 3

else:
Statement n

The computer evaluates each Boolean expression in order. If it finds a value of true, it executes the associated
statement, then jumps to the statement following the elif chain.

When none of the Boolean expressions turns out to have a value of true the statement following the last else is
executed. This last statement, then, specifies what happens in a none-of-the-above situation. The following code
illustrates this:

if count==1:
print 1
elif count ==2:
print 2
elif count == 3:
print 3
else:
print 0

The structure of this code is illustrated in figure 11-16.

If you want to do nothing when none of the Boolean expressions turns out to be true, you can simply omit the last
else and the associated statement:

465

Synthetic Tutor

W N
'ONE’ "TWO” ‘THREE' ‘NOT ONE OR TWO OR THREE'

11-16. A flow diagram of an else if chain.

466

Appendix B

Module 134: 11.5 Grid

11.
CONDITIONALS

11.5 CONDITIONAL CHOICES AMONG MANY DESIGN ALTERNATIVES
11.5.2 CONDITIONS IN A COLUMN GRID

To illustrate the use of elif chains in graphics programs, let us consider the column grid shown in figure 11-17. One
architect might make all the columns the same (fig. 11-17a). Another architect after more subtle effects might
recognize that columns on the face support only half as much load as columns in the interior, and that columns at the
corners support only a quarter as much. There are other architectural differences, too. Operating on the principle that
form follows function, then, the second architect might respond to each of these conditions in a different way (fig.
11-17b). How can we write Python code to cxpress the rules that are followed here?

First, we need Boolean functions to identify the conditions that concern us. Here, then, is a function Corner:
[sample codes on the right side]

And here is a function Face:

[sample codes on the right side]

The following procedure executes a pair of nested for-loops to generate the column grid and an elif chain to select
small square columns for the corners, large square columns for the faces, and circular columns everywhere else:

[sample codes on the right side: Grid]
Some of the results generated by this procedure for different-sized grids are shown in figure 11-18.

This procedure is easily altered to associate different responses with the same conditions. The following elif chain,
for example, places cross-shaped columns at the comners, circular columns along the faces, and square columns in
the interior (fig. 11-19):

if corner(count_x, count_y, nx, ny):
cross(x, y, diameter)

elif face(count_x, count_y, nx, ny):
circle(x, y, diam4)

else:
square(x, y, diameter)

We might be interested in responding to different conditions. The following procedure, for example, uses the built-in
Boolean function odd to generate a checkerboard pattern of square and circular columns (fig. 11-20):

[sample codes on the right side: Grid]

Sophisticated designers sometimes use much more complex rules to inflect column grids than the elementary ones
we have explored here. Consider, for example, Alvar Aalto-s plan for the editorial of offices of the Turum Sanomat
in Turku (fig. 11-21). It begins as a regular grid, then some rows are eliminated and others are offset. Finally,
circular, square, rectangular, and bullet-shaped columns are introduced according to relations with walls and stairs
and use of the adjacent floor area.

467

Synthetic Tutor

-
a
o

o-0-0-Q

O-¢-0-9 E
P o-o-9 m
6 o-0-0 °

o-g-G-Q m

oD Qs

e OCC e nococo
nooe0 O000CoC
nocoocan gooom
e DO Q ¢ LI = =
e DO =

s Qv oo o0
cooo0 c o990
coon0 oo o0
e OC » « OO0 @
» D e

e O e ogooQ
oocC goo0
aoco nooa

s D a D o
f-¢-¢im
G-¢-¢-am

q¢¢am

&-0-r--4 WM

11-18. Column grids of various sizes
with different corner, face, and inte-

rior columns.

11-17. The inflection of a column grid.

5400009

000000

o-O-O o
o-< ©o-0
o-o-0- 0
-0 O-0
o-0-0--0

0000400
Rl - e

- o2
=

11-20. A checkerboard pattern of square
and circular columns.

H-o-rP
"
- -O-0-4
--O-0-<
& ot

11-19. Different responses associated
with the same conditions in the grid.

468

Appendix B

a Two simple, regular rhythms.
t |;1 i i
- .] r . ' 1]
1 1! | S | 1
.iii.’a ;
SRR RS B :
|
b, The grid becomes more complen.
*® & & + » .- & @
¢ & & & 2 & 4 s 2

. . I R R N T T T T S S S S
' .« s s 8 s . os .
. - « s 0 :
P R T T T T P
. . . '
. L] . L] - - - - * - L] . . L]
- - . -

I T)
giuoul'oao
3 g
. - IO B I I B D R B B B B]
i " s s = » « s
. - ?oc
I
P I T B R) . o
’ - .
a4 & 8 & & & s a8 a2 =2 a2 =
* - IT s -
L]
@ Column lypes vary.

11-21. Entrance-level plan of the editorial offices of the Turum Sanomat newspaper, Turku,
Finland by Alvar Aalto, 1927/29.

469

Synthetic Tutor

CODE

import rhinoscriptsyntax ss rs

def

square(x, y, diameter):

x1 » x ~ diameter / 2

¥l » y -~ diameter / 2

plane » [x1, yl, 0]
rs.AddRectangle(plane, diameter, diameter)

cirecleo(x,y,diamoter):
centexr » {x,y,0]
radius~diametor
ra.dddCircle(center,radius)

corner{count_x, count_y, DX, ny):

condl = count_x == 1 and count_y == 1

cond2 = count_x == 1 and count_y == ny
cond3 » count_x = ax and count y == 1
condd » count_x =~ nx and count_y == ny
is_corner = condl or cond2 ox cond3 or condd
return is_corner

face(count_x, count_y, nx, ny}:
condX = count_x =~ 1 or count_xw=nx
cond¥ = count_y =~1 or count_y~=ny
is_face = condX or condY

return is_face

grid{initial_x, initial y,
diameter, spacing,
nx, ny)s:

diamé = diametexr / 4
y = initial y
repeat_nx ~ range{l,nx+l)
repeat_ny ~ range(l,ny+l)
for count_y in repeat_ny:
x = finitial x
for count_x in repeat_rx:
if cornex(count_x, count_y, nx, ny):
square(x, y, diand)
olif face(count_x, count_y, nx, ny)s
square{x, y, diameter)
elsos
eircle(x, y, diameter)
x = x + spacing
y = y + spacing

grid{0,0, 100, 1000, 8,6)

470

RESULT

o

O

O

O

Appendix B

owoms Clams Gui Ve Cuaphty *Beiwt Veenpent Loy - Vesdslly Tamghun < Corve Tests fhrtace Tocks * Suld Tasis - Viwoh Tonts . Favsr Tosle ~ {rgihog Bena 'l

DPHQ‘.’?K ANer® 2 2L RCH» . > 00008 @h.0
& .

B P lebder - LLAM0NG ICAILES G0 BELLARCHARD DY L AMGLE S 26 duam.d. i e s, Gty

=
T P IL0I0 pag - Wonom Phasy ¥ewar we

O 0 00009
000000
PG00 0 QO
0¢O000e0
D POTOLeO
i bodo0o0a$o0
+ o '
e R -

11:19. Different responam avwxiated 1188 A checkerboard patters of square
with the same conditions in the grid and clecnlar columns

B X w@u 2¢€ X

471

Synthetic Tutor

Module 135: 11.5 Rhythms 1

11.

CONDITIONALS

11.5 CONDITIONAL CHOICES AMONG MANY DESIGN ALTERNATIVES

11.5.3 USE OF MODULAR ARITHMETIC TO GENERATE RHYTHMS

Consider the very long stair shown in figure 11-25a. It needs landings an architect might decide that a landing is to
be inserted in place of every nth tread, where n is some specified positive integer. The Python mod (%) function,
which, as you will recall from chapter 5, computes the remainder of the division of two integer factors, provides a
convenient way to accomplish this. The following procedure takes N as a parameter and computes the value of i
mod (%) N to decide when to insert a landing;:

[sample codes on the right side]

Some typical results for different values of N are shown in figure 11-25b and c.

472

Appendix B

a. No landings.
,,,,, o b. Landings at every tenth read.
.__; ' ¢. Landings at every sixth tread.

L S

11-25. The insertion of landings into stairs.

473

Synthetic Tutor

CODE RESULT
import rhinoscriptsyntax as rs

def rectangle(xl, yl, length, width):
x2 = x1 + length
y2 = yl + width
ptl = [x1, y1, 0]
pt2 = [x2, yl, O} S
ptd = [x2, y2,0]

pté = [x1, y2,0] =
rs.MddLine(ptl, pt2)

ro.AddLine(pt2, ptl)

rs.MddLine(ptld, ptd) R —

ro.MdLine{ptd, ptl)

def stairs(x_initial, y_initial,
depth, width, S—
x_increment, y_increment,
num_of_stairs, n):

landing_depth = 2 * depth
x = x_initial —
y = y_initial
count = range(l, num_of_stairs+l)
for 1 in count:
if (L % 0 oe= 0)s
rectangle(x, y, landing depth, width)
x = x + depth
else:
rectangle(x, y, depth, width)
x = x + x_increment
y = y + y_increment

staire(0, 0, 300, 20, 300, 200, 10, 10)

Smtard | (Pt BetUiae Doaginy - St oot Lirond - Vality * Tomehens vt Tools | foriucn Tavle et Tkt hogh Tty | Pgnier Tk Diulling Mo 0 V3

@EED' ‘ﬂ EEJ".‘.'ﬁ s B LR TTAE‘Z._..'_.; 29090000 050

v

© Landiogs of every weet ead

DBL The ieretion of lembines w0 stain

474

Appendix B

Module 136: 11.5 Rhythms 2

11.

CONDITIONALS

11.5 CONDITIONAL CHOICES AMONG MANY DESIGN ALTERNATIVES

11.5.3 USE OF MODULAR ARITHMETIC TO GENERATE RHYTHMS

Similar logic might be followed in fenestration. Figure 11-26, for example, shows a row of square windows in which
every nth square has been replaced by a larger, pedimented window. This is simply a generalization of the idea of

alternating window types, which was discussed earlier.

A further generalization, familiar to musicians, is to consider the possibilities for rhythms of different period. The
simplest possible rhythm of period 1 has the form:

AAA ...

When the period is 2, an additional possibility emerges:
ABABAB ...

A period of 3 gives us:

ABBABBABB..
ABCABCABC..

The possibilities now begin to multiply rapidly. Going to a period of 4 adds the possibilities:
ABBBABBBABBBARBBEB ...
AABBAABBAABBAABB ...
ABBCABBCABBCABBC ...
ABCBABCBABCBABCB ...
etc.
This enumeration can, of course, continue indefinitely.
Procedures to generate compositions. that have complex rhythmic structures can be written, very simply, using the
mod (%) function together with a if...elif...else... statement. The next procedure, for example, generates rows of
triangular pedimented square, and rectangular windows in the following rhythm.
ACBBCAACBBCAACBBCA
Here is the code:
[sample codes on the right side]
Notice that the value of i % (mod) 6 is computed at each iteration, and the result is then used to select a case. The

case statement establishes the structure of the rhythm by associating a window type with each of the possible values
(fig. 11-27).

475

Synthetic Tutor

476

noofJooofJooco

11-26. The use of modular arithmetic to
vary every nth window in a row.

Oo00c00c00a0

11-27. A complex fenestration rhythm
generated by using the mod function
and a case statement.

CODE

import rhinoscriptsyntax as rs

dof rectangular_windew{xe, ye, length, width):

x1 = m¢ - (leagth / 2)
x2 = x1 + leagth
¥yl = yo - (width / 2)
y2 = yl + width » 1.3

ptl
pt2
pL3
pté

-
-

(=i, yi,
=2, yl,
(=2, y2,
(=1, y2,

0]
01
0]
o1

rs.AddLine(ptl, pt2)
res.AddLine(pt2, ptl)
re.MddLine(ptd, ptd)
re.MdLine(ptd, ptl)

def triangular_window(xc, yl, width, height):

x1 -
yo =
x2 =
¥y2 =

xc - {(width / 2)

height

x1 + width
yl1 + height=1.3

ptl ~ [x1, y0, 0]
pt2 = [x2, y0, 0]
ptd = [xe, y2, 0]

ra.AddLine(ptl, pt2)
zs.AddLine(pt2, pt3)
zs.MdLine(pt3, ptl)

rectangular window(xe, yl, width, height)

def square_window(x, y, diameter):

xl = x - diamoter / 2
¥l = y - diameter / 2

plane = [x1, yi, 0]
rs.hddRectangle(plane, diameter, diameter)

def row_windows(x, y, width, height, spacing, n_of windows):
y_square = y + ({height-width) / 2)
count = range{l, n_of windows + 1)

for i in count:
mod = i % 6

if (mod == 0 or mod == 1)i
triangular_window(x, y, width, height)

olif (mod == 2 or mod == 5)1

square_window(x, y_square, width)

else:

rectangular_window(x, y, width, height)
x = x + spacing

Ann

RESULT

Appendix B

477

Synthetic Tutor

Ch-— ot vhes | Dol el ‘gt Lapoet Vipleity Tk Curve Tsle Thotece Touke St Tasln Hhest Touts Parpes Toat Dreamgy R
Ll DO i o e A RODDP TP

07 TR Ton e o 7 L1034 Mre iy Ban wbde wndres iy

[5 0310300 - mentins et s

Bl e - ope e e

ooofJooofJooo

11-26. The use of modular arithmetic to
vary eygry nth window in a row,

Oo00e00c00e0

11-27. A complex fenestration rhythm
generated by wing the mod function
and a case statemnent.

478

Appendix B

Module 137: 11.5 Random

11.
CONDITIONALS

11.5 CONDITIONAL CHOICES AMONG MANY DESIGN ALTERNATIVES

11.5.5 RANDOM CHOICE

Random choice is relatively rare in architecture; however, it does occasionally occur, Figure 11-29, for example,
shows a traditional motif of Chinese garden architecture. Windows are regularly spaced in a row along a walkway
wall, but there are several different window types, and the choices for each location do not fall into any regular
patter,

Random number generators can be used to choose not only between different vocabulary y elements, but also to
choose shape and position parameter values. The following program generates compositions of a specified number
of random triangles within a specified rectangle on the screen (fig 11-30).

[sample codes on the right side]

O O © O L0 Q00 © 0 & 0 0 Qo 0 0 ¢ O O

1129, A Chinese garden-wall motifl

11-30. A composition of random triangles.

479

Synthetic Tutor

CODE RESULT

import rhinoscriptsyntax as Is
import random

def triangle(xl, yl, %2, y2, x3, y3):
ptl = [x1, y1, 0]
pt2 = [x2, y2, 0]
ptd = [x3, y3, 0]
ptes = [ptl, pt2, pt3, ptl]
rs.AddPolyline(pts)

dof random_triangles(}:
min_x = rs.CetIntegez(’
max_x = re.CetInteger(’
min_y = rs.CetInteger(’
max_ y = re.CetlIntegexr(’
n = rs.CotInteger('how
count = range(l, n+l)

for i in count:
x1 = random.randrange(min_x, max x)
x2 = random.randrange(min_x, max_x)
= random.randrange(min_x, max_x)
yl = random.randrange(min_x, max_x)
= random.randrange(min_x, max_x)
y3 = random.randrange(min_x, max_x)
triangle(xl, yl, x2, y2, x3, y3)

random_triangles()

St | CPiaras ~ ot Dioping ~ Selnct Vepayert Layind Vil * Damplhons * Coren Tacls ' faripcs Voo ok Yol | Monh Touts ~ Rerir Yooy e D i
e - — — —_— - reraibise b la —— A
D (O_ s By Gt - £ =t 2 TR el 60T utsrars 110 mow 12 B mvﬂs-ﬂp‘ " bl

o
=

|

11-30. A composition of random trisngles.

480

Appendix B

Module 138: 11.6 Other

11.

CONDITIONALS

11.6 OTHER APPLICATIONS OF CONDITIONALS

So far we have seen how to use if... else... statements to choose between design alternatives. But they also have

many other important uses. They can be used for error checking, in situations that arise with the construction of
curves, and in programs that search for design alternatives that meet specified criteria.

11.6.1 ERROR CONDITIONS

It is often necessary to check values that are read in by a program, since you cannot control what a user of the
program may enter in response to a prompt it might be some absurd value. In this case, you probably want to give
the user the chance to reenter a correct value. A while...break...loop can be used for this purpose:

[sample codes on the right side]

481

Synthetic Tutor

CODE RESULT

import rhinoscriptsyntax as rs

def eircle(x, y, radius):
plane«[x,y,0)
rs.AddCircle(plane,radius)

def errorComdition{):
while True:
errox_code = 0
x = rs.CetReal('enter value for x')
if (x < 0)s
x = ro.CotReal('x 1
error_code = 1

s than 0: re-enter’)

elif (x > 1023):
x = ro.0etReal('x g
error_code = 2
else:
error_code = 3

if (error_code == 0):
oirele(0,0,100)

errorCondition()

G ey
Dis-GOE P- v
VT b ek gl s
daf circle():
plane = 0,0,0
radius = 1C0
rs.AddcCizcle (plane, tadius)

def errorConditioni):
while True:
x = ra.Getheal ('

N {

slhoR

x 8. Reall’
errot uf} 1
break
alif x > 1000
X = rs.Getheall’
errorode = 2
alse:
aryo

1f arrorCods
circled)

=
b
&
A
@
oh
& .
"
L
1~
-t
L §
v,
&

<,
8,
<
T
]
-,
H
i,
@,

482

Appendix B

Module 139: 11.6 Curves 1

11.

CONDITIONALS

11.6 OTHER APPLICATIONS OF CONDITIONALS

11.6.2 CURVES AND CONDITIONALS

Mathematical functions, like architectural compositions, often manifest special conditions (requiring special

treatment) at their extremes. The following Python function, for example, computes the reciprocal of a number X

This function will work for any value of X except zero. When X is zero, the value of 1/X should be infinity, but an
infinitely largc integer cannot be represented in a finite memory location, so an attempt to execute Reciprocal when
X is zero will generate an error. It is good practice, then, to test for a zero value of X before passing it into
Reciprocal as follows:

[sample codes on the right side]

483

Synthetic Tutor

CODE RESULT
import rhinoscriptsyntax as re
0.0001
def rociprocal(x):
if (x 1= 0) 100000.0
y=1/x
print y Cannol take the reciprocal of 0
else:
print 'Ce take o'

reciprocal (10000)
reciprocal (0.00001)
reciprocal(0)

el]
19209 M e S st Sy By
def circle():
plane = 0,0,¢
radius * 10
ra.AddCizxcle (plane, radius)

def errorComdition():
while True:
X = rs.0atheal (*

1f errorCode == 1:
circle ()

¥
®0r
&, o,
5
@ &

484

Appendix B

Module 140: Exercise 7

11.
CONDITIONALS

EXERCISES

1. Assume there is a procedure to draw a Square, a procedure to draw a Circle, and the Boolean functions
end_condition and center_point as defined earlier. Execute the following code by hand and draw the graphic output
on grid paper.

def end_condition(count, first, last):
result = (count == first) or (count = last)
return result

def center_point(count, first, last):
middle = (last + first) / 2
result = (count == middle)
return result

initial x =100
initial_y = 100
nx=>5
ny=S5
diameter = 25
spacing = 100

y =initial_y
for y_count in range(1 to ny+1):
X = initial_x

for x_count in range(1 tonx+1):
condl = end_condition(y_count, 1, ny)
cond2 = center_point (x_count, 1, nx)
cond3 = end_condition(x_count, 1, nx)
cond4 = center_point (y_count, 1, ny)

if (cond1 and cond2 or cond3 and cond4):
circle (x, y, diameter)
else:
square (X, y, diameter)
x = x + spacing
y =Yy + spacing

Keep the same loop structure, replace the conditional with the following, and draw the output that results.

condl = center_point(x_count, 1, nx)
cond2 = center_point(y_count, 1, ny)

if (cond1 and cond2):

circle(x, y, diameter)
else:

485

Synthetic Tutor

square (x, y, diameter)
Finally, draw the output that results when the conditional is replaced with:

condl = (x_count==y_count)
cond2 = (x_count==ny - ny_count+1)

if (cond1 or cond2):
circle(x, y, diameter)
else:
square(X, y, diameter)

Please upload your python file: | Choose File | No file chosen { Submit |

2. A common way to handle the corners in a high-rise office building is to leave out the corner columns and
cantilever the floor (fig. 11-44a). This allows the outline of the floor to be shaped freely at the comers (fig. 11-44b,
¢, and d). Choose a way to shape the corner and write a general procedure to produce floor plans of this type.

486

Appendix B

IR

1144,

s Corner treatments for a high-rise

Please upload your python file: |_Choose File | No file chosen | Submit |

3. In the floor plan shown in figure 11-45, a rectangular light well has been introduced. The reentrant corners of the
light well constitute a special condition in the column grid. What architectural response might you make to this?
Using conditionals, write a general procedure that generates a plan with a rectangular light well of arbitrary size and
arbitrary location within the column grid and that handles the reentrant corners appropriately.

487

Synthetic Tutor

I
|
i
i
|

11-45. A Roor plan with a square column grid and an interior light well.

Please upload your python file: |_Choose File | No file chosen | Submit

4. A scheme for the layout of an amphitheater is shown in fig. 11-46. Notice that concentric aisles for access
alternate at regular intervals between the concentric rows of seating, and that a conditional rule governs placement
of the radial lines of steps. Taking stage diameter, seating row width, aisle width, step width, number of rows of
seating, and number of seating rows per aisle as parameters, and using conditionals, write a general procedure to
draw layouts of this type.

11-46. Type diagram for an amphitheater.

Please upload your python file: | Choose File | No file chosen Submit |

5. Figure 11-47 illustrates various traditional types of brickwork bonding. Choose one of these and consider the
parameters that would be needed to control the position, size, and pattern of a rectangular panel in this bond. Using
conditionals, write an appropriately parameterized procedure to generate such a panel.

488

I | B
| I |
I N R N

]
I SR N
I I
I I .
L_MJL_H“H]

I .
0 O
| | [

DLLIHJWWVJ

11-47. Traditional types of brickwerk bonding

Please upload your python file: | Choose File | No file chasen |_Submit |

Appendix B

6. A window destgn by the e]ghteenlh century architect Batty Langley is shown in figure 11-48. There are eight
identical voussoirs in this version, but the number of voussoirs might become a variable, and the shapes of voussoirs
might be varied in response to special conditions. Top might differ from bottom, horizontal from vertical, odd from

even, and so on. Write a procedure, incorporating conditionals , to generate variants.

489

Synthetic Tutor

 —

11-48. A circular window design from
Batty Langley’s Builder's and Work-
man's Treasury of Designs.

Please upload your python file: |_Choose File | No file chosen Submit |

7. A standard scheme for the layout of rafters in a hipped roof over a rectangular floor plan is shown in figure 11-49.
Notice that if the rafters on the long side intersect the hip, they are short. Otherwise, they are of normal length. Write
an appropriately parameterized procedure to lay out rafters in this fashion and draw the plan.

::;ﬂ.'l'hthyndnfnﬁnshnhipped

Please upload your python file: | Choose File | Mo file chosen |_Submit_|

8. Figure 11-50 illustrates how the parti for a church, of the Florence Cathedral type, might be developed: this
process can be understood as one of increasingly refined differentiation of an initially uniform design. Begin by
writing a procedure to generate uniform designs of the type shown in figure 11-50a. Then, by successively
introducing additional vocabulary elements and conditionals controlling their use, successively refine it into
procedures to generate the more differentiated types.

490

Appendix B

| .
e Ji 1 Tt

& A apes i aSted &8 & temnatrg
T

i
|
|
T

B Widihs of hive ared sdies e
gEwnguated

& Smaler bays sen replaced by & Wge 1. Tha gomo is adoed ot fes cossing.

Please upload your python file: | Choose File | No file chosen | Submit |

9. Many town plans (fig. 11-51) consist of regular street grids interrupted at various points and in various ways.
Examine some plans of this type. What are the conditions under which the grid is interrupted? Write a set of
conditional rules that could be used to produce plans of this type, and discuss their effects.

ENETE SEEGY B WRTER GEEER
S NN N D —
N B N
—
—-' ;.--
=] e
-—-_=
PR DEERE BEE EEE
1151, The regular street grid of the
French bastide Mont . interrupted
by major public bu

Please upload your python file: |_Choose File_| No file chosen | Submit

10. Figure 11-52a illustrates a common motif of Gothic architecture, composed of circles and arcs and known as the
trefoil. Similarly, a quatrefoil is shown in figure 11-52b. In general, we can have multifoils - any number of
segments. What parameters are needed to control the position, size, segmentation, and shape of a multifoil? Write a
general multifoil procedure.

491

Synthetic Tutor

O Q
B

)
O

Please upload your python file: | Choose File | No file chosen “Submit |

492

Appendix B

Module 141: 11.6 Curves 1

11.
CONDITIONALS

11.6 OTHER APPLICATIONS OF CONDITIONALS
11.6.2 CURVES AND CONDITIONALS

In the design of a molding, an architect manipulates shape variables to create effects of light, shading, and shadow
line. Increasing the depth of an overhang, for example, creates deeper shadows. Varying the curvature of an arc
alters the shading. And appropriate balances of flat and curved surfaces, and of light and shade, must be achieved.
Figure 11-37a shows how an ovolo profile might be parameterized to allow this kind of design exploration. The
corresponding procedure, which invokes Arc, is as follows:

[sample codes on the right side]
More complex types of molding profiles are formed by fitting together several arcs. The S-shaped cyma recta, for
example, is constructed as shown in figure 11-40a. Its converse is the cyma reverse (fig. 11-40b). Both the cyma

recta and the cyma reverse can be constructed from equal arcs, or they can be quirked by using unequal arcs (fig. 11-
40c¢). In any case, their intersection must be tangential.

493

Synthetic Tutor

“/_l

b. Some instances.

¢. Quirked cyma reversa.

11-37. The parametric variation of the 11-40. Arcs connected at tangents.

494

Appendix B

CODE RESULT

import rhinescriptasyntax as rs
import math

def ovolo(x8, y0, hl, vl, h2, v2, radius):
xc = x0 + hl
yi =
ye =
¥2 =~ ye
xl =

+ vl

+ radius

+ v2

+ radius + h2

pt0 = [x0, y0, O]

ptl = [xe, y0, 0]
pt2 = [xe, yl, 0]
pte = [xe, ye,0]
ptd = [xc + radius, yc, 0]

ptd = [xl, ye, 0]
pts = [x1, y2, 0]

rs.AddLine(pt0, ptl}
rs.hddLine(ptl, pt2)

plane = [xc, yco, 0]

angle = -90

rs.AddArc(plane, radius, angle)
rs.AddLine(pt3, ptd)
rs.AddLine(pté, pt5)

ovole(0,0, 10,10, 10,10, 20)

B Deby Tewk ey

PRINs BOE L Po- o008

B 1101 - Wiedcwn Prons Vewe:

495

Synthetic Tutor

Module 142: 11.6 Generates

11.
CONDITIONALS

11.6 OTHER APPLICATIONS OF CONDITIONALS
11.6.3 GENERATE-AND-TEST PROCEDURES

Sometimes a designer knows conditions that an instance of some design element must satisfy, but does not know the
parameter values that will generate a satisfactory instance. The problem, then, is to find these parameter values. A
structural designer, for example, might intend to span a space with a rectangular wooden beam. The span and
loading conditions are given, and the problem is to find satisfactory values for the height and width of the beam's
cross section.

There are often formulas that can be evaluated to yield the required value directly. In other cases, however, there is
no alternative to engaging in a trial-and-error process of generating candidate sets of parameter values for
consideration and testing these for compliance with the conditions. The flow diagram in figure 11-41 illustrates the
general structure of this process.

As the diagram suggests, it is not difficult to write programs to perform this kind of search. You use loops to
enumerate parameter values, Boolean expressions to describe the conditions that must be met, and a conditional to
terminate the search when the required values are found.

The next program illustrates this. It finds satisfactory values for Length and Width of a rectangular room. It begins
by prompting for and reading in values for:

. minimum acceptable Length

. maximum acceptable Length

. minimum acceptable Width

. maximum acceptable Width

. minimum acceptable Area

. maximum acceptable Area

. minimum acceptable Proportion (Length/Width)
. maximum acceptable Proportion

. minimum acceptable Perimeter

. maximum acceptable Perimeter

It then uses nested loops to enumerate values for Length and Width. At each iteration, it calculates values for Area,
Proportion, and Perimeter. When it first finds Length and Width values that satisfy the requirements, it exits from
the loop and draws the appropriately sized rectangle. If the requirements are impossible to satisfy, then it eventually
exhausts all the possibilities and reports this. Here is the complete code:

[sample codes on the right side]

With the use of generate-and-test methods, you can build problem-solving intelligence into graphics programs. You
should be careful, though, of the combinatorial explosion that results when the number of design variables, and the

umber of values nossible for each. he o to orp A can execute cenerate-and-test loons very rapidly
numoer oI v &5 pOS510:C 0T Sach, u\«su‘a WO EIOW. /a v\unll.lul\«l Can CXCCUl gendlraie-anG-iest :00ps very rapiaiy,

but each iteration does take a finite amount of time. When the number of iterations becomes very large, total
execution time can easily become impractically great.

Notice that the execution of the Search program can be made more effective by adding logical conditions to the
inner while loop. For example, once the Width reaches a value such that the calculated Area is greater than the
maximum allowed, there is no reason to continue incrementing Width. In generate-and-test programs, it is important
to take advantage of any available way to reduce the number of iterations. Where a motif is generated by a

496

Appendix B

parameterized procedure, you can always generate sets of variants by invoking the procedure from within loops that
increment parameter values. And you can always turn such enumeration procedures into generate-and-test
procedures by testing, within the loop, for compliance with conditions.

b

Yes

End

11-41. A flow diagram of a simple trial-
and-error design process.

497

Synthetic Tutor

CODE
import rhincscriptoyntax ss rs

dof roctangle(x, y, length, width):

- x 4 leagth

¥2 = y & width

ptl = [x, ¥, 0]

pt2 = [x2, y, 0]

ptl = [x2, ¥2, 0]

ptd = [x, y2, 0]

ra.AddLine(ptl, pt2)

ra.hddLine(pt2, ptld)

re.AddLine(ptd, pté)

ra.AddLine(ptd, ptl)

def soarchi)s
min_leagth = re.CetInteger('ecnter the minlmum length',100)
max_length = re.CetInteger(’ cnter the ximum Length',1000)
min_width = rs.CetInteger(enter the mininum width',200)
max_width = rs.CotInteger{ 'enter the maximum width',2000)
min_area = rs.CetInteger('enter the mini
max_area - rs.CetInteger{'cater the ma
min_proportion = rs.CetInteger(’cnter the minimum proportion’,0.1)
max_proportien = re.GetInteger(cater Lhe maximum propertion’10)
min_perimeter = rm.GCotlnteger(cater the min. perimeter',300)
max_porimeter = ra.CetInteger(onter the naximum perimeter®,1200)

satisfies = False
length = min_length - 1

while (length < max_length)and not{satisfies) s
leagth = length + 1
width = min width - 1

while (width < max_width) and not(satisfies):
width ~ width + 1
area = length * width
proportion = length / width
perimeter = 2 * (length + width)
condl = area > min_arca
cond2 ~ area < max_area

cond3 = proportion > min_proportien
condé - proportion < max_proportion
conds = perimeter > min_perimeter
condé = perimeter < max_perimeter

if condl and cond2? and cond) and condd and condS and condé:
satisfies = True

if satisfies @

rectangle(0, 0, length, width)
alser

print ‘conditicns not satlsfied

secarch()

498

RESULT

Appendix B

Module 143: 11.7 Summary

11.
CONDITIONALS

11.7 SUMMARY
In the simplest Python programs, the computer executes each successive statement once and only once (fig. 11-42a):

def function():
Statement 1
Statement 2
Statement 3

It neither repeats nor skips a statement.
In chapter 9, we explored the use of loops that cause a sequence of statements to be repeated (fig. 11-42b):

for i in range(10)
function()

Whereas loops serve the graphic purpose of repeating instances of graphic elements in uniform patterns,
conditionals allow us to break the uniformity of a pattern where appropriate, in order to adjust or inflect parts of a
composition to respond to special conditions. We have illustrated this principle mostly by considering odd and even
conditions, end conditions, interior conditions, and center conditions in rows and grids of architectural elements, but
you should be able to think of many more ways in which parts of compositions are varied in response to existing
conditions.

Uniformity is prized by some designers, and programs to generate work in their style will contain few conditionals.
Much of classical architecture and of the work of Mies van der Rohe, for example, is like this (fig. 11-43a). Other
designers, however, value the way that interest and meaning can be created within a composition by varying and
inflecting elements in response to subtle contextual differences. Baroque architects were masters of this approach as
was Alvar Aalto (fig. 11-43b). Programs to generate compositions of this sort will be rich in conditionals. Finally,
some designers are interested in the startling effects of purely arbitrary variation. Programs to produce this kind of
composition will incorporate random selection mechanisms. In any case, the code makes explicit answers to two
basic aesthetic questions. Under what conditions should elements vary? And, under a given condition, what kind of
variation should occur?

499

Synthetic Tutor

Module 144: 12.1 Structure

HIERARCHICAL STRUCTURE

12.1 SUBSYSTEMS

Consider a composition consisting just of a square, generated by,
SQUARE (X_SQUARE, Y_SQUARE, SIDE)

and a circle, generated by,
CIRCLE (X_CIRCLE, Y_CIRCLE, DIAMETER)

Each procedure has three parameters (fig. 12-1), so there are six design variables in all. In other words, we have
established a spatial relation with six degrees of freedom between the square and the circle.

We can reduce the degrees of freedom by making one of these six variables depend upon another:
SQUARE (X_SQUARE, Y_SQUARE, SIDE)
X_CIRCLE =X_SQUARE
CIRCLE (X_CIRCLE, Y_CIRCLE, DIAMETER)

The circle can now move only on a vertical line through the center of the square (fig. 12-2). We have established a
particular type of graphic subsystem, consisting of two vocabulary elements spatially related in a specific way.

Subtypes can be established by further reducing the degrees of freedom in the relation (fig. 12-3):
SQUARE (X_SQUARE, Y_SQUARE, SIDE)
X_CIRCLE = X_SQUARE
Y CIRCLE =Y_SQUARE - SIDE
DIAMETER = SIDE * 2
CIRCLE (X_CIRCLE, Y_CIRCLE, DIAMETER)
A procedure to generate this subsystem can now be written:
[samples code on the right side]

This gives the type of subsystem a name and specifies the relation between its constituent vocabulary elements.

The same vocabulary elements may be related in many different ways to form different types of subsystems. Figure
12-4 suggests some of the possibilities for a circle and a square.

500

Appendix B

}K...m
)
]
i
H i
1
1
Y_SQUARE . .. + W
&
Y.ORCLE... . | .
121 Awmpositionohsqmemdch
cle, with six degrees of freed Y_CIRCLE~ ~ -
X_SQUARE
: :
]
'
~ :
Y_SQUARE - L . G
t
Y_SQUARE- - -} -~ ¢ §
i
: - -
)
]
1
1
1

12-3. A ition with three de; ll-& A composmon with five degreos of
b composl n with three degrees e <
hneﬁhmugh the oenterohhe square.

7Y
@) N/ O

O

N

lzl-ﬂ.Smm'r ible relationships bet a circle and square.

£ 3

501

Synthetic Tutor

CODbE RESULT
impert rhinoscriptayntax as rs

deof square{xc, y<c, length):
x1 « xe - length / 2
x2 » x1 + length
yl = yc -~ length / 2
y2 =« yl + length
ptil =~ [x1, yl, 0}
pt2 = {x2, yl, 0}
pt3 » {x2, y2, 0}
ptd = {x1, y2, 0)
rs.AddLine(ptl, pt2)
zs.Addline(ptl, ptd)
re.MdLine{pt), ptd)
rs.MdLine (ptd, ptl)

def circle(x, y, radius):
center = [x, y, 0}
rs.MdCircle(center, radius)

dof 3 {x_sq p X , side):
q (x_sq . Y 89 , side)
x_cixcle » x_square

y_cizcle » y_square - side
circle(x_circle, y_circle, side)

pantheon(10,10,20)

502

Appendix B

Module 145: 12.1 Subsystems

12.

HIERARCHICAL STRUCTURE

12.1.1 SUBSYSTEMS OF MANY ELEMENTS

A subsystem that is built up from available vocabulary elements placed in some specific spatial relationship need not
consist of just two such elements. There may be any number. The following procedure, for example, interrelates a
square, a circle, and a triangle:

[samples code on the right side]

Some output is shown in figure 12-5.

2D
__/

12-5. A subsystem cousisting of a circle,
a square, and a triangle.

503

Synthetic Tutor

CODE RESULT
import rhinosoriptsyntax as rs

def square{xc, ye, length):
21 = x¢ ~ length / 2
x2 = x1 + length
yi = yc = length / 2
¥2 = yl + length

ptl = (x1, y1, O]
pt2 = [x2, yl, 0]
ptld =~ {x2, y2, 0}
ptd ~ {x1, y2, 0}

ra . AddLine{ptl, pt2)
re.AddLine{pt2, pt3)
ra.AddLine(pt3, ptd)
ra.AddLine(ptd, ptl)

daf circleix, y, radius)s
conter = [x, y, 0}
re.AddCircle{center, radius)

def triangle(x, y, length):
ptl = 1{x,¥,0)
y2 = y + length * 1.7
x2 = x + length
pt2 = [x2, y2, 0}
z2) = x + length * 2
ptd = {x3, y, 0]

rs.AddLine(ptl, pt2)
rs.AddLine(pt2, pt3)
ra.AddLine{pt3, ptil)

dof clockFace(x, y, diamoter):
square(x, y. diameter)

radius ~ diameter / 2
circle{x, y, radius)

yt = y + radias
xt » x - radius
triangle(xt, yt, radius)

clockPace({0,0,100)

504

Appendix B

-y
o
[
e

{oRELC

S Sl L

12-5. A subsystem consisting of a circle,
s square, and a triangle

A,
9,
=1
2
¥,
8,
i
T
E
o,
i
@,

&

— TM"‘E

505

Synthetic Tutor

Module 146: 12.1 Relations

12.
HIERARCHICAL STRUCTURE

12.1.2 KINDS OF SPATIAL RELATIONS

Vocabulary elements can be related to form subsystems in an infinite number of ways, but certain kinds of
subsystems have always been of particular interest to architects and graphic designers. These can be characterized
by their properties of symmetry.

Many vocabulary elements (circles, regular polygons, and the like) have symmetry about a point, and these are often
related by making the symmetry points coincident. Figure 12-6, for example, shows some cases of a square and
circle related in this way. In figure 12-6a they have the same diameter. This relationship characterizes Roman,
Byzantine, and Ottoman building plans, where hemispherical domes are often placed over square spaces. In figure
12-6b the circle is much smaller than the square. We find this in the plan of Palladios Villa Rotonda, for example,
where a cylindrical central space is placed within an outer cubic mass. In figure 12-6¢ and d the diameters are
similar but not the same, so that an interesting residual space is created between the inner and outer enclosures.
Louis Kahn often used this relationship in his compositions.

1t is usually convenient to parameterize procedures that draw point symmetrical figures by the X and Y coordinates
of the center point, plus a radius. Thus a concentric relationship of two such elements is established by making their
center point coordinates the same, and perhaps by specifying a ratio of the two radii as well. Our next procedure, for
example, draws a concentrically related pair of regular polygons. Parameters are X and Y, the numbers of sides of
each polygon, and the radius of each polygon:

[samples code on the right side]

Where vocabulary elements have symmetry about one or more axes, they are frequently related by making the axes
coincident. Figure 12-8 shows a plan composed of squares, circles, and ovals related in this way. Architects have
often extended this principle by stringing many bilaterally symmetrical spaces along a circulation axis. Classical and
neoclassical architects tended to keep the constituent spaces disjoint (fig 12-9a). Baroque architects, on the other
hand, often let them intersect in complex ways (fig. 12-9b).

Procedures that draw bilaterally symmetrical figures often take the X coordinate of the axis of symmetry as a
parameter. Thus bilaterally symmetrical figures can be coaxially related by invoking their procedures with the same
x value. The following procedure, for example, draws an isosceles triangle:

[samples code on the right side]

The next procedure invokes Isosceles three times to draw three coaxially related isosceles triangles (fig. 12-10a):
[samples code on the right side]

This relationship of triangles was explored by Palladio in his church elevations (figs. 12-10b, c).

Another common way to relate elements is to align their edges. Consider the relationship of a large and a small
squarc window in clcvation. As shown in figurc 12-11, the edges of the large window establish four axes, which
divide the surrounding wall plane into eight quadrants. The small window might intersect any one of these axes on
cither side to yield eight possible relations. Or the small window might be contained wholly within any one of the
quadrants to yield eight more possibilities. Within any one of the quadrants, the top, bottom, or side of the small
window might be on an axis another sixteen possibilities emerge from this. If we allow the windows to touch at their
edges, we obtain twelve more possibilities. And, if we allow them to touch just at their corners, we obtain another
four. Finally, we might make the diagonal axes coincident.

506

Appendix B

Instead of aligning edges or axes, we can choose to intersect them at an angle. Figure 12-12, for example, shows a
common path for the plan of a mosque. The large rectangle, forming the body of the mosque, has its principal axis
pointing toward Mecca. The small rectangle is an entrance space, aligned with the street. The axes of the two
rectangles intersect at the center of a circular transition space. The dimensions of the three elements and the
parameter Theta can be adjusted in order to fit the plan to any given context.

Finally, we can place one element in a -floating- relationship to another by carefully avoiding coincidence of
important points or alignment of axes and edges. A square, for instance, has four edges and four axes of symmetry,
dividing the plane into sixteen regions outside the square and eight within it (fig. 12-13a). We can float a circle in
relation to this square by placing it so that its center point falls within any one of these regions and not on one of
their boundaries, and also so that its circumference is not tangent to any one of these boundaries (fig. 12-13b). We

might go further and require that the circumference does not pass through any of the intersections of axes and edge
lines.

Sometimes designers make the relationships of vocabulary elements in a composition explicit by showing axes,
grids, circles, and other construction lines on their drawings. Le Corbusier called these -traces regulators, - and they
show up on many of his early projects (fig. 12-14).

507

Synthetic Tutor

. ! -~

b. A circular room at the center of a square
buiiding.

d. Residual space outside the square
12-6. Coincident symmetry points.

e ()

12-7. Pairs of concentric regular polygons.

508

12-8. Axial relations of circles and
squares in a sketch for a Lustgartenge-
bllnll.d:h in Vienna by J.B. Fischer von
E i :

4

Appendix B

AN

AN
PN

/\

i t

a. The principle of coaxial b. S. Giorgio Maggiore, Venice. c. Il Redentore, Venice.
composition.

12-10. Coaxial isosceles triangles in two church elevations by Palladio.

509

Synthetic Tutor

S&‘! . @a
ﬁ@ ,.mﬁ

b o

12-11. Relating a small to a large square window.

510

Appendix B

b Y

i b

i ~

b ~
|

1

|

N\
<

Ay

i
|
’ |
|
|
i ~

12-12. The arrangement of a mosque in 4

lation to Mecca and to the street.
SEBSESES a. Axes of symmetry and edge lines.

\\ ' . : ’l
RN : : : e
1] /
: 1.: /‘.
— I N T
. T 7 -
M] / .
F i L
- i B 9
: F 1 L 1%
’
-~ " .. g : 3 : ..
R b. Circles fall between the lines.
12-14. Regulating lines of Le Corbu- 12-13. Circles in floating relationship to
sier’s Villa Garches (north elevation). a square.

511

Synthetic Tutor

CODE RESULT
import rhinescriptsyntax as rs

def isoceles(x,y,base,height):

xl=x-(base/2)
x2=xl+base
yl-y+height
pO=[x1,y,0]
pl=[x2,y,0])
p2-[x,y1,0]
pi=[x1,y,0]
ra.hddLine(p0, pl)
ra.MddLine(pl, p2)
ro.hddLine(p2, p3)

def throo_triangles(x,yl,y2,y3,base_l,base_2,base 3,
height_l,height_2,height_3):
isoceles(x,yl,base_l,beight_l)
isoceles(x,y2,base_2,height_2)
isocelesa(x,y3,base_3 height_3)

three_triangles(o0, 0, 200, 350, 100,300,100, 150,100,50)

th-n Ekaad h‘h h-a h-vnuwn Vokaity * Trashme Ctn‘-h Surtee Toole Gkt Touts Mawh Tosts Fassr Tonks Oroking h--ﬂ
AT B —y e
EABCW05 ToE 2 Vo e e \;m-"\—nlt|-°l-‘l‘h

N s W

LA A R

X
L)
=]
b
<f.
o,
-
T
E
.
B
@,

&

B A Tl

512

Appendix B

Module 147: 12.2 Interface

12.
HIERARCHICAL STRUCTURE

12.2 INTERFACES

Now consider the column shown in figure 12-15a. It consists of a base, a shaft, and a capital (fig. 12-15b, ¢, d).
Procedures to draw these elements might be written as follows:

[samples code on the right side]

In the complete column, the base, the shaft, and the capital are in a particular spatial relation (fig. 12-15¢). They are
stacked on top of each other, and their axes of symmetry are coincident. What information is needed to draw the
three elements in the correct relation? To draw the base, it is necessary first to establish position and size. Then, to
draw the shaft, it is also necessary to know the height and width of the base. Finally, to draw the capital, it is
necessary to know the height of the shaft and (since it tapers) its width at the top. This presents a problem, since the
height of the base is calculated within the procedure Base and is therefore inaccessible outside that procedure.
Similarly, the height and top width of the shaft are calculated inside the procedure Shaft, and are inaccessible
outside that procedure.

i L]

1] i

1 L]
TOP_WIDTH 1
[.]
é.‘._—_h @ . 1
+ i

XY mﬁ_mm ‘

a. The complete column, . The bass. ¢, The shatt. d. The capital. & Flting ™o pieces

12-15. A column consisting of base, shaft, and capital.

513

Synthetic Tutor

CODE

import rhinoscriptsyntax as rs

def

def

base(x, y, top_width):
bottom width = top_width * 1.5
beight = top_width * 0.3

xl = x - (bottom width / 2)
x2 = x1 + bottom width

x3 = x - (top_width / 2)
xé = x3 + top_width

¥yl = y + height * 0.8
y_top = y + height

p0 = [x1, y, 0]
pl = [x2, ¥, 0]
P2 = [x2, y1, 0]
»3 = [x4, y_top, 0]
pé = [x3, y_tep, 0]
ps = [x1, y1, 0]
pé = [x1, y, 0]
P7 = [x1, y1, 0]

pe = [x2, yl, 0]
pts = [p0, pl, p2, p3, pé, pS, p6. P7. PB]
re.AddPolyline(pts)

shaft(x, y, bottom_width):
top_width = bottom width * 0.6
beight = bottom width * 6
y_top = y + height

x1 = x - (bottom width / 2)
x2 = x1 + bottom width

x3 = x - (top_width / 2)

x4 = x3 + top_width

[xl, ¥, 0]

[x3, y_top, 0]
[x4, y_top, 0]
[x2, y, 0]

pts = [p0, pl, p2, P3)

rs.hddPolyline(pts)

v
-
[

capital(x, y, bottom_width):
top_width = bottom width * 2.0
beight = bottom_width * 0.7

x1 = x - (bottom_width / 2)
x2 = x1 + bottom_width

x3 = x - (top_width / 2)
x4 = x3 + top_width

y_top = y + height

po = [x1l, ¥, 0]
Pl = [x2, y, 0]
P2 = [x4, y_top, 0)
P~ [x3, y_top, 0]
péd =[x, ¥, O

]
pts = [p0, pl, P2, pl. P4l
rs .AddPolyline(pts)

base(0, 0, 100)
shaft{0, 30, 100)
capital(0, 630, 60)

514

RESULT

Appendix B

WA Vo Gt TS Yoo BT W et o Yol B * W
HreABOCIIG T®G,@ .

= R eoon |

a The complete cohemn. B The base. ©. Tre shalt. d The capisl «. Fiirg e pleces
ogether

12-15. Aenlumacondstir‘olbue shaft, and capital.

4]
il
v

.

TOP _WIDTH
ey !
i [

o ﬁz‘? :
IUTI’;?EOIH !

]

& The complete coher. b The base. < Tre shah d The capitel ® Frg the pioces

BRI o MBSO RO TS

12-15. A column consisting of base, shaft, and capital,

% peiE)imi 5 ¢ x

fleel GHLPREGRS I

s

515

Synthetic Tutor

Module 148: 12.3 Variable

12.
HIERARCHICAL STRUCTURE
12.2.1 VARIABLE PARAMETERS
The need here is for a means to pass values out of a procedure the converse of using the parameter list to pass values
in. Python provides the construct of a variable parameter for passing the result of a computation out of a procedure.
The rules for use of variable parameters are simple. First, the actual parameter must be a variable it cannot be a
number, a constant, or any other kind of expression. Second, the corresponding formal parameter must be preceded
by the word var. Any operation within the procedure on this formal parameter will then be performed directly upon
the actual parameter. Here, now, are the headings of procedures Base, Shaft, and Capital, modified by the
incorporation of variable parameters as required:
def base (x, y, top_width):
returny_top
def shaft (x, y, bottom_width):
return y_top, top_width
def capital (x, y, bottom_width):

return y_top, top_width

The inputs and outputs of these three procedures now are as shown in figure 12-16

516

—
-~ HY_TOP
Y—oA caem
i HTOP_WIOTH
C_,_T*# BOTTOM_WIOTH]
K-
WOTH
=3 e HY_TOP
5 —
SOTTON. W - --)TOP _WIDTH
-1
BOTTOM_WIDTH
TOP_WIOTH
[2
——) v mse | v_voe

Appendix B

TOP_WIDTH
— e
TOP_WIDTH
— - Y_TJOP
p——y ==l

12-16. Inputs and outputs of procedures Base, Shafl, and Capital

517

Synthetic Tutor

Module 149: 12.3 Syntax

12.
HIERARCHICAL STRUCTURE

12.2.2 THE SYNTAX OF A COMPOSITION

In general, the formal parameters of a procedure to draw a graphic element or a subsystem define the interface
between that element or subsystem and the rest of the composition. The spatial relations of instances of this element
or subsystem with other parts of a composition can be defined only in terms of these parameters. Values passed in to
the procedure, to specify an instance, establish the spatial relations of that instance to existing parts of the
composition, and values passed out provide information that will be needed, later, to add instances of other elements
or subsystems in the required spatial relations. Arithmetic expressions and assignments relating the values passed
into procedures establish spatial relations (for example, of relative size, of spacing, of alignment, or of coincidence)
between the resulting instances. The syntax of a composition is defined in this way. Here, now, is a complete
program to read in values for the design variables and draw a column (fig. 12-17):

[samples code on the right side]

Notice how the Python principle of declaring something before it can be used is followed here. Specifically,
procedures must be declared before they are invoked. Where procedures are invoked from within other procedures,
this means that the invoked procedure must appear, in the text of the program, before the procedure that does the
invoking.

Notice also that procedure Column has three variable parameters: the position variables (x, y) and the radius of a
column. These are necessary if the column is to be placed in a more complex composition.

Y~

=

12-17. A column drawn by the procedure
Column.

518

CODE RESULT
import rhinoscriptsyntax as rs

def

def

dof

dof

base(x, y, top_width):
bottom width = top_width * 1.5
height = top_width * 0.3

x1 = x - (bottom_width / 2)
%2 = x1 + bottom width

x3) = x - (top_width / 2)
x4 = x3 + top width

¥yl = y + height * 0.8

y_tep = y + height

po = [xl, y, O]
pl = [x2, y, 0]
P2 = [x2, yl, 0]

pI = x4, y_top, 0]
pé = [x3, y_top, 0]
pS = [x1, yl, 0)
pé = [x1, y, 0)
p7 = [x1, yi, 0]
p8 = [x2, y1, 0]

pts = [p0, pl, P2, p3, pé, PS5, PE, P7., pB]
rs.AddPolyline(pts)

retura y_top

shaft(x, y, bottom_width):
top_width = bottom _width * 0.6
height = bottom_width * &
y_top = ¥ + height

%]l = x - (bottem width / 2)

%2 = x1 + bottom width
%3 = x - (top_width / 2)
x4 = x3 + top_width

PO = [x1, y, 0]

pl = [x3, y_top, 0]

P2 = [x4, y_top, 0]
P = [x2, ¥y, 0]

pts = [p0, pl, P2, P3|
rs.AddPolyline(pts)

return y_top, top_width
capital(x, y, bottom width):

top_width = bottom _width * 2.0
height = bottom width *# 0.7

x1 = x - (bottom_width / 2)
%2 = x1 + bottom width

x) = x - (vop_width / 2)
x4 = x3 + top_width

y_top = y + height

po = [x1, y, 0]

pl = [x2, y, 0]

P2 = [x4, y_top, 0]

P = [x3, y_top, 0]

pé4 = [x1, ¥y, 0]

pta = [p0, pl, p2, p3, pi]
s .AddPolyline (pta)
column(x, y, diameter):

top_shaft = 100

y_base = base(x, y, diameter)

y_shaft, top_shaft - shaft(x, y_base, diameter)
capital(x, y_shaft, top_shaft)

column(x, y, diameter):

top_shaft = 100

y_base = base(x, y, diameter)

y_shaft, top_shaft = ghaft(x, y base, dianeter)
capital(x, y_shaft, top_shaft)

main():

x = ra.GetReal('enter x coordinates of base’, 0)

y = re.GetReal('enter y coordinates of base’, 0)
diameter = rs.CeotReal('enter column diameter', 100)
column(x, y, diameter)

main()

Appendix B

519

Synthetic Tutor

Module 150: 12.2 Procedure

12.
HIERARCHICAL STRUCTURE

12.2.3 DECLARATION OF PROCEDURES WITHIN PROCEDURES
Here is another way to structure our Column procedure:

def base():
def shaft():
def capital():

def column():
base()
shaft()
capital()

The difference here is that the procedures Base, Shaft, and Capital are declared within the procedure Column. The
effect, as when a variable is declared within a procedure, is to make them local to that procedure.

When should you declare graphic procedures locally, and when should you declare them globally? It depends on the
specialization of the graphic element. A shaft, for example, might never appear in a composition except as part of a
column. It is more expressive of the nature of this element, then, to declare procedure Shaft within procedure
Column. But an arc might appear in a composition in many different contexts as part of several different types of
arches in an elevation, for example. So it makes sense to declare procedure Arc globally, so it is accessible from the
different procedures that draw the various types of arches.

520

Appendix B

Module 151: 12.3 hierarchy

12.
HIERARCHICAL STRUCTURE

12.3 HIERARCHIES OF SUBSYSTEMS

Figure 12-18a illustrates a composition of two columns supporting a lintel. Each column can be thought of as a
subsystem of the composition, and these subsystems have a particular spatial relationship to each other. They are of
the same dimensions, and their bases are aligned along the same horizontal line. We might reasonably take the
distance between the columns to be a parameter of the relationship. The next procedure, then, invokes procedure
Column twice to generate a pair of columns in the appropriate relationship (fig. 12-18b):

[samples code on the right side]

We can now go a step further and think of the whole composition as two subsystems, a pair of columns and a lintel
related in a particular way. The lintel sits on top of the columns. Let us take the span of the lintel as a parameter and
assume that depth is always one-eighth of the span (fig. 12. 18c). A procedure to draw lintels of this type may be
written:

[samples code on the right side]

Assuming the overhang of the lintel at either end is half the width of a column top, the complete composition can he
generated by a procedure that invokes Column_pair and Lintel as follows:

[samples code on the right side]

Notice that the heights of the columns and the widths of the tops, which are required to position the lintel correctly,
are communicated from the Column procedure through the Column_pair procedure to Frame, which can then pass
the values of these variables on to the Lintel procedure.

This procedure expresses rules for composing frames, using a particular vocabulary of architectural elements and a
particular syntax. A designer using Frame has only to choose values for two shape variables, Diameter and Spacing,
and the rules take care of everything else. The procedure Base produces a correctly proportioned base. Shaft fits a
shaft correctly on top and chooses a proper height. Capital adds a correctly proportioned capital. Column_pair
produces identical left and right columns, on a common baseline, the specified distance apart. Lintel generates a
lintel of the required length and proportion. Finally, Frame places the lintel symmetrically on top of the columns.

A frame of this kind, governed by specific proportioning rules, is traditionally known as an architectural order.

Figure 12-19 illustrates the proportions (as specified by Vignola) of the Tuscan, Doric, Ionic, and Corinthian orders.
The procedure Frame can be modified to produce any one of these simply by altering the arithmetic expressions that
define proportions. We could also substitute procedures to draw more specialized types of capitals, shafts, and so on.

The hierarchy of elements and subsystems that we have now developed is illustrated by the tree diagram in figure

12-20. Each vertex corresponds to a procedure that defines a spatial relationship between lower-level subsystems or
elements.

521

. The Cokumn_pair subsysiem.

Synthetic Tutor

€. The Linisl subsystem.
7 T
|
/!
by Vigaoha
\
ltf ‘I‘\\

12-18. A system of two columns sup-
N L

porting a lintel

‘]_" :i;

‘ i

il

M

wariety of
an

522

CODE RESULT
import rhinoscripteyntax as rs

def

dof

base(x, y, top_width):
bottom width = top_width * 1.5
height = top_width * 0.3

x1 = x - (bottom width / 2)
%2 = x1 4 bottom width

x3 = x - (top_width / 2)
x4 = x3 + top_width

¥yl = y + height * 0.8

y_top = y 4 height

p0 = [x1, y, 0]
Pl = [%2, y, 0]

p2 = [x2, yi, 0]

P3 = x4, y_top, 0]

pé = [x3, y_top, 0]

ps = [x1, yl, 0)

pé = [x1, y, 0]

p7 = [x1, yl, 0]

pé = (x2, y1, 0]

pts = [p0, pl, p2, p3, P4, PS5, P§, P7, PB]
re.hddPolyline(pts)

return y_top

shaft(x, y, bottom_width):
top_width = bottom _width * 0.6
height = bottom width * €
y_top = y 4 height

x1 » x - (bottom width / 2)
x1 + bottom width

x - (top_width / 2)

x3 + top_width

&

[xl, y. 0]

[x3, y_tep, 0]
y_top, 0]
[x2, y. 0]

pts = [p0, pl, p2. P3]
re.AddPolyline(pts)

1
i

roturn y_top, top_width

capital(x, y, bottom _width):
top_width = bottom width * 2.0
height = bottom_width * 0.7

x1 = x - (bottom_width / 2)
x2 = x1 + bottom_width

x3 = x - (top_width / 2)
xé = x3 + top_width

y_top = y 4 helght

po = [xl, y. 0]

pl = [x2, y. 0]

p2 = [x4, y_top, 0]

p3 = [x3, y_top, 0]

pé = [x1, y. 0]

pts = [p0, pl, p2, pl, pd)
rs.AddPolyline(pts)
column(x, y, diameter):

y_base = base(x, y, diameter)
y_shaft, top_shaft = shaft(x, y_base, diameter)
capital(x, y_shaft, top_shaft)

column_pair(x, y, diameter, spacing):
bottom _x = x - (spacing / 2)
bottom y = ¥y

column(bottom_x, bottom_y, diameter)
bottom_x = bottom_x + spacin
column(bottom_x, bottom y, diameter)

column_pair(0, 0, 30, 100)

Appendix B

523

Synthetic Tutor

=

1 Tra ure ey

IR0 A syt of ben pobunme sup
pariag ¢ el

A B ET AN

& Yo N .- o
B Keangion of s et 5 sy of gt w1 qhed by Viguda

Il

e
LA
@,
I
o,
&,
@,
=
2
<% o
a8 A

SSBIXA

524

Appendix B

Module 152: 12.3 Structure

12.
HIERARCHICAL STRUCTURE

12.3.1 STRUCTURE AND MEANING

The way that we parse a graphic composition into elements and subsystems determines the meaning of the
composition just as the way that we parse a sentence determines its meaning. Individual vectors carry little specific
meaning. When vectors are spatially related in particular ways, though, we can interpret them as components of
bases, shafts, capitals, and lintels, and we express those interpretations in the names given to procedures: Base,
Shaft, Capital, Lintel. When base, shaft, and capital are stacked coaxially, we can interpret the result as a column.
When columns are paired, we can interpret the result as a subsystem capable of supporting a lintel. When the lintel
is added in the correct relation, we recognize that we have a frame. In other words, the hierarchy of elements and
subsystems determines the way that the meaning of the complete composition is built up from the meanings of its
parts, just as the hierarchy of phrases determines the way that the meaning of a sentence is built up from the
meanings of words. Procedures define the vocabulary of a graphic language, the hierarchy and interfacing of
procedures defines its syntax, and the names given to procedures begin to define its semantics.

525

Synthetic Tutor

Module 153: 12.3 Block

12.
HIERARCHICAL STRUCTURE

12.3.2 BLOCK STRUCTURE

The principles of program organization that we have introduced in this chapter may now be summarized and
generalized by describing the general rules of block structure in Python. A Python program is a collection of
segments called blocks. The program as a whole is a block. Each procedure is a block, and each function is a block.
A block has a heading, so it can be identified by name. Within each block (following the heading) constants and
types may be defined then variables, procedures, and functions may be declared, and finally, program actions may
be specified.

Since functions and procedures may be declared within any block, it follows that blocks may be nested within
blocks. That is, procedures may be declared within procedures, functions within functions, procedures within
functions, and functions within procedures.

A definition or declaration is local to the block in which it is declared. In other words, the names of constants, types,
variables, procedures, and functions have significance only within the blocks in which they are declared. The scope
of significance of a definition or declaration is from its first appearance to the end of the block.

Communication between blocks is strictly disciplined. The parameter list of a block defines the connections between
a block (procedure or function) and its environment. Different kinds of parameters establish different kinds of
connections. Value parameters allow values to be passed in, and variable parameters allow results to be passed out.

Where a variable is declared in a block before the function and procedure declarations in that block, it is global
relative to those functions and procedures. This means that its value is accessible to these functions and procedures,
and that execution of one of these functions or procedures may modify its value. Such a modification is called a side
effect of execution. Side effects generally make a program difficult to understand, can propagate errors, and tend to
make debugging difficult. It is therefore best to avoid the global declaration of variables except where absolutely
necessary. Communication via parameter lists, on the other hand, keeps interfaces well defined.

To illustrate these principles, let us consider a program to draw classical temple plans of the type shown in figure
12-21a. The element and subsystem hierarchy that we shall adopt is shown in figure 12-21b. The basic vocabulary
elements are Circle and Rectangle. A Column is composed of a Circle and a Rectangle. A Column_grid is composed
of Columns. A Plinth is composed of Rectangles. The Celia consists of two Rectangles. The Temple consists of a
Plinth, a Column_grid, and a Celia, all concentrically related.

Here is the complete code of the program:

[samples code on the right side]

Some examples of output from this program for different values of the design variables are illustrated in figure 12-
22

526

Appendix B

Twuvow
lboocococooobooooecsoe
b oo coq
boao ood
° oo
beoa on

" UUooOoOOCOOUOOCOoORORBREDSG
Dopopoooonecsosnonad

&. Type diagram.

PUNTH G'Iw CELLA
COLUMN
RECT, CIRCLE
b. Hierarchy of elements and subsystems.

1221, A classical temple plan.

-
spoRDODODDE
1]

L

esvscoORDOeREDE
e me—

(s
encssODEOORODE
> BB

12-22. Instances of classical temple plans.

527

Synthetic Tutor

CODE

import rhinoscriptsyntax as rs

def rectangle(x, y, length, width})s
%l = x - (length / 2)

528

b 2%
=2
y2

y - (width / 2)
x1 + length
yl + width

[x1, yl, 0]
[x2, y1, 0]
(x2, y2, 0]
(%1, y2, 0]
(x1, yi, 0]

pts = [p0, pl, P2, P3, p4]
ra.AddPolyline(pts)

circle(x, y, radius):
center = [x, ¥, 0]
re8.AddCirele(center, radius)

column(x, y, diameter):
rectangle(x, y, diameter, diameter)
circle(x, y, diameter/2)

plinth(x, y, length, width, steps, step_size):
repeat = range(steps)
for count in repeat:

rectangle(x, y, length, width)
length = length + step_size
width « width ¢+ step_size

cella(x, ¥, length, diameter, width):
rectangle(x, y, length, diameter)

y = y + width

rectangle{x, y, length, diameter)

outside(count_x, count_y,

x_start, x_finish,
y_start, y_finish):

condl = gount_x < x_start

cond2 = count_x > x_finish

cond3 = count y < y_start

condd = count_y > y_finish

outside = condl or cond2 or condl or condé
return outside

grid(x_initial, y_initial, spacing, diameter,

nx, ny, x_start, x_finish, y_start, y finish,

steps, step_size):

repeat_ny - range(ny)
repeat_nx = range(nx)

y = y_initial

for count_y imn repeat_ny:

x = x_initial
for count_x im repeat_nx:
isoutside = ocutside(count_x, count y,
x_start, x_finish,
y_start, y_finish)
if isOutaide:
column(x,y,diameter)
x = x + gppacing
y = y + spacing

RESULT

TU U T UV VU U U T U U U T TUY
PopooouopooeeCcoODUDOBUq
PopoooeoEEE0O000DPO0AOCG
hoooc o od
B oo a o9
poo o og
I I —— — oo
hoonnonooppoecponnooonaod
boooooocoomoccobbDDODOOG
annonnoaannnnnonoo

Appendix B

def draw_temple():
x = ra.CetReal('enter x coordinate', 0)
y = re.CetReal('enter y coordinate', 0)
diameter = re.0etReal('enter column diameter', 300)
spacing = rs.CetReal('cnter column spacing', 1000)
ax = re.CetInteger{'enter numbor of columns in x.", 20)
ny = re.CetInteger('ecnter number of columns in y.', 10)
x_start = ra.GetInteger('ecnter x start number’, 3)
x_Einish = rs.CetInteger(’'enter x finish number', 16)
y_start = rs.Cetlnteger('cnter y start number’, 3)
y_£inish = rs.CetInteger('cnticr y finish number', 6)
steps = rs.CetInteger('cnter number of steps’, §)
stop_size = ra.CetInteger('cnter width of step', 1000)

temple(x, y, spacing, diameter,
nx, ny,

x_start, x_finish, y_start, y_finish,
steps, step_size)

draw_temple()

529

Synthetic Tutor

Module 154: 12.4 Recursion

12.
HIERARCHICAL STRUCTURE

12.4 RECURSION

There is an important special case of invocation of procedures from within procedures that we have not yet
considered. In Python, a procedure may invoke itself. This is called recursion.

Let us begin by considering a very simple example. The following program draws patterns of concentric squares
(fig. 12-23a).

[samples code on the right side]
Notice how the procedure Nested square invokes itself.

A recursive graphic procedure, such as Nested_square, is best understood in terms of its initial shape, its
construction rule, and its limit. In our example, the initial shape is a square centered at 512,512, of side length 512,
as specified by the actual parameters passed into Nested square (12-23b). The construction rule is to place a square
of half its predecessor-s size concentrically within its predecessor (fig. 12-23c). This spatial relationship is
expressed, within Nested_square, by the statement:

SIDE = SIDE /2

The limit tells when to stop applying the construction rule. In this case the limit is specified in the code of
Nested_square by the Boolean expression:

SIDE > 4

What actually happens when the recursive procedure Nested_square executes? Let us trace the execution step by
step. When Nested_square is first invoked, Side has the initial value of 512, and the initial shape is drawn.

The construction rule is then applied, so the value of Side becomes 256. Since this is greater than 4 (the limit),
Nested_square invokes itself. The second invocation of Nested_square draws a square with Side of 256, then applies
the construction rule to reduce Side to 128, tests against the limit, and invokes Nested_square. This process
continues, as follows:

Invocation From Value
Number of Side
1 Nest 512
2 Nested_sqaure 1 256
3 Nested_sqaure 2 128
4 Nested_sqaure 3 64
5 Nested_sqaure 4 32
6 Nested_sqaure 5 16
7 Nested_sqaure 6 8

Finally, Nested_square is invoked with a value of 8 for Side. Application of the construction rule then reduces the
value of Side to 4, the limit is reached, and this seventh invocation ends. Control then passes back to the sixth
invocation, which ends, and so on, all the way back to the first invocation. This ends, and control passes back to
Nest.

Another non recursive way to generate the same composition of nested squares is to use a while loop:

530

Appendix B

def nested_sqaure (x, y, side):
while (side > 4):
square(x, v, side)
side = side / 2

The program usmg recursion and the program using the while loop are both clear and concise. There are, however,
many situations in which use of recursion provides the clearest, shortest, and most natural way to express the logic
of a graphic composition.

b. The initial shape.

¢. The construction rule.

12-23. A recursively constructed pattern
of concentric squares.

531

Synthetic Tutor

CODE RESULT
impert rhinoscriptsyntax as rs

def square{ x, ¥y, length):
xl = x - (length / 2)

¥yl = y - (length / 2)
x2 = x1 + length
y2 = yl + length
ptl = (x1, yl, 0]
pt2 = [x2, yl, 0]
ptd = [(x2, y2, 0]
ptd = [x1, y2, 0)

re.AddLine(ptl, pt2)
rs.AddLine(pt2, ptl)
ro.AddLine(pt3, ptd)
ra.AddLine(ptd, ptl)

def nested_square(x, y, side):
square(x, y, side)
side = side / 2
if (pide > 4):
nested_square(x, y, side)

nested_square(512,512,512)

algorithm?

532

Appendix B

Module 155: 12.4 Tree 1

12.
HIERARCHICAL STRUCTURE

12.4.1 TREES

Generally, you should consider use of recursion when you can see that a complex composition can be generated by
the application of a simple construction rule to some initial shape. Look at the branching tree shown in figure 12-24,
for example. The initial shape is a V-shaped pair of branches. The construction rule is simply to add a V-shaped pair
of branches to each preceding branch. Thus branches divide and grow at their tips, much as real trees grow. Here is a
simple recursive procedure to generate trees in this way:

[samples code on the right side]

533

Synthetic Tutor

CODE

import rhinoscriptsyntax as rs
import math

def bramch(x, ¥y, length, start_angle,

radians = 0.01745

thetal = start_angle - ang
xl = x + length * math.cos(thetal
yl = y + length * math.sin(thetal

theta? = start_angle 4 ang
%2 = x + length * math.cos(theta2
y2 = y + length * math.sin({theta2

p0 = [x1, yl, 0]
pl = [x., ¥, 0]
p2 = [x2, y2, 0]

rs.AddLine(pl, p0)
rs.AddLine(pl, p2)

length = length * ratio
if (length > min):
start_left = start_angle - ang

branch(xl, yl, length, start_l

start_right = start_angle + an
branch(x2, y2, length, start_r

branch{0,0, 100, 90, 15, 1, 0.6)

534

ang, min, ratio):

+ radians)
* radians)

+ radians)
4 radians)

eft, ang, min, ratio)

g
ight, ang, min, ratio)

RESULT

Appendix B

Module 156: 12.4 Tree 2

12.
HIERARCHICAL STRUCTURE

12.4.1 TREES

The design variables here are Length of the initial branches, Angle of the V, Ratio of a branch's length to its
predecessor's length, and Minimum size for a branch (to establish the limit). By entering different values for these
design variables, you can generate a very wide variety of trees. The trees generated by this procedure are too regular
to look entirely natural. This can be remedied to some extent by allowing the lengths and angles of the two sides of a
V to vary independently (fig. 12-25). Here is the corresponding modified procedure:

[samples code on the right side]

Figure 12-26 shows some typical results for different values of the parameters.

12-25. The independent variation of 12-26. Instances of recursively constructed
branch lengths and angles. asymmetrical trees,

535

Synthetic Tutor

CODE RESULT

impert rhinoscriptsyntax as rs
impert math

def branch(x, y, lengl, leng2, start_angle, ang, min, zat):
radians = 0.01745

thetal = start_angle - ang
x1 = x + lengl * math.coa(thetal ¢ radians)
¥l = y + lengl * math.sin(thetal ¢ radians)
thetaz = start_angle + ang
%2 = x + leng2? * math.cos(theta2 * radians)
y2 = y + leng2 * math.sin(theta? * radians)

p0 = [x1, yl, 0]
pl = [x, ¥. 0]
P2 = [x2, y2, 0]

rs.AddLine(pl, p0)
rs.AddLine{pl, p2)

lengl = lengl * rat
leng2 = leng2 * rat

if (lengl > min) and (leng2 > min):
start_l -~ start_angle - ang
branch(xl, yl, lengl, leng2, start_l, ang, min, rat)

start_r =~ start_angle + ang
branch(x2, y2, lengl, leng2, start_r, ang, min, rat)

branch(0,0, 80, 100, 90, 15, 1, 0.6)

wwewyoutube.com s now full screen.

Indapendent variation of 1338, Instances of recursieely comtracted
and wagles aymmetrical trees.

536

Appendix B

Module 157: 12.4 Tree 3

12.
HIERARCHICAL STRUCTURE

12.4.1 TREES

A further improvement can be made by allowing random choice (within limits) of lengths and angles for branches.
We can use the random number generator that was introduced in chapter 11:

[samples code on the right side]

Each time that Branch is invoked, Lengthl, Anglel, Length2, and Angle2 have different, randomly chosen, values.
Pascal automatically keeps track of these values. In a non-recursive version you would have to declare variables to
record them. Branching terminates when a value for Length1 or for Length2 that is less than or equal to the specified
minimum is generated. Figure 12-27 shows some results.

12-27. Trees generated by a recursive pro-
cedure incorporating a random number
generator.

537

Synthetic Tutor

CODE

import rhinoscriptsyntax as rs
import math
import random

def branch(x, y, min_length, max_length,
start_angle, min_angle, max angle,
minimum, ratie):

radians = 0.01745
min_length = int(min_length)
max_length = int(max_length)

lengthl = random.randrange(min_length, max length)
length2 = random.randrange(min_length, max_length)

min_angle = int(min_angle)
max_angle = int{max_angle)

anglel = random.randrange(nin_angle, max_angle)
angle? = random.randrange(min_angle, max angle)

thetal = start_angle - anglel
x1 = x + lengthl * math.cos(thetal * radians)
¥yl = y + lengthl * math.sin(thetal * radians)

theta2 = start_angle + angle2
x2 = x + length? * math.cos(theta2 * radians)
y2 = y + length2 * math.sin(theta2 * radians)

p0 = [x1, yil, 0]
pl = [x, ¥, 0]

P2 - [x2, y2, 0]
rs.AddLine(pl, p0)
rs.AddLine(pl, p2)

min_length = min_length * ratio
max_length = max_length ¢ ratio

if (min_length > minimum)

start_left = start_angle - anglel

branch(xl, yl, min_length, max_length,
start_angle, min_angle, max_angle,
minimum, ratio)

start_right = start_angle + angle?

branch(x2, y2, min_length, max_length,
start_angle, min_angle, max_angle,
minimum, ratio)

branch(0,0, €0, 100, 95, 5, 40, 1, 0.7)

538

RESULT

Appendix B

539

Synthetic Tutor

Module 158: 12.4 Subdivision

12
HIERARCHICAL STRUCTURE

12.4.2 RECURSIVE SUBDIVISION

Figure 12-28 introduces another type of composition that can be generated by means of a recursive procedure. It is a
slightly simplified plan of the famous garden of the Taj Mahal (as it existed originally). This type of plan is
produced by recursively subdividing a square into four squares by paths in the form of a +. Here is a procedure to
generate such plans:

[samples code on the right side]

Here the design variables are Diameter of the outer square, Width of the initial path, Ratio of a path's width to that of
its predecessor, and Minimum size for a square. Figure 12-29 shows a few of the possible outputs.

Notice the very close similarity in organization of the procedures that generate the tree and Taj Mahal garden.
Although the types of objects that they generate look very different, the underlying constructive logic is much the
same.

iy g g—
| S g N | T—

12-28. A schematic plan of the garden
the Taj Mahal, Agra.

540

Appendix B

CODE RESULT
import rhinoscripteyntax as rs

def divide(x_center, y_center, diameter, width, min, ratio):

half_diameter = diameter / 2
half_width = width / 2

x1 = x_center - half diameter
%2 = x_center - half_width
%) = x_center + half width
x4 = x_center + half diamoter
yl = y_center - half diameter
¥2 = y_center - half_width
¥y3 = y_center + half width
yé = y_center 4 half diameter
po = [x1, y3, 0)

pl = [x2, y3, 0}

p2 = [x2, y4, 0]

p3 = [x3, y4, 0]

pé = [x3, y3, 0]

p5 = [x4, y3, 0}

p6 = [x4, y2, 0]

p? = [x3, y2, 0)

P8 = [x3, yl, 0]

P9 = [x2, y1, 0]

pl0 = [x2, y2, 0]

pll = [x1, y2, O}

p12 = [x1, ¥3, 0]

pts = [p0,pl,p2,p3,pd,p5,p6,p7,p8,p9,p10,p11,p12)
rs.AddPolyline(pts)

if (half_diameter > min):
new_diameter = half_diameter - half_width

d4 = (half_diameter - half_width) / 2

x1 = x_center - d4 = half_width
x2 = x_center + dd + half width
yl = y_ecenter + di + half_width
¥2 = y_center - dé - half_width

width = width * ratio
divide(xl, yl, new_diameter, width, min, ratio)
divide(x2, yl, now_diameter, width, min, ratio)

divide(xl, y2, new_diameter, width, min, ratio)
divide(x2, y2, new_diameter, width, min, zatic)

divide(0,0, 100,10,1,0.5)

541

Synthetic Tutor

12-29. Rocursively generated garden plans

of the Taj Mahal type.

12-28. A schematic plan of the garden of

542

Appendix B

Module 159: 12.5 Alternative

12.
HIERARCHICAL STRUCTURE

12.5 ALTERNATIVE STRUCTURES

So far in our examples we have chosen obvious and natural ways to break drawings down into hierarchies of
elements and subsystems. But it is important to remember that there are always alternative ways to define this
hierarchy, and that different spatial relations of elements and subsystems may be taken to be the essential ones.
Consider the plan party shown in figure 12-30. We might reasonably interpret the central part as - a circle nested
within a square - there are two elements, and the essential relationship between them is of concentricity and equality
of diameter. The design variables become the X and Y coordinates of the center point and Diameter.

Another way to parse this composition is shown in figure 12-31. Now there are two different subsystems, each
consisting of two elements, and the design variables are X, Y, Top_width, Top_height, Bottom_width,
Bottom_height, Arc_diameter, and Arc_spacing we can generate variants such as those illustrated in figure 12-32.

Some English sentences may also be parsed in alternative ways, and each alternative yields a different interpretation.
A famous example is:

Time flies like an arrow.

It seems most natural to take "flies" as the verb, but you can also take "like" as the verb, to yield a sentence
describing the dietary preferences of "time flies", or you can take "time" as the verb, to yield an imperative.
Similarly, in graphic compositions, parsing in different ways yields different interpretations. Since even simple
graphic compositions can be parsed in alternative ways, the semantic properties of graphic languages are rich and
complex. By committing ourselves to a particular hierarchy of elements and subsystems, expressed as a hierarchy of
named procedures, we radically simplify and clarify the semantics.

543

Synthetic Tutor

Module 160: Exercise 8

12.

HIERARCHICAL STRUCTURE

EXERCISES

1. All of the elements and subsystems of the Doric order have names (fig. 12-33). Draw a tree diagram that depicts

this hierarchy. Then write a program, structured in the same way, that generates the order. (Simplify the details
where necessary to reduce the task to manageable proportions.)

Deric Order

Styobate

12-33. Well-defined hi hy
names—in the Doric order.

2. The elements and subsystems of traditional Chinese timber construction also have standard names (fig. 12-34).
Draw the corresponding tree diagram write a program that expresses this structure to generate a drawing of the
section of such a building. Take advantage of the recursive pattern of the bracket system. (Once again, simplify the
details as necessary.)

544

Appendix B

.#Fll‘h-—\

CEAABRS

12-34. Named elements and subsystems in traditional Chinese timber construction.

3. An example of gothic tracery, as drawn by Eugene Viollet-le-Duc, is illustrated in figure 12-35. Work out a
reasonable way to break this design down into a hicrarchy of elements and subsystems, and draw the tree diagram.
Write a program, structured in this way, that generates a single-line diagram of the design. Then, if you want to go
further, elaborate it to show the thickness and detailing of the tracery members.

4. The French architectural theorist Jean Nicholas-Louis Durand produced many beautiful plates demonstrating how
architectural compositions could be understood as -combinations- built up from lower-level vocabulary elements.
Figure 12-36 shows an example. Select one of Durand's combinations for careful analysis. What are the parts and
subparts? What are the essential spatial relations? What are the design variables? On the basis of your analysis, write
a program that generates an interesting series of variants on this architectural theme. Use a top-down programming
strategy that parallels the sequence of refinement steps by Durand.

545

Synthetic Tutor

1236, The ombeation of vorshulary elementy, a5 llistrated by Darnd

Please upload your python file: [_Choose File] No file chosen Submit

5. Another of Durand's plates is shown in figure 12-37. This one shows a set of plan paths -skeletons- of axes and
simple geometric figures that are used to establish the essential spatial relations in a plan. Select one of these paths
and, using a simple vocabulary of wall and column elements, write a program that generates variant plans based on

[0

]

—

i i m

1T HHH
HE[+HE
e miE)

(ARER =N =)
i oo

g

. Plan partis, as illustrated by Durand.

Please upload your python file: No file chosen { Submit |

546

Appendix B

6. Figure 12-38 illustrates a tree drawn in plan. Write a recursive procedure that generates trees of this type. Make
the depth of the recursion (the number of levels of branching) one of the design variables.

Please upload your python file: [Choose File_| No file chasen Submit

7. Gothic tracery is often recursive (fig. 12-39). That is, a large pointed arch is subdivided into two smaller pointed
arches, each of which is further subdivided in the same way, and so on. Write a recursive procedure to generate such
tracery designs.

12-39. Cothic window tracery.

Please upload your python file: [Choose File | No file chosen [_submit

8. We have seen how principles of architectural and graphic composition can be expressed in terms of the control
constructs of Python: block structure, conditionals, repetition, and recursion. An alternative approach is to express
rules of composition as productions organized in a production system (Stiny 1980). Compare the advantages and

547

Synthetic Tutor

disadvantages of the two approaches.

Piease upload your python file: {_Choosa File | No file chosen | Submit |

548

Appendix B

Module 161: 12.5 Top Down

12.
HIERARCHICAL STRUCTURE

12.5.1 TOP-DOWN PROGRAMMING

When you write a program to generate a complex composition of elements and subsystems, it is usually best to work
top-down. Begin with a procedure that puts together the whole thing from two or more major subsystems. Within
this top-level procedure, define the names of the major subsystems, their parameters, and their spatial relations.
Write very schematic, - dummy - versions of the procedures to generate these major subsystems (draw them just as
rectangles, for example), and make sure that this version of your program runs correctly.

Next, write fully developed versions of the procedures to generate the major subsystems. Within these, define the
names and parameters of the lower-level subsystems from which they are composed, and establish the spatial
relations of the lower-level subsystems. Using - dummy - versions of the procedures for the lower-level subsystems,
check that this elaborated version of your program works correctly. Now repeat the process for the lower-level
subsystems, and so on through a sequence of increasingly refined versions of your program, until you reach the
procedures to draw the lowest level vocabulary elements.

This parallels the common design strategy of working down to the details from an initial, rough sketch of the whole.
1t has several important advantages. You always have a running program, and you can always see the whole com
position. Design variables are introduced one by one in a systematic way. And you can, at any point, choose not to
refine any further.

549

Synthetic Tutor

Module 162: 12.6 Summary

12.
HIERARCHICAL STRUCTURE

12.6 SUMMARY

In this chapter we have explored the ways in which graphic compositions can usefully be broken down into
hierarchies of elements and subsystems. We have seen how such hierarchies are expressed directly in the block
structures established by procedure declarations in graphics programs. The value parameters of procedures allow
position and shape information to be passed in to blocks, and the variable parameters allow position and shape
information to be passed out. This information is used to relate elements and subsystems correctly to each other the
spatial relations of the elements and subsystems of a composition are specified by means of arithmetic expressions
and assignments relating the values of parameters.

550

Appendix B

Module 163: 14.1 Transform

14.
TRANSFORMATIONS.

A transformation carries an object from one state to another. For example, you can transform a polygon from the
unshaded to the shaded state (fig. 14- 1a). (We discussed a procedure to do this in the last chapter.) Or you can
transform its edges from solid to dashed (fig. 14-1b). You might transform its position by translating or rotating it
(fig. 14-1c), or its size by scaling it (fig. 14-1d). Yet again, you might transform its shape by distorting it in some
way (fig. 14-1¢).

In this chapter we shall see how to write Python programs that transform drawings by translating, rotating,
reflecting, and scaling them within coordinate systems. Such programs work by transforming a graphic data
structure from an initial state that represents the initial state of the drawing to a new state that represents the new
state of the drawing.

14.1 GEOMETRIC TRANSFORMATIONS OF A POINT

Let us begin by considering a single point with coordinates (X, Y) in some coordinate system (fig. 14-2a).
Translation of this point through a distance Tx parallel to the X axis (fig. 14-2b) is represented by the assignment
Similarly, translation through a distance Ty parallel to the Y axis (fig. 14-2¢) is represented by

Y=Y+Tx

Since any translation can be resolved into a component Tx and a component Ty, a translation in general (fig. 14-2d)
is represented by the pair of assignments

Y=Y+Ty

The variables involved here (X, Y, Tx, and Ty) might either be integer or real. In general, it is most convenient to
perform transformation calculations upon real variables, then to round the results back to integer values for display

X=X+Tx
Y=Y+Ty

in a screen coordinate system. This will become increasingly evident as we go along.

Rotations can be represented in a similar way. A rotation of angle Theta clockwise about the origin of the coordinate
system (fig. 14-2¢) is represented

X =X * math.cos(theta) + Y * math.sin(theta)
Y = - X * math.sin(theta) + Y * math.cos(theta)

Scaling is represented by multiplication by a scale factor Scale_F (fig. 14-2f) as follows

X =X * SCALE_F
Y =Y * SCALE_F

If Scale_F is an integer variable, you can enlarge by any integer factor. If Scale_F is a real variable, you can enlarge
by some real factor, or you can reduce by using a factor between 0 and 1. If Scale_F has a value of 0, the point is
shifted to the origin of the coordinate system.

Unequal scaling (stretch) is represented by using two different scale factors as follows.

X=X *SCALE X

551

Synthetic Tutor

Y=Y *SCALE_Y

If Scale_F is an integer variable, you can enlarge by any integer factor. If Scale_F is a real variable you can enlarge
by some real factor or you can.

Transformation paramelers

- I e

14-5. A transformation procedure.

552

CODE RESULT
import rhinoscriptsyntax as rs

point = (10,0,0]
pt_id = rs.hddPoint(point)

def translationX{obj,tx):
translation = (tx,0,0]
obj = rs.MoveObject(obj,translation)
retura obj

translationX(pt_id,10)

def translationY(obj,ty):
translation = [O,ty,0]
obj = rs.MoveObject(obj,translation)
rotura obj

translation¥(pt_id, 10)

def translatiea(obj,tx,ty):
translation = [tx,ty,0)
obj = rs.MoveObject(obj,translation)
retura obj

translatioa(pt_id,10,10)

dof rotation(obj,angle):
center=(0,0,0]
re.RotateObject(obj,center,angle)

rotation(pt_id, 60)

def scaling(obj,scale_factor):
origin~[0,0,0]
scale = [scale_factor,scale_factor,1]
rs.ScaleCbject (obj,origin,scale)

scaling(pt_id,0.5)

def unequal_Scaling(obj,scale_x,scale_y):
erigin=[0,0,0)
scale = [scale_x,scale_y,1]
re.ScaleObject(obj,origin,scale)

unequal_Scaling(pt_id,0.4,0.2)

Appendix B

553

Synthetic Tutor

[CPras o e Corvt oote Surtains Touke

Y 1 e e Dl s
DERSTXD0~E + 20 2CH= 7008

+ { Dotmggmp=0n | Dwiuagny 8

» {0 it
[N Ones_FOLCERTE) RESEARCIO0T THE 307 0w ule T dionaryt 1000 whf o urd
i

Vi powd.
Fowd o (V) B &

{ e i Dy T

Ds-@0E 2 b->- 504

1 : | 5400wt st oy |
o B rrcenerre I :

i oot
- Wrwe

7
Al AL LRSS IIE

SHIXNI P LY

&

B A vaer parstel & Ve ¥ gea

T
-

Ly

O .

<

|
!

1 ERCRIES S
-1
F '

ox
B

& A Darsteion puied b6 e ¥ e @ A e § Y g

S BOAE LY BCAR N

554

Appendix B

Module 164: 14.2 Data Structure

14.
TRANSFORMATIONS.

14.2 TRANSFORMATIONS ON GRAPHIC DATA STRUCTURES

A geometric transformation applied to a drawing transforms every point(X, Y) in the original drawing to some new
point (New_X, New_Y) in the transformed drawing. So it might seem that we would have to operate on every point
in our screen coordinate system in order to transform a drawing. This, fortunately, is not the case. First, translation,
rotation, reflection, and scaling all transform straight lines into straight lines. Second, we represent straight lines by
their endpoints. So we have only to apply transformations to the endpoints of each line in a drawing, then draw lines
between the transformed endpoints in the usual way (fig. 14-3).

Consider, for example, the simple drawing shown in figure 14-4a. Using the technique that we discussed in the last
chapter, we might store it in a XY one-dimensional array.

The first field specifies whether a line is to be drawn, or whether an invisible movement is to be made this remains
unaffected by a transformation. The second and third fields specify an endpoint coordinate. Our purpose here,
though, is not to store a completed drawing in screen coordinates, but a state of a drawing that is to be transformed
to another state.

Since every endpoint must be operated on, we need a loop to step through the data structure. The following code, for
example, translates the drawing a distance of 500 in the X direction and 600 in the Y direction

[sample codes on the right side]

Figure 14-4c¢ shows the transformed state of the drawing, and figure 14-4d shows the transformed state of the data
structure.

555

Synthetic Tutor

CODE
import rhinoscriptsyntax as ra

def roctangle(x, y, length, width):
x1 = x = {length / 2)

¥yl = y = (width / 2)

x2 = x1 + length

-

y2 = yl + width
p0 = [x1, yl, 0]
pl = [x2, yl, 0]
p2 = [%2, y2, 0]

P = [x1, y2, 0]

pé = [x1, yl, 0)

pts = [p0, pl, P2, P3, pd]
rs.AddPolyline(pts)

def circle(x, y, radius):
center = [x, y, 0)
rs.AddCircle(center, radius)

def column(x, y, diameter):
rectangle(x, y, diameter, diameter)
circle(x, y, diametez/2)

def plinth(x, y, length, width, steps, step_size):
repeat = range(steps)
for count im repeats
rectangle(x, y, length, width)
length = length + step_size
width = width + step_size

daf cella(x, y, length, diameter, width):
rectangle(x, y, length, diameter)
¥y = y + width
rectangle(x, y, length, diameter)

def outsido(count_x, count y,
x_start, x_£inish,
y_start, y_finish):

condl = count_x < x_start

cond2 = count_x > x_finish

condl = count_y < y_start

condd = count_y > y_finish

outside = condl or cond2 er condl or condd
return outside

def grid(x_initial, y_initial, spacing, diameter,
nx, ny, x_start, x_finish, y_start, y_finish,
steps, step_size):

repeat_ny = range(ny)
repeat_nx = range(nx)
y = y_initial
for count_y im repeat_ny:
x = x_initial
for count_x in repeat_nx:
isOutslde = ocutside(count_x, count_y,
x_start, x_finish,
y_start, y_finish)
if isOutside:
column(x,y,diameter)
x = x + spacing
Yy = ¥ + spacing

def draw_templa():
= = ra.CetReal('enter x coordinate’, 0)
y = rs.CetReal('enter y coordinate’, 0)
diameter =~ rs.CetReal('enter column diamcter', 300)
spacing = re.CetReal('enter column spacing', 1000)
nx - re.CetInteger('cnter number of columns in x-direction', 20)
ny = rs.Cetlnteger{'entcr number of columns in y-direction’, 10)
x_start = rs.Getlnteger('enter x start number’, 3)
x_finish = rs.CetInteger('enter x finish number’, 16)
y_start = rs.CetlInteger('enter y start number’, 3)
y_finish = re.CetInteger(’enter y finish number', 6)
steps = rs.Cetlnteger('entor number of steps', §)
stop_size = rs.CetInteger(enter width of step', 1000)
temple(x, y, spacing, diameter,
nx, By,
x_start, x_£inish, y_start, y_finish,
steps, step_size)

draw_temple()

556

Appendix B

Module 165: 14.3 Procedure 1

14.

TRANSFORMATIONS.

14.3 TRANSFORMATION PROCEDURES

Just as we have used functions to name and perform certain kinds of coordinate calculations and procedures to name
and generate graphic vocabulary elements, it is a useful abstraction to use procedures to name and perform
geometric transformations. In general, a transformation procedure accepts as input a data structure representing a

drawing (such as Points: pts in the sample code), together with transformation parameters (such as Tx ,Ty ,Theta,
and Scale_F), and produces as output the transformed data structure. This process is diagramed in figure 14-5.

An invocation of a procedure to translate a drawing might look like this

TRANSLATE (POINTS, Tx, Ty)

557

Synthetic Tutor

CODE RESULT
import rhinoscripteyntax as rs

def translate(pts):

tx = 200

ty = 100

for point im pta: %
pt = rs.PointCoordinates(point)
x = pt[0] + tx
¥ = pt(l) + ty
ro.AddPoint([x,y,0)) .

p0 = rs.AddPoint([100,0,0])
pl = ra.AddPoint([120,20,0))
p2 = rs.AddPoint([30,60,0])
pte = [p0,pl,p2]
translate{pts)

Todet | CParen o o Sy Sl Yoo Vi Tk Cor To | S Toe 5 Tk M Tk Py Tk Orshng Mo 48
DeES0Xx00~0+ 202 TH=~ 2170090000 &40

ATIOOR S0) 4435 $W0 820 Mty
woas

B
import rhi :‘l'l;"'..:\)'ﬂri)(as ra

def tzanslate(points): & points is & Jiat
tx = 200
ty = 100
for point ia pointa:
print point
pt = ra.poinstCoordinates (point)
B~ pric]
y = ptil)
Ll
trans = 200,100,0
rs.Movedbject (point, trans)

p0 = rs.ASdroint([100,0,0))
pl = rs.AddPoint([120,20,0])
p2 = ra.Madreint([30,40,0))
points = po,pl,p2

R e T e Tt
L)
THhettrd -SEl1 - bV B ca M ibasind
W38

558

Appendix B

Module 166: 14.3 Procedure 2

14.
TRANSFORMATIONS.
14.3 TRANSFORMATION PROCEDURES

If the drawing is stored in a one-dimensional list (pts in the sample code), the procedure Translate will look
something like this

[sample codes on the right side]
Notice that Points(pts in the sample code) is declared as a variable parameter of Translate, so that the original
drawing can be passed into the procedure, and the transformed drawing can be passed back out. It is also efficient to

pass lists as variable parameters if they are passed as value parameters, a copy must be created by the compiler when
the procedure is invoked.

559

Synthetic Tutor

CODE RESULT
import rhinoscriptesyntax as rs

def translate(obj,tx,ty):
translation = [tx,ty,0]
obj = rs.MoveObject(obj,translation)
retura obj

p0 = ra.AddPoint(([100,0,0]) s
pl = ra.AddPoint([120,20,0])

p2 = ro.AddPoint([30,60,0])

pts = [p0, pl, p2]

tx = 200

ty = 100

translate(pts,tx,ty)

P ot uwmmn—umv& Srbue Tok Suiet Yo Mok Touks Fontw Ty Dol Row in '8

Egaamﬁo-a“ Sl 090000 19,0,

Lorng & wwdon % 3o | A Dysares Gaienty Facr i Out Sewcet Target 1Te1)

B s Bython Lo - Coliumrs purany Spplioty 2 aamrg M Aiawd Rrimmiomcs § 5 scrpts LIS Mo 10 trarslate basd o donciom ad d dtorxd 6y
| Fe s Doy Tk iy =
Des-E@PE P p-@-20%m
& & e 08 o o Wttt bt . Snatom ol Batwea b | L)
tramnratn i
import rhinoscriptsyntax as re
import math
daf translate(cbjs,tx,tyl:
translation = [tx,ty,©)
objs = ra.Movecbjects(objs,translation)
return objs

po = rs.nAdPolat((100,0,0))
pl = rs.AadPoint([120,20,0])
p2 = rs.hAdboliat([30,€0,0))
pts = [p0,pl.p2]

trans dd(pts, 435, 100)

560

Appendix B

Module 167: 14.3 Procedure 3

14.
TRANSFORMATIONS.
14.3 TRANSFORMATION PROCEDURES

Another useful way to parameterize a translation procedure is by direction and distance (fig. 14-6). The invocation
looks like this:

trans_dd (points, direction, distance):
The procedure trans_dd can easily be build using translate

[sample codes on the right side]

561

Synthetic Tutor

CODE RESULT
import rhinoscripteyntax as re

import math

def translate(obj,tx,ty): a

translatfon = [tx,ty,0)
obj = rs.MoveObject(obj,translation)
return obj

def trans_dd(ocbj, direction, distance):
radiance = 0.01745
tx = distance * math.cos{direction * radiance)
ty = distance * math.sin(direction * radiance)
newPoints = translate(obj, tx, ty)
return newPoints

pd = rs.hddPoint((100,0,0])

pl = rs.hddPoint(([120,20,0])

p2 = rs.MdPoint(([30,60,0]) 8
pts = [p0,pl,p2]

direction = 45

distance ~ 100

trans_dd{pts, direction, distance)

| DIRECTION 9

4

I 2 5
I/dé\ i

&

N
¥

14-8. A translation specified by direc-
tion and distance

562

Appendix B

Module 168: 14.3 Procedure 4

14.
TRANSFORMATIONS.

14.3 TRANSFORMATION PROCEDURES

Since this gives us the greatest flexibility, we shall use such list data structures in our examples from now on, unless
otherwise indicated. Here is a procedure Rotate, to rotate about the origin of the coordinate.

[sample codes on the right side]

Note its close similarity to Translate.

563

Synthetic Tutor

CODE RESULT

import rhinoscriptsyntax as rs
import math

def rotate_original(points, angle):
newPoints = []
for point in points:
eenter =~ [0,0,0)
newPoint = rs.RotateObject(point, center, angle)
newPoints.append({newPoint)
return newPoints

p0 = rs.AddPoint({100,0,0])
pl = rs.AddPoint({120,20,0]))
p2 = rs.AddPeint((30,60,0])
pts = [p0,pl,p2]

angle = 30
rotate_original(pts, angle)

564

Appendix B

Module 169: 14.3 Procedure 5

14.
TRANSFORMATIONS.

14.3 TRANSFORMATION PROCEDURES
Finally, here is a procedure Scale, based on the same principles as Translate and Rotate.

[sample codes on the right side]

565

Synthetic Tutor

CODE RESULT

import rhinoscriptsyntax as rs
import math

def scaling(points, scale_factor):
origin = (0, 0, O]
for point in points:
rs.ScaleObject(point, origin, scale_factor)

p0 = ra.MddPoint((100, 0, 0])
pl = ra.AddPeint((120, 20, 0])
P2 = res.hddPoint((30, 60, 0])
pte = [p0, pl, p2)
scale_factor = (2, 3, 1)
scaling(pts, scale_factor)

o B v Pyroen Lany - Cilleniptcny Apsluty’ Rowmang Mo Rnngumo’ 3 3 scrpts LIS Mom 2 xcals e cluets wamg UST gy
{ fle I8t Owbag Teoh toy
D -HOE 2 b>- 9098
B s [34500 o . weke e stcn g ST v ¢ Y
4 froxrarre ¢ . e
-3-4—..: return newobjects ¢ many cbjects #).
& 2 Frws

R

- dof rotate(points, anglej:
newibjects = | |
for point im points:
center = 0,0,0
newlbj = rs.Rotatetbject(point, center, angle)
newObjects .append(newObj)
return pawlblects 1

o =B08 R0

p0 = rs.AadPodnt((100,0,0))
pl = rs.Addroint([120,20,0])
p2 = rs.Addrodnt{(30,40,0))
pts = [pd,pl,p2]

newCbjList = translatelns(pts, 45, 100}
print newlbjlList

SSEIX

L e e e

D e bl
Lelpures Puid shiess an THESLE, aBywiem Gurd satess ee EelE3EARESSASHC
I<dgeiem Guid wbless av ML L, dlpwies Guid diest a8

566

Appendix B

Module 170: 14.3 Concatenation 1

14.
TRANSFORMATIONS.

14.3.1 CONCATENATION OF TRANSFORMATIONS

How could you rotate the drawing about its center point, rather than (as performed by Rotate) about the origin of the
coordinate system (fig. 14-7)? A sequence of transformations is required to accomplish this. First translate the
drawing's center point to the origin of the coordinate system (fig. 14-8a). Then rotate it about the origin by the
required amount (fig. 14-8b). Finally, translate the drawing back to the original position (fig. 14-8c). More
generally, how could you rotate the drawing about any arbitrary point (Cx ,Cy)? The required sequence of
transformations is illustrated in figure 14-9. It can be executed by the following sequence of invocations of
transformation procedures

TRANSLATE(POINTS, -CX, -CY)
ROTATE(POINTS, THETA)
TRANSLATE(POINTS, CX, CY)

Rotation about an arbitrary point (cx, cy) is a very common operation, so it would be convenient to have a procedure
to perform it. This would be invoked as follows:

ROTATE_XY(POINTS, CX, CY, THETA)
The procedure is easy to write using translate and rotate thus:
[sample codes on the right side]
This simple example illustrates an important theoretical point. Any sequence of translation, rotation, reflection, and
scaling transformations can be regarded as a single transformation that carries an object from an initial state to the
final state, which results from the last transformation in the sequence. The combination of transformations, in this
way, is known as concatenation. The concatenated transformation may be given a name, such as Rotate_XY, and

can be executed by a procedure, in the same way that we named the elementary transformations (for example,
Translate) and wrote procedures to perform them.

567

Synthetic Tutor

~

14-7. A figure rotated about the origin
of the coordinate system.
I3
Ja
¥
” e rran e e e ,,,4)
-]
¥ e a. Translate the center of rolation 10 the
E=s

¢. Transiate back. ¢. Transiate back.

14-8. Steps in rotation of a figure about 14-9. Steps in rotation of a figure about
its eenter point. an arbitrary point.

568

Appendix B

CODE RESULT

import rhinoscriptsyntax as rs
import math

def translate(objs,tx,ty):
translation = [tx, ty, 0]
objs = ra.MoveObjects(objs, translation)
return objs

dof rotate(objs,angle): .
center = [0, 0, 0]
objs = re.RotateObjects(objs, center, angle)
return objs

def rotate_xy(objs, cx, ¢y, theta):
obja = translate(objs, -cx, =-cy)
objs - rotate(objs, theta)
objs = translate(objs, ex, ey)
return cbjs

p0 = res.AddPoint([100, 0, 0])
pl = rs.MddPolnt([120, 20, 0])
p2 = rs.AddPeint([30, 60, 0])
pts = [p0, pl, p2]
rotate_xy(pts, 0, 0, 60)

b Fach varten rotaies aronned e orgin

-7, A igure rolated shout the origin
of the coordnate sysiem

569

Synthetic Tutor

Module 171: 14.3 Concatenation 2

14.
TRANSFORMATIONS.

14.3.1 CONCATENATION OF TRANSFORMATIONS

Here is another, more complicated example of concatenation. A glide reflection across an arbitrary axis parallel to
the X axis is illustrated in figure 14-10. It is a concatenation of reflection and translation and is specified by the Y
coordinate of the axis and the X translation. A glide reflection procedure, then, is invoked like this

[sample codes on the right side]

There are much more efficient ways to perform concatenated transformations than to perform component
transformations in sequence, as for example, in our procedures Rotate_XY and Glide. In particular, you can use
concatenated transformation matrix. We need not concern ourselves with this technique here, but if you are
interested, it is explained in detail in several of the computer graphics texts listed in the Bibliography.

14-10. Glide reflection across an arbi-
trary axis parallel to the X axis.

570

CODE RESULT

import rhinoscriptsyntax as rs

def

translate(objs,tx,ty):

translation = {tx, ty, 0}

objs = rs.MoveObject{cbis, translation)
retura objis

scala(objs, scale_x, scale_y):

origin = {0, 0, 0}

scale » [scale_x, scale y, 1)

cbjs =~ rs.ScaleObject(cbjs, origin, scale)
return objs

glide{obis, axis_x, axis_y):

objs = rs.CopyObject{obis)

objs « translate(objs, 0, -axis y)
cbjs = scale{objs, 1, -1)

objs » translate(objs, axis_x, axis_ y)

po = {100, 0, 0)
pL = {120, 20, 0}
p2 » {30, 60, 0}

pts

= {p0, p1, P2, PO}

ob3jID = rs.MdPolyline(pts)
glide{objID, 100, 80)

Appendix B

571

Synthetic Tutor

Module 172: 14.3 Order

14.

TRANSFORMATIONS.

14.3.2 THE ORDER OF TRANSFORMATIONS
The result of performing two translations like

TRANSLATE (POINTS, 100, -100)
TRANSLATE (POINTS, -200, -50)

is the same as that of performing them in reverse order (fig. 14-11)

TRANSLATE (POINTS, - 200, - 50)
TRANSLATE (POINTS, 100, - 100)

However, the result of this sequence of transformations

TRANSLATE (POINTS, 0, - 150)
ROTATE (POINTS, 90)

is not the same as that of its reverse:

ROTATE (POINTS, 90)
TRANSLATE (POINTS, 0, - 150)

Figure 14-12 compares the two results. In general, then, the order of transformations matters. To achieve the results
that you want, you must apply transformations in the appropriate sequence.

572

Appendix B

\'l
| .. |

s b. Rotation first.
14-11. The same translations performed 14-12. The same translations and rota-

in di"ﬁrﬂ‘nt ﬂrdel"s pmu« 'hf same tions Prbw in djﬂeﬂn. orders pm_
result. duce different results.

573

Synthetic Tutor

Module 173: 14.3 Operators

14.
TRANSFORMATIONS.

14.3.3 TYPES OF GEOMETRIC OPERATORS

The transformation procedures that we have considered may be regarded as geometric operators, just as + , - , and
sort are arithmetic operators. The name of the transformation procedure specifies the type of geometric operation
that it performs (translation, glide reflection, and so on). The first parameter (pts, in our examples) specifies the
object to be operated upon. Then come the parameters that specify the specific instance of this type of
transformation that is to be applied-for example, a translation specified by Tx and Ty.

These procedures, you will notice, are similar to those that generate graphic vocabulary types. Just as you can build
up a vocabulary out of which to construct graphic compositions, you can build up a -toolbox- of geometric operators
for manipulating compositions. In both cases, you must abstract to determine the types that you will need, name
these types, define their essences in the code of procedures, and define the parameters that specify instances.

574

Appendix B

Module 174: 14.4 Hierarchy

14.
TRANSFORMATIONS.

14.4 TRANSFORMATIONS AND HIERARCHICAL STRUCTURE

The hierarchical structure of the resulting drawing, as defined by the nesting of start and finish pairs, is illustrated in
figure 14-25. And figure 14-26 illustrates what finally appears on the screen.

In chapter 12 we saw how to express the hierarchical structure of a graphic composition in the block structure of a
program each part (element or subsystem) was given a name, and a procedure of that name specified the tower-level
components and how these were spatially related. Then, in chapter 13, we saw how the same structure might be
reflected in the hierarchical organization of a data structure, Now we can also describe structure in terms of the
nesting of geometric transformations. A part is now defined as a set of lower-level

575

Synthetic Tutor

14-26. Screen display produced by Window.

576

Appendix B

Module 175: 14.4 Graphic

14.
TRANSFORMATIONS.

14.4.1 GRAPHIC VOCABULARIES REVISITED

The use of a world coordinate system and transformation operators requires modification of the approach to
parameterization of graphic procedures that was introduced in chapter 7. We no longer need position parameters,
since translations, rotations, and reflections are used to position instances in the composition. Neither do we need
size parameters, since elements can be scaled up and down. We will, however, still frequently need parameters that
control shape and repetition.

1t will generally be most convenient to define graphic vocabulary elements with their center at the origin of the
world coordinate system and with their most characteristic dimension set at unity. This makes it easy to scale an
instance to the correct size, rotate it to the correct orientation, then translate it to the required position. Here, for
example, is a procedure to generate a square of unit length, centered at the origin of the world coordinate system.

[sample codes on the right side]

These stages are illustrated in figure 14-27.

____?_, SOOI W

> —————{- - > e

& Unit squire contered at the b. Scaled 0 required size. ¢ Rotated sbout origin. d Traraiatod © required
origin of P world coordnate positon.
system.

14-27. Stages in siving and positioning a square.

ST

Synthetic Tutor

CODE

import rhinoscriptsyntax as rs

def

:

square()t

pl = [-0.5, -0.5, 0]

p2 = [0.5, -0.5, 0]

p3 = (0.5, 0.5, 0]

pé = [-0.5, 0.5, 0)

pts = (pl, p2, p3, p4, pl]
square = rs.AddPolyline(pts)
return square

scale(ob],x,y):

origin = [0, 0, 0]

scale = [(x, ¥, 1]

reasult = rs.ScaleObject(obj, origin, scale, True)
return result

rotate{obj,angle):

center = (0, 0, 0]

result - re.RotateObject(obj, ceater, angle, Nome, True)
retura result

translate(obj, x, y):
translation = (x, y, 0)
rs.CopyObject(cbj, translation)

transform():
rec = sguare()

= peale(ree, 5, S)
rec = rotate(rec,30)

= translate{rec,10,6)

transform{)

578

RESULT

L e P s e

0

Appendix B

Module 176: 14.5 Symmetry

14.

TRANSFORMATIONS.

14.5 TRANSFORMATIONS, LOOPS, AND SYMMETRY

When transformation operators are applied repeatedly within loops, symmetrical patterns result. The graphic
element to which they are applied becomes the repeating element of the pattern, and different kinds of symmetry

result from using different combinations of transformation operators. To investigate this, let us define an
asymmetrical vocabulary element, as follows

[sample codes on the right side]

This is illustrated in figure 14-28.

There are four kinds of plane symmetry rotational, dihedral, frieze, and wallpaper. We shall consider these in turn.

10.26
k-9

O -
025

4.._.0_75 - _....x-.mm:g:

10,0

14-28. An asymmetrical vocabulary element.

579

Synthetic Tutor

CODE RESULT
import rhinoscriptesyntax as rs

def triangle():
po = [0, 0, O]
pl = [0.25, 0.75, 0]
p2 = [0, 1, 0]
pts = [p0, pl, p2, pO]
tri = rs.hddPolyline(pts)
return tri

triangle()

1408 As smymmetrisl vocsbalay clemont

580

Appendix B

Module 177: 14.5 Rotational

14.
TRANSFORMATIONS.
15.5.1 ROTATIONAL SYMMETRY

The following procedure has only one parameter, the Number of repetitions, and generates patterns with rotational
symmetry

[sample codes on the right side]
Some typical output is illustrated in figure 14-29. Notice the effects of varying values for Number.

By substituting different procedures for Triangle in this code, we can produce different figures with rotational
symmetry. Figure 14-30, for example, shows a floor plan that was generated this way.

581

Synthetic Tutor

-~ kg

rotational
yelic.

Q

14-29. Some patterns
symmelry gencrated by

582

Appendix B

CODE RESULT
import rhinoscriptsyntax as ra

def triangle():
po = [0, 0, O)
Pl = [0.25, 0.75, 0]
p2 = [0, 1, 0]
pts = [p0, pl, p2, pO0)
tri = rs.AddPolyline(pts)
return tri

L3
a
Y

rotate(obj, angle):

center = (0,0,0)

result = r otateObject (obj, center, angle)
retura result

def cyclic{number):

increment = 360 / number

angle = 0

count = range(number)

for i in count:
tri = triangle()
tri = rotate(tri, angle)
angle = angle + increment

ecyclie(290)

583

Synthetic Tutor

Module 178: 14.5 Bilateral

14.

TRANSFORMATIONS.

14.5.2 BILATERAL SYMMETRY

Bilateral symmetry results from the reflection of a motif across an axis (fig. 14-31). The human body has
(approximate) bilateral symmetry, as do many buildings and architectural elements. The following code generates
patterns with bilateral symmetry

[sample codes on the right side]

Note the introduction of a parameter Separation, controlling the distance of the motif from the axis.

By substituting different procedures for Triangle, we can produce a wide variety of compositions with bilateral
symmetry. Figure 14-32 shows an architectural example.

14-31. Bilateral symmetry.

14-32. A floor plan of Montmorency Palace with bilateral symmetry, generated by substituting
another procedure for Triangle in the code of Bilateral.

584

CODE RESULT
import rhinoscriptsyntax ss rs

def triangle():
po = [0, 0, O]
pl = [0.25, 0.75, 0}
p2 = [0, 1, 0]
pts = [p0, pl, p2, pO]
tri = rs.hddPolyline(pts)
retura tri

def translate(ob), x, y):
translation = (x, y, 0}
trans = re.MoveObject(obj, translation)
return t 8

def rotate(obj, angle):
center = (0, 0, O]
result = re.RotateObject(cbj, center, angle)
return result

def reflect_y(obj):
start = [0, 1, 0]
end = [0, =1, 0]

ref = rs.MirrorObject(obj, start, end)
return ref

dof bilateral(separation):
tri_right = triangle()
tri_right = translate(tri_right, separation, 0)

tri_left =~ triangle()
tri_left = translate(tri_left, separation, 0)
tzi_left = reflect_y(tri_left)

bilateral(0.3)

1432, A Boor plan of Moatmareney Palace with bilsteral symmetsy, geosrsted by swbatibutieg
sncther procedure for Trisaghe i the code of Blateral

Appendix B

585

Synthetic Tutor

Module 179: 14.5 Dihedral

14.

TRANSFORMATIONS.

15.5.3 DIHEDRAL SYMMETRY

If we rotate a motif with bilateral symmetry, we can produce figures with dihedral symmetry. So a procedure to
generate patterns with dihedral symmetry can be produced by modifying our procedure Cyclic to invoke Bilateral
instead of Triangle

[sample codes on the right side]

Figure 14-33 shows some examples of output. Note that when the parameter symmetry.

Number is set to 1, a figure with bilateral symmetry results. This illustrates that bilateral symmetry is properly
regarded as a limiting special case of dihedral symmetry.

A standard method of plan composition in architecture is to begin with axes passing through a point (fig. 14-34),
then to construct a plan with dihedral symmetry over this skeleton. Such plans can be produced by substituting
procedures that generate appropriate motifs for Triangle in our dihedral symmetry procedure. Figure 14-35
illustrates some examples of plans produced this way.

586

Appendix B

a A sepuichral church by Sir John Soane,

587

Synthetic Tutor

14-35. Plan construction over aes passing through a point.

v i <0
. | H ¥
o
¥
. !
73 o ‘:
3 = b. Project
' naa has by Ledoux. (lm-
i o SRy i g"

588

CODE RESULT
import rhinoscriptesyntax as re

def

g

triangle():

p0 = (0, 0O, 0]

pl = [0.25, 0.75, 0]

p2 = [0, 1, 0]

pts = [p0, pl, p2, PO
tri = rs.AddPolyline(pts)
return tri

translate(ob), x, ¥y)s

translation = [x, ¥y, 0]

trans = rs.MoveObject(obj, translation)
return trans

rotate(cbj, angle):

center = (0, 0, 0]

result = rs.RotateObjects(obj, center, angle)
return result

reflect_y(obj):

start = [0, -1, 0]

end = [0, 1, D)

ref = ra.MirrorObject{obj, start, end)
retura ref

bilateral (separation):
tri_right = triangle()
tri_right = translate(tri_right, separation, 0)

tri_left = triangle()

_left = translate(tri_left, separation, 0)
tri_left = reflect_y(tri_left)

return tri_right, tri left

dihedral (separation, number):
increment = 360 / number
angle = 0

count = range(number)

for i in count:
bil =~ bilateral({separation)
bil = rotate(bil,angle)
angle = angle + increment

dihedral(D.01, 8)

Appendix B

589

Synthetic Tutor

590

Module 180: Exercise 9

14.
TRANSFORMATIONS.

EXERCISES

Appendix B

1. The procedure Square generates a square of unit diameter, centered at the origin of the world coordinate system,
with sides parallel to the coordinate axes. Draw on graph paper, in the world coordinate system, the result produced

by the following sequence of code.

a.
def shift_sqaure():
sqr = sqaure()

sqr_t = translate(0.6, 0.6, sqr)

return sqr_t

def two_square():
sqr = shift_square()
sqr_r = rotate(180, sqr)

return sqr +sqr_r

def four_squares():
sqr_2 = two_squares()
sqr_rf=reflect_y(sqr_2)
return sqr_2 + sqr_rf

def rotate_sqaures():
sqr_4 = four_squares()
rotate(45, srq_4)

rotate_squares()

b.

def diamond(spacing, sy):
sqr = square()
ty = math.sqrt(2) + spacing
sqr_s = scale(sy, sy, sqr)
sqr_r = rotate(45, sqr_s)

sqr_t = translate(0.0, ty, sqr_r)

return sqr_t

def cyclic(spacing, sy, n):
increment =360/ n
angle=0

for count in range(1, n+1):

obj = diamond(spacing, sy)

rotate(angle, obj)

angle = angle + increment

cyclic(0.1,1.0,4)

C.

591

Synthetic Tutor

cyclic(0.0,2.0,2)

2. Write a procedure to generate a regular polygon of unit diameter, centered on the origin of the world coordinate
system, with the number of sides as a parameter. Using translation, rotation, and reflection to position instances,
unequal scaling to vary size and proportion, and variation in the number of sides, explore the kinds of compositions
that can be produced using this motif.

Please upload your python file: [Choose File l No file chosen

3. Figure 14-74 shows the schema of a villa plan from Andrea Palladio#39s Four Books of Architecture. It is
composed of just a few different types of polygons. Using procedures that generate such polygons, write a program
to generate this plan.

LT
- b

H-74. Schema of a viila plas from
Acdrea Palladio’s Four Books of
Architecture.

Please upload your python file: { Choose Fite } No file chosen { submit |

4. Numerous examples of rotational, dihedral, frieze, and wallpaper patterns are shown in

- Dye, Daniel Sheets. Chinese Lattice Designs. New York: Dover, 1974.
(Reprint of the original 1937 edition)

- Griinbaum, Branko, and G. C. Shepherd. Tilings and Patterns. New York:
W.H. Freeman, 1987.

- Jones, Owen. The Grammar of ornament. New York: Van Nostrand
Reinhold, 1982. (Reprint of the original 1856 edition)

Write procedures to generate some of those.

Please upload your python file: (Choase File } No file chosen (Submit |

5. Choose a simple geometric motif write a procedure to generate it and use it to produce patterns with rotational,
dihedral, frieze, and wallpaper symmetry. Experiment with effects that result from sealing the motif, varying the
spacing parameters, and overlapping. Using procedural parameter, experiment with substituting different motifs.

Please upload your python file: No fiie chosen

592

Appendix B

6. The plan and elevation compositions of the modern architectural masters Le Corbusier, Frank Lloyd Wright, and
Alvar Aalto rarely display rigid axial symmetry in the classical manner. But, on careful inspection, they can usually
be found to display less obvious symmetries and carefully broken symmetries. Take a composition that interests
you, and see if you can discover the underlying principles of symmetry, and the exceptions and distortions that are
used to break symmetry. Using the insights that you gain from this analysis, write a concise, expressive program to
generate the composition.

Please upload your python file: | Choose File } No file chosen {_Submit |

593

Synthetic Tutor

Module 181: 14.5 Frieze 1

14.
TRANSFORMATIONS.
14.5.4 FRIEZE SYMMETRY
There are just seven different kinds of frieze symmetrical patterns. They can be generated by repeated applications
of translation along one axis, rotation, reflection, and glide reflection transformations. This next procedure generates
the simplest of them
[sample codes on the right side]
The remaining six frieze symmetries can be generated by substituting different procedures for Triangle. We get the
result shown in figure 14-37a if, for example, we substitute and we get the result shown in figure 14-37b if we
substitute:

CYCLIC(2)
And we get the result shown in figure 14-37b if we substitute:

BILATERAL (0)
The repetition of an asymmetrical elevation motif along an axis to produce a continuous facade is a very common
architectural motif. Compositions of this type can be produced by substituting for Triangle a procedure that

generates the required motif. Figure 14-38 is an example of an elevation produced this way.

The repetition of bilaterally symmetrical elevation motifs to produce a different kind of frieze symmetry is also
common. Figure 14-39 illustrates some examples of elevations produced using our Bilateral and Frieze procedures.

594

Appendix B

a. With a cyclically symmetrical motit,

b. With a bilaterally symmetrical mosl.

Yy rr

(B

Karlshad

14-38. A facade of asymmetrical elements produced by Frieze. (Richard Meier's Am

Housing. Berlin.)

Appendix B

\J \/ | A |

sIear w - g ﬁ L3 & TR

m
i NTTTN N *’l TN sy w i
|§) B AREE W " R R T
ilf‘* h pligREE gy 'iil““l SR, aginl

& A heusing schoms by JP. Oud.

L2 AN AN AN AN A A

L 11 ! e

b An clevation of e Algerers Basschuie Oetn, by Kirt Frednch Schukel
Piots Pow end CoNdBOnS ire handed. 80 Tt Yere symmedry i3 Combered wih biatersl Bysmety.
Conditiorals are introdzoed 0 Friaze 1 produce e eftet)

14609, Facwdes of bidaterally sy rical elements peoduced by Friese.

597

Synthetic Tutor

CODE RESULT
import rhinoscriptasyntax as rs

def triangle():
po = (0, 0, O]
pl = [0.25, 0.75, 0]
pz = 10, 1, 0)
pts = [p0, p1, P2, PO}
tri = re.AddPolyline(pts)
return tri

def translate(obj, x, y):
tranalation = [x, y, 0]

trans = rs.MoveCbject(obj, translatien) . N, [‘_

return trans ;]] / / | /
dof simpleFrieze(spacing, number): / ’," / / / E//

tx = 0 / / ! ¥

count = range(number)

for i in count:
tri = triangle()
tri = translate(tri, tx, 0)
tx = tx + spacing

simplePrieze(l,6)

) Vb

1R A uaghe e patern prosbered by Froe

4

Cyhcaly wyrewerea

D (O (O (

598

Appendix B

Module 182: 14.5 Frieze 2

14.
TRANSFORMATIONS.
14.5.4 FRIEZE SYMMETRY

In the layout of housing units, frieze patterns with glide reflection are sometimes used. The following code generates
layouts of this type:

[sample codes on the right side]

The three parameters that control the spacing of the units in such layouts become critically important design
variables. A layout produced by Fricze is shown in figure 14-40.

T

14-40. A housing layout in a frieze pattern
with glide reflection. (Le Corbusier’s
terrace housing at Pessac).

599

Synthetic Tutor

CODE
import rhinoscriptsyntax as rs

def triangle():
p0 ~ [0, 0, 0}
pl = [0.25, 0.75, 0]
P2 = [0, 1, 0}
pts = [p0, pl, p2, pO]
tri = rs.MddPelyline(pts)
return tri

def translate(obj, x, y):
translation = (x, y, 0]
trans = rs.MoveObject{obj, traaslation)
retura trans

def reflect_y(obj):
start = [0, -1, 0]
end = [0, 1, 0]
ref = res.MirrorObject({obj, start, end)
retura ref

def rotate(obj, angle):
center = (0, 0, 0]
result = ro.RotateObject(obj, center, angle)
return rosult

de

friozo(x_separation, y_separation, spacing, number):

tx=0
count = range(number)
for 1 in counts
tri = triangle()
tri = reflect_y(tri)
tri = rotate(tri,180)
tx = tx + x_separation
ty = -y_separation
tri = translate(tri, tx, ty)

tri = triangle()
tri = translate(tri, tx, 0)
tx = tx + spacing

frieze(l, 1, 0.5, 6)

RESULT

~

600

~—

~—

-

~~

= I~

Appendix B

Module 183: 14.5 Wallpaper 1

14.
TRANSFORMATIONS.

14.5.5 WALLPAPER SYMMETRY

There are just seventeen different kinds of wallpaper symmetrical patterns generated by translations in two
directions, rotations, reflections, and glide reflections. Here is a procedure to generate one of them

[sample codes on the right side]

The effect is to lay out triangles in a sequence grid (fig 14-41)

14-42. Pattern generated by placement in an equilateral triangular grid.

601

Synthetic Tutor

CODE RESULT

import rhinoscripteyntax as rs

def

triangle():

0]
pl = [0.25, 0.75, 0]
p2 = [0, 1, 0O}
pts = [p0, pl, p2, pO)
tri = rs.AddPolyline(pts)
retura tri

translate(obj, x, y)i

translatien = [x, y, 0]

trans = rs.MoveObject(obj, translation)
return trans

roflect_y{obj):

start = [0, -1, 0]

end = [0, 1, 0)

ref = ra.MirrorOGbject(obj, start, end)
retura ref

rotate(obj, angle):

center = [0, 0, 0

result = rs.RotateObject(obj, center, angle)
rotura result

square_grid(spacing, h_number,v_number):
ty = 0
v_count = range{v_number)
h_count =~ range(h_number)
for v in v_count:
tx = 0
for h in h_count:
tri = triangle()
tri = translate(tri,tx,ty)
tx = tx + spacing
ty = ty + spacing

square_grid(1.2, 4, &)

602

e e e e

—~ T~ T~

Appendix B

Module 184: 14.5 Wallpaper 2

14.
TRANSFORMATIONS.

14.5.5 WALLPAPER SYMMETRY
This next procedure lays out triangles in an equilateral triangular grid (fig 14-42)

[sample codes on the right side]

14-42. Pattern generated by placement in an equilatera) triangular grid.

603

Synthetic Tutor

CODE RESULT

import rhinoscriptsyntax as ra
import math

def triangle():
g0 - {0, 0, 0}
pl = (0.25, 0.75, O}
p2 » {0, 1, 0)
pts ~ [p0, pl, P2, p0)
trl = rs.MddPolyline(pts)
return tri

%

translate{ob}, x, y):

translation ~ (x, y, 0]

trans = rs.MoveCbject(obj, translation)
return trans

§

reflect_y(obj):

start « {0, ~1, 0}

end = [0, 1, 0)

ref = ra.NirrorObject(obj, start, end)
roturn rof

def rotate(ocb), angle):
center = [0, 0, 0)
result = rs.RotateObject(obj, center, angle)
return result

de

»

tri_grid(spacing, b_number, v_number):

ty = 0

sqr_space ~ (spacing * spacing)
sqr_space_half = {(spacing/2) * (spacing/2))
h = math.sqrt{sqr_space - sqr_spacc_half)

v_count = range(v_aumber)
h_count = range{h_number)
result = {)
for vc ia v_count:
tx =~ 0
ifve 8 2 == 1 2
tx = tx + (spacing / 2)
for he¢ in h_count:
¢ri = triangle()
tri » translate(tri, tx, ty)
result.append(tri)
tx = tx + spacing
ty =ty + h
roturn result

tri_grid(i, 4,)

604

Appendix B

"

SN

Ml Pt ganed by gl o apband e gt

605

Synthetic Tutor

Module 185: 14.5 Wallpaper 3

14.
TRANSFORMATIONS.

14.5.5 WALLPAPER SYMMETRY

Another possibility is to lay the triangles out in a regular hexagonal grid (fig 14-43). The following procedure
accomplishes this:

[sample codes on the right side]
All of the wallpaper symmetries can be produced by laying out motifs with different degrees of rotational and
reflective symmetry, and motifs produced by glide reflection, in square, equilateral triangular, and regular hexagonal

grids. Thus they can be generated by making substitutions for Triangle in one or another of our grid-generating
procedures. For example, substitution of

DIHEDRAL (SEPARATION,6)
in Hex_grid yields symmetrical wallpaper patterns of the type shown in figure 14-44. Variants can be produced by

changing values for the parameters Spacing and Separation. Considerable complexity results when the values
assigned to these parameters result in overlap of the triangular elements.

606

Appendix B

R
."tl\\\t
oy

2,
(-}

U
%s

R

Im.\:‘“mdlﬂ-w .

same symenelry.

607

Synthetic Tutor

CODE

import rhinoscriptsyntax as rs
import math

dof

triangle():

p0 = [0, 0, O]

pl = [0.25, 0.75, 0]

P2 = [0, 1, 0]

pts = (p0, pl, p2, PO
tri = ro.AddPolyline(pts)
return tri

translate(obj, x, y):

translation = [x, y, 0]

trans = re.MoveObject(obj, translation)
return trans

roflect_y(obj)t

start = [0, -1, 0]

end = [0, 1, 0]

ref = rs.MirrorObject(obj, start, end)
return ref

rotate(obj, angle):

center = [0, 0, 0)

result = rs.RotateObject{obj, center, angle)
return result

hex_grid(spacing, h_number, v_number):

ty = 0

sqr_space = (spacing * spacing)
sqr_space_half = ((spacing/2) * (spacing/2))
bh = math.sqrt(sqr_space - sqr_space_half)

v_count = range(l,v_number+l)
h_count = range(l,h_number+l)
tri_list = [)
for ve in v_count:
tx = 0
if ((ve ¥ 2) == 1) 3
tx = tx + (spacing / 2)
for he in h_count:
tri = triangle()
tri = translate(tri, tx, ty)
tri_list.append(tri)
sum = (ve % 2) 4 (hc & 2)
if (sum == 0 or sum == 2);
tx =~ tx + spacing
@lif (sum == 1)
tx = tx + (2 * spacing)
else:pass
ty ~ty + h
roturn tri_list

hex_grid(l, 8, §)

608

RESULT

Appendix B

TASA 14163008 jog (840 x 58]

609

Synthetic Tutor

Module 186: 14.6 Parameters

14.
TRANSFORMATIONS.

14.6 PROCEDURAL AND FUNCTIONAL PARAMETERS

Let us summarize a general approach to the generation of symmetrical patterns. You begin with a library of
procedures to generate elementary motifs. You can then generate patterns with rotational symmetry by invoking
such procedures from within Cyclic, patterns with bilateral symmetry by invoking them from within Bilateral, and
patterns with dihedral symmetry by invoking them from within Dihedral. Regular frieze patterns can be produced by
invoking procedures to generate motifs with no symmetry, rotational symmetry, and dihedral symmetry from within
Frieze. In addition, you can use motifs that have glide symmetries across the X and Y axes. Finally, you can produce
patterns with wallpaper symmetry by invoking procedures to generate repeating motifs from within Square_grid,
Tri_grid, and Hex_grid. The repeating motifs may have no symmetry, or they may, themselves, be generated by the
rotation, reflection, and glide reflection of more elementary motifs.

By manipulating the scale of the repeating motif in a pattern, and the various parameters that control spacing of
instances of the motif, you can vary proportions and figure/ground relationships. Very complex effects can be
produced by scaling motifs and setting spacing parameters so that overlaps occur.

A symmetry group is a type of spatial organization that, as we have seen, can be generated by an appropriate
procedure. Different instances can be produced not only by varying the parameters, but also by using the procedure
to arrange different elementary motifs in the same type of spatial organization.

It is cumbersome, however, to change the code of a symmetry-generating procedure whenever we want it to repeat a
different elementary motif. Python allows use of procedural parameters and functional parameters (in addition to
value and variable parameters with which we are already familiar), and the use of procedural parameters resolves
this difficulty.

Procedures and functions can be passed as parameters to other procedures and functions. In the formal parameter
list, procedure and function parameters have the same syntax as procedure and function headings. Whenever a
formal “"vsmlu—n or fun"“"" 3q rofaramand thia aneenaann Al s antial moenmentnn So angiiinaa d T dleo Ot o
i1viinal ynuv\.u . 1 VLIVLL 1D 1viaviviivL g, L \-UAI\,B})U“UAI]E aviual Pﬂl allvill 1> aviivaicu. 111 uic lull\)wllls
symmetry-generating program, for example, Motif is a procedural parameter. This allows procedures that draw
different figures to be passed in, so that symmetrical patterns of different figures can be drawn.

[sample codes on the right side]

Symmetrical patterns illustrate the use of procedural parameters particularly clearly, but any graphic procedure may
be parameterized in this way. We might, for example, pass different line types into a procedure to draw a polygon,
different window types into a procedure to fenestrate an elevation, and so on. This generalizes the idea of type of
graphic motif that we have used until now the essence of the type is simply a spatial organization. Instances might
vary not only in shape and position, but also in the nature of their components.

Some Python systems do not support procedural and functional parameters. You should check the documentation of
the particular system that you are using.

610

Appendix B

CODE RESULT

import rhinoscriptsyntax as rs
import math

dof triangle():
po = (0, O, O]
pl = |0.25, 0.75, 0]
P2 = 10, 1, 0]
pts = [p0, pl, p2, p0)
trl = rs.AddPolyline(pts)
return tri

b

dof translate(obl, x, y)t 777 P P PP P

translation = [x, y, 0]

trans = rs.MoveObject(obj, translatien) P
retura trans
def reflect_y(obj):

me ., TR
;ln:‘x:;;urmrabjncuobj. start, end) xxk

def rotate(obj, angle): \\"k

center = [0, 0, 0)
result = re.RotateObject{ebj, center, angle) \5%
retura result

def tri_grid(epacing, h_number, v_number):
ty = 0
sqr_space = (spacing * spacing)
sqr_space_half = ((spacing/2) * (spacing/2))
h = math.sqrt(sqr_space - sqr_space_half)

v_count = range(v_number)
h_count = range(h_number)
zesult = []
for we in v_count:
tx = 0
if ve § 2 »w= 1
tx = tx + (spacing / 2)
for he in h_count:
tri = triangle()
tri = translate(tri, tx, ty)
result.append(tri)
tx = tx + spacing
ty =ty + h
rotura result

def rotate(obj,angle):
ceater = [0,0,0}
result = rs.RotateObjects{obj, center, angle)
retura result

def cyeclie(number, motif):
increment = 360 / number
angle = 0
repeat = range(l, number+l)
for count in repeat:
mot = motif(1,4,3)
mot = rotate(mot,angle)
angle = angle+increment

eyelie(3, trl_grid)

611

Synthetic Tutor

612

Appendix B

Module 187: 14.7 Repetition 1

14.
TRANSFORMATIONS.
14.7 REPETITION OF SCALE TRANSFORMATIONS

So far in this chapter, we have considered the repetition of rotations, reflections, and translations to generate regular
figures. We can also use our scale operator this way. This next procedure, for example, generates the pattern of

nested squares shown in figure 14-45

[sample codes on the right side]

14-45. A pattern of nested squares.

613

Synthetic Tutor

CODE RESULT

import rhincscriptsyntax as rs
import math

def scale(obj,x,y)s
origin = (0,0,0]
scale = [x,y,1)
result = rs.ScaleObject(obj, origin, scale)
return result

def rotate(obj,angle):
center = (0,0,0])
result=re.RotateObjects(obj, center, angle)
return result

def square():
pl = [-0.5, =0.5, 0]
p2 = (0.5, -0.5, 0]
pd = [0.5, 0.5, 0}
pé = [-0.5, 0.5, 0]
pta = [pl,p2,p3,p4,pl]
square = rao.AddPolyline(pts)
return square

def mest_sqaures(increment, number):
side = 1
repoat = range(l,numbor+l)
for count in repeat:
sqgr = squaref)
sqr = scale{sqr, side, side)
side = side - increment

nest_sqaures(10, 5)

614

Appendix B

Module 188: 14.7 Repetition 2

14.
TRANSFORMATIONS.

14.7 REPETITION OF SCALE TRANSFORMATIONS

You will recall from earlier chapters the pattern of rotating and diminishing squares shown in figure 14-46. Now that
we have scale and rotation operators at our disposal, we can express the procedure to generate it thus

[sample codes on the right side]

14-46. A pattern of rotating and di-
minishing squares.

615

Synthetic Tutor

CODE RESULT

import rhinoscriptsyntax as rs
import math

de:

=Y

scale(obj,x,y)1

origin = (0,0,0])

scale = [x,y,1)

result = rs.8caleObject(ebj, origin, scale)
return result

def rotate(obj,angle):
center = [0,0,0]
result=rs.RotateObjects(obj, center, angle)
return result

def sguare():
pl = (-0.5, -0.5, 0]
p2 = (0.5, -0.5, O)
p3 = [0.5, 0.5, 0]
pé = [-0.5, 0.5, 0)
pts = [pl.p2,p3,p4,pl])
square = rs.AddPolyline(pts)
return square

def rotating nest_sqaures(number):

side = 1

angle = 0

repeat = range(l,number+l)

for count in repeat:
eqgr = square()
sqr = scale(sqr, side, aide)
sqr = rotate(sgr., angle)
side = math.sqrt(side * side / 2)
angle = angle + 90

rotating_nest_sqaures(5)

616

Appendix B

Module 189: 14.7 Repetition 3

14.
TRANSFORMATIONS.

14.7 REPETITION OF SCALE TRANSFORMATIONS
A variant, in which 3, 4, 5 rational triangles instead of root two triangles arc generated, is shown in figure 14-47.

The procedure to generate this is

[sample codes on the right side]

14-47. A variant pattern of rotating and
diminishing es, in which 3, 4, 5

rational tri appear.

617

Synthetic Tutor

CODE

import rhinoscriptsyntax as rs
import math

def

def

scale(obj,x,y):

origin = (0,0,0)

scale = [x,y,1)

result = rs.ScaleObject(ebj, origin, scale)
retura result

rotate(obj,angle)

ecenter = [0,0,0]
result=rs.RotateObjects(obj, center, angle)
return result

square():

pl = [-0.5, -0.5, 0]

p? = [0.5, -0.5, 0]

p} = [0.5, 0.5, 0]

pé = [-0.5, 0.5, 0]

ptes = [pl, p2, p3, P4, P1)
square = rs.AddPolyline(pts)
return square

wvariant_rotating_neost_squaras(number):
side = 1
angle = 0
ropeat = range(l, number+l)
for count in repeat:
sqr = square()
sqr = scale(sqgr, side, side)
sgr = rotate(sqr, angle)
pide =~ side * 5 / 7.0
angle = angle + 60

variant_rotating_nest_squares(5)

618

RESULT

diminishing
a

uares, in
3 appear.

14T, A variant pattern of rotating and

3,45

0

Appendix B

Module 190: 14.7 Repetition 4

14.
TRANSFORMATIONS.

14.7 REPETITION OF SCALE TRANSFORMATIONS

The -tree- composed of triangles (fig. 14-48) is a motif taken from the notebooks of Paul Klee. The repeating
element is an equilateral triangle to which translation and unequal scale transformations are applied. The procedure
for this is

[sample codes on the right side]

Different combinations of values for the parameters controlling the translation increment and the two scale
increments produce variants with different characters.

Some architectural compositions are constructed according to a similar logic. The pagoda in figure 14-49 was
generated this way. Both the tree and the pagoda can, in fact, be produced by the same procedure if we introduce a
procedural parameter. Much architectural form can be understood, in the same way, as the result of abstracting a
spatial organization from nature and substituting a new motif within that organization.

e
~ ~

1448, A tree motif (from the Notebooks 14-49. A pagoda motif.
20 ettt etog of s sty

u ng of an equilate:
triangle.

619

Synthetic Tutor

CODE RESULT
import rhinosecriptsyntax as rs

def scale(obj,x,y):
origin = (0,0,0]
scale = [x,y,1]
result = rs.ScaleObject(obj, origim, scale)
roturn result

def triangle():
po = [-100,0,0]
pl = [100,0,0)
»2 = [0,20,0]
pro=(pl,pl,p2,p0]
trg = rs.hddPolyline(pts)
return krg

def translate(obj, tx, ty):
translation = [tx, ty, 0]
trans = rs.MoveObject(obj, translation)
retura btrans

def treo(spacing, sx, sy, sx_inc, sy_inc, number):
ty = 0
count = range{l, number+l)
for i in eount:
sqr = triangle()
egr = scale(sqr, sx, ay)
sqr = translate(sqgr, 0, ty)

sy = sy + .y:inc
ty = ty + spacing

tree(l, 4,2, 0.2,2, 20)

A8 A prrcds cord

5

620

Appendix B

Module 191: 14.8 Arcs 1

14.
TRANSFORMATIONS.

14.8 MOTIFS CONSTRUCTED FROM ARCS

Many traditional architectural and decorative motifs are constructed by using compasses to strike arcs of specified
radius about a specified center. In computer graphics, it is often convenient to strike the arc about the origin of the
coordinate system, then to use transformations to locate the motif in the composition.

An arch can be constructed from arcs in this way. If only one arc is used in the construction, then there are three
basic types (fig. 14-50) the flat arch, in which the radius is greater than half the span the round arch, in which the
radius is exactly half the span and the bulging arch, in which the center point is higher than the springing point.

There are many reasonable ways to parameterize arches, depending on how an architect might want to fit them into
a composition. With a semicircular arch, we know that the bounding rectangle will have a proportion of 2:1. Thus we
probably would choose to specify the width of the bounding rectangle (that is, the span of the arch) as the single
parameter (fig. 14-51).

Using our transformation system, it is convenient to center the arch at the origin and set the span equal to one world
unit. It can then be scaled to the appropriate size and translated to the desired position with the scale and translate
transformation procedures.

1f we assume that the arch can either be flat, semicircular, or bulging, then span is disconnected from height to yield
an additional parameter (fig. 14-52).

Since the structural logic of a uniformly loaded arch dictates bilateral symmetry of form, we need only draw half an
arch, then reflect it to get the other half. Here, then, is a generalized arch procedure based on this principle, with a
single parameter, Height, that represents the ratio of height to span. (The additional parameter N_segments is
required by the Arc procedure, but does not concern us here.)

[sample codes on the right side]

621

Synthetic Tutor

\‘-

14-51. The parameterization of a semi-
14-52. The parameterization of an arch
with variable height and span.

circular arch.

14-50. Basic types of circular arches.

622

Appendix B

CODE RESULT

import rhinoscriptsyntax as rs
import math

daf translate(obj, tx, ty):
translation = [tx, ty, 0]
trans = rs.MoveObject(obj, translation)
return trans

def arc(xe, yc, radius, start_angle, stop_angle,
n_segments)

radians = 0.01745
degrees = (stop_angle - start_angle) / n_segments * radians
theta = start_angle * radians
repeat = range(l, n_segmentst2)
result = [)
for sides in repeat:
¥ = yc 4 radius ¢ math.sin(theta)
x = xc + radiua * math.cos(theta)
if (sldes == 1)1
0 = (x, ¥, 0]
elses
pl = [x, ¥, 0]
1n = rs.AddLine(p0, pl)
result.append(ln)
p0 = pl
theta = theta + degrees
retura result

def half_arch(helght, n_segments):

half_span =~ 0.5

radians = 0.01745

half_span_sqgare = half_span * half_span

height_saure = height * height

radius = (half_span_sqare + height_saure) / (2 * height)

xe = 0

ye = height - radius

stop_angle = 90

if (height == radius):
start_angle = 0

else:
start_radians - math.atan((radius - height) / half span)
start_angle = math.degreos(start_radians)

result = are(xc, yc, radius, start_angle, stop_angle, n_segments)

retura result

def reflect(obj):
start = [0, -1, 0]
end = [0, 1, O}
ref = rs.MirrorObject(obj, start, end, True)
roturn ref

def arch(height, n_segments):
h_arch = half_arch(beight, n_sogments)
reflect (h_arch)

arch(0.15, 10)

623

Synthetic Tutor

Module 192: 14.8 Arcs 2

14.
TRANSFORMATIONS.

14.8 MOTIFS CONSTRUCTED FROM ARCS

A closely related architectural motif is the arcade. Here the architect has three additional choices to make the
number of arches the spacing between arches and the space above the arch (fig. 14-53a). Figure 14-53b shows some
variants of the type. They were generated by the following program:

[sample codes on the right side]

Now, a right triangle may be inscribed within a semicircular arch (fig. 14-54a). This suggests another way to
generalize and introduce additional degrees of design freedom we can let the height of the triangle become greater
than half the base, and we can let the radii of the two half arcs he offset (fig. 14-54b), so that we obtain five degrees
of design freedom. This new type is the pointed arch, used in gothic architecture.

624

Appendix B

(. .) SPACING »
a Parameterization.
b. Some inst
14-53. An arcade motif.

\
\
\
\
i
|
I
f
\) !
\ X) ,
A ’ , I
N . y ,
~ » ,
~ ’A\ ’
\\-.,._ s e ”,
a. A right triangle inscribed within b. Parameterization
@ semicircular arch.

14-54. The pointed arch.

625

Synthetic Tutor

CODE

import rhinocscriptsyntax as rs
import math

def

626

translats({obj, tx, ty):

translation = [tx, &y, 0]

trans = rs.MoveObjecta(ebj, translation)
return trans

arc(xc, ye, radius, start_angle, stop_angle, n_segments):

radians = 0.01745 °
degrees = (stop_angle - start_angle) / n_segments ¢ radians
theta = start_angle * radians
repeat = range(l, n_segmentss2)
result = (]
for sides in repeat:
y = ye + radius * math.sin(thota)
x = x¢ + radius * math.cos(theta)
if (aides == 1):
po = [x, ¥, 0]
else:
pl = [x, y, 0]
in = ys.hddLine(p0, pl)
result.append(ln)
p0 = pl
theta = theta + degrees
return result

half_arch{height, n_segments):
half_span = 0.5
radians = 0.01745
half_span_sgare = half_span * half_span
height_saure = height * height
radius = (half_span_sgare + height_saure) / (2 * height)
xc = 0
yc = height - radius
stop_angle = 90
if (hoight == radius):
start_angle = 0
elses
start_radians = math.atan((radius - height) / half_span)
start_angle = math.degrees(start_radians)
result = arc(xe, yc, radius, start_angle, stop_angle, n_segments)
return result

reflect(obj)

start = [0, -1, 0)

end = (0, 1, 0]

ref = rs.MirrorObjects(obj, start, end, True)
result = obj + ref

return result

arch(height, n_segments):

h_arch = half_arch(height, n_segments)
result = reflect(h_arch)

retura result

RESULT

Appendix B

def half_arcade(height, spacing, space_above, n_arches, n_segments):
span = 1
half_span = span / 2
if ((n_arches & 2) ==1):
half_arch(height, n_segments)
p0 = [half_span, 0, 0]
x = spacing + half_span
pl = [x,0,0]
ra.AddLine(p0,pl)
tx = opan + spaoir
else;
po = (0, O, O]
x = spacing / 2
pl = [x, 0, 0]
tx = (spacing / 2) 4 balf_span

n = int(n_archea/2)

count = range{l, n+l)

for i in count:
archID = arch(height, n_segments)
translate(archID, tx, 0)
x = tx + half_span
p0 = [x, O, 0]
% = x + spacing
Pl = [x, 0, D)
ro.AddLine(p0, pl)
tx = tx + span + spacing

y = height + space_above
po = (0, ¥, O]

pl = I[x, ¥, 0]

p2 = [x, 0, 0]

pts = [p0,pl,p2]
re.AddPolyline(pts)

half_arcade(0.4, 0.3, 0.1, 5, 10)

waww.youtube.com Is now full screen.

j
e

1451 The panameterization of a wemi-
auch

circular

627

Synthetic Tutor

Module 193: 14.8 Arcs 3

14.
TRANSFORMATIONS.

14.8 MOTIFS CONSTRUCTED FROM ARCS

Figure 14-55 illustrates some arcades of pointed arches, such as we might find in the nave of a gothic cathedral.
Notice how the parameterization of the pointed arch allows achievement of the soaring verticality that is
characteristic of gothic architecture. Compare this with the horizontal rhythms of semicircular arcades, which we
considered earlier. Another possibility is to base the arch on the form of the oval. Such arches are called ogees. The
oval is visually almost indistinguishable from the ellipse, but is constructed from circular arcs of different radii.
There are two standard subtypes one is drawn from three centers (fig. 14-56) and the other is drawn from five
centers (fig. 14-57). A three-centered ogee is generated.

[sample codes on the right side]

Once an arch has been constructed, another classic architectural problem often arises. How can we subdivide it by
window panes? More generally, what principles can we adopt for subdividing the circle?

628

14-57. The five-centered ogee.

Appendix B

629

Synthetic Tutor

CODE RESULT

import rhinoscriptsyntax as rs
import math

def arc({xc, yo, radius, start_angle, stop_angle, n_segments):

radians = 0.01745
dogrees = (stop_angle - start_angle) / n_segments * radians
theta = start_angle * radians
repeat = range(l, n_segments+2)
result = []
for sides in repeat:
y = y¢ + radius * math.sin(theta)
x = x¢ + radius * math.cos(theta)
if (oides == 1}s
po = (x, y, 0]
else:
pl = (%, ¥, 0)
1n = rs.AddLine(p0, pl)
result.append(ln)
po = pl
theta = theta + degrees
return result

-

oval{a, b, n_segments):

a is radius of major axis

b is radius of minor axis

d = math.egrt(2 * (a-b) * (a-b)) / 2

construct the first arc

xcl ~a-b+d

yel = 0

radiue2 = b - d

start_angle = ©

stop_angle = 45

arc(xel, ycl, radius?, start_angle, stop_angle, n_segments)

construct the second arc

xe2 = 0

ye2 = -xel

radiusl = radius2 + math.sqrt(2 * xcl * xcl)

start_angle = 45

stop_angle = 90

arc(xc2, yc?, radiusl, start_angle, stop_angle, n_segments)

oval(0.6, 0.4, 10)

630

Appendix B

Module 194: 14.8 Arcs 4

14.

TRANSFORMATIONS.

14.8 MOTIFS CONSTRUCTED FROM ARCS

One commonly used principle is subdivision by regularly spaced radial lines (fig. 14-58a). Another is subdivision by
concentric circles (fig. 14-58b). These can be combined to yield a radio concentric pattern (fig. 14-58c¢). Yet another

possibility is subdivision by parallel straight lines (fig. 14-58d).

One parameter for any of these types of constructions will obviously be the number of subdivisions. The following
procedure, for example, radically divides a specified circle into a specified number of equal parts

[sample codes on the right side]

631

Synthetic Tutor

8. Radial.
@ =
e %
14-58. Methods for subdividing circles. 14-59. Radial division of a circle into

equal parts.

632

Appendix B

CODE RESULT
import rhineoscriptsyntax as rs

deof circle():
center = (0, 0, 0}
r =10
obj = re.AddCircle(center, r)
return obj

def line():
start = [0, 0, 0]
end = [1, 0, O]
obj = rs.AddLine(start, end)
return obj

def scale(obj, x, y)i
origin - (0, 0, 0)
scale = [x, ¥y, 1]
result = rs.ScaleObject(ocbj, origin, scale)
return result

def rotate(obj, angle):
center = [0, 0, O]
result = res.RotateObjects(obj, center, angle)
return result

L

radial(n_parts):

circle()

increment = 360 / n_parts

angle = 0

count = range(l, n_parts+l)

for i in count:
lineID = line()
lineID = scale(lineID, 10, 1)
lineID = rotate(lineID, angle)
angle = angle + increment

radial(10)

633

Synthetic Tutor

Module 195: 14.8 Arcs 5

14.

TRANSFORMATIONS.

14.8 MOTIFS CONSTRUCTED FROM ARCS

In the case of concentric subdivision, we must consider how to space the circles. The simplest approach is to
subdivide the radius of the outer circle into a specified number of equal parts. This is accomplished with the
following procedure

[sample codes on the right side]

Some examples of output are shown in figure 14-60.

14-60. Evenly spaced concentric
subdivision.

634

CODE

import rhinoscriptsyntax as rs

def

g

eircle():

center = (0, 0, O]

r =10

ebj = ra.AddCircle(center, r)
retura obj

scale{obj, x, ¥y):

origin = [0, 0, 0]

scale = [x, ¥y, 1]

result = rs.ScaleObject(obj, origin, scale)
return result

concentric(n_parts):

diameter = 1

spacing = diameter * n_parts

repeat = range(n_parts)

for part in repeat:
oir = circle()
eir = pecale{cir, diameter, diameter)
diameter ~ diameter - spacing

concentrie(10)

RESULT

Appendix B

635

Synthetic Tutor

Module 196: 14.8 Arcs 6

14.
TRANSFORMATIONS.

14.8 MOTIFS CONSTRUCTED FROM ARCS

Another possibility is a so-called Fresnel subdivision into annular regions of equal area. This requires a rather more
complex procedure.

[sample codes on the right side]

As the example of output in figure 14-61 illustrates, Fresnel circles become more closely spaced as they become
larger. Similar approaches can be taken to subdivision by parallel lines. The lines may be equally spaced, or they
may divide the circle into equal areas (fig. 14-62).

b. Equal areas.

14-61. Fresnel subdivision, 14-62. Subdivision by parallel lines.

636

Appendix B

CODE RESULT

import rhinoscriptsyntax as rs
import math

def circle():
center = [0, 0, 0]
r =10
obj = rs.hddCirele(center, r)
retura obj

def scale(obj, x, y):
origin = (0, 0, 0]
scale = [x, y, 1]
result = rs.ScaleObject(cbj, origin, scale)
return result

-3
1]
=Y

frensel(n_parts):
s =1
spacing = 8 / n_parts
repeat = range(n_parts)
for part im repeat:
diameter = math.sqrt(s)
cir = circle()
elr - scale(cir, diameter, diameter)
s - 8 - spacing

frensel(10)

b. Equal areas.

14-61. Fresne! subdivision. 1462, Subdivision by parallel lines.

637

Synthetic Tutor

Module 197: 14.8 Arcs 7

14.
TRANSFORMATIONS.
14.8 MOTIFS CONSTRUCTED FROM ARCS

The subdivided semicircular window, or fanlight, is a closely related architectural type. The subdivision by mullions
and transoms may be radial, or radio concentric, or divided by parallel vertical lines (fig. 14-63).

The construction shown in figure 14-64 is another variant on the principle of radio concentric subdivision. It might
be used for the layout of wedge shaped rooms in a plan, or the layout of the voussoirs of an arch. A reasonable
parameterization is by the inner radius, outer radius, start angle, finish angle, and number of divisions. The
following procedure produces patterns of this type

[sample codes on the right side]

Various examples of output are shown in figure 14-65.

638

Appendix B

4
4

i

a

]
——

+

_r.,:....‘- S
+
-

e o
1 1
Ii#‘;.
L]
H

e
10 O O

H j 1.
- 4:1_ - . i .
. é - '
1111 T
i 4 !.q

R HHEHH
o ~N

a. Methods of subdivision. b. An elaborate arched window by Sir Christopher Wren.
14-63. Fanlight motifs.

3l

14-64. The voussoir motif. 14-65. Some output from Radioconcentric.

639

Synthetic Tutor

CODE

import rhinoscriptsyntax as rs

def

def

line(xl, x2):

start = [x1, 0, 0]

end = [x2, 0, 0]

obj = rs.AddLine(start, end)
roturn abj

scale(obj, x, ¥):
origin = [0, O, O]
scale = [x, y, 1}

result = rs.ScaleObject(obj, origin, scale)
rotura result

rotate(cbj, angle):

center = (0, 0, 0]

result = rs.RotateObjects{obj, ceater, angle)
return result

translate(ob), tx, ty):

translation = [tx, ty, 0]

trans = rs.MoveCbject{obj, translation)
retura trans

radioconcentric(inner_radius, outer_radius,
start_angle, finish angle,
n_parts):

line_length = outer_radius - inner_radius

inerement = (finish_angle - start_angle) / n_parts

angle = start_angle

repeat = range(l, n_parts + 2)

for part in repeat:
lineID = line(inner_radius, outer_radius)
linelD = scale(lineID, line_length, 1)
linelD = translate(lineID, inner_radius, 0)
lineID = rotate({lineID, angle)
angle = angle + increment

radioconcentric(3, 6, 60, 120, 20)

640

RESULT

Appendix B

Module 198: 14.8 Arcs 8

14.

TRANSFORMATIONS.

14.8 MOTIFS CONSTRUCTED FROM ARCS

Using the Arc and Radio concentric procedures to generate an intrados (inner curve of an arch), radial subdivisions,
and an extrados (outer curve), we can develop a general procedure for construction of arches of any thickness, with

any specified number of voussoirs. The parameterization is as shown in figure 14-66a, and the code runs as follows:
[sample codes on the right side]

An array of variant arches that were generated by this procedure is illustrated in figure 14-66b.

If the intrados and extrados are created with straight line segments, rather than arcs, a subtly different array of

instances emerges (fig. 14-67). Further varieties can be produced by introducing procedural parameters to allow
variation of intrados and extrados profiles (fig. 14-68).

641

Synthetic Tutor

o Paramatenzation { P I A y /
b Some variams.

14-66. An arch with voussoirs.

-
. . » A
N Y b} /
\ " /
! /) g \
o 4 / /’ A .
/
{ VA h .l . 4 a

14-67. Arches with intrados and extrados formed by straight
line segments.

642

Appendix B

14-68. More arches, uced by allow-
ing variation of in and extrados
profiles.

643

Synthetic Tutor

CODE

import rhinoscriptsyntax as rs
import math

def

def

line(xl, x2):

start = [x1, 0, 0]

end = [x2, 0, 0}

obj = rs.AddLine(start, end)
retura obj

scale(cbj, x, y):

origin = (0, 0, 0]

scale = [x, y, 1]

result = rs.ScaleObject(obj, origin, scale)
return result

rotate(obj, angle):

center = (0, 0, 0)

result = rs.RotateObjects(obj, center, angle)
retura result

translate(obj, tx, ty):

translation = [tx, ty, 0]

trans = rs.MoveObject{obj, translation)
retura trans

radiocencentric(inner_radius, outer_radius,
start_angle, finish_angle,
n_parte):

line_length = outer_radius - inner_radius
increment = (finish_angle - start_angle) / n_parts
angle = start_angle
repeat = range(l, n_parts + 2)
for part in repeat:
linelD = line(imner_radius, outer_radius)
lineID = rotate(linelD, angle)
angle = angle + increment

arc(xe, ye, radius, start_angle, stop_angle,
n_segments):

rad = 0.01745
degrees = (stop_angle - start_angle) / n_segmeats * rad
theta = start_angle * rad
repeat = range(l, n_segmenta+2)
result = (]
for sides in repeat:
y = y¢ + radius * math.sin(theta)
x = xc + radius * math.cos(theta)
if (sides == 1)3
PO = [x, ¥, 0]
olse:
pl = [x, ¥, 0]
1n = rs.AddLine(p0, pl)
result.append(ln)
p0 = pl
theta = theta + degrees
return result

arch_modified({inner_radius,outer_radius,n_parts):
arc(0,0,inner_radius,0,180,n_parts)
arc(0,0,0uter_radius,0,180,n_parts)
radioconcentric(inner_radius,outer_radius,0,180,n_parts)

arch_modified(4,8,10)

644

RESULT

14-86. An arch with voussoins

1647, Arches with intrados and extrados formed by ytraight
line scgments.

Appendix B

645

Synthetic Tutor

Module 199: 14.9 Composition

14.
TRANSFORMATIONS.

14.9 COMPOSITIONS WITH MIXED SYMMETRY

Many compositions contain parts with different symmetries. Consider, for example, the classical temple elevation in
figure 14-69. The whole thing has bilateral symmetry, and the colonnade has frieze symmetry.

The plan (fig. 14-69) has a rather more complex combination of symmetries. The overall rectangle has symmetry
about two axes. The details of the plan, however, distinguish between front and back and so reduce this to bilateral
symmetry. The column grid sets up wallpaper symmetry, but this is broken by insertion of the cellar.

In general, the various symmetries that can be discovered within a com position suggest an appropriate way to break
the composition down into a hierarchy of elements and subsystems. The elementary motifs can then be put together
by a corresponding hierarchy of transformations that expresses the various symmetries that are involved. Broken
symmetries can be handled with conditionals. Figure 14-70 shows an elevation by Sir Christopher Wren broken
down in this way. In classical architecture, generally, there is symmetry of each element, symmetry of each
subsystem, and symmetry of the whole. Early modern architects, on the other hand, often arranged symmetrical
elements to form asymmetrical overall compositions (fig. 14-71). In Japanese stone gardens (Ryoan-ji, for example),
asymmetrical elements form asymmetrical wholes.

646

Appendix B

s A t A Yy gt B by STy i
T v v
i

e B e o L e e PPy
. i FI

s S I o o

14-69, The symmetries of a classical
temple in elevation and plan.

647

Synthetic Tutor

§

14-70. Hierarchy of symmetries in an elevation by Sir Christopher Wren (St. Olave's, Jewry).

648

ODoigo o

| I lii!é!l LI T

LI 1

m "Umﬂ_l['l"

e

nn_.
‘ o g o o

"'”“_ T IO 10T T

0 ey]

Appendix B

649

Synthetic Tutor

650

anul

rjr_l$

Sk

T_i!_ﬂ_'ﬂ_mrll[ll

o] [)y s T

- 4H

LI H

. .

,m_am i

i mmrhulakm form an

., CARPET AP

L e]

Appendix B

Module 200: Final Test

FINAL EXERCISE .

DIRECTIONS

Using Python programming, develop floor plans for the two-story building described in the program. Your floor plans should be
responsive to given program and code requirements and should reflect principles of sound design logic. Adequate and code-
compliant circulation should be provided, and the orientation of the building should be responsive to site influences. Develop your
floor plans by sizing and locating all required spaces and any necessary corridors on the site plan provided on the work screen.
Indicate all windows, doors, and wall openings. Before beginning your solution, you should review the program and code
information that can be accessed and familiarize yourself with the site plan on the work screen. Please draw your plan inside the
building limit line. Consider the low-left corner as an origin point.

Please upload your python file: | Choose File | Mo file chosen Submit |
Please upload your first floor JPG file: [Choose File | Mo file chosen [Submit
Please upload your second floor JPG file: | Choose Mo‘ No file chosen Submit
SITE PLAN
VIEW
r.’.""_"" S - — r————————————— e
- ,‘!Q
n iS5
® . 3y
- Buel DG LT UINE 1%]
- 2 e o o e -
i ! I
u 1 |
[I
u ' |
& |] P
o [[B 4
s | H | | =g
& Lo 1 [(S &
" PH : =
2 i 18 5
st : :
b _! | [
™ 1 i
i !—i 1 ' g'é
- i i 15
f - | I E;é
- | I I
- i 1
yea -l &
|} S — — S S— 0 S— — - _—

R T SR D4

MARKET STREET

PROGRAM

The family life center will provide recreational and fellowship facilities for a community church.
1. The site is located on Market Street adjacent to a community church. Parking is available off the site.
2. The major view is to the north.

651

Synthetic Tutor

3. The receptionist is to have visual control of the entry to each of the following spaces: the lobby, the game room, and the
children’s room.

4. The main entrance door shall face west.

5. All spaces shall have a 9 ft ceiling height except the multi-purpose room, which shall have an 18 ft ceiling height.

6. The area of each space shall be within 10 percent of the required program area.

7. The total corridor area shall not exceed 25 percent of the total program area.

8. The second floor envelope must be congruent with or wholly contained within the first floor envelope with the exception that
doors

to the exterior may be recessed for weather protection.

PROGRAM- SPACES

Tag Name Area (ft?) Requirements
ST Stair 800 2 per floor @ 200 ft? per stair
E Elevator Shaft 200 1 per floor @ 100 ft* each; Minimum dimension = 7 ft
EE Elevator Equipment Room 100
EM Electrical/Mechanical Room 500
AO Assistant Director’s Office 200 Exterior window required; Direct access to Secretarial Office
CR Children’s Room 750 Exterior window required; Near Multi-purpose Room
DO Director’s Office 350 Exterior window required; Direct access to Secretarial Office
GR Game Room 1,350 View—exterior window required
L Lobby 700 Main Entrance
LM Large Meeting Room 1,000 Exterior window required
LR Locker Rooms 200 2 @ 100 f1? each; Exterior windows prohibited,
Direct access to Multi-purpose Room
MP Multi-purpose Room 2,600 View—exterior window required; 18 ft ceiling; 2 exits; First floor
R Receptionist 400 Exterior window required; Near Lobby
SM Small Meeting Room 750 Exterior window required; Near Large Meeting Room
SO Secretarial Office 500 Exterior window required; Near Large Meeting Room; Second
Floor
SW Social Worker 500 Exterior window required
TR Toilet Rooms 800 2 per floor @ 200 f each
TS Table/chair Storage 300 Near Multi-purpose Room

TOTAL PROGRAM AREA 12,000 ft*

CODE

Comply with the following code requirements. These are the ONLY code-related criteria you are required to use.

DEFINITIONS

1. Means of egress: A continuous and unobstructed path of travel from any point in a building to a public way. A means of egress
romnn<e< the vertical and horizontal means of travel to an exit and includes mcnmnnmg doors, interior wall ,\)pcmngs’ corridors,
circulation areas, and stairs.

2. Circulation area: A lobby or a space designated as an “area.”

3. Exit: That portion of a means of egress that provides a protected route of travel to the exit discharge. Exits include both exterior
exit doors and exit stairways.

652

Appendix B

EXITING REQUIREMENTS

1. Provide a minimum of two exits from each floor separated by a travel distance equal to not less than 1/2 of the length of the
maximum overall diagonal dimension of the floor to be served.

2. Every room shall connect directly to a corridor or circulation area.

Exception: elevator equipment rooms and rooms with an area of 50 ft? or less may connect to a corridor or circulation area
through an intervening space, but not directly to a stair.
3. In rooms required to have two exit doors, separate the two exit doors by a distance equal to not less than 1/2 of the length of the
maximum overall diagonal dimension of that room.

Exit doors may discharge directly to the exterior of the building at grade.

4. Required exit doors shall swing in the direction of egress travel.

5. Door swings shall not reduce the minimum clear exit path to less than 3 ft.

CORRIDORS

1. Discharge corridors directly to the exterior at grade or through stairs or circulation areas.

2. Do not interrupt corridors with intervening rooms - circulation areas are not considered to be intervening spaces.
3. Maximum lIength of dead-end corridors: 20 ft.

4. Minimum clear width of corridors: 6 ft.

STAIRS
1. Discharge stairs directly to the exterior at grade.

2. Connect stairs directly to a corridor or circulation area at each floor with exit access doors.
3. Minimum width of stairs: 4 ft.

PROCEDURAL TIPS

- Read the Program and Program Spaces listing carefully.

- You may want to draw each space so that it has approximately the required area, assemble the spaces into a finished floor plan,
then adjust the areas if necessary. Note that the dimensions that are given as you draw a space are from wall centerline to wali
centerline. It is especially important to take this into consideration when you are drawing corridors to code-required widths, which
are measured from one edge of the corridor to the other.

- Check for overlaps while you are drawing.

- You are not required to show doors or wall openings in elevator wall.

W This problem comes from ARE 4.0 EXAM GUIDE Schematic Design. NCARB 2012

Back to Contents | How do you evalute this content?: Useless (31 Q2 (O3 (04 (05 Highly Useful

653

Synthetic Tutor

654

Appendix C

APPENDIX C.

Computer Vision Tutor Survey Questions.

1. Are you currently in an undergraduate or a graduate program?
1. Undergraduate
2. Graduate

2. What year are you in?
1. More than 5

ANl e
— N W AW

3. What is your major?
1. Architecture

2. Urban Design

3. Real Estate

4. How many architectural design studios did you have previously (including this
semester)? Please include any studios in your undergraduate school(s), if you are a
graduate student.

5. Overall, how do you evaluate the feedback the Machine Tutor provided on your
sketch?

1. Highly Satisfied

2. Somewhat Satisfied

3. Neither Satisfied nor Unsatisfied

4. Somewhat Unsatisfied

S. Highly Unsatisfied

6. How much do you think the feedback is related to your design concept?
1. Highly Related

2. Somewhat Related

3. Neither Related nor Unrelated

4. Somewhat Unrelated

5. Highly Unrelated

7. How much do you think the feedback is useful for your design improvement?

655

Synthetic Tutor

1. Highly Useful

2. Somewhat Useful

3. Neither Useful nor Useless
4. Somewhat Useless

5. Highly Useless

8. Comparing to your previous (human) studio instructors, how do you evaluate the
feedback the Machine Tutor provided?

1. The Machine Tutor's feedback is so much better than instructors' feedback

2. The Machine Tutor's feedback is somewhat better than instructors' feedback

3. Both are equally useful

4. Instructors' feedback is somewhat better than the Machine Tutor's feedback

5. Instructors' feedback is so much better than the Machine Tutor's feedback
9. How many times did you try the feedback of the Machine Tutor?

10. Do you have any suggestions or questions? Please feel free to write here.

11. Do you feel or see any potential benefits of the Machine Tutor?

12. Do you feel or see any potential drawbacks of the Machine Tutor?

656

Appendix D

APPENDIX D.
List of Architects and Their Projects that the Computer Vision Tutor
learned.
1. Frank Gehry
a. Sirmai Peterson House
b. Winton Guest House
2. Frank Lloyd Wright
a. Dr. George Ablin House
b. Lockridge Medical Clinic
c. Massaro House
d. Norman Lykes House
e. Paul Olfelt House
3. Le Corbusier
a. Curutchet House
b. Ternisien House
c. VillaLaRoche
d. VillaLe Lac
e. Villa Savoye
f. Villa Shodan
g. Villa Stein
h. Weessenhofsiedlung
4. Luis Sullivan
a. George Harvey House
5. Mies Van der Rohe
a. 1300 Lake Shore Drive Apartment
b. Brookfarm Apartment
c. Esplanade Apartment Building
d. Farnsworth House
e. Highfield House Apartments
f. Joseph Cantor House
g. Leon J. Caine House
h. Tugendhat House
i. Ulrich Lange House
6. Phillip Johnson
a. Johnson House at Cambridge
b. Rockefeller Guest House
c. The Glass House

7. Richard Meier

657

Synthetic Tutor

a. Bodrum House

b. Douglas House

c. Rachofsky House
d. Smith House

e. Vitrum Apartments

8. Robert Venturi
a. The Lieb House
b. Trubek and Wislocki House
¢. Vanna Ventrui House
9. Tadao Ando
a. 4 x4 House
b. Benesse House
c. Row House in Sumiyoshi Azuma House

658

APPENDIX E.
1.0001
.
* 1e8
229%
800+ -
600
400
200
i
StudyTIME
7
=
.
4
.
e
] o*
Log_"l'lﬂi

Appendix E

Figure 27. Boxplots of participants’ total study time in its original scale (top) and in

natural logarithm scale (bottom).

659

Synthetic Tutor

Histogram

1207 Mean = 111.86
Std. Dev. = 153.835
N =242

Frequency

200.00 400.00 600.00 800.00 1000.00

StudyTIME
Histogram

3.00 400 5.00 6.00 7.00
Log_TIME

Figure 28. The histogram of participant’s total study time in its original scale (n = 242,
top) and in natural logarithm scale (n = 242, bottom).

660

Appendix E

Normal Q-Q Plot of StudyTIME

i
.
"
E .-
©
z
T
g .
o
-2
-4
-2‘00 5 260 450 650 l('m l.DlOD
Observed Value
Normal Q-Q Plot of Log_TIME
24
]
E
o 0
z
-
o2
o
.2
-4

T
4

Observed Value

o=
-
=
00 =

Figure 29. The normality test plots of participants’ total study in its original scale (top)

and in natural logarithm scale (bottom).
As seen on the right Q-Q plot, the normality is improved compared the left Q-Q plot. The log-
transformed samples lie closer to the samples in its original scale.

661

Synthetic Tutor

1,000
wl!l
13 e
135
*
800 *5?
136
*
o *134
*
137
400
200
0

L}
StudyTIME

Figure (a) The boxplot of the ML participants’ daily study time in minute.

Histogram

60

204

400.00 600.00 800.00 1000.00

Study TIME
Figure (b) The histogram of the ML participants’ daily study time in minute.

£00 200.00

662

Appendix E

Normal Q-Q Plot of StudyTIME

Expected Normal

24

-4+

Y T T T T
200 400 600 800 1,000

Observed Value

o=

-200

Figure (¢) The Q-Q plot of the ML participants’ daily study time in minute.

3
113 65
o

1

T
Log_TIME

Figure (d) The boxplot of the ML participants’ daily study time in log-scale.

663

Synthetic Tutor

Histogram

20+

157

Frequency
3

Figure (e) The histogram of the ML participants’ daily study time in log-scale.

Normal Q-Q Plot of Log_TIME

-4

H H H H
Observed Value

Figure (f) The Q-Q plot of the ML participants’ daily study time in log-scale.

Figure 32. Descriptive statics for the Daily Study Time (a, b, and ¢) and the Daily Log.
Study Time (d, e, and f) of the ML participants (n = 137)

664

Appendix E

1,000
84
*
800+
600 -
85
*
3
94
400
e
Xso
9%
49
%90
o
200
0

T
StudyTIME

Figure (a) The boxplot of the non-ML participants’ daily study time in minute.

Histogram

60

50

20

104

.00 200.00 400.00 €00.00 800.00
StudyTIME

Figure (b) The histogram of the non-ML participants’ daily study time in minute.

665

Synthetic Tutor

Normal Q-Q Plot of StudyTIME

7.59

5.0

2.5+

Expected Normal

0.0+

T T T T T
-200 o 200 400 600 800 1,000
Observed Value

Figure (c) The Q-Q plot of the non-ML participants’ daily study time in minute.

[84
)

92

85993

n Og4

5

1

T
Log _TIME

Figure (d) The boxplot of the non-ML participants’ daily study time in log-scale.

666

Appendix E

Histogram

20

15

10

Frequency

5.00
Log_TIME

Figure (e) The histogram of the ML participants’ daily study time in log-scale.

Normal Q-Q Plot of Log_TIME

Expected Normal
3

-2

o
-

o
o =

Observed Value

Figure (f) The Q-Q plot of the ML participants daily study time in log-scale.

Figure 33. Descriptive statics for the Daily Study Time (a, b, and c) and the Daily Log.
Study Time (d, e, and f) of the non-ML participants (n = 105)

667

