
Generating Computer Programs

from Natural Language Descriptions

by

ARCHIV%
MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

NOV 022015

LIBRARIES

Nate Kushman

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2015

@ Massachusetts Institute of Technology 2015. All rights reserved.

Signature redacted
A u th o r

Department of Electrical Engineering and Computer Science
August 28, 2015

Certified by. Signature redacted
\.2 I/ \-j Regina Barzilay

Professor
Thesis Supervisor

Accepted by ... Signature redacted
CR3 Leslie A. Kolodziejski

Chairman, Department Committee on Graduate Theses

2

Generating Computer Programs

from Natural Language Descriptions

by

Nate Kushman

Submitted to the Department of Electrical Engineering and Computer Science
on August 28, 2015, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

This thesis addresses the problem of learning to translate natural language into pre-
existing programming languages supported by widely-deployed computer systems.
Generating programs for existing computer systems enables us to take advantage
of two important capabilities of these systems: computing the semantic equivalence
between programs, and executing the programs to obtain a result. We present prob-
abilistic models and inference algorithms which integrate these capabilities into the
learning process. We use these to build systems that learn to generate programs
from natural language in three different computing domains: text processing, solving
math problems, and performing robotic tasks in a virtual world. In all cases the
resulting systems provide significant performance gains over strong baselines which
do not exploit the underlying system capabilities to help interpret the text.

Thesis Supervisor: Regina Barzilay
Title: Professor

3

4

Dedicated to my wife Deb,

who has supported me, loved me,

and most importantly been my friend

throughout this entire process.

5

6

Acknowledgments

I had the unique opportunity (at least in the current day and age) of working with

two different female advisors at MIT: Regina Barzilay and Dina Katabi. They are

two of the most effective and productive researchers that I have ever met, and I am

honored to have had the opportunity to work with both of them. Without Regina,

none of the research in this thesis would have happened. She gave me the freedom

to pursue my crazy ideas, but at the same time always pushed me hard to find the

nugget of innovation at the core of what I was doing. Dina advised me during the

early years of my time as graduate student, and first taught me the fundamentals of

doing great research. She also drilled into me the importance of not just generating

good ideas, but communicating them effectively as well. I am forever indebted to

both Regina and Dina for everything they have done for me over the years.

I am also very fortunate to have had the opportunity to work with Luke Zettle-

moyer. Luke not only served on my thesis committee, but also directly collaborated

with me on the math word problems work, and served as a great sounding board for

me for the last couple of years of my graduate studies.

Beyond my thesis committee, three other people collaborated with me on the

work that ended up in this thesis: S.R.K. Branavan, Tao Lei and Yoav Artzi. I espe-

cially want to thank Branavan, who initially sparked my interest in NLP, cemented

that interest through our papers together, and inspired the general research direc-

tion pursed in this thesis. I also had the pleasure of collaborating with many other

people during my time as a graduate student. This list includes Fadel Adib, Micah

Brodsky, Farinaz Edalat, Oren Etzioni, Hannaneh Hajishirzi, Hariharan Rahul, Javad

Hosseini, Srikanth Kandula, Hooria Komal, Kate Lin, Sam Madden, Bruce Maggs,

Martin Rinard, and Charles Sodini. I learned a lot from each of you about how to do

great research, and I consider our collaborations to be some of my most productive

and enjoyable times as a graduate student. I especially want to thank Hariharan

Rahul who provided significant help with an early version of the presentation which

was eventually used during my thesis defense.

7

Beyond my direct collaborators, I sat near and worked with an amazing group of

people in my time as a member of both RBG and DOGS. While in RBG I benefited

tremendously from interactions with Yonatan Belinkov, Edward Benson, Yevgeni

Berzak, Aria Haghighi, Harr Chen, Jacob Eisenstein, Zach Hynes, Mirella Lapata,

Yoong Keok Lee, Chengtao Li, David Alvarez Melis, Karthik Narasimhan, Tahira

Naseem, Neha Patki, Roi Reichart, Christy Sauper, Elena Sergeeva, Ben Snyder and

Yuan Zhang. I especially want to thank David Alvarez Melis who painstakingly cor-

rected the notational mistakes in Appendix B, and Neha Patki who helped produce the

finance dataset used in Chapter 3. In my time with DOGS, I enjoyed discussions and

chance encounters with Omid Abari, Nabeel Ahmad, Tural Badirkhanli, Shyam Gol-

lakota, Haitham Hassanieh, Wenjun Hu, Szymon Jakubczak, Mike Jennings, Sachin

Katti, Swarun Kumar, Samuel Perli, Lixin Shi, Jue Wang, and Grace Woo. Addition-

ally, both Marcia Davidson and Mary McDavitt have generously provided both great

administrative support as well as much appreciated words of encouragement over the

years.

Beyond my immediate research groups, I had fruitful discussions with many other

people from both MIT as well as the larger research community. Discussions with Ste-

fanie Tellex and Kai-yuh Hsiao cemented my interest in the general area of grounded

natural language, while discussions with Ray Mooney furthered my thinking on ideas

related to mapping natural language to computer programs. I gained significant

insight from many people in Josh Tenenbaum's CCS group, including especially Tim-

othy O'Donnell, Eyal Dechter and Josh himself. Rishabh Singh, David Karger and

Michel Goemans helped with early versions of the algorithms used in the system for

solving math word problems, and working with Michel at Akamai inspired my de-

cision to return to graduate school in the first place. I also had productive chance

encounters with Andrei Barbu, Hari Balakrishnan, Andreea Gane, Jim Glass, Amir

Globerson, Tommi Jaakola, Fan Long, Paresh Malalur, Armando Solar-Lezama and

Yu Xin.

I want to thank my friends and family for all their support throughout the years.

Claire Flood graciously agreed to read through this thesis multiple times in order to

8

correct my many grammatical errors. Greg and Angela Christiana were always up

for long philosophical discussions that helped me to fit my research into the larger

picture of my life. My in-laws, Cathy and Yih-huei, were always willing to help out

at home while I was working long hours before deadlines (including the one for this

thesis). My mom has always been enthusiastically supportive of my work even if

she did not always understand what it is I actually do. My dad and Valerie always

provided me a welcoming place to visit or call even if I did not always hold up my

end of the bargain. My brother, Tim, has never given up on me, despite my frequent

lapses in communication.

Finally, last but not least I want to thank my wife, Deb. Her patience, love, and

support over the years is more than I could have asked for, and certainly more than

I deserve.

9

10

Bibliographic Note

The main ideas in this thesis have all been previously published in peer-reviewed

conferences. The list of publications by chapter is as follows:

Chapter 2: Generating Regular Expressions

e Using Semantic Unification to Generate Regular Expressions from

Natural Language

Proceedings of the Conference of the North American Chapter of the As-

sociation for Computational Linguistics: Human Language Technologies

(NAA CL), 2013.

Chapter 3: Automatically Solving Math Word Problems

* Learning to Automatically Solve Algebra Word Problems

Proceedings of the Annual Meeting of the Association for Computations

Lingusitics (ACL), 2014.

Chapter 4: Learning to Generate Plans from Text

* Learning High-Level Planning from Text

Proceedings of the Annual Meeting of the Association for Computations

Lingusitics (ACL), 2012.

11

12

Contents

1 Introduction

1.1 Challenges .

1.1.1 Mismatch in Abstraction

1.1.2 Lack of Labeled Training Data

1.2 Techniques .

1.3 System s .

1.3.1 Generating Regular Expressions

1.3.2 Solving Algebra Word Problems

1.3.3 Generating Robotic Task Plans

1.4 Contributions .

1.5 O utline .

2 Generating Regular Expressions

2.1 Introduction .

2.2 Related W ork .

2.2.1 Natural Language Grounding

2.2.2 Generating Programs from Other Forms of

2.2.3 Generating Regular Expressions

2.2.4 CCG Parsing

2.3 Generating Programs Using CCGs

2.3.1 Representing Programs as Abstract Syntax

2.3.2 Combinatory Categorial Grammars

2.3.3 Probabilistic CCGs

Specification

Trees

13

25

29

29

30

31

32

34

34

36

37

38

41

41

46

46

51

52

52

53

53

54

58

2.4 Integrating Semantic Equivalence into the Model

2.4.1 Regexp Equivalence Using Deterministic Finite Automata

2.5 Learning

2.5.1 Estimating Theta

2.5.2 Learning the Lexicon .

2.6 Applying the Model

2.6.1 Features

2.6.2 Initialization

2.6.3 Parameters

2.6.4 Constraints on Lexical Entry

2.6.5 Optimizing Runtime

2.7 Experimental Setup

2.7.1 Dataset

2.7.2 Evaluation Metrics.....

2.7.3 Baselines

2.8 R esults

2.8.1 Effect of Additional Training

2.8.2 Beam Search vs. n-Best . .

2.9 Conclusions and Future Work . . .

. 6 2

. 6 4

. 6 7

. 7 2

. 7 2

. 7 3

. 7 4

Splitting 74

.... 7 5

..... 7 5

. 7 5

.... 7 6

.... 7 6

. 7 8

D ata 79

. 7 9

. 8 0

3 Automatically Solving Math Word Problems

3.1 Introduction

3.2 Related Work

3.2.1 Automatic Word Problem Solvers . . .

3.2.2 Natural Language Grounding

3.2.3 Information Extraction

3.3 Mapping Word Problems to Equations

3.3.1 Derivations

3.3.2 Probabilistic Model

3.4 Learning .

14

83

84

86

86

87

89

89

92

94

95

60

61

3.4.1 Template Induction . .

3.4.2 Parameter Estimation . .

3.5 Inference

3.6 Integrating Semantic Equality and

3.6.1 Semantic Equality

3.6.2 Execution Outcomes . . .

3.7 Features

3.7.1 Document level features

3.7.2 Single Slot Features

3.7.3 Slot Pair Features

3.8 Experimental Setup

3.8.1 Datasets

3.8.2 Baselines

3.8.3 Evaluation Protocol

3.8.4 Parameters and Solver . .

3.9 R esults

3.9.1 Fully Supervised

3.9.2 Semi-Supervised

3.10 Conclusion

4 Learning to Generate Plans

4.1 Introduction

from

Execution Outcomes

Text

4.2 Related Work

4.2.1 Extracting Event Semantics from

4.2.2 Learning Semantics via Language

4.2.3 Hierarchical Planning

4.3 Problem Formulation

4.4 M odel

4.4.1 Modeling Precondition Relations

4.4.2 Modeling Subgoal Sequences . . .

15

Text . . .

Grounding

96

97

99

99

100

100

101

102

103

104

104

105

106

106

107

107

112

114

117

118

122

122

122

123

123

125

125

126

95

.

4.5 Parameter Estimate via Execution Outcomes. 1

4.5.1 Policy Gradient Algorithm

4.5.2 Reward Function

4.6 Applying the Model

4.6.1 Defining the Domain .

4.6.2 Low-level Planner . . .

4.6.3 Features

4.7 Experimental Setup

4.7.1 Datasets

4.7.2 Evaluation Metrics . .

4.7.3 Baselines

4.7.4 Experimental Details .

4.8 Results

4.8.1 Relation Extraction . .

4.8.2 Planning Performance

4.8.3 Feature Analysis . . .

4.9 Conclusions

5 Conclusions and Future Work

5.1 Limitations

5.2 Future Work

. . .

A Generating Regular Expressions

B Learning to Generate Plans from Text

B .1 Lem m as .

B.2 Derivation of update for 0 ..

B.3 Derivation of update for 0 ..

143

144

145

147

149

149

153

155

16

127

. 128

. 129

. 133

. 133

. 134

. 134

. 135

. 135

. 136

. 136

. 137

. 137

. 137

. 138

. 139

. 140

.

.

List of Figures

1-1 Example from the GeoQuery domain of natural language mapped to a

logical programming language which was specifically designed to syn-

tactically align with natural language 26

1-2 Examples of three different natural language task descriptions and their

associated computer programs: (a) a natural language finance question

which can be solved with a computer program consisting of a system

of mathematical equations, (b) a text processing query and a regular

expression which embodies its meaning, and (c) a partial description

of a virtual world, and a robotic program to perform a task based on

the world description. 27

1-3 This shows the syntax trees for the sentence "Three letter words start-

ing with 'a"' and the associated regexp \ba [A-Za-z] {2}\b from Fig-

ure 2-1. We can see that the two trees do not have any shared structure

and thus cannot be syntactically aligned. 30

2-1 An example natural language description and its associated regular

1expression. 42

2-2 An example text description and associated database query from the

GeoQuery dataset. 42

2-3 (a) shows a regexp which is semantically equivalent to that in Figure 2-

1, yet admits a fragment-by-fragment mapping to the natural language.

(b) shows this mapping. 44

17

2-4 An example showing the problem with using execution equivalence.

These two knowledge-base queries both execute to the same result even

though semantically they are very different 47

2-5 This shows the abstract syntax tree (AST) representation for the reg-

exp \bX [A-Za-z] {2}\b from Figure 2-1. 54

2-6 This shows (a) the set of non-terminals, and (b) the set of terminals

in the abstract syntax tree representation of regular expressions . . . 54

2-7 This shows a parse of the same example phrase in three different for-

mats. (a) using traditional CCG format, (b) using traditional CFG

format with just the regular expression fragment at each node of the

tree, and (c) using CFG format with the full tuple (W', t : r), at each

node, where W' is the natural language, t is the type, and r is the regular

expression fragm ent. 56

2-8 This figure shows why it is necessary to lexicalize our parsing model.

These two parse trees, for the same sentence, contain exactly the same

set of parse productions, so they will have the same probability, yet

they generate different regular expressions. 59

2-9 An example parse tree with lexical entries at its leaves. 68

2-10 The tree in (a) represents the lambda expression from the lexical entry

(with abc, e:. *abc. *). One possible split of this lexical entry generates

the parent lexical entry (with, e/e : Ax.(. *x. *)) and the child lexical

entry, (abc, R :abc), whose lambda expressions are represented by (b)

and (c), respectively. 69

18

2-11 This graph compares the percentage of the top-n parses which are

represented by the n-best approximation used in our model (n-Best)

to the set of parses represented by the beam search approximation

used by the past work (Beam Search). The n-Best algorithm does

not represent any parses beyond the top 10,000, but it represents all

of these parses. In contrast, the Beam Search algorithm is able to

represent parses past the top 10,000 as the cost of missing 85% of the

parses in the top 10,000. 80

3-1 An example algebra word problem. Our goal is to map a given problem

to a set of equations representing its algebraic meaning, which are then

solved to get the problem's answer. 84

3-2 Two complete derivations for two different word problems. Deriva-

tion 1 shows an alignment where two instances of the same slot are

aligned to the same word (e.g., u4 and ui both are aligned to "Tick-

ets"). Derivation 2 includes an alignment where four identical nouns

are each aligned to different slot instances in the template (e.g., the

first "speed" in the problem is aligned to ul). 91

3-3 The first example problem and selected system template from Figure 3-

2 with all potential aligned words marked. Nouns (boldfaced) may be

aligned to unknown slot instances uj, and number words (highlighted)

may be aligned to number slots ni . 93

3-4 During template induction, we automatically detect the numbers in

the problem (highlighted above) to generalize the labeled equations to

templates. Numbers not present in the text are considered part of the

induced tem plate. 95

3-5 Algebra Dataset: Accuracy of our model relative to both baselines

on the Algebra dataset when provided full equational supervision for all

training samples. We can see that our model significantly outperforms

both baselines. 107

19

3-6 Arithmetic Dataset: Accuracy of our model relative to the baselines

on the Arithmetic dataset when provided full equational supervision

for all training samples. We can see that our model even outperforms

the ARIS system which includes significant manual engineering for the

type of problems seen in this dataset. 108

3-7 Finance Dataset: Accuracy of our model relative to both baselines

on the Finance dataset when provided full equational supervision for

all training samples. We can see that even in more applied domains

such as finance, our model significantly outperforms both baselines. . 108

3-8 Examples of problems our system does not solve correctly.111

3-9 Performance evaluation of our model when provided only numerical

answers for most training samples, with full equations provided for

just five of the samples (5 Equations + Answers). This significantly

outperforms a baseline version of our model which is provided only

the five equations and no numerical answers (Only 5 Equations). It

also achieves about 70% of the performance of Our Full Model which

is provided full equations for all training samples. 113

3-10 Performance evaluation of our model when we randomly choose the

samples to label with full equations. Semi-Supervised is provided with

full equation labels for a fraction of the data (with the fraction varied

along the x-axis), and just numerical answers for the rest of the data.

Baseline is provided the same subset of the training samples labeled

with full equations, but does not have access to the rest of the training

data. 113

4-1 Text description of preconditions and effects (a), and the low-level

actions connecting them (b). 119

4-2 A high-level plan showing two subgoals in a precondition relation. The

corresponding sentence is shown above. 124

20

4-3 Example of the precondition dependencies present in the Minecraft

dom ain . 133

4-4 The performance of our model and a supervised SVM baseline on the

precondition prediction task. Also shown is the F-Score of the full set

of Candidate Relations which is used unmodified by All Text, and is

given as input to our model. Our model's F-score, averaged over 200

trials, is shown with respect to learning iterations. 138

4-5 Examples of precondition relations predicted by our model from text.

Check marks (/) indicate correct predictions, while a cross (X) marks

the incorrect one - in this case, a valid relation that was predicted as

invalid by our model. Note that each pair of highlighted noun phrases

in a sentence is a Candidate Relation, and pairs that are not connected

by an arrow were correctly predicted to be invalid by our model. . . . 139

4-6 Percentage of problems solved by various models on Easy and Hard

problem sets. 140

4-7 The top five positive features on words and dependency types learned

by our model (above) and by SVM (below) for precondition prediction. 141

A-1 Examples of four different domains considered by the past work. In

each case, the natural language is mapped to a logical programming

language which was specifically designed to syntactically align with

natural language. 148

21

22

List of Tables

2.1 Accuracy of our model compared to the state-of-the-art semantic pars-

ing model from Kwiatkowski et al. (2010). 78

2.2 Accuracy of our model as we change the parsing algorithm, the equality

algorithm, and the lexical induction algorithm. 78

2.3 Accuracy for varying amounts of training data. The relative gain line

shows the accuracy of our model divided by the accuracy of the baseline. 79

3.1 The features divided into categories. 101

3.2 D ataset statistics. 103

3.3 Accuracy of model when various components are removed. This shows

the importance of all three main components of our model: Joint In-

ference, Semantic Equivalence, and Execution Outcomes. 109

3.4 Cross-validation accuracy results with different feature groups ablated.

The first row and column show the performance when a single group is

ablated, while the other entries show the performance when two groups

are ablated simultaneously. 110

3.5 Performance on different template frequencies. 111

4.1 Notation used in defining our model. 128

4.2 A comparison of complexity between Minecraft and some domains used

in the IPC-2011 sequential satisficing track. In the Minecraft domain,

the number of objects, predicate types, and actions is significantly

larger. 134

23

4.3 Example text features. A subgoal pair (Xi, xj) is first mapped to word

tokens using a small grounding table. Words and dependencies are ex-

tracted along paths between mapped target words. These are combined

with path directions to generate the text features. 135

4.4 Examples in our seed grounding table. Each predicate is mapped to

one or more noun phrases that describe it in the text. 135

4.5 Percentage of tasks solved successfully by our model and the baselines.

All performance differences between methods are statistically signifi-

cant at p < .01. 139

24

Chapter 1

Introduction

Over the last several decades, the dramatic increase in the capabilities of computer

systems has enabled them to transform from special purpose devices locked away

in our offices, to general computing devices that are integrated into our every day

lives. This ubiquity has generated a desire for lay users to be able to easily perform

ever more complicated and specialized tasks. Despite significant automation, many

such tasks still require writing some form of computer program which fully specifies

every detail in an arcane formal language. Writing such programs, however, requires

specialized skills possessed by only a fraction of the population.

In contrast, most humans are comfortable with and adept at using natural lan-

guage to express their desires. For this reason, human to human interaction happens

primarily through natural language, and both systems developers as well as users have

generated extensive natural language documentation describing how to use computer

systems. In fact, with the rise of the Internet, most tasks that a user would like to

perform have been described on web forums, wikis or some other form of natural lan-

guage content. Even the design of computer systems themselves is often described in

detail in a natural language specification before it is built using a formal programming

language.

The ultimate goal of the work in this thesis is to enable lay users to program

computer systems through the use of natural language. The idea of programming

with natural language has been around since the early days of computer program-

25

Natural Language What is the highest mountain in Alaska?
Logical Program (answer (highest (mountain (loc_2 (stateid alaska:e)))))

What is answer
the highest highest

Alignment moutain mountain
in loc.2

___________ Alaska Aak

Figure 1-1: Example from the GeoQuery domain of natural language mapped to a

logical programming language which was specifically designed to syntactically align

with natural language.

ming [114]. Early work in this area tried to handle open domain programming, but

focused on rule-based techniques which could handle only very specific natural lan-

guage constructions. This resulted in what were essentially verbose and ultimately

unsuccessful formal languages which looked more like English [7, 53]. Consequently,

these early systems generated negative criticism from the community [36], and dis-

couraged continued research in this direction. More recent work has achieved success

by focusing on using modern machine learning techniques to tackle constrained natu-

ral language domains. The most well-known work is the successful mapping of natural

language to knowledge-base queries [143, 83], but other domains have seen success

as well [16, 127]. To achieve this success, most of the existing work has not only

constrained the domain of the natural language, but has also constrained the space

of programming languages to those designed specifically to align very closely to the

natural language. These purpose-built programming languages are typically based on

predicate or first-order logic where nouns map to logical entities, and verbs and/or

other syntactic connectives in the natural language map to logical functions. An

example of such a language can be seen in Figure 1-1, with additional examples in

Appendix A.

This thesis moves beyond languages like these by presenting techniques and sys-

tems to map natural language to preexisting programming languages that were not

specifically designed to align closely to natural language. In order to maintain prob-

lem tractability, we do not attempt to handle completely open-domain programs. In-

stead we aim to find a middle ground - constrained programming domains which are

26

An amusement park sells 2 kinds of tickets. Tickets for children
cost $1.50. Adult tickets cost $4. On a certain day, 278 people

atgural entered the park. On that same day the admission fees collected
Language totaled $792. How many children were admitted on that day?

How many adults were admitted?

Computer x + y = 278
Program 1.5x + 4y = 792

(a)

Natural
Laguag Find all lines containing three letter word starting with 'a'.
Language

Computer \ba[A-Za-z] {2}\b
Program

(b)

Natural
Laguag A pickaxe is used to harvest stone and can be made from wood.
Language

step 1: move from (0,0) to (2,0)
step 2: chop tree at: (2,0)
step 3: get wood at: (2,0)

step 4: craft plank from wood
Computer step 5: craft stick from plank
Program step 6: craft pickaxe from plank and stick

step N-1: pickup tool: pickaxe
step N: harvest stone with pickaxe at: (5,5)

(c)

Figure 1-2: Examples of three different natural language task descriptions and their
associated computer programs: (a) a natural language finance question which can be
solved with a computer program consisting of a system of mathematical equations,
(b) a text processing query and a regular expression which embodies its meaning, and
(c) a partial description of a virtual world, and a robotic program to perform a task
based on the world description.

27

broad enough to be widely applicable. Examples of the three programming language

domains we consider can be seen in Figure 1-2. These three domains: regular expres-

sions, math equations, and robotic actions are all constrained enough to be tractable

and yet general purpose enough to be widely deployed. The primary motivation in

developing techniques to work with existing off-the-shelf programming languages is to

enable extension to new domains without requiring a linguistics or Natural Language

Processing (NLP) expert to design a new language for that domain. To this end, we

would also like to learn from resources generated by untrained users of these systems,

rather than by linguistics/NLP experts and/or workers following extensive annotation

guidelines written by such experts [8]. Thus an additional advantage of existing pro-

gramming languages is the ready availability of many such resources, including both

textual resources describing the domains and how to perform tasks in these domains,

as well as programmatic resources consisting of existing programs already written

for the domain. Furthermore, we can easily generate additional resources by taking

advantage of the many programmers who are already familiar with programming on

such systems.

Our work seeks to make progress on both a short term agenda, and a long term

agenda. In the short term, we present systems that map natural language to widely

deployed programming languages such as regular expressions, or math equations

which are each supported by a variety of different computer applications. Further

refinement of our techniques and datasets may lead directly to systems which can be

practically deployed. We also make progress towards a long term vision of generating

programs in general-purpose Turing-complete languages such as Java or C from a

somewhat broad (although probably never completely open) set of natural language

domains. Attaining this long term goal would not only enable lay non-programmers

to generate sophisticated custom computer programs in such domains, but also allow

expert programmers to quickly prototype new applications in these domains based

on natural language specifications. Achieving such a vision is likely an AI-hard prob-

lem [140], however, and thus well beyond the scope of a single thesis. Nonetheless,

we are able to make progress towards it by working with existing off-the-shelf pro-

28

gramming languages since this setup exhibits some of the core challenges presented

by the more general problem, while avoiding the need to fully solve it.

1.1 Challenges

Mapping natural language to existing programming languages poses two major chal-

lenges which we must overcome: (1) the mismatch in abstraction between the natural

language and the resulting programs and (2) the lack of labeled training data.

1.1.1 Mismatch in Abstraction

Since existing programming languages are not designed to map directly to natural

language, there is often a mismatch in the abstractions used by the natural language,

and those used by the computer programs. Consider, for example, the simple finance

word question in Figure 1-2(a), which we would like to translate into the associated

program consisting of a system of mathematical equations. Unlike the programming

languages considered by the prior work, as shown in Figure 1-1 and Appendix A, there

is no clear connection between the syntactic structure of the natural language and the

structure in the resulting program. For example, generating just the first equation

requires information from three different non-contiguous sentences in the original

text. Furthermore, the second equation models an implicit semantic relationship

not explicitly stated in the text, namely that the children and adults admitted are

non-intersecting subsets of the set of people who entered the park.

More generally, the mismatch in abstraction between the natural language and

the underlying programs manifests itself in three different ways:

* Lack of Syntactic Alignment: There is often no clear alignment between

the syntax of the natural language, and the syntax of the resulting computer

programs. For example, in Figure 1-3 we can see that there is no syntactic

alignment between the natural language and associated program from Figure 1-

2(b). In contrast, Figure 1-1 shows how the logical programming languages

29

NP concatenate

NP VP \b a repeat-exact \b

VBG P or 2
CD NN NNS

Three letter words starting IN NP A-Z a-z
I I

with 'a'

Figure 1-3: This shows the syntax trees for the sentence "Three letter words starting
with 'a"' and the associated regexp \ba[A-Za-z] {2}\b from Figure 2-1. We can see
that the two trees do not have any shared structure and thus cannot be syntactically
aligned.

of the past work have been designed to ensure a parallel syntactic structure

between the natural language and the programmatic representation.

" Implied Cross-Sentence Relationships: In order to maintain conciseness,

natural language often does not state explicitly all information required for

understanding. For example, understanding the finance problem in Figure 1-

2(a) requires recognizing that the total set of 792 tickets is made up of the

non-overlapping sets of adult tickets and child tickets. This information is

never stated explicitly in the problem, and yet the problem cannot be answered

correctly without it.

" Lack of Sufficient Detail: Natural language often describes a domain at

much higher abstraction level than the programmatic primitives. Consider, for

example, the text in Figure 1-2(c) describing a virtual world. This one sentence

maps to dozens of low-level programmatic primitives. While the text provides

a high-level description of the dynamics of the domain, it does not provide

sufficient details for successful task execution.

30

1.1.2 Lack of Labeled Training Data

Traditional systems for generating programs from natural language rely on labeled

training data [142, 138, 69, 108, 130, 70, 84, 45, 139, 73, 72, 5]. While crowd-sourcing

techniques such as Amazon Mechanical Turk have significantly reduced the cost of

generating such data [131], it is still a costly and labor intensive process. Further-

more, training data typically must be generated for each combination of programming

language and natural language domain. As a result, the lack of such training data

has limited the deployment of existing techniques to the small number of domains

and languages for which large amounts of training data has already been generated.

In contrast, existing programming language domains have large amounts of unla-

beled data readily available, including both natural language documentation, as well as

existing computer programs. Most existing techniques cannot take advantage of this

data, however, since it does not provide any mapping between the natural language

and the programs.

1.2 Techniques

This thesis addresses the above challenges by taking advantage of the fact that we are

generating programs backed by existing computer systems. The underlying computer

systems enable two important capabilities.

e Computing Semantic Equality: We tackle the mismatch in abstraction by

utilizing the underlying computers system's ability to compute the semantic

equality between seemingly very different computer programs. Our work is the

first to integrate this semantic inference capability into the learning process.

Specifically, sufficiently powerful programming languages typically have many

syntactically different programs which express the same semantic idea, meaning

the programs will generate the same output for any input. The underlying

computer systems often have inference engines that allow us to compute these

equalities. Thus, when there is a mismatch in abstraction in our training data

31

between the natural language and the resulting programs, we can transform

this program to a different, semantically equivalent program which provides

abstractions which align well with the abstractions used in the natural language.

* Computing Execution Outcomes: We tackle the lack of labeled training

data by using the underlying computer system's ability to execute potential

output programs in order to generate a result. These execution outcomes can

then be integrated into the learning process to augment or replace the direct

supervision coming from training data. Consider, for example, the robotic task

in Figure 1-2(c). A correct interpretation of the text would indicate that if

we wanted to get some stone then we should first construct a pickaxe. We

can provide this interpretation as a constraint to an underlying system that

generates task execution programs given a particular goal. Using this constraint

the underlying system may be able to successfully generate a valid plan for the

task, when it otherwise it could not. We can use this success as an indication

that our interpretation of the text was correct, and use this signal as a basis for

learning - replacing traditional supervised data.

We integrate the execution results into the learning process by building on past

work utilizing reinforcement learning to interpret text 116]. The key distinction

of our work is that the underlying system directly helps to generate pieces of

the output program. This supplements the previous work which has focused on

using the underlying system to execute potential output programs, or program

steps for feedback 116, 133, 133, 15, 18, 19, 201.

1.3 Systems

We show the strength of the above two ideas by using them to learn to generate

computer programs from natural language in three different domains:

* Generating Regular Expressions: We start by learning to map single-

sentence natural language text queries to regular expressions which embody

32

their meaning. The main challenge comes from the lack of syntactic alignment

between the natural language and the regular expressions in the training data,

such as those in Figure 1-3. We tackle this challenge by using the semantic

inference capabilities of the underlying computer system to find semantically

equivalent programs which do syntactically align with the natural language.

Solving Algebra Word Problems: We then learn to automatically solve

algebra word problems by mapping them to a system of mathematical equations

which can be solved to generate the numerical answer to the problem. The

main additional challenge in this domain comes from implied cross-sentence

relationships such as those seen in Figure 1-2a. We tackle this challenge by

jointly predicting the system of equations and its alignment with the natural

language, allowing a very general space of possible alignments. We handle

the large size of the resulting search space using both the ability to determine

the semantic equality between programs, as well as the ability to generate

execution outcomes.

* Generating Robotic Task Plans: Finally, we learn to generate robotic task

plans using natural language documentation that provides a general description

of the domain. In this system we focus on a different aspect of the problem.

We assume we have a formal description of a task goal, and we need to gen-

erate a step-by-step plan to achieve that goal. This is a specific instance of

the more general problem of program synthesis which has been well studied in

the programming languages literature [511. The main challenge in our domain,

as well as program synthesis in general, is the computational intractability of

generating large plans/programs. We show that the natural language descrip-

tions of the domain can be used to induce high-level relations which help guide

the search process used by the program synthesis engine. We handle the lack

of training data in this domain by learning to correctly interpret the text into

high-level relations using only the execution outcomes of the program syn-

thesis engine i.e. whether or not it is able to successfully synthesize a program

33

in a given amount of time.

In the rest of this chapter we give a brief overview of each of our three systems,

highlight our contributions, and then give an outline of the rest of the thesis.

1.3.1 Generating Regular Expressions

We start by learning to map descriptions of text queries to regular expressions which

embody their meaning. Despite not being Turing complete, regular expressions have

proven themselves to be an extremely powerful and versatile formalism that has made

its way into everything from spreadsheets to databases. However, they are still con-

sidered a dark art that even many programmers do not fully understand [42]. Thus,

the ability to automatically generate regular expressions from natural language would

be useful in many contexts.

Our goal is to learn to generate regular expressions from natural language, using

a training set of natural language and regular expression pairs such as the one in

Figure 1-2(b). The main challenge comes from the lack of syntactic alignment be-

tween the natural language and the resulting programs seen in many of the training

examples, as shown in Figure 1-3. We tackle this challenge by utilizing the underly-

ing regular expression engine to compute the semantic equivalence between seemingly

different regular expressions. This equivalence calculation is done by converting the

regular expressions to minimal deterministic finite automata (DFAs) which are guar-

anteed to be unique. When we encounter a syntactically misaligned training example,

such as that in Figure 1-3, we use this DFA-based process to find another semantically

equivalent regular expression which is syntactically aligned with the natural language.

Findings We find that our system generates the correct regular expression 65.5%

of the time, compared to only 36.5% for a state-of-the-art semantic parsing model.

Furthermore, we show that much of this gain stems from the integration of semantic

equality calculations into the learning process.

34

1.3.2 Solving Algebra Word Problems

We next extend our techniques to translate a natural language math problem, such as

that in Figure 1-2(a), into a system of equations which can be solved to generate the

solution to the math problem. Mathematical equations, just like regular expressions,

represent a constrained and yet highly expressive form of computer program. Many

different underlying computer systems can be used to solve systems of math equations,

from spreadsheets to computer algebra solvers. An enhanced version of our system

could eventually be used to provide a constrained natural language interface to any

of these systems.

The main additional problem that arises in the multi-sentence scenario is the

implied cross-sentence relationships such as that in Figure 1-2(a). We tackle this

challenge by jointly predicting the system of equations and its alignment with the

natural language, allowing a very general space of possible alignments including com-

plex multi-sentence mappings. This general model allows us to correctly predict the

implied relationships, but leads to a very large space of possible systems of equations.

To manage this explosion, we use the underlying symbolic math engine to compute

the semantic equality between systems of equations. This allows us to avoid the

duplicated computational cost of considering two different, but semantically equal,

systems of equations during the inference process. Furthermore, we use the under-

lying math engine to solve possible full systems of equations to generate numeric

solutions. These solutions are used to help determine whether or not the system of

equations correctly represents the natural language question. For example if our solu-

tion indicates a fractional number of tickets, that is probably wrong, but a fractional

price is perfectly reasonable. Rather than hand-writing rules like these, we include

the potential correspondences as factors in our model allowing us to learn them from

the training data.

Findings We find our model can correctly solve 70% of problems, which is more

than twice as many as the 33% solved by a baseline which only considers the order

35

of the numbers in the text. Furthermore, integrating both execution outcomes, and

semantic equality calculations into the learning process increases the performance by

almost 15%.

1.3.3 Generating Robotic Task Plans

In some domains the challenge is not to formally represent the task in a program-

matic format, but to determine the necessary steps to execute this program from this

representation. Specifically, in the previous two tasks, we generated declarative com-

puter programs, i.e. regular expressions, and mathematical equations. Declarative

programs specify the goal of the computation without specifying the necessary steps

to execute in order to achieve this goal. Instead we relied on the underlying systems,

a regular expression engine and a mathematical solver, to efficiently determine the

appropriate steps for execution based on the declarative program. In other domains,

however, program synthesis like this is computationally intractable for complex pro-

grams.

Consider for example a robot performing tasks in a virtual world like Minecraft.1

A typical task in this world might be to get a stone, which we could encode formally

in the declarative program HAVE(STONE). However, determining the set of necessary

steps to get from a starting world state to a state where the robot has STONE is a

well-studied NP-hard problem called classical planning [113].

We can, however, leverage natural language understanding in this task as well.

Specifically, many computing domains have significant on-line natural language doc-

umentation describing the capabilities and dynamics of the domain. For example,

the Minecraft virtual world has an expansive wiki describing the available tools, ac-

tions, and resources in the domain.2 Our work asks the question of whether successful

interpretation of this documentation can help with the NP-hard search problem.

The two main challenges in interpreting such text is the lack of training data, and

36

'http://www.minecraft.net/
2 http://minecraft.gamepedia.com

the mismatch in abstraction between the high level natural language world descrip-

tions and the low-level robotic programs we wish to generate. We turn this second

challenge into an opportunity by utilizing an off-the-shelf robotic planner to generate

the low-level programs, but using our interpretation of the text in order to induce

high-level relations which can guide the search process of the low-level planner. We

are able to handle the lack of training data by learning to correctly interpret the text

for this guidance using only the execution outcomes of the low-level planner, i.e.

whether or not it is able to successfully find a plan given the current guidance in

a given period of time. Our technique builds on past work utilizing reinforcement

learning techniques to interpret text [16, 133]. The key distinction of our work is that

the underlying system directly helps to generate pieces of the output program rather

than simply executing potential output programs, or program steps.

Findings Our results show that our technique for guiding the program generation

process using textual information allows our system to generate correct programs

80% of tasks, compared to the 41% generated by a state-of-the-art baseline which

does not utilize the textual information. Furthermore, using execution outcomes as

its only source of supervision, our system can predict high-level relations on par with

a directly supervised base-line.

1.4 Contributions

The main contributions of this thesis are a set of techniques and systems to enable

the generation of computer programs from natural language descriptions. We make

contributions both in new techniques, as well as the new capabilities enabled by those

techniques.

The primary technical contributions of the thesis are to show that:

e Semantic inference improves learning We show that utilizing the semantic

inference capabilities of the underlying domain can improve the effectiveness of

learning to interpret natural language. Our work is the first to utilize semantic

37

inference in the learning process. We show this in both the regular expression

domain and the math word problem domain.

* Execution outcomes can be used to interpret natural language We show

that we can learn to interpret text without any supervised data by observing

the outcome of executing possible programmatic interpretations of the text on

the underlying computer domain. Our work is the first system for learning to

interpret non-goal specific text without supervised data, using only execution

outcomes. We show this in the domain of classical robotic planning.

We show the strength of these two techniques across three different systems, each

representing a new capability.

* Generating Regular Expressions This thesis presents the first statistical

system for generating regular expressions from natural language descriptions.

This system is discussed in Chapter 2, and uses our semantic inference technique

to enable more effective learning.

" Solving Math Word Problems We introduce the first fully statistical system

for learning to automatically solve natural language word problems. This sys-

tem is discussed in Chapter 3, and uses both semantic inference and execution

outcomes in order to learn more effectively.

" Performing Robotic Tasks We describe the first system for utilizing non-goal

specific text to help perform robotic task planning. This system is discussed

in Chapter 4, and uses execution outcomes in order to learn to interpret text

without any supervised data.

Finally, the machine learning algorithms we designed for each task represent a further

contribution. Our model for each task includes a significant hidden component which

models the relationship between the natural language and the resulting programs in

a much more fine-grained manner than the supervision provided for each domain.

Our algorithms integrate the semantic inference and/or execution capabilities of the

38

underlying domain in order to more effectively explore the space of possible hidden

choices.

1.5 Outline

The remainder of this thesis is organized as follows.

" Chapter 2 describes our system for translating single sentence natural language

goal descriptions into computer programs. This section introduces the idea of

semantic equality and shows how it can be integrated into the learning process.

" Chapter 3 discusses the translation of multi-sentence natural language goal

descriptions into computer programs. Our multi-sentence technique integrates

both semantic equality as well as execution outcomes into the learning process.

* Chapter 4 presents our technique for utilizing existing text resources describing

a computer system in order to learn how to generate programs for that system.

Our reinforcement learning technique utilizes execution outcomes in order to

interpret the text without any training data.

" Chapter 5 concludes with an overview of the main ideas and contributions of

the thesis. We also discuss potential future research directions that build in the

ideas presented in the rest of the thesis.

39

40

Chapter 2

Generating Regular Expressions

In order to make progress on the general problem of translating natural language

descriptions into computer programs, we start with a constrained version of the prob-

lem. In this chapter, we consider only single sentence natural language descriptions

of text processing tasks such as one might perform with the Unix grep command.

We learn to map these commands to regular expressions, which are an expressive yet

constrained type of computer program. Despite the constrained nature of the task,

we show that the general problem of syntactic misalignment between the natural lan-

guage and the computer programs arises. To tackle this challenge, we are going to

utilize the first of the two important properties of computer programs - the ability

to compute semantic equality. We will show that integrating this capability into the

learning process significantly improves its performance.

2.1 Introduction

Despite the constrained nature of our task, the ability to automatically generate

regular expressions (regexps) from natural language would be useful in many contexts.

Specifically, regular expressions have proven themselves to be an extremely powerful

and versatile formalism that has made its way into everything from spreadsheets

to databases. However, despite their usefulness and wide availability, they are still

considered a dark art that even many programmers do not fully understand [42].

41

Natural Language Description Regular Expression

three letter word starting with 'X' \bX [A-Za-z] {2}\b

Figure 2-1: An example natural language description and its associated regular
expression.2

Natural Language Description Knowledge-base Query

What is the highest mountain in Alaska? (answer (highest (mountain (1oc_2 (stateid alaska:e)))))

(a)

Natural Language Phrase Knowledge-base Query Fragment

What is answer
the highest highest
mountain mountain

in loc_2
Alaska stateid alaska:e

(b)

Figure 2-2: An example text description and associated database query from the
GeoQuery dataset.

Our goal is to learn to generate regexps from natural language, using a training

set of natural language and regular expression pairs such as the one in Figure 2-1. We

do not assume that the data includes an alignment between fragments of the natural

language and fragments of the regular expression. Inducing such an alignment during

learning is particularly challenging because oftentimes even humans are unable to

perform a fragment-by-fragment alignment.

On the surface, this task is similar to past work on a task called semantic parsing

which has focused largely on mapping natural language to knowledge-base queries [69,
143, 73]. In that work, just as in our task, the goal is to map a natural language sen-

tence to a formal logical representation, typically some form of knowledge-base query.

The success of that work, however, has relied heavily on designing the knowledge-base

schemas such that the resulting queries align very closely with the natural language.

As a result, the datasets have three important properties:

e Finding a Fragment-by-Fragment Alignment is Always Possible: While
2Our regular expression syntax supports Perl regular expression shorthand which utilizes \b to

represent a break (i.e. a space or the start or end of the line). Our regular expression syntax also

supports intersection (&) and complement(~).

42

the past work did not assume the fragment-by-fragment alignment was given,

they do assume that such an alignment is possible for all training examples.

Figure 2-2(a) shows an example of a typical training sample from the GeoQuery

dataset[142], one of the most commonly used datasets in this domain. Figure 2-

2(b) shows the corresponding fragment-by-fragment alignment.

" The Logical Representation Provides Strong Typing Constraints: The

entries and predicates in the knowledge-base are typically organized into on-

tologies which provide significant constraints on the set of valid queries. For

example, the GeoQuery domain contains 10 different types, and 39 different

relations, where most relations accept only one of the 10 different types for each

argument. Recent work on the Freebase schema has shown that the typing

constraints on this domain are strong enough to enable state-of-the-art results

using techniques which build up all possible queries matching a set of pre-defined

patterns [11].

" Each Natural Language Word Maps to a Couple of Logical Operators:

The entities and relations in the knowledge-base schemas are chosen such that

each one maps to a single word or a short natural language phrase. Only in

special cases will a single natural language word map to a fragment of the query

with more than one operator, and in these cases the number of operators is still

typically very small [146]. For example, in Figure 2-2(b) we can see that each

constant in the logical representation maps to one word in the natural language.

In fact, Jones et al. (2012) were able to achieve state-of-the-art results on the

GeoQuery dataset with a model which explicitly assumes that a single word

cannot map to more than one logical operator.

When mapping natural language to general purpose programming languages such

as regular expressions, however, we cannot hand design the logical representation to

ensure that these properties are maintained. Specifically, we find that the alignment

between the natural language and the regular expressions often happens at the level of

the whole phrase, making a fine grained fragment-by-fragment alignment impossible.

43

([A-Za-z]{3})&(\b[A-Za-z]+\b)&(X.*)

(a)

Natural Language Phrase Regular Expression Fragment

three letter [A-Za-zl{3}

word \b[A-Za-z]+\b
starting with 'X' X .*

(b)

Figure 2-3: (a) shows a regexp which is semantically equivalent to that in Figure 2-1,
yet admits a fragment-by-fragment mapping to the natural language. (b) shows this
mapping.

Consider, for example, the regular expression in Figure 2-1. No fragment of the

regexp maps directly to the phrase "three letter word". Instead, the regexp explicitly

represents the fact that there are only two characters after X, which is not stated

explicitly by the text description and must be inferred. Thus, such a training sample

does not admit a fragment-by-fragment mapping similar to the one that we saw in

Figure 2-2. Furthermore, the correct regular expression representation of even just

the simple natural language phrase "word" is the regular expression \b [A-Za-z] *\b

which is a combination of 10 operators in the regular expression language. This is

significantly more complicated than the single word representations learned by the

past work [1461. Lastly, regular expressions have relatively few typing constraints

since most of the operators can accept any valid regular expression as an argument.

Key Ideas The key idea in this chapter is to utilize the ability to compute the

semantic equivalence between syntactically very different programs to enable more

effective learning of the meaning of the natural language. This is a departure from past

work on semantic parsing which has focused on either the syntactic interface between

the natural language and the logical form, or on execution-based equality, neither of

which utilize the inference power inherent in traditional programming languages.

To see how we can take advantage of the ability to computer semantic equality,

consider the regular expression in Figure 2-3(a). This regular expression is seman-

tically equivalent to the regular expression in Figure 2-1. Furthermore, it admits a

fragment-by-fragment mapping as can be seen in Figure 2-3(b). In contrast, as we

44

noted earlier, the regexp in Figure 2-1 does not admit such a mapping. In fact, learn-

ing can be quite difficult if our training data contains only the regexp in Figure 2-1.

We can, nonetheless, use the regexp in Figure 2-3 as a stepping-stone for learning if

we can use semantic inference to determine the equivalence between the two regular

expressions. More generally, whenever the regexp in the training data does not fac-

torize in a way that facilitates a direct mapping to the natural language description,

we must find a regexp which does factorize and be able to compute its equivalence to

the regexp we see in the training data. We compute this equivalence by converting

each regexp to a minimal deterministic finite automaton (DFA) and leveraging the

fact that minimal DFAs are guaranteed to be the same for semantically equivalent

regexps [571.

We also depart from the past work through the use of a more effective parsing

algorithm which allows us to handle the additional ambiguity stemming from both the

weak typing and large number of logical operators associated with individual words.

Specifically, the state-of-the-art semantic parsers 172, 83] utilize a pruned chart parsing

algorithm which fails to represent many of the top parses and is prohibitively slow in

the face of weak typing. In contrast, we use an n-best parser which always represents

the most likely parses, and can be made very efficient through the use of the parsing

algorithm from Huang and Chiang (2005).

Summary of Approach Our approach works by inducing a combinatory catego-

rial grammar (CCG) 11221. This grammar consists of a lexicon which pairs words

or phrases with lambda calculus expressions which can be combined compositionally

to generate a regular expression. Our technique learns a noisy lexicon which con-

tains both correct and incorrect entries. To choose the correct entries for a given

sentence, we use a log-linear model to place a probability distribution over the space

of possible choices. We integrate out ability to compute semantic equality into the

process of learning parameters for this model, in order to maximize the probability

of any regular expression which is semantically equal to the correct one. We learn

the noisy lexicon through an iterative process which initializes the lexicon by pairing

45

each sentence in the training data with the full regular expression associated with it.

These lexical entries are iteratively refined by considering possible ways to split the

regular expression and possible ways to split the natural language phrase.

Evaluation We evaluate our technique using a dataset of sentence/regular expres-

sion pairs which we generated using Amazon Mechanical Turk [131] and oDesk [103].

We find that our model generates the correct regexp for 66% of sentences, while

the state-of-the-art semantic parsing technique from Kwiatkowski et al. (2010) gen-

erates correct regexps for only 37% of sentences. The results confirm our hypothesis

that leveraging the inference capabilities of general programming languages can help

disambiguate natural language meaning.

2.2 Related Work

This section gives an overview of the four main areas of related work: natural language

grounding, computer program induction, regular expressions and CCG parsing.

2.2.1 Natural Language Grounding

There is a large body of research learning to map natural language to some form

of logical representation. Our work differs from all of this work in both our use of

semantic equivalence during the learning process as well as in the domain that we

consider.

Past Techniques for Computing Equivalence

Implicit in all fully supervised learning techniques is some form of equivalence cal-

culation which is used in the learning process to determine whether or not the gen-

erated output is equal to the correct output. Each of the past supervised systems

for language grounding uses one of the following three types of equivalence: string

equivalence, local transformations, or execution equivalence. None of this work has

utilized full semantic equivalence during the learning process as we do. There has also

46

Natural Language Knowledge-base Query Result

What is the largest city in Georgia? (answer (largest.(city (loc_2 (stateid georgia:e))))) Atlanta

What is the capital of Georgia? (answer (capital (loc-2 (stateid georgia:e))))) Atlanta

Figure 2-4: An example showing the problem with using execution equivalence. These

two knowledge-base queries both execute to the same result even though semantically

they are very different

been some work on unsupervised language grounding where the notion of equivalence

does not arise.

" Exact String Equivalence The traditional comparison used for logical repre-

sentations is simply exact string equivalence [142, 138, 69, 108, 130, 70]. With

this technique two logical representations are considered equivalent only if they

generate exactly the same string when written down in a human readable for-

mat. We saw in Figure 2-1 how using this form of equivalence is problematic.

" Local Transformation Equivalence Given the limitations of exact string

equivalence, some systems have augmented exact equivalence by allowing a

heuristically chosen set of local changes on the logical form to handle minor

syntactic inconsistencies [45, 139, 73, 72]. These are typically simple trans-

formations such as reordering the arguments to an and operator, or perform-

ing simple tree transformations. None of these techniques, however, allow the

replacement of one set of logical operators with a different, but semantically

equivalent set, as is required by the regular expression domain.

" Execution Equivalence The last type of equivalence which has been used by

the past supervised work is execution equivalence [16, 17, 15, 18, 29, 5, 31, 83].

This is the most similar to our use of full semantic equivalence. In this model,

the final logical form is executed on some input to generate an output. The out-

puts are then compared for equivalence. For example, knowledge-base queries

would be executed on a knowledge-base and declared equal if they generate the

same result. In the case of regular expressions, we run the regular expressions

on a set of input text strings, to see which strings each regexp matches. We

47

declare two regexps to be equal if they both match the same set of input strings.

This provides a very weak form of semantic equivalence which is valid only on

the provided input(s). It can recognize deeper semantic equivalences but it has

the opposite problem - many semantically different logical forms will generate

the same output on a given input. Consider for example the two knowledge-base

queries in Figure 2-4. Both of the queries generate the same result, Atlanta, and

so the learning process would consider these two queries to be equivalent even

through they clearly represent very different semantic concepts. In contrast, our

work uses an exact, theoretically sound measure of semantic equivalence that

determines whether two logical representations are equivalent for all possible ex-

ecution inputs. We show in Section 2.8 that utilizing full semantic equivalence

results in much more effective learning.

9 Unsupervised Techniques More recently there has been a focus on unsu-

pervised and weakly supervised techniques which learn from alternative weaker

sources of supervision besides direct training examples. For example, Poon

(2013) bootstraps an unsupervised learning algorithm using lexical matching

between words in the natural language and the names of relations and entities

in the database to which they are grounding. Similarly, f5] learn to ground

natural language to a knowledge-base by utilizing conversations between a hu-

man and a machine where they assume they know the full logical representation

for the machine utterances. They design a heuristic loss function which tries

to maximize the coherence between the human's utterances and the machines.

Both Liang et al. (2009) and Chen and Mooney (2008) learn from unaligned

sequences of natural language and actions. In all of these techniques, the notion

of equivalence does not directly arise since they are not trying to match their

outputs to those seen in a training dataset.

48

Domains Considered

Past work on mapping natural language to logical representations has largely focused

on knowledge-base queries and control applications, with some work on computer

programs as well.

* Knowledge-Base Queries The vast majority of language grounding work

has focused on mapping natural language to knowledge-base queries [142, 138,

69, 108, 130, 70, 45, 139, 73, 72, 23, 22, 12, 74]. Almost all of this work has

focused on the JOBS, GEO, ATIS and Freebase domains. In these domains

the knowledge-base schemas were manually designed to align very closely to

the syntax of natural language. As we discussed in Section 2.1, this ensures

that a fragment-by-fragment alignment is always possible, and that each natural

language word maps to only a couple of logical operators. Similarly, Pasupat

and Liang (2015) work with tables from Wikipedia which have similar properties.

These properties obviate the need for any kind of semantic inference during the

learning process. In our work, we consider the problem of mapping natural

language to more general programming languages where we cannot rely on such

properties to be true.

" Control Applications Grounding natural language to control applications

such as robots has been an area of interest in Artificial Intelligence research since

Terry Winograd first built his SHRDLU system to interpret natural language in-

structions in a virtual blocks world [136]. While early systems such as SHRDLU

were rule based [35, 59, 60], modern systems instead use machine learning algo-

rithms which take advantage of either direct training examples [29, 5, 127, 128],

or indirect weaker forms of supervision [16, 17, 15, 18].

Similar to the work on knowledge-base queries, much of the work on control ap-

plications has relied on hand designed logical representations that closely align

with the natural language. Machine learning techniques are used to map the

natural language to this representation, which is then deterministically con-

verted into actions in the underlying control application. For example, Artzi

49

and Zettlemoyer (2013) manually designed a set of logical predicates which

cover the types of entities and action sequences seen in their dataset. Chen and

Mooney (2011) designed a grammar they called "landmark plans" which models

the same dataset in a different way.

In contrast, our goal is to avoid the need to hand design a new logical language

for each domain by instead learning to work with more general purpose program-

ming languages such as regular expressions. The most similar work to ours in

the domain of control applications is that by Branavan et. al. where they learn

to map natural language directly to actions in the underlying control applica-

tion without a hand designed intermediate logical representation [16, 17]. Vogel

and Jurafsky (2010) use a similar technique except they learn from training ex-

amples rather than directly from environment feedback. This work was a step

in the same direction as ours, however it all utilized flat sequence models of the

natural language which cannot handle the complicated compositional construc-

tions seen in more general natural language datasets such as ours. Additionally,

Tellex et al. (2011) present a formalism called Generalized Grounding Graphs,

which performs situated interpretation of natural language instructions. While

their system translates directly to the underlying robotic actions, their formal-

ism is heavily oriented towards spatial commands, and thus not appropriate for

general programmatic domains such as ours.

* Computer Programs There has been some past work on mapping natural

language to computer programs. Most of the early work in this area focused

on rule-based systems [92, 107, 35, 60, 43]. For example, work in the HCI

community on a technique called Keyword Programming focused on simple word

overlap techniques 185]. Work in the programming languages community has

focused on rule-based techniques [77, 109, 521 that typically interact with the

user to resolve ambiguities, either by providing examples [109] or by choosing

from a ranked list of possible interpretations [52].

We believe our work was the first to use training data to learn to automatically

50

generate a general purpose program, such as a regular expression, from natural

language. Since we originally published the work discussed in this chapter, more

recent work has continued in this direction, mapping natural language to other

somewhat general purpose programming languages. Lei et al. (2013) learn to

map natural language to program input parsers. Quirk et al. (2015) considers

mapping natural language to programs on the If-This-Then-That (IFTTT) web-

site 3. IFTTT programs, however, do not possess any compositional structure

and are thus inherently quite simple and not truly general purpose. Allamanis

et al. (2015) consider the problem of mapping natural language to general pur-

pose programs written in C and Java. Given the difficulty of this problem, they

focus on the simpler task of search ranking, rather than generating the output

program directly from the natural language. They find that using vector-based

Bag-of-Word representations allows them to achieve reasonable performance

on this simpler task. Similarly, Movshovitz-Attias and Cohen (2013) consider

the program of learning to predict program comments given a large dataset of

already commented code. They find it is useful to model both the distinct prop-

erties of comments and code, and well as the joint properties they share. This

recent work shows the significant interest in generating more general purpose

programs directly from natural language, highlighting the importance of this

task.

2.2.2 Generating Programs from Other Forms of Specification

In addition to work on generating programs from natural language, there has been

a significant amount of work on generating programs from other sources of specifica-

tion. This includes generating programs from examples 1121, 118], high-level specifi-

cations [129], and program traces [75]. Gulwani (2010) provides a good overview of

this space. This general line of work complements ours by developing techniques for

generating programs from some form of specification, but does not address the issue

3 http://ifttt .com

51

of natural language interpretation which is central to our work.

2.2.3 Generating Regular Expressions

Regular expressions are based on a body of work studying regular languages and

their equivalent representations as finite automata [57]. Our work utilizes these clas-

sic results which show that regular expressions can be represented as minimal DFAs

and then compared for equivalency [57]. Past work has looked at generating regular

expressions from natural language using rule-based techniques [107], and also at au-

tomatically generating regular expressions from examples [3, 48]. To the best of our

knowledge, however, our work is the first to use training data to learn to automatically

generate regular expressions from natural language.

2.2.4 CCG Parsing

Our work builds on a rich history of research using Combinatory Categorial Grammars

(CCGs) to learn a mapping from natural language to logical representations. CCG is a

grammar formalism introduced and developed by Steedman (1996, 2000). Early work

using machine learning with CCGs [54, 30] focused largely on broad coverage syntactic

parsing using the CCGBank dataset [55], a version of the Penn Treebank that is

annotated with full CCG syntactic parse trees. Our work utilizes a log-linear model

similar in form to the one developed for syntactic parsing by Clark and Curran (2007),

however we utilize a modified parsing algorithm. More recent work has focused on

domain-specific semantic parsing techniques which generate a logical representation

of a given natural language sentence. For example, Zettlemoyer and Collins (2005,

2007) learn a CCG to generate knowledge-base queries; Artzi and Zettlemoyer (2013)

learns a CCG to interpret natural language robotic instructions; and Lee et al. (2014)

generates formal time expressions from natural language utterances. Most of this

work builds the grammar completely manually [74, 78], or through a combination of

manual entries and domain-specific template-based generation [143, 144]. In contrast,

we build on a line of work which learns the grammar from the data using an approach

52

based on syntactic unification [73, 72]. However, we depart from this work, and all

prior CCG work, in our use of semantic equality during the learning process, our

modified parsing algorithm, and the domain that we consider.

2.3 Generating Programs Using CCGs

This section describes the components of our model for learning to generate programs

from natural language using Combinatory Categorial Grammars (CCGs). This sec-

tion serves mostly as background, while the following sections describe the innovative

aspects of our model. We start by describing how computer programs such as reg-

ular expressions can be represented as Abstraction Syntax Trees (ASTs). We then

describe how we can use Combinatory Categorial Grammars (CCGs) to generate

regular expression ASTs from natural language descriptions.

2.3.1 Representing Programs as Abstract Syntax Trees

While computer programs can be represented as a string of characters, this repre-

sentation obscures the structure imposed by the programming language. Specifically,

programming languages, unlike natural language, are typically designed so that they

can be unambiguously parsed into tree format called an Abstract Syntax Tree (AST).

ASTs explicitly represent the program structure, while dropping notational details

such as commas and parenthesis. For this reason, most computer program manipula-

tion tools work on the AST rather than directly on the textual representation of the

program. Figure 2-5 shows the AST for the regular expression from Figure 2-1. Each

of the nonterminals in the tree is a function in the regular expression language, while

the terminals are either integers (to be used for the bounds in a repeat) or some type

of character class. The full set of terminals and non-terminals is shown in Figure 2-6.

Throughout this chapter we will refer to the regular expression string and its AST

interchangeably, however, the AST representation is used mainly in our discussion of

grammar induction in Section 2.5.2.

53

concatenate

\b X repeat-exact \

or 2

A-Z a-z

Figure 2-5: This shows the abstract syntax tree (AST) representation for the regexp
\bX[A-Za-z]{2}\b from Figure 2-1.

function description type signature example regexp

concatenate (regexp, regexp) -+ regexp ab
and (regexp,regexp) -+ regexp a&b
or (regexp, regexp) - regexp al b
not regexp - regexp ~a
unbounded repeat regexp - regexp a*
fully bounded repeat (regexp, int, int) - regexp (a) {3, 5}
lower bounded repeat (regexp, int) - regexp (a) {3, }
exact bounded repeat (regexp, int) -+ regexp (a) {3}

(a)

terminal description type example regexp

character regexp X
character range regexp a-z
word boundary regexp \b
integer int 2

(b)

Figure 2-6: This shows (a) the set of non-terminals, and (b) the set of terminals in
the abstract syntax tree representation of regular expressions

2.3.2 Combinatory Categorial Grammars

Our parsing model is based on a Combinatory Categorial Grammar [123, 122]. A

CCG will generate one or more possible logical representations for each sentence that

can be parsed by its grammar. In CCG parsing most of the grammar complexity is

contained in the lexicon, A, while the parser itself contains only a few simple rewrite

rules called combinators.

54

Lexicon

A CCG lexicon, A, consists of a set of lexical entries that couple natural language with

a lambda calculus expression. The lambda calculus expressions contain fragments of

the full logical representation for a given sentence. In this thesis our focus is using

CCGs to generate computer programs. So our lexical entries will use lambda calculus

expressions which contain contiguous fragments of the ASTs that we discussed in

Section 2.3.1. Formally, each lexical entry, 1, is a tuple, (ii, it : l,), where la is

the natural language word or phrase, it is the syntactic type of the lambda calculus

expression (as described below), and 1, is the lambda calculus expression itself.

Traditional semantic representations for natural language contain three basic types:

e for entities, t for true values, and i for numbers [241. For purposes of representing

programs we will use only two of those types, e to represent a regular expression, and

i for an integer. Thus every complete subtree of an AST has either type e or type

i, and the full tree will always have type e. Incomplete tree fragments are then rep-

resented using lambda expressions with function types such as those in the following

lexical entries:

(after, e\e/e : AxAy.(x.*y))

at least, e/i/e : AxAy.((W){y,}))

Note that CCG syntactic types augment the traditional lambda calculus type infor-

mation with a (/) or a (\) for each argument indicating whether that argument comes

from the left or the right, in sentence order. Thus e\e/e can be read as a function

which first takes an argument of type e on the right then takes another argument of

type e on the left, and returns an expression of type e. 4

Combinators

Full CCG parses are built by combining lexical entries through the use of a set of

combinators. Our parser uses only the two most basic CCG combinators, forward
4Conventionally CCGs also augment the lambda calculus type information with a syntactic cat-

egory (such as S/NP) for each lexical entry, which is used similar to the way part-of-speech tags are

used in standard CFG parsing. Our lexical entries do not include this additional information.

55

gk-. _16,1' __ I .. __ , -, - - 1. -- - -_ - - 1-4.-__.. -, - - , , .

'def' after
e e\e/e

def AxAy.(x.*y)

e\e
Ay.(abc. *y)

abc.e*def

e*abc. *def *

-(f)

.(b)

(f)

(a) CCG format

.*abc.*def. *

Ax.(.*x.*) abc.*def

with
def Ay.(abc.*y)

def AxAy.(x.*y) abc

I I
after

(b) Simple CFG format
'abc'

(with 'def' after 'abc', e *abc.*def .*)

(with, e/e Ax.(.*x.*)) ('def' after 'abc', e : abc.*def)

('def', e : def) (after 'abc', e\e : Ay.(abc.*y))

(after, e\e/e : AxAy.(x.*y)) ('abc', e : abc)

(c) Full CFG format

Figure 2-7: This shows a parse of the same example phrase in three different formats.

(a) using traditional CCG format, (b) using traditional CFG format with just the

regular expression fragment at each node of the tree, and (c) using CFG format with

the full tuple (W', t : r), at each node, where W' is the natural language, t is the type,

and r is the regular expression fragment.

56

with
e/e

Ax(.*x.*)

'abc'

e
abc

function application and backward function application.5 These combinators work as

follows:

e/e:f e:g -+ e:f(g) (forward)

e : f e\e : g - e: g(f) (backward)

The forward combinator applies a lambda function to an argument on its right (in

sentence order) when the type of the argument matches the type of the function's

first argument. The backward combinator works analogously.

Parse Trees

The derivation of an AST from a natural language sentence using a CCG can be

visualized using a tree, as in Figure 2-7. The leaves of the tree are the chosen set

of lexical entries. At each non-terminal in the parse tree, a new lambda calculus

expression is generated by the lambda function application of one child to the other

using one of the combinators described earlier. Formally, a parse tree, t, consists of

a choice of lexical entries, ti = {() i - 1.. .n} at the leaves, as well as a set of non-

terminal parse productions, t, - {s(M -+ s1 sr Ii = 1...m} where s(is the syntactic

type of the ith non-terminal, and s and s. are the types of the two children used

to generate s(). Note that we will allow our lexicon, A, to contain lexical entries with

multiple natural language words to handle phrases such as "starts with" which do not

naturally decompose in a compositional way. Thus the choice of lexical entries, t1,

for a given sentence, W, must cover all words in the sentence without overlapping.

Formally, the flattened list {1 : i = 1...n} is equal to W' where, as defined earlier,

iT is the natural language phrase in lexical entry (). The root of a valid parse tree

must have a lambda calculus expression of type e, i.e. a valid regular expression.

5 Technically, this choice of combinators makes our model just a Categorial Grammar instead of

a CCG.

57

2.3.3 Probabilistic CCGs

For a given CCG lexicon, A, and sentence, W' there will, in general, be many valid

parse trees, T(iJ; A). To disambiguate among these, we assign a probability to each

parse tree, t E T(ii; A) using a standard log-linear model with feature function # and

parameters 0:

p(t|tG; 0, A) = ,

In general, for a given sentence, W, there will be many different parse trees, t,

which generate a given regular expression r, i.e. have r at their root. Thus in order

to calculate the probability of generating r, we need to sum over the probability of all

trees which have r at their root. If we define EVAL(t) to extract the regular expression

at the root of t, then:

p(r|Y; 0, A) = p(t0w; , A)
tET(,A) EVAL(t)=r

Note that at test time, for computational efficiency reasons, we calculate only the

most likely parse, V*, and return EVAL(t*).

Parameter Estimation At training time, our goal is to learn from data which

contains only natural language sentences paired with computer programs, i.e. regular

expressions, which embody their meaning. Formally, each training sample, si =

(i, ri), will contain a natural language sentence, 'i, and a regular expression, re.

Thus at training time, the standard objective is to maximize the regularized marginal

log-likelihood of the data. Formally:

0 = J:1og : p (t IW-i; 0, A) _ :0 (2.1)
i t|EVAL(t)=ri k<101

where k is the parameter index and A is a meta-parameter controlling the level of

regularization. This objective, which the past work has used, is limited, and in

Section @2.4 we will discuss those limitations and how we modify the objective to

58

al (b&c)

e e\e e

Gb e\e/e e

or e e\e 'a' e\e/e

'b' e\e/e e or
I I

and 'c'

Figure 2-8: This figure shows why it is necessary to
These two parse trees, for the same sentence, contain
productions, so they will have the same probability, yet
expressions.

e e\e/e e
I I

eand 'C'

'b'

lexicalize our parsing model.
exactly the same set of parse
they generate different regular

address them.

Efficient Parsing To enable efficient inference (and thus learning) on our model,

we will define our features # over individual parse productions. Specifically, our #
can be factorized into features on the individual lexical entries, 1 E t1 , and features

on individual productions in the parse tree, (sP -+ siSr) c t,. Formally:

0(t) Z qS(l) +
let1

E q(s, -si sr)
Sp-+s srets

This factorization allows us to compute t* using the standard CYK dynamic pro-

gramming parsing algorithm 1681 which runs in 0(n') time, where n is the length of W'.

In contrast, without constraints on the features exact computation of V* is exponential

in n in the worst case. As we will discuss in Section 2.5 this choice of factorization

will also have practical implications on the inference processes used during learning

as well.

Lexicalized Model The model described above, as defined by 2.2 completely ig-

nores the words themselves when generating #(sp + si s,). This leads to circum-

stances where two different parses for the same sentence will have exactly the same

59

(2.2)

(a Ib) &c

set of features, and thus, by definition, the same probability. Figure 2-8 shows such

an example. To avoid this problem, we will lexicalize our model, i.e. we will include

some lexical information at each non-terminal in addition to just the lambda-calculus

types. Specifically, we will follow standard practice and include a single head-word

at each non-terminal [32]. Thus our feature function becomes:

Y(t) = #(l) + #((cp, wp) + (ci, wi)(cr, wr))
lEt (Cp,Wp)-+(Ci,Wi)(Cr,Wr)Etc

Note that this modification still allows us to use the CYK dynamic programming

algorithm to calculate t*, however the runtime increases from O(n3) to O(n5).

2.4 Integrating Semantic Equivalence into the Model

In Section 2.3.3 we discussed the standard maximum marginal log-likelihood objec-

tive used for training CCG log-linear models. This objective was:

O = Elog >: p(tI-i; 0, A) - A o (2.3)
i tIEVAL(t)=ri k

where EVAL(t) extracts the regular expression from the root of parse tree t.

Such an objective is problematic, however, because, as we saw in Figure 2-1,

a given training sample, ('i, ri), may not admit a fragment-by-fragment mapping

between the regular expression ri and the natural language, W'i. The main departure

of our work is to use the semantic inference capabilities of computer programs to get

around this problem by finding another semantically equivalent regular expression

which does admit a fragment-by-fragment mapping. Specifically, we will modify the

training objective to maximize the probability of all parse trees t such that r = EVAL(t)

is semantically equal to ri, instead of just those where r is exactly syntactically equal

to ri.

To enable such a change, we will define a procedure, SEM-EQ(ri, r 2) which returns

true if r1 is semantically equal to r2 , i.e. if regular expression r1 accepts exactly the

60

same set of inputs as regular expression r2 . Our modified object then becomes:

O= log p(t|I'i; 0, A) - A (2.4)
i tISEM-EQ(EVAL(t),ri) k

In the following we discuss how we can efficiently implement SEM-EQ.

2.4.1 Regexp Equivalence Using Deterministic Finite Automata

The core of our model involves computing the semantic equivalence between two reg-

ular expressions. This can be done efficiently by converting the regular expressions to

Deterministic Finite Automata (DFAs). Specifically, regular expressions at their core

are simply a convenient format for describing a regular language, and classic work

shows that they can be directly written down as non-deterministic finite automata

(NFAs)[571. Furthermore, NFAs can be converted to DFAs, and any DFA can be de-

terministically compiled down to a minimal DFA[57]. Finally, minimal DFAs for the

same regular language are guaranteed to be equal up to a relabeling of the nodes[57].

In theory, the DFA representation of a regular expression may be exponentially larger

than the the original NFA. However, past work has shown that most regular expres-

sions do not exhibit this exponential behavior [126, 97], and the conversion process

is renowned for its good performance in practice [97].

Hence, we implement the function SEM-EQ(ri, r2), defined above, by converting

ri and r2 to minimal DFAs and then comparing these for equality. In practice, we

do this using a modified version of Moller (2010). To catch any cases where the

resulting DFA might be prohibitively large, we set a timeout on this process. In our

experiments we use a one second timeout, which results in timeouts on less than 0.25%

of the regular expressions. Note that we can tune this timeout parameter to reduce

the computational overhead at the cost of less effective learning. At the extreme, if

we set the timeout to zero, then we are simply falling back to using the exact string

equivalence technique employed by the past work, as defined in equation (2.5).

61

2.5 Learning

A probabilistic CCG is defined by a lexicon, A, and a parameter vector, 0. In this

section we describe our algorithm to learn both of these from a training dataset, S,

where each sample si = (ziY, ri) pairs a natural language sentence ti with a regular

expression, ri.

Our algorithm uses separate techniques to learn A and 0. At a high level it works

as follows:

* Learning the Lexicon: Our technique generates a noisy lexicon by considering

possible fragment-by-fragment mappings between the natural language and the

regular expression in each of the training samples. This noisy lexicon will include

many incorrect entries for each word or phrase, but the goal is to ensure that

it also contains the correct entry(s) for each word or phrase. We discuss this

process in Section 2.5.2.

* Learning Theta: Since this noisy lexicon will allow many incorrect parses for

each sentence, we use a stochastic gradient descent algorithm to learn values for

0 such that the correct parses have high probability. We discuss this process in

Section 2.5.1.

Our algorithm performs these two learning processes simultaneously using an iterative

algorithm. The details of the algorithm can be seen in Algorithm 1. While our

approach is similar in nature to the past work on CCG based semantic parsing [143,

73], we depart from this work in two important ways in order to effectively learn to

generate computer programs:

* We utilize the ability to compute the semantic equality between computer pro-

grams, in order to effectively learn from training samples which do not admit

a fragment-by-fragment mapping, such as that in Figure 2-1. Specifically, we

integrate into our gradient descent updates, the DFA-based semantic equality

computation described in 2.4.1.

62

Inputs: Training set of sentence regular expression pairs. { (i, r2) i = 1 ... n}

Functions:

" N-BEST('; 6, A) n-best parse trees for W' using the algorithm from 2.5.1

* SEM-EQ(t, r) calculates the equality of the regexp from parse t and regexp
r using the algorithm from 2.4.1

" SPLIT-LEX(T) splits all lexical entries used by any parse tree in set T,
using the process described in 2.5.2 and outlined in Algorithm 2.

Initialization: A = {(t'i, e : ri) i = 1 ... n}

For k = 1.. .K, i = 1. .. n

Update Lexicon: A

" T = N-BEST('i; 6, A)

" C = {t~t E T A SEM-EQ(t, rj)}

" A = A U SPLIT-LEX(C)

Update Parameters: 0

" T = N-BEST('i; 6, A)

* C = {tlt E T A SEM-EQ(t, rj)}

SA = Ep(ttEc) [#(t, 1)] - Ep(tIteT) [q(t, ')]
* 0=0+aA

Output: The lexicon and the parameters, (A, 0)

Algorithm 1: The full learning algorithm.

e We utilize an n-best parsing algorithm based on the work of Huang and Chiang

(2005) in order to handle the large number of potential parses that exist in our

domain due to the weak typing and complex lexical entries. In Section 2.8.2

we show that in our domain this algorithm much more effectively represents the

top parses than the pruned chart parsing algorithms used by the past work [143,

73, 83].

In the remainder of this section we discuss first the process for learning 0 and then

the process for generating the lexicon, A.

63

2.5.1 Estimating Theta

Recall from Section 2.4 that when estimating 6, our objective is to maximize the

marginal log-likelihood of the training data. Formally,

O= log p(tIi; 0, A) - 1 02 (2.5)
i tJSEM-EQ(EVAL(t),ri) k<101

We maximize this objective using stochastic gradient descent. Differentiating the

objective to get the gradient of parameter 9, for training example i, results in:

=Ep(tSEM-EQ(EVAL(t),ri);O,A) j (i)] - Ep(t;O;A) [(t, - M9 (2.6)

This gives us the standard log-linear gradient, where the first term is the expected

feature counts in the correct parse trees for W'i, the second term is the expected

feature counts in all valid parse trees for z'i, and the third term is the regularization.

As discussed in Section 2.3.3, we define the features in our model over individual

parse productions, admitting the use of the inside-outside algorithm [68] to efficiently

calculate the unconditioned expected counts in the second term. However, the first

term does not factorize, since it is conditioned on generating a regular expression,

r, which is semantically equivalent to the regular expression in the training data,

such that SEM-EQ(r, ri). In fact, exact techniques for computing the first term are

computationally intractable, since r may be syntactically very different from ri, as

we saw in Figure 2-1.

Thus we turn to approximate gradient calculations. We approximate the gradient

by computing the marginal feature counts over the n-best full parse trees. This is in

contrast to the past work which uses a beam-search based version of the inside-outside

algorithm to approximate the marginal feature counts over each subtree. We discuss

in more detail below how we can compute the n-best parses efficiently, as well how

our algorithm contrasts with that of the past work. Formally, we utilize the n-best

64

parses to approximate the gradient as follows:

ao2 = Ep(tlteTi,SEM-EQ(EVAL(t),ri);O,A) [t, i) E (tlti;,)[#(t, z1)] - 6 (2.7

where T is the set of n-best parses for W'i. This calculation simply approximates both

terms of the gradient from equation (2.6) above by considering only the n-best valid

parses rather than all valid parses.

Efficiently Calculating the n-Best Parses

The main advantage of our n-best based approximation comes from the fact that

we can very efficiently compute exactly the n-best parse trees. To do this we use

an algorithm originally developed by Jimenez and Marzal (2000), and subsequently

improved by Huang and Chiang (2005). This algorithm utilizes the fact that the

first best parse, t1 , makes the optimal choice at each decision point, and the 2 "d

best parse, t 2 must make the same optimal choice at every decision point, except for

one. To execute on this intuition, the algorithm first calculates t1 by generating an

unpruned CYK-style parse forest which includes a priority queue of possible subparses

for each constituent. The set of possible 2nd best parses T are those that choose the

2nd best subparse for exactly one constituent of t1 but are otherwise identical to ti.

The algorithm chooses t2 = arg maxtCT p(t). More generally, T is maintained as a

priority queue of possible nth best parses. At each iteration, i, the algorithm sets

tj = arg maxtEP(t) and augments T by all parses, i) which both differ from tj at

exactly one constituent c3 and choose the next best possible subparse for cj.

Contrasting our Algorithm to the Past Work

The past work has approximated the gradient through a dynamic programming al-

gorithm similar to the inside-outside algorithm. To understand how this differs from

our algorithm consider that dynamic programming algorithms must define the space

of subproblems that they are going to solve. CCG parsing works similar to CFG

parsing in that these subproblems involve finding the highest scoring subparse over

65

some span of the sentence. These are typically stored in a matrix-like chart which

has a cell for each possible span from word i to word j. Our work differs from the

past work in the set of entries we store in each chart cell.

Entries in our chart are indexed by a tuple (i, j, k, c), where i and j define the

span, k defines the head word, as discussed in Section 2.3.3, and c is the CCG type

at the root of the subparse. Note that c contains only the type information, and

not the entire lambda-calculus expression, thus each entry in the chart represents

many possible lambda-calculus expressions. In theory, the space of possible CCG

types can be exponential in the length of the sentence. In practice, as discussed in

Section 2.6.4, we limit the number of arguments in a given lambda-expression, such

that the resulting CCG grammar has at most 16 different non-terminal types. This

results in a chart which has o(W I) entries. The main downside of such a chart

configuration is that we cannot use it to directly compute the first expectation in

equation(2.6). This is because the expectation is conditioned on the regular expression

at the root of the parse tree, yet the entries in our chart are not indexed by this value.

Instead, use a full unpruned chart of this form to calculate the n-best parses via the

algorithm described above, and approximate the expectation using these parse trees.

The past work address the problem differently, and instead used an augmented

chart whose entries are indexed by a tuple (i, j, k, c, e), where i,j, and c are as above,

and e is the full lambda-calculus expression at each non-terminal. This allows the

conditioned expectation from equation(2.6) to be calculated directly using the inside-

outside algorithm. The problem, however, is that there are an exponential number of

possible regular expressions for each sentence span, and thus and exponential number

of possible chart entries in each cell. To combat this explosion, the past work resorts

to a beam search, and at each cell maintains only the m highest scoring entries. The

resulting chart has at most O(IW m) entries.

Qualitatively, we can compare these two approximations based on the set of parse

trees which they represent. Our chart represents every valid parse tree for the given

sentence, but we calculate the expectation based on only the top n full parse trees.

These parse trees, however, are always the n most likely full parse trees. In contrast,

66

the past work uses the inside-outside algorithm to calculate the expectation based

on the entire parse forest represented in its chart, which can contain an exponential

number of parse trees. However, since the beam search prunes the chart myopically

at each chart cell, it often prunes the highest probability parse trees out of the chart.

In fact, as shown in Section 2.8.2, we find that the single most likely parse tree is

pruned out almost 20% of the time. Furthermore, our results show that this inability

to represent the likely parses significantly impacts the overall prediction performance.

It is also important to note that the runtime of our n-best algorithm scales much

better. Specifically, our algorithm calculates the full chart in Q(|'Ja) time, and

then uses the chart to compute the n-best parses in O(1WIn log n) time for an overall

runtime of O(| 15+1 'in log n). In contrast, the algorithm used by the past work runs

in O(5I m2). In practice, we find that the runtime of our algorithm is dominated by

the ji5W calculation up front, and changing n from 1 to 10,000 increases the runtime

by less than a factor of 2. In contrast, an increase in m has a direct quadratic effect

on the runtime of the beam search algorithm. In our experiments, we found that even

with n set to 10,000 and m set to 200, our algorithm still ran almost 20 times faster.

2.5.2 Learning the Lexicon

This section describes our technique for learning the lexicon, A. The lexicon defines

the space of possible CCG parse trees for a given sentence. It consists of a set of

lexical entries, (IV, It, 1,), where l is the natural language word or phrase, it is the

syntactic type, and 1, is the lambda-calculus expression. We learn the lexicon from

a set of training samples which pair a sentence, "i, with a full regular expression, rT.

The goal of our learning algorithm is two-fold. We would like to generate a set of

lexical entries such that:

1. For each training sample i there exists a parse tree, t, which will generate the

correct regular expression, i.e. SEM-EQ(EVAL(t), ri)

2. The generated lexical entries will generalize well to new unseen data.

67

awaklb AWMAWWWO

(at least 3 letters , e : (A-Za-z){3,})

(at least 3, e/e : Ax.(W){3,}) (letters, e : [A-Za-z])

(at least, e/e/i : Ay.A. (W){y,}) (3, e : 3)

Figure 2-9: An example parse tree with lexical entries at its leaves.

Consider, for example, the parse in Figure 2-9. When given a training example

containing the sentence "at least 3 letters", and the regular expression [A-Za-z] {3, }

we would like our algorithm to generate the lexical entries:

(at least, e/i/e : AxAy.((){y,}))

(3, i : 3)

(letters, e : [A-Za-z])

In the process of generating the above lexical entries, our algorithm will also

generate many other incorrect lexical entries such as: (at least, i : 3). Thus the

resulting lexicon will generate valid parse trees which evaluate to many different

regular expressions, and we rely on our probabalistic model to choose the correct one

at test time.

Our lexicon learning algorithm has the following three components:

9 Initialization: We initialize the lexicon by generating a single lexical entry for

each training sample which pairs the full sentence, Vis, with the associated reg-

ular expression, ri. Formally, the lexicon is initialized as: A = {(ii, e : ri) =

1... n}

9 Candidates for Splitting: The initial A will perfectly parse the training

data, however it will not generalize at all to sentences which are not exactly

observed in the training data. Hence, in each iteration we refine the lexicon by

splitting existing lexical entries to generate more granular lexical entries which

will generalize better. Formally, the set of lexical entries to be further split

is defined as: Si = {tIt E N-BEST(-i) A SEM-EQ(EVAL(t), ri}, where N-BEST

68

concatenate concatenate
concatenate

repeat* a b c repeat* A repeat* x repeat* 1
a b c

(a) Original Tree (b) Parent Tree (c) Child Tree

Figure 2-10: The tree in (a) represents the lambda expression from the lexical entry
(with abc, e:. *abc. *). One possible split of this lexical entry generates the parent
lexical entry (with, e/e : Ax.(. *x. *)) and the child lexical entry, (abc, R :abc), whose
lambda expressions are represented by (b) and (c), respectively.

is the n-best algorithm described in the previous section, and SEM-EQ is the

DFA-based semantic equality calculation discussed in Section 2.4.1.

e Splitting Algorithm: For each lexical entry to be split, we add a set of new

lexical entries which contains the cross product of all binary splits of the natural

language and all binary splits of the lambda-calculus expression. The details of

this splitting process can be seen in Algorithm 2 and are discussed in detail in

the following section.

Splitting Lexical Entries

Each lexical entry consists of a sequence of n words aligned to a typed regular expres-

sion function, (wo:n, T : r). Our splitting algorithm generates new lexical entries for

each possible way to split a lexical entry into two, such that they can be recombined

to obtain the original lexical entry by using one of the two combinators discussed in

Section 2.3.2.6 This set is generated by taking the cross product of all binary splits

of the natural language and all binary splits of the typed regular expression function.

The set of binary splits of the natural language is simply { (W:j, Wj:n) j = 1 . .. n 1 -1,

and the set of binary splits of the lambda-calculus expression, S(r) is defined in the

following section. Each split s E S(r) with parent s, and child s, generates two

pairs of lexical entries, one for forward application, and one for backward application.

6This process is analogous to the syntactic unification process done by Kwiatkowski et al. (2010).

69

Function gen-var()
I return a new unused variable name

Function gen-entries(lg, s, sc)
return { (wO:j, T/T: sp) I0 j n - 1} U

{ (wj:nTc :sc) I 05j n-1} U

{ (wo:j, Tc :sc) I0 j n-1} U

{ (wj:n, T\Tc : sp) I 0<j<n-1}
Input: set of parse trees, T
Initialization:
S = {}
foreach t E T do

foreach lexical entry 1 c ti do
foreach non-terminal node n in the AST of 1, do

C(n) = children of n
c = IC(n)j
if n = concatenate then

foreach i E I... c do
foreach j E i + 1... c do

x gen-var()
SP = Ax.t with C(n)[i ... j] replaced with x
se = subtree rooted at n with C(n) = C(n)[i... j]
S = S U gen-entries(lV, sp, sc)

end
end

else if n E {and,or} then
V = all subsets of C(n)
foreach V E V do

x - gen-var()
sP= Ax.t with all nodes in V replaced with a single x

se =subtree rooted at n with C(n) = V
S = S U gen-entries(lv, s,, sC)

end

en

els

en
i

e

x gen.var()
s,= Ax.t with n replaced with x
sc =subtree rooted at n
S = S U gen-entries(lv, s,, sC)
I

end
end
Output: Set of splits, S

Algorithm 2: The algorithm for splitting existing lexical entries to generate new
more fine grain lexical entries. This is the implementation of SPLIT-LEX from

Algorithm 1.

70

Formally, the full set of new lexical entries generated is:

{(wo:j, T/Tc: s) |(0 < j n - 1) A (s E S(r))} U

{(wj:n,Tc :sc))(0 < j n - 1) A (s E S(r))} U

{(Wo:jTc : sc) , (0 j n - 1) A (s E S(r))} U

{(Wj:n, T\Tc : sp) 1(0 j n - 1) A (s E S(r))}

where T is the type of the original regular expressions, r, and Tc is the type of the

newly generated child, sc.

Splitting Regular Expression Lambda Functions We will explain the process

for splitting a lambda-calculus expression through a modified version of the AST

representation introduced in Section 2.3.1. In this description, the body of a lambda-

calculus expression will be represented by an AST which has a special node type for

lambda-calculus variables. Lambda function application becomes a tree substitution

operation which replaces the variable node with the AST of the argument. If r is an

AST lambda function, then each split, s, generates a child expression s, and a parent

expression sp such that r = sp D sc, where (represents lambda function application.

We consider two types of splits:

" Basic: For each node, n, in r besides the root node, we generate a split where

sc is the subtree rooted at node n. For such splits, sp is the lambda expression

r with n replaced with a bound variable, say x.

" Complex: We also consider a set of more complicated splits at each node

whose associated function type constant can take any number of arguments, i.e.

or, and, or cons. If C(n) are the children of node n, then we generate a split

for each possible subset, {VJV C C(n)}. Note that since concatenate is order

dependant, V must be contiguous for concatenate nodes. For each choice of

V, the child tree, sC, is a version of the tree rooted at node n pruned to contain

only the children in V. Additionally, the parent tree, sp, is generated from r by

replacing all the children in V with a single bound variable, say x. Figure 2-10

71

shows an example of such a split. In 2.6.4 we discuss our technique to avoid

generating an exponential number of'splits.

In either case, we only consider splits in which s, does not have any bound variables,

so its type, Tc, is always one of the basic types (e or i). The type of s, is then type of

the original expression, T augmented by an additional argument for the child type,

i.e. either T/T, or T\T.

Adding New Lexical Entries

Our model splits all lexical entries used in parses which generate correct regular

expressions, i.e. in Algorithm 1 all those in C, and adds all of the generated lexical

entries to A. In contrast, the previous work [143, 73] has a very conservative process

for adding new lexical entries. This process relies on a good initialization of the feature

weights associated with a new lexical entry. They perform this initialization using a

IBM Model 1 [21] alignment of the words in the training sentences with the names

of functions in the associated lambda calculus expression. Such an initialization is

ineffective in our domain since it has very few primitive functions and most of the

training examples use more than half of these functions. Instead, we add new lexical

entries more aggressively, and rely on the n-best parser to effectively ignore any lexicon

entries which do not generate high probability parses.

2.6 Applying the Model

2.6.1 Features

Recall from Section 2.3.3, that our feature function # factorizes into features on

individual lexical items and features over individual parse productions, as follows:

= #(l) + # /((cp, w) -+ (C, W1)(Cr, Wr))
lEtl (CpWp)-+(Cl,w 1) (CWr)etc

72

For each lexical entry, 1 = (lt, i, 1r), we generate 4 types of features: (1) a feature

for (1, lt, ir), (2) a feature for ly, (3) a feature for (it, 1,), and (4) a set of features

indicating whether 1, contains a string literal and whether the leaves of 1, contain

any exact character matches (rather than character range matches). For each parse

production, (cp, wp) -+ (c, Wi)(Cr, wr), we have features that combine all subsets of

the head word and CCG type, of the two children and the newly generated parent,

i.e. c,w,ciwi, cr and Wr.

2.6.2 Initialization

In addition to the sentence level initialization discussed in 3.3 we also initialize the

lexicon, A, with three other sets of lexical entries.

" Skip Word Entries: For every individual word in our training set vocabulary,

we add an identity lexical entry whose lambda expression is just a function

which takes one argument and returns that argument. This allows our parser

to skip semantically unimportant words in the natural language description, and

ensures that it generates at least one parse for every example in the dataset.

Including explicit entries in the lexicon for this skipping process allows us to

learning appropriate weights on these at training time. In contrast, the past

work has used a fixed, manually selected weight for word skipping [143, 73].

" Quoted String Entries: We add a lexical entry for each quoted string literal

in the natural language entries in the training set. Thus for the phrase, "lines

with 'abc' twice" we would add the lexical entry ('abc', e : abc).

" Number Entries: We also add lexical entries for both numeric and word

representations of numbers, such as (1, e : 1) and (one, e : 1).

We add these last two types of lexical entries because it does not make sense to try

to learn either of them from the data. There is an unbounded number of possible

quoted strings, and most of them appear only once in our dataset. Furthermore,

73

-----------------------

generating the correct lexical entries is trivial since quoted strings have a direct one-to-

one correspondence with the appropriate regular expression. Learning the connection

between logical numbers and their natural language representations is a well-studied

problem which requires considering sub-word units, and is thus outside of the scope

of this thesis.

At test time we also add both skip word lexical entries for every word in the test

set vocabulary as well as lexical entries for every quoted string literal seen in the test

queries. Note that the addition of these lexical entries requires only access to the test

queries and does not make use of the regular expressions (i.e. labels) in the test data

in any way.

2.6.3 Parameters

We initialize the weight of all lexical entry features except the identity features to

a default value of 1 and initialize all other features to a default weight of 0. We

regularize our log-linear model using a A value of 0.001. We use a learning rate

of a = 1.0, set n = 10, 000 in our n-best parser, and run each experiment with 5

random restarts and K = 50 iterations. We report results using the pocket algorithm

technique originated by Gallant (1990). Specifically, after each training iteration we

compute the fraction of the training samples which are correctly parsed using the

current weights. At testing time we use the feature weights which generated the

highest such score on the training data.

2.6.4 Constraints on Lexical Entry Splitting

To prevent the generation of an exponential number of splits, we constrain the lexical

entry splitting process as follows:

" We only consider splits at nodes which are at most a depth of 2 from the root

of the original tree.

" We limit lambda expressions to 2 arguments.

74

* We limit the resulting children in unordered node splits (and and or) to contain

at most 4 of the arguments.

These restrictions ensure the number of splits is at most a degree-4 polynomial of

the regexp size. 7

2.6.5 Optimizing Runtime

In practice we find the n-best parser described in 2.5.1 is fast enough that the

training runtime is dominated by the computation of the DFAs for the regexp of each

of the n-best parse trees. To improve the runtime performance we find the m most

likely regexps by summing over the n-best parse trees'. We calculate DFAs only

for these regexps, and include only parses which evaluate to one of these regexps in

the approximate gradient calculation from equation (2.7). This optimization is not

strictly necessary, because even without it our parser runs much faster than the beam

search parser. However we found that performing the optimization had no impact on

the resulting accuracy.

2.7 Experimental Setup

2.7.1 Dataset

Our dataset consists of 824 natural language and regular expression pairs gathered

using Amazon Mechanical Turk [1311 and oDesk [1031.' On Mechanical Turk we

asked workers to generate their own original natural language queries to capture a

subset of the lines in a file (similar to UNIX grep). In order to compare to example

based techniques we also ask the Mechanical Turk workers to generate 5 positive

and 5 negative examples for each query. On oDesk we hired a set of programmers

7The unification process used by Kwiatowski et al. (2010) bounded the number of splits similarly.
8 We set m to 200 in our experiments.
9This is similar to the size of the datasets used by past work at the time this work was originally

published.

75

to generate regular expressions for each of these natural language queries. For our

experiments, we split the dataset into 3 sets of 275 queries each and tested using

3-fold cross validation. We tuned our parameters separately on each development set

but ended up with the same values in each case.

2.7.2 Evaluation Metrics

We evaluate by comparing the generated regular expression for each sentence with the

correct regular expression using our DFA equivalence technique, SEM-EQ. As discussed

in 2.4.1 this metric is exact, indicating whether the generated regular expression is

semantically equivalent to the correct regular expression. Additionally, as discussed

in 2.6.2, our identity lexical entries ensure we generate a valid parse for every sen-

tence, so we report only accuracy instead of precision and recall.

2.7.3 Baselines

We compare our work directly to UBL, the state-of-the-art semantic parser from Kwiatkowski

et al. (2010). In consultation with the authors, we modified their publicly available

code to handle the lambda-calculus format of our regular expressions.

In order to better understand the gains provided by our model, we also compare to

versions of our model modified along three different axes: the parsing algorithm, the

lexicon induction algorithm and the equality algorithm. We considered two different

parsing algorithms:

" NBestParse: This is the parsing algorithm used in our full model as described

in Section 2.5.1.

" BeamParse: This modification to our model replaces the N-BEST procedure

from Algorithm 1 with the beam search algorithm used for parsing by past

semantic parsing algorithms [143, 73, 83]. Section 2.5.1 contrasts this algorithm

with our n-best parsing algorithm. We set the beam size to 200, which is

equivalent to the past work [143, 73, 83]. With this setting, the slow runtime

of this algorithm allowed us to run only two random restarts.

76

We consider two different lexical induction algorithms:

* SplitLexAll: This is the lexical induction algorithm used by our full model,

as described in Section 2.5.2, which generates new lexical entries by splitting

the lexical entries used in all of the correct parses.

" SplitLexTop: This is a modification to our model which passes only the

highest probability parse in C to SPLIT-LEX in Algorithm 1, instead of all

parses in C. This is more similar to the conservative splitting algorithm used

by the past work 1143, 73, 72J.

We consider three different equality algorithms:

" SemanticEq: This is the equivalence algorithm used in our full model, as

described in Section 2.4.1.

" StringEq: This is a modification to our model which replaces the SEM-EQ

procedure from Algorithm 1 with exact regular expression string equality as

described in Section 2.2.1.

* ExampleEq: This is a modification to our model which replaces SEM-EQ with

a procedure that evaluates the regexp on all the positive and negative examples

associated with the given query and returns true if all 10 are correctly classified.

This represents the performance of the example based equivalence techniques

used by the past work, as described in Section 2.2.1.

" HeuristicEq: This is a modification to our model which replaces SEM-EQ with a

smart heuristic form of semantic equality. Our heuristic procedure first flattens

the regexp trees by merging all children into the parent node if they are both of

the same type and of type or, and, or concatenate. It then sorts all children

of the and and or operators. Finally, it converts both regexps back to a flat

strings and compares these strings for equivalence. This process should be much

more effective than the local transformation equivalence used by the past work

as described in Section 2.2.1.

77

Model Percent Correct

UBL 36.5%
Our Full Model 65.5%

Table 2.1: Accuracy of our model compared to the state-of-the-art semantic parsing
model from Kwiatkowski et al. (2010).

Parsing Algorithm Equality Algorithm Lexical Induction Accuracy

BeamParse HeuristicEq SplitLexAll 9.4%
BeamParse HeuristicEq SplitLexTop 22.1%
NBestParse StringEq SplitLexAll 31.1%
NBestParse ExampleEq SplitLexAll 52.3%
NBestParse HeuristicEq SplitLexAll 56.8%
NBestParse SemanticEq SplitLexAll 65.5%

Table 2.2: Accuracy of our model as we change the parsing algorithm, the equality
algorithm, and the lexical induction algorithm.

2.8 Results

We can see from Table 2.1 that our model outperforms the state-of-art baseline algo-

rithm from Kwiatkowski et al. (2010). In fact we predict the correct regular expression

almost twice as often as the baseline.

The results in Table 2.2 show that all aspects of our model are important to its

performance. In particular, we can see that the use of semantic equality is critical to

our technique. Our full model outperforms exact string equality (StringEq) by over

30%, example based equality (ExampleEq) by over 13% and our smart heuristic equal-

ity procedure (HeuristicEq) by 9%. These improvements confirm that calculating

exact semantic equality during the learning process helps to disambiguate language

meanings. Additionally, we can see that using the beam search parsing algorithm of

the past work (BeamParse) significantly degrades performance, even if we change the

lexical induction algorithm to split only the lexical entries used in the most probable

parse (SplitLexTop).

78

Percentage of Data 15% 30% 50% 75%

NBestParse-HeuristicUnify 12.4% 26.4% 39.0% 45.4%_
Our Model 29.0% 50.3% 58.7% 65.2%

Relative Gain 2.34x 1.91x 1.51x 1.43x

Table 2.3: Accuracy for varying amounts of training data. The relative gain line
shows the accuracy of our model divided by the accuracy of the baseline.

2.8.1 Effect of Additional Training Data

Table 2.3 shows the change in performance as we increase the amount of training

data. We see that our model provides particularly large gains when there is a small

amount of training data. These gains decrease as the amount of training data in-

creases because the additional data allows the baseline to learn new lexical entries for

every special case. This reduces the need for the fine-grained lexicon decomposition

which is enabled by our semantic equality algorithm. For example, our model will

learn separate lexical entries for "line", "word", "starting with", and "ending with". The

baseline instead will just learn separate lexical entries for every possible combination

such as "line starting with", "word ending with", etc. Our model's ability to decom-

pose, however, allows it to provide equivalent accuracy to even the best baseline with

less than half the amount of training data. Furthermore, we would expect this gain

to be even larger for domains with more complex mappings and a larger number of

different combinations.

2.8.2 Beam Search vs. n-Best

A critical step in the training process is calculating the expected feature counts over all

parses that generate the correct regular expression. In 2.5.1 we discussed the trade-

off between approximating this calculation using the n-best parses, as our model does,

verses the beam search model used by the past work. The effect of this trade-off can

be seen clearly in Figure 2-11. The n-best parser always represents the n-best parses,

which is set to 10,000 in our experiments. In contrast, the beam search algorithm fails

to represent the top parse almost 20% of the time and represents less than 15% of the

79

1 fnfn
-e- n-Best

- Beam Search
-d 80

60

40

20

0
0 5,000 10,000 15,000

Number of Top Parses

Figure 2-11: This graph compares the percentage of the top-n parses which are rep-
resented by the n-best approximation used in our model (n-Best) to the set of parses
represented by the beam search approximation used by the past work (Beam Search).
The n-Best algorithm does not represent any parses beyond the top 10,000, but it
represents all of these parses. In contrast, the Beam Search algorithm is able to rep-
resent parses past the top 10,000 as the cost of missing 85% of the parses in the top
10,000.

10,000 most likely parses. This difference in representation ability is what provides the

more than 30% difference in accuracy between the BeamParse-HeuristicEq version of

our model and the NBestParse-HeuristicEq version of our model as shown in Table 2.2.

2.9 Conclusions and Future Work

In this chapter, we presented a technique for learning to translate single sentence

descriptions of computer tasks into computer programs which can perform these tasks.

We demonstrated our technique in the domain of text processing where the generated

computer programs are regular expressions. The key idea behind our approach was to

integrate a DFA based form of semantic equality into the learning process to handle

training samples whose meaning does not decompose. Our algorithm iteratively learns

both the lexicon and parameters of a probabilistic CCG which is used to perform the

80

0

translation. Experiments on a dataset of natural language regular expression pairs

showed that integrating semantic equality into our model allows it to significantly

outperform the prior state-of-the-art techniques.

We performed our work on the domain of regular expressions, for which semantic

equality is computationally tractable. In more general domains, semantic equality

is undecidable. However, as we discussed in Section 2.4.1 the performance of our

technique degrades gracefully as we approximate semantic equality rather than com-

puting it exactly. Thus, we believe our work motivates the use of semantic inference

techniques for language grounding in more general domains through the use of some

form of approximation or by restricting its use in some way. For example, SAT and

SMT solvers have seen significant success in performing semantic inference for pro-

gram induction and hardware verification despite the computational intractability of

these problems in the general case.

81

.

82

Chapter 3

Automatically Solving Math Word

Problems

In the previous chapter we tackled the problem of translating single sentence task

descriptions into computer programs in the context of regular expressions. Complex

tasks clearly cannot be described in a single sentence, however. So in this chapter we

tackle the more complex problem of translating multi-sentence task descriptions into

programs. We tackle this problem in the context of natural language math problems.

Our task is to translate the natural language description of a math problem into a

system of equations which can be solved to generate the solution to the problem. As

with regular expressions, the system of equations is a constrained type of computer

program. The main additional challenge beyond those discussed in Chapter 2 is that

the natural language often implies complex cross-sentence relationships which are not

stated explicitly in the text. We tackle this challenge with an algorithm which reasons

jointly across sentences to construct the system of linear equations, while simultane-

ously recovering an alignment of the variables and numbers in these equations to the

problem text. To handle the large space generated by the joint inference algorithm,

we utilized both the semantic equivalence and program execution capabilities of the

underlying symbolic math system. We show that using these techniques results in

significantly more effective learning.

83

Word problem

An amusement park sells 2 kinds of tickets. Tickets for children cost $1.50.
Adult tickets cost $4. On a certain day, 278 people entered the park. On
that same day the admission fees collected totaled $792. How many children
were admitted on that day? How many adults were admitted?

Equations

x + y = 278
1.5x + 4y = 792

Solution

x = 128 y = 150

Figure 3-1: An example algebra word problem. Our goal is to map a given problem
to a set of equations representing its algebraic meaning, which are then solved to get
the problem's answer.

3.1 Introduction

Algebra word problems concisely describe a world state and pose questions about

it. The described state can be modeled with a system of equations whose solution

specifies the questions' answers. For example, Figure 3-1 shows one such problem.

The reader is asked to infer how many children and adults were admitted to an

amusement park, based on constraints provided by ticket prices and overall sales.

This chapter studies the task of learning to automatically solve such problems given

only the natural language.

Challenge Solving these problems requires reasoning across sentence boundaries

to find a system of equations that concisely models the described semantic relation-

ships. For example, in Figure 3-1, the total ticket revenue computation in the second

equation summarizes facts about ticket prices and total sales described in the second,

third, and fifth sentences. Furthermore, the first equation models an implicit seman-

tic relationship, namely that the children and adults admitted are non-intersecting

subsets of the set of people who entered the park.

84

Summary of Approach Our model defines a joint log-linear distribution over full

systems of equations and alignments between these equations and the text. The space

of possible equations is defined by a set of equation templates, which we induce from

the training examples, where each template has a set of slots. Number slots are filled

by numbers from the text, and unknown slots are aligned to nouns. For example,

the system in Figure 3-1 is generated by filling one such template with four specific

numbers (1.5, 4, 278, and 792) and aligning two nouns ("Tickets" in "Tickets for

children", and "tickets" in "Adult tickets"). These inferred correspondences are used

to define cross-sentence features that provide global cues to the model. For instance,

in our running example, the string pairs ("$1.50", "children") and ("$4","adults") both

surround the word "cost," suggesting an output equation with a sum of two constant-

variable products.

Key Ideas We handle the large search space resulting from our joint model by

utilizing the semantic equivalence and program execution capabilities of the underly-

ing symbolic math platform. By using the platform to detect the semantic equality

between potential systems of equations, we are able to avoid the duplicated compu-

tational cost of considering two different, but semantically equal, systems during the

inference process. Furthermore, using the platform to numerically solve possible full

systems of equations to generate numeric solutions, enables us to use the solution to

help determine whether or not the system of equations correctly represents the nat-

ural language question. For example, if our solution indicates a fractional number of

tickets, that is probably wrong, but a fractional price is perfectly reasonable. Rather

than hand writing rules like these, we include the potential correspondences as addi-

tional features in our log-linear model, allowing us to learn them from the training

data.

Evaluation We consider learning with two different levels of supervision. In the

first scenario, we assume access to each problem's numeric solution (see Figure 3-1)

for most of the data, along with a small set of seed examples labeled with full equa-

85

..........

tions. During learning, a solver evaluates competing hypotheses to drive the learning

process. In the second scenario, we are provided with a full system of equations for

each problem. In both cases, the available labeled equations (either the seed set, or

the full set) are abstracted to provide the model's equation templates, while the slot

filling and alignment decisions are latent variables whose settings are estimated by

directly optimizing the marginal data log-likelihood.

We evaluate our approach on three different corpora: a newly gather corpus of

514 algebra word problems from Algebra.com, the arithmetic dataset from [581, and

a new corpus of finance problems. On the algebra dataset our algorithm generates

the correct system of equations for over 66% of the word problems. In contrast, a

baseline model which does not utilize the semantic equality and execution capabilities

of the underlying platform generates the correct equations for only 51% of the prob-

lems. Furthermore, on the arithmetic dataset our approach outperforms the system

from [58] which was engineered specifically for that type of data.

3.2 Related Work

Our work is related to three main areas of research: automatic word problem solvers,

natural language grounding, and information extraction.

3.2.1 Automatic Word Problem Solvers

The most related work to ours has also focused on solving natural language math

problems. Early work in this area utilized hand-engineered rule-based techniques

to solve math word problems in specific domains [99, 82]. In contrast, our work

is the first to tackle the problem using statistical techniques which learn from only

a training corpus of questions paired with equations or answers rather that using

hand-engineered rules.

Since we originally published the work described in this chapter, interest in this

area has exploded, generating much follow-on research. For example, Hosseini et al.

(2014) presents a system for solving natural language addition and subtraction prob-

86

lems by learning to categorize the central verbs of the problem into one of seven cat-

egories such as giving or taking of items. Seo et al. (2014) grounds natural language

phrases from geometry problems to visual components of the associated diagrams,

but do not actually attempt to solve the geometry problems. Roy and Roth (2015)

generates a single expression tree which spans all of the sentences in the problem. The

tree can include all four arithmetic operators, but cannot handle multiple equations

as our work can.

3.2.2 Natural Language Grounding

As discussed in Section 2.2.1 there is a large body of work mapping natural language

to some form of logical representation. Our work differs from this work in both the

complexity of the cross sentence relationships, and our use of the underlying platform.

Cross Sentence Relationships

Most past work on language grounding has considered only single sentences in iso-

lation. Techniques that consider multiple sentences typically do so with either only

implicit cross-sentence reasoning, or very simple explicit reasoning.

" Single Sentences in Isolation Much of the past work on language grounding

has focused on grounding questions to knowledge-base queries, and thus is in-

herently single-sentence in nature [142, 138, 69, 108, 130, 70, 45, 139, 73, 72, 31,

23, 22, 12, 74]. Most other grounding work has also focused on single sentences.

For example, Matuszek et al. (2012) consider single sentence descriptions of a

subset of the objects in a scene. Additionally, work on grounding to control ap-

plications has utilized multi-sentence documents, but considered each sentence

in isolation. For example, the techniques from Branavan et al. (2011a, 2011b,

2012) select an individual sentence from a strategy document to interpret and

apply in a given situated context.

" Implicit Cross-Sentence Reasoning Most of the work on grounding that

considers multiple sentences has done so in the context of a situated control

87

application, where the only cross sentence reasoning considered comes from the

situated context itself. For example, Branavan et al. (2009, 2010) consider

direction following in the context of the Microsoft Windows GUI. Their tech-

nique serially interprets individual sentences such that the only cross-sentence

interaction comes from the changes to the GUI state generated by the actions

from the preceding sentences. The techniques used by Artzi and Zettlemoyer

(2013), Kim and Mooney (2012), Vogel and Jurafsky (2010) and Chen and

Mooney (2011, 2012) work similarly in the context of a virtual world. Finally

the technique of Tellex et al. (2014) does so in a real world robotic context.

* Explicit Cross Sentence Reasoning Some prior work has explicitly per-

formed cross sentence reasoning, however this work has only considered rela-

tively simple cross-sentence relationships. For example, Zettlemoyer and Collins

(2009) consider coreference relationships by performing semantic parsing in a

two step process. In the first step, they parse each sentence completely in-

dependently, but explicitly mark referring expressions in the resulting logical

representation. In the second step, they resolve those referring expressions to

one of the logical entities generated by a preceding sentence. Additionally,

Artzi and Zettlemoyer (2011) manually define a cross sentence loss function

which tries to encourage agreement between machine utterances and the corre-

sponding human utterances. Finally, Lei et al. (2013) generate a tree structure

representing a computer program input parser by assuming that the natural

language describes the program inputs in serial order. In contrast, we consider

cross-sentence relationships such as those in Figure 3-1 which are considerably

more complex than simple coreference or tree structures.

Utilizing the Underlying Computer Platform

Our work utilizes the underlying platform to determine both semantic equivalence

and generate execution outcomes. Our use of semantic equivalence is novel and has

not been considered by prior work. Some prior work, however, has utilized the exe-

88

cution capabilities of the underlying platform. For example, Branavan et al. (2009,

2010) learns to interpret natural language instructions purely by observing the out-

come of actions executed in the Windows GUI. Similarly, Branavan et al. (2011,

2012) learns to interpret a strategy guide by observing the game score received from

the outcome of actions taken in a computer game. Additionally, both Berant et al.

(2013) and Kwiatkowski et al. (2013) generate possible interpretations of a natural

language question, execute these against a knowledge-base, and use the results of that

execution in the learning process. Finally, as discussed above, much of the work in in-

struction interpretation utilizes the execution capabilities of the platform to generate

the appropriate situated context for a given instruction during learning [5, 29, 27, 128].

3.2.3 Information Extraction

Our approach is related to work on template-based information extraction, where the

goal is to identify instances of event templates in text and extract their slot fillers.

Most work has focused on the supervised case, where the templates are manually

defined and data is labeled with alignment information, e.g. [50, 87, 62, 110]. However,

some recent work has studied the automatic induction of the set of possible templates

from data [25, 111]. In our approach, systems of equations are relatively easy to

specify, providing a type of template structure. However, our data does not contain

the alignments, which we instead model with latent variables. Furthermore, template

slots in information extraction typically have well-defined domain-specific meanings

which align to a relatively constrained set of natural language embodiments. In

contrast, our mathematical equations have no predefined meanings associated with

them, and can align to a much more diverse space of natural language embodiments.

For example a summation in an equation could refer to many different real world

situations described in the natural language, such as a person being given additional

goods, two different subsets of a larger set, the total income across a set of products, or

many other quite different situations. Finally, mapping to a semantic representation

that can be executed allows us to leverage weaker supervision during learning.

89

3.3 Mapping Word Problems to Equations

We map word problems to equations using a derivation which contains two compo-

nents: (1) a template which defines the overall structure of the equation system, and

(2) alignments of the slots in that template to the numbers and nouns in the text.

We use the training data to both determine the space of possible derivations as well

as learn a probability model to choose the best derivation for a given word problem.

Specifically, the space of possible templates is induced from the data at training time.

Furthermore, both the choice of template, and the alignments are highly ambiguous,

and the choice of template is informed by the availability of good alignments. So we

model these two choices jointly using a log-linear model.

Figure 3-2 shows both components of two different derivations. The template

dictates the form of the equations in the system and the type of slots in each equation:

u slots represent unknowns and n slots are for numbers that must be filled from the

text. In Derivation 1, the selected template has two unknown slots, ui and u2, and

four number slots, n, to n4. Slots can be shared between equations, for example, the

unknown slots ui and u 2 in the example appear in both equations. Slots may have

different instances, for example ui and ul are the two instances of ui in the example.

We align each slot instance to a word in the problem. Each number slot n is

aligned to a number, and each unknown slot u is aligned to a noun. For example,

Derivation 1 aligns the number 278 to n1, 1.50 to n2, 4 to n3 , and 792 to n4. It also

aligns both instances of ui (e.g., u{ and ul) to "Tickets", and both instances of U 2 to

"tickets". In contrast, in Derivation 2, instances of the same unknown slot (e.g. uI

and u2) are aligned to two different words in the problem (different occurrences of the

word "speed"). This allows for a tighter mapping between the natural language and

the system template, where the words aligned to the first equation in the template

come from the first two sentences, and the words aligned to the second equation come

from the third.

Given an alignment, the template can then be instantiated: each number slot n

is replaced with the aligned number, and each unknown slot u with a variable. The

90

Derivation 1

An amusement ark sells 2 kinds of tickets. for children cost

$ 1.50 . Adult cost $. On a cert . y, people entered

Word the park. On that sain day the d on fe ected totaled $
problem How many childr n were a da . How many adul ere

admitted?

Aligned x x
template

InstantiatEd x + y - 278 = 0 1.5x + 4y - 792 = 0
equa-
tions

x = 128
Answery = 150

Derivation 2

A motorist drove hours at one s eed and then fore hours at another

He cov d a distance of kilometer' If he had traveled
Wods at the S s d 'lr at .the second ,he wouli4ave

problem covere ilometers. speeds?

Aligned 2 2
tem~lni x U + n2 x a2 - A = 0 'n4 X U1 + n5 X U2-" 0

template

InstantiatEd 2x + 3y - 252 = 0 4x + ly - 244 = 0
equa-
tions

x = 48
Answer_ y = 52

Figure 3-2: Two complete derivations for two different word problems. Derivation 1

shows an alignment where two instances of the same slot are aligned to the same word

(e.g., ul and u2 both are aligned to "Tickets"). Derivation 2 includes an alignment

where four identical nouns are each aligned to different slot instances in the template

(e.g., the first "speed" in the problem is aligned to uI).

91

output system of equations is then solved by the underlying mathematical system

to generate the final answer. In the following, we formally define both the space of

possible derivations, and the probability model we use to choose the best derivation.

3.3.1 Derivations

Definitions

Let X be the set of all word problems. A word problem x E X is a sequence of k

words (w 1 , ... Wk). Also, define an equation template t to be a formula A = B, where

A and B are expressions. An expression A is one of the following:

* A number constant f.

" A number slot n.

" An unknown slot u.

" An application of a mathematical relation R to two expressions (e.g., ni x u1).

We define a system template T to be a set of I equation templates {to, ... , ti}. T

is the set of all system templates. Unknown slots may occur more than once in a

system template, to allow variables to be reused in different equations. We denote a

specific instance i of a slot, u for example, as u'. For brevity, we omit the instance

index when a slot appears only once. To capture a correspondence between the text

of x and a template T, we define an alignment p to be a set of pairs (w, s), where w

is a token in x and s is a slot instance in T.

Given the above definitions, an equation e can be constructed from a template

t where each number slot n is replaced with a real number, each unknown slot u

is replaced with a variable, and each number constant f is kept as is. We call the

process of turning a template into an equation template instantiation. Similarly, an

equation system E is a set of 1 equations {eo,... , e}, which can be constructed by

instantiating each of the equation templates in a system template T. Finally, an

answer a is a tuple of real numbers.

92

An amusement park sells 2 kinds of tickets. Tickets for children cost

$ 1.50 . Adult tickets cost $ 4. On a certain day, 278 people entered

the park. On that same day the admission fees collected totaled $ 792

How many children were admitted on that day? How many adults were

admitted?

1 1
ui~ui-ni= 0

n2 xu2+n 3 Xu2-n4 0

Figure 3-3: The first example problem and selected system template from Figure 3-

2 with all potential aligned words marked. Nouns (boldfaced) may be aligned to

unknown slot instances ui, and number words (highlighted) may be aligned to number

slots ni.

We define a derivation y from a word problem x to an answer as a tuple (T, p, E, a),

where T is the selected system template, p is an alignment between T and x, E is

the system of equations generated by instantiating T using x through p, and a is the

answer generated by solving T. Note that derivations are uniquely defined by the

choice of T and p, and we only include E and a for notational convenience. Finally,

let Y be the set of all derivations.

The Space of Possible Derivations

We aim to map each word problem x to an equation system E. The space of equation

systems considered is defined by the set of possible system templates T and the words

in the original problem x, that are available for filling slots. We generate T from the

training data, as described in Section 3.4.1. Given a system template T C T, we create

an alignment p between T and x. The set of possible alignment pairs is constrained as

follows: each number slot n C T can be aligned to any number in the text, a number

word can only be aligned to a single slot n, and must be aligned to all instances of

that slot. Additionally, an unknown slot instance u E T can only be aligned to a

noun word. A complete derivation's alignment pairs all slots in T with words in x.

Figure 3-3 illustrates the space of possible alignments for the first problem and

system template from Figure 3-2. Nouns (shown in boldface) can be aligned to any

of the unknown slot instances in the selected template (t4, y, U2 , and u2 for the

93

template selected). Numbers (highlighted) can be aligned to any of the number slots

(ni, n2 , n3 , and n4 in the template).

3.3.2 Probabilistic Model

Both the choice of system template and the choice of alignment are highly ambiguous,

leading to many possible derivations y E Y for each word problem x E X. We

discriminate between competing analyses using a log-linear model, which has a feature

function < : X x Y -+ Rd and a parameter vector 0 E Rd. The probability of a

derivation y given a problem x is defined as:

p(yIX; 0) = > X'

Section 3.7 defines the full set of features used.

At test time we consider two different metrics, generating the correct full system

of equations, or generating just the correct numerical answer. These two metrics are

highly correlated, since the answer is generated deterministically from the system of

equations. They are not equivalent, however, since multiple systems of equations can

generate the same numerical answer.

The first metric requires us to find the most likely system of equations E given a

problem x, assuming the parameters 0 are known:

f (x) = arg maxp(Elx; 0)
E

Here, the probability of the system of equations is marginalized over template selection

and alignment:

p(EIc; 0) = p(ylx; 0) (3.1)
yEy

s.t. EQ(y)=E

where EQ(y) extracts the system of equations E out of derivation y.

For the second metric, we find the most likely answer a by again marginalizing

94

over templates and alignments such that:

f (x) = arg max p(ylx; 0)
yEY

s.t. AN(y)=a

where AN(y) extracts the answer a out of derivation y.

In both cases, the distribution over derivations y is modeled as a latent variable.

We use a beam search inference procedure to approximately compute Equations 3.1

and 3.2, as described in Section 3.5.

3.4 Learning

To learn our model, we need to induce the structure of system templates in T and

estimate the model parameters 0. This process can be driven by supervision that

provides a system of equations E for all problems, or by weaker supervision that

provides only an answer a for most problems.

3.4.1 Template Induction

We generate the space of possible system templates T from a set of n training ex-

amples {(Xi, Ej) : i = 1, . . . , n}, where xi is a word problem and Ej is a system of

equations. Note that when some of the training data contains only answers, we gen-

erate the templates from the subset of the data labeled with full equation systems.

To generalize a system of equations E to a system template T we:

1. Extract, nz, all numbers contained in x.

2. Replace each number m in E with a number slot, if m is contained in nx.

3. Replace each variable with an unknown slot.

In this way, numbers not mentioned in the problem text automatically remain in

the template as constants. This allows us to solve problems that require numbers

95

Word problem

A chemist has a solution that is 18 % alcohol and one that is 50 % alcohol.
He wants to make 80 liters of a 30 % solution. How many liters of the 1$:
% solution should he add? How many liters of the 30 % solution should he
add?

Labeled equations

18 x 0.01 x x + 50 x 0.01 x y = 30 x 0.01 x 80
x + y = 80

Induced template system

ni x 0.01 x Ul + n2 X 0.01 X U 1 - n3 X 0.01 x n4

2 2=7n5U1 + U 2 =n

Figure 3-4: During template induction, we automatically detect the numbers in the
problem (highlighted above) to generalize the labeled equations to templates. Num-
bers not present in the text are considered part of the induced template.

that are implied by the problem semantics rather than appearing directly in the text,

such as the percent problem in Figure 3-4.

3.4.2 Parameter Estimation

For parameter estimation, we assume access to n training examples {(xi, Vj) : i =

1, . .. , n}, each containing a word problem xi and a validation function Vi. The

validation function V : Y -+ {0, 1} maps a derivation y E Y to 1 if it is correct, or 0

otherwise.

We can vary the validation function to learn from different types of supervision.

In Section 3.9 we will use validation functions that check whether the derivation y

has either the correct system of equations E, or the correct answer a. Specifically, we

will consider two scenarios:

* A fully supervised scenario where the validation function for all problems has

access to the correct system of equations E.

" A semi-supervised scenario where the correct system of equations E is available

for only a subset of the problems, while the validation function for the rest of

96

the problems has access to only the correct answer a.

Note that in neither scenario do we have access to the alignments P in the full

derivation y. Thus, we estimate 0 by maximizing the conditional log-likelihood of the

data, marginalizing over all valid derivations:

= S logp(yli; 6) - 2

i yeY v<OI
sAt. Vj(y)=1

where v is the parameter index, and A is a meta-parameter controlling the level of

regularization. We use L-BFGS [101] to optimize the parameters. The gradient of

the individual parameter 63 is given by:

Do
= Ep(ylx%,Vi(y)=1;O) [#5(xi, Y)] - Ep(ylxi;o) [kb(X, y)] - A6j (3.2)

which is the standard log-linear gradient, where the first term is the expected feature

counts in the correct derivations for xi, the second term is the expected feature counts

in all valid derivations for xi, and the third term is the regularization. Section 3.5

describes how we approximate the first two terms of the gradient using beam search.

3.5 Inference

Computing the second expectation in Equation 3.2 requires summing over all tem-

plates and all possible ways to instantiate them. This space is exponential in the

number of slots in the largest template in T, the set of available system templates.

Therefore, we approximate the computation using a beam search. We initialize the

beam with all templates in T and iteratively align slots from the templates in the

beam to words in the problem text. For each template, the next slot to be considered

is selected according to a predefined canonicalized ordering for that template. After

each iteration we prune the beam to keep the top-k partial derivations according to

the model score. When pruning the beam, we allow at most 1 partial derivations for

each template, to ensure that a small number of templates does not monopolize the

97

Input: Word problem x, the set of equation system templates T, and the beam
size k.

Definitions:

e d = (dT, dz) is a partial derivation where dj is a (possibly partial)
sequence of words aligned to the slots in the system template dT.

Functions:

" COMPLETE(d) indicates whether or not dg contains alignments for every
slot in dT.

" AUGMENT(d, w) generates a new partial derivation by adding word w to
dig.

" kBEST(B, k) scores all the partial derivations in B based on their current
set of features, and then returns the k highest scoring derivations.

Initialization:

* B = {(T, 0) 1 T E T} : Initialized the beam with a partial derivation
for each template in T, with an empty vector of alignments for each.

While: B contains partial derivations with unfilled slots

Bnext = 0

ForEach: d E B

If: d has no empty slots

Bnext = Bnext U d

Else:

ForEach: valid word, w E x for the next unaligned slot in dT

Bnext = Bnext U AUGMENT(d, w)

B = kBEST(Bnext, k)

Output: k-Best list B
Algorithm 3: k-Best search algorithm. We run this for increasing values of f until
the resulting k-best set is non-empty.

beam. We continue this process until all templates in the beam are fully instantiated.

The details of the algorithm can be seen in Algorithm 3.

During learning we also compute the first term in the gradient (Equation 3.2) using

our beam search approximation. Depending on the available validation function V

98

(as defined in Section 3.4.2), we can accurately prune the beam for the computation

of this part of the gradient. Specifically, when we have access to the labeled system

of equations for a given sample, we can constrain the search to consider only partial

hypotheses that could possibly be completed to produce the labeled equations.

3.6 Integrating Semantic Equality and Execution Out-

comes

Performing joint inference over the choice of equation systems and alignments leads

to a very large search space which can be difficult to explore efficiently. To man-

age this large search space, we take advantage of the capabilities of the underlying

mathematical platform which allows us to compute the semantic equality between

systems of equations, as well as utilize the execution outcomes resulting from solving

the systems of equations.

3.6.1 Semantic Equality

While the space of possible systems of equations is very large, many syntactically

different systems of equations are actually semantically equivalent. For example, the

phrase "John is 3 years older than Bill" can correctly generate either the equation

j = b + 3 or the equation j - 3 = b. These two equations are semantically equivalent,

yet naive template generation would produce a separate template from each of these

equations. To avoid this redundancy, we can utilize the inference capabilities of the

underlying mathematical computer system. Specifically, during template generation,

we use the mathematical solver Maxima [89J to canonicalize the templates into a

normal form representation. The normal form is produced by symbolically solving

for the unknown slots in terms of the number slots and the constants.

99

Slot Signatures

In a template like s1+s2 = 83, the slot si is distinct from the slot S2, but semantically

these two slots are equivalent. Thus to share features between such slots, we generate

a signature for each slot and slot pair, such that semantically equivalent slots have

identical signatures. The signature for a slot indicates the system of equations it

appears in, the specific equation it is in, and the terms of the equation it is a part of.

Pairwise slot signatures concatenate the signatures for the two slots as well as indi-

cating which terms are shared. This allows, for example, n2 and n3 in Derivation 1 in

Figure 3-2 to have the same signature, while the pairs (n2, ui) and (n3 , ui) have dif-

ferent signatures. To share features across templates, slot and slot-pair signatures are

generated for both the full template, as well as for each of the constituent equations.

3.6.2 Execution Outcomes

Given a derivation, y, we can also utilize the underlying mathematical system to

solve the resulting system of equations to generate a final numerical answer, a. We

can utilize this answer in the learning process to help us determine whether or not

the derivation is likely to be correct. For example, if y aligns a given unknown, u1 ,

to the word tickets, and the solution generates a fractional number for ul, then the

derivation is probably wrong. However, if ul is aligned to price then the derivation

may be correct. Similarly, if ui is aligned to price and the solution generates a

negative result, then the derivation is probably wrong, but if ui is aligned to profit

the derivation may be correct. To avoid the need to hand generate rules like these,

we integrate these correlations into the model as additional features similar to the

rest of the features discussed in Section @3.7.

3.7 Features

The features O(x, y) are computed for a derivation y and problem x and cover all

derivation decisions, including template and alignment selection. Many of these fea-

100

tures are generated using part-of-speech tags, lematizations, and dependency parses

computed with standard tools.1 For each word in y aligned to a number slot, we also

identify the closest noun in the dependency parse. For example, the noun for 278 in

Derivation 1, Figure 3-2 would be "people." Most of the features are calculated based

on these nouns, rather than the number words themselves.

In addition to the execution outcome features discussed in Section 3.6.2, we

compute three other types of features: document level features, features that look

at a single slot entry, and features that look at pairs of slot entries. Table 3.1 lists

all the features used. Unless otherwise noted, when computing slot and slot pair

features, a separate feature is generated for each of the signature types discussed in

Section 3.6.1.

3.7.1 Document level features

Oftentimes the natural language in x will contain words or phrases which are indica-

tive of a certain template, but are not associated with any of the words aligned to

slots in the template. For example, the word "chemist" might indicate a template like

the one seen in Figure 3-4. We include features that connect each template with the

unigrams and bigrams in the word problem. We also include an indicator feature for

each system template, providing a bias for its use.

3.7.2 Single Slot Features

We include three different types of features looking at individual slots.

Query Features The natural language x always contains one or more questions

or commands indicating the queried quantities. For example, the first problem in

Figure 3-2 asks "How many children were admitted on that day?" The queried quan-

tities, the number of children in this case, must be represented by an unknown in

the system of equations. We generate a set of features which look at both the word

'In our experiments these are generated using the Stanford parser 1341

101

Document level
Unigrams
Bigrams

Single slot
Has the same lemma as a question object
Is a question object
Is in a question sentence
Is equal to one or two (for numbers)
Word lemma X nearby constant

Slot pair
Dep. path contains: Word
Dep. path contains: Dep. Type
Dep. path contains: Word X Dep. Type
Are the same word instance
Have the same lemma
In the same sentence
In the same phrase
Connected by a preposition
Numbers are equal
One number is larger than the other
Equivalent relationship

Solution Features
Is solution all positive
Is solution all integer

Table 3.1: The features divided into categories.

overlap and the noun phrase overlap between slot words and the objects of a question

or command sentence. We also compute a feature indicating whether a slot is filled

from a word in a question sentence.

Small Number Indicators Algebra problems frequently use phrases such as "2

kinds of tickets" (e.g., Figure 3-2). These numbers do not typically appear in the

equations. To account for this, we add a single feature indicating whether a number

is one or two.

Features for Constants Many templates contain constants which are identifiable

from words used in nearby slots. For example, in Figure 3-4 the constant 0.01 is

related to the use of "%" in the text. To capture such usage, we include a set of

102

lexicalized features which concatenate the word lemma with nearby constants in the

equation. These features do not include the slot signature.

3.7.3 Slot Pair Features

The majority of features we compute account for relationships between slot words.

This includes features that trigger for various equivalence relations between the words

themselves, as well as features of the dependency path between them. We also include

features that look at the numerical relationship of two numbers, where the numeric

values of the unknowns are generated as discussed in Section 3.6.2. This helps

recognize that, for example, the total of a sum is typically larger than each of the

(typically positive) summands.

Additionally, we have a single feature looking at shared relationships between pairs

of slots. For example, in Figure 3-2 the relationship between "tickets for children" and

"$1.50" is "cost". Similarly the relationship between "Adult tickets" and "$4" is also

"cost". Since the actual nature of this relationship is not important, this feature is not

lexicalized, instead it is only triggered by the equality of the representative words.

We consider two cases: subject-object relationships where the intervening verb is

equal, and noun-to-preposition object relationships where the intervening preposition

is equal.

3.8 Experimental Setup

3.8.1 Datasets

We show results for three different datasets: Algebra, Arithmetic and Finance. The

Algebra dataset is our main dataset and all results in Section 3.9 are for this dataset

unless otherwise indicated.

Algebra We collected a new dataset of algebra word problems from Algebra.com,

a crowd-sourced tutoring website. The questions were posted by students for mem-

103

Dataset Algebra Arithmetic Finance

probjems 514 395 90
#snecs1616 1137 179sentence

words 19357 11037 2632
Vocabulary si ze 2352 1429 336

Mean words per problem . 37 28 29
Mean sentences per problem 3.1 2.9 2.0

Mean nouns per problem 13.4 10.4 9.9

unique equation systems 28 9 16
Mean slots per system 7 3 4

Mean derivations per problem 4M 125 634

Table 3.2: Dataset statistics.

bers of the community to respond with solutions. Therefore, the problems are highly

varied, and are taken from real problems given to students. We heuristically filtered

the data to get only linear algebra questions which did not require any explicit back-

ground knowledge. From these we randomly chose a set of 1024 questions. As the

questions are posted to a web forum, the posts often contained additional comments

which were not part of the word problems and the solutions are embedded in long

free-form natural language descriptions. To clean the data we asked Amazon Me-

chanical Turk workers to extract from the text: the algebra word problem itself, the

solution equations, and the numeric answer. We manually verified both the equations

and the numbers to ensure they were correct. To ensure each problem type is seen

at least a few times in the training data, we removed the infrequent problem types.

Specifically, we induced the system template from each equation system, as described

in Section 3.4.1, and removed all problems for which the associated system template

appeared less than 6 times in the dataset. This left us with 514 problems. Problems

in this dataset utilize all four arithmetic operators.

Arithmetic We also report results for the arithmetic dataset collected by Hosseini

et al. (2014) in order to compare directly to the ARIS system introduced in that

paper. This dataset contains only addition and subtraction problems solved with a

single equation.

104

Finance To ensure that our techniques generalize to other domains, we also col-

lected a dataset of 90 finance problems extracted from finance class homework as-

signments found on-line. Problems in this dataset also include exponentiation, in

addition to the four arithmetic operators.

Table 3.2 provides statistics for all three datasets. We can see that the Algebra

dataset has significantly more ambiguity than the other datasets as evidenced by the

much larger average number of possible derivations.

3.8.2 Baselines

While there has been significant past work on rule based techniques for automatically

solving math word problems, none of the available systems could handle the type of

problems in our Algebra dataset. So instead, we compare to two baselines which help

confirm the general difficulty of the problems in the dataset:

* Majority This baseline always chooses the most common template, t in the

training data. The unknown slots in the template are left unaligned, and the

numerical slots are aligned based purely on the order of the numbers in the

original text. Specifically, we find the ordered index of each number in the

text, such that the index of the first number is 1, the index of the second is 2,

etc. Then for each instance of a given system template T in the training data,

we generate a sequence of the indexes of the numbers used to fill its number

slots. For example, Derivation 1 from Figure 3-2 would generate the sequence

(4, 2, 3, 5). We choose the most common such sequence observed in the training

data, and use this sequence to generate all alignments.

" Correct Equation Types This baseline always chooses the correct template.

Note that this requires access to the labels and is more information than our

system is provided. The alignment selection is performed using the same tech-

nique as the Majority baseline based on the order of the numbers in the original

text, but with a separate order choice for each template.

105

On the Arithmetic dataset we also compare to the ARIS system described in Hos-

seini et al. (2014). This system learns to classify verbs into one of seven different

categories indicating state transitions such as giving or receiving items. A rule-based

technique uses these categories along with the problem text to construct a formal

state-transition representation of the problem. From this representation the system

deterministically generates an equation that can be solved to prove the final answer

to the problem. This system only handles addition and subtraction problems so we

cannot compare to on the other two datasets.

3.8.3 Evaluation Protocol

Since our model generates a solution for every problem, we report only accuracy. We

report two metrics:

" Equation Accuracy: measures how often the system generates exactly the

correct equation system. When comparing equations, we avoid spurious differ-

ences by canonicalizing the equation systems, as described in Section 3.6.1.

" Answer Accuracy: evaluates how often the generated numerical answer is

correct. To compare answer tuples we disregard the ordering and require each

number appearing in the reference answer to appear in the generated answer.

We run all our experiments using n-fold cross-validation. On the Arzthmetic dataset

we use 3 folds to be consistent with the results in Hosseini et al. (2014), and on the

Algebra and Finance datasets we use 5 folds. To maintain a consistent protocol, the

folds are chosen randomly for all results we report. Note that to show cross-domain

effects, Hosseini et al. (2014) also reports results for a non-random choice of folds,

but we do not include those results here.

3.8.4 Parameters and Solver

In our experiments we set k in our beam search algorithm (Section 3.5) to 200,

and 1 to 20. We run the L-BFGS computation for 50 iterations. We regularize our

106

Equation Accuracy

Baseline: Majority Answer Accuracy
7

Baseline: Correct 33.1

Equation Types 33.1

66.1
Our Model 68.7

0 10 20 30 40 50 60 70
Percentage

Figure 3-5: Algebra Dataset: Accuracy of our model relative to both baselines on

the Algebra dataset when provided full equational supervision for all training samples.

We can see that our model significantly outperforms both baselines.

learning objective using a A value of 0.1. The set of mathematical relations supported

by our implementation is {+, -I x, 7, power}. This set was chosen to handle the

questions in the data, and can be easily extended to handle more relations. Our

implementation uses the Gaussian Elimination function in the Efficient Java Matrix

Library (EJML) [1] to generate answers given a set of equations.

3.9 Results

We evaluate our model with two different forms of supervision, either full equations

for all questions (Fully Supervised) or only final numerical answers for most of the

questions (Semi-Supervised).

3.9.1 Fully Supervised

We first consider the scenario where our model is given full equations for all questions.

Figures 3-5, 3-6 and 3-7 show results for this scenario on the three different datasets.

We can see that on all three datasets, our system significantly outperforms the Ma-

jority baseline, and even the Correct Equation Types baseline which is provided the

correct template and only has to choose the correct alignment. Furthermore, on the

107

Baseline: Majority

Baseline: Correct
Equation Types

ARIS

Our Model I

30.6
30.6

Equation Accuracy
w Answer Accuracy

72.9
72.9

79.5

82.8
81.8

0 10 20 30 40 50 60 70 80 90
Percentage

Figure 3-6: Arithmetic Dataset: Accuracy of our model relative to the baselines on
the Arithmetic dataset when provided full equational supervision for all training sam-
ples. We can see that our model even outperforms the ARIS system which includes
significant manual engineering for the type of problems seen in this dataset.

Baseline: Majority

Baseline: Correct
Equation Types

Our Model

11.2
11.2

=Equation Accuracy
ma Answer Accuracy

23.5
23.5

83.4
84.5

0 10 20 30 40 50
Percentage

60 70 80 90

Figure 3-7: Finance Dataset: Accuracy of our model relative to both baselines on
the Finance dataset when provided full equational supervision for all training samples.
We can see that even in more applied domains such as finance, our model significantly
outperforms both baselines.

108

Model Equation Answer
Accuracy Accuracy

Pipeline Model
(No Joint Model)

No Execution Outcomes or 50.7 56.6
Semantic Equivalence

No Semantic Equivalence 54.7 62.3
No Execution Outcomes 61.4 63.6

Our Full Model 66.1 68.7

Table 3.3: Accuracy of model when various components are removed. This shows the
importance of all three main components of our model: Joint Inference, Semantic
Equivalence, and Execution Outcomes.

arithmetic dataset, we outperform the ARIS system which is engineered specifically

for the type of problems seen in that dataset. The strong results across all three

datasets show that our model generalizes well across various types of natural lan-

guage math problems. In the rest of this subsection we evaluate our model in various

ways on the Algebra dataset to help identify both why the model performs well, and

where its weaknesses lie.

Model Ablations

We start by evaluating which aspects of the overall model are most important to its

performance. Our model is distinguished by three important properties. First, we

jointly model the selection of the system template and alignments, in order to handle

the complex cross-sentence relationships we see in the word problems. Additionally,

we use both the semantic equivalence technique discussed in Section 3.6.1 and the

execution outcomes discussed in Section 3.6.2 to handle the large search space that

results from the joint modeling. We can see from Figure 3.3 that all three of these

properties are critical to our model's performance. First, moving from our joint

modeling technique to the Pipeline Model reduces performance by almost 15% on

equation accuracy, and 14% on answer accuracy. The Pipeline Model first predicts

the best system template, using only the document-level features, and then predicts

the best set of alignments for this template. Second, if we utilize the joint inference,

109

All w/o w/o
Features pair document

All Features 68.7 42.8 63.8
w/o single 65.9 39.6 57.6
w/o document 63.8 25.7 -
w/o pair 42.8 - -

Table 3.4: Cross-validation accuracy results with different feature groups ablated.
The first row and column show the performance when a single group is ablated, while
the other entries show the performance when two groups are ablated simultaneously.

but remove both the semantic equivalence and execution outcomes components of

our model (No Execution Outcomes or Semantic Equivalence), then performance also

degrades significantly, by more than 15% and 12% respectively. Finally, we can see

that the ability to compute semantic equivalence is somewhat more critical to the

effectiveness of our model than the execution outcomes (No Semantic Equivalence vs.

No Execution Outcomes).

Feature Ablations

We now look at how the various groups of features used by our model affect its per-

formance. Table 3.4 shows ablation results for each feature group from Section 3.7.

We can see that all of the features contribute to the overall performance, and that

the pair features are the most important followed by the document features. We also

see that the pair features can compensate for the absence of other features. For ex-

ample, the performance drops only slightly when the document features are removed

in isolation. However, the drop is much more dramatic when they are removed along

with the pair features.

Performance and Template Frequency

We now turn to an analysis of the relationship between equation accuracy and the

frequency of each equation template in the data set. Table 3.5 reports results after

grouping the problems into four different frequency bins. We can see that our system

correctly answers more than 85% of the question types which occur frequently while

110

Template Equation Answer Percentage
Frequency Accuracy Accuracy of Data

< 10 43.6 50.8 25.5
11 - 15 46.6 45.1 10.5
16 - 20 44.2 52.0 11.3

> 20 85.7 86.1 52.7

Table 3.5: Performance on different template frequencies.

A painting is 10 inches tall and 15 inches wide. A print of the painting
(1) is 25 inches tall, how wide is the print in inches?

A textbook costs a bookstore 44 dollars, and the store sells it for 55
dollars. Find the amount of profit based on the selling price.

(3) The sum of two numbers is 85. The difference of twice of one of them
and the other one is 5. Find both numbers.

(4) The difference between two numbers is 6. If you double both numbers,
the sum is 36. Find the two numbers.

Figure 3-8: Examples of problems our system does not solve correctly.

still achieving near 50% accuracy on those that occur relatively infrequently.

Qualitative Error Analysis

In order to understand the weaknesses of our system, we examined its output on one

fold of the data and identified two main classes of errors. The first, accounting for

approximately one-quarter of the cases, includes mistakes where more background or

world knowledge might have helped. For example, Problem 1 in Figure 3-8 requires

understanding the relation between the dimensions of a painting, and how this relation

is maintained when the painting is printed, and Problem 2 relies on understanding

concepts of commerce, including cost, sale price, and profit. While these relationships

could be learned in our model with enough data, as it does for percentage problems

(e.g., Figure 3-4), various outside resources, such as knowledge bases (e.g. Freebase)

or distributional statistics from a large text corpus, might help us learn them with

less training data.

111

The second category, which accounts for about half of the errors, includes mistakes

that stem from compositional language. For example, the second sentence in Problem

3 in Figure 3-8 could generate the equation 2x - y = 5, with the phrase "twice of

one of them" generating the expression 2x. Given the typical shallow nesting, it

is possible to learn templates for these cases given enough data, and in the future

it might also be possible to develop new, cross-sentence semantic parsers to enable

better generalization from smaller datasets.

3.9.2 Semi-Supervised

The results presented in the first part of this section focused on learning from training

data that contains full equations for all training samples. We now turn our attention

to learning from weaker supervision, just numerical answers, for most of the data. We

consider two different scenarios. In both cases, a small fraction of the training data is

labeled with full equations, while the rest of the data is labeled with only numerical

answers. In the first scenario, we label only five samples with full equations, but

very carefully choose these five samples. In the second scenario, we vary the fraction

labeled with full equations, but choose the labeled set randomly. Both results are

based on the Algebra dataset.

Equation LaDels ror Only rFive Samples

We can see from Figure 3-9 that our model can learn quite effectively from the rela-

tively weak supervision provided by mostly numerical answers. Specifically, 5 Equa-

tions + Answers shows the performance when our model is given full equations for

only five samples, and just numerical answers for the rest of the training data. We

chose the fully labeled samples by identifying the five most common types of ques-

tions in the data and annotating a randomly sampled question of each type. We can

see that even with this limited supervision our system correctly answers almost 70%

as many questions as when it is given full equations for all of the training data (All

Equations) i.e. 68.7% vs. 46.1%. In contrast, the baseline scenario (5 Equations),

112

Equation Accuracy

Only 5 Equations 20.4 Answer Accuracy
20.8

45.7
5 Equations + Answers 46.1

46.1

Our Full Model 66.1
(All Equations) 68.7

0 10 20 30 40 50 60 70
Percentage Accuracy

Figure 3-9: Performance evaluation of our model when provided only numerical an-

swers for most training samples, with full equations provided for just five of the

samples (5 Equations + Answers). This significantly outperforms a baseline version

of our model which is provided only the five equations and no numerical answers
(Only 5 Equations). It also achieves about 70% of the performance of Our Full Model

which is provided full equations for all training samples.

70

60

50

40 --- Semi-Supervised: Equations+ Answers
+ Baseline: Only Equations

0 10 20 30 40 50 60 70 80 90 100
Percentage of Training Data with Equations

Figure 3-10: Performance evaluation of our model when we randomly choose the

samples to label with full equations. Semi-Supervised is provided with full equation

labels for a fraction of the data (with the fraction varied along the x-axis), and just

numerical answers for the rest of the data. Baseline is provided the same subset of

the training samples labeled with full equations, but does not have access to the rest

of the training data.

113

which is provided only the five seed equation labels and does not have access to the

numerical answer labels, performs much worse.

Equation Labels For Randomly Chosen Samples

The results in Figure 3-10 show that even when we randomly choose the set of samples

to label with full equations, the model can learn quite effectively from only numerical

answers for most of the samples. When full equations are provided for only 5% of

the questions we see a relative gain of 40% for the Semi-Supervised model over the

Baseline model which does not utilize any numerical answers, i.e. 49% vs. 34%.

Furthermore, when full equations are provided for only 25% of the training data the

Semi-Supervised model correctly answers 66% of the questions, just below the 69% it

achieves when given full equations for all questions.

3.10 Conclusion

We presented an approach for automatically learning to solve algebra word prob-

lems. Our model jointly constructs systems of equations and aligns their variables

and numbers to the problem text. To handle the large search space resulting from

the joint model we utilize both the semantic equality and execution capabilities of

the underlying mathematical engine. Computing the semantic equality between ab-

stracted systems of equations allows us to avoid significant redundancy in the search

process. Additionally, solving a possible equational interpretation of the text, allows

us to use the resulting numerical answer to help determine whether or not the inter-

pretation is correct. Using a newly gathered corpus we show that our joint model, our

use of semantic equality and our use of execution outcomes all significantly improve

the accuracy of the resulting system. To the best of our knowledge, this is the first

learning result for this task.

There are many opportunities to extend the approach to related domains. The

general representation of mathematics lends itself to many different domains including

geometry, physics, and chemistry. Additionally, the techniques can be used to syn-

114

thesize even more complex structures, such as general-purpose computer programs,

from natural language.

115

116

Chapter 4

Learning to Generate Plans from Text

In the first two chapters we tackled the problem of translating natural language task

descriptions into computer programs which can execute those tasks. In both cases we

translated the natural language description into a declarative program, i.e. a formal

program which acts as a high-level specification by defining constraints on the output,

but does not enumerate a sequence of step-by-step instructions which can be directly

executed in order to generate such an output. To actually execute these programs, we

relied on the underlying computer systems to efficiently transform these declarative

programs into a sequence of executable steps, i.e. a regular expression executor, and

a mathematical solver. However, for many domains this program synthesis process

can be computationally intractable.

One such domain is that of classical robotic planning. A typical task in this

domain might be to build a pickaxe, which we could encode formally in the declarative

program have (pickaxe), meaning that we would like to reach a state where we have

a pickaxe. However, translating from this declarative form, into a set of steps that the

robot can execute to build a pickaxe is often computationally intractable in practice

and (in the general case) is an NP-Hard problem 146].

In this chapter, we show how we can leverage natural language understanding

to help overcome these computational tractability issues. Specifically, many com-

puting domains have significant on-line natural language documentation describing

the capabilities and dynamics of the domain. Correct interpretation of this text can

117

provide a formal high-level description of the structure of the domain. These formal

descriptions can be used by a low-level planner to help constrain the search process it

performs during program synthesis. We show that by integrating this textual knowl-

edge, the resulting system can successfully complete almost twice as many tasks as a

state-of-the-art baseline planner which does not utilize the text.

4.1 Introduction

The idea of automatically synthesizing a program from a high-level specification has

long been a goal of artificial intelligence research [491. Early work in this area utilized

techniques based on theorem-proving [86], while more recent work has focused on

using version algebras [761, SAT/SMT solvers [1201, and genetic programming 165].

Despite significant progress in this area over the last several years, wide-scale use of

program synthesis is still hampered by the central issue of computational tractability.

For general programs, the search problem is NP-hard, and so to maintain tractability

current systems are forced to either heavily constrain the space of programs they

allow [118], constrain the space of specifications they allow [129], manually craft

high-level abstractions [46, 81], or focus on relatively short simple programming tasks

such as bit-manipulation [1211.

One noteworthy aspect of this situation is that many interesting programming

domains have significant existing documentation describing the domain in natural

language. For example, most computer applications have user manuals and help

websites [911, programming APIs typically have documentation for each command

as well as tutorials outlining their use [39] and games and virtual worlds often have

extensive user generated wiki sites [93]. Automatic interpretation of the natural

language descriptions in these documents could be used to infer the abstract structure

of the programming domain, thereby enabling more efficient program synthesis. This

chapter presents just such a system which utilizes existing text documentation in

order to help counter the computational tractability problems of program synthesis.

We develop our system in the domain of classical planning, an area of program

118

A pickaxe, which is used to harvest stone, can be
made from wood.

(a)
Low Level Actions for: wood -4 pickaxe - stone

step 1: move from (0,0) to (2,0)
step 2: chop tree at: (2,0)
step 3: get wood at: (2,0)
step 4: craft plank from wood
step 5: craft stick from plank
step 6: craft pickaxe from plank and stick

step N-1: pickup tool: pickaxe
step N: harvest stone with pickaxe at: (5,5)

(b)

Figure 4-1: Text description of preconditions and effects (a), and the low-level actions
connecting them (b).

synthesis which has received considerable focus 11341. Work in this area has been used

to control not only the humanoid robots for which it was originally designed [14] but

also the actions of space satellites [135] and even self-driving cars [381. Much progress

has been made in this field over the past 20 years, leading to planners which are

very fast and can work quite well in practice [38]. Despite this fact, planning is still

hindered by the computational issues inherent to program synthesis in general, and

so effective deployment of state-of-the-art systems in complex domains typically re-

quires manual domain-specific design of action hierarchies and/or heuristics to ensure

tractability [46, 134, 381.

Challenges In order to take advantage of natural language documentation to help

overcome the computation issues in classical planning, we must tackle two primary

challenges:

* Mismatch in Abstraction: There is a mismatch between the typical abstraction-

level of human language and the granularity of planning primitives. Consider,

for example, text describing a virtual world such as Minecraft and a formal

'http://www.minecraft.net/

119

description of that world using planning primitives. Due to the mismatch in

granularity, even the simple relations between wood, pickaxe and stone described

in the sentence in Figure 4-1(a) result in dozens of low-level planning actions

in the world, as can be seen in Figure 4-1(b). While the text provides a high-

level description of world dynamics, it does not provide sufficient details for

successful plan execution.

9 Lack of Labeled Training Data: The main goal of our system is to avoid

the need to manually generate domain specific heuristics or action hierarchies

by instead utilizing existing natural language documents. However, traditional

natural language grounding techniques rely on domain specific labeled training

data which is typically generated manually [29, 127, 5]. If we must generate such

resources for every domain of interest, then our efforts are probably better spent

developing domain specific planning systems, rather than annotating natural

language data.

Key Ideas To handle the mismatch in abstraction, our system utilizes the fact

that natural language domain documentation typically describes the set of available

actions one can perform, and how those actions relate to each other. For example,

the natural language relation "is used to" from Figure 4-1(a), implies that obtaining

a pickaxe is a precondition for obtaining stone. Thus, our solution grounds these

linguistic relations in abstract precondition relations between states in the underlying

domain, rather than directly in the entities of the domain.

To avoid the need for labeled training data our system takes advantage of the

ability of the underlying system to compute execution outcomes. Specifically, we

build on the intuition that the validity of precondition relations extracted from text

can be informed by the execution of a low-level planner. For example, if a planner

can find a plan to successfully obtain stone after obtaining a pickaxe, then a pickaxe

is likely a precondition for stone. Conversely, if a planner generates a plan to obtain

stone without first obtaining a pickaxe, then it is likely not a precondition. This

feedback can enable us to learn to correctly ground the natural language relations

120

without annotated training data. Moreover, we can use the learned relations to guide

a high level planner and ultimately improve planning performance.

Summary of Approach We implement these ideas in the reinforcement learning

framework, wherein our model jointly learns to predict precondition relations from

text and to perform high-level planning guided by those relations. For a given plan-

ning task and a set of candidate relations, our model repeatedly predicts a sequence

of subgoals where each subgoal specifies an attribute of the world that must be made

true. It then asks the low-level planner to find a plan between each consecutive pair

of subgoals in the sequence. The observed feedback - whether the low-level planner

succeeded or failed at each step - is utilized to update the policy for both text analysis

and high-level planning.

Evaluation We evaluate our algorithm in the Minecraft virtual world, using a large

collection of user-generated on-line documents as our source of textual information.

Our results demonstrate the strength of our relation extraction technique - while using

planning feedback as its only source of supervision, it achieves a precondition relation

extraction accuracy on par with that of a supervised SVM baseline. Specifically, it

yields an F-score of 66% compared to the 65% of the baseline. In addition, we show

that these extracted relations can be used to improve the performance of a high-level

planner. As baselines for this evaluation, we employ the Metric-FF planner 1561,2

as well as a text-unaware variant of our model. Our results show that our text-

driven high-level planner significantly outperforms all baselines in terms of completed

planning tasks - it successfully solves 80% as compared to 41% for the Metric-FF

planner and 69% for the text unaware variant of our model. In fact, the performance

of our method approaches that of an oracle planner which uses manually-annotated

preconditions.

2The state-of-the-art baseline used in the 2008 International Planning Competition.

http://ipc.informatik.uni-freiburg.de/

121

4.2 Related Work

Our work is related to prior work on natural language event semantics, language

grounding, and hierarchical planning. The prior work on generating programs previ-

ously discussed in Sections 2.2.2 and 2.2.1 is also related.

4.2.1 Extracting Event Semantics from Text

The task of extracting preconditions and effects has previously been addressed in the

context of lexical semantics [117, 116]. These approaches combine large-scale distri-

butional techniques with supervised learning to identify desired semantic relations in

text. Such combined approaches have also been shown to be effective for identifying

other relationships between events, such as causality [47, 26, 13, 10, 37].

Similar to these methods, our algorithm capitalizes on surface linguistic cues to

learn preconditions from text. However, our only source of supervision is the feedback

provided by the planning task which utilizes the predictions. Additionally, we not

only identify these relations in text, but also show they are valuable in performing an

external task.

4.2.2 Learning Semantics via Language Grounding

Our work fits into the broad area of grounded language acquisition, where the goal is to

learn linguistic analysis from a situated context [102, 119, 141, 40, 96, 95, 16, 84, 133].

Within this line of work, we are most closely related to the reinforcement learning

approaches that learn language by interacting with an external environment [16, 17,

133, 15, 18, 19, 20J.

The key distinction of our work is that the underlying planning system directly

helps to generate pieces of the output program. This supplements previous work

which simply uses the underlying system to execute potential output programs, or

program steps for feedback [16, 133, 133, 15, 18, 19, 20]. Another important difference

of our setup is the way the textual information is utilized in the situated context.

122

Instead of getting step-by-step instructions from the text, our model uses text that

describes general knowledge about the domain structure. From this text, it extracts

relations between objects in the world which hold independently of any given task.

Task-specific solutions are then constructed by a planner that relies on these relations

to perform effective high-level planning.

4.2.3 Hierarchical Planning

It is widely accepted that high-level plans that factorize a planning problem can

greatly reduce the corresponding search space [100, 61. Previous work in planning

has studied the theoretical properties of valid abstractions and proposed a number

of techniques for generating them [67, 137, 90, 9]. In general, these techniques use

static analysis of the low-level domain to induce effective high-level abstractions. In

contrast, our focus is on learning the abstraction from natural language. Thus our

technique is complementary to past work, and can benefit from human knowledge

about the domain structure.

4.3 Problem Formulation

Our task is two-fold. First, given a text document describing an environment, we

wish to extract a set of precondition/effect relations implied by the text. Second, we

wish to use these induced relations to determine an action sequence for completing a

given task in the environment.

We formalize our task as illustrated in Figure 4-2. As input, we are given a world

defined by the tuple (S, A, T), where S is the set of possible world states, A is the

set of possible actions and T is a deterministic state transition function. Executing

action a in state s causes a transition to a new state s' according to T(s' s, a). States

are represented using propositional logic predicates x C x, where each state is simply

a set of such predicates, i.e. s C x.

The objective of the text analysis part of our task is to automatically extract a set

of valid precondition/effect relationships from a given document d. Given our defini-

123

Text (input):

A pickaxe, which is used to harvest stone,
can be made from wood.

Precondition Relations:

wood pickaxe pickaxe stone

Plan Subgoal Sequence:

stone
(goal)

pickaxe
- j(subgoal 2)

wood

initialO
state

0

Figure 4-2: A high-level plan showing two subgoals in a precondition relation. The

corresponding sentence is shown above.

tion of the world state, preconditions and effects are merely single term predicates, x,

in this world state. We assume that we are given a seed mapping between a predicate

x, and the word types in the document that reference it (see Table 4.4 for examples).

Thus, for each predicate pair (xf, x') we want to utilize the text to predict where

there exists a precondition relation from xf to x', i.e. whether xf is a precondition

for x'. For example, from the text in Figure 4-2, we want to predict that possessing

a pickaxe is a precondition for possessing stone. Note that this relation implies the

reverse as well, i.e. predicate x' can be interpreted as the effect of an action sequence

performed on a state containing predicate xf.

Each planning goal gi c G is defined by a starting state so , and a final goal

state sg. This goal state is represented by a set of predicates which need to be made

true. In the planning part of our task, our objective is to find a sequence of actions a

that connect s to sg. Finally, we assume document d does not contain step-by-step

instructions for any individual task, but instead describes general facts about the

124

given world that are useful for a wide variety of tasks.

4.4 Model

The key idea behind our model is to leverage textual descriptions of preconditions and

effects to guide the construction of high level plans. We define a high-level plan as a

sequence of subgoals, where each subgoal is represented by a single-term predicate, xi,

that needs to be set in the corresponding world state - e.g. have (wheat) =true. Thus

the set of possible subgoals is defined by the set of all possible single-term predicates

in the domain. In contrast to low-level plans, the transition between these subgoals

can involve multiple low-level actions. Our algorithm for textually informed high-level

planning operates in four steps:

1. Use text to predict the preconditions of each subgoal. These predictions are for

the entire domain and are not goal specific.

2. Given a planning goal and the induced preconditions, predict a subgoal sequence

that achieves the given goal.

3. Execute the predicted sequence by giving each pair of consecutive subgoals to a

low-level planner. This planner, treated as a black box, computes the low-level

plan actions necessary to transition from one subgoal to the next.

4. Update the model parameters, using the low-level planner's success or failure

as the source of supervision.

We formally define these steps below.

4.4.1 Modeling Precondition Relations

Given a document d, and a set of subgoal pairs (xf, x'), we want to predict whether

subgoal xf is a precondition for xt. We assume that precondition relations are gener-

ally described within single sentences. We first use our seed grounding in a prepro-

cessing step where we extract all predicate pairs where both predicates are mentioned

125

in the same sentence. We call this sequence, V - (vo, vi, - - -v,), the Candidate Rela-

tions. Note that this sequence will contain many invalid relations since co-occurrence

in a sentence does not necessarily imply a valid precondition relation.3 Thus for each

candidate relationship, vi = (xf, xi, ii, qi) , our task is to predict ci E {-1, 1} which

specifies whether or not sentence 'Wi with dependency parse qj indicates a precondition

relationship between predicates x and x'. We model this decision via a log linear

distribution as follows:

p(ci I vj; e) cOs c .c(ci,vj) (4.1)
E{C-1,1} CO("i

where 0, is the vector of precondition prediction parameters. We compute the feature

function #c using the seed grounding, the sentence wi, and the given dependency

parse qi of the sentence. We define C = (co, ci, - c.) to be a sequence of predictions

for each of the candidate relationships, vi E V.

4.4.2 Modeling Subgoal Sequences

Given a planning goal gi E G, defined by initial and final goal states s and s', our

task is to predict a sequence of subgoals P which will achieve the goal. We condition

this decision on our predicted sequence of precondition relations C, by modeling the

distribution over sequences Y as:

n

gi, C; OX) = Hp(x xi 1 , gi, C; OX)
t=1

e O eX' (Xt xt _1,92,c)

p(x | x1_ 1, gi, C; 6O) = gOx'kx XiC)

Here we assume that subgoal sequences are Markovian in nature and model individual

subgoal predictions using a log-linear model. Note that in contrast to Equation 4.1

where the predictions are goal-agnostic, these predictions are goal-specific. As before,

Ox is the vector of model parameters, and Ox is the feature function. Additionally, we

3 1n our dataset only 11% of Candidate Relations are valid.

126

assume a special stop symbol, x0, which indicates the end of the subgoal sequence.

4.5 Parameter Estimate via Execution Outcomes

Parameter estimation in our model is done using execution outcomes via reinforce-

ment learning. Specifically, once the model has predicted a subgoal sequence for a

given goal, the sequence is given to the low-level planner for execution. The success

or failure of this execution is used to compute the reward signal R for parameter esti-

mation. This predict-execute-update cycle is repeated until convergence [1251. This

section discusses the details of this process.

Our goal is to estimate the optimal parameters for each component of our model,

0*, and 0*. For notational convenience, we will refer to the total set of parameters as

0, and the optimal such set as 0*. To estimate the optimal parameters, we define a

reward function, R which correlates well with sub-goal sequences which allow the low-

level planner to successfully generate full plans. We define R based on a choice of C =

(cO, ci, - cn), the validity of each candidate relation, as well as X = (Y0,71, ... 2),

a sequence of subgoal sequences, one for each planning goal, gi C G. Given a reward

function, our learning objective is to maximize the Value function, Vo, which is the

expected reward we will receive from a combined choice of C and X. Formally:

V = Ep(X,CIG,V) [R(X, C)]

We discuss the details of the reward function in Section 4.5.2, but to facilitate learn-

ing, we will assume the that the reward function factorizes as follows:

R(X, C) = Rx(X) + Re(X, C)
m n

= Rx(Y, i) + Rc(X ci, i)
i=O i=0

Since computing R(X, C) requires running the low-level planner on each sequence

in X, we cannot compute the objective in closed form. We can, however, estimate

127

gi a planning goal defined by a starting state, so and a final state. s
G the sequence of all planning goals, (go, 9i - gn)

Sse e e...
X a sequence of P, (Y-0 , P1 . Pf)

A space of possible choices of X
x space of possible subgoal predicates..........................
x space of possible subgoal predicate sequences
ci predicts the validity of candidate precondition relationship, Z, such

that ci E{o, 1}
C a sequence of precondition predictions (co, c1i ... c) .one for each

candidate precondition relationship
C the space of possible choices of C
vi a tuple (x[, x', Wi'i, qj) designating a candidate precondition relation-

ship between predicates 4' and x as indicated by sentence wi with
dependency parse qj

V a sequence of candidate precondition relationships, (vo, v1 , ... n)
0, vector of parameters for precondition relation prediction
Ox vector of parameters for subgoal sequence prediction
O vector of all parameters, i.e. both 0, and Ox

Table 4.1: Notation used in defining our model.

the optimal parameters, 0*, using a well-studied family of techniques called policy

gradient algorithms.

4.5.1 Policy Gradient Algorithm

We choose to use a policy gradient algorithm for parameter estimation because such

techniques scale effectively to large space spaces such as ours. These type of algo-

rithms are only guaranteed to find a local optimum, but we find that in practice, they

work quite well on our domain. They approximate the optimal policy parameters, 0*,

by performing stochastic gradient ascent on the value function, V, such that in each

iteration the algorithm computes a noisy estimate of the true gradient. To compute

the gradients, we first take the derivative of the value function, V with respect to the

two different parameter vectors (see Appendix B for details). With the notation as

128

defined in Table 4.1, this yields:

VO = Ex) \x (, i) + RC(X, C)) ,(x, x>1, gi, C)
0O pXI _V i=O j=0 Pi1MC

-- Epx~% C;Ox) [q2(x',I x>1, 9j, C)]]

V =Ep(X,CIG,V;O) J:(Rx(X) + R,(X, ci, i)) (ci, vi) - Ep(clvi-;oc) [qc(c'vi)]I
i=

Exact computation of these derivatives is intractable since it requires summing

over all possible choices of (X, C). Policy gradient algorithms instead compute a

noisy estimate of the gradient using just a subset of the histories. So we will draw

samples from (X, C) and compute the reward R(X, C) by asking the low-level planner

to compute a plan between each pair of subgoals in X. In practice, we will sample a

single (X, C) in each iteration. Using this approximation, with learning rates a,, and

ac, the updates become:

m

AO , = aX (R2 (Y, i) + RC(X, C)) [Z x(x', xi_1, gi, C) (4.2)
i=O j=0

-EP(2 fX/ [O9) [2 (X1 I aX:; i gi, C)]

AOc ac E (Rx(X) + Rc(X, ci, i)) F7c(ci, vi) -- EIp(c'Ii;oc) [Oc(c' vi)] (4.3)
i=O

The full sampling and update procedure can be seen in Algorithm 4. In each

iteration we make a single predication for each candidate relation, c, in the document,

d, and predict a single subgoal sequence, X' for each task in G. The resulting reward,

R(X, C), is then used to update both sets of parameters, Ox and Oc using the update

equations given above. As the algorithm proceeds, the estimate of 0 improves, leading

to more useful samples of R(X, C), which in turn leads to further improvements in

the estimate of 0. We continue this process until convergence [125].

129

Input: A document d, Set of planning tasks G,
Set of candidate precondition relations V,
Reward function R(X, C), Number of iterations T

Initialization:Model parameters 0. = 0 and 0, = 0.

for i = . T do

C +- (-1)
for i=1...n do
| ci ~.. p(ci | Vi; Oc)

end
Prudic/ Iq cs for ea1(S.((1(1) /

foreach g e G do
5opl sidbyoal u/ neia flo

for t= 1- - -n do

Xt ~ px I Xt_1, g, C; OX)

Construct low-level subtask from xt_1 to xt
Execute low-level planner on subtask

end
Update subgoal prediction model using Eqn. 4.2

end
Update text precondition model using Eqn. 4.3

end

Algorithm 4: A policy gradient algorithm for parameter estimation in our model.

130

4.5.2 Reward Function

Our reward function, R(X, C) is computed using the set of predicted subgoal se-

quences, X, and the set of precondition predictions, C. The computation is based

on feedback from the low-level planner, f(xf, xt) indicating its ability to find a plan

between subgoals, xf and x'. Formally:

f if the planner can successfully find a plan from subgoalx' to x4 for task i

0 otherwise

We would like to define R such that it correlates well with the correctness of our

predictions. As discussed earlier, we factor R(X, C) as follows:

mn n

R(X, C) = R (-, i) + E RC(X, ci, i)
i=O i=O

where Rx gives reward for effective subgoal sequences, and Rc gives reward for pre-

condition predictions which are likely to be correct.

Precondition Prediction Reward We define Rc(X, ci, i) independently for each

precondition prediction, ci, based on the consistency between ci and the low-level

f
planners success or failure in finding a plan between x. and x'. Formally, we define

binary functions S(X, i), indicating at least one success, and F(X, i), indicating at

least one failure, as follows:

m 1i3-1 . .
if Z f(XL , I) > 0

j=3 k=1f
S(X, i) = k-1= i

{ix

0 otherwise

131

F(X,i)=

m 1il-1
if 1-f (xI_1 ki

jz=O k=1

k

otherwise

Note, however, that success in finding a plan from xf to x does not always mean that

vi is a good precondition relation, because subgoal xf may be completely unnecessary,

i.e. the planner may be able to successfully reach state x' without first going through

state xf. Formally, we define a binary function U(X, i), indicating subgoal x4 is

unnecessary to reach subgoal x', as follows:

U(X, i) =

0

M Isi l-1
if f Z f(_1,) > 0

j=0 k=1

t 3 hwsk -i

otherwise

We then define the reward, RC(X, ci, i) based on whether or not the prediction ci is

consistent with the feedback from the planning successes and failures. Formally:

R -ci if S(X,i) and not U(X, i)

Rc (X, ci1, i) Rf ci if U(X, i) or [F(X, i) and not S(X, i)]

0 otherwise (xf and xI do not occur as sequential states in X)

where Rs and Rf are tunable reward parameters. We set Rs to a positive number and

Rf to a negative number, such that multiplying by ci C {-1, 11 generates positive

reward if ci agrees with the feedback, and negative reward if it disagrees.

Subgoal Sequence Reward We define Rx(Y, i) based on the success of the entire

sequence rather than basing it on independent rewards for each subgoal prediction,

X E P, because if the low-level planner is unable to successfully generate a plan

between two sequential subgoals, x_ and x, there are two possible reasons for

132

wood iron

bone meal ears iron door bucket

stick seeds string wool iiD

fishing rod

Figure 4-3: Example of the precondition dependencies present in the Minecraft do-

main.

this. The first is that subgoal x' was simply a poor prediction, and replacing it with

another choice would allow the planner to successfully generate plans for the entire

sequence. The other possibility, however, is that some or all of the sequence leading

up to Xi_ is incorrect, and there's simply no good choice for subgoal x1. As a result

of this ambiguity, we cannot know where in the subgoal sequence our predictions

went wrong, and thus cannot provide reward based on individual subgoal selections.

Instead, we calculate the reward based on the success or failure of the entire sequence.

Formally:

IsiI
R' if f (s,)f(f((x_,) = 1

Rx(:Vli)= j=1

Rf otherwise

where R' and Rf are tunable parameters.

4.6 Applying the Model

We apply our method to Minecraft, a grid-based virtual world. Each grid location

represents a tile of either land or water and may also contain resources. Users can

freely move around the world, harvest resources and craft various tools and objects

from these resources. The dynamics of the world require certain resources or tools as

prerequisites for performing a given action, as can be seen in Figure 4-3. For example,

133

Domain #Objects #Pred Types #Actions
Parking 49 5 4
Floortile 61 10 7
Barman 40 15 12

Minecraft 108 16 68

Table 4.2: A comparison of complexity between Minecraft and some domains used
in the IPC-2011 sequential satisficing track. In the Minecraft domain, the number of
objects, predicate types, and actions is significantly larger.

a user must first craft a bucket before they can collect milk.

4.6.1 Defining the Domain

In order to execute a traditional planner on the Minecraft domain, we define the

domain using the Planning Domain Definition Language (PDDL) [41]. This is the

standard task definition language used in the International Planning Competitions

(IPC).4 We define as predicates all aspects of the game state - for example, the

location of resources in the world, the resources and objects possessed by the player,

and the player's location. Our subgoals xi and our task goals s9 map directly to these

predicates. This results in a domain with significantly greater complexity than those

solvable by traditional low-level planners. Table 4.2 compares the complexity of our

domain with some typical planning domains used in the IPC.

4.6.2 Low-level Planner

As our low-level planner we employ Metric-FF [561, the state-of-the-art baseline used

in the 2008 International Planning Competition. Metric-FF is a forward-chaining

heuristic state space planner. Its main heuristic is to simplify the task by ignoring

operator delete lists. The number of actions in the solution for this simplified task is

then used as the goal distance estimate for various search strategies.

134

Table 4.3: Example text features. A subgoal pair (Xi, X) is first mapped to word
tokens using a small grounding table. Words and dependencies are extracted along
paths between mapped target words. These are combined with path directions to
generate the text features.

4.6.3 Features

The two components of our model leverage different types of information, and as

a result, they each use distinct sets of features. The text component features 0,

are computed over sentences and their dependency parses. The Stanford parser [34]

was used to generate the dependency parse information for each sentence. Examples

of these features appear in Table 4.3. The sequence prediction component takes as

input both the preconditions induced by the text component as well as the planning

state and the previous subgoal. Thus #x contains features which check whether two

subgoals are connected via an induced precondition relation, in addition to features

which are simply the Cartesian product of domain predicates.

4.7 Experimental Setup

4.7.1 Datasets

As the text description of our virtual world, we use documents from the Minecraft

Wiki,5 the most popular information source about the game. Our manually con-

structed seed grounding of predicates contains 74 entries, examples of which can be

seen in Table 4.4. We use this seed grounding to identify a set of 242 sentences that

reference predicates in the Minecraft domain. This results in a set of 694 Candidate

4 http://ipc.icaps-conference.org/
5 http://www.minecraftwiki.net/wiki/MinecraftWiki/

135

Words
Dependency Types
Dependency Type x Direction
Word x Dependency Type
Word x Dependency Type x Direction

Domain Predicate Noun Phrases
have (plank) wooden plank, wood plank
have (stone) stone, cobblestone
have(iron) iron ingot

Table 4.4: Examples in our seed grounding table. Each predicate is mapped to one
or more noun phrases that describe it in the text.

Relations. We also manually annotated the relations expressed in the text, identifying

94 of the Candidate Relations as valid. Our corpus contains 979 unique word types

and is composed of sentences with an average length of 20 words.

We test our system on a set of 98 problems that involve collecting resources and

constructing objects in the Minecraft domain - for example, fishing, cooking and

making furniture. To assess the complexity of these tasks, we manually constructed

high-level plans for these goals and solved them using the Metric-FF planner. On

average, the execution of the sequence of low-level plans takes 35 actions, with 3

actions for the shortest plan and 123 actions for the longest. The average branching

factor is 9.7, leading to an average search space of more than 103 possible action

sequences. For evaluation purposes we manually identify a set of Gold Relations

consisting of all precondition relations that are valid in this domain, including those

not discussed in the text.

4.7.2 Evaluation Metrics

We use our manual annotations to evaluate the type-level accuracy of relation ex-

traction. To evaluate our high-level planner, we use the standard measure adopted

by the IPC. This evaluation measure simply assesses whether the planner completes

a task within a predefined time.

4.7.3 Baselines

To evaluate the performance of our relation extraction, we compare against an SVM

classifier6 trained on the Gold Relations. We test the SVM baseline in a leave-one-out
6 SVMlight [64] with default parameters.

136

fashion.

To evaluate the performance of our text-aware high-level planner, we compare

against five baselines. The first two baselines - FF and No Text - do not use any

textual information. The FF baseline directly runs the Metric-FF planner on the

given task, while the No Text baseline is a variant of our model that learns to plan

in the reinforcement learning framework. It uses the same state-level features as our

model, but does not have access to text.

The All Text baseline has access to the full set of 694 Candidate Relations. During

learning, our full model refines this set of relations, while in contrast the All Text

baseline always uses the full set.

The two remaining baselines constitute the upper bound on the performance of

our model. The first, Manual Text, is a variant of our model which directly uses the

links derived from manual annotations of preconditions in text. The second, Gold,

has access to the Gold Relations. Note that the connections available to Manual Text

are a subset of the Gold links, because the text does not specify all relations.

4.7.4 Experimental Details

All experimental results are averaged over 200 independent runs for both our model

as well as the baselines. Each of these trials is run for 200 learning iterations with

a maximum subgoal sequence length of 10. To find a low-level plan between each

consecutive pair of subgoals, our high-level planner internally uses Metric-FF. We

give Metric-FF a one-minute timeout to find such a low-level plan. To ensure that

the comparison between the high-level planners and the FF baseline is fair, the FF

baseline is allowed a runtime of 2,000 minutes. This is an upper bound on the time

that our high-level planner can take over the 200 learning iterations, with subgoal

sequences of length at most 10 and a one minute timeout. Lastly, during learning we

initialize all parameters to zero, use a fixed learning rate of 0.0001, and encourage

our model to explore the state space by using the standard e-greedy exploration

strategy [1241.

137

0.8

0.6

C-) -Model F-Score

; 0.4 --- SVM F-Score
aL.4 ...--. All Text F-Score

0
0 50 100 150 200

Learning Iterations

Figure 4-4: The performance of our model and a supervised SVM baseline on the

precondition prediction task. Also shown is the F-Score of the full set of Candidate

Relations which is used unmodified by All Text, and is given as input to our model.

Our model's F-score, averaged over 200 trials, is shown with respect to learning

iterations.

4.8 Results

4.8.1 Relation Extraction

Figure 4-4 shows the performance of our method on identifying preconditions in text.

We also show the performance of the supervised SVM baseline. As can be seen,

after 200 learning iterations, our model achieves an F-Measure of 66%, equal to the

supervised baseline. These results support our hypothesis that planning feedback is

a powerful source of supervision for analyzing a given text corpus. Figure 4-5 shows

some examples of sentences and the corresponding extracted relations.

4.8.2 Planning Performance

As shown in Table 4.5 our text-enriched planning model outperforms the text-free

baselines by more than 10%. Moreover, the performance improvement of our model

over the All Text baseline demonstrates that the accuracy of the extracted text rela-

138

Sticks are the only building material required to craft a ifence or ladder.

Seeds for growing twheat can be obtained by breaking tall grass

IV------------E j ni~e - - - -

Figure 4-5: Examples of precondition relations predicted by our model from text.

Check marks (/) indicate correct predictions, while a cross (X) marks the incorrect

one - in this case, a valid relation that was predicted as invalid by our model. Note

that each pair of highlighted noun phrases in a sentence is a Candidate Relation, and

pairs that are not connected by an arrow were correctly predicted to be invalid by

our model.

Method %Plans

FF 40.8

No text 69.4

All text 75.5
Full model 80.2
Manual text 84.7
Gold connection 87.1

Table 4.5: Percentage of tasks solved successfully by our model and the baselines. All

performance differences between methods are statistically significant at p < .01.

tions does indeed impact planning performance. A similar conclusion can be reached

by comparing the performance of our model and the Manual Text baseline.

The difference in performance of 2.35% between Manual Text and Gold shows the

importance of the precondition information that is missing from the text. Note that

Gold itself does not complete all tasks - this is largely because the Markov assumption

made by our model does not hold for all tasks.7

Figure 4-6 breaks down the results based on the difficulty of the corresponding

planning task. We measure problem complexity in terms of the low-level steps needed

to implement a manually constructed high-level plan. Based on this measure, we

divide the problems into two sets. As can be seen, all of the high-level planners solve

'When a given task has two non-trivial preconditions, our model will choose to satisfy one of the

two first, and the Markov assumption blinds it to the remaining precondition, preventing it from

determining that it must still satisfy the other.

139

Gold

Manual text

Full Model

All Text

No Text

0 20

7 7 31
88

40 60
Percentage

Figure 4-6: Percentage of problems solved by various models on

problem sets.

Easy and Hard

almost all of the easy problems. However, performance varies greatly on the more

challenging tasks, directly correlating with planner sophistication. On these tasks our

model outperforms the No Text baseline by 28% and the All Text baseline by 11%.

4.8.3 Feature Analysis

Figure 4-7 shows the top five positive features for our model and the SVM baseline.

Both models picked up on the words that indicate precondition relations in this do-

main. For instance, the word use often occurs in sentences that describe the resources

required to make an object, such as "bricks are items used to craft brick blocks". In

addition to lexical features, dependency information is also given high weight by both

learners. An example of this is a feature that checks for the direct object dependency

type. This analysis is consistent with prior work on event semantics which shows

lexico-syntactic features are effective cues for learning text relations [13, 10, 371.

140

71

64

95

94

91
F Hard
= Easy

89

80 100
P

path has word "use"
path has word "fill"
path has dependency type "dobj"
path has dependency type "xsubj"
path has word "craft"

path has word "craft"
path has dependency type "partmod"
path has word "equals"
path has word "use"
path has dependency type "xsubj"

Figure 4-7: The top five positive features on words and dependency types learned by
our model (above) and by SVM (below) for precondition prediction.

4.9 Conclusions

In this chapter, we presented a novel technique for inducing precondition relations

from text by grounding them in the semantics of planning operations. While using

planning feedback as its only source of supervision, our method for relation extraction

achieves a performance on par with that of a supervised baseline. Furthermore,

relation grounding provides a new view on classical planning problems which enables

us to create high-level plans based on language abstractions. We show that building

high-level plans in this manner significantly outperforms traditional techniques in

terms of task completion.

141

142

Chapter 5

Conclusions and Future Work

In this thesis, we have introduced systems and techniques for learning to translate

natural language into preexisting programming languages which are supported by

widely-deployed computer systems. Our work is a departure from most past work

which has focused on translating to special-purpose programming languages designed

to align closely to natural language. Mapping to existing programming languages

presents significant challenges stemming from the complicated relationship between

the natural language and the resulting programs, however it allows us to utilize the

underlying computer systems during the learning process itself. We show that inte-

grating the capabilities of the underlying systems leads to substantially more effective

learning.

We focus on two capabilities: computing semantic equivalence between programs,

and executing programs to obtain a result. In Chapter 2, we utilized the semantic

equivalence capabilities of the underlying system in order to handle the fact that

samples in the training data often do not exhibit syntactic alignment between the

natural language and the associated programs. In such cases we leveraged the under-

lying platform to help find a semantically equivalent program which does syntactically

align with the natural language. In Chapter 3, we showed that this capability could

be further utilized to constrain the search space of our joint inference technique. By

discovering the semantic equivalences between syntactically different program tem-

plates, we were able to eliminate redundancy in the inference process, and improve

143

the statistical efficiency of the learning.

In Chapter 4, we utilized the execution capabilities of the underlying platform in

order to learn to interpret text without labeled training data. We use our current

interpretation of the text to generate a high-level program to perform a given task. We

feed this program to the underlying system to generate a detailed low-level program

for the task. The system's success in generating such a low-level program is used as the

basis for a reinforcement learning procedure. This procedure is used to learn, without

any labeled data, the parameters of a Markov Decision Process (MDP) which both

interprets the text and uses the interpretation to generate high-level programs. In

Chapter 3 we further utilized the ability to execute programs to learn more effectively.

We executed the generated programs, and use the results of the execution, in this case

the solution to a system of mathematical equations as additional features in a log-

linear model.

5.1 Limitations

One of the main limitations of our work comes from the data itself. Both the system

for generating regular expressions, and the system for solving algebra problems relied

on supervised data. In each case the datasets only cover a small subset of the natural

language inputs possible even within these two constrained domains. For example,

many real-world regular expressions are written to query data which is structured

in very specific ways. Our system cannot handle such queries without training ex-

amples containing such queries. Additionally, many algebra word problems require

background knowledge to solve. For example, we may need to know that profit is

the difference between sales and costs. Since our system does not directly utilize any

background knowledge, we can only handle such problems if we have previously seen

similar problems in the training data.

Our work on algebra word problems utilized a flat model which did not directly

model compositional language. Given the typical shallow nesting in the data, it

is possible to learn templates for these cases given enough data, but a system which

144

explicitly models this compositionality may exhibit better generalization from smaller

datasets.

Finally, our model for generating high-level plans utilized a Markov model which

makes predictions for the current subgoal considering only the previous subgoal, as

well as the start and end states. This constraint on the model makes it challenging

to handle subgoals which have multiple preconditions to predict.

5.2 Future Work

This thesis makes steps towards the long term goal of learning to translate uncon-

strained natural language into a fully general-purpose Turing-complete programming

language. However, much future work remains. Fully realizing this vision requires

solving hard problems beyond those discussed in this thesis, such as learning and rep-

resenting common-sense knowledge. There are however multiple possible next steps

which are direct extensions of the ideas discussed here.

o Extending Semantic Equivalence to Turing-complete Languages

We showed the use of semantic equivalence in the limited context of regular

expressions and math equations. Working in constrained domains enabled

the efficient calculation of semantic equivalence. When extending this idea

to Turing-complete languages, exact semantic equivalence calculations will no

longer be computationally tractable, requiring the consideration of approximate

techniques. However, SAT and SMT solvers have seen significant success in

performing semantic inference for program induction and hardware verification

despite the computational intractability of these problems in the general case.

Exploring their use in our context would be an intriguing direction for future

research.

o Utilizing additional semantic inference capabilities

This thesis focused on utilizing both the execution and semantic equivalence

capabilities of the underlying platform. Computer programming systems, how-

145

ever, make available a wide variety of other capabilities which we have not

exploited. One particularly intriguing capability is the abstract interpretation

techniques that have been used quite successfully in the programming languages

and compiler communities 1331. These techniques can be used to prove that two

programs share various semantic properties beyond strict semantic equality.

For example, they could be used to show that two programs will generate the

same output on a constrained set of inputs, rather than for all inputs. Given

that natural language is often ambiguous and context specific, integrating such

additional properties into the learning process could prove to be very fruitful.

e Probabilistically Modeling Programs

Long term, one of the fundamental challenges in learning to generate programs

from natural language is the limited amount of labeled training data. This

challenge becomes even greater as we move to general purpose programming

languages which enable many more possible implementations of the same basic

idea. Unlabeled data can be easily obtained, however. Specifically, a significant

advantage of working with off-the-shelf programming languages is that large

open-source computer program repositories provide us easy access to almost

unbounded volumes of code in many such languages. While we cannot use

this data to directly learn the mapping between natural language and code, we

can use it to learn a probabilistic model of the higher-level abstract structures

present within typical computer programs. The resulting higher-level structures

can then be used as candidates for natural language groundings, enabling us to

learn more complex mappings with significantly less labeled data.

146

Appendix A

Generating Regular Expressions

147

Domain GeoQuery... -.....................
Natural Language What is the highest mountain in Alaska?..
Logical Program (answer (highest (mountain (loc-2 (stateid alaska:e)))))

What is answer.. ... I " ...
the highest highest............... --................ ... I I I ...

Alignment moutain mountain...
in loc-2... I _ ..

Alaska Alaska

Domain SAIL..
Natural Language move forward twice to the chair...
Logical Program Aa.Tnove(a) A dir(a, f orward) A len(a, 2) A to(a, ix.chair(x))

move move(a)...I -...
forward dir(a, f orward)............... I I'll ; I I

Alignment twice len(a, 2)..
to to(y, X)..

the chair ix.chair(x)

Domain Freebase............................
Natural Language What college did Obama go to?................ -........
Logical Program Type.University F1 Education. Barak0bama

A lignm ent I ... ,,T.y.p.e.....Un.i..v.e.r.s..i.t.y ... F1 Edu.c.at.i.on
...........
Obama Barak0bama

Domain RoboCup..
Natural Language Purple goalie turns the ball over to Pink8............................ -....................................... ...
Logical Program turnover(PurplePlayerl, PinkPlayer8)

Purple goalie PurplePlayerl.....................
Alignment turns the ball over to turnover(xy)............. --................................

Pink8 PinkPlayer8

Domain ATIS... ..
................................Natural Language On May 4th Atlanta to Denver Delta flight 257.............................. f h .(.................... Y A ..d 6 (....... f) (.......... R ... ** ... i)*A *Ax.mon x, may ynum er x, ourth A from x, a an

Logical Program to(X, denver) A airline(x, delta -air -lines) A f light(x)A

f lightnumber(x, 257)
May month(x, may)... I ..
4th daynumber(x, f ourth)..

Alignment t I and a a t 1 a n t a... _ ... I ...
to f rom(x, y) A to(x, z)......................... I I ...

Denver denver.. .. ;
Delta delta-air-lines..
flight f tight'(xi) ... * -*
257 flight number(x, 257)

Figure A-1: Examples of four different domains considered by the past work. In each
case, the natural language is mapped to a logical programming language which was
specifically designed to syntactically align with natural language.

148

Appendix B

Learning to Generate Plans from Text

B.1 Lemmas

This section proves a few lemmas that are used in the succeeding derivations.

Lemma B.1.1.

X GX i=O ciC{-1,1}

Proof.

CC XEX

XEX i=O

n

X, CIG,V; 0)ZEQ(XI cili 0
i=O

n

Q(X,cii)p(X|CG;0) P(c;;C)
CEC j=0

n

= E E E Q(X C',i 0
XEX i=O c'E{-1,1}

n

=EE E
XEX i=0 c'E{-1,1}

n

XEX i=O c'E{-1,1}

E p(X|C,G;6)
{CECCj=C'}

n

J=p(c3 vy;0)
J=O

E p(X|C,G; 0)
{CECjc%=c}

n

IP (cj |I V; OC)
j=O
iPi

Q(X, c', i)p(ci = c'Ivi; 0,)p(XIci = c', G, V; 0)

149

Z (p(X,
CEC XEX

CIG, V; 0) EQ(X, ci, 0)=
i=0

Q (X, ci, i)p(X Ici, G, V; O)p(ci Ivi; 0,)

Q (X, c', ip p(ci = c'|, IV;OC)

Slightly simplifying the notation results in the summation in the lemma:

XEEQ(X, ci, i)p(Xci, G, V;)p(civi; 0,)
XEX i=O ciE{-1,1}

Lemma B.1.2.

E E p(X,C|G,V;O0)
CEC XEX

m

Q(yi)
i=O CEC

C|V; Oc) E Q(Y,
i=O xEe

i)p(?Igj, C; 0.)

E E P(X,
CEC X EX

5 p(C|V;
CEC

= 5p(C|V; 0c)
CGC

C|G,V;0) Q(Yi) =

i=O
mn

p(X|C, G; 9,) 5 Q (, i)0C) X
X E X i=o

E p(X|C, G; 0,)Q(F, i)
i=O XEX

=Ep(C|V;c)EE E
CEC i=0 'Ei{XExjzi=x'

= p(C|V ; 0C) I
CEC i=O

m

5 Q(',i)
PZ'

= 5P(C|V;c)
CGC

QW i Yp('Igi, C; 0.)
i=O 'Ei

E

Since the last summation equals 1, we can drop it

p(C|V; 0) E Q(Y, i)p(flgi, C; 0,)
i=O 'Ei

Slightly simplifying the notation results in the summation in the lemma:

= 5p(C|V; c)
CGC

E Q(,
i=O YiG

i)p(,Igi, C; OX)

150

Proof.

E
p(X = Y, C, G; .,)

= E
CEC

p(X|C, G; 0,)Q(!',i)

p (X|IC, G; 0,)

Lemma B.1.3.

P(jg, C; 0") E X(xi I i_1 ,)

Proof.

a
aox C;Ox) = aaOx

I~f
JJ P (xi I xi, g, C; OX)

i=O

Using the derivative product rule:

I=I

i=O

La xi- 1, g, C; Ox)) JQ J p(Ixxj, g, C; OX)
i=0

xi, C; Ox) P(x i_1, g, C; OX)
p(Xi i1, gC;Ox j=)

Sp 1, C ; O) IpIi _1 ,g, C ;91)1
i=O= px~ A; C;p(~, C x)W L p(xi x_1, g,C; x)J

=(,g, C; OX) logp(xixzi-1 g, C; 2)
j=0

To compute the inner derivative, we note that we have defined p(xi _xi1, g, C; Ox) as

a log-linear distribution. Thus:

C; OX e x -0x (xi'xi-1,g'C)
p(XilXi_1 , , C; 2) = x(Xxi-1,g'C)

log p(xiIxi_1, g, C; OX) = Ox 4x (Xi, Xi_1, g, C) - log eOx -x(xixi-1,gC)

T rEx

Therefore:

log p(xi xi_, g, C; OX) =aox aox
Ox , Ox(Xi, Xi_1, g, C) - log E O1,gC)

L/E

151

0

- Ep(xIx-I_1,g,C;Ox) [(x', xi_ 1, g, C)]= I pzg, C; 6)

0. (Xi, Xi-1, g, C)--

= #(Xi, Xi_1, g, C) -

= (Xi, Xi_1, g, C) -

OX (i, Xi-1,1 9, C) -

a E co-ox(x',xi_1,g,c)

x ",1 gc
x" Ex E eO-O.(//,X-1,,C)

x'Ex

(O', Xi_1, g, Q~eO-OX(X',Xi-1,g,C)z ~Oxkx ax,x ",C _I9c

xex "E

eOx , (x',xi-1,gC)

x xi- 1 , , C) 1eX(X",Xig,,C)
x'Ex ex")Ex

=X #(Xi, Xi- 1, g, C) - X(X' Xi_1, g, C)p(x'lxj_1, g, C)
X/Ex

= #x(i, i_1, g, C) - Ep(x IzXj,g,C;OX) [,x (x', Xi_ 1, g, C)]

Plugging this back into the earlier expression yields the result:

= p(Yjg, C; 9)
IrI

(i, i 1 , g, C)
Li=0

- Ep(xIxi,g,c;ox) [qx(x', xi_1, g, C)]

Lemma B.1.4.

p(c0IO) = p(cIO) (#(c) - Ep(c,) [#(c')])

Proof.

ao-- p(c|O) =
00 E{-1,1} eo-(c')

Applying the quotient rule:

- eO-(c)a (ZC'{- 1 ,1} eo-(c')

E){-1,1} 2

152

ED

5- eO~(c)) EC'E -1,1C-(c')

- eO4(c) Z/G- 1 , 1e

(EcE-i,1 ei-}(c'))2

e(() ((c)

c'E{--1,1}
e~c'-1)

eO*C')

- mi9(~(c) -64C

- p(cIO) ((C E, -)

= p(cIO) (#(c) - e
c' { -1,11}

- p(cIO) # (c) - E
\' f' - 1,} 1 {

= P (CIO) #(c) - : p c')#

=p(cjO) (O(c) - Ep(c,) [#(c')])

ZCIG{-ii} e 0.(c')) - (Zc/E{

--

ZC'G -1,1} e9.4(c')

Zc 'E{ -,1} e0-k(c ')

(c')#(CI)

e6 4(c'(c'

(c'))
(f

)

r-1

B.2 Derivation of update for 0,

Ep(X,CIG,V;9) [R(X, C)]aox =a]EpX,CIG,V;O) [Rx(X) + Rc(X, C)]

a a
-a p(x,CIG,V;O) [Rx(X)] + E p(X,CIG,V;O) [Re(X, C)]

We'll start by computing the first derivative:

a a
a IEp(X,CG,V;O) [Rx(X)] = S p(X, C

a o x a o xC E C X X

ap(X,CIG,V; 0)5R(ii)
CEC XEX i=O

G, V; 0)R 1(X)

153

-
e C #I.1(c) Ecel11 e 0. (c' ,

- (c'-O) O(c') -

e0-4(c')#(c'))

Applying Lemma B.1.2:

= a C AC
CEC

CIV; 0) 1 1 R (Y, i)p(?Igi, C; 9,)
i=O YZe

CIV; 0c) S R (Y,
i=0 YewCeC

Applying Lemma B.1.3:

(C ; Rx(Y', i)p(:Fig, C;9x) #4 (x ,x _ ,gi, C) - EW, #2(x',x l gi,C)]
CEC i=O E =0

Applying Lemma B.1.2 in reverse:

0 Ep(X,CIG,V;O) [Rx(X)] =

p(X, CIG, V; 0) Rx (i, i)
CGEC XEX i=0

E O(x', x_. 1, gi, C) - E '
j=0 i iPXIjJg~~x

We compute the derivative of the second term similarly:

Ep(X,C|G,V;) [Rc(X, C)] = a 5 E p(X, CG, V; O)Re(X, C)
oX CECXGx

Cec

- p(CIV
CeC

C IV; 9e)

;Ac)
Xex

E Re(X, C)p(X IC, G; Ox)
XeX

Rc(X, C) a p(XIC, G; Ox)

Applying a slightly modified version of Lemma B.1.3:

- p(CIV;9,) E Rc(X, C)p(XIC, G; 6) [#O(x, xj_, gi, C)
CEC XEX i=0 j=0

- Ep(X Ii g C;ox) (xo xi-1,iC)]

[m I|2I .
p(X,CIG,V;9)Rc(X,C) (,x(x;,x ,_gi, C)-E(xxi #Ox [(x, xi, gi, C)]

CEC XEX i=0 j=0 I

Combining together the two derivatives:

a
Ep(X,C|G,V ;O) [R(X, C)] =

154

[O x W i - 1, , 11

0iax p(Y'Igi, C; OX)

p(X, CIG, V;) E R.(Y, i) 4.(x', x 1, gi, C) - +Ep(i'|x _ C;O) -' g,
CECXEX i=0 [j=0 I

m |$|
p (X , C IG , V ;)R c(X , C) Ex (: , X _, i, C) - E p(x j _1,) # xi i)

CeC XE X i=0 1
-:p(X,CIGV;O)Z (Rx(ei) +Re(XC)) 3 x(xx _,gi,C) -E I (#x(x', x 1, gi,C)]

CECXEX i=O j=O

= Ep(X,C|G,V;6) [(i,) + Rc(X,C)) [(xlg x , x 1 , gi, C) E(i x ,X ,i 7C)l]]
SoC te if we s=l a X a at h iative bomes

So then if we sample an X and a C the approximation of the derivative becomes:

& a Ep(X,CG,V;O) [R(X, C)] =

E (R(Y , i) + R,(X, C)) Ox (x', x'_ 1, gi, C)
i=0 -j=o

B.3 Derivation of update for Oc

The derivative for 0, follows very similarly to the derivative for 0,:

9e Ep(XCIG,V;G) [R(XC)] = a p(xCG,V;O) [Rx(X)] + a Ep(X,C\G,V;O) [Re(X, C)]
aC c

We'll start by computing the derivative of the second term:

a Ep(XCG,V;O) [Re(X ,C] = a E p(X,C|G,
a CGC X EX

Applying Lemma B.1.1:

XEX i=0 ciE{-1,1}

To simplify the update calculation, we do not backpropagate the effect of changes to

p(XI-) into the 0, updates, and thus do not include it in the derivative.

XEX i=0 ciE{-1,1}

155

n

V;0) ZR(X,ci,i)
i=O

IEP(XIXi-1)9iC;OX) [OX(XI IXi_ I 9i, C)l

R (X, ci, i)p (X Ici, G, V; O)p (ci Ivi; 0,)

R (X, ci, i)p (X Xci, G, V; 0) ap(ci Ivi ; 0,)

Applying Lemma B.1.4:

XEX i=O ciE{-1,1}

R(X c, i)p(X Ici, G, V; 6)p(cjjvj; 6c) [#c(ci, vi) - Ep(cOvi;O,) [0c(c', vi)]]

Applying Lemma B.1.1 in reverse:

= S 5 p(X CIG, V;
CEC XEX

0) E R(X,
i=O

ci, i) [ic(ci, vi) - Ep(cIvi;Oc) [#c(c', vi)]]

We compute the derivative of the first term similarly:

aEp(X,CIG,V;O) [Rx(X)] = a E 5 p(X, C|G,
a~c a~cCEC X(EX

_ac 5 5 p(X|C, G; Ox)Rx(X)p(C|V; Oe)
CeC XGX

=5 E Ep(X|C, G; Ox)R (X)
CEC XeX

aP(CV; C)

applying a variant of Lemma B.1.3:

=E 5 p(X|
CEC XEX

=E p(X,
CEC XEX

#c(ci v) - Ep(clv;o,)

.i=

#c(ci, Vi) - Ep(clv;OC) [#c(c', Vi

Combining together the two derivatives yeilds:

a
(9 Ep(X,CG,V;O) [R(XC)] =

55 p(X, C|G, V; 6)RX(X)
CCC XEX

5 p(X,
CeC X6%

n1

S #c(ci, vi) - Ep(C V;O9 [#c(c', vi)]
.i=0 .

C|G, V; 0) E R(X, ci, i) [#c(ci, vi) - E p(cIvi;Oc) [#c(c', vi)]]
i=O
n

= ((p(X, CIG, V; 0) E (Rx(X) + RC(X, ci, i)) [#c(ci, vi) - Ep(cIie;Oc)
CGC XEX i=O

156

V; 0)Rx(X)

+

[#c(c', vi)]]

G;Ox) Rx(X)p(C|IV ; Oc)

C|G, V ;) Rx(X)

[#C (C', vi)]

R(X) + R,(X, ci, i)) [qc(civ) -

So then if we sample an X and a C the approximation of the derivative becomes:

a n
EjIp(XCIG,V;O) [R(X, C)] = (Rx(X) + Rc(X, ci I i)) [&cv) - Ep(c',Iv) [qc(c', vi)]]

157

= E p(X,C|G,V;Oc) - Ep(ilo) [0c(c', V01]

158

Bibliography

[1] Peter Abeles. Efficient java matrix library, 2014.
https://code.google.com/p/efficient -java-matrix-library/.

[21 Miltiadis Allamanis, Daniel Tarlow, Andrew D. Gordon, and Yi Wei. Bimodal
modelling of source code and natural language. In Proceedings of The 32nd
International Conference on Machine Learning, pages 2123-2132, 2015.

[31 Dana Angluin. Learning regular sets from queries and counterexamples. Infor-
mation and computation, 75(2):87-106, 1987.

[41 Yoav Artzi and Luke Zettlemoyer. Bootstrapping semantic parsers from con-
versations. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing, pages 421-432. Association for Computational Linguis-
tics, 2011.

[51 Yoav Artzi and Luke Zettlemoyer. Weakly supervised learning of semantic
parsers for mapping instructions to actions. Transactions of the Association for
Computational Linguistics, 2013.

[6] Fahiem Bacchus and Qiang Yang. Downward refinement and the efficiency of
hierarchical problem solving. Artificial Intell., 71(1):43-100, 1994.

[71 Bruce W Ballard and Alan W Biermann. Programming in natural lan-
guage:"NLC" as a prototype. In Proceedings of the 1979 annual conference,
pages 228-237. ACM, 1979.

[8] Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt,
Ulf Hermjakob, Kevin Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. Abstract meaning representation (amr) 1.2 specification.

[91 Jennifer L. Barry, Leslie Pack Kaelbling, and Tomas Lozano-Perez. DetH*: Ap-
proximate hierarchical solution of large markov decision processes. In IJCAI'11,
pages 1928-1935, 2011.

[10] Brandon Beamer and Roxana Girju. Using a bigram event model to predict
causal potential. In Proceedings of CICLing, pages 430-441, 2009.

[111 Jonathan Berant and Percy Liang. Semantic parsing via paraphrasing. In
Proceedings of A CL, volume 7, page 92, 2014.

159

[12] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic pars-
ing on freebase from question-answer pairs. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing, 2013.

[13] Eduardo Blanco, Nuria Castell, and Dan Moldovan. Causal relation extraction.
In Proceedings of the LREC'08, 2008.

[14] Mario Bollini, Jennifer Barry, and Daniela Rus. Bakebot: Baking cookies with
the pr2. In The PR2 workshop: results, challenges and lessons learned in ad-
vancing robots with a common platform, IROS, 2011.

[15] S. R. K. Branavan, David Silver, and Regina Barzilay. Learning to win by
reading manuals in a monte-carlo framework. In Proceedings of A CL, pages
268-277, 2011.

[16] S.R.K Branavan, Harr Chen, Luke Zettlemoyer, and Regina Barzilay. Rein-
forcement learning for mapping instructions to actions. In Proceedings of A CL,
pages 82-90, 2009.

[17] S.R.K Branavan, Luke Zettlemoyer, and Regina Barzilay. Reading between the
lines: Learning to map high-level instructions to commands. In Proceedings of
ACL, pages 1268-1277, 2010.

[18] S.R.K. Branavan, David Silver, and Regina Barzilay. Non-linear monte-carlo
search in civilization ii. In Proceedings of IJCAI, 2011.

[19] S.R.K. Branavan, Nate Kushman, Tao Lei, and Regina Barzilay. Learning high-
level planning from text. In Proceedings of ACL, 2012.

[20] S.R.K. Branavan, David Silver, and Regina Barzilay. Learning to win by reading
manuals in a monte-carlo framework. Journal of Artificial Intelligence Research,
43:661-704, 2012.

[21] Peter F Brown, Vincent J Della Pietra, Stephen A Della Pietra, and Robert L
Mercer. The mathematics of statistical machine translation: Parameter esti-
mation. Computational linguistics, 19(2):263-311, 1993.

[22] Qingqing Cai and Alexander Yates. Semantic parsing freebase: Towards open-
domain semantic parsing. In Proceedings of the Joint Conference on Lexical
and Computational Semantics., 2013.

[23] Qingqing Cai and Alexander Yates. Large-scale semantic parsing via schema
matching and lexicon extension. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics, 2013.

[24] Bob Carpenter. Type-logical semantics. MIT press, 1997.

[25] Nathanael Chambers and Dan Jurafsky. Template-based information extraction
without the templates. In Proceedings of the Annual Meeting of the Association
for Computational Linguistics, 2011.

160

[26] Du-Seong Chang and Key-Sun Choi. Incremental cue phrase learning and boot-
strapping method for causality extraction using cue phrase and word pair prob-
abilities. Inf. Process. Manage., 42(3):662-678, 2006.

[271 David Chen. Fast online lexicon learning for grounded language acquisition.
In Proceedings of the Annual Meeting of the Association for Computational
Linguistics, 2012.

[28] David L. Chen and Raymond J. Mooney. Learning to sportscast: a test of
grounded language acquisition. In Proceedings of ICML, 2008.

129] David L Chen and Raymond J Mooney. Learning to interpret natural language
navigation instructions from observations. In Proceedings of the 25th AAAI
Conference on Artificial Intelligence (AAAI-2011), pages 859-865, 2011.

[30] Stephen Clark and James R Curran. Wide-coverage efficient statistical parsing
with ccg and log-linear models. Computational Linguistics, 33(4):493-552, 2007.

131] J. Clarke, D. Goldwasser, M.W. Chang, and D. Roth. Driving semantic pars-
ing from the world's response. In Proceedings of the Fourteenth Conference on
Computational Natural Language Learning, pages 18-27. Association for Com-
putational Linguistics, 2010.

1321 Michael Collins. Head-driven statistical models for natural language parsing.
PhD thesis, University of Pennsylvania, 1999.

1331 Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lat-
tice model for static analysis of programs by construction or approximation of
fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, pages 238-252. ACM, 1977.

[341 Marie-Catherine de Marneffe, Bill MacCartney, and Christopher Manning. Gen-
erating typed dependency parses from phrase structure parses. In Proceedings
of the Conference on Language Resources and Evaluation, 2006.

[351 Nikolaos Mavridis Deb Roy, Kai-Yuh Hsiao. Coversational robots: Building
blocks for grounding word meaning. In Proceedings of the HLT-NAACL Work-
shop on Learning Word Meaning from Non-linguistic Data, volume 6, pages
70-77. Association for Computational Linguistics, 2003.

[36] Edsger W Dijkstra. On the foolishness of "natural language programming". In
Program Construction, pages 51-53. Springer, 1979.

[37] Q. Do, Y. Chan, and D. Roth. Minimally supervised event causality identifica-
tion. In EMNLP, 7 2011.

[381 Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo, and James Diebel. Path
planning for autonomous vehicles in unknown semi-structured environments.
The International Journal of Robotics Research, 29(5):485-501, 2010.

161

[39] Dropbox. Dropbox core api, 2015. URL http: //www. dropbox. com/
developers/core/docs.

[40] Michael Fleischman and Deb Roy. Intentional context in situated natural lan-
guage learning. In Proceedings of CoNLL, pages 104-111, 2005.

[41] Maria Fox and Derek Long. Pddl2.1: An extension to pddl for expressing
temporal planning domains. Journal of Artificial Intelligence Research, 20:

2003, 2003.

[42] Jeffrey Friedl. Mastering Regular Expressions. OReilly, 2006.

[43] Boris Galitsky and Daniel Usikov. Programming spatial algorithms in natu-

ral language. In Proceedings of the AAAI Workshop on Spatial and Temporal

Reasoning, 2008.

[44] Steven I. Gallant. Perceptron-based learning algorithms. Neural Networks,
IEEE Transactions on, 1(2):179-191, 1990.

[45] Ruifang Ge and Raymond Mooney. A statistical semantic parser that integrates
syntax and semantics. In Proceedings of CoNLL, 2005.

[46] Malik Ghallab, Dana S. Nau, and Paolo Traverso. Automated Planning: theory
and practice. Morgan Kaufmann, 2004.

[47] Roxana Girju and Dan I. Moldovan. Text mining for causal relations. In
Proceedigns of FLAIRS, pages 360-364, 2002.

[48] R.C. Gonzalez and M.G. Thomason. Syntactic pattern recognition: An intro-
duction. 1978.

[49] Cordell Green. Application of theorem proving to problem solving. Technical
report, DTIC Document, 1969.

[50] Ralph Grishman, David Westbrook, and Adam Meyers. NYUA2s English ACE
2005 System Description. In Proceedings of the Automatic Content Extraction

Evaluation Workshop, 2005.

[51] Sumit Gulwani. Dimensions in program synthesis. In Proceedings of the 12th

international ACM SIGPLAN symposium on Principles and practice of declar-

ative programming, pages 13-24. ACM, 2010.

[52] Sumit Gulwani and Mark Marron. Nlyze: Interactive programming by natural

language for spreadsheet data analysis and manipulation. In Proceedings of the

2014 ACM SIGMOD International Conference on Management of Data, pages

803-814. ACM, 2014.

[53] George E Heidorn. Automatic programming through natural language dialogue:
A survey. IBM Journal of Research and Development, 20(4):302-313, 1976.

162

[54] Julia Hockenmaier and Mark Steedman. Generative models for statistical pars-
ing with combinatory categorial grammar. In Proceedings of the 40th Annual
Meeting on Association for Computational Linguistics, pages 335-342. Associ-
ation for Computational Linguistics, 2002.

[551 Julia Hockenmaier and Mark Steedman. Ccgbank: a corpus of ccg derivations
and dependency structures extracted from the penn treebank. Computational
Linguistics, 33(3):355-396, 2007.

[56] J6rg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan gen-
eration through heuristic search. JAIR, 14:253-302, 2001.

[57] J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to automata theory,
languages, and computation, volume 2. Addison-wesley Reading, MA, 1979.

[581 Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren Etzioni, and Nate
Kushman. Learning to solve arithmetic word problems with verb categoriza-
tion. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 523-533, 2014.

[59] Kai-yuh Hsiao, Nikolaos Mavridis, and Deb Roy. Coupling perception and sim-
ulation: Steps towards conversational robotics. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), volume 1,
pages 928-933. IEEE, 2003.

[60] Kai-yuh Hsiao, Stefanie Tellex, Soroush Vosoughi, Rony Kubat, and Deb Roy.
Object schemas for grounding language in a responsive robot. Connection Sci-
ence, 20(4):253-276, 2008.

[61] Liang Huang and David Chiang. Better k-best parsing. In Proceedings of the
Ninth International Workshop on Parsing Technology, pages 53-64. Association
for Computational Linguistics, 2005.

[62] Heng Ji and Ralph Grishman. Refining event extraction through cross-
document inference. In Proceedings of the Annual Meeting of the Association
for Computational Linguistics, 2008.

[63] Victor M. Jimenez and Andres Marzal. Computation of the n best parse trees
for weighted and stochastic context-free grammars. Advances in Pattern Recog-
nition, pages 183-192, 2000.

[64] Thorsten Joachims. Advances in kernel methods. chapter Making large-scale
support vector machine learning practical, pages 169-184. MIT Press, 1999.

[65] Colin G Johnson. Genetic programming with fitness based on model checking.
In Genetic Programming, pages 114-124. Springer, 2007.

[66] Bevan K. Jones, Mark Johnson, and Sharon Goldwater. Semantic parsing with
bayesian tree transducers. In Proceedings of ACL, 2012.

163

[67] Anders Jonsson and Andrew Barto. A causal approach to hierarchical decompo-
sition of factored mdps. In Advances in Neural Information Processing Systems,
13:1054-1060, page 22. Press, 2005.

[68] Daniel Jurafsky and James H Martin. Speech and Language Processing. Pearson,
2014.

[69] R.J. Kate and R.J. Mooney. Using string-kernels for learning semantic parsers.
In Association for Computational Linguistics, volume 44, page 913, 2006.

[70] R.J. Kate, Y.W. Wong, and R.J. Mooney. Learning to transform natural to
formal languages. In Proceedings of the National Conference on Artificial In-
telligence, volume 20, page 1062. Menlo Park, CA; Cambridge, MA; London;
AAAI Press; MIT Press; 1999, 2005.

[71] Joohyun Kim and Raymond Mooney. Unsupervised pcfg induction for grounded
language learning with highly ambiguous supervision. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing, 2012.

[72] T. Kwiatkowski, L. Zettlemoyer, S. Goldwater, and M. Steedman. Lexical
generalization in ccg grammar induction for semantic parsing. In Proceedings
of the Conference on Empirical Methods in Natural Language Processing, pages
1512-1523. Association for Computational Linguistics, 2011.

[73] Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwater, and Mark Steedman.
Inducing probabilistic ccg grammars from logical form with higher-order unifi-
cation. In Proceedings of EMNLP, 2010.

[74] Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and Luke Zettlemoyer. Scaling
semantic parsers with on-the-fly ontology matching. In Proceedings of Empirical
Methods in Natural Language Processing, 2013.

[75] Tessa Lau, Pedro Domingos, and Daniel S Weld. Learning programs from traces
using version space algebra. In Proceedings of the 2nd international conference
on Knowledge capture, pages 36-43. ACM, 2003.

[76] Tessa A Lau, Pedro Domingos, and Daniel S Weld. Version space algebra and
its application to programming by demonstration. In ICML, pages 527-534,
2000.

[77] Vu Le, Sumit Gulwani, and Zhendong Su. Smartsynth: Synthesizing smart-
phone automation scripts from natural language. In Proceeding of the 11th An-
nual International Conference on Mobile syStems, Applications, and Services,
pages 193-206. ACM, 2013.

[78] Kenton Lee, Yoav Artzi, Jesse Dodge, and Luke Zettlemoyer. Context-
dependent semantic parsing for time expressions. In Proceedings of the Confer-
ence of the Association for Computational Linguistics, pages 1437-1447, 2014.

164

[79] Tao Lei, Fan Long, Regina Barzilay, and Martin Rinard. From natural language
specifications to program input parsers. In Proceeding of the Association for
Computational Linguistics., 2013.

[80] Tao Lei, Fan Long, Regina Barzilay, and Martin C Rinard. From natural lan-
guage specifications to program input parsers. Association for Computational
Linguistics (ACL), 2013.

[81] Mariin Lekavf and Pavol Ndvrat. Expressivity of strips-like and htn-like plan-
ning. Lecture Notes in Artificial Intelligence, 4496:121-130, 2007.

[82] Iddo Lev, Bill MacCartney, Christopher Manning, and Roger Levy. Solving
logic puzzles: From robust processing to precise semantics. In Proceedings of the
Workshop on Text Meaning and Interpretation. Association for Computational
Linguistics, 2004.

[83] P. Liang, M.I. Jordan, and D. Klein. Learning dependency-based compositional
semantics. Computational Linguistics, pages 1-94, 2011.

[84] Percy Liang, Michael I. Jordan, and Dan Klein. Learning semantic correspon-
dences with less supervision. In Proceedings of A CL, pages 91-99, 2009.

[85] Greg Little and Robert C. Miller. Keyword programming in java. Automated
Software Engineering, 16(1):37-71, 2009.

[86] Zohar Manna and Richard Waldinger. A deductive approach to program synthe-
sis. ACM Transactions on Programming Languages and Systems (TOPL AS), 2
(1):90-121, 1980.

[87] Mstislav Maslennikov and Tat-Seng Chua. A multi-resolution framework for
information extraction from free text. In Proceedings of the Annual Meeting of
the Association for Computational Linguistics, 2007.

[88] Cynthia Matuszek, Nicholas FitzGerald, Luke Zettlemoyer, Liefeng Bo, and
Dieter Fox. A joint model of language and perception for grounded attribute
learning. In Proceedings of the International Conference on Machine Learning,
2012.

[89] Maxima. Maxima, a computer algebra system. version 5.32.1, 2014. URL
http://maxima.sourceforge.net/.

[90] Neville Mehta, Soumya Ray, Prasad Tadepalli, and Thomas Dietterich. Au-
tomatic discovery and transfer of maxq hierarchies. In Proceedings of the 25th
International Conference on Machine Learning, ICML '08, pages 648-655, 2008.

[91] Microsoft. Microsoft support, 2015. URL http: //support.microsof t. com.

[92] R. Mihalcea, H. Liu, and H. Lieberman. Nlp (natural language processing) for
nlp (natural language programming). Computational Linguistics and Intelligent
Text Processing, pages 319-330, 2006.

165

[93] MinecraftWiki. Minecraft wiki, 2015. URL http: //www . minecraf twiki. net.

[94] Anders Moller. dk.brics.automaton - finite-state automata and regular expres-
sions for Java, 2010. http://www.brics.dk/automaton/.

[95] Raymond J. Mooney. Learning to connect language and perception. In Pro-
ceedings of AAAI, pages 1598-1601, 2008.

[96] Raymond J. Mooney. Learning language from its perceptual context. In Pro-
ceedings of ECML/PKDD, 2008.

[971 N. Moreira and R. Reis. Implementation and application of automata. 2012.

[98] Dana Movshovitz-Attias and William W Cohen. Natural language models for
predicting programming comments. 2013.

199] Anirban Mukherjee and Utpal Garain. A review of methods for automatic un-
derstanding of natural language mathematical problems. Artificial Intelligence
Review, 29(2), 2008.

[100] A. Newell, J.C. Shaw, and H.A. Simon. The Processes of Creative Thinking. Pa-
per P-1320. Rand Corporation, 1959. URL http: //books . google. com/books?
id=dUIkPAAACAAJ.

[101] Jorge Nocedal and Stephen Wright. Numerical optimization, series in operations
research and financial engineering. Springer, New York, 2006.

1102] James Timothy Oates. Grounding Knowledge in Sensors: Unsupervised Learn-
ing for Language and Planning. PhD thesis, University of Massachusetts
Amherst, 2001.

[103] oDesk, 2013. http://odesk.com/.

[104] Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-
structured tables. In Annual Meeting for the Association for Computational
Linguistics (ACL), 2015.

[105] Hoifung Poon. Grounded unsupervised semantic parsing. In Proceeding of the
Annual Meeting of the North American Chapter of the Association for Compu-
tational Linguistics, 2013.

[106] Chris Quirk, Raymond Mooney, and Michel Galley. Language to code: Learning
semantic parsers for if-this-then-that recipes. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics (ACL-15), Beijing,
China, July 2015.

[107] Aarne Ranta. A multilingual natural-language interface to regular expressions.
In Proceedings of the International Workshop on Finite State Methods in Natural
Language Processing, pages 79-90. Association for Computational Linguistics,
1998.

166

[1081 R.G. Raymond and R. J. Mooney. Discriminative reranking for semantic pars-
ing. In Proceedings of the COLING/ACL poster sessions, pages 263-270. Asso-
ciation for Computational Linguistics, 2006.

[109] Mohammad Raza, Sumit Gulwani, and Natasa Milic-Frayling. Compositional
program synthesis from natural language and examples.

[110] Roi Reichart and Regina Barzilay. Multi-event extraction guided by global
constraints. In Proceedings of the Conference of the North American Chapter
of the Association for Computational Linguistics, 2012.

[1111 Alan Ritter, Mausam, Oren Etzioni, and Sam Clark. Open domain event ex-
traction from twitter. In Proceedings of the Conference on Knowledge Discovery
and Data Mining, 2012.

[112] S. Roy and D. Roth. Solving general arithmetic word problems. In EMNLP,
2015.

1113] Stuart Russell and Peter Norvig. Artificial intelligence: a modern approach,
2010.

[114] Jean E Sammet. The use of english as a programming language. Communica-
tions of the ACM, 9(3):228-230, 1966.

1115] Min Joon Seo, Hannaneh Hajishirzi, Ali Farhadi, and Oren Etzioni. Diagram
understanding in geometry questions. In The AAAI Conference on Artificial
Intelligence (AAAI-2014), Quebec City, Quebec, Canada, 2014.

[116] Avirup Sil and Alexander Yates. Extracting STRIPS representations of actions
and events. In Recent Advances in Natural Language Learning (RANLP), 2011.

[117] Avirup Sil, Fei Huang, and Alexander Yates. Extracting action and event seman-
tics from web text. In AAAI 2010 Fall Symposium on Commonsense Knowledge
(CSK), 2010.

[1181 Rishabh Singh and Sumit Gulwani. Learning semantic string transformations
from examples. Proceedings of the VLDB Endowment, 5(8):740-751, 2012.

1119] Jeffrey Mark Siskind. Grounding the lexical semantics of verbs in visual per-
ception using force dynamics and event logic. Journal of Artificial Intelligence
Research, 15:31-90, 2001.

[120] Armando Solar-Lezama. Program synthesis by sketching. ProQuest, 2008.

[121] Armando Solar-Lezama, Rodric Rabbah, Rastislav Bodik, and Kemal Ebcioglu.
Programming by sketching for bit-streaming programs. ACM SIGPLAN No-
tices, 40(6):281-294, 2005.

[122] M. Steedman. The syntactic process. MIT press, 2000.

167

[1231 Mark Steedman. Surface structure and interpretation. 1996.

[124] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Intro-
duction. The MIT Press, 1998.

[125] Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Pol-
icy gradient methods for reinforcement learning with function approximation.
In Advances in NIPS, pages 1057-1063, 2000.

[1261 D. Tabakov and M. Vardi. Experimental evaluation of classical automata con-
structions. In Logic for Programming, Artificial Intelligence, and Reasoning,
pages 396-411. Springer, 2005.

[127] Stefanie Tellex, Thomas Kollar, Steven Dickerson, Matthew R Walter,
Ashis Gopal Banerjee, Seth J Teller, and Nicholas Roy. Understanding nat-
ural language commands for robotic navigation and mobile manipulation. In
AAAI, 2011.

[1281 Stefanie Tellex, Pratiksha Thaker, Joshua Joseph, and Nicholas Roy. Learning
perceptually grounded word meanings from unaligned parallel data. Machine
Learning, 94(2):151-167, 2014.

[129] William Thies, Michal Karczmarek, and Saman Amarasinghe. Streamit: A
language for streaming applications. In Compiler Construction, pages 179-196.
Springer, 2002.

[1301 C.A. Thompson and R.J. Mooney. Acquiring word-meaning mappings for nat-
ural language interfaces. Journal of Artificial Intelligence Research, 18(1):1-44,
2003.

[131] Mechanical Turk, 2013. http: //mturk. com/.

[1321 Adam Vogel and Dan Jurafsky. Learning to follow navigational directions.
In Proceedings of the Annual Meeting of the Association for Computational
Linguistics, 2010.

[133] Adam Vogel and Daniel Jurafsky. Learning to follow navigational directions.
In Proceedings of the ACL, pages 806-814, 2010.

[1341 David E. Wilkins and Marie des Jardins. A call for knowledge-based planning.
AI magazine, 22(1):99, 2001.

[1351 Brian C. Williams and P. Pandurang Nayak. A reactive planner for a model-
based executive. In IJCAI, volume 97, pages 1178-1185, 1997.

[1361 Terry Winograd. Understanding natural language. Cognitive psychology, 3(1):
1-191, 1972.

168

[137] Alicia P. Wolfe and Andrew G. Barto. Identifying useful subgoals in reinforce-
ment learning by local graph partitioning. In In Proceedings of the Twenty-
Second International Conference on Machine Learning, pages 816-823, 2005.

[138] Y.W. Wong and R.J. Mooney. Learning for semantic parsing with statistical
machine translation. In Proceedings of the Annual Conference of the North
American Chapter of the Association of Computational Linguistics on Human
Language Technology, pages 439-446. Association for Computational Linguis-
tics, 2006.

[139] Y.W. Wong and R.J. Mooney. Learning synchronous grammars for seman-
tic parsing with lambda calculus. In Annual Meeting for the Association for
Computational Linguistics (ACL), volume 45, page 960, 2007.

[140] Roman V Yampolskiy. Ai-complete, ai-hard, or ai-easy-classification of prob-
lems in ai. In The 23rd Midwest Artificial Intelligence and Cognitive Science
Conference. Citeseer, 2012.

1141] Chen Yu and Dana H. Ballard. On the integration of grounding language and
learning objects. In Proceedings of AAAI, pages 488-493, 2004.

[142] J.M. Zelle and R.J. Mooney. Learning to parse database queries using inductive
logic programming. In Proceedings of the National Conference on Artificial
Intelligence, pages 1050-1055, 1996.

[143] L.S. Zettlemoyer and M. Collins. Learning to map sentences to logical form:
Structured classification with probabilistic categorial grammars. 2005.

[144] L.S. Zettlemoyer and M. Collins. Online learning of relaxed ccg grammars for
parsing to logical form. In In Proceedings of the 2007 Joint Conference on
Empirical Methods in Natural Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL-2007. Citeseer, 2007.

[145] L.S. Zettlemoyer and M. Collins. Learning context-dependent mappings from
sentences to logical form. In Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP: Volume 2-Volume 2, pages 976-
984. Association for Computational Linguistics, 2009.

[146] Luke Zettlemoyer. Learning to Map Sentences To Logical Form. PhD thesis,
Massachusetts Institute of Technology, 2009.

169

