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Abstract

In this thesis, we study problems in cryptography, privacy and estimation through the
information-theoretic lens. We introduce information-theoretic metrics and associated results
that shed light on the fundamental limits of what can be learned from noisy data. These
metrics and results, in turn, are used to evaluate and design both symmetric-key encryp-
tion schemes and privacy-assuring mappings with provable information-theoretic security
guarantees.

We start by studying information-theoretic properties of symmetric-key encryption in the
"small key" regime (i.e. when the key rate is smaller than the entropy rate of the message
source). It is well known that security against computationally unbounded adversaries in
such settings can only be achieved when the communicating parties share a key that is at
least as long as the secret message (i.e. plaintext) being communicated, which is infeasible in
practice. Nevertheless, even with short keys, we show that a certain level of security can be
guaranteed, albeit not perfect secrecy. In order to quantify exactly how much security can
be provided with short keys, we propose a new security metric, called symbol secrecy, that
measures how much an adversary that observes only the encrypted message learns about
individual symbols of the plaintext. Unlike most traditional rate-based information-theoretic
metrics for security, symbol secrecy is non-asymptotic. Furthermore, we demonstrate how
fundamental symbol secrecy performance bounds can be achieved through standard code
constructions (e.g. Reed-Solomon codes).

While much of information-theoretic security has considered the hiding of the plaintext,
cryptographic metrics of security seek to hide functions thereof. Consequently, we extend
the definition of symbol secrecy to quantify the information leaked about certain classes
of functions of the plaintext. This analysis leads to a more general question: can security
claims based on information metrics be translated into guarantees on what an adversary
can reliably infer from the output of a security system? On the one hand, information
metrics usually quantify how far the probability distribution between the secret and the
disclosed information is from the ideal case where independence is achieved. On the other
hand, estimation guarantees seek to assure that an adversary cannot significantly improve
his estimate of the secret given the information disclosed by the system.

We answer this question in the positive, and present formulations based on rate-distortion
theory that allow security bounds given in terms of information metrics to be transformed
into bounds on how well an adversary can estimate functions of secret variable. We do this
by solving a convex program that minimizes the average estimation error over all possible
distributions that satisfy the bound on the information metric. Using this approach, we
are able to derive a set of general sharp bounds on how well certain classes of functions
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of a hidden variable can(not) be estimated from a noisy observation in terms of different
information metrics. These bounds provide converse (negative) results: If an information
metric is small, then any non-trivial function of the hidden variable cannot be estimated
with probability of error or mean-squared error smaller than a certain threshold.

The main tool used to derive the converse bounds is a set of statistics known as the
Principal Inertia Components (PICs). The PICs provide a fine-grained decomposition of the
dependence between two random variables. Since there are well-studied statistical methods
for estimating the PICs, we can then determine the (im)possibility of estimating large classes
of functions by using the bounds derived in this thesis and standard statistical tests. The
PICs are of independent interest, and are applicable to problems in information theory,
statistics, learning theory, and beyond. In the security and privacy setting, the PICs fulfill
the dual goal of providing (i) a measure of (in)dependence between the secret and disclosed
information of a security system, and (ii) a complete characterization of the functions of the
secret information that can or cannot be reliably inferred given the disclosed information.
We study the information-theoretic properties of the PICs, and show how they characterize
the fundamental limits of perfect privacy.

The results presented in this thesis are applicable to estimation, security and privacy.
For estimation and statistical learning theory, they shed light on the fundamental limits of
learning from noisy data, and can help guide the design of practical learning algorithms.
Furthermore, as illustrated in this thesis, the proposed converse bounds are particularly useful
for creating security and privacy metrics, and characterize the inherent trade-off between
privacy and utility in statistical data disclosure problems.

The study of security systems through the information-theoretic lens adds a new dimension
for understanding and quantifying security against very powerful adversaries. Furthermore,
the framework and metrics discussed here provide practical insight on how to design and
improve security systems using well-known coding and optimization techniques. We conclude
the thesis by presenting several promising future research directions.

Thesis Supervisor: Muriel Msdard
Title: Cecil H. Green Professor of Electrical Engineering and Computer Science

Title: Assistant Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

From the point of view of the cryptanalyst, a secrecy system is almost

identical with a noisy communication system. The message (transmitted

signal) is operated on by a statistical element, the enciphering system, with

its statistically chosen key. The result of this operation is the cryptogram

(analogous to the perturbed signal) which is available for analysis.

C. E. Shannon, Communication Theory of Secrecy Systems, 1949

Information theory enables us to study seemingly disparate engineering problems through

a unified methodological lens. The same information-theoretic framework used to charac-

terize the limits of communication can, for example, be adapted to evaluate the security

of cryptographic systems, design privacy-assuring mappings for statistical data disclosure,

and determine the boundaries of what can or cannot be reliably estimated from noisy data.

What makes information theory so versatile is the fact that problems that involve process-

ing, securing, estimating or transmitting information can be captured through closely related

canonical models. Information theorists have successfully proven over the past 70 years that,

by studying these canonical models, we can have an impact in fields ranging from wireless

communication and cryptography to machine learning and distributed data processing.

In this thesis, we introduce new information-theoretic tools to address challenges in

cryptography, privacy and estimation. By studying fundamental models that are common

to these fields, we derive information-theoretic metrics and associated results that simulta-

neously (i) delineate the fundamental limits of estimation and (ii) characterize the security

properties of cryptographic and privacy-assuring systems. We present an overview of our

contributions towards the end of the chapter. First, we take a step back, and provide a few

bits of background to contextualize the approach taken here.

We start by describing in Section 1.1 how the insight of using a common information-

theoretic approach to analyze seemingly different application areas dates back to the con-
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ception of the field by Claude E. Shannon [1, 21. Shannon realized that the problems of

securing and transmitting information are intertwined, and can be studied using the same

set of theoretical tools. We then describe in Section 1.2 two parallel views of secrecy: the

information-theoretic and the computational view. In this thesis, we adopt the former. In

Section 1.3, we discuss how the canonical model behind communication and cryptography

is also behind privacy and estimation. This fact enables us to develop information-theoretic

results that are simultaneously applicable to these different fields. In Section 1.4, we de-

scribe the specific privacy setting considered in this thesis. Section 1.5 presents a roadmap

of the thesis and outlines the main contributions. Finally, we conclude the chapter with an

overview of the notation used throughout the thesis in Section 1.7.

1.1 Cryptography and Communication: Similar Problems, Dif-

ferent Goals

Cryptography and communication are closely related fields, but with fundamentally different

goals. Cryptographers seek to design systems that protect a secret message (also known as

the plaintext) from an eavesdropper. This is usually done by either taking advantage of some

information asymmetry between the legitimate parties (e.g. sharing a secret key that the

eavesdropper does not have access to), or by demonstrating that successful cryptanalysis is

equivalent to solving a problem that is believed to be computationally hard. Communication

systems, in turn, seek to protect a message against errors caused by a communication channel.

Such systems add redundancy to the message in order to provide resilience against noise

and, consequently, increase the probability of successful decoding.

The brilliance of Shannon when studying secrecy systems 12] is reflected, at least in part,
by his insight that the tools he created for a mathematical theory of communication [1
were also applicable to the cryptographic setting. As stated in the quote in the beginning of

this chapter, Shannon realized that the problem of performing cryptanalysis on a ciphertext

is fundamentally the same as decoding a message corrupted by noise. Information theory

enabled him to analyze both problems from the same theoretical vantage point. According

to Shannon 131, "...(cryptography and communication) are very similar things, in one case

trying to conceal information, and in the other case trying to transmit it."

The key problem common to both cryptography and communication is illustrated in

Fig. 1-1. In cryptography, X plays the role of the plaintext message that is supposed to

remain hidden from an eavesdropper. The random variable Y is the ciphertext, produced

from the plaintext through some random mapping (e.g. Y is a function of both X and a

randomly selected key). The eavesdropper then observes the ciphertext Y, and will perform

cryptanalysis in order to guess not only the plaintext X, but properties of the plaintext (e.g.

the first bits of the message), denoted here by S. The engineering goal in this setting is

to create a random mapping that thwarts cryptanalysis by minimizing the eavesdropper's

14
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Figure 1-1: The central problem to both cryptography and communication.

ability of estimating S given the ciphertext Y and any other available side information.

In the communication setting, S is the original message, which is channel-encoded into

X. The random mapping is given by the communication channel, and will transform the

channel input X into the channel output Y. A receiver will then attempt to recover the

original message S given an observation of Y. Note that here X may represent a sequence of

channel inputs that are transformed into a sequence of channel outputs Y through multiple

uses of the channel. The engineering goal is to design a mapping from the message S to the

channel input X that maximizes the information that Y carries about X and, equivalently,
maximizes that probability that the decoded message S matches the original message S.

Observe that here the mapping from S to X is chosen by design, whereas in cryptography

the (random) transformation from S to X is given by the distribution of the source of

plaintext messages.

Even though cryptography and communication have different design goals, there are

fundamental questions that pertain to both settings: How well can X be estimated given an

observation of Y? What is the set of functions S = f(X) that can be reliably estimated given

Y? How do changes in the random mapping affect the information that Y carries about

S? Shannon demonstrated that all of these questions can be addressed using information

theory. The setup considered by Shannon for both securing and transmitting information is

also at the heart of problems in estimation and privacy, as illustrated in Fig 1-2. We discuss

the connection between estimation an privacy in more detail in Section 1.3.

Information theory provides a powerful set of tools for studying problems in commu-

nications, cryptography, estimation theory, statistical learning and beyond. By creating a

common framework grounded on probability theory, information theory enables us to de-

lineate the fundamental limits of processing, securing and transmitting information. These

limits, in turn, have been widely successful as a design driver for practical systems, and have

fueled the digital revolution of the last half-century.

In this thesis we follow Shannon's lead, and study problems in cryptography, privacy
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Figure 1-2: The central problem to both estimation and privacy.

and estimation theory through the information-theoretic lens. We introduce information-

theoretic metrics and associated results that shed light on the fundamental limits of what

can be learned from noisy data. These metrics and results, in turn, are used to evaluate

and design both symmetric-key encryption schemes and privacy-assuring mappings with

provable information-theoretic security guarantees.

We focus on the question that is central to cryptography, communication, privacy and

estimation (illustrated in Figs. 1-1 and 1-2): How well can a random variable S, that is cor-

related with a hidden variable X, be estimated given an observation of Y? The information-

theoretic metrics presented here seek to quantify properties of the random mapping from X

to Y that can be translated into bounds on the error of estimating S given an observation of

Y. These bounds, often called converse bounds [4J, provide universal, algorithm-independent

guarantees on what can (or cannot) be learned from Y. With a characterization of these

bounds in hand, we then seek to design random mappings that achieve a certain privacy or

security goal, usually in terms of how well an adversary can estimate a secret S given the

output of the mapping Y. Security provides fertile ground for application of information-

theoretic metrics and, as shown in this thesis, it is where converse results carry practical

meaning.

Most of the results in this thesis are theoretical in nature, but practical at heart. Our

goal is that the many theorems and lemmas presented here serve as a design guideline for

practical security and privacy schemes. In the cryptographic setting, we demonstrate how

the derived converse bounds can be combined with well-known code constructions to create

symmetric-key encryption schemes that provide security guarantees against very powerful

eavesdroppers, even when small keys are used. In the context of privacy, we introduce

convex formulations that output privacy-assuring mappings that achieve the optimal trade-

off between privacy and utility for certain privacy metrics. These mappings, in turn, can be

used to create algorithms for distorting data for disclosure with privacy guarantees against

statistical inference.

In the next sections, we provide more details on the relationship between information-
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theoretic security, modern cryptography, privacy and estimation theory before presenting a

detailed overview of the thesis.

1.2 Lunch with Shannon and Turing

In 1943, during the height of the Second World War, Alan Turing visited Bell Labs to consult

on secure speech communication projects [5]. Shannon stated in an interview with R. Price

in 1982 [61 that Turing and him would frequently have lunch together, but did not discuss

cryptography. They usually preferred topics they could discuss freely, such as computing

machines and the human brain [3]. Shannon stated that he would often describe to Turing

his preliminary notions of information theory. Was the British computer scientist interested

in Shannon's seminal ideas? "He was interested," Shannon told Price, "but he didn't believe

they were in the right direction. I got a fair amount of negative feedback almost." Despite

their disagreement, the ideas of both Shannon and Turing had an enormous impact in

cryptography, computing, communication and beyond.

Today, security systems are studied by both information theorists and computer scientists

in parallel. However, each community has its own view on secrecy and, in particular, makes

different assumptions on the adversarial model1 . As a result, the security properties of a

communication system can, in general, be evaluated from two fundamental perspectives:

information-theoretic and computational. The goal of information-theoretic security is to

design cryptographic systems with provable security guarantees against adversaries with

access to unlimited computing resources and time. Computational security, in turn, seeks

to design systems that are secure against adversaries with limited computational resources.

For a noiseless setting, unconditional (i.e. perfect) information-theoretic secrecy can only

be attained when the communicating parties share a random key with entropy at least as

large as the message itself [2]. Consequently, usual information-theoretic approaches focus

on physically degraded models [7], where the goal is to maximize the secure communication

rate given that the adversary has a noisier observation of the message than the legitimate

receiver. On the other hand, computationally secure cryptosystems have thrived from both

a theoretical and a practical perspective. Such systems are based on yet unproven hardness

assumptions, but nevertheless have led to cryptographic schemes that are widely adopted

(for an overview, see [81). Currently, computationally secure encryption schemes are used

millions of times per day, in applications that range from on-line banking transactions to

digital rights management.

Computationally secure cryptographic constructions do not necessarily provide an information-

theoretic guarantee of security. For example, one-way permutations and public-key encryp-

tion cannot be deemed secure against an adversary with unlimited computational resources.

This is not to say that such primitives are not secure in practice - real-world adversaries are

'We note that these two parallel views are not due to any kind of disagreement between Shannon and
Turing, but due to the natural evolution of our understanding of security systems over the past 60 years.
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indeed computationally bounded. Alternatively, the traditional2 "perfect secrecy" definitions

adopted in information theory create a rigid framework that usually leads to impractical, or

at least unwieldy, security schemes.

In this thesis, and specifically in Chapters 2 and 3, we study information-theoretic proper-

ties of symmetric-key encryption schemes in the "small key" regime (i.e. when the key rate is

smaller than the entropy rate of the source). In this case, perfect secrecy cannot be attained.

Nevertheless, we show that a certain level of information-theoretic security can indeed be

guaranteed, albeit that security guarantee is not perfect secrecy. We introduce a new metric

to quantify information-theoretic security beyond perfect secrecy, called symbol secrecy, and

characterize the class of functions of the plaintext that are information-theoretically hidden

for a given level of symbol secrecy. We highlight that, in this analysis, we do not impose

computational restrictions on the adversary (the usual approach in modern cryptography),

and instead relax the notion of (information-theoretic) security achieved.

The study of cryptographic systems through the information-theoretic lens adds a new

dimension for understanding and quantifying security against very powerful adversaries.

Furthermore, the framework and metrics discussed here provide insights on how to design

and improve security systems using well-known coding techniques. This approach does not

seek to replace existing computational security-based methods, but enhance the set of tools

available for designing and evaluating security systems.

1.3 Estimation and Security Metrics: Two Sides of the Same

Coin

There is a fundamental limit to how much we can learn from data. The problem of determin-

ing which functions of a hidden variable can or cannot be estimated from a noisy observation

is at the heart of estimation, statistical learning theory [91, and numerous other applications

of interest. For example, one of the main guali uf piedictiui i to determine a function of a

hidden variable that can be reliably inferred from the output of a system.

Privacy and security applications are concerned with the inverse problem: guaranteeing

that a certain set of functions of a hidden variable cannot be reliably estimated given the

output of a system. Examples of such functions are the identity of an individual whose

information is contained in a (supposedly) anonymous dataset [10], sensitive information

of a user who joined a database [11, 12], the political preference of a set of users who

disclosed their movie ratings [13-15], among others. On the one hand, estimation methods

attempt to extract as much information as possible from data. On the other hand, privacy-

assuring systems seek to minimize the information about a secret variable that can be reliably

estimated from disclosed data. The relationship between privacy and estimation is the same

2 Perfect secrecy requires independence between the output of a security system Y and the information
that is supposed to remain hidden S regardless of the computational resources available to the adversary,
and assuming a given threat model in terms of the side information available to the adversary.
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as the one noted by Shannon between cryptography and communication: they are connected

fields, but with different goals. As illustrated in Fig. 1-2, estimation and privacy are

concerned with the same fundamental problem, and can be simultaneously studied through

the information-theoretic lens.

Many of the results in this thesis, and particularly Chapters 4 to 7, are situated at the

intersection of estimation, privacy and security. We derive a set of general sharp bounds

on how well certain classes of functions of a hidden variable can(not) be estimated from a

noisy observation. The bounds are expressed in terms of different information metrics of

the joint distribution of the hidden and observed variables, and provide converse (negative)

results: If an information metric is small, then not only the hidden variable cannot be reliably

estimated, but also any non-trivial function of the hidden variable cannot be guessed with

probability of error or mean-squared error smaller than a given threshold.

These results are applicable to both estimation and security/ privacy. For estimation

and statistical learning theory, they shed light on the fundamental limits of learning from

noisy data, and can help guide the design of practical learning algorithms. Furthermore, as

illustrated in this thesis, the proposed bounds are particularly useful for creating security

and privacy metrics, and characterize the inherent trade-off between privacy and utility in

statistical data disclosure problems.

The tools used to derive the converse bounds are based on a set of statistics known as

the Principal Inertia Components (PICs). The PICs provide a fine-grained decomposition

of the dependence between two random variables. Since there are well-studied statistical

methods for estimating the PICs [16,17], we can then make claims on the (im)possibility of

estimating a large classes of functions by using the bounds derived in this thesis and standard

statistical tests. We also demonstrate in Chapter 6 that the PICs play an important role in

information theory, and they can be used to characterize the information-theoretic limits of

certain estimation problems.

1.4 A Note on Privacy

When referring to privacy in this thesis, we consider the setting studied by Calmon and

Fawaz in [18]. Using Fig. 1-2 as reference, we study the problem of disclosing data X to a

third-party in order to derive some utility based on X. At the same time, some information

correlated with X, denoted by S, is supposed to remain private. The engineering goal is to

create a random mapping, called the privacy-assuring mapping, that transforms X into a

new data Y that achieves a certain target utility, while minimizing the information revealed

about S. For example, X can represent movie ratings that a user intends to disclose to

a third-party in order to receive movie recommendations [13-15,191. At the same time,

the user may want to keep her political preference S secret. We allow the user to distort

movie ratings in her data X in order to generate a new data Y. The goal would then be
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to find privacy-assuring mappings that minimize the number of distorted entries in Y given

a privacy constraint (e.g. the third-party cannot guess S with significant advantage over a

random guess). In general, X is not restricted to be the data of an individual user, and

can also represent multidimensional data derived from different sources. For more details

on designing privacy-assuring mappings and applications with real-world data, we refer the

reader to [13-15,18-20].

From a cryptographic standpoint, this setting can be addressed, at least in part, using

secure multi-party computation (MPC) protocols [21]. The goal of MPC protocols is to

compute a function over data provided by multiple parties while keeping each individual

input private. MPC protocols guarantee that each party learns no more than the output

of the computation, and whatever can be inferred about the other parties' inputs given the

global output. However, MPC does not guarantee the non-existence of an inference risk from

the function output, and individual inputs may be approximately reliably inferred given the

output of the function (e.g. when computing a maximum over several inputs, at least one

input will be known exactly).

Consequently, unlike MPC, we allow loss in precision of the function computation by

permitting the user to distort her data before disclosure. This is particularly relevant in

cases where the result of the computation may be inherently tied to the secret information

(e.g. documentary recommendations are closely related to the users' political preferences)

and is made publicly available. We also do not necessarily assume that the functions of the

data that will be computed to provide utility for the user are known a priori (e.g. a company

may not want to reveal details about how their recommendation engine works). Instead, we

take the information and estimation-theoretic route, and seek to design privacy-assuring

mappings that distort the data X in order minimize the information that leaks about S for

a given target utility and privacy constraint. Here, the utility constraint acts as a proxy for

the functions computed by the service provider, and may be made as specific (or general)

as necessary for the application at hand. These privacy-assuring mappings provide privacy

guarantees that are independent of computational assumptions. A secondary goal is to

characterize the trade-off between privacy and utility (distortion) in this setting. However,

our approach does not to subsume MPC, but instead complements the set of tools available

for privacy.

Note that this setting is also related to the one studied in the differential privacy literature

[11, 12]. Indeed, the traditional differential privacy analysis used in centralized statistical

databases can be mapped to this general framework: X can represent a query response over

a database, and S a binary variable that indicates if a user joined or not the database. The

variable S can also be used to represent a user's individual entry to the database. The goal

would then be to distort the query response X (in differential privacy this is often done by

adding noise) in order to produce an output Y. We highlight that the setting studied here

is more general.
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In the next section, we present a more detailed overview of our contributions, and delin-

eate the organization of the rest of the thesis. We then conclude this chapter by introducing

the core notation used in the thesis.

1.5 Overview of the Thesis

We start by studying the information-theoretic security properties of symmetric-key encryp-

tion schemes with small keys in Chapter 2. We consider two communicating parties, namely

Alice and Bob, who share a secret key and communicate through a noiseless communication

channel. Alice's goal is to securely transmit a plaintext message to Bob. The communica-

tion channel is observed by an eavesdropper (Eve), who does not know the key and seeks

to recover the plaintext message. Alice and Bob, in turn, wish to minimize the information

that Eve gains about the plaintext.

We introduce the concept of list-source codes (LSCs), which are codes that compress

a source below its entropy rate. LSCs are a useful tool for understanding how to perform

encryption when the length of the randomly selected key is smaller than the entropy of the

message source. When the key is small, we use LSC-based analysis to demonstrate how

Eve's uncertainty reduces to a near-uniformly distributed list of possible source sequences

with an exponential (in terms of the key length) number of elements. We derive fundamental

bounds for the rate-list region, and provide code constructions that achieve these bounds.

We also illustrate how LSCs can be implemented using standard linear codes.

Furthermore, we present a new information-theoretic metric of security called symbol

secrecy, which characterizes the amount of information leaked about specific symbols of the

source given an encoded version of the message. We derive fundamental bounds for symbol

secrecy, and show how these bounds can be achieved using maximum distance separable

(MDS) codes [22] when the source is uniformly distributed.

While symbol secrecy quantifies the information that leaks about individual symbols of

the plaintext, most cryptographic metrics seek to characterize the functions of the plaintext

that an eavesdropper can (or cannot) reliably estimate. For example, semantic security,

introduced in [23], requires that, given an observation of the ciphertext, the eavesdropper

cannot guess any function of the plaintext with probability non-negligibly larger than a

random guess (i.e. a guess without an observation of the ciphertext). For a precise defintion

of semantic security, we refer the reader to [8, Defn. 3.13]. In Chapter 3, we extend symbol

secrecy to the functional setting by using a rate-distortion-based framework. We first make

the key assumption that we know a priori that a certain set of reference functions of the

plaintext are hard (or easy) to estimate. Given a target function and the correlation between

the target function and the set of reference functions, we then bound the estimation error

of the target function in terms of the estimation error of the reference functions.

In the case of symbol secrecy, the set of reference functions are the individual symbols

21



of the plaintext which, by design, are known to be hard to estimate. We use the aforemen-

tioned bound together with Fourier-analytic tools to determine which family of functions

of the plaintext can or cannot be reliably estimated. This enables us to map security guar-

antees in terms of symbol secrecy into guarantees on which functions of the plaintext a

computationally unbounded adversary can reliably infer.

The application of the bound derived for the error of estimating a target function given

information about a set of reference functions is not restricted to symbol secrecy. We also

demonstrate in Chapter 3 that this bound provides insight on how to design symmetric-key

encryption schemes that hide specific functions of the plaintext. This approach also sheds

light on the fundamental privacy-utility trade-off, described next.

In the privacy setting, the set of reference functions are the features of the data that

should be hidden (privacy) or revealed (utility). Here, the bound leads to the following

intuitive result: If a certain set of features should be hidden, then all other features of

the data that are strongly correlated with it should also be hidden. If the feature that is

important for utility is also correlated with another feature that should remain private, then

there will be an unfavorable trade-off between privacy and utility. This intuition is captured

through the correlation-error product, introduced at the end of the chapter.

The results in Chapter 3 also motivate a more general question: can security claims

based on information metrics be translated into guarantees on what an adversary can or

cannot reliably infer from the information released by a security system? On the one hand,
information metrics usually quantify how far the probability distribution between the secret

and the disclosed information is from the ideal case where independence is achieved. On

the other hand, estimation guarantees seek to assure that an adversary cannot significantly

improve his estimate of the secret given the information disclosed by the system.

This question is answered in Chapter 4. We present rate-distortion formulations that

allow security bounds based on information metrics to be transformed into bounds on how

well an adversary can estimate the secret variable. This is done by solving a convex program

that minimizes the average estimation error over all possible distributions that satisfy the

bound on the information metric. The solution of this convex program is called the error-

rate function. We study extremal properties of error-rate function, and show how to extend

the error-rate function to quantify not only the smallest average error of estimating a hidden

variable, but also of estimating any function of a hidden variable.

Chapter 4 demonstrates how security guarantees made in terms of an information met-

ric (the usual approach taken in the information-theoretic security literature) can be trans-

formed into guarantees on the adversary's ability to correctly estimate the secret (the desider-

ata of most modern cryptographic metrics). In Chapter 5, we present an information

theoretic metric, called the Principal Inertia Components (PICs), that serve both purposes

simultaneously.

The PICs give a fine-grained decomposition of the statistical dependence between two
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random variables. In the security setting, they provide both (i) a measure of (in)dependence

between the secret and disclosed information of a security system, and (ii) a full charac-

terization of the functions of the secret that can or cannot be reliably inferred given the

disclosed information. We characterize several information-theoretic properties of the PICs,

and derive a converse bound for average estimation error based on the PICs. The PICs

also generalize the approach presented in Chapter 3: if the set of reference functions of

the plaintext are the singular vectors of the conditional expectation operator between the

plaintext and the ciphertext, then the average estimation error (in terms of mean-squared

error) of the reference functions is entirely described by the PICs. We also characterize the

PICs for a wide range of distributions by analyzing the properties of symmetric functions of

sequences of exchangeable random variables.

We study the information-theoretic properties of the PICs in Chapter 6, and explore

the connection between the PICs and other information-theoretic metrics. We show that,

under certain assumptions, the PICs play a central role in estimating a one-bit function of

a hidden random variable. This analysis enables us to study and partially resolve an open

conjecture on the "most-informative" one-bit function of a uniformly distributed sequence of

inputs of an additive binary noise channel [24]. We also show that maximizing the PICs is

equivalent to maximizing the first-order term of the Taylor series expansion of certain convex

measures of information between the input and the output of a communication channel.

Finally, we apply the PICs to the security and privacy setting in Chapter 7. We investi-

gate the problem of intentionally disclosing information about data X (useful information),

while guaranteeing that little or no information is revealed about a private variable S (private

information). Given that S and X are drawn from finite support sets of the same cardinal-

ity, we prove that a non-trivial amount of information about X can be disclosed while not

revealing any information about S if and only if the smallest PIC of the joint distribution

of S and X is 0. This fundamental result characterizes when useful information can be

privately disclosed for any privacy metric based on statistical dependence. We derive sharp

bounds for the trade-off between disclosure of useful and private information, and provide

explicit constructions of privacy-assuring mappings that achieve these bounds. We conclude

Chapter 7 with an example of PIC-based analysis for determining privacy-preserving queries

in statistical databases.

1.6 Main Contributions of the Thesis

We believe that the many information-theoretic tools presented here can help guide the

design of systems that acquire, process and distribute information while providing reliability,

security and privacy guarantees. In particular, we highlight three main contributions of this

thesis:
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1. Information-theoretic metrics for secrecy. We introduce symbol-secrecy and the

PICs as information-theoretic metrics for security and privacy. We extend symbol-

secrecy to the functional setting by using Fourier-analytic techniques, and derive cor-

responding fundamental bounds. In addition, we characterize the multiple facets of

the PICs, demonstrating how they are the solution of different but related problems

in estimation and correlation distillation. We present bounds for the PICs that hold

for a wide range of distributions, and introduce an information-theoretic metric based

on the PICs called k-correlation.

2. Bounds on estimation. We derive converse bounds on estimation error based on

the PICs and on symbol secrecy. These results provide lower bounds on (i) the prob-

ability of correctly guessing a hidden variable X given an observation Y and (ii) on

the minimum mean-squared error of estimating X given Y. These results are stated

in terms the PICs between X and Y, and provide universal, algorithm-independent

bounds on estimation. We also extend these bounds to the functional setting, and

show that the advantage over a random guess of correctly estimating a function of X

given an observation of Y is upper-bounded by the largest PIC between X and Y.

3. Applications to privacy and security. We apply the proposed security metrics

and corresponding converse bounds to symmetric-key encryption and privacy. We

demonstrate how symmetric-key encryption schemes that achieve high symbol-secrecy

can be created using standard linear code constructions. In addition, we use a PIC-

based analysis to characterize the fundamental trade-off between privacy and utility.

We show that this analysis, in turn can be used to create privacy-assuring mappings

with information-theoretic guarantees. Finally we demonstrate that the smallest PIC

determines when perfect privacy can be achieved with non-trivial utility.

1.7 Notation

In this thesis, we adopt the "Just In Time" (JIT) approach for notation, introducing key

definitions as they are required in different chapters. Furthermore, we will frequently reintro-

duce the definition of certain symbols in order to assist the reader. We present the notation

that is common to all the chapters of this thesis below.

Capital letters (e.g. X and Y) are used to denote random variables, and calligraphic

letters (e.g. X and Y) denote sets. The exceptions are (i) I, which will be used in Chapter 4

to denote a non-specified information measure, and (ii) T, which will denote the conditional

expectation operator (defined below). The support set of random variables X and Y are

denoted by X and Y, respectively. If X and Y have finite support sets IXI< oc and

IYI< oo, then we denote the joint probability mass function (pmf) of X and Y as px,y, the

conditional pmf of Y given X as pyIx, and the marginal distributions of X and Y as px
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and py, respectively. We denote the fact that X is distributed according to px by X ~ px.

When px,y,z(x, y, z) = px(x)py1x(y~x)pZy(z y) (i.e. X, Y, Z form a Markov chain), we

write X -+ Y -+ Z.

For positive integers j, k, n, j < k, we define [n] {1,... , n} and [j, k] A {j,j+1,. . . , k}.

Matrices are denoted in bold capital letters (e.g. X) and vectors in bold lower-case letters

(e.g. x). The (i, j)-th entry of a matrix X is given by [X]i,j. Furthermore, for x E R , we let

x = (xi, . . . , xn). We denote by 1 the vector with all entries equal to 1, and the dimension

of 1 will be clear from the context.

A sequence of n random variables X 1, . . . , Xn is denoted by Xn. Furthermore, for J G
[n], X- A (Xii, ... , Xi1  where ik E J and ii < i2 < ... < il71. Equivalently, for a vector

x = (Xi,..., ), xJ A (ii,.., xi ). For two vectors x, z E Rn, we denote by x < z the

element-wise set of inequalities {I <; z,}_ 1 . We let Pt(X) be the set of all subsets of X of

size t, i.e. J E Pt(X ) * J C X and Jj= t.

For a random variable X with discrete support and X px, the entropy of X is given

by

H(X) -E [log (px (X))].

If Y has a discrete support set and X, Y ~ px,y, the mutual information between X and Y

is

I(X; Y) E log J'(
I PX(X )PY(Y )

The basis of the logarithm will be clear from the context. The X 2-information between X

and Y is

X 2(X; Y) A E - 1.[(PX(X)PY(Y) -
We denote the binary entropy function hb : [0, 1] -+ R as

hb(x) A -x logx - (1 - x) log(1 -

where, as usual, 0 log 0 A 0. The inverse of the binary entropy function with input restricted

to [0, 1/2] is the mapping h-' [0, log 2] -+ [0,1/2] where

hb ( W) X' 0 < x < 1/2
hil (hb(x)) = J, 0 /

1 - x, otherwise.

Let X and Y be discrete random variables with finite support sets X = [m] and Y = [n],

respectively. Then we define the joint distribution matrix P as an m x n matrix with

pi~j -1 PX,Y(i,j). We denote by px (respectively, py) the vector with i-th entry equal

to px(i) (resp. py(i)). Dx = diag (px) and Dy = diag (py) are matrices with diagonal

entries equal to px and py, respectively, and all other entries equal to 0. The matrix

Py1x E RXn is defined as [Pyix]i,3 - pyix(J~i). Note that P = DxPylx.
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For any real-valued random variable X, we denote the LP-norm of X as

IX |I (IE [I XIP])/P.

The set of all functions of a random variable X - px with L2-norm smaller than 1 is given

by

1 2(Px) A {f X - R I If(X)1|2 1}.

The operators Tx : L2(PY) -+ L2(px) and Ty : L2(Px) - L2(py) denote conditional

expectation, where

(Txg)(x) = E [g(Y)|X = x]

and

(Tyf)(y) = E [f (X)IY = y],

respectively. We will often omit the subscript X or Y in the definition if the conditioning

operation is clear from the context.

For X and Y with discrete support sets, we denote by Pe(XIY) the smallest average

probability of error of estimating X given an observation of Y, defined as

Pe(XIY) = min Pr{X # },
X-+--4X

where the minimum is taken over all distributions pfly such that X -+ Y - X. The

minimum-mean-squared error (MMSE) of estimating X from an observation of Y is given

by

mmse(XIY) min E[(X-Z)2

where the minimum is again taken over all distributions pkly such that X -÷ Y --+ . Note

that, from Jensen's inequality, it is sufficient to consider X a deterministic mapping of Y.

For any X -+ Y -+ g(Y) with I1g(Y)112= a and lX12= u-

E [(X - g(Y)) 2] =2 + a2 - 2E [Xg(Y)]

= .2 +a 2 - 2E [E [XIYI g(Y)]

> .2 + a2 - 211E [XIY] |121|g(Y)||2

=ao2 + a 2 - 2al||E [X|Y ] |12,

with equality if and only if g(Y) oc E [XIY]. Minimizing the last expression over all a, we

find that the MMSE estimator of X from Y is g(y) = E [XIY = y], and

mmse(XIY) = IXI12-IIE [XlY] lI. (1.1)
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Chapter 2

Symbol Secrecy and List Source

Codes

2.1 Overview

We start the study of information-theoretic metrics and their application to security at

its historical beginning: symmetric-key encyrption. In this chapter, we present information-

theoretic metrics and associated results that seek to characterize the fundamental information-

theoretic security properties of symmetric-key encryption schemes when perfect secrecy is

not attained. We follow the footsteps of Shannon [2] and Hellman [25], and study symmetric-

key encryption with small keys, i.e. when the length of the key is smaller than the length

of the message. In this case, the best a computationally unrestricted adversary can do

is to decrypt the ciphertext with all possible keys, resulting in a list of possible plaintext

messages. The adversary's uncertainty regarding the original message is then represented

by a probability distribution over this list. This distribution, in turn, depends on both the

distribution of the key and the distribution of the plaintext messages.

Under the assumption that the key is small, perfect secrecy (in the traditional information-

theoretic sense) cannot be attained. Consequently, meaningful metrics are required to quan-

tify the level of information-theoretic security provided by the symmetric-key encryption

scheme. Towards this goal, we define a new metric for characterizing security, symbol se-

crecy, which quantifies the uncertainty of specific source symbols given an encrypted source

sequence. This metric subsumes traditional rate-based information-theoretic measures of

secrecy which are generally asymptotic [7]. However, our definition is not asymptotic and,

indeed, we provide a construction that achieves fundamental symbol secrecy bounds, based

on maximum distance separable (MDS) codes, for finite-length sequences. We note that

there has been a long exploration of the connection between coding and cryptography [26],
and many of the results presented in this chapter are inscribed in this school of thought.

We also introduce a general source coding framework for analyzing the fundamental
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information-theoretic properties of symmetric-key encryption, called list-source codes (LSCs).

LSCs compress a source sequence below its entropy rate and, consequently, a message en-

coded by an LSC is decoded to a list of possible source sequences instead of a unique source

sequence. We demonstrate how any symmetric-key encryption scheme can be cast as an

LSC, and prove that the best an adversary can do is to reduce the set of possible messages

to an exponentially sized list with certain properties, where the size of the list depends on

the length of the key and the distribution of the source. Since the list has a size exponential

in the key length, it cannot be resolved in polynomial time in the key length, offering a

certain level of computational security. We characterize the achievable E-symbol secrecy of

LSC-based encryption schemes, and provide explicit constructions using algebraic coding.

From a practical standpoint, we investigate the problem of secure content caching and

distribution. We propose a hybrid encryption scheme based on list-source codes, where a

large fraction of the message can be encoded and distributed using a key-independent list-

source code. The information necessary to resolve the decoding list, which can be much

smaller than the whole message, is then encrypted using a secure method. This scheme

allows a significant amount of content to be distributed and cached before dealing with key

generation, distribution and management issues.

2.2 Main Contributions

We summarize below the main results presented in this chapter.

1. Symbol secrecy. We introduce the definitions of absolute and E-symbol secrecy in

Section 2.5. Symbol secrecy quantifies the uncertainty that an eavesdropper has about

individual symbols of the message.

2. Encryption with key entropy smaller than the message entropy. We present

the definition of list-source codes (LSCs), together with fundamental bounds, in Sec-

tion 2.6. Practical code constructions of LSCs are introduced in Section 2.7. We then

analyze the symbol secrecy properties of LSCs in Section 2.8.

3. Applications and practical considerations. Section 2.9 presents further applica-

tions of our results to different security scenarios, together with practical considerations

of the proposed secrecy framework. Some of the results presented in the chapter have

appeared in [27j and [281.

2.3 Related Work

Shannon's seminal work [2] introduced the use of statistical and information-theoretic met-

rics for analyzing secrecy systems. Shannon characterized several properties of conditional
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entropy (equivocation) as a metric for security, and investigated the effect of the source dis-

tribution on the security of a symmetric-key cipher. Shannon also considered the properties

of "random ciphers", and showed that, for short keys and sufficiently long, non-uniformly

distributed messages, the random cipher is (with high probability) breakable: only one mes-

sage is very likely to have produced a given ciphertext. Shannon defined the length of the

message required for a ciphertext to be uniquely produced by a given plaintext as the unicity

distance.

Hellman extended Shannon's approach to cryptography [25] and proved that Shannon's

random cipher model is conservative: A randomly chosen cipher is likely to have small unicity

distance, but does not preclude the existence of other ciphers with essentially infinite unicity

distance (i.e. the plaintext cannot be uniquely determined from the ciphertext). Indeed,

Hellman argued that carefully designed ciphers that match the statistics of the source can

achieve high unicity distance. Ahlswede [29] also extended Shannon's theory of secrecy

systems to the case where the exact source statistics are unknown.

The problem of quantifying not only an eavesdropper's uncertainty of the entire message

but of individual symbols of the message was studied by Lu in the context of additive-like

instantaneous block ciphers (ALIB) [30-32]. The results presented here are more general

since we do not restrict ourselves to ALIB ciphers. More recently, the design of secrecy

systems with distortion constraints on the adversary's reconstruction was studied by Schieler

and Cuff [33]. We adopt here an alternative approach, quantifying the information an

adversary gains on average about the individual symbols of the message, and investigate

which functions of the plaintext an adversary can reconstruct. Our results and definitions

also hold for the finite-blocklength regime.

Tools from algebraic coding have been widely used for constructing secrecy schemes

[26]. In addition, the notion of providing security by exploiting the fact that the adversary

has incomplete access to information (in our case, the key) is also central to several secure

network coding schemes and wiretap models. Ozarow and Wyner [341 introduced the wiretap

channel II, where an adversary can observe a set k of his choice out of n transmitted symbols,

and proved that there exists a code that achieves perfect secrecy. A generalized version of this

model was investigated by Cai and Yeung in [351, where they introduce the related problem

of designing an information-theoretically secure linear network code when an adversary can

observe a certain number of edges in the network. Their results were later extended in

[36-39]. A practical approach was presented by Lima et al. in [40]. For a survey on the

theory of secure network coding, we refer the reader to 141].

The list-source code framework introduced here is related to the wiretap channel II

in that a fraction of the source symbols is hidden from a possible adversary. Oliveira et

al. investigated in [42] a related setting in the context of data storage over untrusted networks

that do not collude, introducing a solution based on Vandermonde matrices. The MDS

coding scheme introduced in this paper is similar to [42], albeit the framework developed
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here is more general.

List decoding techniques for channel coding were first introduced by Elias [43] and Wozen-

craft [441, with subsequent work by Shannon et al. [45,46] and Forney [47]. Later, algorithmic

results for list decoding of channel codes were discovered by Gurusuwami and Sudan [481.

We refer the reader to [491 for a survey of list decoding results. List decoding has been con-

sidered in the context of source coding in [50]. The approach is related to the one presented

here, since we may view a secret key as side information, but [50j did not consider source

coding and list decoding together for the purposes of security.

2.4 Communication and Threat Model

In this chapter, we consider a transmitter (Alice) who wishes to transmit confidentially

to a legitimate receiver (Bob) a sequence of length n produced by a discrete source X

with alphabet X and probability distribution px. We assume that the communication

channel shared by Alice and Bob is noiseless, but is observed by a passive, computationally

unbounded eavesdropper (Eve). Both Alice and Bob have access to a shared secret key K

drawn from a discrete alphabet KC, such that H(K) < H(X'), and encryption/decryption

functions Enc : X' x KC -+ M and Dec : M x KC -+ X', where M is the set encrypted

messages. Alice observes the source sequence X', and transmits an encrypted message

M = Enc(Xn, K). Bob then recovers X' by decrypting the message using the key, producing

Z" = Dec(M, K). The communication is successful if kn = X,. We consider that the

encryption is closed [2, pg. 665], so Dec(c, ki) # Dec(c, k 2 ) for ki, k2 E k, ki / k2 . We

assume Eve knows the functions Enc and Dec, but does not know the secret key, K. Eve's

goal is to gain knowledge about the original source sequence.

2.5 Symbol Secrecy

In this section we define E-symbol secrecy, an information-theoretic metric for quantifying

the information leakage from security schemes that do not achieve perfect secrecy. Given

a source sequence Xn and a random variable Z dependent of Xn, E-symbol secrecy is the

largest fraction t/n such that, given Z, at most E bits can be learned on average from any

t-symbol subsequence of X'. We also prove an ancillary lemma that bounds the average

mutual information between Xn and Z in terms of symbol secrecy.

Definition 2.1. Let Xn be a random variable with support Xn, and Z be the information

that leaks from a security system (e.g. the ciphertext). Denoting X- - {X=}jjE, we say

that Px,,z achieves an E-symbol secrecy of p,(XnIZ) if

pE (X IZ) A max - ' Z e V- C [n], 0 < J | t (2.1)
n iii-|
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In particular, the absolute symbol secrecy of X' from Y is given by

pio(X'IZ) = max{! I(X 5 ;Z) =0 VJ 9 [n],O < 131 t}. (2.2)
n

We also define the dual function of symbol-secrecy for Xn and Z as:

e*(X"IZ) A inf {e > 0 1AE(XnIZ) t/n}. (2.3)

The next examples illustrate a few use cases of symbol secrecy.

Example 2.1. Symbol secrecy encompasses other definitions of secrecy, such as weak secrecy

[511, strong secrecy [521 and perfect secrecy. For example, given two sequences of random

variables Xn and Zn, if Pb(XnIZn) -+ 1 for all e > 0, then I(x,;zn) -+ 0. The converse isn

not true, as demonstrated in Example 2.3 below. Furthermore, I(X,; Zn) = 0 if and only

if Apo(X IZn) = 1. Finally, the reader can verify that I(Xn; Z,) -+ 0 if and only if there

exists a sequence en = o(n) such that Ain (X IZn) + 1.

Example 2.2. Consider the case where X = {0, 1}, Xn is uniformly drawn from Xn, and

Z is the result of sending Xn through a discrete memoryless erasure channel with erasure

probability a. Then, for any j 9 [n], 3 5 0,

I(X-7; Z)I(X3 Z)= (1 - a),
I3|

and, consequently,

0, for 0 < E < 1-a,
ptE(X|ZV=

1 e> 1- a.

Example 2.3. Now assume again that Xn is a uniformly distributed sequence of n bits,

but now Z = X1. This corresponds to the case where one bit of the message is always sent

in the clear, and all the other bits are hidden. Then, for any J 9 [n] such that {1} E 3,

I(X 3 ; Z) = 1,

and, for 0 < e < 1,

PC (XnIZ) = 0.

Consequently, a non-trivial symbol-secrecy cannot be achieved for e < 1. In general, if a

symbol Xi is sent in the clear, then a non-trivial symbol secrecy cannot be achieved for

e < H(Xi). Note that I(X'; Z)/n -+ 0, so weak secrecy is achieved.

Example 2.4. We now illustrate how symbol secrecy does not necessarily capture the

information that leaks about functions of Xn. We address this issue in more detail in
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Chapter 3. Still assuming that X' is a uniformly distributed sequence of n bits, let Y be

the parity bit of X', i.e. Z = i(-1)x. Then, for any J [n],

I(X7; Z) = 0,

and, for 0 < e < 1

/pIE(XIZ) - n~,
n

and, for e > 1, IIE(XnIZ) = 1.

The following lemma provides an upper bound for I(Xn; Z) in terms of [, (X IZ) when

X' is the output of a discrete memoryless source.

Lemma 2.1. Let Xn be the output of a discrete memoryless source X, and Z a noisy

observation of X'. For any e such that 0 < e < H(X), if pE(XIZ) = u*, then

1
-I(X; Z) _< H(X) - u*(H(X) - e). (2.4)
n

Proof. Let p(XnIZ) = u* A t/n, J E Pt([n]) and j = [n]\J. Then

1 11
-I(X"; Z) = -I(X; Z) + II(X!; ZIX)
n n n

t 1
< - f + -I(Xj; Z|X-7)

n ( t

<* +( t)H(X)
n

=H(X) - u*(H(X) - iE),

where the first inequality follows from the definition of symbol secrecy, and the second

inequality follows from the assumption that the source is discrete and memoryless and,
consequently, I(X-; ZIX-) < H(XjIX-) = (n - t)H(X). D

The previous result implies that when pE(XnIZ) is large, only a small amount of infor-

mation about Xn can be gained from Z on average. However, even if I(Xn; Z) is large, as

long as pe(Xn Z) is non-zero, the uncertainty about Xn given Z will be spread throughout

the individual symbols of the source sequence. This property is desirable for symmetric-key

encryption and, as we shall show in Chapter 3, can be extended to determine which functions

of Xn can or cannot be reliably inferred from Z. Furthermore, in Section 2.8 we introduce

explicit constructions for symmetric-key encryption schemes that achieve a provable level of

symbol secrecy using the list-source code framework introduced next.
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2.6 LSCs

In this section we present the definition of LSCs and derive fundamental bounds. We also

demonstrate how any symmetric-key encryption scheme can be mapped to a corresponding

list-source code.

2.6.1 Definition and Fundamental Limits

The definition of list-source codes is given below.

Definition 2.2. A (2 nR, IX nL, n)-LSC (fY, gn,L) consists of an encoding function fn : Xn F-+

{, ... , 2 nR} and a list-decoding function 9n,L .f1, -, 2nR} + p(n)\0, where P(X') is

the power set of Xn and lgn,L(w)= I X nL Vw E {1, ... , 2 nR}. The value R is that rate of

the LSC, L is the normalized list size, and IXInL is the list size.

Note that 0 < L < 1. From an operational point of view, L is a parameter that

determines the size of the decoded list. For example, L = 0 corresponds to traditional lossless

compression, i.e., each source sequence is decoded to a unique sequence. Furthermore, L = 1

represents the trivial case when the decoded list corresponds to Xn.

For a given LSC, an error is declared when a string generated by a source is not contained

in the corresponding decoded list. The average error probability is given by

e(f, g,,L) A Pr(Xn g, L (fl(Xf))). (2.5)

Definition 2.3. For a given discrete memoryless source X, the rate list size pair (R, L)

is said to be achievable if for every 6 > 0, 0 < e < 1 and sufficiently large n there exists

a sequence of ( 2 fl", InLn, n)-list-source codes {(fn,gLn)}n- such that R < R + 6,

JLn - LI< 6 and e(fn,gn,Ln) < e. The rate list region is the closure of all rate list pairs

(R, L).

Definition 2.4. The rate list function R(L) is the infimum of all rates R such that (R, L)

is in the rate list region for a given normalized list size 0 < L < 1.

Theorem 2.1. For any discrete memoryless source X, the rate list function is given by

R(L) = H(X) - Llog|X| . (2.6)

Proof. Let 6 > 0 be given and {(f , gnL)}n_ 1 be a sequence of codes with (normalized) list

size Ln such that Ln --+ L and for any 0 < e < 1 and n sufficiently large 0 < e(fn, g,) K e.

Then

Pr Xn E U gflLn ) M Pr(X' E gf, L,(ffl(Xn))) 1 (2.7)
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Figure 2-1: Rate list region for normalized list size L and code rate R.

where W' = [2"'R] and Rn is the rate of the code (fn,gnj). There exists no(6, , XI)
where if n > no(6, E, lXI), then

Rn + Ln logIX\ log (2, |xnL, )n

S1 log ( gn,L. (W)I
n

> 1 log U n,. (W)
n UWEWn

> H(X) - J, (2.8)

where the last inequality follows from [53, Lemma 2.14]. Since this holds for any 6 > 0, it

follows that R(L) H(X) - L logjXj for all n sufficiently large.

We prove achievability next. Let 0 < L < 1 be given, and let Ln A [nLJ /n. Furthermore,

let Xn be a sequence of n source symbols, and denote XnLn the first nLn source symbols and

X[nLn+1,n] the last n(1-La) source symbols where we assume, without loss of generality, that

nL is an integer. Then, from standard source coding results [4, pg. 5521, for any E > 0 and

n sufficiently large, and denoting an = FnLn(H(X) + E)1 /n, 8n = [n(1 - Ln)(H(X) + E)1 /n,
there are (surjective) encoding functions

L :XnLn -+ [2nan] and f2 -L:) Xn(I-L) [2non],

and corresponding (injective) decoding functions

g1 : [2nan] -+ XnLn and gn, 1 : [2n,3] XnLn
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such that Pr(g?,l(fnLfl(XnL-)) $ X"'L) O(E) and Pr(g2 1 (f( (X -Ln)) # X(1 -L,>)n

O(E).

For w E [2n3.] and x E Xn, let the list-source coding and decoding functions be given

by fn(x) fn(I-L)(X[nLn+l,n]) and

gL (w) A {x E Xn : E [2 nn] such that (fL(x[nL f(lL)(x[nL+ln]

respectively. Then

Pr (Xn E gg (fn(Xn))) > Pr (gX,(fL(XLn)) = XLn A g2, 1  (L)(X1 )) = X(1L)n

> 1 - 0(E).

Observe that the rate-list pair achieved by (f, gZ) is (Rn, Ln) = (/n, an/logjXj)).

Consequently,

Rn (1 - Ln)(H(X) + E) + n-1

SH(X) + E-an

= H(X) +I1c- Ln log|XI,

where the second inequality follows from an _ Ln(H(X) + E) + n-1 . Observe that Rn --

n(1 - L)H(X) + E A R. Since Ln -+ L(H(X) + E)/loglXIA L as n -+ o, by choosing n

sufficiently large the rate-list pair (R, L) can be achieved, where R and L satisfy

R < H(X) +E - LlogX|.

Since c is arbitrary and L can span any value in [0, H(X)/logjXj], it follows that R(L) <

H(X) - Llog|X|.

2.6.2 Symmetric-Key Ciphers as LSCs

Let (Enc, Dec) be a symmetric-key cipher where, without loss of generality, M = [2 nR] and

Enc : Xn x K -+ M and Dec : M x IC Xn. Then an LSC can be designed based on this

cipher by choosing k' from IC and setting the encoding function fn(x) = Enc(x, k'), where

x E Xn, and

9n,L(ff(x)) = {z E X : 3k E IC such that Enc(z, k) = fn(x)},

where L satisfies ICI= IXInL. If the key is chosen uniformly from IC then the decoded list

corresponds set of possible source sequences that could have generated the ciphertext. The

adversary's uncertainty will depend on the distribution of the source sequence Xn.

Alternatively, symmetric-key ciphers can also be constructed based on an (2 nR, IXInL, _)-
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list-source code. Let (fU, gn,L) be the corresponding encoding/decoding function of the LSC,

and assume that the key is drawn uniformly from KC = [IX nL], where the normalized list

size L determines the length of the key. Without loss of generality, we also assume that

Alice and Bob agree on an ordering of X and, consequently, Xn can be ordered using the

corresponding dictionary ordering. We denote pos(x) the position of the source sequence

x E X in the corresponding list gn,L(fn(x)), where pos : Xn -+ [IXInL].

The cipher can then be constructed by letting the message set be M = [ 2 nR] x [IXInL]
and, for x E Xn and k E IC,

Enc(x, k) = (fn(x), (pos(x) + k) mod AZ I).

For (a, b) E M', the decryption function is given by

Dec((a, b), k) ={x : fn(x) = a, pos(x) = (b - k) mod IAZI}.

In this case, an eavesdropper that does not know the key k cannot recover the function

pos(x) and, consequently, her uncertainty will correspond to the list gn,L(fn(x)).

2.7 LSC Design

In this section we discuss how to construct LSCs that achieve the rate-list tradeoff (2.6) in the

finite block length regime. As shown below, an LSC that achieves good rate-list tradeoff does

not necessarily lead to good symmetric-key encryption schemes. This naturally motivates

the constructions of LSCs that achieve high symbol secrecy.

2.7.1 Necessity for Code Design

Assume that the source X is uniformly distributed in Fq, i.e., Pr(X = x) = 1/q Vx E Fq.

In this case R(L) = (1 - L) log q. A trivial scheme for achieving the list-source boundary

is the following. Consider a source sequence Xn = (XP, X9 ), where XP denotes the first

p = n - [Lnj symbols of X' and XS denotes the last s = LLnj symbols. Encoding is

done by discarding Xs, and mapping the prefix XP to a binary codeword ynR of length

nR = [n - LLnJ log q] bits. This encoding procedure is similar to the achievability scheme

used in the proof of Theorem 2.1.

For decoding, the codeword ynR is mapped to XP, and the scheme outputs a list of

size qS composed by XP concatenated with all possible combinations of suffixes of length s.

Clearly, for n sufficiently large, R ~ (1 - L) log q, and we achieve the optimal list-source size

tradeoff.

The previous scheme is inadequate for security purposes. An adversary that observes

the codeword ynR can uniquely identify the first p symbols of the source message, and the

uncertainty is concentrated over the last s symbols. Assuming that all source symbols are of
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equal importance, we should spread the uncertainty over all symbols of the message. Given

the encoding f(X"), a sensible security scheme would provide I(Xi; f(Xn)) < e < log q for

1 < i < n. We can naturally extend this notion for groups of symbols or functions over

input symbols, which is what symbol secrecy captures.

2.7.2 A Construction Based on Linear Codes

Let X be an i.i.d. source with support X and entropy H(X), and (sn, rn) a source code

for X with encoder sn : Xn -+* Frn and decoder rn : F'n - X'. Furthermore, let C be

a (mn, kn, d) linear codel over Fq with an (mn - kn) x mn parity check matrix Hn (i.e.

c E C -> Hnc = 0). Consider the following scheme, where we assume

kn nLn log|XI/log q

is an integer, 0 < Ln < 1 and Ln - L as n -+ oc.

Scheme 2.1. Encoding: Let xn E Xn be an n-symbol sequence generated by the source.

Compute the syndrome on through the matrix multiplication

an L Hnsn(xn)

and map each syndrome to a distinct sequence of nR = [(ma - kn) log q] bits, denoted by

YnR.

Decoding: Map the binary codeword ynR to the corresponding syndrome an. Output

the list

gnL,(Un) = {rn(z)jz E F 'n, an = Hz}

Theorem 2.2. If a sequence of source codes {(sn, rn)} n is asymptotically optimal for

source X, i.e. mn/n -+ H(X)/log q with vanishing error probability, scheme 2.1 achieves

the rate list function R(L) for source X.

Proof. Since the cardinality of each coset corresponding to a syndrome an is exactly

|gn,Ln(an)j= qkn

the normalized list size is

Ln = logjg qk, = (kn log q) /(n log|X|).

By assumption, Ln -+ L as n -+ oc. Denoting mn/n = H(X)/log q + 6n, where 6n -+ 0

since the source code is assumed to be asymptotically optimal, it follows that the rate of

'For an overview of linear codes and related terminology, we refer the reader to [22].
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the LSC is

Rn= [(mn - kn) log q] /n

= (H(X) + 6. log q)n - Ln log|X|] /n

-+ H(X) - L log|XI,

which is arbitrarily close to the rate in (2.6) for sufficiently large n. D

The source coding scheme used in the proof of Theorem 2.2 can be any asymptotically

optimal scheme. Note that if the source X is uniformly distributed in Fq, then L, = kn/n

and any message in the coset indexed by c, is equally likely. Hence, Rn = (n - k) log q/n =

H(X) - L log q, which matches the upper bound in (2.6). Scheme 2.1 provides a constructive

way of hiding information, and we can take advantage of the properties of the underlying

linear code to make precise assertions regarding the security of the scheme.

With the syndrome in hand, how can we recover the rest of the message? One possible

approach is to find a k, x n matrix D. that has full rank such that the rows of Dn and

Hn form a basis of F'n. Such a matrix can be easily found, for example, using the Gram-

Schmidt process with the rows of Hn as a starting point. Then, for a source sequence xn,

we simply calculate tn = Dnxn and forward tn to the receiver through a secure channel.

The receiver can then invert the system

( n xn ( n (2.9)

and recover the original sequence x,. This property allows list-source codes to be deployed

in practice using well known linear code constructions, such as Reed-Solomon [22, Chap. 51

or Random Linear Network Codes [54, Chap. 2].

Remark 2.1. This approach is valid for general linear spaces, and holds for any pair of full

rank matrices Hn and Dn with dimensions (mn - kn) x mn and kn x mn, respectively, such

that rank([H T D T]T) = mn. However, here we adopt the nomenclature of linear codes since

we make use of known code constructions to construct LSCs with provable symbol secrecy

properties in the next section.

Remark 2.2. The LSC described in scheme 2.1 can be combined with other encryption

methods, providing, for example, an additional layer of security in probabilistic encryption

schemes ([8,23]). A more detailed discussion of practical applications is presented in Section

2.9.
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2.8 Symbol Secrecy of LSCs

We next present fundamental bounds for the amount of symbol secrecy achievable by any

LSC considering a discrete memoryless source. Since any encryption scheme can be cast as

an LSC, these results quantify the amount of symbol secrecy achievable by any symmetric-

key encryption scheme that encrypts a discrete memoryless source.

Lemma 2.2. Let {(fn,gn)} 1 be a sequence of list-source codes that achieves a rate-list

pair (R, L) and an E-symbol secrecy of pE (XnY nRn) -+ y as n -- oc. Then 0 < p

min { LogX1.

Proof. We denote pu,(XnjYnR) - pEf. Note that, for 5 C [n] and lj1= npE,n,

I(XJ;YlRn) = H(X-) - H(XJ|YnRn)

= ny,,nH(X) - H(X |Yn lRn)

< nyetr,nE,

where the last inequality follows from the definition of symbol secrecy and I(X7; yfRn) <

IjlSE = nlk,fle. Therefore

1
I,n(H(X) - e) < -H(X|Y7nRn)

n

< Lnlog|X\.

The result follows by taking n -- *. E

The previous result bounds the amount of information an adversary gains about partic-

ular source symbols by observing a list-source encoded message. In particular, for e = 0, we

find a meaningful bound on what is the largest fraction of input symbols that is perfectly

hidden.

The next theorem relates the rate-list function with E-symbol secrecy through the upper

bound in Theorem 2.2.

Theorem 2.3. If a sequence of list-source codes {(fn, gn,Ln)}1 achieves a point (R', L)

with _t,(Xn|YnEn) -+ ce for some E, where R' = lim -! H(YnRh), then R' =

R(L).

Proof. Assume that {(fn,9n,Ln)}O=1 satisfies the conditions in the theorem and 6 > 0 is

given. Then for n sufficiently large, we have from (2.4):

1H(YnRn) = II(Xn;YnR)
n n

<H(X) -c(H(X) -E)+6

= H(X) - Llog|XI+6.
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Since this holds for any 6, then R' ; H(X) - L log|X1. However, from Theorem 2.1, R' >

H(X) - L logIX1, and the result follows.

2.8.1 A Scheme Based on MDS Codes

We now prove that for a uniform i.i.d. source X in Fq, using scheme 2.1 with an MDS parity

check matrix H achieves po. Since the source is uniform and i.i.d., no source coding is used.

Proposition 2.1. If H is the parity check matrix of an (n, k, d) MDS code and the source

X' is uniform and i.i.d., then Scheme 2.1 achieves the upper bound yo = L, where L = k/n.

Proof. Let C be the set of codewords of an (n, k, n - k + 1) MDS code over Fq with parity

matrix H, and let x E C. Fix a set J E Pk([n]) of k positions of x, denoted x-. Since the

minimum distance of C is n - k + 1, for any other codeword in z E C we have z3 = x'.

Denoting by C- = {xJ E F k E C}, then IC= |CI= qk. Therefore, C- contains all

possible combinations of k symbols. Since this property also holds for any coset of H, the

result follows. E

We present next a general description of a two-phase secure communication scheme

for the threat model described in Section 2.4, presented in terms of the list-source code

constructions derived using linear codes. Note that this scheme can be easily extended

to any list-source code by using the corresponding encoding/decoding functions instead of

multiplication by parity check matrices.

2.9 Discussion

In this section we discuss the application of our results to different security settings.

2.9.1 A Secure Communication Scheme Based on List-Source Codes

We assume that Alice and Bob have access to a symmetric-key encryption/decryption scheme

(Enc', Dec') that is used with the shared secret key K and is sufficiently secure against the

adversary. This scheme can be, for example, a one-time pad. The encryption/decryption

procedure is performed as follows, and will be used as components of the overall encryption

scheme (Enc, Dec) described below.

Scheme 2.2. Input: The source encoded sequence x E F, parity check matrix H of a

linear code in F', a full-rank k x n matrix D such that rank([HT DT]) = n, and encryp-

tion/decryption functions (Enc', Dec'). We assume both Alice and Bob share a secret key

K.

Encryption (Enc):
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Phase I (pre-caching): Alice generates o- = Hx and sends to Bob.2

Phase II (send encrypted data): Alice generates e = Enc'(Dx, K) and sends to Bob.

Decryption (Dec): Bob calculates Dec'(e, K) = Dx and recovers x from 0- and Dx.

Assuming that (Enc', Dec') is secure, the information-theoretic security of Scheme 2.2

reduces to the security of the underlying list-source code (i.e. Scheme 2.1). In practice, the

encryption/decryption functions (Enc', Dec') may depend on a secret or public/private key,

as long as it provide sufficient security for the desired application. In addition, assuming

that the source sequence is uniform and i.i.d. in Fn, we can use MDS codes to make strong

security guarantees, as described in the next section. In this case, an adversary that observes

o- cannot infer any information about any set of k symbols of the original message.

Note that this scheme has a tunable level of secrecy: The amount of data sent in phase

I and phase II can be appropriately selected to match the properties of the encryption

scheme available, the size of the key length, and the desired level of secrecy. Furthermore,

when the encryption procedure has a higher computational cost than the list-source en-

coding/decoding operations, list-source codes can be used to reduce the total number of

operations required by allowing encryption of a smaller portion of the message (phase II).

The protocol outline presented in Scheme 2.2 is useful in different practical scenarios,

which are discussed in the following sections. Most of the advantages of the suggested

scheme stem from the fact that list-source codes are key-independent, allowing content to

be distributed when a key distribution infrastructure is not yet established, and providing

an additional level of security if keys are compromised before phase II in Scheme 2.2.

2.9.2 Content Pre-Caching

As hinted earlier, list-source codes provide a secure mechanism for content pre-caching when

a key infrastructure has not yet been established. A large fraction of the data can be list-

source coded and securely transmitted before the termination of the key distribution protocol.

This is particularly significant in large networks with hundreds of mobile nodes, where key

management protocols can require a significant amount of time to complete [55]. Scheme

2.2 circumvents the communication delays incurred by key compromise detection, revocation

and redistribution by allowing data to be efficiently distributed concurrently with the key

distribution protocol, while maintaining a level of security determined by the underlying

list-source code.

2Here, Alice can use message authentication codes and public key encryption to augment security. Further-
more, the list-source coding scheme can be used as an additional layer of security with information-theoretic
guarantees in symmetric-key ciphers. Since we are interested in the information-theoretic security properties
of the scheme, we will not go into further details. We recognize that in order to use this scheme in practice
additional steps are needed to meet modern cryptographic standards.
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2.9.3 Application to Key Distribution Protocols

List-source codes can also provide additional robustness to key compromise. If the secret

key is compromised before phase II of Scheme 2.2, the data will still be as secure as the

underlying list-source code. Even if a (computationally unbounded) adversary has perfect

knowledge of the key, until the last part of the data is transmitted the best he can do is reduce

the number of possible inputs to an exponentially large list. In contrast, if a stream cipher

based on a pseudo-random number generator were used and the initial seed was leaked to an

adversary, all the data transmitted up to the point where the compromise was detected would

be vulnerable. The use of list-source codes provide an additional, information-theoretic level

of security to the data up to the point where the last fraction of the message is transmitted.

This also allows decisions as to which receivers will be allowed to decrypt the data can

be delayed until the very end of the transmission, providing more time for detection of

unauthorized receivers and allowing a larger flexibility in key distribution.

In addition, if the level of security provided by the list-source code is considered sufficient

and the key is compromised before phase II, the key can be redistributed without the need of

retransmitting the entire data. As soon as the keys are reestablished, the transmitter simply

encrypts the remaining part of the data in phase II with the new key.

2.9.4 Additional Layer of Security

We also highlight that list-source codes can be used to provide an additional layer of security

to the underlying encryption scheme. The message can be list-source coded after encryption

and transmitted in two phases, as in Scheme 2.2. As argued in the previous point, this

provides additional robustness against key compromise, in particular when a compromised

key can reveal a large amount of information about an incomplete message (e.g. stream

ciphers). Consequently, list-source codes are a simple, practical way of augmenting the

security of current encryption schemes.

One example application is to combine list-source codes with stream ciphers. The source-

coded message can be initially encrypted using a pseudorandom number generator (PRG)

initialized with a randomly selected seed, and then list-source coded. The initial random

seed would be part of the encrypted message sent in the final transmission phase. This

setup has the advantage of augmenting the security of the underlying stream cipher, and

provides randomization to the list-source coded message. In particular, if the LSC is based

on MDS codes and assuming that the distribution of the plaintext is nearly uniform, strong

information-theoretic symbol secrecy guarantees can be made about the transmitted data,
as discussed in Section 2.5. Even if the underlying PRG is compromised, the message would

still be secure.
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2.9.5 Tunable Level of Secrecy

List-source codes provide a tunable level of secrecy, i.e. the amount of security provided by

the scheme can be adjusted according to the application of interest. This can be done by

appropriately selecting the size of the list (L) of the underlying code, which determines the

amount of uncertainty an adversary will have regarding the input message. In the proposed

implementation using linear codes, this corresponds to choosing the size of the parity check

matrix H, or, analogously, the parameters of the underlying error-correcting code. In terms

of Scheme 2.2, a larger (respectively smaller) value of L will lead to a smaller (larger) list-

source coded message in phase I and a larger (smaller) encryption burden in phase II.

2.10 Prologue to Chapter 3

While much of information-theoretic security has considered the hiding of the plaintext,

cryptographic metrics of security seek to hide also functions thereof [231. More specifically,

cryptographic metrics characterize how well an adversary can (or cannot) infer functions

of a hidden variable, and are stated in terms of lower bounds for average estimation error

probability. This contrasts with standard information-theoretic metrics of security, which

are concerned with the average number of bits that an adversary learns about the plaintext.

Nevertheless, as we will show next, restrictions on the average mutual information can be

mapped to lower bounds on average estimation error probability through rate-distortion

formulations.

In the next chapter, we use a rate-distortion based approach to extend the definition of

symbol secrecy in order to quantify not only the information that an adversary gains about

individual symbols of the source sequence, but also the information gained about functions

of the encrypted source sequence. We prove that ciphers with high symbol secrecy guaran-

tee that certain functions of the plaintext are provably hidden regardless of computational

assumptions. In particular, we show that certain one-bit function of the plaintext (i.e. pred-

icates) cannot be reliably inferred by the adversary. The estimation-theoretic approach that

we use naturally leads to a more fundamental information-theoretic quantity called principal

inertia components, which is studied in detail in the latter chapters of this thesis.
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Chapter 3

A Rate-Distortion View of Symbol

Secrecy

3.1 Overview

Symbol secrecy provides a fine-grained metric for quantifying the amount of information

that leaks from a security system. However, standard cryptographic definitions of security

are concerned not only with what an eavesdropper learns about individual symbols of the

plaintext, but also which functions of the plaintext an adversary can reliably infer. In order

to derive analogous information-theoretic metrics for security, in this chapter we take a step

back from the symmetric-key encryption setup and study the general estimation problem

of inferring properties of a hidden variable X from an observation Y. More specifically, we

derive lower bounds for the error of estimating functions of X from an observation of Y.

By using standard converse results (e.g. Fano's inequality [4, Chap. 2]), symbol secrecy

guarantees are then translated to guarantees on how well certain functions of the plaintext

can or cannot be estimated.

We first derive converse bounds for the minimum-mean-squared-error (MMSE) of esti-

mating a function # of the hidden variable X given Y. We assume that the MMSE of

estimating a set of functions <D A {#5(X)}i given Y is known, as well as the correlation

between #5(X) and #(X). Bounds for the MMSE of #(X) are then expressed in terms of

the MMSE of each #j(X) and the correlation between #(X) and #5(X). We also apply

this result to the setting where # and Oj are binary functions, and present bounds for the

probability of correctly guessing O(X) given Y. These results are of independent interest,

and are particularly useful in the security setting considered here.

The set of functions <) can be used to model known properties of a security system. For

example, when X is a plaintext and Y is a ciphertext, the functions #j may represent certain

predicates of X that are known to be hard to infer given Y. In privacy systems, X may be

a user's data and Y a distorted version of X generated by a privacy preserving mechanism.
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The set <D could then represent a set of functions that are known to be easy to infer from

Y due to inherent utility constraints of the setup. In particular, in Section 3.7 we consider

the set <D as subsets of symbols of the plaintext. In this case, the results introduced in this

chapter are used to derive bounds on the MMSE of reconstructing a target function of the

plaintext in terms of the symbol-secrecy achieved by the underlying list-source code given

by the encryption scheme.

We illustrate the application of our results both for hiding the source data and functions

thereof. We provide an extension of the one-time pad [2] to a functional setting, demonstrat-

ing how certain classes of functions of the plaintext can be hidden using a short key. We

also consider the privacy against statistical inference setup studied in [18], and show how

the analysis introduced here sheds light on the fundamental privacy-utility tradeoff.

The results presented in this chapter can also be viewed through the linear operator

theory lens used for characterizing the Principal Inertia Components (PICs) of X and Y,

introduced in Chapter 5. Indeed, one of the main purposes of this chapter is to introduce

the estimation (MMSE)-based view of security and privacy, which will then be extended in

the latter chapters of this thesis. More specifically, when the set of functions <D form a basis

of the space of functions of X with finite second moment and, in addition, correspond to the

singular vectors of the conditional expectation operator, then the analysis presented here

reduces to the PIC-based analysis explained in Chapter 5. Nevertheless, the results in this

chapter are of independent interest and serve as a motivation for the analysis introduced in

Chapter 5 onwards.

3.2 Main Contributions

We summarize below the main contributions of this chapter to the thesis. Several of the

results in this chapter have appeared in [28] and [561.

1. MMSE bounds. We introduce a lower bound for the MMSE of estimating a target

function <0 of a hidden variable X given that a certain set of functions <D are known

to be easy or hard to infer in Theorem 3.1. This bound is based on Lemma 3.1, and

extended to bound the probability of estimating one-bit functions of X in Corollary

3.1. This analysis is later generalized using the PICs in Chapter 5.

2. Extending symbol secrecy. We translate bounds on symbol secrecy into upper

bounds on the mutual information between functions of a plaintext and the ciphertext

in Theorem 3.4. The proof of this result makes use of Fourier analytic techniques for

Boolean functions. These techniques will also be applied in Chapter 6.

3. Applications: Generalization of the one-time pad and the correlation-error

product. The more practical-facing results in this chapter are (i) a generalization
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of the one-time pad for small keys, presented in Theorem 3.3 and (ii) the correlation-

error product, introduced in Section 3.8. In the former, we show that a wide range of

functions can be information-theoretically hidden using a one-time pad like scheme for

"short" keys (i.e. keys with entropy rate significantly smaller than the plaintext source

rate) by appropriately choosing the distribution of the key. This result is also proved

using Fourier-analytic techniques. In the latter, we use the MMSE-based analysis to

introduce the correlation-error product, which is a key component for understanding

the fundamental tradeoff between privacy and utility. The correlation-error product

will be studied again in Chapter 7 using the PICs.

3.3 Related Work

The use of rate-distortion formulations in security and privacy settings was studied by Ya-

mamoto [571 and Reed [58]. Information-theoretic approaches to privacy that take distortion

into account were also considered in [59-611. We will make use of the privacy against statis-

tical inference framework at the end of this chapter, introduced in [181 and later extended in

[141 and [20]. For additional references on information-theoretic security, we refer the reader

to Section 2.3.

Bellare et al. [62] considered the standard wiretap setting [71, and proved the equiva-

lence between semantic security and minimizing the maximum mutual information over all

possible input message distributions. Since semantic security [23] is achieved only when

an adversary's advantage of correctly computing a function of the hidden variable given an

observation of the output is negligibly small, the results in [621 are closely related to the

ones presented here and in Chapter 4.

3.4 Lower Bounds for MMSE

The results introduced in this chapter are based on the following Lemma.

Lemma 3.1. Let z, : (0, oo)n x [0, 13] -+ R be given by

zn(a, b) - max {a yly E R', I|YI2< 1, y < b} . (3.1)

Let 7r be a permutation of (1,2,... ,n) such that b,(1)/al1 ... < b(n) /ar(n). If

b7( 1)/a7(l) ;> 1, zn(a,b) = 11aH|2. Otherwise,

k* k* k*

zn(a b)=2xib(i ||j a 1 -i b ,~i (3.2)
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k* max k E [n]
b1 r(k)
avr(k) K a - E ~- a2 (3.3)

Proof. The proof is given in the appendix.

Throughout this section we assume (I C I2(px) and E [#i(X)#O(X)] = 0 for i .

Furthermore, let Y be an observed variable that is dependent of X, and for a given #i the

inequality

max E [0i(X)O(Y)] = |HE [0i (X)IY] 112 Ai
V)E, 2(PY )

is satisfied, where 0 < Ai 1. This is equivalent to mmse(Oi(X)lY) > 1 - A2. Recall that

we define the operator Tx : C2(PY) -+ 2(PX) (respectively Ty : L2(Px) -+ 2(PY)) as the

conditional expectation operator given X (resp. given Y) that maps 7P (y) -+ E [0(y) IX = x]

(resp. 0 (x) -+ E [0 (Y)IX = x]).

Theorem 3.1. Let JE [#(X)q5(X)] 1= pi > 0. Denoting p = (Ipil,...

PO 1- =1 p2, Ao = 1 Po L (po, p) and AO A (Ao, A), then

, |pm), A A (Al,.

IE [0 (X)IY] 112 BIl1(po,Ao),

where

BjDj~OAo) zi 4 1+1 (PO' AO) ,
B1 1(p0 , Ao) A z 1 ipA)

zi 1 (p, A),

and zn is given in (3.1). Consequently,

(3.4)

if po > 0,

otherwise.

mmse(#(X)jY) > 1 - B (p, Ao) 2 .

Proof. Let h(X) p- 1((X) - Eipii(X)) if po > 0, otherwise h(X) = 0.

h(X) E L 2(Px). Then for 0 E L2(PY)

IE [#(X)*(Y)] I= poE [h(X)4'(Y)] + piE [#1(XM)4(Y)]

PO lIE [h(X)4 i(Y)] I+ |piE [i (X>)(Y)lI

PolE [h(X)(Txtb)(X)]| + |pjE [#(X)(TxO)(X)]|

(3.5)

(3.6)

Note that

Denoting IE [h(X)(Tx4')(X)] I xo, jE [#(X)(TxO)(X)] I ! , x, X (Xo, Xi,... , Xm), and
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P (po, Ipi1, .. - , Ipin), the last inequality can be rewritten as

JE [#(X)O(Y)]| I : pTrx. (3.7)

Observe that IlxI2  1 and xi : Ai for i = 0, ... , m, and the right hand side of (3.7) can

be maximized over all values of x that satisfy these constraints. We assume, without loss

of generality, that po > 0 (otherwise set xo = 0). The left-hand side of (3.7) can be further

bounded by

JE [O(X)O(Y)]| I zm+1 (po, Ao), (3.8)

where A = (1, A,. .. , Am) and zm+1 is defined in (3.1). The result follows directly from

Lemma 3.1 and noting that maxIPEC 2 (p,) E [O(X)V)(Y)] = I E [#(X)lY] 112. D

Denote Oi (y) A E [#i (X)IY =y /y]E [#i (X)IY] 112 and #o(X) A (0(X)-Ei pi Oi(X))/p- 1 .

The previous bound can be further improved when E [Vi(Y)o5j(X)] = 0 for i # j, j E

{0, ... , m}.

Theorem 3.2. Let |E [#(X)#j(X)] 1= pi > 0 for #i E D. In addition, assume E [0j (Y)/j (Y)] =

Ofori j, iE[t] andj E {0,...,Il}, whereO < t < |4DI. Then

I|E [O(X)jY] 112 A pl + B _,p (j , I) (3.9)

where 1 = (po, pt, ... ,pm), (1, At, Am) and Bm is defined in (3.5) (considering

B0 = 0). In particular, if t =m,

I1
IE [O(X)IY] 112 P0 + > p (3.10)

k=1

and this bound is tight when po = 0. Furthermore,

mmse(#(X)IY) > 1 - Atp? - BIl -p i . (3.11)
kz=1

Proof. For any 0 E 1 2(PY), let a2 i E[(Y)0j(Y)] and bo(Y) A (0(Y)-Z~taj ap'j(Y))a- 1

where ao = (1j_- ia2)- 1/2. Observethat 0 E L 2(py) andE [#i(X)0j(Y)] = E [0j(Y)j(Y) =

0 for i 7 j, i E {0,..., |I} and j E [t]. Consequently

I(P\ t

E [#(X>$'(Y)] = E ( PiOi(X) ( aj4 0(Y)
i=O (j=0

IDI t

= E i paj E [#i (X) 3 (Y)]
i=0 j=O
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|+Dl t

ao > piE [#i(X)4'o(Y)] + Z|Aipiai|
i=O,ig [n] =

Iao|Bei t_ (pI) + ZlAipiail (3.12)
i=1

< Alp + B1D1_ (_,t ). (3.13)

Inequality (3.12) follows from the bound (3.4), and (3.13) follows by observing that Zio cz =

1 and applying the Cauchy-Schwarz inequality.

Finally, when po = 0, (3.13) can be achieved with equality by taking 4 = E Aip 2 .

Remark 3.1. The previous theorem and, in particular, (3.10) and (3.11) forshadows the

Principal Inertia Component-based analysis that will be introduced in Chapter 5. More

specifically, when the functions qi for a basis for L2(px) and are the singular vectors of

the operator Tx (with corresponding adjoint operator Ty), then the values A2 in (3.10) are

exactly the PICs of the joint distribution px,y.

The following three, diverse examples illustrate different usage cases of Theorems 3.1 and

3.2. Example 3.1 illustrates Theorem 3.2 for the binary symmetric channel. In this case,

the basis 1 can be conveniently expressed as the parity bits of the input to the channel.

Example 3.2 illustrates how Theorem 3.2 can be applied to the q-ary symmetric channel,

and demonstrates that bound (3.10) is sharp. Finally, Example 3.3 then illustrates Theorem

3.1 for the specific case where all the values pi and A are equal.

Example 3.1 (Binary Symmetric Channel). Let X = {-1, 1} and Y = {-1, 1}, and Y"

be the result of passing X" through a memoryless binary symmetric channel with crossover

plubabulity e. vve also assume that A- is composed by n uniform and i.i.d. bits. For S ; [n],
let Xs(X') lies Xi. Any function #: X -+ R can then be decomposed in terms of the

basis of functions XS(Xn) as [63]

(Xn)= csXS(X,),
SC[n]

where cs = E [O(Xn)XS(X,)]. Furthermore, since E [Xs(Xn)lYn] = (1 - 2c)1sI, it follows

from Theorem 3.2 that

mmse(#(Xn)IYn) = 1 - c(1 - 2E) 21S1 . (3.14)
SC[n]

This result can be generalized for the case where Xn = Y0 & Zn, where the operation 0

denotes bit-wise multiplication, Z' is drawn from {- 1, 1 } and X" is uniformly distributed.
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In this case

mmse(#(X")jY') = 1 - 1 cSgE [xs(Zn)]2 . (3.15)
SC[n]

This example will be revisited in Section 3.6, where we restrict 0 to be a binary function.

Example 3.2 (q-ary symmetric channel). For X = Y = [q], an (E, q)-ary symmetric channel

is defined by the transition probability

PYIX(ylx) = (1 - E)ly=X + E/q. (3.16)

Any function 0i E 2(Px) such that E [0j(X)] = 0 satisfies

(Y) = Ty#(X) = (1 - 0)(Y),

and, consequently, IITyO(X)11 2= (1-E). We shall use this fact to show that the bound (3.10)

is sharp in this case.

Observe that for 0i, q5 E L2(Px), if E [#i(X)#5 (X)] = 0 then E [#i(Y)0j'(Y)] = 0. Now

let # E 2(Px) satisfy E [O(X)] = 0 and E [0(X)#j(X)] = pi for 0i E 41i, where 111= m, D

satisfies the conditions in Theorem 3.2, and p = 1. In addition, 110il12= (1 - E) = A.

Then, from (3.10),

m

which matches IITy#(X)jj 2, and the bound is tight in this case.

Example 3.3 (Equal MMSE and correlation). We now turn our attention to Theorem 3.1.

Consider the case when the correlations of # with the references functions /i are all the

same, and each 4i can be estimated with the same MMSE, i.e. A, = ... = Am = A and

p= - p2 = p2 , p 0 and A2  p 2 _1/rm. Then bound (3.4) becomes

jIE [#(X)lY] 112 mAp + (1 - mp2 )(1 - mA 2 ).

3.5 One-Bit Functions

Let X be a hidden random variable and Y be a noisy observation of X. Here we denote

=D { I= a collection of m predicates of X, where F = q$ (X), #i : X - {-1, 1} for

i E [m] and, without loss of generality E [F] = bi > 0.

We denote by FP an estimate of F given an observation of Y, where F -+ X -+ Y -+ Fs.

We assume that for any i
E[Fj~j] < 1 - 2aj
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for some 0 < ai (1 - bi)/2 < 1/2. This condition is equivalent to imposing that Pr{F $
Fi} > ai, since

E [FFi = Pr{Fi =F } - Pr{Fi #F i} = 1 - 2 Pr{FiF i}.

In particular, this captures how well F can be guessed based solely on an observation of Y.

Now assume there is a bit F = #(Y) such that E [FF] = pi for i E [m] and E [FiFj] = 0

for i 0 j. We can apply the same method used in the proof of Theorem 3.1 to bound the

probability of F being guessed correctly from an observation of Y.

Corollary 3.1. For Ai = 1 - 2ai,

Pr(F > ) I (1 -B, (p, A)). (3.17)

Proof. The proof follows the same steps as Theorem 3.1, #(Y) E L2(PY). l

In the case m = 1, we obtain the following simpler bound, presented in Proposition 3.1,
which depends on the following Lemma.

Lemma 3.2. For any random variables A, B and C

Pr(A 4 B) Pr(A # C)+ Pr(B # C).

Proof.

Pr(AO B) = Pr(Ao BAB = C)+ Pr(A f BAB# C)

= Pr(A f C A B = C)+Pr(B = C)Pr(A = BIB $0C)

< Pr(A = C) + Pr(B = C).

Proposition 3.1. If Pr(Fi = F') a for all P1 and E [FFi] = p > 0. Then for any

estimator F

Proof. From Lemma 3.2:

Pr(F = F) (Pr(Fi = F) - Pr(Fi F))

>

2L
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3.6 One-Time Pad Encryption of Functions with Boolean In-

puts

We return to the setting where a legitimate transmitter (Alice) wishes to communicate a

plaintext message X' to a legitimate receiver (Bob) through a channel observed by an

eavesdropper (Eve). Both Alice and Bob share a secret key K that is not known by Eve.

Alice and Bob use a symmetric key encryption scheme determined by the pair of encryption

and decryption functions (Enc, Dec), where Y' = Enc(X', K) and X1 = Dec(Y', K). Here

we assume that both the ciphertext and the plaintext have the same length.

We use the results derived in the previous section to assess the security properties of

the one-time pad with non-uniform key distribution when no assumptions are made on the

computational resources available to Eve. In this case, perfect secrecy (i.e. I(X'; Yf) = 0)

can only be achieved when H(K) > H(X") [2], which, in turn, is challenging in practice.

Nevertheless, as we shall show in this section, information-theoretic security claims can still

be made in the short key regime, i.e. H(K) < H(X'). We first prove the following ancillary

result.

Lemma 3.3. Let F be a Boolean random variable and F -* X -* Y F, where IyI 2.

Furthermore, Pr{F = P} a for all Y -+ F. Then I(F; Y) 1 - 2a.

Proof. The result is a direct consequence of the fact that the channel with binary input and

finite output alphabet that maximizes mutual information for a fixed error probability is

the erasure channel, proved next. Assume, without loss of generality, that Y = [m] and

PF,Y (-1, y) PF,Y (1, y) for y E [k] and pFy (-1, y) < PF,Y (1, y) for y E {k + 1, ... M},

where k E [m]. Now let Y be a random variable that takes values in [2m] such that

PF,Y (b, y) - pF,Y (1, y) y e [k],

p (b, y) PF,Y (b, y) - PF,Y (-1, y) y Ek + 1, ... , mI,

pF,Y(1, y) y - m E [k],

PF, Y-, Y) Y - fm E fk + 1, . .. , MI.

Note that F -+ Y -* Y, since Y = Y - ml j>M j and, consequently, I(F; Y) > I(F; Y).

Furthermore, the reader can verify that

Pe(FIY) = Pe (Fli) = a.

In particular, given the optimal estimator Y -+ F, a detection error can only occur when

f E {k + 1, ... , m}, in which case F = F with probability 1/2.
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Finally,

H(F|Y) - S p(y)p(F y) lgPF by)
bE{-1,1}
yE[2m]

E p(y)
yE{m+1,2m}

> 2a.

Consequently, I(F; Y) = H(F) - H(FlI) < 1 - 2a. The result follows. D

Let X' be a plaintext message composed by a sequence of n bits drawn from {-1, 1}'.

The plaintext can be perfectly hidden by using a one-time pad: A ciphertext Y' is produced

as Y' = X, ( Zn, where the key K = Zn is a uniformly distributed sequence of n i.i.d.

bits chosen independently from X'. The one-time pad is impractical since, as mentioned, it

requires Alice and Bob to share a very long key.

Instead of trying to hide the entire plaintext message, assume that Alice and Bob wish

to hide only a set of functions of the plaintext from Eve. In particular, we denote this

set of functions as D = {o', ... , qm} where #i : {-1, 1} -, {-1, 1}, E [#i(Xn)] = 0 and

E [#,(Xn)#j(Xn)] = 0. The set of functions (J is said to be hidden I(#i(Xn); Yn) = 0 for

all #j E (. Can this be accomplished with a key that satisfies H(K) < H(Xn)?

The answer is positive, but it depends on (D. We denote the Fourier expansion of #i E 4

as

Oi = PiSS-
SC[n]

The following result shows that Oi is perfectly hidden from Eve if and only if I(xs(Xn); Yn)
0 for all xs such that pi,S > 0.

Lemma 3.4. If I(0,(Xn); Y") = 0 for all 4j E 4, then I(xs(X"); Yf) = 0 for all S such

that Pi,S > 0 for some i E [IM].

Proof. Assume that I(xs(Xn); Y") > 0 for a given pi,S > 0. Then there exists b : yn 9

{-1, 1} such that E [b(Yn)Xs(Xn)] = A > 0. Consequently, from (3.10), E [b(Y')0 1(Xn)] >

APi,S > 0, and # 1 (X") is not independent of Y. El

The previous result shows that hiding a set of functions perfectly, or even a single func-

tion, might be as hard as hiding Xn. Indeed, if there is a Oi E - such that E [q, (Xn)Xs(Xn)] >

0 for all S C [n] where JSJ= 1, then perfectly hiding this set of functions can only be accom-

plished by using a one-time pad. Nevertheless, if we step back from perfect secrecy, a large

class of functions can be hidden with a comparably small key, as in the next example.

Example 3.4 (BSC revisited). Let Z' be a sequence of n i.i.d. bits such that Pr{Zi =
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-1} e, and consider once again the one-time pad Y' = X' 9 Zn. Furthermore, denote

k = {: {-1, 1}' -+ {-1, 1} 1 E [O(Xn)xs(X,)] = 0 VISI< k}.

Let q E Gk and O(X') = Es~ist>kpsXs(X'). Then, from Theorem 3.2 and Corollary 3.1,

for any 6: Y' -+ {-1, 1},

Pr{(Xn) 0 b(Yn)} S p(1 - 2E)21sl
|SL>T

Consequently, from Lemma 3.3, I(#(Xn); Yn) , (I - 2 E)k for all E .k. Note that

H(Z') = nh(e), which can be made very small compared to n. Therefore, even with a

small key, a large class of functions can be almost perfectly hidden from the eavesdropper

through this simple one-time pad scheme. The BSC setting discussed in Example 3.1 is

generalized in the following theorem which, in turn, is a particular case of the analysis

presented in Chapter 6.

Theorem 3.3 (Generalized One-time Pad). Let Y = Xng Zn, X' JL Z', X' b

distributed, # : {-1,1} -+ {-1,1} and q(Xn) = EsCr psxs(Xn). We d

E [xs(Z')] for S C [n]. Then

I(0(X');Y") 5 (cspg)2 .
sg[nI

In particular, I(#(X"); Yn) = 0 if and only if cs = 0 for all S such that ps $ 0.

Proof. Let V): {-1, 1} f -+ {-1, 1} and 0(Yn) = ESC[n, dsXs(Yn). Note that E
1. Then

e uniformly

efine cs A

(3.19)

SC[n] S

E [O(Xn)V)(Yn)] = E [#(Xn)E [4'(Yn)|Xn]]

= E [(X") E dsE [xs(Y,)IXn]
sc[n]

-JE K(Xn) I dsIE
SC[n]

[xs(Xn 0 Z) |Xn]

=E j(Xn) [xs(Xn)xs(Zn)IXn]
SC[n]

- S dsE [#(X")xs(Xn )] E [xs(Zn)]
SC[n]

55

> (1 - (1 - 2e)k).



= dspscs (3.20)
SC[n]

(csps)2 , (3.21)
sC~n]

where (3.21) follows from the Cauchy-Schwarz inequality. The inequality (3.19) then follows

from Lemma 3.3. Finally, assume there exists S ; [n] such that both cs f 0 and ps 5 0.

Then setting o(Yn) = Xs(Y,), it follows from (3.20) that E [O(Xn)/(Y")] pscs 0 0 and,

consequently, I(#(Xn); Yn) > 0. D

3.7 From Symbol Secrecy to Function Secrecy

Symbol secrecy captures the amount of information that an encryption scheme leaks about

individual symbols of a message. A given encryption scheme can achieve a high level of

(weak) information-theoretic security, but low symbol secrecy. As illustrated in Section

2.7.1, by sending a constant fraction of the message in the clear, the average amount of

information about the plaintext that leaks relative to the length of the message can be made

arbitrarily small, nevertheless the symbol secrecy performance is always constant (i.e. does

not decrease with message length).

When X is uniformly drawn from Fq for which an (n, k, n - k + 1) MDS code exists,

then an absolute symbol secrecy of k/n can always be achieved using the encryption scheme

suggested in Proposition 2.1. If X is a binary random variable, then we can map sequences of

plaintext bits of length [log2 qJ to an appropriate symbol in Fq, and then use the parity check

matrix of an MDS code to achieve a high symbol secrecy. Therefore, we may assume without

loss of generality that X' is drawn from {-1, 1}1. We also make the assumption that Xn

is uniformly distributed. This can be regarded as an approximation for the distribution of

X' when it is, for example, the output of an optimal source encoder with sufficiently large

blocklength.

Theorem 3.4. Let X' be a uniformly distributed sequence of n bits, Y = Encn(X', K),

and u, and e* the corresponding symbol secrecy and dual symbol secrecy of Encn, defined in

(2.1) and (2.3), respectively. Furthermore, for # : {-1,1}" -+ {-1, 1} and E [O(Xn)] = 0,

let #(Xn) = ESC[n] psXs(X"). Then for any Y : -+ {-1, 1}

Pe (#(Xn) Y) > 1 (1 - B, 4)(p, A)), (3.22)

where <D = {xs : ps * 0}, A(t) - hj ((1 - E*t)+), A = {A(!S1)}scgn and p = {psI}sC[n.

In particular,

pe (O(X") 1Y) >2 (1 - i.(3.23)



Proof. From the definition of symbol secrecy, for any S C [n] with ISI= t

I(xs (X');Y) : I(XS; Y) <E*t,

and, consequently,

H(xs(Xn)IY) (1 - E*t)+.

From Fano's inequality, for any binary P where Y -+ F

Pr{Xs(Xn) # F} > h-'((1 - E*t)+),

where hj 1 [0, 1] -+ [0, 1/2] is the inverse of the binary entropy function. In particular, from

the definition of absolute symbol secrecy, if E*= 0, then

Pr{xs(Xn) # } = 1/2 VIS I np o .

The result then follows directly from Theorem 3.2, the fact that #(Xn) = ESC[n] psys(Xn)

and letting A(t) 4 h- 1 ((1 - e*t)+). El

3.8 The Correlation-Error Product

We momentarily diverge from the cryptographic setting and introduce the correlation-error

product for the privacy setting considered by Calmon and Fawaz in [181 and describe in

Section 1.4. Let S and X be two random variables with joint distribution ps,X. S represents

a variable that is supposed to remain private, while X represents a variable that will be

released to an untrusted data collector in order to receive some utility based on X. The

goal is to design a randomized mapping pylx, called the privacy assuring mapping, that

transforms X into an output Y that will be disclosed to a third party.

The goal of a privacy assuring mechanism is to produce an output Y, derived from X

according to the mapping pylx, that will be released to the data collector in the place of

X. The released variable Y is chosen such that S cannot be inferred reliably given an

observation of Y. Simultaneously, given an appropriate distortion metric, X should be close

enough to Y so that a certain level of utility can still be provided. For example, S could be

a user's political preference, and X a set of movie ratings released to a recommender system

in order to receive movie recommendations. Y is chosen as a perturbed version of the

movie recommendations so that the user's political preference is obscured, while meaningful

recommendations can still be provided.

Given S -+ X -* Y and ps,x, a privacy assuring mapping is given by the conditional

distribution pyIx. The choice of pyIx determines the tradeoff between privacy and utility.

If prIX = py, then perfect privacy is achieved (i.e. S and Y are independent), but no utility
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can be provided. Conversely, if pyjx is the identity mapping, then no privacy is gained, but

the highest level of utility can be provided.

When S = #(X) where # E C2(Px), the bounds from Section 3.4 shed light on the

fundamental privacy-utility tradeoff. Returning to the notation of Section 3.4, let S = O(X)

be correlated with a set of functions 4b = {q5}&. The next result is a direct corollary of

Theorem 3.2.

Corollary 3.2. Let E [Soi(X)] = pi, i p= 1, Oi(Y) = E [qi (X)IY] and, for i # j,
E [Oi (X) O#(X)] = 0 and E [ Oi'(Y)#4j(Y)] = 0. Then

I(DI
mmse(SIY) = mmse(#5 (Y) X)p?. (3.24)

i=1

We call the product mmse(i (Y) X)p? the correlation-error product. The secret variable

S cannot be estimated with low MMSE from Y if and only if the functions qi that are strongly

correlated with S (i.e. large p?) cannot be estimated reliably. Consequently, if pi is large

and #i is relevant for the utility provided by the data collector, privacy cannot be achieved

without a significant loss of utility: mmse(0j(X) Y) is necessarily large if mmse(SfY) is

large. Conversely, in order to hide S, it is sufficient to hide the functions Oi(X) that are

strongly correlated with O(X). This no-free-lunch result is intuitive, since one would expect

that privacy cannot be achieved if utility is based on data that is strongly correlated with

the private variables. The results presented here prove that this is indeed the case. The

correlation-error product will be studied again using a PIC-based analysis in Section 7.8.

3.9 Prologue to Chapters 4 and 5

3.9.1 Transforming Information Guarantees into Estimation Guarantees

In this chapter, symbol-secrecy was extended to the functional setting by (i) mapping symbol

secrecy guarantee's into a bound on the error probability of estimating individual bits of

the message, (ii) using the MMSE and Fourier-based analysis to transform the bound on

estimating individual bits into a bound on estimating a target function of the plaintext,

and (iii) mapping this new bound on estimating a target function into a bound on mutual

information through Fano's inequality.

However, the inverse approach is arguably more interesting, where bounds on information

measures are mapped to estimation restrictions. Guarantees that an adversary cannot infer

certain functions of the plaintext reliably are indeed the focus of most modern cryptographic

security metrics [23]. This is perhaps one of the crucial differences between cryptographic and

information-theoretic metrics for security: information-theoretic metrics guarantee approxi-

mate independence (e.g. small mutual information), whereas cryptographic metrics reduce

to estimation guarantees (e.g. negligible advantage over a random guess). Of course, both
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approaches are related, but the problem remains of translating information-based security

guarantees into restrictions on what the adversary can or cannot learn given an observation

of the information leaked by a security system. The MMSE-based analysis presented in this

chapter takes the first steps towards this direction.

Transforming information guarantees into estimation guarantees is the focus of the next

chapter. We introduce a convex program based on rate-distortion formulations to transform

bounds on an information measure into guarantees on the (average) error of estimating

properties of the plaintext by an adversary. This raises the question: What is the right

security metric that captures both information and estimation guarantees? We propose a

metric that lives in the intersection of both worlds, called the Principal Inertia Components,

in Chapter 5

3.9.2 MMSE-Based Analysis

As discussed above, security guarantees given in terms of an information metric (e.g. upper-

bound on mutual information) should be translated into actual guarantees in terms of how

well an adversary can (or cannot) estimate functions of the plaintext. The MMSE-based

analysis presented in this chapter enabled us to extend symbol-secrecy to this functional

setting, and quantified how well a target function of the plaintext can be estimated given

knowledge of the MMSE of estimating a set of reference functions. These results also led to

the correlation-error product analysis for the privacy against statistical inference framework.

The central setup behind the MMSE-based analysis assumed that certain functions of

the plaintext are known to be hard or easy to infer. A natural next step is to investigate

this setup when the functions form a basis for the space of L2 functions of the plaintext. As

will be shown in Chapter 5, this assumption naturally leads to information metrics based

on Principal Inertia Components (PICs) of the joint distribution of the plaintext and the

disclosed data. The PICs are the spectrum of the conditional expectation operator, and are

explained in greater detail in Chapter 5.
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Chapter 4

From Information Measures to

Estimation Guarantees

In this chapter, we establish lower bounds for the average estimation error of a hidden

variable X and a function of the hidden variable f(X) given an observation of Y. These

bounds depend only on certain measures of information between X and Y and the marginal

distribution of X. The results hold for any estimator, and they shed light on the fundamental

limits of what can be inferred about a hidden variable from a noisy measurement. The

bounds derived here are similar in nature to Fano's inequality [41, and can be characterized

as the solution of a convex program which, in turn, is the optimization problem behind

rate-distortion formulations.

4.1 Overview

Information-theoretic security metrics, including the ones introduced in the previous chap-

ters, quantify the information (usually measured in terms of mutual information) that leaks

from a security system. For example, symbol secrecy, introduced in Chapter 2, captures how

much information an adversary learns about individual symbols of the plaintext message. In

addition, we demonstrated how symbol secrecy can be extended to quantify the information

that leaks about functions of the plaintext in Chapter 3.

In order to have a full picture of what an adversary can or cannot learn from the infor-

mation that leaks from a security system, it is necessary to map security guarantees in terms

of information metrics into guarantees on how well the adversary can or cannot estimate

functions of the plaintext message. For example, assume that we have an encryption mecha-

nism in place that guarantees that the mutual information between an individual symbol of

the plaintext and a computationally unbounded adversary's observation is at most 0.01 bits.

Is it possible to bound how well an adversary can guess that symbol? How does this result

depend on the distribution of the plaintext source? Are there other information measures
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besides mutual information for deriving such bounds on estimation?

In this chapter, we take steps towards answering these questions and present a general

framework for mapping a security guarantee given in terms of an information measure (e.g.

upper bound on mutual information) into a guarantee on the adversary's estimation capa-

bility (e.g. lower bound on estimation error). The proposed approach is closely related to

rate-distortion theory, and is equivalent to computing the distortion-rate function [4, Chap-

ter 10] for a given information measure and source distribution. We note that the results

introduced in this chapter are not restricted to mutual information and, in the next chapter,
will be applied to an information measure based on the principal inertia components.

The approach presented here is related to the one in Chapter 3, where symbol-secrecy

was extended to the functional setting by (i) translating symbol secrecy guarantee's into

a bound on the error probability of estimating individual bits of the message, (ii) using

the MMSE and Fourier-based analysis to translate the bound on estimating individual bits

into a bound on estimating a target function of the plaintext, and (iii) mapping this new

bound on estimating a target function into a bound on mutual information through Fano's

inequality. Here we take the inverse approach, where bounds on information measures are

translated into estimation restrictions.

4.2 Main Contributions

Estimation-theoretic setup for security

Throughout the rest of the chapter, we take a step back from security and consider the

underlying estimation-theoretic problem: Given an observation of a random variable Y,
what can we learn about a correlated, hidden variable X? For example, in the symmetric-

key encryption setup considered in the previous chapters, X can be the plaintext message,
and Y the ciphertext and any additional side information available to an adversary. The

results presented here assume that the joint distribution of X and Y is known a priori.

If the joint distribution between X and Y is known, the probability of error of estimating

X given an observation of Y can be calculated exactly. However, in most practical settings,
this joint distribution is unknown. Nevertheless, it may be possible to estimate certain

correlation measures of X and Y reliably, such as maximal correlation, X2-statistic or mutual

information. For example, by using the symmetric-key encryption scheme described in

Scheme 2.1, the mutual information between X and Y is provably bounded, even though

the distribution pxy may be difficult to compute exactly.

Given an upper bound 0 on a certain information measure I, denoted by I(X; Y) < 9,
is it possible to determine a lower bound for the average error of estimating X from Y

over all possible estimators? We answer this question in the affirmative. In particular,

the problem of computing such bound for a given distribution px and 9 is equivalent to

computing a distortion-rate function, introduced in Definition 4.2. When the estimation
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metric is error probability, we call the corresponding distortion-rate function the error-rate

function, denoted by eI(px, 0) and described in Definition 4.3. In the context of security, this

bound characterizes the best estimation of the plaintext that a (computationally unbounded)

adversary can make given an observation of the output of the system. We note that some

of the results in this chapter appeared in [641.

Bounding the estimation error of functions

Owing to the nature of the joint distribution, it may be infeasible to estimate X from

Y with small estimation error. However, it is possible that a non-trivial function f(X)

exists that is of interest to a learner and can be estimated reliably from Y. If f is the

identity function, this reduces to the standard problem of estimating X from Y. Determining

if such a function exists is relevant to several applications in learning, privacy, security

and information theory. In particular, this setting is related to the information bottleneck

imethod [651 and functional compression [661, where the goal is to compress X into Y such

that Y still preserves information about f(X).

For most security applications, minimizing the average error of estimating a hidden

variable X from an observation of Y is insufficient. As argued in previous chapters, cryp-

tographic definitions of security, and in particular semantic security [231, require that an

adversary has negligible advantage in guessing any function of the input given an observa-

tion of the output. In light of this, we present bounds for the best possible average error

achievable for estimating functions of X given an observation of Y.

Still assuming that pxy is unknown, px is given and a bound I(X; Y) < is known

(where I is not restricted to being mutual information), we present in Theorem 4.2 a method

for adapting bounds for error probability into bounds for the average estimation error of

functions of X given Y. This method depends on a few technical assumptions on the

information measure (stated in Definition 4.1 and in Theorem 4.2), foremost of which is the

existence of a lower bound for the error-rate function that is Schur-concavel in px for a fixed

9. Theorem 4.2 then states that, under these assumptions, for any deterministic, surjective

function f : X -- {1, ... , M}, we can obtain a lower bound for the average estimation error

of f by computing eI(pu, 6), where U is a random variable that is a function X.

Note that Schur-concavity is crucial for this result. In Theorem 4.1, we show that this

condition is always satisfied when I(X; Y) is concave in px for a fixed pyIx, convex in pyIx

for a fixed px, and satisfies the Data Processing Inequality. This generalizes a result by

Ahlswede [67] on the extremal properties of rate-distortion functions. Consequently, Fano's

inequality can be adapted in order to bound the average estimation error of functions, as

shown in Corollary 4.1. By observing that a particular form of the bound stated in Theorem

5.4 is Schur-concave, we present in the next chapter a bound for the error probability of

'A function f : R' --+ R is said to be Schur-concave if for all x, y E R' where x is majorized by y, then
f(x) > f(y).
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estimating functions in terms of the maximal correlation, stated in Corollary 5.4.

4.3 A Convex Program for Mapping Information Guarantees

to Bounds on Estimation

Throughout the rest of this chapter, we let X and Y be two random variables drawn from

finite sets X and Y. We have the following definition.

Definition 4.1. We say that a function I that maps any joint probability mass function

(pmf) to a non-negative real number is an information measure (equivalently measure of

information) if for any discrete random variables W, X, Y and Z (i) I(pxy) is convex

in pyIx for a fixed px, (ii) I satisfies the data processing inequality, i.e. if X -+ Y -+ Z

then I(px,z) i(px,Y), and (iii) if W is a one-to-one mapping of Y and Z is a one-

to-one mapping of X, then I(pw,z) = I(pxy) (invariance property). We overload the

notation of I and let I(px,y) = I(px,py1x) in order to make the dependence on the

marginal distribution and the channel clear. Furthermore, we also denote i(px,y) = I(X; Y)

when the distribution is clear from the context. Examples of information measure includes

maximal correlation, defined in (5.1), and mutual information.

Now assume the standard estimation setup where a hidden variable X should be esti-

mated from an observed random variable Y. We assume that the joint distribution between

px,y is not known, but the marginal distribution px is known, and that a security constraint

I(pxy) < 0 is given for an information measure I. Since I satisfies the Data Processing

Inequality, for any estimate X of X such that X -+ Y -+ X we have I(X; X) < I(X; Y) < 9.

The problem of translating a security guarantee in terms of I into a constraint on how well

an adversary can estimate (on average) the hidden variable X given an estimation metric

d: X x X -+ R can be approximated by solving the optimization problem

inf E [d(X, X)] (4.1)
Pki x

s.t. I(X;Xk) K 9. (4.2)

This motivates the following definition

Definition 4.2. We denote the smallest (average) estimation error DI,d for a given infor-

mation measure I and estimation cost function d as

DT,d(pX, 0) A inf {E [d(X,)] I I(pX, p ) 9}, (4.3)

where the infimum is over all conditional distributions pjx.
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Observe that if pyIX were known

DI,d(PX,O) < inf {E [d(X,)X)] I I(px, pyjx) 6, X -+ Y },

since, by the assumption that I satisfies the DPI, I(X; X) I(X; Y) < 6. When I(X; Y) =

I(X; Y), DI,d(Px, 6) is the distortion-rate function [4, pg. 306]. When the distortion func-

tion d is the Hamming distortion, DI,d(PX, 6) gives the smallest probability of error for

estimating X given an observation Y that satisfied I(X; Y) 5 6. This case will be of

particular interest in this chapter, motivating the next definition.

Definition 4.3. Denoting the Hamming distortion metric as

dH (XY)y
1, otherwise,

we define the error-rate function for the information measure I as

el (px, 0) DI, d,, (x, 0)

The definition of error-rate function directly leads to the following simple lemma.

Lemma 4.1. For a given information measure I and any fixed px,y such that I(pxy) 6

Pe(XIY) ;> ex(PX, 6 ).

Proof. Observe that Pe(XIY) = minx_,y_, E [dH(X, ) I, where the minimum is over

all distributions Pk x that satisfy the Markov constraint. Since I satisfies the DPI, then

I(X; X) < I(X; Y) < 6, and the result follows from Definition 4.2. l

The previous lemma shows that the characterization of ex(px, 6) for different measures

of information I is particularly relevant for applications in privacy and security, where X

is a variable that should remain hidden (e.g. plaintext) and Y is an adversary's observa-

tion(e.g. ciphertext). Knowing ej allows us to translate an upper bound I(X; Y) < 6 into

an estimation guarantee: regardless of an adversary's computational resources, given only

access to Y he will not be able to estimate X with an average error probability P(X|Y)

smaller than ex(px, 6). Therefore, by simply estimating 6 and calculating ex(px, 6) we are

able to evaluate the security threat incurred by an adversary that has access to Y.

Example 4.1 (Error-rate function for mutual information.). Using the expression for the

rate-distortion function under Hamming distortion for mutual information ([68, (9.5.8)]), for

I(X; Y) = I(X; Y) and X = [m], the error-rate function is given by eI(px, 0) = d*, where

d* is the solution of

hb(d*) + d* log(m - 1) = H(X) - 6, (4.4)
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and hb(x) -x log x - (1 - x) log(1 - x). Denoting X -+ Y - X and pe Pe(XIY), note

that (4.4) implies Fano's inequality [4, 2.140]:

hb(Pe) + Pe log(m - 1) > H(X) - I(X; Y) = H(XIY). (4.5)

We present next results on the extremal properties of the error-rate function. This

analysis will be particularly useful for determining how to bound the probability of error of

estimating functions of a random variable.

4.3.1 Extremal Properties of the Error-Rate Function

Due to convexity of I(pX, pklx) in pkIX, it follows directly that ex(px, 9) is convex in 9

for a fixed px. We will now prove that, for a fixed 0, el(px, 9) is Schur-concave in px

if I(pX,p 1 X) is concave in px for a fixed p . Ahlswede [67, Theorem 2] proved this

result for the particular case where I(X; Y) = I(X; Y) by investigating the properties of

the explicit characterization of the rate-distortion function under Hamming distortion. The

proof presented here is considerably simpler and more general, and is based on a proof

technique used by Ahlswede in [67, Theorem 1].

Theorem 4.1. If I(px, px) is concave in px for a fixed pfIX then ex(px, 0) is Schur-

concave in px for a fixed 9.

Proof. Consider two probability distributions px and qx defined over X {1,... , m}, and

assume that px majorizes qx, i.e. I qx(i) Ek I px(i) for 1 < k < m. Therefore qx is

a convex combination of permutations of px [69], and can be written as qx = 9= i(px ori)

for some I > 1, where ai > 0, E a = 1 and -ri is a permutation of px, i.e. px o 7i = pX

Hence, for a fixedP

I(qx,p jx) = I ai(px o Tj, pI

> > ai(px o 7ri, p X),
i=1

= aiT(px, ri o p X), (4.6)
i=1

where the inequality follows from the concavity assumption and the last equality from

I(X, X) being invariant to one-to-one mappings of X and X. Consequently, from Defi-

nition 4.3,

ex(qx,0) = inf dH(x,x')qx(x)p)1 X(x'|x) I(qx,pf1 x) 0
Pki {xx'E[m]
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(a)
> inf Zaj E dH(7ri(x),x')px(x)pklX(x'l7ri(x)) ZaiI(px, i oPkIX) 4

Z aiI(px,ri Ipk o r2 ) _< 4
iesjl]J

(c)

1nf aS d H (x, xpx (x)p x(xlx (aI(pxp X (X ' (
k l kix i iE[1 x,x'E[m 2E{1

inf azer(pxo) ax o= <

(e)
>d) inf ierpx , aoi) ai 19 = 0

= ei (px, 6) ,

where inequality (a) follows from (4.6), (b) follows from the fact that the infimum is taken

over all mapping pkix and that I(X; X) is invariant to one-to-one mappings of X and X,
(c) follows by allowing an arbitrary mapping p to be chosen for each i, (d) is obtained

by noting that the optimal coice of p is the one that minimizes the Hamming distortion

dH for a given upperbound on I(px, pt), and(e) follows from the convexity of er(px, 0)

in 0. Since this holds for any qx that is majorized by px, eI(px, 0) is Schur-concave. D

4.4 Bounding the Estimation Error of Functions of a Hidden

Random Variable

For any function f : X -+ U, we denote by f the maximum a posteriori (MAP) estimator

of f(X) given an observation of Y. For a given integer 1 < M < lXI, we define

Fm {f : X -+ U I f is surjective and IUI= M} (4.7)

and

Pe,(XIY) min Pe(f(X)IY). (4.8)
fETvi

Pe,ii(XlY) is simply the error probability of estimating X from Y, i.e. Pe,ixi(XIY) =

Pe(X|Y).
The next theorem shows that a lower bound for Pe,m can be derived for any information

measures I as long as eI(px, 0) or a lower bound for eE(px, 0) is Schur-concave in px.
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Theorem 4.2. For a given M, 1 < M < m, and px, let U = gM(X), where gm

{1,..., m} {1,..., M} is defined as

gM(x)+M -

Let pu be the marginal distribution2 of U. Assume that, for a given information measure

I, there exists a function L1 (-,-) such that for all distributions qx and any 6 ex(qx, 0) >

L-(qx, 0). If Lx(px, 0) is Schur-concave in px, then for X ~ px and I(X; Y) <,

Pe,m(XIY) > L-(pu, 0). (4.9)

In addition3 , for any S - X -+ Y such that pu majorizes Ps,

Pe (S I|Y) > L.E (pu, 0 ). (4.10 )

Proof. The result follows from the following chain of inequalities:

(a)
Pe,p(XIY) ! min {er (Pfx), W) : W < 0

> min {er (Pf(x), 0)

(b)
> min {LT (Pf(X),9)}

f EY

(c)
> Lj(pu,0),

where (a) follows from the Data Processing Inequality, (b) follows from ex(qx, 0) Lx(qx, 0)
for all qx, and 9 and (c) follows from the Schur-concavity of the lower bound and by observing

that pu majorizes pf(x) for every f E Fm. In the case of Pe(SIX), the same inequalities

hold with S playing the role of f(X) in (a) and (b), and the last inequality also following

from Schur-concavity of L1 (ps, 9) in ps. E

The following two corollaries illustrate how Theorem 4.2 can be used for different mea-

sures of information, namely mutual information and maximal correlation.

Corollary 4.1. Let I(X; Y) < 9. Then

Pe,M(XIY) > d*

2 The pmf of U is pu (1) = Z:M+l px (i) and pu(k) = px(m - M + k) for k = 2,..., M.
3We thank Dr. Nadia Fawaz (nadia.fawaz~technicolor.com) for pointing out this extension.
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where d* is the solution of

hb(d*) + d* log(m - 1) = min{H(U) - 0, 0},

and hb(-) is the binary entropy function.

Proof. Ri(px, 6) is the well known rate-distortion function under Hamming distortion, which

satisfies ([68, (9.5.8)1) RI(px, 6) ;> H(X) - hb(d*) - d* log(m - 1). The result follows from

Theorem 4.1, since mutual information is concave in px. I

4.4.1 A Conjecture on the Schur-Concavity of Error-Rate Functions

The authors have not yet managed to prove or disprove the following conjecture.

Conjecture 4.1. For any information measure I, el(px, 0) is Schur-concave in px for a

fixed 9.

If conjecture 4.1 is true, then the bounding procedure presented in theorem 4.2 can be

applied to a very broad set of measures of information, including k-correlation, by simply

lower bounding ex(pu, 6). Indeed, even if a closed form solution for the error-rate function

is not known, Pe,M can be lower bounded by numerically solving (4.3) in terms of pu and 0
using widely available convex solvers.

4.5 Final Remarks

In this chapter, we characterized properties of the error-rate function el. Assuming that

X and Y are discrete random variables with support X = [m] and Y = [n], the joint pmf

pxy can be displayed as the entries of a matrix P E Rmxn, where [P] = pxy(i, j). The

problem of determining the estimator X of X given an observation of Y then reduces to

finding a row-stochastic matrix Py E R'nxm that is the solution of

Pe(XIY) = min 1 - tr (P x P y). (4.11)
xky

Note that the previous minimization is a linear program, and by taking its dual the reader

can verify that the optimal Pkly is the maximum-a posteriori (MAP) estimator, as expected.

As discussed in the introduction of this chapter, the joint distribution matrix P may not

be known exactly - only a given information measure I(pxy) may be known. Equation

(4.11) indicates that possible information measures that lead to sharp lower bounds for

error probability may be those somehow related to the spectrum of P. Indeed, the trace of

the product of two matrices is closely related to their spectra (cf. Von Neumman's trace

inequality). This motivates the following question: Are there information measures that

capture the spectrum of a joint distribution matrix P? In the next chapter, we answer this
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question in the positive by introducing information measures and lower bounds on estimation

error based the Principal Inertia Components (PICs), which, in turn, are connected to the

spectrum of P. As discussed in Section 3.9, the PICs are also related to the MMSE-based

analysis presented in the previous chapter. We study the PICs in detail next.
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Chapter 5

Principal Inertia Components

We introduce in this section the Principal Inertia Components (PICs) of the joint distribu-

tion of two random variables X and Y. The PICs provide a fine-grained decomposition of

the statistical dependence between X and Y, and lead to information measures that lie in

the intersection of information and estimation theory. The PICs possess several desirable

information-theoretic properties (e.g. satisfy the Data Processing Inequality, convexity, ten-

sorization, etc.), and describe which functions of X can or cannot be reliably inferred given

an observation of Y. As we demonstrate in this chapter and in Chapters 6 and 7, the PICs

are powerful tools for evaluating and designing security and privacy systems.

5.1 Overview

Let X and Y be two discrete random variables with finite support X and Y, respectively.

Assume that the joint distribution px,y is unknown, but that the marginal distribution px

is given. In Chapter 4, we introduced a framework for deriving bounds for the average error

of estimating X from Y given that a certain information measure I(X; Y) between X and

Y is bounded above by 6, i.e. I(X; Y) <; 0. In practice, the value of 6 and px could be

determined, for example, from multiple i.i.d. samples drawn according to px,y. The number

of samples available might be insufficient to characterize px,y, but enough to estimate 0 and

px reliably. Under these assumptions, what can be said about the smallest probability of

error of estimating X or a function of X given an observation of Y?

If 1(X; Y) = I(X; Y), where I(X; Y) is the mutual information between X and Y,

then Fano's inequality (4.4) provides a lower bound for the probability of error Pe(XIY)

of guessing X given Y. However, in practice, several other statistics are used in addition

to mutual information in order to capture the information (correlation) between X and

Y. In this chapter, we focus on one particular metric, the principal inertia components of

px,y, denoted by the vector (Ai(X; Y), ... , Ad(X; Y)), where d = min{m - 1,n - 1}, and

AI(X; Y) > A2 (X; Y) > ... > Ad(X; Y). The exact definition of the PICs is presented in

Section 5.4

71

...........



The PICs are information theoretic and statistical metrics that are particularly well

suited for deriving bounds for the average estimation error. As will be shown in this chap-

ter, they naturally appear as the solution of different but interconnected problems in esti-

mation, maximization of correlation, and analysis of the conditional expectation operator.

Furthermore, the largest PIC, which is equivalent to the maximal correlation coefficient of

two random variables, is a meaningful security metric.

A Geometric Interpretation of the PICs

The PICs also posses an intuitive geometric interpretation, described next. Let X and Y

be related through a conditional distribution (channel), denoted by pyIx. For each x E X,

pyix(-Ix) will be a vector on the lY-dimensional simplex, and the position of these vectors

on the simplex will determine the nature of the relationship between X and Y. If pyIx is

fixed, what can be learned about X given an observation of Y, or the degree of accuracy of

what can be inferred about X a posteriori, will then depend on the marginal distribution

px. The value px(x), in turn, ponderates the corresponding vector pyix(- x) akin to a mass.

As a simple example, if IXI= JYI and the vectors pyix(.Ix) are located on distinct corners

of the simplex, then X can be perfectly learned from Y. As another example, assume that

the vectors pylx(-Ix) can be grouped into two clusters located near opposite corners of the

simplex. If the sum of the masses induced by px for each cluster is approximately 1/2, then

one may expect to reliably infer on the order of 1 unbiased bit of X from an observation of

Y.

The above discussion naturally leads to considering the use of techniques borrowed from

classical mechanics. For a given inertial frame of reference, the mechanical properties of a

collection of distributed point masses can be characterized by the moments of inertia of the

system. The moments of inertia measure how the weight of the point masses is distributed

around the center of mass. An analogous metric exists for the distribution of the vectors

pyIX and masses px in the simplex, and it is the subject of study of a branch of applied

statistics called correspondence analysis ([16, 70]). In correspondence analysis, the joint

distribution px,y is decomposed in terms of the PICs, which, in some sense, are analogous

to the moments of inertia of a collection of point masses. In mathematical probability, the

study of principal inertia components dates back to Hirschfeld [71], Gebelein [72], Sarmanov

173] and R6nyi [74], and similar analysis have also recurrently appeared in the information

theory and applied probability literature. We present a short review of the relevant literature

in Section 5.3.

5.2 Main Contributions

This chapter has four main contributions, listed below. Some of the results presented in the

chapter appeared in [64].
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1. We present an overview of the PICs and their different interpretations, summarized in

Theorem 5.1.

2. We analyze properties of a measure of information (correlation) between X and Y

based on the PICs of the joint distribution of X and Y. The estimation of the PICs

is widely studied in the field of correspondence analysis, and is used in practice to

analyze categorical data. The metric we propose, called k-correlation, is defined as

the sum of the k largest PICs, which, in turn, are the singular values of a particular

decomposition of the joint distribution matrix of X and Y. We show that k-correlation

generalizes both the maximal correlation and the x 2 measures of correlation. We also

prove that k-correlation satisfies two key properties for information measures: (i) the

Data Processing Inequality and (ii) convexity in the conditional probabilities pylx.

3. We derive a family of lower bounds for the error probability of estimating X given Y

based on the PICs of px,y and the marginal distribution of X in Theorems 5.4 and

5.6. By applying the techniques derived in Chapter 4, we then extend these bounds

for the probability of correctly estimating a function of the hidden variable X given

an observation of Y.

4. We characterize the PICs for a wide range of distributions, namely when X is a

sequence of n i.i.d. random variables and Y is a symmetric function of X, presented

in Theorem 5.7. This result is also extended to exchangeable random variables in

Theorem 5.9.

The PICs generalize other measures that are used in information theory. In particular,

A = pm(X; Y) 2 , where pm(X; Y) is the maximal correlation between X and Y, defined as

[74]

pm(X;Y)~ max E[f(X)g(Y)]. (5.1)
E[f(X)]=E[g(Y)] =0

E[f(X) 2]=E[g(Y) 2 -

In Section 5.4, we discuss how to compute the PICs and provide alternative characterizations.

Compared to mutual information, the PICs provide a finer-grained decomposition of the

correlation between X and Y.

We propose a metric of information called k-correlation, defined as Jk(X; Y) Y ). A Y.

This metric satisfies two key properties:

" Convexity in pYIx (Theorem 5.2);

" Data Processing Inequality (Theorem 5.3). This is also satisfied by A (X; Y),... , Ad(X; Y)

individually,

and, consequently, is an information measure as per Def. 4.1.
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By making use of the fact that the principal inertia components satisfy the Data Pro-

cessing Inequality, we are able to derive a family of bounds for Pe(XIY) in terms of px

and AI(X : Y), ... , Ad(X; Y), described in Theorem 5.4. This result sheds light on the

relationship of Pe(XIY) with the principal inertia components.

One immediate consequence of Theorem 5.4 is a useful scaling law for Pe(XIY) in terms

of the largest principal inertia (i.e. maximal correlation). Let X = 1 be the most likely

outcome for X. Corollary 5.3 proves that the advantage an adversary has of guessing X,
over the trivial solution of simply guessing the most likely outcome of X (say X = 1),
satisfies

Adv(XIY) AI - px (1) - Pe(XIY) I 0 ( A,(X; Y)). (5.2)

5.2.1 Organization of the Chapter

The rest of this chapter is organized as follows. Section 5.3 presents an overview of related

work. Section 5.4 presents the definition an alternative characterizations of the PICs. Section

5.5 introduces the k-correlation metric of information, and proves that it is convex in the

transition probability pYiX and satisfies the Data Processing Inequality. Section 5.6 presents

a Fano-like inequality based on the PICs and the marginal distribution px, and in Section

5.7 we present a convex program for calculating the error-rate function for k-correlation.

Finally, Section 5.8 characterizes the PICs between a symmetric function of a set of samples

and a subset of these samples.

5.3 Related Work

The joint distribution matrix P can be viewed as a contingency table and decomposed using

standard techniques from correspondence analysis [16,75]. For an overview of correspondence

analysis, we refer the reader to [70]. The term "principal inertia components", used here,
is borrowed from the correspondence analysis literature [16]. However, the study of the

principal inertia components of the joint distribution of two random variables or, equivalently,
the spectrum of the conditional expectation operator, predates correspondence analysis, and

goes back to the work of Hirshfield [71], Gebelein [72], Sarmanov [73] and R6nyi [74], having

appeared in the work of Witsenhausen [76], Ahlswede and Gics [77] and, more recently,
Anantharam et al. [78], Polyanskiy [79], Raginsky [80] and Calmon et al. [64], among others.

The largest principal inertia of P is equal to pm(X; Y) 2 , where pm(X; Y) is the maximal

correlation between X and Y. Maximal correlation has been widely studied in the infor-

mation theory and statistics literature (e.g [73, 74]). Ahslwede and Gics studied maximal

correlation in the context of contraction coefficients in strong data processing inequalities

[77], and more recently Anantharam et al. present in [78] an overview of different character-

izations of maximal correlation, as well as its application in information theory. Estimating

the maximal correlation is also the goal of the ACE algorithm introduced by Breiman and
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Friedman [171, and further analyzed by Buja [81].

The Data Processing Inequality for the principal inertias was shown by Kang and Ulukus

in [82, Theorem 21 in a different setting than the one considered here. Kang and Ulukus

make use of the decomposition of the joint distribution matrix to derive outer bounds for the

rate-distortion region achievable in certain distributed source and channel coding problems.

Lower bounds on the average estimation error can be found using Fano-type inequal-

ities. Recently, Guntuboyina et al. ([83, 84]) presented a family of sharp bounds for the

minmax risk in estimation problems involving general f-divergences. These bounds gener-

alize Fano's inequality and, under certain assumptions, can be extended in order to lower

bound Pe(XIY).

Most information-theoretic approaches for estimating or communicating functions of a

random variable are concerned with properties of specific functions given i.i.d. samples of the

hidden variable X, such as in the functional compression literature [66,85]. These results are

rate-based and asymptotic, and do not immediately extend to the case where the function

f (X) can be an arbitrary member of a class of functions, and only a single observation is

available.

More recently, Kumar and Courtade [24] investigated Boolean functions in an information-

theoretic context. In particular, they analyzed which is the most informative (in terms of

mutual information) 1-bit function (i.e. M = 2) for the case where X is composed by n i.i.d.

Bernoulli(1/2) random variables, and Y is the result of passing X through a discrete memo-

ryless binary symmetric channel. Even in this simple case, determining the most informative

function is non-trivial. We study this problem in Chapter 6.

5.4 Definition and Characterizations of the PICs

We start with the definition of principle inertia components for discrete random variables.

The definition and results presented in the section can be extended to general probability

measures.

Definition 5.1. Let P E Rmxn be a matrix with entries [P]i,j = px,y(i,.j), and Dx E

Rmxm and Dy E R"X' be diagonal matrices with diagonal entries [Dx]i,i = px(i) and

[Dy]j,j = py(j), respectively, where i E [in] and j E [n]. We define

Q _ 1 j/2 PD -1/2. (5.3)

Denoting the singular value decomposition [861 of Q = UEVT, then

E2 = diag (1, A1(X; Y), .. . , A(X; Y)) , (5.4)

where d A min(m, n) - 1. The values AI(X; Y), ... , Ad(X; Y) are called the principal inertia

components (PICs) of px,y. We consider, without loss of generality, A,(X; Y) A 2 (X; Y)
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- > Ad(X; Y). The columns of the matrices DXi/2U and D- 1/ 2 V are called the principal

functions of X and Y.

The fact that a-1(Q) = 1 can be explained as follows. Let u E R"' and v E R' such

that 11U12= 11v1 2= 1, then we can define two functions f : [m] R R and g : [n] -+ R where

f(i) = u/ /px(i) and g(j) = v / /py(j). Then

|lf(X)II = Ui 1

since |U12= 1, and, equivalently 1g(Y)11 2 = 1. Consequently

uTQv = E [f(X)g(Y)] < Ilf(X)l| 2 ||g(Y)1| 2= 1,

where equality is achieved when ui = fpx(i) and vj = fpy (j).

The next theorem states for equivalent characterizations of the PICs.

Theorem 5.1. The following characterizations of the PICs Ai(X;Y),..., A(X;Y) are

equivalent:

(1) /Ak(X; Y) is the (k + 1)-st largest singular value of Q.

(2) Let fo : X -+ R and go : X -+ R be the constant functions fo(x) = 1 and go(y) = 1 for

x E [m] and y E [n]. Then for k E [d] and

Ak (X; Y) = max {E [f (X)g(Y)]2 f C 1 2(PX), g E C 2 (PY), E [f (X)fj (X)] 0,

E [O(Y)OJ(Y)] = 0.1 -0.. k - 1 IV (5.s)

where

(fk, gk) argmax {E [f(X)g(Y)] 2 f E C2(PX), g E L2(pY), E [f (X)fj (X)] = 0,

E [g(Y)g 3 (Y)] = 0, j C {0, ... , k - 1}. (5.6)

Furthermore, gk (Y) = E[fk(X)Y, and Ak(X; Y) = ||E [fk(X)IY ]1|| .

(3) Consider the conditional expectation operator T : L 2(px) -+, 2(PY), given by

Tf(y) = E [f (X)IY = y]. (5.7)

Then (1, VA(X; Y), . . . , V/Ad(X; Y)) is the spectrum of T.
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(4) For k E [d]:

1 - Ak(X; Y) = min {mmse(f(X)IY) h E L 2 (Px),IE [f(X)fj(X)] = O,j E {0, ... , k -1

(5.8)

where

hk L argmin {mmse(h(X)IY) f E L2(px), E [f(X)f (X)] = 0,j E {,...,k(- 15 .
(5.9)

If Ak(X;Y) is unique, then hk = fk given in (5.6).

Proof. We will first prove that (1)
(2) # (4).

<- (2), and then show that (2)

* (1) '-> (2). Let f E L2(Px) and g E L2(PY).

(f(), ... ,f(m))T and g (g(),..., g(n))T. Then

(3) and

Define the column-vectors f A

E [f(X)g(Y)] = fT Pg

and

fTDxf = gTDyg = 1.

For Q = PD-1/2 = UEVT, put u - UTD /2f and v A VD1g.UTx 2 VDx Yg. Then

|lU||2= 1lv|l2= 1, and

E [f(X)g(Y)] = uTEv.

The result then follows directly from the variational characterization of singular values.

Note that the column-vectors (fo, f, ... , fd) corresponding to the functions (fo, fi, ... , fd)

are the first d + 1 columns of D 1/2U, and the column-vectors (go, gi,.

sponding to the functions (go, gi,. .. , g) are the first d + 1 of D 1 / 2 V.

let Zk E R' be the column vector with entries E [fk(X)IY = j]. Then

Zk = fTPD-l = fkT D/UEVTD_1/2

., gd) corre-

In addition,

= Ak(X; Y)gk,

so Ak (X; Y) = lIE [fk(X)IY] and, consequently, gk(Y) = ||E[fk(X)IYI2'

(2) 4- (3). The equivalence follows by noting that

max
E[f(X)]=E[g(X)]=0
Ijf(X)j12=jj9(Y)jj2=1

= max
E[f(X)]=E[g(X)]=0
ljf(X)j12=jjg(Y)jj2=1

E [f(X)g(Y)]

E [E [g(Y)f(X)Y]]
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- max |1E [f(X)Y] 112,
E[f(X)]=
Ilf(X)112=1

where the last equality follows from gi(Y) E fi(X)IY Since this last expression is

exactly the second largest term of the spectrum of the conditional expectation operator

T (the largest being 1), the result follows for AI(X; Y). The equivalent result for the

other PICs by adding orthogonality constraints.

9 (2) <-> (4). The result follows directly from Ak(X; Y) = l|E [fk(X)IYI ] and (1.1).
2D

The previous theorem provides different operational characterization of the PICs. Char-

acterization (1) lends itself to the geometric interpretation discussed in Section 5.1. Char-

acterization (2) implies that the principal functions of X and Y are the solution to the

following problem: Consider two parties, namely Alice and Bob, where Alice has access to

an observation of X and Bob has access to an observation Y. Alice and Bob's goal is to

produce zero-mean, unit variance functions f(X) and g(Y), respectively, that maximizes

the correlation E [f(X)g(Y)] without communicating. The optimal choice of functions is

exactly f, and g1, given in the theorem. This also implies that

A1(X;Y) = pm(X;Y) 2.

Characterization (4) above proves that the the PICs are the solution to another related

question: Given a noisy observation Y of a hidden variable X, what is the unit-variance, zero-

mean function of X that can be estimated with the smallest mean-squared error? It follows

directly from (5.8) that the function is f,(X), and the minimum MMSE is 1 - A,(X; Y).

Indeed, the principal functions form a basis for L 2 (pX), and are closely related to the MMSE

analysis presented in Chapter 3. We will return to the connection of the PICs and MMSE

in chapter 7.

Tensorization of the PICs

The next result states the well-known tensorization property the PICs between sequences of

independent random variables. We present a proof of the discrete case here for the sake of

completeness.

Lemma 5.1. Let (X1 , Y1) JL (X 2,Y 2), di = min{IXII, IY1I}-1 and d2 = min{1X2I, 1Y21}-1.
Then the PIys of P(xx2),(YY 2) are Ai(Xi, Y1)A(X2, Y2) for (i, j) E [0, di] x [0, d21, where

Ao(X1 , Y1) = Ao(X 2, Y2) = 1. Furthermore, the principal functions (X1 , Y) by fi and of

(X2 ,Y 2 ) by f3 , then the PIs of P(x1,X 2),(YY 2 ) are of the form (x1 ,x 2 ) * fi(x1 )fj(x 2 ). In
particular

A,1((Xi, X2 ); (Y1, Y2 )) = max{A 1 (X1 ; Yi), Ai(X2 ; Y2 )}.
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Proof. Let [Q1]i,j = Px",' and [Q2]i,j = PX2 ,'y( . Denoting by Q the de-
PX1 (I)PY1 () PX2 (PY 2 (i)

composition in Definition 5.1 of P(X1,X 2 ),(Y,Y 2 ) then, due to the independence assumption,

Q = Q1 0 Q2, where 0 is the Kronecker product. The result follows directly from the fact

that the singular values of the Kronecker product of two matrices is the Kronecker product

of the singular values (and equivalently for the singular vectors).

5.5 A Measure of Information Based on the PICs

In this section we introduce the k-correlation measure, which is equivalent to the sum of

the k largest PICs. We prove that k-correlation is convex in pyIx and satisfies the Data

Processing Inequality, being an information measure according to Def. 4.1.

Throughout this section, we denote Ak(X;Y) = Ak for short. Consider the matrix

Q = UEVT given in (5.3), and define

A DfU, D'/2 V.

Then

p = jEfiT (5.10)

where AT~ A = B TD-l - I.

It follows directly from Theorem 5.1 that A, B and E have the form

A = [px A], B = [py B], E = diag (1, A 1 ... , Ad), (5.11)

and, consequently, the joint distribution can be written as

d

px,y (x, y) = px(x)py (y) + 1> Akby,kax,k, (5.12)
k=1

where axk and by,k are the entries of A and B in (5.11), respectively.

Using this decomposition of the joint distribution matrix, we define below a measure of

information between X and Y based on the PICs.

Definition 5.2. Let ICIlk denote the k-th Ky Fan norm' ([86, Example 7.4.8]) of a matrix

C. For 1 < k < d, we define the k-correlation between X and Y as

jk(X; y) IQQT lk-1 (5.13)
k

= Ai. (5.14)
i=1
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Note that

Ji(X; Y) = Pm(X; Y)2 ,

and

Jd(X;Y) = E -px(Xp(Y) 1 = x 2(X;Y).
Ipx(X )PY(Y) I

We now show that k-correlation and, consequently, maximal correlation, is convex in

pYIX for a fixed px and satisfies the Data Processing Inequality.

Convexity in pyIx

We use the next lemma to prove convexity of Jk(X; Y) in the transition probability pyIx.

Lemma 5.2. For W E P+ and 1 <k K m the function hk :mxn x -+ 1R defined as

hk(C, W) A IICWJCTIllk (5.15)

is convex.

Proof. Let Y L CW-ICT. Since Y is symmetric and positive semidefinite, IlY|lk is the

sum of the k largest eigenvalues of Y, and can be written as [87,88]:

hk(C,W) = IIYIIk= max tr (ZTYZ), (5.16)
ZTZ=Ik

where Ik is the k x k identity matrix. Let Z be fixed and ZTZ = Ik, and denote the

i-th column of Z by zi. Note that g(a, W) A aTW-la is convex [89, Example 3.4] and,
consequently, g(CTzi, W) is also convex in C and W. Since the sum of convex functions is

itself convex, then tr (ZTYZ) = Ei1 g(CTz,, W) is also convex in C and bW. The result

follows by noting that the pointwise supremum over an infinite set of convex functions is

also a convex function [89, Sec. 3.2.3]. E

Theorem 5.2. For a fixed px, J(X;Y) is convex in pyIX.

Proof. Note that J(X; Y) = hk(DxPylx, Dy) - 1, where hk is defined in equation (5.15).

For a fixed px, Dy is a linear combination of pyIx. Therefore, since hk is convex (Lemma

5.2), and composition with an affine mapping preserves convexity, the result follows. Z

A Data Processing Result

The following lemma will be used to prove that the PICs satisfy the Data Processing In-

equality.
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Lemma 5.3 (DPI for MMSE). For X -* Y -+ Z and any f E C2(Px), E [f(X)] = 0,

HE [f(X)IZ] < A,(Y; Z)IIE [f(X)Y] 11. (5.17)

Consequently, mmse(f(X) IY) mmse(f(X) I Z).

Proof. Let f E L2(Px), E [f (X)] = 0 and g E L 2 (Z), E [g(Z)] = 0, 11g(Z)112 = 1. Then

E [f(X)g(Z)] = E [E [f(X)g(Z)IY]]

= E [E [f(X)|Y] E [g(Z)IY]]

(b)

IIE [f(X) Y] 1121|E [g(Z)IY] 112
(c)
< VI/A (Z; Y) I IE [f (X) IY] 112,

where (a) follows from the assumption that X -+ Y -+ Z, (b) follows from the Cauchy-

Schwarz inequality, and (c) follows from characterization (3) in Theorem 5.1. The result

then follows by choosing g(z) = E [f (X)IZ = z] / IIE [f (X)IZ] 112.

Lemma 5.3 leads to the following theorem.

Theorem 5.3 (DPI for the PICs). A ssume that X - Y -+ Z. Then Ak(X; Z) _ Ai(Y; Z)Ak(X; Y)
for all k.

Remark 5.1. This data processing result was also proved by Kang and Ulukus in [82,

Theorem 21, even though they do not make the explicit connection with maximal correlation

and PICs. A weaker form of Theorem 5.3 can be derived using a clustering result presented

in [16, Sec. 7.5.41 and originally due to Deniau et al. [90]. We use a different proof technique

from the one in [16, Sec. 7.5.4] and [82, Theorem 2] to show result stated in the theorem,

and present the proof here for completeness. Finally, a related data processing result was

stated in [79].

Proof. A direct consequence of Theorem 5.1 is that for any two random variables X, Y

Ak (X; Y) = min max 21E[f(X)IY]II8,
{f}l-C2(Px) fEI2(Px)

E[f(X)fi(X)]=0

and equivalently for Ak(X; Z). The result then follows directly from (5.17). El

The next corollary is a direct consequence of the previous theorem.

Corollary 5.1. For X -* Y -+ Z forming a Markov chain, J(X; Z) < A1(Y; Z)Jk(X;Y).

81

AMU-



5.6 A Lower Bound for the Estimation Error Probability in

Terms of the PICs

Throughout the rest of the chapter, we assume without loss of generality that px is sorted

in decreasing order, i.e. px(1) > px( 2 ) > ... > px(m).

Definition 5.3. Let A(px,y) denote the vector of PICs of a joint distribution px,y sorted

in decreasing order, i.e. A(px,y) = (A(X;Y),..., Ad(X; Y)). We denote A(px,y) A I
(A,..., IAd) if Al(X; Y) A,..., Ad(X; Y) < Ad and

R(q, I) - {pX,Y px = q and A(px,y) I }. (5.18)

In the next theorem we present a Fano-like bound for the estimation error probability

of X that depends on the marginal distribution px and on the principal inertias.

Theorem 5.4. For I = (A1, ... , Ad) and fixed px, define co =iCm] px(i)2 ,

k* A max fk E [m] px(k) - co 0} (5.19)

fo(px, A) Aipx(i) +
i=1l

Ai-ipx(i) - Ak*co
i=k*+1

go(,px,A) = fo'(px, A) + ([px(i) -

Uo(,px, A) 3+ go(,px, A),

Ui(px, A) min Uo(,px,A).
0Ip-px g()

Then for any joint pmf qx,y E R(px, A),

Pe(XIY) > 1 - Ui(pxA).

Proof. The proof of the theorem is presented in the appendix.

(5.20)

Remark 5.2. If Ai = 1 for all 1 < i < d, (5.20) reduces to Pe(XIY) > 0. Furthermore, if

Ai = 0 for all 1 < i < d, (5.20) simplifies to Pe(XIY) 1 - px(1).

We now present a few direct but powerful corollaries of the result in Theorem 5.4. We

note that a bound similar to (5.21) below has appeared in the context of bounding the

minmax decision risk in [91, (3.4)]. However, the proof technique used in [911 does not lead

to the general bound presented in Theorem 5.4.
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Corollary 5.2. If X is uniformly distributed in [m], then

Pe(XIY) >
1 f(m - 1)x(X; Y) 2

1---
m m

(5.21)

Furthermore, if only a bound on the maximal correlation pm(X; Y) = v/XI is given, then

Pe(XIY) 1 1 A 1
m m)

1 1' 1
= 1--- pm(X;Y) 1--1.

m m ]

Corollary 5.3. For any pair of variables (X, Y) with marginal distribution in X equal to

px and maximal correlation (largest principal inertia) pm(X Y) = A 1, we have for all 3 0

Pe(XjY) 1 - /3 - A 1 ( - pX ) + ([px(i) - ]+)2. (5.22)

In particular, setting 3 = px (2 ),

Pe(XIY) 1 - px( 2 ) -

1 - px(1) -

Remark 5.3. The bounds (5.22) and (5.23) are particularly insightful in showing how the

error probability scales with the input distribution and the maximal correlation. For a given

pxy, recall that Adv(XIY), defined in (5.2), is the advantage of correctly estimating X from

an observation of Y over a random guess of X when Y is unknown. Then, from equation

(5.23)

Adv(XIY) < pm(X; Y) 1 - p 2 (i)

pm(X;Y).

Therefore, the advantage of estimating X from Y decreases at least linearly with the maximal

correlation between X and Y.
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5.7 The Error-Rate Function for k-Correlation

We present in this section a convex program for lower-bounding the error-rate function for

k-correlation eJk (px, 0) (cf. Definition 4.3). For I = Jk, the convex program (4.3) under

Hamming distortion may be difficult to compute due to the constraint on the sum of the

singular values. The next theorem presents a convex program that evaluates a lower bound

for ej, (px, 0) and can be solved using standard methods.

Theorem 5.5. For X = [m] and px given,

ejk (px, 0) > min 1 - tr (DxPf 1X)PxIx

k m px(ipx + (524s.t. E < + 1, (5.24)
=1 j=1 Y

P is row stochastic, (5.25)

[P ]xi'j= P t(ji),

Spx(i)pkIx(ji) = y3 , 1 j < M.
j=1

Proof. We prove that the previous optimization program is convex and lower bounds ejk (Px, 0).

Put F A D- 1 / 2 PD_ 1 /2 . Then

Jk(X;Y) =||FF T Ik-1.

Let
M PX(iOp (jIxi)

ci =E
j=

be the i-th diagonal entry of FFT. By using the fact that the eigenvalues majorize the

diagonal entries of a Hermitian matrix ([86, Theorem 4.3.45]), we find

k

ci JIFFTIlk,

and the result follows. Note that convexity of the constraint (5.24) follows from the fact

that the perspective of a convex function is convex [89, Sec. 2.3.3]. E

In addition, inequality (5.23) can be used to bound the probability of correctly guessing

any function of X from an observation of Y, as shown next
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Lemma 5.4. Let J1 (X; Y) = pm(X; Y) < 9. Then

M

Pe,M(XIY) 1 -P(i) - 1 - EP2 (i))

where Pe,M(XIY) is defined in (4.8) and U is defined as in Theorem 4.2.

Proof. The proof follows directly from Theorems 5.2, 5.3 and Corollary 5.3, by noting that

(5.23) is Schur-concave in px. El

The previous Lemma leads to the following powerful theorem, which states that the

probability of guessing any function of a hidden variable X from an observation Y is upper

bounded by the maximal correlation of X and Y.

Theorem 5.6. Let px be fixed, IXI < oc and FM be given in (4.7). Define

AdvM(XIY) - max 1 - max Pf(X)(k) - Pe(f(X)IY) I f E TM}.
kE[M]

Then

AdvM(XIY) < pm(X; Y) 1 - < pm(X; Y). (5.26)

Proof. For f E T M

Adv(f(X)IY) p(f(X); Y) 1 - Pf(X)(i)2

iE[M]

" p(X; Y) 1 -

where the first inequality follows from (5.23), the second inequality follows from the DPI for

the PICs (Theorem 5.3), and the last inequality follows from the fact that EiE[M] pf(X)(i)

is minimized when pf(X) is uniform. The result follows by maximizing over all f E Y. El

5.8 Additional Results for the PICs2

In this section we derive bounds for the PICs between a set of i.i.d. samples of a discrete

random variable and a symmetric function of these samples by studying the properties of the

conditional expectation operator T : L2(pY) -+ 2(pY) (introduced earlier in this chapter

in Theorem 5.1), where (Tf)(x) A E [f(Y)IX = x]. We revisit next a few properties of T.

2The author acknowledges and is indebted to Prof. Y. Polyanskiy (ypqmit.edu) for his contributions in
this Section, in particular in Lemma 5.5.
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Recall that, from Jensen's inequality, the largest singular value of T is 1, achieved when f,
with corresponding right eigenvector f(y) = 1. Furthermore, from Theorem 5.1 the PICs of

X and Y are the square of the singular values of T. To see why this the case, note that for

any f E L (px) and g E L(py) with zero mean, we have

E [f (X)g(Y )] = E [f (X)E [g(Y)|X]]

= E [f(X)(Tg)(X)]

< ITg(X)||2 ,

where the last inequality follows directly by applying Cauchy-Schwarz. Consequently, E [f (X)g(Y)]
is maximized when g maximizes |ITg(X)112, which, in turn, results in the largest singular

value of the operator T. Consequently, as stated in Theorem 5.1, the square of the singular

values of T or the PICs of PX,Y.

Rather surprisingly, we can characterize the singular values of T for a wide range of

probability distributions using the Efron-Stein decomposition [921. For this, we use a proof

technique similar to the one used by Dembo et al. [93] to characterize the maximal correlation

between the sum of i.i.d. random variables. The following analysis follows similar steps of

the proof of 193, Theorem 11.

Let Yi, ... , Y independent random variables and Y' = (Y, ... , Y,). Then any function

f : Y1 x ... x Y -* R can be decomposed into its "higher order interactions" [92] as

f(Yn) = fs(YS). (5.27)
SC[n]

where [n] {1, . . . , n}, Ys = (Yi : i E S) and f0 = E [f (Yn)]. Each coefficient fs depends

only on Ys, and, for S g S', it holds that E [fs(Ys)IYs,] = 0. The function fs is unique and

is given by

fs(ys) = 1 ()IS\S'l E [f(Y')IYs, = ys,].

Observe that if S : S', then S S 5' and/or S g S'. Assuming the former, we have

E [fs (Ys)fs, (Ysi = E [fs'(YsI)E [fs(Ys)|Ys,]i = 0.

Therefore E [f(Yn) 2 ] = EsEn E [fS(Ys) 23.

Assume henceforth that f : yn -+ R is a symmetric function (i.e. invariant to permuta-

tions in its arguments) and Yi, . . . , Yn are identically distributed. Then fs depends only on

the cardinality of S. In this case

f (Yn) = fisi(Ys). (5.28)
SC [n]
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and
n

E [f (Y")2 = n )E [f,(Yi)2] . (5.29)
i=o

Then, for m < n,

(Tf)(Ym ) = E [f (Y)IYm]

= >1 E [fs(Ys) )Y"]
SC[n]

= nfsI(Ys).

sC[m]

Observe that (Tf) (Yin) is also symmetric. In order to simplify notation, we denote (Tf) (Y"n)

by Tf and f (Yn) by f. The second moment of Tf is given by

I(Tf)21= E [f(Yi)2
i=O

Therefore,

T112| E,=0 (m)E [f,(Yi)2].(.0

IfH2 - Z o (=i)E [f,(yi)2]

In particular, if f(Y') has zero mean and unit variance, then

1=I (m) E [f, (Yi) 2
E [(Tf) 2] = Z ( (5.31)

_i (n)E [f,(Yi)2]

We can maximize (5.31) by solving the following linear program:

max ai (5.32)

s. t. M aj = 1, a > 0,

which is equivalent to

n) cimax5 (ncEll m  
(4

s.t. ct= 1, C 0,

Note that ( T)(7 =()i/(n)i, where (-)i is the Pochhammer symbol3. Since for any i > 1

'(M)kA m(m - 1) ... -(m - k +1).
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(m)i/(n)i < (rn) 1/(n)i = m/n, it follows directly that

||Tf| 2- . (5.33)

Remark 5.4. Observe that if we restrict the symmetric function f to satisfy fi = 0 for

i = 1, ... , k - 1, then the previous analysis leads to IITfI112 (M)k /(n)k.

Let Tsym (Yf) denote the set of all real valued symmetric functions over y, and the

operator Ts : ym(yn) F sym(Ym) be the Markov operator restricted to symmetric

functions, where (Tsf)(y) = E [f(Yn)IY m = y]. This leads to the following generalization

of [93, Theorem 1].

Theorem 5.7. Let Yf = (Y1,...,Y,) be a collection of n i.i.d. random variables and

f E Esyrn(yn) satisfy 0 < |f (Yn)||2< oc. Then Ai(f(Yn);Y,) m/n. Furthermore, if

|Y|= d, then for i E [n] and k E [d'-',....d' - 1]

Ak(f(yn); ym ) < ( .34)
(n) (53

Proof. The bound A,(f(Yn); Y m ) < m/n follows directly from (5.33). Now let IYI= d + 1,
and define

A,(.sym(Yn); Y m ) CT max ) Tf 11,

jE[f(yn)]=0,jf(Yn)|112=1

and, denoting the argument that maximizes the right-hand side of the previous expression

as f*, we define recursively,

Ak (sym(Yn); y m ) max IITf 2.
E[f(y)]=0mlf(Yn)|12=1

E[f(Yn)f,*(Yn)]=0,iE[k-1]

Since the linear space of functions with zero mean and non-zero variance in L2(pY) has

dimension d - 1, there exists d - 1 uncorrelated symmetric functions in .sym(yn) of the

form f(Yn) = ZiEEn] fl(Yf) (cf. decomposition (5.29)). It follows from (5.31) and (5.33)
that these functions achieve |ITf(Ym)II'= rn/n, proving that A,(sym(Yn);Y m ) .
Ad-1Fsym(yn);ym) = m/n. Denote the corresponding functions that achieve the maxi-

mum f*... f _J.

Now in order to characterize the next values of Ak(Fsym(Yn); Ym) observe that any

symmetric function f that has zero-mean and is orthogonal (uncorrelated) to fi* ... , *
must have the "low-order interaction" terms fi in (5.29) equal to zero. Consequently, we must

consider the functions in L2(py2) that are orthogonal to linear combinations of functions

in I2(pY). Consequently since the dimension of L2(py2) is d2 and the dimension of L2(PY)

is d, the subspace of functions in L2(py2) that satisfied the orthogonality constraints is

d2 - d = d(d - 1). Using the exact same analysis that led to (5.33) then from Remark 5.4
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it follows that for k E [d, d(d - 1)]

Ak(Fsym(yn ) ym) - () 2(n)2

The result then follows by proceeding inductively and noting that for any f E Tsym(yn) we

have Ak(f(Y); Y m ) Ak(Fsym(Yn);Y m ). l

5.8.1 Functions that are Invariant Under Transitive Group Actions

Let S be a subset of [m], and let G be a group that acts transitively on [n] (m < n). Let

as be the number of images of S under the action of G which is inside [m] and bs the total

number of images of S. We have the following lemma.

Lemma 5.5.

-< . (5.35)
bs -n

Proof. Let g be a uniformly chosen element of G and let Sg be the image of S under the

action of the group element g. Let X be a uniformly chosen element from Sg. By transitivity

of the action of G the distribution of X is uniform on [n]. Then we have

as m
= Pr{Sg Q [m]} Pr{X E [mI]} = .

The previous lemma combined with the Efron-Stein decomposition allows us to upper-

bound the maximal correlation for a large class of functions that are invariant under a given

transitive group action.

Theorem 5.8. Let G be a finite group acting transitively on [n], and let Y' be i.i.d. Then

for any function f that is G-invariant (e.g. if f = ZgeG f1 (Y' o g) and f, is arbitrary) and

has finite second-moment, then the maximal correlation p* satisfies

A,1(Ym; fyn)) < . (5.36)
n

Proof. We assume, without loss of generality, E [f(Y')] = 0 and If 112= 1. We denote

as before the conditional expectation operator as Tf(Yn) A E [f(Yn)IY m ]. Let f(Yn) =

ZSC[n] fs(Ys) be the Efron-Stein decomposition of f. Since f is G-invariant and Yn is i.i.d.,

fs = fsg for all g E G. Let F C P([n]) be the smallest set of subsets of [n] such that for

every S C [n] there exists S' E F such that fs = fs,. Then

11f 1s= 1: bs fs11
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and

||Tf 112= [ asllfs 11,

Se(YnP([m]))

where as is the size of the image of S under the action of G which is inside [m] and bs is

the total number of distinct images of S under G (as in the previous lemma). Then

||Tf as m
11f112 < max <~ rn

2|| scgm] bs -n

where the first inequality follows from the linear fractional optimization done in (5.32), and

the second inequality follows from Lemma 5.5. The result follows directly. 0

5.8.2 Exchangeable Random Variables

We now assume that the random variables YD = (Yi, ... , Yn... ) are exchangeable instead

of i.i.d. and possess a finite support set. We say that Y* is exchangeable if for every

S,8' c [n] such that 1S1= IS'l we have pys = pys,. It turns out that, in this case, the

results presented in this section still hold, as shown in the next theorem.

Theorem 5.9. Let Y* = (Y1, . . . , Yn,... ) be a collection of exchangeable random variables.

Then for any f E Fsym(yn)

S(f (Yn); Y"') < . (5.37)
n

Proof. It follows from de Finetti's representation theorem [94] that there exists a random

variable A such that, conditioned on A, Y1 , Y2 ,... are independent. Therefore

sup EE[f(Y)|Yf] = sup [E [E [f(Yn)Ym]2 Al

F
:E [sup E [[If(Yni|Y"]2

< f A]] J]
n

m
n

where the first inequality follows from Jensen's inequality, and the second follows from

Theorem 5.7 and the fact that (Y 1 , ... , Yn) are conditionally independent given A. E

5.9 Prologue to Chapters 6 and 7

The results presented in this chapter demonstrate that the PICs are a useful information

measure that shed light on the fundamental limits of estimation. The PICs provide a full

characterization of the functions of a hidden variable that can (or cannot) be estimated with
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small mean-squared error. In addition Theorem 5.6 connects the largest PIC, namely the

maximal correlation, with the probability of correctly guessing any function of a hidden,

discrete random variable. This approach extends the results presented in Chapter 3. The

PICs between a set of i.i.d. samples and symmetric functions can also be characterized

explicitly, as shown in Theorem 5.7.

In the final chapters of this thesis, we demonstrate the application of the results and

bounds based on the PICs to problems in information theory, privacy and security. The

PICs play a central role in estimating one-bit functions of a hidden variable, and characterize

the fundamental limits of perfect privacy. In addition, privacy-assuring mechanisms with

strong privacy and utility guarantees can be found by solving convex programs based on the

PICs. We describe these applications in detail next.
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Chapter 6

Applications of the Principal Inertia

Components to Information Theory

6.1 Overview

In this chapter, we present results that connect the principal inertia components with other

information-theoretic metrics. As seen in Chapter 5, the distribution of the vectors pyIx

in the simplex or, equivalently, the PICs of the joint distribution of X and Y, is inherently

connected to how an observation of Y is statistically related to X. In this chapter, we

explore this connection within an information theoretic framework. We show that, under

certain assumptions, the PICs play an important part in estimating a one-bit function of X,

namely f(X) where f : X -+ {0, 1}, given an observation of Y: they can be understood as

the filter coefficients in the linear transformation of pf(x)Ix into pf(x)Iy. Alternatively, the

PICs can bear an interpretation as the transform of the distribution of the noise in certain

additive-noise channels, in particular when X and Y are binary strings. We also show that

maximizing the PICs is equivalent to maximizing the first-order term of the Taylor series

expansion of certain convex measures of information between f(X) and Y. We conjecture

that, for symmetric distributions of X and Y and a given upper bound on the value of the

largest PIC, I(f(X); Y) is maximized when all the principal inertia components have the

same value as the largest principal inertia component. This is equivalent to Y being the

result of passing X through a q-ary symmetric channel. This conjecture, if proven, would

imply the conjecture made by Kumar and Courtade in [241.

Finally, we study the Markov chain B -+ X -+ Y -+ B, where B and B are binary

random variables, and the role of the principal inertia components in characterizing the

relation between B and B. We show that this relation is linked to solving a non-linear

maximization problem, which, in turn, can be solved when B is an unbiased estimate of B,

the joint distribution of X and Y is symmetric and Pr{B = B = 0} > E [B]2 . We illustrate

this result for the setting where X is a binary string and Y is the result of sending X through
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a memoryless binary symmetric channel. We note that this is a similar setting to the one

considered by Anantharam et al. in [95].

The rest of the chapter is organized as follows. Section 6.1.1 presents additional notation

and definitions used in this chapter. Section 6.3 introduces the notion of conforming distri-

butions and ancillary results. Section 6.4 presents results concerning the role of the principal

inertia components in inferring one-bit functions of X from an observation of Y, as well as

the linear transformation of px into py in certain symmetric settings. We argue that, in

such settings, the principal inertia components can be viewed as filter coefficients in a linear

transformation. In particular, results for binary channels with additive noise are derived

using techniques inspired by Fourier analysis of Boolean functions. Furthermore, Section

6.4 also introduces a conjecture that encompasses the one made by Kumar and Courtade in

[24]. Finally, Section 6.5 provides further evidence for this conjecture by investigating the

Markov chain B -+ X -+ Y -4 B where B and B are binary random variables.

6.1.1 Notation

For a given joint distribution px,y and corresponding joint distribution matrix P, the set of

all vectors contained in the unit cube in R' that satisfy IIPxll1= a is given by

C"(a, P) {x E R' 10 < xi 1, IPxI|1= a}. (6.1)

In this chapter, we represent the set of all m x n probability distribution matrices by Pm,n.

For x' E {-1,1} and S ; [n], xs(xn) L flies x (we consider xo(x) = 1). For

yfn E {-1, 1}, an = X" E y" is the vector resulting from the entrywise product of x' and

yn, i.e. ai = xiyi, i E [n.

Given two probability distributions px and qx and f (t) a smooth convex function defined

for t > 0 with f(1) = 0, the f-divergence is defined as [96]

Df(px||qx) 1 qx(x)f (qx(x). (6.2)
X

The f-information is given by

If(X;Y) Df (px,y||pxpy). (6.3)

When f(x) = xlog(x), then If(X; Y) = I(X; Y). A study of information metrics related to

f-information was given in [97] in the context of channel coding converses.

6.2 Main Contributions

This chapter presents different applications of the PICs to information theory, and is based

on the author's work in [98]. In Section 6.4, we demonstrate that the PICs have a role
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in channel transformations very similar to that of filter coefficients in a linear filter. Here,

functions of a hidden variable are analogous to the input signals of the filter. This is

illustrated through an example in binary additive noise channels, where we argue that the

binary symmetric channel is somewhat equivalent to a "low-pass filter". We then use this

interpretation to study the "one-bit function conjecture" 124]. We present further evidence

for that conjecture here, and introduce another, related conjecture based on the discussion.

The new conjecture (cf. Conjecture 6.1), albeit not proved, is more general than the "one-

bit function conjecture". It states that, given a symmetric distribution px,y, if we generate a

new distribution qx,y by making all the PICs of px,y equal to the largest one, then the new

distribution is "more informative" about bits of X. By "more informative", we mean that,

for any 1-bit function b, I(b(X); Y) is larger under qx,y than under px,y. Indeed, from the

previous discussion and from an estimation-theoretic perspective, any function of X can be

estimated with smaller MMSE when considering qx,y than px,y. Furthermore, in this case,

we show that qx,y is a q-ary symmetric channel. This conjecture, if proven, would imply as

a corollary the original one-bit function conjecture.

We resolve the one-bit function conjecture in a specific setting in Section 6.5. Instead of

considering the mutual information between b(X) and Y, we study the mutual information

between b(X) and a one-bit estimator 6(Y). We show in Theorem 6.3 that, when 6(Y) is an

unbiased estimator, the information that b(Y) carries about b(X) can be upper-bounded for

a wide range of information measures. This result also leads to bounds on estimation error

probability that recovers a particular form of the result stated in Theorem 5.4.

6.3 Conforming distributions

In this chapter we shall focus on probability distributions that meet the following definition.

Definition 6.1. A joint distribution px,y is said to be conforming if the corresponding

matrix P satisfies p = pT and P is positive-semidefinite.

Conforming distributions are particularly interesting since they are closely related to

symmetric channels1 . In addition, if a joint distribution is conforming, then its eigenvalues

are equivalent to its principal inertia components when X is uniform. We shall illustrate

this relation in the following two lemmas and in Section 6.4.

Remark 6.1. If X and Y have a conforming joint distribution, then they have the same

marginal distribution. Consequently, D DX = Dy, and P = Dl/ 2 UEUTD1/ 2.

Lemma 6.1. If P is conforming, then the corresponding conditional distribution matrix

Py1X is positive semi-definite. Furthermore, for any symmetric channel PyIX = P7Y' ,
there is an input distribution px (namely, the uniform distribution) such that the principal

'We say that a channel is symmetric if PyIX P~yx.
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inertia components of P = DxPylx correspond to the square of the eigenvalues of PyIx.

In this case, if PyIx is also positive-semidefinite, then P is conforming.

Proof. Let P be conforming and X = Y = [m]. Then PyIX = D-1/ 2 UEUTDI/ 2 = QEQ- 1,

where Q = D-1/ 2 U. It follows that diag (E) are the eigenvalues of PyIx, and, consequently,

PyIx is positive semi-definite.

Now let PrIX pTY = UAUT. The entries of A here are the eigenvalues of PyIx

and not necessarily positive. Since PyIX is symmetric, it is also doubly stochastic, and for

X uniformly distributed Y is also uniformly distributed. Therefore, P is symmetric, and

P = UAUT/m. It follows directly that the principal inertia components of P are exactly

the diagonal entries of A2 , and if PyIx is positive-semidefinite then P is conforming.

E

The q-ary symmetric channel, defined below, is of particular interest to some of the

results derived in the following sections.

Definition 6.2. The q-ary symmetric channel with crossover probability e < 1 - q-1, also

denoted as (e, q)-SC, is defined as the channel with input X and output Y where X = Y = [q]

and

{1- e ifxz= y
Pyix(ylx) I ifX=y

if x 0 y.

In the rest of this section, we assume that X and Y have a conforming joint distribution

matrix with X Y = [q] and PICs Ak(X; Y) = 07 for k E [d - 1]. The following lemma

shows that conforming P can be transformed into the joint distribution of a q-ary symmetric

channel with input distribution px by setting o o = - O2 1 , i.e. making all principal

inertia components equal to the largest one.

Lemma 6.2. Let P be a conforming joint distribution matrix of X and Y, with X and

Y uniformly distributed, X = Y = [q], P = q-lUEUT and E diag (1, o 1 ,..., -d). For

= diag (1,a1 ,... ,o-), let X and Y have joint distribution P = q-'UiU. Then, Y is

the result of passing X through a (e, q) -SC, with

(q - 1)(1 - pm(X; Y)) (6.4)
q

Proof. The first column of U is p12 and, since X is uniformly distributed, p1 2 = q- 1/ 2 1.

Therefore

T
P = q- 1 UEU

= q-l-1 I + q- 2 (1 _ .1 )11T. (6.5)
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Consequently, P has diagonal entries equal to (1 + (q - 1)ol)/q2 and all other entries equal

to (1 - oi)/q2 . The result follows by noting that a, = pm(X; Y). E

Remark 6.2. For X, Y and f given in the previous lemma, a natural question that arises

is whether Y is a degraded version of f, i.e. X -* f -+ Y. Unfortunately, this is not true

in general, since the matrix Uj21 >EUT does not necessarily contain only positive entries,

although it is doubly-stochastic. However, since the PICs of X and Y upper bound the PICs

of X and Y, it is natural to expect that, at least in some sense, Y is more informative about

X than Y. This intuition is indeed correct for certain estimation problems where a one-bit

function of X is to be inferred from a single observation Y or Y, and will be investigated

in the next section. In addition, using the characterization of the PICs in Theorem 5.1, it

follows that any function of X can be iniffered with smaller MMSE from Y than from Y.

6.4 One-bit Functions and Channel Transformations

Let B -* X -+ Y, where B is a binary random variable. When X and Y have a conforming

probability distribution, the PICs of X and Y have a particularly interesting interpretation:

they can be understood as the filter coefficients in the linear transformation of PBIX into

PBY. In order to see why this is the case, consider the joint distribution of B and Y, denoted

here by Q, given by

Q = [f 1 - f]Tp = [f 1 - f]TPxiyDy = [g 1 - g]TDy, (6.6)

where f E R m and g E R' are column-vectors with fi = pBIx(O1i) and gj = PBIY(Ol'). In

particular, if B is a deterministic function of X, f E {o, 1}m.

If P is conforming and X = Y = [m], then P = DI/ 2UEUTDl/ 2 , where D = Dx = Dy.

Assuming D fixed, the joint distribution Q is entirely specified by the linear transformation

of f into g. Denoting T A UTDl/ 2 , this transformation is done in three steps:

1. (Linear transform) f Tf,

2. (Filter) g Ef, where the diagonal of E2 are the PICs of X and Y,

3. (Inverse transform) g = T-19.

Note that f, = 1 - E [B] and 8 = Tg. Consequently, the PICs of X and Y bear an

interpretation as the filter coefficients in the linear transformation of pBIx(OI*) into pBIY(01).

A similar interpretation can be made for symmetric channels, where PriX = pT =

UAUT and PyIx acts as the matrix of the linear transformation of px into py. Note that

py = Pylxpx, and, consequently, px is transformed into py in- the same three steps as

before:

1. (Linear transform) P~ = UTpX,
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2. (Filter) p; = Aj'i, where the diagonal of A 2 are the PICs of X and Y in the particular

case when X is uniformly distributed (Lemma 6.1),

3. (Inverse transform) py = UP'Y.

From this perspective, the vector z = UAlm- 1/ 2 can be understood as a proxy for the "noise

effect" of the channel. Note that Ej zi = 1. However, the entries of z are not necessarily

positive, and z might not be a de facto probability distribution.

We now illustrate these ideas by investigating binary channels with additive noise in

the next section, where T will correspond to the well-known Walsh-Hadamard transform

matrix.

6.4.1 Example: Binary Additive Noise Channels

In this example, let Xn, Yn C {-1, 1} be the support sets of X' and Y', respectively. We

define two sets of channels that transform X" into Yn. In each set definition, we assume

the conditions for pynIxn to be a valid probability distribution (i.e. non-negativity and unit

sum).

Definition 6.3. The set of parity-changing channels of block-length n, denoted by An, is

defined as:

An {pynix. I VS C [n], 3cs E [-1,1] s.t. E [xs(Y")IX"] = csys(X")}. (6.7)

The set of all binary additive noise channels is given by

t3 y {Pn Xn 1 BZn s.t. Yn = X" E Zn, supp(Z,) C {-1, 1}?, Zn JL Xn}.

The definition of parity-changing channels is inspired by results from the literatiirp on

Fourier analysis of Boolean functions. As in Chapter 3, for an overview of the topic we

refer the reader to the survey [63]. The set of binary additive noise channels, in turn, is

widely used in the information theory literature. The following theorem shows that both

characterizations are equivalent.

Theorem 6.1. An = Bn.

Proof. Let yn = Xn D Zn for some Z" distributed over {-1, 1} and independent of X'.

Thus

E [xs(Yn)IX"1 = E [xs(Z" ( Xn) I X,]

= E [xs(Xn)xs(Zn) | Xn]

= xs(X,)E [xs(Zn)],
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where the last equality follows from the assumption that X' JL Zn. By letting cs =

E [xs(Z')], it follows that py-IX. E An and, consequently, Bn g An.

Now let yn be fixed and 6y: {-1, 1} {0, 1} be given by

(X) , x n = yn ,

1 0, otherwise.

Since the function 6 y. has Boolean inputs, it can be expressed in terms of its Fourier expan-

sion [63, Prop. 1.11 as

6V(x")= S dsxs(xn).
SC[n]

Now let pyn Xn E An Observe that pyirn.x1Xn) = E [6y.(Y') I Xn = xl] and, for zn E

{-1, 1}n,

pynIxn(y e x zx ® (Z) = E [6ynezn(Y") I Xn = xn e z"]

=Ef [6 y (Y( e z) | X, = xn e zn]

E sxs(Y E z)| Xn =xn e[z1
sC[n]

Z sxs(Yn)x(zn) Ixn xnEzn

a E CSdSXS(XEDZ)XS(Z)

SC[n]

SC[n]

= pynXn(Y"I|X=).

Equalities (a) and (b) follow from the definition of An. By defining the distribution of Z'

as pzn(zn) A pynigX(z"I1j), where 1 n is the vector with all entries equal to 1, it follows

that Zn = Xn E Yn Zn _L Xn and py Cn C Bn.

The previous theorem suggests that there is a correspondence between the coefficients cS

in (6.7) and the distribution of the additive noise Zn in the definition of B. The next result

shows that this is indeed the case and, when Xn is uniformly distributed, the coefficients c.

correspond to the principal inertia components between Xn and Y'.

99



Theorem 6.2. Let pynix, E Bn, and X' ~ pXn. Then Pxnyn = DxnH2nAH2n, where

H, is the I x 1 normalized Hadamard matrix (i.e. H 2 = I). Furthermore, for Z' ~ pzn,
diag (A) = 2'/2 H2npZn, and the diagonal entries of A are equal to cs in (6.7). Finally, if

X is uniformly distributed, then ci are the principal inertia components of X' and Y".

Proof. Let PynjX E A, be given. From Theorem 6.1 and the definition of An, it fol-

lows that Xs(Y') is a right eigenvector of Pynixn with corresponding eigenvalue cs. Since

Xs(Y")2-n/2 corresponds to a row of H 2n for each S (due to the Kronecker product con-

struction of the Hadamard matrix) and H2n = I, then Pxn,yn = DxnH 2 nAH 2 . Finally,
note that pT = 2-n/ 2 1TAH 2'. From Lemma 6.1, it follows that c2 are the principal inertia

components of Xn and Yn if Xn is uniformly distributed. E

Remark 6.3. Theorem 6.2 indicates that one possible method for estimating the distribu-

tion of the additive binary noise Zn is to estimate its effect on the parity bits of Xn and Yn.

In this case, we are estimating the coefficients cs of the Walsh-Hadamard transform of pz".

This approach was studied by Raginsky et al. in [99].

Theorem 6.2 illustrates the filtering role of the principal inertia components, discussed

in the beginning of this section. If X' is uniform, and using the same notation as in (6.6),
then the vector of conditional probabilities f is transformed into the vector of a posteriori

probabilities g by: (i) taking the Hadamard transform of f, (ii) filtering the transformed

vector according to the coefficients cs, where S E [n], and (iii) taking the inverse Hadamard

transform. The same rationale applies to the transformation of px into py in binary additive

channels.

6.4.2 Quantifying the Information of a Boolean Function of the Input of
a Noisy Channel

We now investigate the connection between the principal inertia components and f-information

in the context of one-bit functions of X. Recall from the discussion in the beginning of this

section and, in particular, equation (6.6), that for a binary B and B -- X -+ Y, the distri-

bution of B and Y is entirely specified by the transformation of f into g, where f and g are

vectors with entries equal to pBIx(OI*) and PBtY(0 -), respectively.

For E [B] = 1 - a, the f-information between B and Y is given by2

If(B; Y) = E af ( ) + (1 - a)f ( - )1

For 0 < r, s < 1 we can expand f () around 1 as

f D = f(k) (1) r-sI

k=1

2 Note that here we assume that Y= [n], so there is no ambiguity in indexing Pg Y(0jY) by gy .
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Denoting

S1 (-1)k
Ck(a) ak- 1 + (1 a)k-1

the f-information can then be expressed as

If (B; Y) = f(k)(1)ck (a)E (gy - a)L (6.8)
00f: ) k! [(y.E68

k=2

Similarly to [96, Chapter 4], for a fixed E [B] = 1 - a, maximizing the principal inertia

components between X and Y will always maximize the first term in the expansion (6.8).

To see why this is the case, observe that

E [(gy - a)2 ] = (g - a)TDy(g - a)

= gTDyg - a2

= fTD / 2 UE2UTD / 2 f - a2 . (6.9)

For a fixed a and any f such that fT 1 = a, (6.9) is non-decreasing in the diagonal entries of
E2 which, in turn, are exactly the principal inertia components of X and Y. Equivalently,

(6.9) is non-decreasing in the X2 -divergence between px,y and pxpy.

However, we do note that increasing the principal inertia components does not increase

the f-information between B and Y in general. Indeed, for a fixed U, V and marginal

distributions of X and Y, increasing the principal inertia components might not even lead

to a valid probability distribution matrix P.

Nevertheless, if P is conforming and X and Y are uniformly distributed over [q], as

shown in Lemma (6.2), by increasing the principal inertia components we can define a new

random variable f that results from sending X through a (e, q)-SC, where e is given in

(6.4). In this case, the f-information between B and Y has a simple expression when B is

a function of X.

Lemma 6.3. Let B -- X -+ Y, where B = h(X) for some h : [q] -+ {0, 1}, E [B] 1 - a

where aq is an integer, X is uniformly distributed in [q] and Y is the result of passing X

through a (e, q)-SC with e < (q - 1)/q. Then

If (B; Y) = a2f (1 + u-c) + 2a(1 - a)f (1 - -1 ) + (1 - a) 2f (1 + Uic- 1 ) (6.10)

where a = pm(X; Y) = 1 - eq(q -1)-' and c A (1 - a)a- 1 . In particular, for f (x) = x log x,
then If (X; Y) = I(X; f), and for o-1 = 1 - 26

I(B; Y) = hb(a) - aHb (26(1 - a)) - (1 - a)H(26a) (6.11)

< 1 - H(6), (6.12)
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where Hb(x) A -x log(x) - (1 - x) log(1 - x) is the binary entropy function.

Proof. Since B is a deterministic function of X and aq is an integer, f is a vector with aq

entries equal to 1 and (1 - a)q entries equal to 0. It follows from (6.5) that

q 0,(1)a + fu- 1-(1 - oi)a -fioi
If (B; Y)=- af a + (1 - a)f(a

a2f + or,1 a + 2a( - a)f (1 - o) + a)2f + 01

Letting f(x) = x log x, (6.11) follows immediately. Since (6.11) is concave in a and symmet-

ric around a = 1/2, it is maximized at a = 1/2, resulting in (6.12).

6.4.3 On the "Most Informative Bit" Conjecture

We now return to channels with additive binary noise, analyzed is Section 6.4.1. Let X'

be a uniformly distributed binary string of length n (X = {-1, 1}) and Y' be the result

of passing X' through a memoryless binary symmetric channel with crossover probability

6 < 1/2. Kumar and Courtade conjectured [24] that for all binary B and B -+ X' -+ Y"

we have

I(B; Y") 1 - H6 (6). (conjecture) (6.13)

It is sufficient to consider B a function of X', denoted by B = h(X'), h: {-1, 1}" -+ {0, 1},

and we make this assumption henceforth.

From the discussion in Section 6.4.1, for the memoryless binary symmetric channel Y' =

Xn @ Zn, where Z" is an i.i.d. string with Pr{Zi = 1} = 1 - 6, and any S E [n],

E [xs(Yn)IX"1 = Xs(Xn) (Pr {xs(Zn) = 1} - Pr {Xs(Zn) = -1})

= ys(Xn) (2 Pr {xs(Z") = 1} - 1)

- Xs(Xn)(I - 2 6 )ISI.

It follows directly that cs = (1 - 26)S11 for all S C [n]. Consequently, from Theorem

6.2, the principal inertia components of Xn and Yn are of the form (1 - 26 )21sl for some

S C [n]. Observe that the principal inertia components act as a low pass filter on the vector

of conditional probabilities f given in (6.6).

Can the noise distribution be modified so that the principal inertia components act as

an all-pass filter? More specifically, what happens when fn = Xn ( Wn, where W' is

such that the principal inertia components between Xn and Yn satisfy o-i = 1 - 26? Then,

from Lemma 6.2, Yn is the result of sending X' through a (E, 2n)-SC with e = 26(1 - 2-n).

Therefore, from (6.12),

I(B; Yn) 1 - H6(6).
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For any function h : {-1, 1} -+ {0, 1} such that B = h(X'), from standard results in

Fourier analysis of Boolean functions [63, Prop. 1.11, h(X') can be expanded as

h(X") = S hsxs(X").
SC[n]

The value of B is uniquely determined by the action of h on Xs(Xn). Consequently, for a

fixed function h, one could expect that Y" should be more informative about B than Y",

since the parity bits Xs(X") are more reliably estimated from f than from Yn. Indeed,

the memoryless binary symmetric channel attenuates xs(Xn) exponentially in ISI, acting

(as argued previously) as a low-pass filter. In addition, if one could prove that for any fixed h

the inequality I(B; Yn) I(B; fn) holds, then (6.13) would be proven true. This motivates

the following conjecture.

Conjecture 6.1. For all h: {-1, 1}" -+ {0, 1} and B = h(X')

I(B; Yn) < I(B; Z"n).

We note that Conjecture 6.1 can be false if B is not a deterministic function of Xn. In

the next section, we provide further evidence for this conjecture by investigating information

metrics between B and an estimate B derived from Yn.

6.5 One-bit Estimators

Let B -+ X -+ Y -+ B, where B and B are binary random variables with E [B] = 1 - a

and E[h] = 1 - b. We denote by x E R' and y E R the column vectors with entries

Xi = PBIX(O|i) and yj = pgy(0|j). The joint distribution matrix of B and B is given by

P _ -= z a -z (6.14)
B,B (b- - a-b+

where z = xTPy = Pr{B = B = 0}. For fixed values of a and b, the joint distribution of B

and B only depends on z.

Let f : P2x2 -+ R, and, with a slight abuse of notation, we also denote f as a function

of the entries of the 2 x 2 matrix as f(a, b, z). If f is convex in z for a fixed a and b, then

f is maximized at one of the extreme values of z. Examples of such functions f include

mutual information and expected error probability. Therefore, characterizing the maximum

and minimum values of z is equivalent to characterizing the maximum value of f over all

possible mappings X -+ B and Y -+ B. This leads to the following definition.

Definition 6.4. For a fixed P and given E [B] = 1 - a and E[h] = 1 - b, the minimum and
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maximum values of z over all possible mappings X -+ B and Y -+ B are defined as

z*(a, b, P) min xTPy and z*(a, b, P) A max xT Py,
1'' xECm(a,P T ) XECm(a,P T

)
yEC"(b,P) yECn(b,P)

respectively, and C'(a, P) is defined in (6.1).

The next lemma provides a simple upper-bound for z*(a, b, P) in terms of the largest

principal inertia components or, equivalently, the maximal correlation between X and Y.

Lemma 6.4. z*(a, b, P) ab + pm(X; Y) Va(1 - a)b(1 - b).

Remark 6.4. An analogous result was derived by Witsenhausen 176, Thm. 2] for bounding

the probability of agreement of a common bit derived from two correlated sources.

Proof. Let x E C'm (a, PT) and y E C'(b, P). Then, for P decomposed as P = D1QD1/2

where Q given in (5.3) and denoting E- = diag (0, o, ... , O-d)

xTPy = ab + XTD 1 UE-VTD 2

= ab + kTEy, (6.15)

where i =i UTD1/ 2 x and y i VTD1/ 2y. Since k1 = |lkH|2= a and yi = fl|y2= b, then

d+1

i=2

<cr - 1 (I|I|II-&) (I|LVH-y!)
=u1 -I(a - a 2 )(b - b2 ).

Th re'uiflt follnws by noting tlht -1 ( . V) r)

We will focus in the rest of this section on functions and corresponding estimators that

are (i) unbiased (a = b) and (ii) satisfy z = Pr{$ = B = 0} > a2 . The set of all such

mappings is given by

N(a, P) A {(x, y) I x E C'(a, PT), y E C(a, P), xTPy > a2

The next results provide upper and lower bounds for z for the mappings in W (a, P).

Lemma 6.5. Let 0 < a < 1/2 and P be fixed. For any (x, y) E N(a, P)

a2 < z < a2 + Pm(X; Y)a(1 - a), (6.16)

where z = xTPy.
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Proof. The lower bound for z follows directly from the definition of W (a, P), and the upper

bound follows from Lemma 6.4. m

The previous lemma allows us to provide an upper bound over the mappings in 7(a, P)

for the f-information between B and E when If is non-negative.

Theorem 6.3. For any non-negative If and fixed a and P,

sup If (B; B) < a2f (1 + aic) + 2a(1 - a)f (1 - a-) + (1 - a) 2 f (1 + -c1C-1) (6.17)
(x,y)ER(a,P)

where here a1 = pm(X; f) and c A (1 - a)a- 1 . In particular, for a = 1/2,

1
sup If (B; B) < - (f (1 - 0-1) + f (1 + 0)) . (6.18)

(x,y)EW(1/2,P) 2

Proof. Using the matrix form of the joint distribution between B and B given in (6.14), for

E [B] = E I =1- a, the f information is given by

2f a -z 2f1-2a+z
If (B; B) = a2f ) + 2a(1 - a)f + (1 - a)2 2 . (6.19)

a2 (a( - a))( (I- a)2

Consequently, (6.19) is convex in z. For (x, y) E 7(a, P), it follows from Lemma 6.5 that

z is restricted to the interval in (6.16). Since If (B; B) is non-negative by assumption,

If(B; $) = 0 for z - a2 and (6.19) is convex in z, then If(B; B) is non-decreasing in z for

z in (6.16). Substituting z = a2 + pm(X; Y)a(1 - a) in (6.19), inequality (6.17) follows. El

Remark 6.5. Note that the right-hand side of (6.17) matches the right-hand side of (6.10),

and provides further evidence for Conjecture 6.1. This result indicates that, for conforming

probability distributions, the information between a binary function and its corresponding

unbiased estimate is maximized when all the principal inertia components have the same

value.

Following the same approach from Lemma 6.3, we find the next bound for the mutual

information between B and B.

Corollary 6.1. For 0 < a < 1 and pm(X; Y) = 1 - 26

sup I(B; B) 1 - Hb(6).
(pPB1P3Y)EW(a,P)

We now provide a few application examples for the results derived in this section.

6.5.1 Lower Bounding the Estimation Error Probability

For z given in (6.14), the average estimation error probability is given by Pr{B $ B} =

a + b - 2z, which is a convex (linear) function of z. If a and b are fixed, then the error
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probability is minimized when z is maximized. Therefore

Pr{B # $} : a + b - 2z* (a, b).

Using the bound from Lemma 6.4, it follows that

Pr{B = B} B a + b - 2ab - 2pm(X; Y) a(1 - a)b(1 - b). (6.20)

The bound (6.20) is exactly the bound derived by Witsenhausen in [76, Thin 2.1. Further-

more, minimizing the right-hand side of (6.20) over 0 < b < 1/2, we arrive at

Pr{B f E} / (1 - V1 - 4a(1 - a)(1 - pm(X; Y)2)) (6.21)

which is a particular form of the bound derived in Theorem 5.4.

6.5.2 Memoryless Binary Symmetric Channels with Uniform Inputs

We now turn our attention back to the setting considered in Section 6.4.1. Let Y' be

the result of passing X" through a memoryless binary symmetric channel with crossover

probability 6, X' uniformly distributed, and B -+ X' -+ Y' h B. Then pm(X'; Y") =

1 - 26 and, from (6.21), when E [B] = 1/2,

Pr{B # B} > 6.

Consequently, inferring any unbiased one-bit function of the input of a binary symmetric

channel is at least as hard (in terms of error probability) as inferring a single output from

a single input.

Using the result from Corollary 6.1, it follows that when E [B] = E [ = a and Pr{B =

B = 0} ;> 2, thtrn

I(B; B) 1 - Hb(6). (6.22)

Remark 6.6. Anantharam et al. presented in [95] a computer aided proof that the upper

bound (6.22) holds for any B -+ X" -+ Y' -+ B. Nevertheless, we highlight that the

methods introduced here allowed an analytical derivation of (6.22) for unbiased estimators.
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Chapter 7

Applications of the Principal Inertia

Components to Security and Privacy

7.1 Overview

In this chapter, we present a few applications of the principal inertia components to prob-

lems in security and privacy. We adopt the privacy against statistical inference framework

presented in [181 and discussed in Section 1.4 with the mutual information utility function.

This setup, called the Privacy Funnel, was introduced in [20]. Consider two communicating

parties, namely Alice and Bob. Alice's goal is to disclose to Bob information about a set of

measurement points, represented by the random variable X. Alice discloses this information

in order to receive some utility from Bob. Simultaneously, Alice wishes to limit the amount

of information revealed about a private random variable S that is dependent on X. For

example, X may represent Alice's movie ratings, released to Bob in order to receive movie

recommendations, whereas S may represent Alice's political preference or yearly income.

Bob is honest but curious, and will try to extract the maximum amount of information

about S from the data disclosed by Alice.

Instead of revealing X directly to Bob, Alice releases a new random variable, denoted

by Y. This random variable is produced from X through a random mapping pyIx, called

the privacy-assuring mapping. We assume that ps,x is fixed and known by both Alice and

Bob, and S - X -+ Y. Alice's goal is to find a mapping pyIx that minimizes I(S; Y),

while guaranteeing that the information disclosed about X is above a certain threshold t,

i.e. I(X; Y) > t. We refer to the quantity I(S; Y) as the disclosed private information,

and I(X; Y) as the disclosed useful information. When I(S; Y) = 0, we say that perfect

privacy is achieved, i.e. Y does not reveal any information about S. We consider here the

non-interactive, one-shot regime, where Alice discloses information once, and no additional

information is released. We also assume that Bob knows the privacy-assuring mapping pyIX

chosen by Alice, and no side information is available to Bob about S besides the value Y.
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We present in this chapter necessary and sufficient conditions for achieving perfect pri-

vacy while disclosing a non-trivial amount of useful information when both S and X have

finite support S and X, respectively. We prove that the smallest PIC of ps,x plays a cen-

tral role for achieving perfect privacy: If |X2< ISI, then perfect privacy is achievable with

I(X; Y) > 0 if and only if the smallest PIC of Ps,X is 0. Since I(S; Y) = 0 (perfect privacy)

if and only if S JL Y, this fundamental result holds for any privacy metric where statisti-

cal independence implies perfect privacy. We also provide an explicit lower bound for the

amount of useful information that can be released while guaranteeing perfect privacy, and

demonstrate how to construct pyIx in order to achieve this bound.

In addition, we derive general bounds for the minimum amount of disclosed private infor-

mation I(S; Y) given that, on average, at least t bits of useful information is revealed to Bob,
i.e. I(X; Y) > t. These bounds are sharp, and delimit the achievable privacy-utility region

for the considered setting. Adopting an analysis related to the information bottleneck [100]

and for characterizing linear contraction coefficients in strong data processing inequalities

in [77, 78], we determine the smallest achievable ratio between disclosed private and useful

information, i.e. infpYIx I(S; Y)/I(X; Y). We prove that this value is upper-bounded by the

smallest PIC, and is zero if and only if the smallest PIC is zero. In this case, we present an

explicit construction of a privacy-assuring mapping that discloses a non-trivial amount of

useful information while guaranteeing perfect privacy. We also introduce convex programs

that can be used to design privacy-assuring mappings based on the PICs.

7.2 Main Contributions

This chapter focuses on applying the PICs to different problems in privacy and, in particular,
to the privacy against statistical inference framework described above. Lemmas 7.1 to 7.2

prove different properties of the privacy funnel function. Theorems 7.1 and 7.2 characterize

the best tradeoff between disclosed private and useful information in terms of the smallest

PIC, leading to Theorem 7.3. Theorem 7.3, in turn, is the highlight of this chapter, stating

that if the smallest PIC is zero, not only perfect privacy can be achieved, but an amount

of useful information that is strictly bounded away from zero can be disclosed with perfect

privacy. Some of these results also appear in [101].

We then return to the correlation-error product discussed at the end of Chapter 3 in

Section 7.8, and demonstrate how the PICs shed light on the fundamental tradeoff between

privacy and utility by decomposing the MMSE of a hidden variable. This analysis leads to

Proposition 7.2, which presents a linear program for creating privacy-assuring mappings that

provide privacy guarantees in terms of what an adversary can or cannot reliably infer from

the disclosed useful information. Finally, we apply the results for the PICs for symmetric

functions in a database privacy setup. We show in the last section that answering statistical

queries over a randomly select subset of entries of a database is a simple, yet powerful tool
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for providing privacy.

One of the main goals of this chapter is to characterize the fundamental limits of privacy.

Consequently, the theoretical analysis presented here often assumes knowledge of the joint

distribution ps,x. However, we highlight that several of the results in sections 7.6 to 7.10

hold without complete knowledge of ps,x. For example, the results in Section 7.6 are given

in terms of the smallest PIC of Ps.X, and the subsampling method discussed in Section 7.10

requires only an independence assumption on the entries of a database.

7.2.1 Outline of the Chapter

The rest of the chapter is organized as follows. Section 7.4 introduces the privacy funnel and

ancillary results. Section 7.5 relates the smallest achievable ratio between disclosed private

and useful information with the principal inertia components. Section 7.6 presents a neces-

sary and sufficient condition for achieving perfect privacy in terms of the smallest principal

inertia component and the cardinality of X. Section 7.7 presents an explicit threshold for

the amount of useful information that can be disclosed with perfect privacy, and investigates

the case where S and X are vectors of i.i.d. random variables.

We then revisit the correlation-error product results from Chapter 3 through the PIC lens

in Section 7.8. Section 7.9 presents a convex program that can be used for finding privacy-

assuring mappings given constraints that certain functions of the data can or cannot be

reliably inferred from the data. Finally, Section 7.10 discusses applications of the PICs to

privacy-preserving queries in statistical databases.

7.3 Related Work

Information-theoretic formulations for privacy have appeared in [58, 60, 61, 102, 103]. For

an overview, we refer the reader to [18,61] and the references therein. The privacy against

statistical inference framework considered here was further studied in [13,14]. The results

presented in this chapter are closely connected to the study of hypercontractivity coefficients

and strong data processing results, such as in [77-80,1041. PIC-based analysis were used in

the context of security in [56,105]. Extremal properties of privacy were also investigated in

[106,1071.

We note that the privacy against statistical inference setting is related to differential

privacy [11, 12]. Assuming the classic differential privacy setting in centralized statistical

databases, the private variable S can represent an individual user's entry to the database,

and the variable X the output of a query over the database. Unlike in differential privacy,

here we consider an additional distortion constraint, which can be chosen according to the

application at hand. In the privacy funnel setting, the distortion constraint is given in terms

of the mutual information between X and the perturbed query output Y.
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7.4 The Privacy Funnel

We define next the privacy funnel function, which captures the smallest amount of disclosed

private information for a given threshold on the amount of disclosed useful information. We

then characterize properties of the privacy funnel function in the rest of this section.

Definition 7.1. For 0 < t < H(X) and a joint distribution ps,X over S x X, we define the

privacy funnel function G1 (t,ps,x) as

Gi(t, ps,x) A inf {I(S; Y) I(X; Y) > t, S -+ X -+ Y}, (7.1)

where the infimum is over all mappings pyIx such that Y is finite. For a fixed ps,X and

t > 0, the set of pairs {(t, G1 (t, ps,x))} is called the privacy region of ps,x.

7.4.1 Properties of the Privacy Funnel Function

We now enunciate a few useful properties of Gi(t,ps,x) and the privacy region.

Lemma 7.1.

GI(t,ps,x) = min {I(S; Y)jI(X; Y) > t, S -- X -+ Y, IYI< IXI+2}. (7.2)
PYIX

Proof. Let ps,x and pyIx be given, with S -- X -+ Y and |YI> IX +2. Denote by wi the

vector in the 1XI-simplex with entries pxiy(-Ii). Furthermore, let ai A H(X) - H(XY = i),
and bi A H(S) - H(SIY = i). Therefore

y

py (i) [wi, ai,b] = [px, I(X; Y), I(S; Y)].

Since wi belongs to the 1XI-simplex, the vector [wi, ai, bi] is taken from a JXI+1 dimensional

space. Then, from Carath6odory's theorem, the point [px, I(X; Y), I(S; Y)] can also be

achieved by at most X 1+2 non-zero values of py(i). It follows directly that it is sufficient

to consider IYI IXI+2 for the infimum (7.1).

The set of all mappings pyIX for IY|I IXI+2 is compact, and both pyIX -+ I(S;Y)

and pyIX -+ I(X; Y) are continuous and bounded when S, X and Y have finite support.

Consequently, the infimum in (7.1) is attainable. D

Lemma 7.2. For a fixed ps,x, the mapping t -+ G1 (t,ps,x) is non-decreasing.
t

Proof. For 0 < t < H(X) and ps,x fixed, let Gi(t, psx) = a. From Lemma 7.1, there exists

pyIX that achieves I(S; Y) = a for I(X; Y) > t. Now consider p;Ix where Y =[IYJ+1 and,
for 0 < A < 1,

p x(ylx) = (1 - A)ly=lyl+1 } + Al{ypAy1+1}py 1x(y~x).
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I(S; X ) ------------------------------------ ----------------------------------------- -.

H(XIS) t H(X)

Figure 7-1: For a fixed ps,x, the privacy region is contained within the shaded area. The

red and the blue lines correspond, respectively, to the upper and lower bounds presented in

Lemma 7.3.

Note that Y is an "erased" version of Y, with the erasure symbol being IYI+1. It follows

directly that I(S;Y) = AI(S; Y) = Aa, I(X; f) = AI(X; Y) > At, and

Gi(At, Ps,x) AI(S; Y) _ Gi(t, ps,x)

At - At t

Since this holds for any 0 < A < 1, the result follows. E

Lemma 7.3. For 0 < t < H(X),

tI(X; S)
max{t - H(XIS), 0} GI(t,ps,x) <H(X) (7.3)

Proof. Observe that G (H(X),ps,x) = I(X; S), since I(X; Y) = H(X) implies that pyIx

is a one-to-one mapping of X. The upper bound then follows directly from Lemma 7.2.

Clearly GI(t,ps,x) > 0. In addition, for any pyIx,

I(S; Y) = I(X; Y) - I(X; YIS)

> I(X;Y) - H(XIS)

> t - H(XIS),

proving the lower bound.

Figure 7-1 illustrates the bounds from Lemma 7.3. The privacy region is contained

withing the shaded area. The next two examples illustrate that both the upper bound (red
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line) and the lower bound (blue line) of the privacy region can be achieved for particular

instances of ps,x.

Example 7.1. Let X = (S, W), where W JL S. Then by setting Y = W, we have

I(S; Y) = 0 and I(X; Y) = H(W) = H(XIS). Consequently, from Lemmas 7.2 and 7.3,
Gi(t,ps,x) = 0 for t E [0, H(XIS)]. By letting Y = W w.p. A and Y = (S, W) w.p. 1 - A
for A E [0,1], the lower-bound G1(t,ps,x) = t - H(XIS) can be achieved for H(XIS)

H(W) t < H(X). Consequently, the lower bound in (7.3) is sharp.

Example 7.2. Now let X = f(S). Then I(X; S) = H(X) and

I(S; Y) = I(X; Y) - I(X; YIS) = I(X; Y).

Consequently, GI(t,ps,x) = t, and the upper bound in (7.3) is sharp.

7.5 The Optimal Privacy-Utility Coefficient and the PICs

We now study the smallest possible ratio between disclosed private and useful information,
defined next.

Definition 7.2. The optimal privacy-utility coefficient for a given distribution ps,x is given

by
, a .II(S; Y)v* (ps,x) inf S(7.4)

Prix I(X; Y)

It follows directly from Lemma 7.2 that

v*(ps,x) = lim tp,x) (7.5)t-+o t

We show in Section 7.6 that the value of v*(ps,x) is related to the smallest principal

inertia component of ps,x (i.e. the smallest eigenvalue of the spectrum of the conditional

expectation operator, defined below). We also prove that v*(ps,x) = 0 is a necessary and

sufficient condition for achieving perfect privacy while disclosing a non-trivial amount of use-

ful information. Before introducing these results, we present an alternative characterization

of v*(ps,x) (Lemma 7.4), and introduce the principal inertia components (Definition 7.3)

and an auxiliary result (Lemma 7.5).

Remark 7.1. The proof of Lemma 7.4 and Theorem 7.1 in this chapter are closely related

to 1781. We acknowledge that their proof techniques inspired some of the results presented

here.
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7.5.1 Characterization of the Optimal Privacy-Utility Coefficient

Lemma 7.4. Let qs denote the distribution of S when Psjx is fixed and X - qx. Then

v*(Ps x) = inf D(qs||ps)
qx# px D(qxI|px )

(7.6)

Proof. For fixed pyjx and ps,x

I(S;Y)
I(X;Y)

EyEy py(y)D(ps|y=y| Ips)

zyEy py(y)D(pxly=yl Ipx)

> min
yEY:

D(px 1 y=y\|px)>0

D(pSjy=y|Ips)

D(pxjy=y| px)

> inf D(qsI|ps)
-x#px D(qxI|px)

Now let d* be the infimum in the right-hand side of (7.6), and qx satisfy

D(qy \py) - + _

D(qx Ipx)

where 6 > 0. For e > 0 and sufficiently small, let pyIx be such that Y = [2], py(1) =

pxjy(x|1) = qx(x) and

pxjy(x2) 1 E W
E

- 1 _qx(x).

Since for any distribution rx with support X we have D ((1 - e)px + erxI px) = o(E), we

find

I(S;Y) = ED(psjy= Ilps) + (1 - e)D(psjy=oI iPs)
= eD(qsj|ps) + o(e),

and equivalently, I(X; Y) = eD(qxIlpx) + o(E). Consequently,

I(S;Y) _ eD(qs I|Ps) + o(e) d* + 6
I(X;Y) ED(qx||px) + o(e)

where the limit is taken as e -+ 0. Since this holds for any 6 > 0, then v*(ps,x) ; d*, proving

the result. E

7.5.2 The Smallest PIC

The smallest PIC is of particular interest for privacy, and upper bounds the value of v* (ps,x).

In particular, we will be interested in the coefficient 6(ps,x), defined bellow
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Definition 7.3. Let d = min{IS|,IX|} - 1, and Ad(S; X) the smallest PIC of ps,x. We

define

(ps,x) Ad(S;X) if IXI S,(7.7)
0 otherwise.

The following lemma provides a useful characterization of 6 (ps,x), related to the in-

terpretation of the PICs as the spectrum of the conditional expectation operator given in

Theorem 5.1.

Lemma 7.5. For a given ps,x,

6(ps,x) = min {fIE [f(X)IS]I'l f : X - R, E [f(X)] = 0, If (X) 112= 1}. (7.8)

Proof. Let f : X -+ R, E [f(X)] = 0 and I|f(X)lj=1, and f 1 2= be a vector with entries

fi= f(i) for i E X. Observe that

(E [f(X)IS]2 =7 ps(s)E [f(X) S = s]2
sES

= fTpxsDsPxsfT

=fTDl QTQDlf

> 6 (ps,x),

where the last inequality follows by noting that x A fTD / 2 satisfies lxI12 = 1 and that
3 (ps,x) is the smallest eigenvalue of the positive semi-definite matrix QTQ, where Q
DS 1/2 Px,SDXi/2

7.6 Information Disclosure with Perfect Privacy

If v*(psx) = 0, then it may be possible to disclose some information about X without

revealing any information about S. However, since G(0,px,s) = 0, it is not immediately

clear that v*(ps,x) = 0 implies that there exists t strictly bounded away from 0 such

G1 (t, px,s) = 0. This would represent the ideal privacy setting, since, from Lemma 7.1, there

would exist a privacy-assuring mapping that allows the disclosure of some non-negligible

amount of useful information for I(S; Y) = 0. This, in turn, would mean that perfect

privacy is achievable with non-negligible utility regardless of the specific privacy metric used,

since S and Y would be independent.

In this section, we prove that if the optimal privacy-utility coefficient is 0, then there

indeed exists a privacy-assuring mapping that allows the disclosure of a non-trivial amount

of useful information while guaranteeing perfect privacy. We also show that the value of
3 (ps,x) is closely related to v*(ps,x). This relationship is analogous to the one between the

hypercontractivity coefficient s*, defined in [77] and [108], and the maximal correlation Pm
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In particular, as shown in the next two theorems, v*(ps,x) 6 (ps,x) and v*(ps,x) =0

6(ps,x) = 0.

Theorem 7.1. For any ps,X with finite support S x X,

v*(ps,x) 6(ps,x). (7.9)

Proof. Let psix be fixed, and define

gx(px) A H(S) - AH(X),

where H(S) and H(X) are the entropy of S and X, respectively, when (S, X) ~ pSIXpX.

For 0 < E < 1, let

PE) M px(i)(1 + Ef(i))

be a perturbed version of px, where E [f(X)] = 0 and, w.l.o.g., I1f(X)112 = 1. The second

derivative of g,(p,) at e = 0 is1

2 = log 2 (e) (-H1E [f(X)IS] I||+AI1f(X)I|)

= log2 (e) (-HIE [f(X)IS] 112+A) . (7.10)

Thus, from Lemma 7.5, if A < 6 (ps,x) then for any sufficiently small perturbation of px,
(7.10) will be non-positive. Conversely, if A > 6 (ps,x), then we can find a perturbation f(X)

such that (7.10) is positive. Therefore, gA(px) has a negative semi-definite Hessian if and

only if 0 < A < 6 (ps,x).

For any S -+ X -+ Y, we have I(S;Y)/I(X;Y) > v*(ps,x), and, consequently, for

0 < At < v*(ps,x),

gAt(px) > H(SIY) - AtH(XIY),

and gxt (px) touches the upper-concave envelope of gAt at px. Consequently, gt has a

negative semi-definite Hessian at px and, from (7.10), At < 6 (ps,x). Since this holds for

any 0 < At < v*(ps,x), we find v*(ps,x) < 6 (ps,x).

Remark 7.2. For a fixed psIx, the function g,(px) is concave when A = 0 and convex

when A = 1. A consequence of Theorem 7.1 is that the maximum A for which g(px) has

a negative Hessian at px is 6(ps,x). Furthermore, Lemma 7.4 implies that the value of

A for which g9,(px) touches it's lower concave envelope at px for all A1 > A is v*(ps,x).

Therefore, both infp, v*(ps,x) and infpx 3 (ps,x) equal the maximum value of A such that

the function g (px) is concave at all values of px. Therefore, we established that for a given

'This was observed in [78] and [108], and follows directly from - 9 a(1+ b) log 2 a(1+be) = -b 2 a log 2(e).
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Psix,
inf v* (ps,x) = inf 6(ps,x).
PX PX

The next theorem proves that 3 (ps,x) can serve as a proxy for perfect privacy, since the

optimal privacy-utility coefficient is 0 if and only if 6 (ps,x) is also 0.

Theorem 7.2. Let ps,x be such that H(X) > 0 and S and X are finite. Then2

v*(ps,x) = 0 - 3 (psx) = 0. (7.11)

Proof. Theorem 7.1 immediately gives 6 (ps,x) = 0 -> v*(ps,x) = 0. Let v*(ps,x) = 0.

Then, since D(qx Ipx) - minEx log 2 px(i) and X is finite, Lemma 7.4 implies that for

any e > 0 there exists qx and 0 < 6 < - minieX log 2 px(i) such that

D(qx||px) > > 0

and

D(qs||ps) < e.

We can then construct a sequence q, q2, q3 ... such that q> # px, D(q'Ilps) ek and

lim Ek = 0.
k-+oo

Let qs be a vector whose entries are qs(-). Then, from Pinsker's inequality,

Ek > liq - psI I2 lig - psII. (7.12)

Defining xk = - Px, observe that 0 < ||xkf||< 2 and, from (7.12), |HPsixxkII2  k.

-1-ence,
1||Psixx",

lim Ixk = 0. (7.13)
k- oo ||Xk 2

In addition, denoting sm A minIEs ps(s) and xM A minxex px (x), for each k we have

IIPsixk X > mm IPsixyH> min2
IlxkH - llil~ |Iy|

m PsxD y2 (7.14)
2,>0 |DDX 112

> min Sm /2 (7.15)
|1ylJ1>0 Xzu yjj2

2 1f S is binary, then (7.11) implies that perfect privacy is achievable iff S and X are independent (since
6 (ps,x) = pm(S; X)

2
), recovering [107, Thm. 21.
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= sm min IIQY11 (7.16)
2u ly I ly 2| l

SSM(psx) (7.17)
XM

In the derivation above, (7.14) follows from Dx being invertible (by definition), (7.15) is a

direct consequence of |IDS 1 2  - m 2y and ID1 2y - 2Mly for any y, and (7.16)

and (7.17) follow from the definition of Q and 6(ps,x), respectively. Combining (7.17) with

(7.13), it follows that 3 (ps,x) = 0, proving the desired result.

We are now ready to prove that a non-trivial amount of useful information can be dis-

closed without revealing any private information if -and only if v* (ps,x) = 0 (or equivalently,
6 (ps,x) = 0). This result follows naturally from Theorem 7.2, since v*(ps,x) = 0 implies

that 6 (ps,x) = 0, which means that the matrix Q and, consequently, PSIx, is either not full

rank or has more columns than rows (i.e. IXI> ISI). This, in turn, can be exploited in order

to find a mapping pyIx such that Y reveals some information about X, but no information

about S. This argument is made precise in the next theorem.

Remark 7.3. When PsIx is not full rank or has more columns than rows, then S and X

are weakly independent. As shown in [109, Thin. 4] and [1071, this implies that a privacy-

assuring mapping that achieves perfect privacy while disclosing a non-trivial amount of

useful information can be found. Theorem 7.3 recovers this result in terms of the smallest

principal inertia component, and Cor. 7.2 provides an estimate of the amount of useful

information that can be revealed with perfect privacy.

Theorem 7.3. For a given ps,x, there exists a privacy-assuring mapping pyjx such that

S -+ X -+ Y, I(X; Y) > 0 and I(S; Y) = 0 if and only if 6 (ps,x) = 0 (equivalently

v* (ps,x) = 0). In particular,

3to > 0 : Gi(to, ps,x) 0 -> 6 (ps,x) = 0. (7.18)

Proof. The direct part of the theorem follows directly from the definition of v*(ps,x) and

Theorem 7.2. Assume that 6 (ps,x) = 0. Then, from Lemma 7.5, there exists f : X -+ R such

that If (X)11 2 = 1, E [f (X) = 0], and IE [f (X)IS] 112= 0. Consequently, E [f (X)IS = s] = 0
for all s E S.

Fix Y = [2], and, for e > 0 and e appropriately small,

PYX(-X Ef (W, y =1

PY+ ef(x), y=2.

Note that it is sufficient to choose e = (2maxxExIf(X)I) 1 , so e is strictly bounded away
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from 0. In addition, py(l) = 1/2. Therefore,

I(X; Y) =1 - )PX(x)hb ( +ef(x) >0 (7.19)

where hb(X) W -Xlog 2 X - (1 - X) log2(1 - x) is the binary entropy function. Since S -
X - Y,

pYIS yls) = Zpyix(yx)pxs(xls)
xEX

= + (-1)YEf () pxis(xls)
xex

= 1/2 + (-1)YEE [f (X)IS = s]

= 1/2,

and, consequently, S and Y are independent. Then I(S; Y) = 0, and the result follows. E

The previous result proves that if either IXI> ISI or the smallest principal inertia com-

ponent of ps,x is 0 (i.e. 6(ps,x) = 0), then it is possible to achieve perfect privacy while

disclosing some useful information. In particular, the value of to in (7.10) is lower-bounded

by the expression in (7.19). We note that this result would not necessarily hold if S and X

are not finite sets.

The proof of Theorem 7.3 holds for any measure of information I that satisfies I(X; Y) =

0 if and only if X and Y are independent, since it depends solely on the properties of ps,X.

Examples of I are maximal correlation or information metrics based on f-divergences [1101.
This leads to the following result.

Corollary 7.1. Let ps,X be given, and I be a non-negative measure of information (e.g.

total variation or maximal correlation) such that for any two random variable A and B

I(A; B) = 0 4=> A L B. Then there exists pyIX such that S -+ X -+ Y, I(X; Y) > 0

and I(S;Y) = 0 if and only if 6 (ps,x) = 0 .

Proof. This is a direct consequence of Theorem 7.3, since, by assumption, I(X; Y) = 0 <->

I(X; Y) = 0 and I(S; Y) = 0 I(S; Y) = 0. E

Remark 7.4. As long as privacy is measured in terms of statistical dependence (with perfect

privacy implying statistical independence) and some utility can be derived when Y is not

independent of X, then 6 (ps,x) fully characterizes when perfect privacy is achievable with

non-trivial utility.
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7.7 On the Amount of Useful Information Disclosed with Per-

fect Privacy

We present next an explicit lower bound for the largest amount of useful information that

can be disclosed while guaranteeing perfect privacy. The result follows directly from the

construction used in the proof of Theorem 7.3.

Corollary 7.2. For fixed ps,X, let

0 ! {f : X -+ RIE [f(X)] =0, lf(X)H|2= 1, lIE [f(X)S12= 0} U fo,

where fo is the trivial function that maps X to {0}. Then G1 (t, ps,x) = 0 for t E [0, t*,
where

t* -- maxE h 2 -+ .11!o (7.20)f GT 10 2 2|11 ||11,c

Furthermore, the lower bound for t* is sharp when 6 (ps,x) = 0, i.e. there exists a ps,x such

that t* > 0 and Gi(t, ps,x) = 0 if and only if t E [0, t*].

Proof. If 6 (ps,x) = 0, then the lower bound for t* follows directly from the proof of Theorem

7.3 and, in particular, (7.18). If 6 (ps,x) > 0, then To {fo}, and the lower bound (7.20)

reduces to the trivial bound t* > 0.

In order to prove that the lower bound is sharp, consider S being an unbiased bit,

drawn from {1, 2}, and X the result of sending S through an erasure channel with erasure

probability 1/2 and X = {1, 2, 3}, with 3 playing the role of the erasure symbol. Let

L x, E {1, 2},f (x)~ =
-1 x-=3.

Then f E 0, hb -- 2(X) 0 for x E X and t* = 1. But, from Lemma 7.3, t* <

H(X|S) =1. The result follows.

The previous bound for t* can be loose, especially if JX is large. In addition, the right-

hand side of (7.20) can be made arbitrarily small by decreasing minxEEXpx(x). Nevertheless,

(7.20) is an explicit estimate of the amount of useful information that can be disclosed with

perfect privacy.

When S' = (Si, . . . , S,) and X' = (X 1, . . . , X,), where (Si, Xi) - ps,x are i.i.d. ran-

dom variables, the next proposition states that 3 (psn,xn) = 6(psx)'. Consequently, as long

as 6(ps,x) < 1, it is possible to disclose a non-trivial amount of useful information while

disclosing an arbitrarily small amount of private information by making n sufficiently large.

Proposition 7.1. Let S' = (Si,..., S,) and X' = (X 1,..., X,), where (Si, Xj) ~ ps,x
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are i.i.d. random variables. Then

v*(psn,xn) < 6 (psn,xn) = 6(ps'x)". (7.21)

Proof. The result is a direct consequence of the tensorization property of the principal inertia

components, presented in [64,79,82].

7.8 The Correlation-Error Product Revisted

In this section we revisit the correlation-error product results introduced in Section 3.8. The

principal functions (cf. Defn 7.3) provide a basis for for the functions of a random variable,

and the PICs measure the MMSE of estimating each of these functions. Consequently,

the PICs provide a complete characterization of which functions can or cannot be inferred

reliably. This extends the analysis in Chapter 3, where the functions were arbitrary (i.e. not

necessarily forming a basis).

We go over again a few definitions that are key to this section and were already introduced

previously in the thesis. As usual, let X and Y be two random variables (not necessarily

with discrete support sets) with finite second moment and support X and Y, respectively.

For f : X -+ R, recall that mmse(f(X)jY) = E [f(X)|Y] is the minimum mean squared

error estimator of f(X) given an realization of Y. Observe that the mean squared error

f (X) given Y can be expressed as

mmse(f (X)|Y) = E[f ([X)2 - E [f (X) IY]21

||1 E I f ( X)| l] ||2
= If (X)| 1 lI- 2 ,(X)1 (7.22)

Consequently, the value of the MMSE depends on the spectrum of the conditional expecta-

tion operator T f(y) I [f( )IY = ill which in turn iq ercmmompsd br thei principal inerti,- d \0 I L- - -- I---- - - --- --- 7--- ------ ----- j

components (cf. Theorem 5.1).

In the rest of this section we have two main goals: (i) determine the functions of X

that can be inferred with small minimum mean squared error from Y, and (ii) relate these

functions to the MMSE estimator of X given Y.

7.8.1 Functions That Can Be Inferred With Small MMSE

We assume henceforth that X has finite second moment and, in order to ignore trivial

constant mappings, that E [f(X) = 0 and E [f(X)2] = 1. Under these assumptions, one

can determine functions fi, f2, ... as in Theorem 5.1, such that fi is given by

fi = argmax {I1E [f (X)Y] 112f : X -+ R, E [f (X)] = 0, E [f (X)2] = 1,

E [f(X)fj(X)] = 0 for 1 < j <i-1}.
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Then

E [fi(X)IY] = A(X; y)2,

where o, o0 ... are the PICs of X and Y.

It follows directly that for any non-trivial function h : X -+ R with E [h(X)] = 0

mmse(h(X)IY) ;> 1Ih(X)f12(1 - Pm(X; Y) 2 ), (7.23)

with equality if h(X) = cfi(X), where c = I|h(X)11 2. Therefore, for a fixed variance c,

cfi(X) is the function of X that can be most reliably estimated (in terms of mean-squared

error) from all possible mapping X -+ R. Furthermore,

mmse(h(X)IY) = 1h(X)ff| ( -- c2A(X;Y)) , (7.24)

where ci = E [h(X)fi(X)] /llh(X)1f 2 and E c- 1. Consequently, functions that are closely

"aligned" with fi for small i can be inferred with small mean squared error.

This result is at the heart of the correlation-error product discussed in Section 3.8, and

reveals the true nature of the fundamental tradeoff between privacy and utility. The principal

functions fi that correspond to smaller PICs are the ones that cannot be reliably inferred

from Y. For example, assume that we wish to design a privacy-assuring mapping where the

secret S = (h,(X), ... , ht(X)) is composed by a certain set of functions hi, ... , hk of X that

are supposed to remain private. The privacy-assuring mapping pyIx should then assure that

the principal functions that span the subspace formmed by (h, (X),... , ht(X)) must have

small PICs. We show how to design privacy-assuring mappings based on this intuition in

Section 7.9. Before that, we present a brief discussion on the connection between the PICs

and the MMSE estimator (i.e. estimating the identity function of X given Y).

7.8.2 PICs and the MMSE Estimator

The MMSE is a property of the probability space and the support sets X and Y of the

random variables, whereas the PICs and the corresponding principal functions are properties

solely of the probability space. If one is given only the probability measure and asked to

define random variables X and Y so that X can be estimated from Y with the minimum

mean squared error and has unit variance, then fi(X) = X. This illustrates why principal

inertia components are used in the analysis of categorical data (i.e. data without associated

numerical values).

If the random variables X and Y are given and there is some underlying functional

dependency between them, is this dependency better captured by the MMSE estimator of

X given Y or by fi? We will first discuss a simple example where Y is a deterministic

function of X.
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Deterministic Mappings

Let Y = h(X), where X is a random variable with finite second moment and h : X -+ R.

We assume, for the sake of illustration, that IXI< oc. Then for E [f(X)] = E [g(Y)] = 0 and

E [f(X) 2] = E [g(Y) 2] - 1

E [f(X)g(Y)] = E [f(X)E [g(Y)|X]]

= E [f (X)g(h(X))]

< 1,

with equality if and only if f(X) = g(h(X)). Therefore, all the PICs are equal to unity,

and the corresponding eigenvectors gi, ... , g, where d = IYI-1, is given by any set of d - 1

orthonormal vectors that satisfy the mean and variance constraints. Note that there are an

infinite number of such vectors, and therefore, an infinite number of basis fi, ... fd. In this

case, the eigenvectors in general do not capture in any way capture the dependency between

X and Y.

Assuming, without loss of generality, that E [h(X)I = 0, we may set f(X) = h(X)/Ih(X)jj2

and g(Y) = Y/llh(X)112, and the maximal correlation is achieved. However, any other map-

ping z : X -+ R that satisfies h-1 (x) = z- 1(x) for all x E X and E [z(X)] = 0 would also

achieve the maximal correlation, so the relationship is not defined by any given basis of

eigenvectors.

The eigenvectors give the structure of this dependency in the probability space, and this

is of interest if the numerical values of X and Y are irrelevant (such as the case considered

in correspondence analysis). However, in order to truly define the nature of the dependency

between X and Y as seen in data, it is necessary to take into consideration the random

variables. The MMSE estimator of X given an observation of Y also does not necessarily

reveal this relationship, at least not in its entirety. As a simple example, let Y = X 2 and

X have a distribution that is symmetric around U, then 1E [A IY] = 0, and mmse(XIY) is

trivial. Nevertheless, mmse(YIX) perfectly captures the dependency between Y and X,
since E [YIX] = h(X).

In General: Maximal Correlation and MMSE

In order to relate the MMSE estimator with maximal correlation, we introduce the following

definitions.

Definition 7.4. For Var(Y) > 0, the one-sided maximal correlation coefficient between X

and Y is given by

PS(YIX) = sup E f(X)(a )[Y])] f : X -- R,E [f (X)] = 0,E [f (X)2 ] =1
V(2ar(Y)

(7.25)
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The function f that achieves the supremum in (7.25) is denoted by r* (x).

Observe that p,(YIX) is not symmetric in general, i.e. p,(YIX) , p,(XIY). Further-

more

pm(X;Y) = sup {ps(g(Y)jX)jg Y -÷ R,E [g(Y)] = OIE [g(Y) 2] = 1}

Consequently ps(YIX) pm(X; Y).

The next theorem shows that r*(x) matches the MMSE estimator (up to an affine

transformation).

Theorem 7.4. p,(Y|X) = ||E [ZIX] 12, where Z = (Y - E [Y])/ Var(Y). Furthermore, if

p,(Y|X) > 0, then r*(x) = E [ZJX = x1 /iIZiXI 2 .

Proof. Let Z = (Y - E [Y])/Var(Y) and E [f (X)] = 0, E [f(X) 2 ] = 1. Then

E [f(X)Z = E [f(X)E [ZIX]]

< |1f (X)||2I1E [ZIX] 112

= |IE [ZIXI 112.

Equality holds if and only if f(X) = cE [ZIX] for some constant c. Letting c = 1/lIE [Z IX] 112,
the result follows. D

A direct consequence of this characterization and Theorem 5.1is given below.

Corollary 7.3. Let f, g be the principal functions that maximize correlation, i.e. E [f (X)g(Y)] =

pm(X;Y). Then

g(y) = E [f(X)|Y = y] /IE [f(X)Y] 112

and f (x) = E [g(Y)IX = x] /|1E [g(Y)IX] 112. In this case, pS( f(X)IY) = pS(g(Y)|X) =

pm(X; Y).

If ps(XIY) = ps(YIX), then are they equal to pm(X;Y)? Alas, the answer is no in

general (but true if either X or Y are binary). To see why this is the case, let f(X) and

g(Y) match the principal function corresponding to the second largest PIC of X and Y.

However, if X is binary, we have only one such component, and equality holds.

7.9 Privacy-Assuring Mappings with Estimation Constraints

In this section we present a linear program that can be used for deriving privacy-assuring

mappings with estimation constraints under certain assumptions. Consider the following

setup: We are given a set of n i.i.d. samples (X1, . . . , X,), where Xi ~ px and X = [m] is

finite. Our goal is to produce a new set of samples (X ,..., X') where Xj - px, and Xj is
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produced from Xi through a privacy-assuring mapping pxix. In addition, we are given the

following constraints: For a certain set of functions {f ti 1, fk X - R,

mmse(fk(Xj)jX') > 6 k,

and for another set of functions {fk}k2 1 , fk : X -+ R, we have

mmset fk(Xj||Xj') < Ik.

In other words, we wish to produce a new set of samples such that the functions {fkf}l 1 of
the original set of samples cannot be estimated reliable (privacy constraints), whereas the

functions {fk2 can be estimated reliably (utility constraints), and both set of samples

have the same distribution. How should px'Ix be chosen? We discuss next a procedure

for generating a privacy-assuring mapping px'Ix that satisfies these constraints (if they are

feasible).

We assume, without loss of generality, that each function fk and fk has zero-mean and

unit variance. We also make the additional, crucial assumption that {fi, .. ., ft1, fi, 0 - , ft2 }
are uncorrelated (and, consequently, ti + t2 < m - 1). This assumption is crucial for the

convex program below to be a linear program.

We can find a candidate pxIx by solving the linear program described in the next

proposition. As usual, Dx is a diagonal matrix with entries px, and we denote by fk the

column vector with i-th entry equal to fk(i), and equivalently for ik.

Proposition 7.2. For the constraints described above, a candidate privacy-assuring mapping

px'Ix can be found by solving the following linear program:

min aoi (7.26)
-1 . 0 I -- tl -t2

s.t. PXqX = FXF'Dx, (7.27)

Px x1 = 1, (7.28)

[Px ixi,j > 0, (7.29)

o-i i /+0j, i = 1,..., ti (7.30)

oj l-ht 1 , j= t1-+1,...,t1+t2, (7.31)

where ai E R is arbitrary and may depend on the application at hand, F [1 f1 ... f1 f1 - ft2l
and EJ A diag (1,- 1, ... , +t2). The mapping px'Ix is given by the entries of Px'x.

Proof. From the definition of the PICs (cf. Definition 5.1), and denoting by PXIX the

matrix with entries px'Ix, we have

Px'ix = D- 1/ 2 UEVTDx,
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where the square-root of the PICs are the entries of E, and Di/2 U and DX/2V are the

corresponding principal functions. We then impose that the principal functions of X and X'

are given by the functions {fi, ... , fti , fi,.. . , ft 2 }, resulting in constraint (7.27). It follows

directly that the MMSE of estimating fi (resp. f2 ) given X' is mmse(fi(X)jX') = o? (resp.

mmse(f(X)IX') = o' ), resulting in constraints (7.30) and (7.31). Constraints (7.28) and

(7.29) guarantee that px'Ix is a valid conditional distribution. El

Remark 7.5. The exact objective function in (7.26) can depend on the overall desired

privacy or utility goal. If the functions {fi, ... , fti , fi, .. . , ft 2 } are not orthogonal, then

a standard orthogonalization procedure (e.g. Gram-Schmidt process) can be found to

find a basis {hi,... , hd} to be used in the previous linear program. However, if the pri-

vacy/utility MMSE constraints cannot be translated directly in terms of individual con-

straints of {hi,... , hd} (e.g. the constraints depend on a linear combination of hi's), then

the resulting optimization program may not be convex.

7.10 The Power of Subsampling for Privacy

We conclude this chapter with a high-level discussion of the application of the PICs in

database privacy. The goal of this section is not to provide a complete study of the matter,

but rather to motivate schemes that use the bounds on estimation results derived here for

designing new privacy-assuring mechanisms. We also seek to understand the use of simple

techniques, such as subsampling, to guarantee privacy in this context.

Within this section, let D = {Y 1 ,... , Y} be a database whose entries are the realization

of n random variables Y1,... , Yn with probability distribution PP. We assume that Y has

a discrete support set Y. A given query over the database is represented by a mapping

f : -* - C for some set C. It is natural to assume that queries over D are symmetric

functions of Y1 , . . . , Yn, since they are agnostic to the logical ordering of the database entries

in memory. This is the case, for example, of SQL queries. Queries are usually of the type

"What is the average value of the entries of D" or "How many entries of D satisfy a certain

property" and so on.

Assume that a given user requests the answer to a query f computed over D. How can

we reply to f while still preserving the privacy of individual inputs of D? We need to first

define what we mean by privacy within this database setting. We identify three related

approaches.

Differential Privacy

Differential privacy attempts to mitigate the privacy threat due to the variation of an in-

dividual entry of D. A particular query f is said to be differentially private if for any

d = {y1i,..., Yk,..., yn} and d' = {y,..., y ,...,yn}, where yA # y', we have Pr{f(d) E
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A} ~ Pr{f(d') E A} for all A E C [12]. This can be achieved, for example, by adding noise

to the output of the query. We do not consider differential privacy here.

Privacy Against Statistical Inference

This is the privacy framework considered in the privacy funnel in Section 7.4 and introduced

in 118]. The goal in this case is to prevent that private information about the individual

entries of D from being learned by a third-party. Assume that for each Y there is a private

variable Si that represents the secret (private) information of each user. For example, Y

might be a vector representing items purchased at a supermarket from client i, and Si a

binary variable representing if client i is expecting a child or not. The privacy mechanism

would then generate a new database D' such that, for a given distortion metric A and query

f, A(f(D'), f(D)) K S, and, simultaneously, the values of Si cannot be reliably inferred

from D'.

Database Privacy

The desiderata of database privacy, defined next, is to guarantee that information about

the distribution of the entries of the database can be learned through queries, but not

information regarding individual realizations of the entries of the database. This idea is

captured in the following definition, where, as usual, we denote Tsym(Yn) I {f If :Y -+

R, f is symmetric}.

Definition 7.5. For a given query f and a distortion metric A : R x R -* [0, oc), we say

that a function f is a (E, 6, a)-database private version of a query f if assuming that the

entries of D are drawn from a set of exchangeable random variables Y' (cf. Section 5.8.2)

Pr{A(f(D), f(D)) > 6} < a and (7.32)

Adv(g(D)If(D)) < E Vg E .Fsym(Y'), g f (7.33)

Remark 7.6. The previous privacy definition can be extended to a setting where the ad-

versary performs multiple queries.

Remark 7.7. Database privacy, as defined here, has two key limitations: (i) the assumption

that the entries of the database are drawn from an exchangeable distribution and (ii) in

general, if the advantage of guessing any symmetric function is small, then probably the

query f is not very informative. Nevertheless, the goal of the definition is that queries

that are data-base private reveal properties of the distribution of the entries in D, i.e. are

informative about pyn, but do not reveal much information about the individual entries.
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7.10.1 Database Privacy and Subsampling

The results introduced in Chapter 5 indicate that answering queries over a randomly selected

subsample of entries of D is a powerful method for guaranteeing database privacy. Consider

a sequence of functions fk : yk -+ R such that there exists a constant co E R where

fk(Yk) -+ co with high probability. Then, for sufficiently large m and n, m < n,

Pr{A(fm(Y m ), fn (Y)) > 6} < oz,

where the exact values of 6 and a will depend on the nature of the convergence of fk. For

example, if fk are averages (i.e. fk(Yk) -- Ej[k] h(Y)/k), then this convergence is expo-

nentially fast. In addition, from Theorem 5.9 and the DPI for the PICs, for any symmetric

function g E Tsym(Yn)
mA (g(Y,); fm(y,) <T
n

and, from bound (5.2),

Adv(g(Y")Jfm(Y m )) < m (7.34)

This provides a very simple, yet powerful method for guaranteeing database privacy for

statistical queries: simply reply with the query computed over a random subsample of

the database, where the exact size of the subsample depends on the privacy and distortion

constraints. The probability of the adversary guessing an undesired function of the database

will then scale according to (7.34), and accurate query replies can still be given as long as

the queries concern aggregate statistics. This method is simple and intuitive, and the results

presented in this thesis allow a precise characterization of the level of privacy that can be

achieved.

7.11 Final Remarks

The PICs are powerful statistics that provide a fine-grained decomposition of the joint

probability distribution of two random variables. As demonstrated in Chapter 6, the PICs

play an important role in information theory, and can be used to precisely characterize the

effect of a random transformation pyIX on the functions of a hidden random variable X.

This analysis, in turn, sheds light on which functions of a hidden variable X are the most

informative given an observation Y for a wide-range of information metrics.

In this chapter, we showed that the PICs are also particularly well suited as security

and privacy metrics. The PICs simultaneously (i) determine when useful information can

be disclosed with perfect privacy, (ii) characterize which functions of a private variable can

or cannot be reliably inferred given the output of a security system, and (iii) provide a

benchmark metric against which existing and new privacy metrics can be compared to.

We believe that the study and value of the PICs go well beyond the ones suggested in
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this thesis. The theoretical properties of the PICs are of independent interest, and their

connection with other information-theoretic metrics is still not fully understood (e.g. in the

context of Strong Data Processing Inequalities [104]). Furthermore, we are convinced that

the PICs are of value to other applications beyond security and privacy, such as in statistical

learning and coding theory. In the final chapter of this thesis, we present some potential

future directions and applications of the results presented here.
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Chapter 8

Conclusion and Future Work

In this thesis, we studied information-theoretic metrics and their application to security and

privacy. The results introduced here lie in the intersection of information theory, estimation

theory, and cryptography. We presented converse bounds that shed light on the fundamental

limits of what can or cannot be learned from a noisy observation of a hidden variable. In the

context of security and privacy, where the hidden variable represents sensitive information,

these bounds provide strong security guarantees: regardless of the computational resources

available to the adversary, he will not be able to estimate certain properties of the sensitive

information with estimation error smaller than the proposed bounds. We then used these

bounds to both evaluate and design cryptographic and privacy-assuring systems.

As a first step, we studied the information-theoretic security properties of symmetric-

key encryption schemes when the rate of the key is smaller than the rate of the message.

We demonstrated how, in this case, the adversary's uncertainty corresponds to a list of all

possible plaintext messages that could have been generated from the observed ciphertext.

We studied properties of the uncertainty list through a source-coding framework called list-

source codes, and introduced fundamental performance limits of LSCs. These limits, in

turn, characterize the best trade-off between key length and the adversary's uncertainty

list. We then argued that the length of the list is insufficient as a security metric, and

introduced a new information-theoretic security metric called symbol secrecy and associated

results. Symbol secrecy quantifies the adversary's uncertainty about individual symbols of

the message, and encompasses other well studied information-theoretic security metrics.

Second, we extended symbol secrecy to the functional setting through a rate-distortion

framework. This was done by making the key assumption that a set of reference functions

{f,(X)}_ 1 of the hidden variable X are known to be easy or hard to estimate given an

observed variable Y. If the correlations between a target function f(X) and the reference

functions are known, we can then bound the estimation error of f(X) given Y. When X is

the plaintext, Y the ciphertext, and {f,(X)}/_ 1 represent individual symbols of a plaintext

message, then this bound was combined with Fourier-analytic tools to characterize the classes

of functions of X that cannot be reliably estimated when high symbol-secrecy is achieved.
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Third, we introduced a general framework, grounded on rate-distortion formulations, to

transform security guarantees in terms of an information metrics between X and Y (i.e.

I(X; Y) 9) into bounds on estimation metrics (i.e. Pe(XIY) > er(px,9)). The recipe

here is simple: given T(X; Y) < 9, we minimize Pe(XIY) over all possible distribution pxy.

The result of this optimization problem is the error-rate function eI(px, 9). We presented

results on the extremal properties of el(px, 9), and, under certain technical assumptions,
show how to extend the error-rate function to bound the probability of error of estimating

functions of X.

Fourth, we presented and characterized several properties of the principal inertia com-

ponents of pxy. The PICs are powerful information-theoretic metrics that provide both (i)

a measure of dependence between X and Y, and (ii) a complete characterization of which

functions of X can be reliably estimated given an observation of Y. We derive lower bounds

on Pe(XIY) based on the PICs. In particular, we show that the largest PIC (equivalently,

the maximal correlation pm(X; Y)) plays a key role in estimation:

Adv(f(X)IY) 5 pm(X; Y),

i.e. the advantage over a random guess of estimating any function of X given Y is at most

pm(X; Y). We also present bounds for the PICs for the distribution between a symmetric

function of a sequence of i.i.d. random variables Y' and a subsequence Ym C Y':

kk(f(yn), ym) T~
(n)j

where j depends on JIY and k.

Finally, we analyzed the connection between the PICs and other information-theoretic

metrics for security. We show that the PICs pIay a key role in estimating one-hit fuinctions of

a channel input given a channel output, and partially resolve the "most informative one-bit

function" conjecture. We also illustrated several applications of the PICs to privacy. In this

setting, we proved that perfect privacy can be achieved if and only if the smallest PIC is

zero.

While this is the final chapter of the thesis, we are excited that the results presented here

point towards several promising future research directions. Similarly to what happened in

the field of communication, we believe that the study of problems in security, privacy and

statistical learning through the information-theoretic lens can provide powerful practical

insight. This insight, in turn, can serve as a design driver for the systems that will enable

us to face the data challenges of the future: security, privacy, distributed data processing,
content distribution and beyond. We outline next a few future potentials and applications

of the topics presented in this thesis.
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Data-driven Privacy

There are a multitude of algorithms for data analytics. These algorithms usually seek to

discover structure and patterns in the data, which are then used for deriving utility. How-

ever, there are few attempts in turning these algorithms around in order to identify and

mitigate possible security and privacy threats. One promising direction of research is to ap-

ply and adapt standard machine learning tools in order to develop data-driven privacy and

anonymization methods. For example, by identifying correlations using principle component

or correspondence analysis, it may be possible to pinpoint how sensitive information is re-

lated to data that will be disclosed. Alternatively, if standard statistical tests indicate that

the points within a dataset are approximately independent and identically distributed, then

subsampling can be used as a powerful privacy mechanism with provable privacy guarantees

using the results derived in this thesis.

The steps for data-driven privacy methods are closely related to the ones taken in this

thesis with the PICs: (i) identify meaningful statistical metrics that can be reliably estimated

from data, (ii) derive converse bounds on estimation based on these metrics, and (iii) perform

statistical analysis on the input and output of a privacy-assuring system, and, based on the

theoretical bounds, provide design feedback. The ultimate goal is to develop efficient privacy

algorithms that can leverage the wide availability of data in order to achieve a good trade-

off between privacy and utility. Furthermore, by developing converse results similar to the

ones introduced in this work, it is possible to provide strong privacy guarantees for such

data-driven algorithms. These results have the same flavor as the ones found in universal

source coding in information theory.

Interactive Setting

The setting considered in this thesis is non-interactive, in the sense that one party transforms

a variable X into the output of a security system Y. An untrusted party then observes Y

and attempts to estimate properties of X. In practice, security systems are continuously

releasing data, and a malicious adversary may interact with the system in order to gain an

advantage in estimating X.

A related line of work on information-theoretic security in an interactive setting was done

in the context of Guesswork by Christiansen et al. [111-114]. Here, the authors consider the

scenario where the adversary can repeatedly probe an oracle with questions about the secret

variable X. This captures, for example, the security threat incurred by an adversary that

attempts to gain access to a system by guessing a secret string (e.g. a password) several

times. We believe that a challenging, yet promising extension of this thesis is the study of

the properties of the security metrics introduced here, and in particular the PICs, in this

interactive setting.
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A General Methodological Framework for Privacy and Anonymity

Privacy threats occur at different interfaces of the data collection, processing and distribu-

tion pipeline. Consequently, privacy metrics and mechanisms are usually tailor-made for

each specific interface. For example, differential privacy applies to statistical databases (e.g.

[11, 121), k-anonymity applies to the release of datasets (e.g. 10l), risk disclosure methods

apply to statistical datasets (e.g., [115-1171), and noise addition applies in datamining (e.g.

[118]). This has led to a shattered landscape of privacy models and metrics without a com-

mon underlying theory. Nevertheless, these problems are connected, and we are convinced

that they can be analyzed through a common methodological lens by using the results in-

troduced in this thesis and, more broadly, tools from information theory, estimation theory

and computational statistics.

It would be of both practical and theoretical interest to create a unified framework for

studying privacy and anonymity. The results in this thesis focus mostly on privacy. How-

ever, anonymity is another major challenge in today's data-driven world. Quantifying and

mitigating de-anonymization risks is crucial for storing and releasing datasets for research.

This is particularly difficult in large datasets, since high-dimensional data is inherently non-

anonymous. For example, most Americans are uniquely identified by their gender, zip code

and birth date, [101, and even a subset of a user's movie ratings can serve as a unique

identifier [119]. We believe that information-theoretic metrics combined source-coding con-

structions (e.g. Huffman codes) can be used to create simple yet powerful methods for

anonymizing large datasets.

Distributed Data Storage and Processing

Processing Big Data requires many distributed servers, running in parallel, in order to

fetch, organize and analyze information. However, making data available across several

nodes simultaneously for parallel processing (such as in a MapReduce setting) also presents

new reliability and security challenges. Security systems in this computational-intensive,

distributed framework must be sufficiently light-weight in order not to hinder performance

and scalability. Furthermore, time-sensitive computations should be assigned to nodes with

efficiency and reliability in mind. If the available processing power is insufficient, it might

also be necessary, for example, to rely on the public cloud for certain computations (e.g.

Amazon EC2), further aggravating reliability and security concerns. The fact that the data

involved in such systems, due to their considerable size, are often understood only in terms

of general statistical parameters, renders the problem particularly challenging.

We believe that many of the results presented here can be applied to develop theory and

methods for distributed processing of statistical data. The converse bounds on estimation,
and specifically the results in Section 5.8, can be used to study how to assign storage

and computation tasks in face of the heterogeneous reliability, performance and security

properties of different nodes in the system. Methodologically speaking, theoretical tools
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such as the PICs are particularly well suited for quantifying the loss of precision of the final

computation when a node fails in a distributed computing setting. The same tools can also

be used to quantify the security threat posed if one of the processing nodes is attacked. By

extending this approach, it may be possible to develop a Shannon-like, asymptotic theory

for information processing in distributed systems with noisy components. This theory will

lead to a crisp understanding of the trade-offs involved when acquiring, processing, securing

and storing data.

Symmetric-key Encryption Schemes with Provable Information-theoretic Secu-

rity Properties

In Chapter 2, we presented symmetric-key encryption constructions that provide a prov-

able level of symbol secrecy under certain assumptions on the source distribution. These

constructions still need to be significantly improved in order to meet modern cryptographic

standards [8] (cf. probabilistic encryption [23]). Nevertheless, the proposed constructions

complement other symmetric-key ciphers by adding an additional layer of security with

provable information-theoretic properties.

The tools presented in this thesis, and in particular the LSC constructions and the

PIC-based analysis, can, at least in theory, help guide the design of S-boxes in modern

AES-based ciphers [8]. In addition, the metrics presented here add a new, information-

theoretic dimension for evaluating encryption schemes used in practice. The design of prac-

tical symmetric-key encryption schemes that meet modern cryptographic standards and

simultaneously guarantee a provable level of information-theoretic security is a promising

research direction.

Open Questions

Finally, we introduced in this thesis two conjectures that remain unresolved. The proof of

Conjecture 4.1 would reveal a fundamental property of information metrics, and enable the

application of the method introduced in Section 4.4 to a broader setting. Furthermore, the

proof of Conjecture 6.1 would shed light on the performance limits of binary classification

for a wide range of probability distributions. We restate the conjectures below, presenting

a slightly more general version of Conjecture 6.1.

Conjecture 4.1. Let I(X; Y) be an information metric (cf. Definition 4.1), and let el

be the error-rate function of I (cf. Definition 4.3). Then for a fixed 6 > 0, ex(px, 0) is

Schur-concave in px.

Conjecture 6.1. (Restated) Let X and Y be two discrete random variables with finite sup-

port, where X and Y are uniformly distributed. We assume that joint distribution matrix P

corresponding to pxy is symmetric (P = PT). Then, using the PIC decomposition in Defi-

nition 7.3, P = UEVT/IXI, where E =diag (1, VA(X; Y), ... , Ad(X; Y)), d= IXI-1.
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We now define a new random variable Y produced by making all the PICs of pxy equal to

the largest one. Consequently, X and Y will have a joint distribution p , with corresponding

joint distribution matrix P' = UJVT/IXI, where =diag (i, A/(X;Y), ... , AI1(X;Y)).

Then, for any function b : X -+ {0, 1}, I(b(X); Y) < I(b(X); Y).
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Appendix A

Proof of Lemma 3.1

For fixed a, b E R' where ai > 0 and bi > 0, let zp R -+ R and ZD : Rn -+ R be given by

zp(y) A ary

ZD(U) aT b + uTb + JU112.

Furthermore, we define A(a) A {u E R'ju > a} and B(b) A {y E R" 11y112 , y b}.

The optimal value zn(a, b) is given by the following pair of primal-dual convex programs:

zn(a, b) = max zp (y) =
yES(b)

min ZD (U).
uEA(a)

Assume, without loss of generality, that bi/ai b2 /a 2 < ... < bn/an, and let k* be defined

in (3.3).

Let c2 A ('z b' %) Note that since Ek* K1,w av k
Ia 2 -Z iaU

> 0. In addition, let

y* = (bl, ..., bk*, ak*+1ck*, ... , anck*)

and

U* = (-bi/ck*, ... , -bk*/ck*, -ak*+1, ..., -an).

From the definition of k*, y* E B(b) and u* E A(a). Furthermore,

zp(y*) = aTy*

k* n
= aibi+ ck*a?

i=1 i=k*+1

k*

aibi + ||a|J1-
i=2

a )
k*

(1 (A.1)
k*

i=
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and

zD(U =aTb+ u* Tb + LU*112
k*2

k* k*-Ck- ~ ~2b 12 *)
+cQ b? + ck* (Ial a)

k* I k* 2

=Eaibi+ck* 1-Ebi

k*k* k*
+ 2

i=1 i=1i=

=zp(y*).

Since both the primal and the dual achieve the same value at y* and u*, respectively, it

follows that the value zp(y*) given in (A.1) is optimal.
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Appendix B

Proof of PIC Error Bound

B.1 Proof of Theorem 5.4

Theorem 5.4 follows directly from the next two lemmas.

Lemma B.1. Let the marginal distribution px and the PICs A = (A,... , Ad) be given,

where d = m - 1. Then for any pxy E R(px, A), 0 < a < 1 and 0 < < px(2)

Pe(XIY) > 1 - - fo(apx ) + ([px(i) - 3]+)2

where

d+1

fo(a, px, A) = px (i)(Ai-I + ci - ci_ 1)
i=2

+x(1) (Ci + a) - apT px, (B. 1)

and ci = [Ai - a]+ for i = 1,.. ., d and cd+1 = 0.

Proof. Let X and Y have a joint distribution matrix P with marginal px and principal

inertias individually bounded by A = (A,, ... , Ad). We assume without loss of generality

that d = m - 1, where IXI= m. This can always be achieved by adding inertia components

equal to 0.

Consider X -+ Y -+ X, where X is the estimate of X from Y. The mapping from

Y to X can be described without loss of generality by a YIx lXi row stochastic matrix,

denoted by F, where the (i, j)-th entry is the probability pf,,y(ji). The probability of

correct estimation P, is then

Pc = 1 - Pe(XIY) = tr (Pxk)

where PX LPF.
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The matrix P can be decomposed according to (5.10), resulting in

P, = tr D V2UjVTD =2 tr (VT D 2D 2U),

where

U = [p12 U2 .Um ,

v = [p1/2

= diag (,111/2*

Df =diag (pk),

... vm ,

X/2

and U and V are orthogonal matrices. The probability of correct detection can be written

as

= + Px(i)Px(i)) 1/2 Uk,iVk,i
k=2 i=1
m m

px pg + E 1 /2

k=2 i=1

where Uk,i = [uk}i, Vk,i = [vkli, Uk,i = PX(i)Uki and Vk,i = PXI(i)Vk,i. Applying the Cauchy-

Schwarz inequality twice, we obtain

pc K "F

m= m 1/ 2  m

~i k=21 k=

1/2

k-1 ki

=P + px/(I
i=1k I:

(1

m 1/2

- px1(i)) Z _ 1k,i

k=2

m \ 1/2

- p2()
i=1 k

k=2

Let U = [U2 -.. um] and E = diag (11, .

m m

i=1 k=2

. d. , Id . Then

i2, = tr (EUTDxu)

d

< k ( k,
k=1

d

< E7k Ak -
k=1
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1/2

Ik-1~ 0 (B.3)

(B.4)



where Ock are the singular values of U DxU. The first inequality follows from the application

of Von-Neumman's trace inequality and the fact that U DxU is symmetric and positive

semi-definite. The second inequality follows by observing that the principal inertias satisfy

the data processing inequality and, therefore, Ak < Ak.

We will now find an upper bound for (B.4) by bounding the eigenvalues Uk. First, note

that UU -_ I_ -PiX/ 1/2 T and consequently

d

E9k = tr (UTDU)
k=1

= tr (Dx I - p2))

m

=x 1 P - (i) .(B.5)
i=1

Second, note that U DxU is a principal submatrix of UTDxU, formed by removing the

first row and columns of UTDxU. It then follows from Cauchy's interlacing theorem that

PX (m) < a-m-1 I px (m - 1) :! . .. < px (2) < a-, :! px (1).- (B.6)

Combining the restriction (B.5) and (B.6), an upper bound for (B.4) can be found by

solving the following linear program

d
max Ao-i (B.7)

i=1
d

subject to E = 1-- Ppx,
i=1

px(i + <) i - < px(i'), i = ,..,d .

Let A2 a px(i) - px(i + 1) and -yi 7 Apx (i + 1). The dual of (B.7) is

m-1

mn a (px (1) - p~xpx) + 6iyi + -yi (B.8)

subject to yi ;> [Ai -of .e . , i(.

For any given value of a, the optimal values of the dual variables yi in (B.8) are

yi = [Ai - a]+ = ci, i=- 1, ...,Id .
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Therefore the linear program (B.8) is equivalent to

min fo(a, px,A),
a

(B.9)

where fo(a, px, A) is defined in the statement of the theorem.

Denote the solution of (B.7) by f*(px, A) and of (B.8) by fh(px,A). It follows that

(B.4) can be bounded

d

EZukAk (Px, A)
k=1

= f(px, A)

< fo(a, px, A) V a E R. (B.10)

We may consider 0 < a < 1 in (B.10) without loss of generality.

Using (B.10) to bound (B.3), we find

Pc PPxx + fO(a, Px, A) (B.11)
1/2

i1 .

The previous bound can be maximized over all possible output distributions px, by solving:

1/2 m

max fo(apx, A) ( + E PX (i)Xim -]- M
2= .

subject to Zxi = 1,
i=1

Xi ;> 0, i onMs.

The dual function of (B. 12) over the additive constraint is

m 2 - 1/2

- iL(/)=max
Xi 0

/3+ [fo(apx,A) (I

+ Z(px(i) - )xi
i=:1

= 0 + fo(a, px, A) + ([px ([i) (B.13)

Since L(#3) is an upper bound of (B.12) for any 3 and, therefore, is also an upper bound of
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(B.11), then

Pc /3+ fo(a,px, A) + ([px (i) - +)2. (B.14)

Note that we can consider 0 < / Px(2 ) in (B.14), since L(#) is increasing for / > px(2 ).

Taking Pe(X IY) = 1 - P, the result follows.

The next result tightens the bound introduced in lemma B.1 by optimizing over all values

of a.

Lemma B.2. Let fo*(px, A) A mina fo(a, px, A) and k* be defined as in (3.3). Then

k* m

fO*(pxA) =ZApx(i)+ E Ai-ipx(i)
i=1 i=k*+i

-Ak*pxpx , (B.15)

where Am = 0.

Proof. Let px and A be fixed, and Ak < a < Ak-1, where we define AO 1 and Am = 0.

Then ci = Ai - a for 1 <i <k - 1 and ci = 0 for k K i < d in (B.1). Therefore

k-1

fo(a, pxA) = Apx (i) + apx (k)

+ S Ai-px(i) -apT px (B.16)
i=k+1

Note that (B.16) is convex in a, and is decreasing when px(k)-pT px < 0 and increasing

when px(k) - pX px > 0. Therefore, fo(a, px, A) is minimized when a = Ak such that

px(k) PX pX and px(k -1) pIX px. If px(k) - P >Px 0 for all k (i.e. px is uniform),

then we can take a = 0. The result follows. D

141



142



Bibliography

[11 C. E. Shannon, "A Mathematical Theory of Communication," Bell System Technical

Journal, vol. 27, no. 3, pp. 379-423, Jul. 1948.

[21 , "Communication theory of secrecy systems," Bell System Technical Journal,
vol. 28, no. 4, pp. 656-715, 1949.

[3] R. Price, "A conversation with Claude Shannon: one man's approach to problem
solving," Cryptologia, vol. 9, no. 2, pp. 167-175, Apr. 1985.

[41 T. M. Cover and J. A. Thomas, Elements of Information Theory 2nd Edition, 2nd ed.
Wiley-Interscience, Jul. 2006.

[5] E. M. Guizzo, "The essential message: Claude Shannon and the making of information
theory," Thesis, Massachusetts Institute of Technology, 2003.

[6] "Claude E. Shannon: An interview conducted by Robert Price, 28th of July, 1982,"
IEEE History Center, Interview #423, transcript availabe at http://ethw.org/Oral-
History:ClaudeE.__Shannon.

[71 Y. Liang, H. V. Poor, and S. Shamai (Shitz), "Information theoretic security," Found.
Trends Commun. Inf. Theory, vol. 5, pp. 355-580, Apr. 2009.

[81 J. Katz and Y. Lindell, Introduction to Modern Cryptography: Principles and Protocols,
1st ed. Chapman and Hall/CRC, Aug. 2007.

[9] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning From Data. AML-
Book, Mar. 2012.

[101 L. Sweeney, "K-anonymity: a model for protecting privacy," International Journal on

Uncertainty, Fuzziness and Knowledge-based Systems, 2002.

[111 C. Dwork, F. Mcsherry, K. Nissim, and A. Smith, "Calibrating noise to sensitivity in

private data analysis," in TCC, 2006.

[12] C. Dwork, "Differential privacy," in Automata, Languages and Programming. Springer,
2006, vol. 4052, pp. 1-12.

[131 S. Salamatian, A. Zhang, F. P. Calmon, S. Bhamidipati, N. Fawaz, B. Kveton,
P. Oliveira, and N. Taft, "How to hide the elephant-or the donkey-in the room: Prac-

tical privacy against statistical inference for large data," IEEE GlobalSIP, 2013.

143



[14] S. Salamatian, A. Zhang, F. P. Calmon, S. Bhamidipati, N. Fawaz, B. Kveton,
P. Oliveira, and N. Taft, "Managing your private and public data: Bringing down
inference attacks against your privacy," IEEE J. Sel. Topics Signal Process., October
2015.

[151 S. Bhamidipati, N. Fawaz, B. Kveton, and A. Zhang, "PriView: Personalized Media
Consumption Meets Privacy against Inference Attacks," IEEE Software, vol. 32, no. 4,
pp. 53-59, Jul. 2015.

[16] M. J. Greenacre, Theory and Applications of Correspondence Analysis. Academic Pr,
Mar. 1984.

[17] L. Breiman and J. H. Friedman, "Estimating Optimal Transformations for Multiple
Regression and Correlation," Journal of the American Statistical Association, vol. 80,
no. 391, pp. 580-598, Sep. 1985.

[18] F. P. Calmon and N. Fawaz, "Privacy against statistical inference," in Proc. 50th Ann.
Allerton Conf. Commun., Contr., and Comput., 2012, pp. 1401-1408.

[19] A. Zhang, S. Bhamidipati, N. Fawaz, and B. Kveton, "PriView: Media Consumption
and Recommendation Meet Privacy Against Inference Attacks," in IEEE Web 2.0
Security and Privacy Workshop, 2014.

[201 A. Makhdoumi, S. Salamatian, N. Fawaz, and M. Medard, "From the information
bottleneck to the privacy funnel," in IEEE Inf. Theory Workshop (IT W), 2014, pp.
501-505.

[21] A. C.-C. Yao, "Protocols for secure computations," in FOCS, vol. 82, 1982, pp. 160-
164.

[22] R. Roth, Introduction to Coding Theory. Cambridge, UK ; New York: Cambridge
University Press, Mar. 2006.

[231 S. Goldwasser and S. Micali, "Probabilistic encryption," Journal of Computer and
System Sciences, vol. 28, no. 2, pp. 270-299, Apr. 1984.

[24] G. R. Kumar and T. A. Courtade, "Which boolean functions maximize information of
noisy inputs?" IEEE Trans. Inf. Theory, vol. 60, no. 8, pp. 4515-4525, Aug. 2014.

[25] M. Hellman, "An extension of the Shannon theory approach to cryptography," IEEE
Trans. Inf. Theory, vol. 23, no. 3, pp. 289-294, May 1977.

[26] R. E. Blahut, D. J. Costello, U. Maurer, and T. Mittelholzer, Eds., Communications
and Cryptography: Two Sides of One Tapestry, 1st ed. Springer, Jun. 1994.

[271 F. P. Calmon, M. M6dard, L. Zeger, J. Barros, M. M. Christiansen, and K. R. Duffy,
"Lists that are smaller than their parts: A coding approach to tunable secrecy," in
Proc. 50th Annual Allerton Conf. on Commun., Control, and Comput., 2012.

[28] F. P. Calmon, M. M6dard, M. Varia, K. R. Duffy, M. M. Christiansen, and L. M. Zeger,
"Hiding Symbols and Functions: New Metrics and Constructions for Information-
Theoretic Security," arXiv:1503.08513 /cs, mathi, Mar. 2015.

144



[29] R. Ahlswede, "Remarks on shannon's secrecy systems," Problems of Control and Inf.
Theory, vol. 11, no. 4, 1982.

[30] S.-C. Lu, "The existence of good cryptosystems for key rates greater than the message
redundancy (corresp.)," IEEE Trans. Inf. Theory, vol. 25, no. 4, pp. 475-477, Jul.
1979.

[31] , "Random ciphering bounds on a class of secrecy systems and discrete message
sources," IEEE Trans. Inf. Theory, vol. 25, no. 4, pp. 405-414, Jul. 1979.

[32] , "On secrecy systems with side information about the message available to a
cryptanalyst (corresp.)," IEEE Trans. Inf. Theory, vol. 25, no. 4, pp. 472-475, Jul.
1979.

[33] C. Schieler and P. Cuff, "Rate-distortion theory for secrecy systems," IEEE Trans. Inf.
Theory, vol. PP, no. 99, 2014.

[34] L. Ozarow and A. Wyner, "Wire-tap channel II," in Advances in Cryptology, 1985, pp.
33-50.

[35] N. Cai and R. Yeung, "Secure network coding," in Proc. IEEE Int. Symp. on Inf.
Theory, 2002.

[36] J. Feldman, T. Malkin, C. Stein, and R. A. Servedio, "On the capacity of secure
network coding," in Proc. 42nd Ann. Allerton Conf. Commun., Contr., and Comput.,
2004.

[37] A. Mills, B. Smith, T. Clancy, E. Soljanin, and S. Vishwanath, "On secure communi-
cation over wireless erasure networks," in Proc. IEEE Int. Symp. on Inf. Theory, Jul.
2008, pp. 161 -165.

[38] S. El Rouayheb, E. Soljanin, and A. Sprintson, "Secure network coding for wiretap
networks of type II," IEEE Trans. Inf. Theory, vol. 58, no. 3, pp. 1361 -1371, Mar.
2012.

[39] D. Silva and F. Kschischang, "Universal secure network coding via Rank-Metric codes,"
IEEE Trans. Inf. Theory, vol. 57, no. 2, pp. 1124 -1135, Feb. 2011.

[40] L. Lima, M. M6dard, and J. Barros, "Random linear network coding: A free cipher?"
in Proc. IEEE Int. Symp. on Inf. Theory, Jun. 2007, pp. 546 -550.

[41] N. Cai and T. Chan, "Theory of secure network coding," IEEE Proc., vol. 99, no. 3,
pp. 421 -437, Mar. 2011.

[42] P. Oliveira, L. Lima, T. Vinhoza, J. Barros, and M. M6dard, "Trusted storage over
untrusted networks," in IEEE Global Telecommunications Conference, Dec. 2010, pp.
1 -5.

[43] P. Elias, "List decoding for noisy channels," Research Laboratory of Electronics, MIT,
Technical Report 335, September 1957.

[44] J. M. Wozencraft, "List decoding," Research Laboratory of Electronics, MIT, Progress
Report 48, 1958.

145



[45] C. Shannon, R. Gallager, and E. Berlekamp, "Lower bounds to error probability for
coding on discrete memoryless channels. I," Information and Control, vol. 10, no. 1,
pp. 65-103, Jan. 1967.

[46] , "Lower bounds to error probability for coding on discrete memoryless channels.
II," Information and Control, vol. 10, no. 5, pp. 522-552, May 1967.

[47] G. Forney, "Exponential error bounds for erasure, list, and decision feedback schemes,"
IEEE Trans. Inf. Theory, vol. 14, no. 2, pp. 206- 220, Mar. 1968.

[48] V. Guruswami, "List decoding of error-correcting codes," Thesis, MIT, Cambridge,
MA, 2001.

[491 , "List decoding of binary Codes-A brief survey of some recent results," in Coding
and Cryptology, ser. Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
2009, vol. 5557, pp. 97-106.

[50] M. Ali and M. Kuijper, "Source coding with side information using list decoding," in
Proc. IEEE Int. Symp. on Inf. Theory. IEEE, Jun. 2010, pp. 91-95.

[51] A. D. Wyner, "The Wire-Tap Channel," Bell System Technical Journal, vol. 54, no. 8,
pp. 1355-1387, Oct. 1975.

[521 U. Maurer and S. Wolf, "Information-Theoretic Key Agreement: From Weak to Strong
Secrecy for Free," in Advances in Cryptology (EUROCRYPT), ser. Lecture Notes in
Computer Science, B. Preneel, Ed. Springer Berlin Heidelberg, 2000, no. 1807, pp.
351-368.

[53] I. CsiszAr and J. K6rner, Information Theory: Coding Theorems for Discrete Memo-
ryless Systems, 2nd ed. Cambridge University Press, Aug. 2011.

[541 T. Ho and D. Lun, Network Coding: An Introduction. New York: Cambridge Univer-
sity Press, Apr. 2008.

[55] L. Eschenauer and V. D. Gligor, "A key-management scheme for distributed sensor net-
works,"' in Proceedings of the 9th ACM Conference on Computer and Communications
Security, ser. CCS '02. New York, NY, USA: ACM, 2002, pp. 41-47.

[561 F. P. Calmon, M. Varia, and M. M6dard, "On information-theoretic metrics for
symmetric-key encryption and privacy," in Proc. 52nd Annual Allerton Conference
on Communication, Control, and Computing, 2014.

[57] H. Yamamoto, "Rate-distortion theory for the Shannon cipher system," IEEE Trans.
Inf. Theory, vol. 43, no. 3, pp. 827-835, May 1997.

[58] I. S. Reed, "Information Theory and Privacy in Data Banks," in Proc. of the National
Computer Conference and Exposition, ser. AFIPS '73. New York, NY, USA: ACM,
June 1973, pp. 581-587.

[59] A. Sarwate and L. Sankar, "A rate-disortion perspective on local differential privacy,"
in Proc. 52nd Ann. Allerton Conf. Commun., Contr., and Comput., Sep. 2014, pp.
903-908.

146



[60] D. Rebollo-Monedero, J. Forne, and J. Domingo-Ferrer, "From t-Closeness-Like Pri-
vacy to Postrandomization via Information Theory," IEEE Trans. on Knowledge and
Data Engineering, vol. 22, no. 11, pp. 1623-1636, Nov. 2010.

[61] L. Sankar, S. Rajagopalan, and H. Poor, "Utility-Privacy Tradeoffs in Databases: An
Information-Theoretic Approach," IEEE Trans. on Inf. Forensics and Security, vol. 8,
no. 6, pp. 838-852, Jun. 2013.

[62] M. Bellare, S. Tessaro, and A. Vardy, "Semantic security for the wiretap channel," in
Advances in Cryptology - CRYPTO 2012, ser. Lecture Notes in Comput. Sci. Springer,
Jan. 2012, no. 7417, pp. 294-311.

[63] R. O'Donnell, "Some topics in analysis of boolean functions," in Proc. 4 0th A CM Symp.

on Theory of Computing, 2008, pp. 569-578.

[64] F. P. Calmon, M. Varia, M. M~dard, M. Christiansen, K. Duffy, and S. Tessaro,
"Bounds on inference," in Proc. 51st Ann. Allerton Conf. Commun., Contr., and Com-

put., Oct. 2013, pp. 567-574.

[651 N. Tishby, F. C. Pereira, and W. Bialek, "The information bottleneck method,"
arXiv:physics/0004057 [physics. data-an!, Apr. 2000.

[661 V. Doshi, D. Shah, M. M6dard, and M. Effros, "Functional compression through graph

coloring," IEEE Trans. Inf. Theory, vol. 56, no. 8, pp. 3901 -3917, Aug. 2010.

[67] R. Ahlswede, "Extremal properties of rate distortion functions," IEEE Trans. on Info.

Theory, vol. 36, no. 1, pp. 166-171, 1990.

[68] R. G. Gallager, Information theory and reliable communication. New York: Wiley,
1968.

[69] A. W. Marshall, I. Olkin, and B. C. Arnold, Inequalities: theory of majorization and

its applications. New York: Springer Series in Statistics, 2011.

[70] M. Greenacre and T. Hastie, "The geometric interpretation of correspondence analysis,"

J. Am. Stat. Assoc., vol. 82, no. 398, pp. 437-447, Jun. 1987.

[71] H. 0. Hirschfeld, "A connection between correlation and contingency," in Proc. Cam-

bridge Philos. Soc., vol. 31, 1935, pp. 520-524.

[72] H. Gebelein, "Das statistische problem der korrelation als variations- und eigenwert-

problem und sein zusammenhang mit der ausgleichsrechnung," ZAMM-Z. Angew.

Math. Me., vol. 21, no. 6, pp. 364-379, 1941.

[73] 0. Sarmanov, "Maximum correlation coefficient (nonsymmetric case)," Selected Trans-

lations in Mathematical Statistics and Probability, vol. 2, pp. 207-210, 1962.

[74] A. R6nyi, "On measures of dependence," Acta Math. Hung., vol. 10, no. 3-4, pp. 441-

451, Sep. 1959.

[75] M. Greenacre, Correspondence Analysis in Practice, Second Edition, 2nd ed. Chap-

man and Hall/CRC, May 2007.

147



[76] H. S. Witsenhausen, "On sequences of pairs of dependent random variables," SIAM J.
on Appl. Math., vol. 28, no. 1, pp. 100-113, Jan. 1975.

[77] R. Ahlswede and P. Gacs, "Spreading of sets in product spaces and hypercontraction
of the markov operator," Ann. Probab., vol. 4, no. 6, pp. 925-939, Dec. 1976.

[78] V. Anantharam, A. Gohari, S. Kamath, and C. Nair, "On maximal correlation, hyper-
contractivity, and the data processing inequality studied by Erkip and Cover," arXiv
e-print 1304.6133, Apr. 2013.

[79] Y. Polyanskiy, "Hypothesis testing via a comparator," in Proc. 2012 IEEE Int. Symp.
on Inf. Theory, Jul. 2012, pp. 2206-2210.

[80] M. Raginsky, "Logarithmic Sobolev inequalities and strong data processing theorems
for discrete channels," in Proc. 2013 IEEE Int. Symp. on Inf. Theory, Jul. 2013, pp.
419-423.

[811 A. Buja, "Remarks on Functional Canonical Variates, Alternating Least Squares Meth-
ods and Ace," The Annals of Statistics, vol. 18, no. 3, pp. 1032-1069, Sep. 1990.

[821 W. Kang and S. Ulukus, "A new data processing inequality and its applications in
distributed source and channel coding," IEEE Trans. Inf. Theory, vol. 57, no. 1, pp.
56-69, 2011.

[83] A. Guntuboyina, "Lower bounds for the minimax risk using -divergences, and applica-
tions," IEEE Trans. Inf. Theory, vol. 57, no. 4, pp. 2386-2399, 2011.

[84] A. Guntuboyina, S. Saha, and G. Schiebinger, "Sharp inequalities for f-divergences,"
arXiv:1302.0336, Feb. 2013.

[851 A. Orlitsky and J. Roche, "Coding for computing," IEEE Trans. Inf. Theory, vol. 47,
no. 3, pp. 903 -917, Mar. 2001.

[86] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed. Cambridge University Press,
Oct. 2012.

[ %_ a t. a, "11 a L11ovtheore oi VV cin Ierni ig trlalutz 01 ilitai nlsfuilorutiiUonsL I, r.

Natl. Acad. Sci. USA, vol. 35, no. 11, pp. 652-655, Nov. 1949.

188] M. L. Overton and R. S. Womersley, "On the sum of the largest eigenvalues of a
symmetric matrix," SIAM J. Matrix Anal. A., vol. 13, no. 1, pp. 41-45, Jan. 1992.

[89] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge, UK; New York:
Cambridge University Press, 2004.

[90] C. Deniau, G. Oppenheim, and J. P. Benz6cri, "Effet de l'affinement d'une partition
sur les valeurs propres issues d'un tableau de correspondance," Cahiers de l'analyse
des donndes, vol. 4, no. 3, pp. 289-297.

[91] A. Guntuboyina, "Minimax lower bounds," Ph.D., Yale University, United States -
Connecticut, 2011.

[92] B. Efron and C. Stein, "The jackknife estimate of variance," The Annals of Statistics,
vol. 9, no. 3, pp. 586-596, May 1981.

148



[93] A. Dembo, A. Kagan, and L. A. Shepp, "Remarks on the maximum correlation coeffi-
cient," Bernoulli, vol. 7, no. 2, pp. 343-350, Apr. 2001.

[94] P. Diaconis and D. Freedman, "Finite exchangeable sequences," Ann. Probab., vol. 8,
no. 4, pp. 745-764, Aug. 1980.

[95] V. Anantharam, A. Gohari, S. Kamath, and C. Nair, "On hypercontractivity and the
mutual information between boolean functions," in Proc. 51st Ann. Allerton Conf.
Commun., Contr., and Comput., Oct. 2013, pp. 13-19.

[96] I. Csiszdr, Information Theory And Statistics: A Tutorial. Now Publishers Inc, 2004.

[97] Y. Polyanskiy and S. Verdi, "Arimoto channel coding converse and R6nyi divergence,"
in Proc. 48th Ann. Allerton Conf. Commun., Contr., and Comput., 2010, pp. 1327-
1333.

[98] F. P. Calmon, M. Varia, and M. M6dard, "An exploration of the role of principal
inertia components in information theory," in Information Theory Workshop (ITW),
2014 IEEE, 2014, pp. 252-256.

[991 M. Raginsky, J. G. Silva, S. Lazebnik, and R. Willett, "A recursive procedure for
density estimation on the binary hypercube," Electron. J. Statist., vol. 7, pp. 820-858,
2013.

[1001 N. Tishby, F. C. Pereira, and W. Bialek, "The information bottleneck method," in
Proc. 37th Ann. Allerton Conf. Commun., Contr., and Comput., 1999, pp. 368-377.

[101] F. P. Calmon, A. Makhdoumi, and M. M6dard, "Fundamental limits of perfect privacy,"
International Symp. on Info. Theory, 2015.

[102] R. Tandon, L. Sankar, and H. Poor, "Discriminatory lossy source coding: Side informa-
tion privacy," IEEE Transactions on Information Theory, vol. 59, no. 9, pp. 5665-5677,
Sep. 2013.

[103] A. Evfimievski, J. Gehrke, and R. Srikant, "Limiting privacy breaches in privacy pre-
serving data mining," in Proceedings of the twenty-second ACM Symposium on Prin-
ciples of Database Systems, New York, NY, USA, 2003, pp. 211-222.

[104] Y. Polyanskiy and Y. Wu, "Dissipation of information in channels with input con-
straints," arXiv:1405.3629 /cs, math], May 2014.

[105] C. T. Li and A. E. Gamal, "Maximal correlation secrecy," arXiv:1412.5374 [cs, math,
Dec. 2014.

[106] S. Chakraborty, N. Bitouze, M. Srivastava, and L. Dolecek, "Protecting data against
unwanted inferences," in 2013 IEEE Information Theory Workshop (ITW), Sep. 2013,
pp. 1-5.

[107] S. Asoodeh, F. Alajaji, and T. Linder, "Notes on information-theoretic privacy," in
Proc. 52nd Ann. Allerton Conf. Commun., Contr., and Comput., Sep. 2014, pp. 1272-
1278.

149



[108] S. Kamath and V. Anantharam, "Non-interactive simulation of joint distributions: The
Hirschfeld-Gebelein-R6nyi maximal correlation and the hypercontractivity ribbon," in
Proc. 50th Ann. Allerton Conf. Commun., Contr., and Comput. IEEE, 2012, pp.
1057-1064.

[109] T. Berger and R. Yeung, "Multiterminal source encoding with encoder breakdown,"
IEEE Trans. on Inf. Theory, vol. 35, no. 2, pp. 237-244, Mar. 1989.

[110] I. Csiszir and P. C. Shields, "Information theory and statistics: A tutorial," Commu-
nications and Information Theory, vol. 1, no. 4, pp. 417-528, 2004.

[111] M. M. Christiansen, K. R. Duffy, F. P. Calmon, and M. M6dard, "Brute force searching,
the typical set and Guesswork," in Proc. 2013 IEEE Int. Symp. on Inf. Theory. IEEE,
2013, pp. 1257-1261.

[112] M. M. Christiansen, K. R. Duffy, F. P. Calmon, and M. Mdard, "Guessing a password
over a wireless channel (on the effect of noise non-uniformity)," in Asilomar Conference
on Signals, Systems and Computers. IEEE, 2013, pp. 51-55.

[113] M. M. Christiansen and K. R. Duffy, "Guesswork, large deviations, and Shannon
entropy," IEEE Trans. Inf. Theory, vol. 59, no. 2, pp. 796-802, 2013.

[114] M. M. Christiansen, K. R. Duffy, F. P. Calmon, and M. M6dard, "Quantifying the
computational security of multi-user systems," arXiv:1405.5024, 2014.

[115] D. Denning, "Secure statistical databases with random sample queries," ACM Trans.
Database Sys., vol. 5, no. 3, pp. 291-315, 1980.

[116] L. Beck, "A security mechanism for statistical database," ACM Trans. Database Syst.,
vol. 5, no. 3, pp. 316-338, 1980.

[117] J. Domingo-Ferrer, A. Oganian, and V. Torra, "Information-theoretic disclosure risk
measures in statistical disclosure control of tabular data," in Proc. 14th Intl. Conf.
Scientific and Statistical Database Management. IEEE Computer Society, 2002, pp.
227-231.

[118] D. Agrawal and C. Aggarwal, "On the design and quantification of privacy preserving
data mining algorithms," in Proc. 20th Symp. Principles of Database Systems, Santa
Barbara, CA, May 2001.

[1191 A. Narayanan and V. Shmatikov, "Robust de-anonymization of large sparse datasets,"
in IEEE Symp. on Security and Privacy, May 2008, pp. 111-125.

150


