
Security of Substitution-Permutation Network

by

Cheng Chen

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2015

ARCHIVES
MASSACHUSETS INSTITUTE

OF TECHNOLOGY

NOV 022015

LIBRARIES

Massachusetts Institute of Technology 2015. All rights reserved.

ht, Signature redacted
A ~ or...............

Department

Certified by

--------. ......
of Electriba Engineering and Computer Science

August 26, 2015

Signature redacted
. .. ......................................

-Professor Vinod Vaikuntanathan
Thesis Supervisor

Signature redacted
A ccepted by ................. - -. .,. .W . ... . . .................

Arofes r eslie Kolodziejski
Chair, Department Committee on Graduate Theses

A





Security of Substitution-Permutation Network

by

Cheng Chen

Submitted to the Department of Electrical Engineering and Computer Science
on August 26, 2015, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

In this thesis, we study the security of a block cipher design called substitution-
permutation network (SPN). We prove that when S-box is chosen uniformly at ran-

dom as a permutation, the resulting SPN is a strong pseudorandom permutation even

against an adversary having oracle access to that S-box. We then examine some spe-

cial cases of SPN for a fixed S-box and prove two special cases of SPN inspired by
AES are 2-wise independent.

Thesis Supervisor: Professor Vinod Vaikuntanathan
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Chapter 1

Introduction

This thesis takes a new step in closing the gap between pseudorandom permutations

and their popular bounded-input counterpart, block ciphers, used in practice.

Pseudorandom permutations are collection of permutations that can not be distin-

guished from random permutations by any efficient adversary. It was first constructed

by Ruby and Rackoff [LR86] from pseudorandom functions, and therefore based on

one-way functions. Block ciphers are fixed-length permutations that look random in

practice. Implementations of block ciphers, such as Data Encryption Standard (DES)

and Advanced Encryption Standard (AES), are widespread all over the Internet to

secure sensitive data.

Modern block ciphers often follow the substitution-permutation network (SPN)

paradigm, e.g., AES. An SPN is computed over several rounds. In each round, the

input is first divided into blocks and a substitution function S-box is applied to each

block; a diffusion function is then applied to the entire blocks to spread out the local

changes; a round key is then combined to the entire blocks to mask the internal

computations. In practice, all the round keys are often derived from a shorter master

key for efficiency. But throughout the thesis, we assume that all round keys are

independently chosen uniformly at random and are hidden from the adversary.

Despite the popularity of SPN, its security is not well understood. In this thesis,

we give some asymptotic analyses of SPN.

11



1.1 Random S-box

DES was once a predominant encryption scheme. Its design was based on Feistel

network. In the seminal work of Luby and Rackoff [LR86, they proved the security

of Feistel network: the permutation resulted from Feistel network is a pseudorandom

permutation if the underlying primitive used in the construction is itself a pseudo-

random function. This theoretical result gave people more confidence in using DES.

Due to its popularity, lots of efforts had been devoted to study the security of

DES in practice. Linear cryptanalysis was introduced by Matusi in 1993 [Mat94] as

a theoretical attack on DES and later successfully used in the practical cryptanalysis

of DES; differential cryptanalysis was first presented by Biham and Shamir in 1990

[BS91j and eventually the details of the attack were packaged into a book. Although

the early target of both attacks was DES, the wide applicability of both attacks to

numerous other block ciphers has solidified the preeminence of both cryptanalysis

techniques in the consideration of the security of all block ciphers [Hey02].

As a replacement of DES, AES was designed from the beginning to resist linear

and differential cryptanalysis. It worked pretty well in practice and is still widely

used all over the Internet. However, we still lack the understanding of the security of

SPN.

Recently, a result of Miles and Viola [MV12] showed a similar result on SPN as

that was proved on Feistel network. This is the first asymptotic analysis of SPN. In

particular, they showed that the function resulted from Feistel network is a pseudo-

random function if the S-box is a pseudorandom function. Though interesting itself,

the result has two problems:

* In the design and the use of SPN, both the S-box and the resulted function arc

supposed to be permutations. Besides the structural requirement, this means

that the security of SPN should also consider those adversaries that can ask

inversion queries to the resulted function.

* In the design and the use of SPN, S-box is supposed to be a public permutation.

In other words, the security of SPN should not rely on hiding the S-box from

12



the adversaries.

In this thesis, we strengthen the result of [MV12] in two ways:

* Both S-box function S and the resulted function F are permutations, and the

security of SPN considers those adversaries that can make inversion queries.

o In addition to making queries to F, the adversaries are also allowed to make

oracle queries to S (and S1).

Theorem 1. (Informal) If S is a truly random permutation, then F is indistinguish-

able from a random permutation for any (even computationally unbounded) adver-

saries given polynomially-many oracle access to F, F-1 , S, S-1.

1.2 Fixed S-box

One caveat of the theorem above is that: in reality, the S-box is a public function,

while in the theorem above, the adversaries can only have oracle access to S. So a

natural question to ask is the security of SPN when S is public, or fixed.

There are several notions of security in cryptography. The standard notion is

computationally indistinguishability. That is, a permutation is pseudorandom if no

computationally bounded adversary can distinguish the permutation from a truly

random one. Another useful notion is almost k-wise independence. In the context

of permutation, it means that the outputs of any k distinct inputs are distributed

close to uniform. Although there is no obvious linkage between these two notions,

one can say a permutation that is almost k-wise independent is secure against any

(even computationally unbounded) adversaries making only k non-adaptive queries.

By non-adaptive, it means that the adversaries can't make later queries depending

on the answers to the queries before. Or in the other word, one can think that the

adversaries ask all the queries all together.

The second part of the thesis focuses on the almost k-wise independence of some

special cases of SPN with a fixed S box. When the S-box is fixed, the only variable

here is the round keys. In each round, an independent uniformly at random round
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key is picked, and is used to update the internal state of SPN. The problem can then

be formulated as a random walk on the graph whose vertices are k-tuples of distinct

elements in the input domain of SPN. The number of rounds that is required to make

the result of SPN close to k-wise independence can be related to the mixing rate of

that graph.

This technique was first introduced by Hoory et al. [HMMR04] to study how

well the composition of simple Feistel network round permutations resembles a truly

random permutation. And we apply them here on two special cases of SPN. The two

cases we study here are inspired by the design of AES. For simplicity, the number of

blocks is one and the diffusion function is the identity function. The fixed S-box is

the patched field inversion function, as that is used in AES, which has been shown

to have good resistance against linear and differential cryptanalysis. The first case

works on prime order field and the second case works on characteristic 2 field. We

prove that both two cases are almost 2-wise independent after constant rounds.

1.3 Organization

In Chapter 2, we review some preliminaries on algebra and random walks which will

be used in the later chapters.

In Chapter 3, we define the main object, the SPN structure.

In Chapter 4, we prove the main theorem that SPN is a strong pseudorandom

permutation when S is truly random (and accessible as a black box).

In Chapter 5, we study the case when the S-box is fixed and prove the 2-wise

independence of SPN for two special cases of S-boxes inspired by the AES construc-

tion.

14



Chapter 2

Preliminaries

2.1 Algebra

Let F be a finite field of size p". An element y C F is called a quadratic residue over

F if there exists an element x E F such that

y = X2

Otherwise, y is called a quadratic nonresidue over F.

The quadratic character is a function of y defined as follows:

F / 0

y is a quadratic residue over F

y is a quadratic nonresidue over F

It is different from the Legendre symbol since 0 is counted as a residue here.

We also denote the set of quadratic residue and nonresidue over F by

QRv A {y I y is a quadratic residue over F}

NQRF A {y I y is a quadratic nonresidue over F}

15



The trace 'map, denoted by Tr(x), is defined over F

Tr(x) = x + XP + xP + -+-- x P

where p is the characteristic of F.

We are especially interested in the case when p = 2.

Proposition 2. Let F be a finite field of size 2" and let Tr(x) be the trace map over

F. Then

(1) Tr(x + y) =Tr(x) + Tr(y)

(2) Tr(x) = 0 or 1. Moreover, both Tr(x) and Tr(x) + 1 have 2"'-' roots in F.

Proof. (1) Let x, y E F, then

Tr(x + y) = (x + y) + (X + y)2 + (X + y)4 + -- + (X + y)2n-

(x + y) + (x2 + y 2) + (x4 + y4 ) + + (X2'

Tr(x) + Tr(y)

(2) Let x E F, then

1 + Y21)

Tr(x)2 -+ rTr(x) = (x2+x4+x+ + + +x 2 +x 4 +..

= x27 +x =0

Therefore Tr(x) = 0 or 1. Moreover, both Tr(x) and Tr(x) +1 are polynomials

of degree 2"-', therefore both of them have exactly 2"-1 roots in F.

2.2 Quadratic Equations over Finite Fields

Let F be a finite field of size p". We want to study the roots of a quadratic polynomial

f(x) = ax2 + bx + c with a $ 0 (2.1)

16
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In the case p f 2, Equation (2.1) can be solved by reducing to the square function

U2 + d, and thereby to inverting the square map u --+ u2.

1 b (b \ ac -b 2  b 4ac --b2
I - f (x)- X+ 2 + with u = x + and d =
a 2a 4a2  2a 42

Proposition 3. Let F be a finite field of odd characteristic, and let f(x) = ax2 +bx+c

be a polynomial of degree 2. Then

(1) f has no roots in F # b 2 - 4ac E NQRF.

(2) f has one root 0 in F 4 b 2 - 4ac = 0.

(3) f has two roots in F e b2 - 4ac C QRF\{0}.

The case p = 2 is somewhat different. If b = 0, f has one root since the square

map u - u2 over finite field of characteristic 2 is a bijective map. If b 7 0, Equation

(2.1) can be solved by reducing to the Artin-Schreier polynomial U2 + u + d, and

thereby to inverting the Artin-Schreier map Ua > U2 + u.

2a a a ac a ac
f ) = (X) + bX + with u = x and d =-

Lemma 4. /Poml2] Let F be a finite field with 2' elements. Then the polynomial

g(u) = u2 +u + d has a root in F if and only if Tr(d) = 0.

Proof. If g has a root u in F, then

Tr(d) Tr(u2 + u) = 2n +u=0

If Tr(d) = 0, let F be an algebraic closure of F and u c F be a root of g in F,

which always exists, then

0 = Tr(d) = Tr(u2 + U) = 2n + U

This implies u E F since all 2"' roots of u2" + u in F are in F. Therefore g has a root

in F.
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Proposition 5. [Poml2] Let F be a finite field of characteristic 2, and let f(x) =

ax 2 + bx + c be a polynomial of degree 2. Then

(1) f has no roots in F e b f 0 and Tr (a) 1.

(2) f has one root in F e b 0.

(3) f has two roots in F e b $ 0 and Tr (T) 0.

2.3 Random Walks on Graphs

Let G (V, E) be a weighted directed graph with weights A E [0, 1]VxV such that

E A(i, j) = 1 for all i E V. Consider a random walk on G: we start at a node vo;

if at the r-th step we are at a node v, = i, we move to node j with probability aij.

Clearly, the sequence of random nodes vo, vi, v2 ,. . . is a Markov chain. The node v 0

might be fixed, or it may itself be drawn from some initial distribution V. We denote

by V the distribution of t ,:

The rule of the walk can be expressed by the equation

Vr = A4 r_ = (AA)ToV,

It follows that the probability that, starting at i, we reach j in r steps is A'(i, j).

From now on, we focus on graphs where E A(i, j) = 1 for all j E V.

G is undirected if the transition matrix A is symmetric: the probability of moving

to j, given that we are at node i, is the same as the probability of moving to node i,

given that we are at node j.

A distribution w is stationary for the graph G if AT7 = r. In particular, the

uniform distribution on V is stationary if the graph is regular.

A fundamental result of random walk is that if the graph is strongly connected

and non-bipartite, then it has a unique stationary distribution w and, regardless of

the initial distribution Vo, the distribution of t, converges to 7 as r tends to infinity.
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We are especially interested in how fast the random walk converges to the sta-

tionary distribution. To start with, we need a way to measure the distance of two

distributions. L 2 distance is rather weak in the setting here since it does not require

convergence to 7r everywhere. A strong notion called total variation distance (also

called statistical distance) is often used in the literature.

Definition 6. (total variation distance) Let P and Q be two probability distributions

on a finite space U. The total variation distance between P and Q is

A(P,Q) max IX(J) - Y(J)I = A jX(j) - Y()
JcU 2 IX' jI

jEU

The total variation distance measures the largest possible difference between the

probabilities that the two probability distributions can assign to the same event.

After r steps, the total variation distance of the random walk to the stationary

distribution ir is given by

A(r) r maxmax EAr(i, j)-r(J)
i JCV

jEJ

= m a x 4 ( , j ) -
~ ) I

The mixing rate is a measure of how fast the random walk converges to the

stationery distribution. This can be defined as

T(E) = max min{r : A(4( , (), 7r) < }
v EV(G)

where A(r) (V, ) is the distribution of the end node after an r-step random walk starting

from v.

When the graph G is undirected, the real symmetric transition matrix A is diag-

onalizable. Let |AIVI I - - - < IA2| jk| = 1 be the real eigenvalues of A. A result

relating spectral gap, 1 - 1A21, to the mixing time is the following:

Theorem 7. (Theorem 5.1 of /Lov96j) For a random walk starting at any node i C V,

19



for any j E V and r > 1

IVr(j) - 7r(j)I A21'

More generally, for any J C V

IVr(J) - 7r(J)I JA21'

where 1, (J) = jej , (1J).

As a corollary,

A(r) = max maxIV,(J) -7r(J) I < VIIA2 |'
i JVI2

Proposition 8.

( 1) = ( -IA2  log( V(G)I /f))

The conductance of G is defined as

mm IE(W,I)4b(G) = min I(-V
WCV(G),IW|<WI/2 d- |W|

where W = V(G)\W, and E(W, W) {(u, v) E E(G) : u E W and v W W}. A

random walk is lazy if for some constant 6 > 0, it holds that Pr[vt+i = v I Vt = v} > 3

for all v E V(G). A fundamental result relating conductance and the mixing time is

Theorem 9. [SJ89] If the random walk on G is lazy then

r~e)= Og -log(I V(G) I /c))

2.4 Independence of Permutations

For set U, denote by U k the set of all k distinct elements in U. For a collection

C = {Cs}'s of permutations on U, the output distribution on x = (x 1 ... , xk ) E U*k

20



is

C(x1, . .. , = f {(C1(X 1), ..., CS (Xk)) : S -S

The total variation distance of the output distribution to the uniform distribution

is given by

L(C) A max A(C(x,. , Xk), U®D*)
(xi,...,xk)EUk

21
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Chapter 3

Substitution-Permutation Network

3.1 Background

A substitution-permutation network (SPN) Q, : F"' -+ Fm is indexed by a key s =

(s0, ... , s) E (Fm)r+l , and is specified by the following parameters:

* r E N, the number of rounds

" F, the working field

" S : F -+ F, the S-box

" m E N, the number of S-box invocations per round

" M : F' -+ F"', the linear transformation

The S-box size is given by b = log 1FI and the input/output size of Q, is n = mb bits.

C, is computed over r rounds. The ith round is computed over three steps:

(1) m parallel applications of S;

(2) application of M to the entire state;

(3) m parallel field additions with the round key si.

On input x, C,(x) gives x + so as input to the first round; the output of round i

becomes the input to round i + 1 (for 1 < i < r), and C,(x)'s output is the output of

the rth round.

23
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M

Si

Figure 3-1: One round of an SPN

3.2 Security against linear and differential crypt-

analysis

In practice, the security of an SPN is evaluated against two general attacks on block

ciphers: linear and differential cryptanalysis. Resistance to these attacks is typically

seen as the main security feature of SPNs.

For both attacks, a crucial property in the security proof is that the linear trans-

formation Al has maximal branch number, defined as follows.

Definition 10. Let M : F' -+ F"' be a linear transformation acting on vectors over

a field F. The branch number of Al is

Br(Ai) = min (w(c) + w(M(a))) < in + 1

'where w(.) denotes the number of non-zero elements.

Lemma 11. [MV12] Let M : F" -+ F' be any matrix with maximal branch number

m + 1. Then all entries of M are non-zero and M is invertible.

Proof. Assume for contradiction that MAj = 0 for some 1 < i, j < m. Let a E F"

24



be the vector such that aj = 1 and aj = 0 for j' $ j. Then (Ma)i = 0, and so

Br(M) < w(a) + w(Ma) < m.

Assume for contradiction that 34 is not invertible. Let a, 13 E F"'" such that a # /3

and Ma = M3, then a + 0 $ 0 and AI(a + 13) = 0', so Br(M) < w(a + 3) +

w(M(a + 13)) < m. L

Lemma 12. Let M : F" -+ F" be any matrix with maximal branch number m + 1.

Then M- 1 also has maximal branch number.

Proof. Because M has maximal branch number, both M and M 1 are invertible. For

any a 5 0"', M m a $ 0'. Then, w(a) + w(M- 1 a) = w(M-'a) + w(M(M-a)) >

m + 1. Therefore M-1 has maximal branch number. l

25



26



Chapter 4

Random S-box

In this chapter, we will prove the security of SPNs with a random S-box. Our

candidate F is a 2-round SPN when S is a truly random permutation. An adversary

can make oracle queries to F1 , Fj-1 , S, S-1. We make the assumption here that all of

them are only accessible as black boxes. We show that any adversary A has small

advantage in distinguishing F from a random permutation F.

Theorem 13. If computationally unbounded A makes at most q total queries to its

oracles, then

Pr [AS,S-1 ,F1,Fi1 - 1] - Pr[ASS'FF-' 1_ < (m2q 2
S,F1  S,F

We note that Miles and Viola [MV12] proved that F1 is a pseudorandom function

when S is a truly random permutation. Theorem 13 strengthens their result in two

ways:

* Instead of only given access to F (or F), the adversary can also make queries to

S and S-1. In practice, S is public, and therefore proving the security against

adversaries that has access to S and S1 makes more sense.

* Instead of only given access to F (or F), the adversary can make inverse queries

to Ff1 . Therefore, we prove that F1 is strong pseudorandom permutation. This

can be interpreted as secure against adaptive chosen-ciphertext attack, where

27



the adversary has the additional power to ask for the decryption of ciphertexts

of his choice.

The bound achieved here is similar to the classical result of Luby and Rackoff

[LR86] on Feistel network in the sense that the advantage is exponentially small in

the size of the random permutation, with a polynomial loss in the number of queries.

The proof of the theorem follows the framework of Naor and Reingold [NR99].

Our analysis in this chapter holds for SPNs in which the linear transformation

M has maximal branch number, which is also essential in the security proof against

linear and differential cryptanalysis.

For the remainder of this section, fix any Al E Fm"" with maximal branch number.

For any permutation S : F - F and any set of round keys (SO, s1 , s2) E (F")', let

F1 = F1(S, s8, si, 82) be the 2-round SPN defined by these components. We will show

that F is strong pseudorandom permutation, i.e. Theorem 13.

Similar to [MV12], the proof proceeds in two stages. In the first stage, we prove

the theorem against non-adaptive adversaries. This is equivalent to saying that F

is almost q-wise independent. In particular, we show that with all but negligible

probability, {S(Ui), . . . , S(Uqj), F1(x),. F1. (xq2)} is uniformly distributed.

In the second stage, we follow the framework of [NR99. In particular, we consider

the distribution over transcripts of A's interaction with its oracle, and uses the result

of the first stage in a probability argument to show that the transcripts are distributed

nearly identical in either setting, and thus that A's distinguishing advantage is small.

Note that 2-round SPN can be written as

I Y = M - S*(M - S*(x + so) + s) + 82

where for any x = (x[1]..., x[m]) we define S*(x) = (S(x[1]),...,S(x[m])). Then,

AMIh(y - S2) = S*(i - S*(x + SO) + 81)

28



4.1 Stage 1: the non-adaptive case

Fix any distinct ul, . . . , uqj E F, any vE, . . , vq E F, any distinct x1 , . .. , q2 C F"

and y,..., y, E F".

Let Do be the uniform distribution on (S, s 1, s2). Consider another distribution

D1 on (S, sO, s1, s2):

1. Uniformly choose the output of S on 'u, . . , 'UqI.

2. Uniformly choose so, si.

3. Compute ai = xi + so and bi = M -S*(ai) + si for 1 < i < q2, and each time the

S-box is evaluated on a previously-unseen input, choose the output uniformly.

Let H be the set of at most mq2 S-inputs whose output is determined after this

step.

4. Uniformly choose S2 and compute ci = M-(yi - S2) for 1 < i < q2 .

5. Compute S*(bi) for 1 < i < q2, and each time the S-box is evaluated on a

previously-unseen input, choose the output uniformly.

6. Uniformly choose the output of S on all remaining inputs from all remaining

outputs such that different inputs have different outputs.

Conditioned on the event that different inputs of S have different outputs, i.e. S is

a permutation, the above distribution is uniform. By union bound, the statistical

distance between these two distributions is bounded by

A(Do, DI) (- 2- - O(n2 q 2 ) - -

where q= qi + q2 .

We now define several bad events. The idea is that when none of these bad events

happen, all blocks of bi and uf's make fresh evaluations of 5, i.e. they don't collide

either with each other or with other evaluations.

9 BAD1 : Ii, 1,j s.t. aj[i] ='aj.
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* BAD2 : 1i, 1, j s.t. bi.[l1] = .

" BAD3: i, 1j,l' s.t. bi [1] aj ['].

" BAD4: ]i, , l' s.t. 1 # 1' and bi [1] = bi ['].

" BAD5 : ]i, P, j', 1' s.t. i i' and bi[1] = b [i'].

We then bound each of these bad events.

" By union bound, Pr[BADI] < q1 -mq 2 - -b O(mq 2 ) 2.

" By union bound, Pr[BAD 2] 5 q- mq2 - 2' = O(m-q2 ) . 2b.

" By union bound, Pr[BAD3] < nq2 - mq 2 - 2-1 = O(m2 q2 ) .

" By union bound, Pr[BAD4] < mq2 m . 2~ - O(m 2q) - 2-.

" By definition, bi[l] = bj[l'] iff

s11 + E AI[I, k -S(xi[k] + so[k])= s1l'] + E3M [1', k -S(x{[k] + so[k])
k k

Let k be such that xi[k] = xj[k], which must exist because xi $ xj. Arbitrarily

fix si[l, si[l'1, so[k'] for k' f k and the outputs of S on the input sets I

{xi[k'] + so[k'}, xj[k'j + so[k']}k'Ok. This fixes an a E F such that

M[1, k] -S(xi[k] + so[k]) - M[1', k] - S(xj[k] + so[k]) = a

If neither xi[k] + so[k] nor xj[k] + so[k] are in {1, .... , Uq} U H U I, then the

probability it holds is 2 - over the choice of S on these two inputs because all

entries of _M are non-zero. Further, by union bound, these two inputs fall inside

{ 1 , .. . , uqj } U H U I with probability at most 2 (qi + mq2 + 2(m - 1)) - 2 -b

O('mq) - 2'. Thus, Pr[BA Ds] < 2 -b + O('mq) -2-' = O(mq) . 2-b.
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Finally, we have

Pr[BAD] = Pr[BADI U BAD 2 U BAD3 U BAD 4 U BAD5]

< Pr[BAD1] + Pr[BAD 2]+ Pr[BAD3 ]+'Pr[BAD4]+ Pr[BAD]

O(mnq2 ) - 2 -b + O(m 2 ) - 2 -b + O(n 2q2 ) .2-b + 0(" 2  -2- (mq)

O(m2q2 ) . -b

Conditioned on -,BAD, the evaluations of S on u1 , ... ,u. 1 and S* on bi,..., bi

are fresh. Then

Pr[S(ui) = v, n fn S(Uq) = Vq, n Fi(xi) = y, n ... n F(xq2 ) = yq2 I -BAD]
DI

= Pr[S(u) = v - I ,BAD] x - x Pr[S(uq 1) = Vq, | ,BAD]

x Pr[S*(bi) = c, I -,BAD] x --- x Pr[S*(bq2) C2 I -,BAD]

= 2 -(ql+mq2)b

Therefore, conditioned on ,BAD, and S and F1 are permutations, i.e. different

inputs have different outputs, D1 is the truly random permutation. Thus, we have

A(Do, U) <; A(Do, D 1) + A(D 1 , U)

< O(m 2q 2 ) - 2~b + Pr[BAD] + Pr[S and F are not permutations]
Di Di

< O(m 2 q2) 2 -b + O(m2 q2 )- 2 - + (q1 + q2) - -

= O(m 2q 2) - -

Therefore, F is O(m2 q2 ) - 2-b-close to q-independent, and any non-adaptive ad-

versary has only O(rn2 q 2 ) - 2-b advantage distinguishing F from F given oracle access

either to S, S- 1 , F1 , F- or to S, S- 1 , F, F 1 .
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4.2 Stage 2: the adaptive case

We now show that even adversaries that make adaptive queries have small distin-

guishing advantage, i.e. we prove Theorem 13.

Let S, S 1 , P, P be the oracle that is accessible to the adversary A (P is either

F1 or F). There are 4 types of queries A can make: (S, i) for "what is S(i)", (S-1, v)

for "what is S'(v)", (P, x) for "what is P(x)", and (P-1, y) for "what is P 1 (y)".

For the ith query A makes, define the query/answer pair (s, t): (s, t) = (u, v) if either

A's query is (s, u) and the answer is v or A's query is (S', v) and the answer is u,

and (s, t) = (x, y) if either A's query is (P, x) and the answer is y or A's query is

(P-', y) and the answer is x. We assume that A makes exactly q queries and refer to

the sequence {(si, ti),.. . , (Sq, tq)} of these pairs as the transcript of A's computation.

Because A is computationally unbounded, we can make the standard assumption

that A is deterministic by fixing the random tape that maximizes the advantage of

A. This implies that the transcript of A interacting with S, S-', P, P-1 is determined

given S, P. Let Ts,p be that transcript.

For a transcript u-, denote its prefix by o= {(Si, t1 ), (si, ti)}. A transcript is

said to be possible if for every i < q, A's ncxt'query is (S, u) or (S-1, v) if (si+, ti+1)

(a, v), and (P, x) or (P- 1, y) if (si+1, ti+1) = (x, y).

We can further assume that A never asks a query if its answer is determined by a

previous query/answer pair. That is, for i $ j both si / sj and tj 7 tj.

Let D3 be the uniform distribution on (S, F). That is, S is a uniform random

permutation on F and F is a uniform random permutation on F"1 . Consider yet

another distribution D2 on (S, F):

1. On the ith query of A

(a) If A's query is (S, a) and for some 1 < j < i the jth query/answer pair is

(a, v), then answer v.

(b) If A's query is (S1, v) and for some 1 < j < i the jth query/answer pair

is (a, v), then answer u.
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(c) If A's query is (F, x) and for some 1 < j < i the jth query/answer pair is

(x, y), then answer y.

(d) If A's query is (F-1 , y) and for some 1 < j <i the jth query/answer pair

is (x, y), then answer x.

(e) Otherwise, answer uniformly random from F if A's query is (S, u) or

(S-1, v), or uniformly random from F" if A's query is (F, x) or (F-1 , y).

2. Uniformly choose the output of S and F on all remaining inputs from all re-

maining outputs such that different inputs have different outputs.

Conditioned on the event that different inputs of S and F have different outputs,

i.e. S and F are permutations, the above distribution is uniform. By union bound, for

any computationally unbounded adaptive adversary making at most q oracle queries,

we have

Pr[As~s' FF- - Pr[AS,S 1 ,FF- ]

-- 2 2)

O(q 2 ) .- b

For any distinct ui, . . . , Uq, E F, any vi, . . . , vej E F, any distinct x 1 ,..., xq2 C F"r

and Y1, ... -, y2 E F', we have

Pr[S(ui) =vi n . .. n S(uq,) = v, Fi(xi) = y, n n F(Xq2) = Yq
D 2

= Pr[S(ui) = vi] x - x Pr[S(uq,) = Vq] x Pr[S*(bi) = ci] x - x Pr[S*(bq 2) = c2]
D 2  D2 D2 D2

- 2 (ql+mq2)b

= Pr[S(ui) = v i n ... n S(uq1 ) = oq, n Fi(xi) = yi n ... n F1(Xq2) Yq 2 I ,BAD]
Di
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Let F be the set of all possible transcripts such that A(o) = 1. Then,

P1- SSFF- - 1]
D2

o] -- Pr[TSF cr1

Pr[ASS ,F1,
D 1

= IP S,1

< >ZPr[BAD] - (Pr[Ts = BAD] - Pr[TS,F o']
a r

+ E Pr [,B AD](Pr [Ts,F1 =-,BA4D] - Pr[TSF = 0~]

= Pr[BAD] - (Pr[TS,F1 = a | BAD] - Pr[TSF r])

< (maxPr[BAD]) - >(Pr[T,F1 = a | BAD] - Pr[TSF
cTEr D D2

< 2maxPr[BAD] =O(m2 q 2 ) -
cr D,

By union bound, we have

Pr[ASS
Do

< P,[4SS

FF- - Pr[ASS ,FF-1

,D3

,F 1 -

+ -Pr[ASS-'1Fi
DI

S-1FF-

D2

+ Pr[AS,S-1,FF- 1 - Pr[ASS',FF-1
D2  D3

= 0(Pnq ) - 2-b + 0(Mn 2q) 2 -b + O(q 2 ) .2-

= 0(m 2 q 2 ). 2 -b

This completes the proof of Theorem 13.

Corollary 14. If S is strong pseudorandom permutation, then F is strong pseudo-

random perrmtutation against any PPT adversary A.
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The above corollary is a straightforward application of hybrid argument on The-

orem 13.
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Chapter 5

Fixed S-box

In this chapter, we will study the security of SPNs with a fixed S-box. In particular,

we study the k-wise independence of SPN, or equivalently, security against computa-

tionally unbounded non-adaptive adversaries that can make at most k queries to the

function.

We formulate this question as one of the mixing rate of a random walk on the

graph whose vertices are k-tuples of distinct elements in F", and whose edges are

induced by the operation of one SPN round permutation on the vertices. The mixing

rate of this graph is exactly that minimal round of SPN we seek.

Definition 15. (SPN graph) A k-wise SPN graph Gk = (V, E) is a 2"b-regular

directed graph such that

* The vertex set V contains every k distinct elements in F"r, i.e. V - (F"m)0k.

* For every s E F', there is an edge from x to x' if M(S*(x)) + s = x'.

In order to prove that the random walk converges to the uniform distribution,

we need to argue that Gk is strongly connected and non-bipartite. As it turns out,

bipartite is not an absolute obstacle for the convergence of random walk. We can

modify our random walk by using a lazy random walk, which we stay at the current

node with probability 1/2. The transition matrix of the lazy walk is

' = A + I
2
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In our setting, one can imagine that the family of permutations is modified to {Cst,}

with t = {0, 1} '. At round i, the round permutation P is applied to the current state

if and only if tj = 1.

5.1 Special cases

In this section we consider two special cases of SPNs and prove their 2-wise indepen-

dence. Our two candidates F2 and F3 work on prime field F, and characteristic-2 field

F2 . respectively, with only single block, the linear transformation M is the identical

matrix and S-box is the patched inversion function.

0 X= 0
S(X) =

1/X X 0

The choice of patched inversion function as S-box is motivated by the design of AES,

and it is differentially uniform and has high degree.

When the reduced SPN graph G = (V, E) is undirected, we have T(f) = O((1 -

IA2 )-- - log(IVI /c)), and thus it suffices to bound A 2.

It is generally hard to compute IA 2 exactly. Fortunately, a result of Chung,

Graham and Wilson [CGW89] relates IA2 1 to the number of 4-cycles. We generalize

their result to the weighted undirected graph case.

Theorem 16. Suppose A(i, j) = o(1/ IVI). If for any fixed i, k C V,

A(i, j)A(j, k) - = 0

Then IA2 1 = o(1).

Proof. On one hand,

tr(A4 ) = 4 ;> 1 + IA214
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On the other hand,

tr(A44) = E 4 4(11, E 24(, j)A(j, k)A(k, I)A(l , 1)
i i~j~k,I

= 4 A(i, i4 , j)4 + 2 ( A(i, j)4(j, k))2

i<j i<k j

= o)+ o(1) + (1 + o(1)) = 1 + o(1)

Combining the two facts above,

IA 21 = o(1)

El

A weighted undirected graph is said to be quasi-random. if it satisfies the conditions

in Theorem 16. As a corollary, a quasi-random graph is connected and non-bipartit,

and has rapid mixing time r(e) = O(log(IVI /e)).

Before going to the these two cases, we observe that each step of a random walk

in SPN graph can be think of has two stages: on node (X 1 , x2 ), it first chooses s, and

jumps to (X 1 + s, x 2 + s), then it goes to (M(S(xI+ s)), M(S(x 2 + s))). Therefore we

can view the SPN graph as having |F| clusters. The cluster u is the set of all pairs of

inputs (XI, x 2 ) such that x 2 - X1 = u. The random walk first randomly pick a node

from the cluster, then follow the edge defined by S and M. So it is equivalent to

consider the random walk in the reduced SPN graph as defined below.

Definition 17. (reduced SPN graph) A 2-wise reduced SPN graph RGk = (V, E) is

weighted directed graph that

o The vertex set V contains elements in F\O.

o For every two nodes 'au,', the weight of the edge from u to u' is

Pr[s +- F: (x + u)- - x' = u'

When M(S(-)) is itself's inverse, as in the case when S is patched inversion func-
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tion and M is the identity function, the reduced graph is undirected.

5.1.1 IF = F, m= 1, S(x) = 1/x, M(x) = x and k =2

We have

A(u, u') = Pr[x +- F, : (x + u)-' - xi =I']

When x 0, -U, it holds that uu' = 1.

When x 4 0, -u, the equation is equivalent to

4 ( U 4

u2  2 uu'

which has two solutions if 1 - 4/un' E QRF\{ 0, one solution if uu' 4, and zero

solution otherwise.

Lemma 18. As a corollary of the law of quadratic reciprocity, -3 E QRF, if and

only if p mod 3 = 1.

Combining the facts above, we have

u' = 1 Ap mod 3 = 1

(uU' = lAp mod 3 = 2) V

1u = 4

1 - 4/u' E NQRpF,{-~}

(1 - 4/u' E QRF,\{0, -3})

We then prove that the graph is quasi-random. In order to do this, we need the

following theorem on the distribution of quadratic residues and nonresidues over Fp.

Theorem 19. [Per92] Let p be a prime number and a E Fp. Define the joint distri-

bution of the quadratic characters of (x, x + a) for randomly chosen x as

(Y, Y2 ) : x +- Fp, Y1 +- Y 2  (xa)
FP FP
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We have for all bi, b 2 E {o, 1},

1
Pr[y1 b1 A y2 =b2j -- 4

Now for any fixed i, k E V = F,\{O}, we have

A(i, j)A(j, k)

E
j:ijE{1,4}VjkE{1,4}

4

A(i, j)A(j, k) +
j:j -

p - Pr ji +- Fp : J /

4/ij,I--4/jk EQRFp1, A (

0 Ajjk 0 {1 4} A F -4j I A (1- 4/jk

<- F, : j # 0 A

1VP ) )
( 1j i/4 )

- 0I

-i/4) A (1/J - k/4) = -k/4

(p~

5.1.2 F - F211, m, = 1, S(x) = 1/x, M(x) = x and k = 2

We have

A(u, u') = Pr[x +- F 2- : (X + u)-1 -- 1 = U']

When x = 0, u, , it holds that un' = 1.

When x / 0, u, the equation is equivalent to

X1
( +)=

which has two solutions if Tr(1/u') = 0 and zero solution otherwise.

Note Tr(1) = 1+ 12 + 14 + -. + 12fll = n mod 2.
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Combining the facts above, we have

4/21. un' = 1 A n mod 2 = 0

A(u, 2') (un' 1 A n mod 2 1) V (ta' 7 1 A Tr(1/uu') = 0)

0 Ult' 1 A Tr(1/a') 1

We then prove that the graph is quasi-random. In order to do this, we need the

following properties of trace.

Lemma 20. For any a, b E F>2 \{0} with a 7 b., we have

1
Pr[x +- F2 ' : Tr(ax) = Tr(bx) = 0] - 4

Proof. The trace map is linear over F2 , so the solution to Tr(ax) = 0 forms a vector

space of dimension n - 1 over F2 . More specifically, think of the canonical map-

ping from F2- to (F 2 )', x E F2 - is a solution to Tr(ax) = 0 if and only if the im-

age (XO, . ., Xn_1) E (F 9)rz satisfies (Tr(a), Tr(2a), . . . , Tr(2"la))T(xi, . . . , x,) = 0.

(Tr (a), Tr(2a), . . , Tr(2-la)) and (Tr(b), Tr(2b),... , Tr(2"-'b)) are linear indepen-

dent when a 7 b. Therefore the joint solution forms a vector space of dimension

n - 2.

Now for any fixed i, k E V = F2 \{0}, we have

SA(ij)4(j, k)

A(i,j)(j, k) + 4
j:ij=1Vjk=l j:ijo1Ajk#1ATr(I/ij)=Tr(1/jk)=0

0 + 2 .22n- Pr[j +F 21 :j 0 A ij 7 1 A jk $ 1 A Tr(1/ij) = Tr(1/jk) = 0]

= 1 24 + 24 - Pr [j< F2: 0 A Tr(1/i)= Tr(1/j) 0]

( 1 + 4K+ 1  (2211)
22n 2 4 2n 2- 1 21. 1

as desired.
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