
An Analysis of Patch Plausibility and Correctness

for Generate-And-Validate Patch Generation

Systems

by

Zichao Qi

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2015

@ Massachusetts Institute of Technology 2015. All rights reserved.

Signature redacted
Author...-

Department of Electrical Engineering and Computer Science
August 28, 2015

Signature redacted
C ertified by

Martin C.Rinard
Professor of Computer Science

Thesis Supervisor

Accepted by Signature redacted...
/ 6.I(J Leslie A. Kolodziejski

Professor of Electrical Engineering
Chair, Department Committee on Graduate Students

MASSACHUSETS INSITUTE
OF TE CHNOLOGY

NOV 0 22015

LIBRARIES

An Analysis of Patch Plausibility and Correctness for

Generate-And-Validate Patch Generation Systems

by

Zichao Qi

Submitted to the Department of Electrical Engineering and Computer Science
on August 28, 2015, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

We analyze reported patches for three existing generate-and-validate patch generation
systems (GenProg, RSRepair, and AE). The basic principle behind generate-and-
validate systems is to accept only plausible patches that produce correct outputs for
all inputs in the test suite used to validate the patches.

Because of errors in the patch evaluation infrastructure, the majority of the re-
ported patches are not plausible - they do not produce correct outputs even for the
inputs in the validation test suite. The overwhelming majority of the reported patches
are not correct and are equivalent to a single modification that simply deletes func-
tionality. Observed negative effects include the introduction of security vulnerabilities
and the elimination of desirable standard functionality.

We also present Kali, a generate-and-validate patch generation system that only
deletes functionality. Working with a simpler and more effectively focused search
space, Kali generates at least as many correct patches as prior GenProg, RSRepair,
and AE systems. Kali also generates at least as many patches that produce correct
outputs for the inputs in the validation test suite as the three prior systems.

We also discuss the patches produced by ClearView, a generate-and-validate bi-
nary hot patching system that leverages learned invariants to produce patches that
enable systems to survive otherwise fatal defects and security attacks. Our analysis
indicates that ClearView successfully patches 9 of the 10 security vulnerabilities used
to evaluate the system. At least 4 of these patches are correct.

Thesis Supervisor: Martin C.Rinard
Title: Professor of Computer Science

3

4

Acknowledgments

I would like to thank my advisor, Martin Rinard, for his inspiration and enthusiasm.

This research was performed in collaboration with Fan Long and Sara Achour. I would

like to thank them for their insightful discussions and help with the patch evaluation.

I would also like to thank members of the PAC CSAIL group, especially Stelious

Sidiroglou, Sasa Misailovic, and Eric Lahtinen for their helpful advice. Finally I

would like to thank my parents for their unconditional love and support.

5

6

Contents

1 Introduction

1.1 Plausibility Analysis and Weak Proxies

1.2 Correctness Analysis

1.3 Stronger Test Suites

1.4 Functionality Deletion

1.5 Original GenProg

1.6 Revisiting Hypotheses and Explanations

1.7 Realistic Patch Generation Expectations

1.8 K ali .

1.9 Research Result Availability

1.10 Contributions

2 Overview of Analyzed Systems

3 Plausibility Analysis

4 Correctness Analysis

5 GenProg Reexecutions

6 Semantic Patch Analysis

6.1 W eak Test Suites .

6.2 Impact of Functionality Deletion Patches

7 Original GenProg Patches

7

13

. 14

15

15

16

. 17

18

20

. 21

. 23

. 23

25

27

31

35

37

38

38

41

8 Kali 45

8.1 Kali Evaluation Methodology 47

8.2 Experimental Results . 49

8.3 D iscussion . 52

9 ClearView 53

10 Threats To Validity 57

11 Related Work 59

12 Conclusion 67

A Correct Patches 69

A.1 GenProg and AE 69

A.2 Kali 76

8

List of Figures

8-1 Experimental Results .

A-I GenProg patch for python-bug-69783-69784

A-2 Developer patch for python-bug-69783-69784

A-3 GenProg patch for php-bug-309892-309910

A-4 Developer patch for php-bug-309892-309910

A-5 AE patch for php-bug-309111-309159

A-6 Developer patch for php-bug-309111-309159

A-7 Kali patch for python-bug-69783-69784 . . .

A-8 Kali patch for php-bug-309892-309910 . . .

A-9 Kali patch for php-bug-311346-311348 . . .

A-10 Developer patch for php-bug-311346-311348

9

48

. 70

. 7 1

. 72

. 73

. 74

. 75

. 76

. 77

. 7 8

. 78

10

List of Tables

it

12

Chapter 1

Introduction

Automatic patch generation holds out the promise of correcting defects in production

software systems without the time and expense required for human developers to

understand, triage, and correct these defects. The prominent generate-and-validate

approach starts with a test suite of inputs, at least one of which exposes a defect in

the software. The patch generation system applies program modifications to generate

a space of candidate patches, then searches the generated patch space to find plausible

patches - i.e., patches that produce correct outputs for all inputs in the test suite.

In this paper we start by considering the GenProg 126], RSRepair 1481, and AE [591

systems.

The reported results for these systems are impressive: GenProg is reported to fix

55 of 105 considered bugs [261, RSRepair is reported to fix all 24 of 24 considered bugs

(these bugs are a subset of the 55 bugs that GenProg is reported to fix) [481, and AE is

reported to fix 54 of the same 105 considered bugs [591.1 If these results are accurate,

these systems represent a significant step forward in our ability to automatically

eliminate defects in large software systems.

'Our analysis of the conunit logs and applications indicates that 36 of these bugs correspond to
deliberate functionality changes, not actual bugs. That is, for 36 of these bugs, there is no actual
bug to fix. To simplify the presentation, however, we refer to all of the 105 bugs as defects.

13

1.1 Plausibility Analysis and Weak Proxies

Motivated to better understand the capabilities and potential of these systems, we

performed an analysis of the patches that these systems produce. Enabled by the

availability of the generated patches and the relevant patch generation and valida-

tion infrastructure [7, 5, 3, 8, 1], our analysis was driven by the following research

questions:

RQ1: Do the reported GenProg, RSRepair, and AE patches produce

correct outputs for the inputs in the test suite used to validate the

patch?

The basic principle behind generate-and-validate systems is to only accept plau-

sible patches that produce correct outputs for all inputs in the test suite used to

validate the patches. Despite this principle, our analysis shows that because of errors

in the patch validation infrastructure, many of the reported patches are, in fact, not

plausible - they do not produce correct outputs even for the inputs in the test suite

used to validate the patch.

For 37 of the 55 defects that GenProg is reported to repair [261, none of the

reported patches produce correct outputs for the inputs in the test suite. For 14 of

the 24 defects that RSRepair is reported to repair [48], none of the reported patches

that we analyze produce correct outputs for the inputs in the test suite. And for 27

of the 54 defects reported in the AE result tar file [1, none of the reported patches

produces correct outputs.

Further investigation indicates that weak proxies are the source of the error. A

weak proxy is an acceptance test that does not check that the patched program

produces correct output. It instead checks for a weaker property that may (or may

not) indicate correct execution. Specifically, some of the acceptance tests check only if

the patched program produces an exit code of 0. If so, they accept the patch (whether

the output is correct or not).

Because of weak proxies, all of these systems violate the underlying basic principle

of generate-and-validate patch generation. The result is that the majority of the

14

patches accepted by these systems do not generate correct outputs even for the inputs

in the validation test suite. See Section 3.

1.2 Correctness Analysis

Despite multiple publications that analyze the reported patches and the methods used

to generate them [26, 48, 59, 41, 23, 32, 49, 211, we were able to find no systematic

patch correctness analysis. We therefore analyzed the remaining plausible patches to

determine if they eliminated the defect or not.

RQ2: Are any of the reported GenProg, RSRepair, and AE patches

correct?

The overwhelming majority of the patches are not correct. Specifically, GenProg

produced a correct patch for only 2 of the 105 considered defects.2 Similarly, RSRepair

produced a correct patch for only 2 of the 24 considered defects. AE produced a

correct patch for only 3 of the 105 considered defects. For each of the incorrect

patches, we have a test case that exposes the defect in the patch [501. Because of

weak proxies, many of these test cases were already present in the existing test suites.

For the remaining plausible but incorrect patches, we developed new test cases that

exposed the defects. See Section 4.

1.3 Stronger Test Suites

One hypothesis is that stronger test suites with additional inputs that provide better

coverage would enable these systems to generate more correct patches:

RQ3: Do stronger test suites enable GenProg to produce more correct

patches?

To investigate this question, we reran all of the GenProg runs that generated incor-

rect patches. We used corrected test scripts and enhanced test suites that contained

2 We note that the paper discusses only two patches: one of the correct patches for one of these

two defects and a patch that is obtained with the aid of user annotations 1261.

15

defect-exposing test cases for all of these patches. These reexecutions produced no

patches at all. We next discuss two potential explanations for this result.

Search Space: A necessary prerequisite for the success of any search-based patch

generation algorithm is a search space that contains successful patches. One potential

explanation is that the GenProg, RSRepair, and AE search spaces do not contain

correct patches for these defects. This explanation is consistent with recent results

from the staged program repair (SPR) project, whose search space contains correct

patches for 20 of the 105 defects in the GenProg benchmark set 134, 351. Only 3 of

these correct patches are within the GenProg search space.

Random Genetic Search: Another potential explanation is that these systems

do not use a search algorithm that can explore the search space efficiently enough.

GenProg's genetic search algorithm uses the number of passed test cases as the fitness

function. For most of the defects in the benchmark set, there is only one negative

test case (so even the unpatched program passes all but one of the test cases). With

this fitness function, the difference between the fitness of the unpatched code and the

fitness of a plausible patch that passes all test cases is only one. There is therefore no

smooth gradient for the genetic search to traverse to find a solution. In this situation,

genetic search can easily devolve into random search. Indeed, RSRepair (which uses

random search) is reported to find patches more quickly and with less trials than

GenProg 148]. See Section 5.

1.4 Functionality Deletion

As we analyzed patch correctness, it became clear that (despite some surface syntactic

complexity), the overwhelming majority of the plausible patches were semantically

quite simple. Specifically, they were equivalent to a single functionality deletion

modification, either the deletion of a single line or block of code or the insertion of a

single return or exit statement.

16

RQ4: How many of the plausible reported GenProg, RSRepair, and

AE patches are equivalent to a single functionality deletion modifica-

tion?,

Our analysis indicates that 104 of the 110 plausible GenProg patches, 37 of the

44 plausible RSRepair patches, and 22 of the 27 plausible AE patches are equivalent

to a single modification that deletes functionality.

Our analysis also indicates that (in contrast to previously reported results [311) the

plausible patches had significant negative effects, including the introduction of new

integer and buffer overflow security vulnerabilities and the elimination of standard

desriable functionality. These negative effects highlight some of the risks associated

with the combination of functionality deletion and generate-and-validate patch gen-

eration. See Section 6.

Despite their potential for negative effects, functionality deletion patches can be

useful in helping developers locate and better understand defects. For obtaining func-

tionality deletion patches for this purpose, we advocate using a system that focuses

solely on functionality deletion (as opposed to a system that aspires to create correct

patches). Such an approach has at least two advantages. First, it is substantially

simpler than approaches that attempt to generate more complex repairs. The search

space can therefore be smaller, simpler, and searched more efficiently. Second, focus-

ing solely on functionality deletion can produce simpler, more transparent patches for

developers who want to use the patches to help them locate and better understand

defects.

1.5 Original GenProg

Our analysis of the original GenProg system [60, 221 yields similar results. Out

of 11 defects evaluated in the two papers, the generated patches for 9 defects are

incorrect (in some cases because of the use of weak proxies, in other cases because

of weak test suites). The patches for 9 of the 11 defects simply delete functionality

(removing statements, adding return statements, or adding exit statements). The

17

only two defects for which the original GenProg system generates correct patches are

small motivating examples (less than 30 lines of code). See Section 7.

1.6 Revisiting Hypotheses and Explanations

At this point there is a substantial number of papers that present hypotheses and

explanations related to phenomena associated with the GenProg, RSRepair, and AE

automated patch generation systems. We next revisit some of these hypotheses and

explanations in light of the results presented in this paper.

Simple vs. Complex Patches: Previous papers have considered (but not satisfac-

torily answered) the following question: "why is GenProg typically able to produce

simple patches for bugs when humans used complex patches?" [59, 261. The results in

this paper provide additional insight into this question: the simple GenProg patches

are not correct - they either fail to produce correct outputs even for the inputs in the

validation test suite, or they simply remove lightly tested functionality. Humans used

complex patches because complex patches. are required to eliminate the defect. This

fact highlights how test suites that may be suitable for human developers may not be

suitable for automated patch generation systems that operate with less context.

Targeted Defect Classes: In an essay in ICSE 2014, Monperrus focuses on the

importance of "target defect classes," i.e., the set of defects for which the technique

is designed to work [411. He notes that the GenProg research does not explicitly

address the question, but observes "hints that GenProg works best for manipulating

defensive code against memory errors (in particular segmentation faults and buffer

overruns)" [411. Our results indicate that the defect class for which GenProg works

best is defects that can be repaired -with a single modification that deletes function-

ality. And while some of the patches do manipulate defensive code, observed effects

include the deletion of critical checks and the introduction of new segmentation faults

and buffer overruns.

Human Patch Acceptability: A paper investigating the developer maintainability

of a subset of the GenProg patches found "statistically significant evidence" that

18

the GenProg patches "can be maintained with equal accuracy and less effort than

the code produced by human-written patches" [231. In retrospect, this potentially

surprising result may become more plausible when one considers that the majority of

the GenProg patches are equivalent to a single functionality deletion modification.

The evaluation focused on asking human developers a variety of questions de-

signed to be relevant to maintainability tasks [231. There is no indication if any of

the developers thought that the patches were incorrect. The motivation for the pa-

per, referencing GenProg patches (among others), states "while these patches may be

functionally correct, little effort has been taken to date to evaluate the understand-

ability of the resulting code". We note that the referenced patches are not functionally

correct, and question the relevance of a human evaluation of patch understandability

that does not expose the obvious incorrectness of the patches.

Time and Effort: The GenProg, RSRepair, and AE research projects devoted sig-

nificant time and effort to evaluating variants of the basic GenProg patch generation

mechanisms [26, 21, 32, 48, 59]. The results presented in this paper show that (at

least for the considered benchmark defects) all of the time and effort invested in devel-

oping, evaluating, analyzing, and evolving these mechanisms only produced complex

systems whose patches are no better than those generated by the much simpler Kali

patch generation mechanism (which simply deletes functionality).

Community Perception: It is our understanding that the broader software engi-

neering community may understand (incorrectly) that the GenProg patches actually

fix the defects. Example quotes that reflect this understanding include "We selected

GenProg for the reason that it is almost the only state-of-the-art automated repair

tool having the ability of fixing real-world, large-scale C faulty programs" [491 and

"in an evaluation of GenProg, a state-of-the-art repair approach guided by genetic

programming, this approach repaired 55 out of 105 defects" [38]. We believe that this

understanding should be revisited in light of the results presented in this paper.

19

1.7 Realistic Patch Generation Expectations

Given this backdrop, what can one realistically expect from automatic patch gener-

ation systems moving forward? Currently available evidence indicates that improve-

ments will require both 1) the use of richer search spaces with more correct patches

and 2) the use of more effective search algorithms that can search the space more

efficiently.

Perhaps most importantly, our results highlight important differences between

machine-generated and human-generated patches. Even the plausible GenProg, AE,

and RSRepair patches are overwhelming incorrect and simply remove functionality.

The human-generated patches for the same defects, in contrast, are typically correct

and usually modify or introduce new program logic. This result indicates that infor-

mation other than simply passing a validation test suite is (at least with current test

suites) important for producing correct patches.

Automatic Code Transfer: One way to obtain correct code is to obtain it from

another application. Working with an input that exposes a potential security vulnera-

bility, CodePhage searches an application database to automatically locate and trans-

fer code that eliminates the vulnerability [56, 55]. CodePhage successfully repaired

10 defects in 7 recipient applications via code transfer from 5 donor applications.

Learning From Successful Patches: Another way to obtain additional informa-

tion is to learn from successful human patches. Prophet [331 analyzes a large database

of revision changes extracted from open source project repositories to automatically

learn features of successful patches. It then uses these features to recognize and

prioritize correct patches within a larger space of candidate patches. On the Gen-

Prog benchmark set, Prophet generates correct patches for 14 defects (12 more than

GenProg and 11 more than AE).

Learned Invariants: Successful executions are yet another source of useful infor-

mation. Learning data structure consistency specifications from successful executions

can enable successful data structure repair 1141. ClearView [47] observes successful

executions to dynamically learn and enforce invariants that characterize successful

20

executions. ClearView automatically generates successful patches that eliminate se-

curity vulnerabilities in 9 of 10 evaluated defects [471.

Targeted Patch Generation: Another source of information is to identify a specific

set of defects and apply techniques that target that set of defects. Researchers have

successfully targeted out of bounds accesses [53, 10, 421, null pointer dereferences [36,

181, divide by zero errors [361, memory leaks [44, 251, infinite loops [11, 29, 371,

and integer and buffer overflows [571. For the defects in scope, a targeted technique

tends to generate patches with better quality than a search-based technique. For

example, RCV [361, a recovery tool for divide-by-zero and null-dereference defects,

successfully enables applications to recover from the majority of the systematically

collected 18 CVE defects so that they exhibit identical behavior as the developer-

patched application.

Specifications: Specifications, when available, can enable patch generation systems

to produce patches that are guaranteed to be correct. AutoFix-E produces semanti-

cally sound candidate bug patches with the aid of a design-by-contract programming

language (Eiffel) [581. CodeHint uses partial specifications to automatically synthe-

size code fragments with the specified behavior [241. Data structure repair techniques

detect the inconsistency between a data structure state and a set of specified model

constraints and enforce the violated constraints to repair the data structure state [151.

Realistic Expectations: By combining more productive search spaces and search

algorithms with the exploitation of additional information other than generating cor-

rect outputs on a validation test suite, we expect future systems to be able to generate

successful patches for defects that can be fixed with small changes (via search-based

techniques) and defects that follow specific patterns (via targeted techniques).

1.8 Kali

Inspired by the observation that the patches for the vast majority of the defects that

GenProg, RSRepair, and AE were able to address consisted (semantically) of a single

functionality deletion modification, we implemented a new system, the Kali automatic

21

patch generation system, that focuses only on removing functionality. Kali generates

patches that either 1) delete a single line or block of code, 2) replace an if condition

with true or false (forcing the then or else branch to always execute), or 3) insert

a single return statement into a function body. Kali accepts a patch if it generates

correct outputs on all inputs in the validation test suite. Our hypothesis was that

by focusing directly on functionality removal, we would be able to obtain a simpler

system that was at least as effective in practice.

RQ5: How effective is Kali in comparison with existing generate-and-

validate patch generation systems?

Our results show that Kali is more effective than GenProg, RSRepair, and AE.

Specifically, Kali finds correct patches for at least as many defects (3 for Kali vs. 3

for AE and 2 for GenProg and RSRepair) and plausible patches for at least as many

defects (27 for Kali vs. 18 for GenProg, 10 for RSRepair, and 27 for AE). And Kali

works with a simpler and more focused search space.

Efficiency and Automatic Operation: An efficient search space is important for

automatic operation. An examination of the GenProg patch generation infrastructure

indicates that GenProg (and presumably RSRepair and AE) require the developer to

specify the source code file to attempt to patch [61. This requirement significantly

reduces the size of the patch search space, but also. prevents these prior systems from

operating automatically without developer involvement. Kali, in contrast, is efficient

enough to operate fully automatically without requiring the developer to specify a

target source code file to attempt to patch.

RQ6: Can Kali provide useful information about software defects?

Although Kali is more effective than GenProg, RSRepair, and AE at finding cor-

rect patches, it is not so much more effective that we would advocate using it for

this purpose (any more than we would advocate using any of these previous systems

to find correct patches). But Kali's plausible patches can still be useful. The Kali

patches often precisely pinpoint the exact line or lines of code to change. And they

almost always provide insight into the defective functionality, the cause of the defect,

and how to correct the defect.

22

1.9 Research Result Availability

We were able to perform the research in this paper because the reported GenProg,

RSRepair, and AE patches (along with the GenProg patch generation and evaluation

infrastructure) were available online [7, 3, 5, 1, 81. This paper therefore supports a

move to greater transparency and availability of reported experimental results and

systems. The Kali and ClearView patches, new test cases, and the plausibility, cor-

rectness, and functionality deletion analyses are all available 1501. Kali is available on

request for the purpose of checking the results presented in this paper.

The PAR system is another prominent generate-and-validate automatic patch

generation system [28]. We do not include PAR in this study because (despite re-

peated requests to the authors of the PAR paper), we were unable to obtain the PAR

patches.

1.10 Contributions

This paper makes the following contributions:

* Plausibility Analysis: It shows that the majority of the reported GenProg,

RSRepair, and AE patches, contrary to the basic principle of generate-and-

validate patch generation, do not produce correct outputs even for the inputs

in the test suite used to validate the patches.

* Weak Proxies: It identifies weak proxies, acceptance tests that do not check

that the patched application produces the correct output, as the cause of the

reported implausible patches.

o Correctness Analysis: It shows that the overwhelming majority of the re-

ported patches are not correct and that these incorrect patches can have signif-

icant negative effects including the introduction of new security vulnerabilities

and the elimination of desirable standard functionality.

23

* Stronger Test Suites Don't Help: It shows that stronger test suites do not

help GenProg produce correct patches - they simply eliminate the ability of

GenProg to produce any patches at all.

" Semantic Patch Analysis: It reports, for the first time, that the overwhelm-

ing majority of the plausible GenProg, RSRepair, and AE patches are semanti-

cally equivalent to a single modification that simply deletes functionality from

the application.

" Kali: It presents a novel automatic patch generation system, Kali, that works

only with simple patches that delete functionality.

" Kali Results: It presents results that show that Kali outperforms GenProg,

RSRepair, and AE. With a simpler search space and no identification of a target

source code file to patch, Kali generates at least as many correct patches and

at least as many plausible patches as these prior systems. Even though the

majority of these patches are not correct, they successfully target the defective

functionality, can help pinpoint the defective code, and often provide insight

into important defect characteristics.

24

Chapter 2

Overview of Analyzed Systems

GenProg: GcnProg combines three basic modifications, specifically delete, insert,

and replace, into larger patches, then uses genetic programming to search the resulting

patch space. We work with the GenProg system used to perform a "systematic study

of automated program repair" that "includes two orders of magnitude more" source

code, test cases, and defects than previous studies 1261. As of the submission date

of this paper, the relevant GenProg paper is referenced on the GenProg web site

as the recommended starting point for researchers interested in learning more about

GenProg 141. The GenProg patch evaluation infrastructure works with the following

kinds of components 17, 5, 31:

9 Test Cases: Individual tests that exercise functionality in the patched appli-

cation. Examples include php scripts (which arc then evaluated by a patched

version of php), bash scripts that invoke patched versions of the libtiff tools on

specific images, and perl scripts that generate HTTP requests (which are then

processed by a patched version of lighttpd).

* Test Scripts: Scripts that run the application on a set of test cases and report

either success (if the application passes all of the test cases) or failure (if the

application does not pass at least one test case).

9 Test Harnesses: Scripts or programs that evaluate candidate patches by run-

ning the relevant test script or scripts on the patched application, then reporting

the results (success or failure) back to GenProg.

25

It is our understanding that the test cases and test scripts were adopted from the

existing software development efforts for each of the benchmark GenProg applications

and implemented by the developers of these projects for the purpose of testing code

written by human developers working on these applications. The test harnesses were

implemented by the GenProg developers as part of the GenProg project.

A downloadable virtual machine [7], all of the patches reported in the relevant

GenProg paper (these include patches from 10 GenProg executions for each defect) [51,

source code for each application, test cases, test scripts, and the GenProg test harness

for each application 131 are all publicly available. Together, these components make

it possible to apply each patch and run the test scripts or even the patched version of

each application on the provided test cases. It is also possible to run GenProg itself.

RSRepair: The goal of the RSRepair project was to compare the effectiveness of

genetic programming with random search [481. To this end, the RSRepair system built

on the GenProg system, using the same testing and patch evaluation infrastructure

but changing the search algorithm from genetic search to random search. RSRepair

was evaluated on 24 of the 55 defects that GenProg was reported to repair [48, 261.

The reported patches are publicly available [8]. For each defect, the RSRepair paper

reports patches from 100 runs. We analyze the first 5 patches from these 100 runs.

AE: AE is an extension to GenProg that uses a patch equivalence analysis to avoid

repeated testing of patches that are syntactically different but equivalent (according

to an approximate patch equivalence test) [591. AE focuses on patches that only

perform one edit and exhaustively enumerates all such patches. The AE experiments

were "designed for direct comparison with previous GenProg results" [59, 261 and

evaluate AE on the same set of 105 defects. The paper reports one patch per repaired

defect, with the patches publicly available [1]. AE is based on GenProg and we were

able to leverage the developer test scripts available in the GenProg distribution to

compile and execute the reported AE patches.

26

Chapter 3

Plausibility Analysis

The basic principle behind the GenProg, RSRepair, and AE systems is to generate

patches that produce correct results for all of the inputs in the test suite used to

validate the patches. We investigate the following research question:

RQ1: Do the reported GenProg, RSRepair, and AE patches produce

correct results for the inputs in the test suite used to validate the patch?

To investigate this question, we downloaded the reported patches and validation

test suites 17, 5, 3, 8, 11. We then applied the patches, recompiled the patched

applications, ran the patched applications on the inputs in the validation test suites,

and compared the outputs with the correct outputs. Our results show that the answer

to RQ1 is that the majority of the reported GenProg, RSRepair, and AE patches do

not produce correct outputs for the inputs in the validation test suite:

* GenProg: Of the reported 414 GenProg patches, only 110 are plausible - the

remaining 304 generate incorrect results for at least one input in the test suite

used to validate the patch. This leaves 18 defects with at least one plausible

patch.

* RSRepair: Of the analyzed 120 AE patches, only 44 are plausible - the

remaining 76 generate incorrect results for at least one input in the test suite

used to validate the patch. This leaves 10 defects with at least one plausible

patch.

27

* AE: Of the reported 54 AE patches, only 27 are plausible -- the remaining 27

generate incorrect results for at least one input in the test suite. This leaves 27

defects with at least one plausible patch.

Test Harness Issues: The GenProg 2012 paper reports that GenProg found suc-

cessful patches for 28 of 44 defects in php [261. The results tarball contains a total

of 196 patches for these 28 defects. Only 29 of these patches (for 5 of the 44 de-

fects, specifically defects php-bug-307931-307934, php-bug-309892-309910, php-bug-

309986-310009, php-bug-310011-310050, and php-bug-310673-310681) are plausible.

GenProg accepts the remaining 167 patches because of integration issues between the

GenProg test harness and the developer test script.

For php, the developer test script is also written in php. The GenProg test harness

executes this developer test script using the version of php with the current GenProg

patch under evaluation applied, not the standard version of php. The current patch

under evaluation can therefore influence the behavior of the developer test script (and

not just the behavior of the test cases).

The GenProg test harness does not check that the php patches cause the developer

test scripts to produce the correct result. It instead checks only that the higher order

8 bits of the exit code from the developer test script are 0. This can happen if 1) the

test script itself crashes with a segmentation fault (because of an error in the patched

version of php that the test case exercises), 2) the current patch under evaluation

causes the test script (which is written in php) to exit with exit code 0 even though

one of the test cases fails, or 3) all of the test cases pass. Of the 167 accepted patches,

138 are implausible - only 29 pass all of the test cases.

We next present relevant test infrastructure code. The GenProg test harness is

written in C. The following lines determine if the test harness accepts a patch. Line

8564 runs the test case and shifts off the lower 8 bits of the exit code. Line 8566

accepts the patch if the remaining upper 8 bits of the exit code are zero.

php-run-test.c:8564 int res = system(buffer) >> 8

php-run-test.c:8565

php-run-test.c:8566 if (res == 0) { /* accept patch */

28

Here buf f er contains the following shell command:

./sapi/cli/php ../php-helper.php -p ./sapi/cli/php -q <php test file>

where . /sapi/cli/php is the patched version of the php interpreter. This patched

version is used both to run the php test file for the test case and the php-helper . php

script that runs the test case.

Test Script Issues: The GenProg libtiff test scripts do not check that the test cases

produce the correct output. They instead use a weak proxy that checks only that

the exercised libtiff tools return exit code 0 (it is our understanding that the libtiff

developers, not the GenProg developers, developed these test scripts [9j). The test

scripts may therefore accept patches that do not produce the correct output. There

is a libtiff test script for each test case; 73 of the 78 libtiff test scripts check only the

exit code. This issue causes GenProg to accept 137 implausible libtiff patches (out

of a total of 155 libtiff patches). libtiff and php together account for 322 of the total

414 patches that the GenProg paper reports [261.

One of the gmp test scripts does not check that all of the output components are

correct (despite this issue, both gnip patches are plausible).

AE: The reported AE patches exhibit plausibility problems that are consistent with

the use of weak proxies in the GenProg testing infrastructure. Specifically, only 5 of

the 17 reported libtiff patches and 7 of the reported 22 php patches are plausible.

RSRepair: RSRepair uses the same testing infrastructure as GenProg [481. Pre-

sumably because of weak proxy problems inherited from the GenProg testing infras-

tructure, the reported RSRepair patches exhibit similar plausibility problems. Only

5 of the 75 RSRepair libtiff patches are plausible. All of these 5 patches repair the

same defect, specifically libtiff-bug-d13be72c-ccadf48a. The RSRepair paper reports

patches for only 1 php defect, specifically php-bug-309892-309910, the 1 php defect

for which all three systems are able to generate a correct patch.

ManyBugs: It is our understanding that the developers of the GenProg benchmark

suite are aware of the test infrastructure errors and are working to correct them. As of

the submission date of this paper, the php test harness uses the patched version of php

29

to run the test cases (the segmentation fault error described above has been corrected)

and the libtiff test scripts check only for exit code 0, not for correct output [30]. The

result is accepted patches that produce incorrect outputs for inputs in the validation

test suite.

30

Chapter 4

Correctness Analysis

We analyze each plausible patch in context to determine if it correctly repairs the

defect.

RQ2: Are any of the reported GenProg, RSRepair, and AE patches

correct?

Patch Correctness Results: Our analysis indicates that only 5 of the 414 GenProg

patches (3 for python-bug-69783-69784 and 2 for php-bug-309892-309910) are correct.

This leaves GenProg with correct patches for 2 out of 105 defects. Only 4 of the 120

RSRepair patches (2 for python-bug-69783-69784 and 2 for php-bug-309892-309910)

are correct. This leaves RSRepair with correct patches for 2 out of 24 defects. Only

3 of the 54 AE patches (1 for php-bug-309111-309159, 1 for php-bug-309892-309910,

and 1 for python-bug-69783-69784) are correct. This leaves AE with correct patches

for 3 out of 54 defects.

For each plausible but incorrect patch that GenProg or AE generate, and each

plausible but incorrect RSRepair patch that we analyze, we developed a new test case

that exposes the defect in the incorrect patch 1501.

Patch Correctness Clarity: We acknowledge that, in general, determining whether

a specific patch corrects a specific defect can be difficult (or in some cases not even

well defined). We emphasize that this is not the case for the patches and defects

that we consider here. The correct behavior for all of the defects is clear, as is patch

correctness and incorrectness.

31

Developer Patch Comparison: For each defect, the GenProg benchmark suite

identifies a corrected version of the application that does not have the defect. In

most cases the corrected version is a later version produced by a developer writing

an explicit developer patch to repair the error. In other cases the corrected version

simply applies a deliberate functionality change - there was no defect in the original

version of the application. In yet other cases the identified correct version is an earlier

version of the application. In these cases, it is possible to derive an implicit developer

patch that reverts the application back to the earlier version.

Our analysis indicates that the developer patches are, in general, consistent with

our correctness analysis. Specifically, 1) if our analysis indicates that the reported

GenProg, RSRepair, or AE patch is correct, then the patch has the same semantics as

the developer patch, 2) if our analysis indicates that the reported GenProg, RSRepair,

or AE patch is not correct, then the patch has different semantics than the developer

patch, and 3) if we developed a new test case to invalidate generated plausible but

incorrect patches for a defect, the corresponding developer patched version of the

application produces correct output for the new input.

python.-bug-69783-69784: Figure A-1 (see Appendix A.1) presents the GenProg

patch for python-bug-69783-69784. Figure A-2 presents the developer patch. Both of

the patches remove an if statement (lines 1-25 in Figure A-2, lines 1-52 in Figure A-

1). Because GenProg generates preprocessed code, the GenProg patch is larger than

but semantically equivalent to the developer patch. AE and RSRepair also generate

correct patches that are semantically equivalent to this GenProg patch. Note that

python-bug-69783-69784 is in fact not a bug. It instead corresponds to a deliberate

functionality change. The relevant code (correctly) implemented python support for

two-year dates. This functionality was deliberately removed by the developer in

revision 69784.

php-bug-309892-309910: Figure A-3 (see Appendix A.1) presents the GenProg

patch for php-bug-309892-309910. Figure A-4 presents the developer patch. Both

of the patches remove an obsolete check implemented by the deleted if statement

(lines 14-18 in Figure A-3 and lines 7-9 in Figure A-4). AE and RSRepair generate

32

semantically equivalent patches.

php-bug-309111-309159: Figure A-5 (see Appendix A.1) presents the AE patch

for php-bug-309111-309159. Figure A-6 presents the developer patch. php-309111-

309159 is an url parsing defect - the PHP function parseurl() may incorrectly

parse urls that contain question marks. The AE patch (with _ _genprog_ mutant

equal to 25) copies the if statement (lines 23-29 of Figure A-5) to the location after

the assignment p = pp. Therefore p is equal to pp when the copied block executes.

In this context, the copied block is semantically equivalent to the block that the

developer patch adds before the assignment statement. In the AE patch, the code

involving _ _genprog_mutant works with the AE test infrastructure to compile mul-

tiple generated patches into the same file for later dynamic selection by the AE test

infrastructure.

33

34

Chapter 5

GenProg Reexecutions

We next consider the following research question:

RQ3: Do stronger test suites enable GenProg to produce more correct

patches?

To determine whether GenProg [261 is able to generate correct patches if we correct

the issues in the patch evaluation infrastructure and provide GenProg with stronger

test suites, we perform the following GenProg reexecutions:

Corrected Patch Evaluation Infrastructure: We first corrected the GenProg

patch evaluation infrastructure issues (see Section 3). Specifically, we modified the

php test harness to ensure that the harness correctly runs the test script and correctly

reports the results back to GenProg. We strengthened the 73 libtiff test scripts to,

as appropriate, compare various metadata components and/or the generated image

output with the correct output. We modified the gmp test scripts to check all output

components.

Augmented Test Suites: We augmented the GenProg test suites to include the

new test cases (see Section 4) that expose the defects in the plausible but incorrect

GenProg patches.

GenProg Reexecution: For each combination of defect and random seed for

which GenProg generated an incorrect patch, we reexecuted GenProg with that same

combination. These reexecutions used the corrected patch evaluation infrastructure

and the augmented test suites.

35

Results: These reexecutions produced 13 new patches (for defects libtiff-bug-

5b02179-3dfb33b and lighttpd-bug-2661-2662). Our analysis indicates that the new

patches that GenProg generated for these two defects are plausible but incorrect. We

therefore developed two new test cases that exposed the defects in these new incorrect

patches. We included these new test cases in the test suites and reexecuted GenProg

again. With these test suites, the GenProg reexecutions produced no patches at all.

The new test cases are available [501.

36

Chapter 6

Semantic Patch Analysis

For each plausible patch, we manually analyzed the patch in context to determine if

it is semantically equivalent to either 1) the deletion of a single statement or block of

code, or 2) the insertion of a single return or exit statement. This analysis enables

us to answer the following research question:

RQ4: Are the reported GenProg, RSRepair, and AE patches equiva-

lent to a single modification that simply deletes functionality?

Our analysis indicates that the overwhelming majority of the reported plausible

patches are equivalent to a single functionality deletion modification. Specifically, 104

of the 110 plausible GenProg patches, 37 of the plausible 44 RSRepair patches, and 22

of the plausible 27 AE patches are equivalent to a single deletion or return insertion

modification. Note that even though AE contains analyses that attempt to determine

if two patches are equivalent, the analyses are based on relatively shallow criteria

(syntactic equality, dead code elimination, and equivalent sequences of independent

instructions) that do not necessarily recognize the functionality deletion equivalence

of syntactically complex sequences of instructions. Indeed, the AE paper, despite its

focus on semantic patch equivalence, provides no indication that the overwhelming

majority of the reported patches are semantically equivalent to a single functionality

deletion modification 159].

37

6.1 Weak Test Suites

During our analysis, we obtained a deeper understanding of why so many plausible

patches simply delete functionality. A common scenario is that one of the test cases

exercises a defect in functionality that is otherwise unexercised. The patch simply

deletes functionality that the test case exercises. This deletion then impairs or even

completely removes the functionality.

These results highlight the fact that weak test suites - i.e., test suites that provide

relatively limited coverage - may be appropriate for human developers (who operate

with a broader understanding of the application and are motivated to produce correct

patches) but (in the absence of additional techniques designed to enhance their ability

to produce correct patches) not for automatic patch generation systems that aspire

to produce correct patches.

6.2 Impact of Functionality Deletion Patches

Our analysis of the patches also indicated that (in contrast to previously reported

results [31J) the combination of test suites with limited coverage and support for

functionality deletion can promote the generation of patches with negative effects

such as the introduction of security vulnerabilities and the elimination of standard

functionality. Check Elimination: Several defects are caused by incorrectly coded

checks. The test suite contains a test case that causes the check to fire incorrectly,

but there is no test case that relies on the check to fire correctly. The generated

patches simply remove the check. The consequences vary depending on the nature of

the check. For example:

* Integer Overflow: libtiff-bug-0860361d-1ba75257 incorrectly implements an

integer overflow check. The generated patches remove the check, in effect rein-

troducing a security vulnerability from a previous version of libtiff (CVE-2006-

2025) that a remote attacker can exploit to execute arbitrary injected code [2].

38

* Buffer Overflow: Defect fbc-bug-5458-5459 corresponds to an overly conser-

vative check that prevents a buffer overflow. The generated patches remove the

check, enabling the buffer overflow.

Standard Feature Elimination: Defects php-bug-307931-307934, gzip-bug-3fe0ca-

39a362, lighttpd-bug-1913-1914, lighttpd-bug-2330-2331 correspond to incorrectly

handled cases in standard functionality. The test suite contains a test case that

exposes the incorrectly handled case, but no test case that exercises the standard

functionality. The patches impair or remove the functionality, leaving the program

unable to process standard use cases (such as decompressing non-zero files or initial-

izing associative array elements to integer values).

Undefined Accesses: Patches often remove initialization code. While the resulting

undefined accesses may happen to return values that enable the patch to pass the

test cases, the patches can be fragile - different environments can produce values

that cause the patch to fail (e.g., the AE patch for fbc-bug-5458-5459).

Deallocation Elimination: The patches for wireshark-bug-37112-37111 and php-

bug-310011-310050 eliminate memory management errors by removing relevant mem-

ory deallocations. While this typically introduces a memory leak, it can also enhance

survival by postponing the failure until the program runs out of memory (which may

never happen). We note that human developers often work around difficult memory

management defects by similarly removing deallocations.

Survival Enhancement: One potential benefit of even incorrect patches is that they

may enhance the survival of the application even if they do not produce completely

correct execution. This was the goal of several previous systems (which often produce

correct execution even though that was not the goal) [53, 10, 42, 11, 29, 36, 44, 18, 471.

Defect lighttpd-bug-1794-1795 terminates the program if it encounters an unknown

configuration file setting. The generated patches enhance survival by removing the

check and enabling lighttpd to boot even with such configuration files. We note

that removing the check is similar to the standard practice of disabling assertions in

production use.

39

Relatively Minor Defects: We note that some of the defects can be viewed as

relatively minor. For example, python-bug-69223-69224 causes the unpatched version

of python to produce a SelectError message instead of a ValueError message - i.e.,

the correct behavior is to produce an error message, the defect is that python produces

the wrong error message. Three of the wireshark defects (wireshark-bug-37172-37171,

wireshark-bug-37172-37173, wireshark-bug-37284-37285) were caused by a developer

checking in a version of wireshark with a debug macro flag set. The relevant defect

is that these versions generate debugging information to the screen and to a log file.

The correct behavior omits this debugging information.

40

Chapter 7

Original GenProg Patches

We also analyzed the reported patches from the original GenProg system [60, 221.

Out of the 11 defects evaluated in the two papers, the corresponding patches for 9

defects are plausible but incorrect. 9 of the 11 patches simply eliminate functionality

(by removing statements or adding a return or exit statements). We next discuss the

reported patch for each application in turn.

* uniq: The patch is semantically equivalent to removing the statement *buf++

= c at uniq.c:74. The effect is that the patched application will ignore the user

input file and operate as if the file were empty. Because of the use of a weak

proxy, this patch is not plausible. The test scripts check the exit code of the

program, not whether the output is correct.

* look-u: The patch is semantically equivalent to removing the condition argv[1]

== "-" from the while loop at look.c:63. The effect is that look will treat the

first command line argument (-d, -f, -t) as the name of the input file. Unless a

file with such a name exists, look will then immediately exit without processing

the intended input file.

9 look-s: The patch is semantically equivalent to replacing the statement mid

(top+bot)/2 at look.c:87 with exit(O). The effect is that look will always exit

immediately without printing any output (if the input file exists, if not, look

will print an error message before it exits).

41

The patch is plausible because the use of a weak test suite - the correct output

for the positive and negative test cases is always no output. If the correct

output for any of the test cases had been non-empty, this patch would have

been implausible.

" units: The units program asks the user to input a sequence of pairs of units (for

example, the pair meter and feet) and prints out the conversion factor between

the two units in the pair. The patch is semantically equivalent to adding initO

after units.c:279. The unpatched version of the program does not check for an

overflow of the user input buffer. A long user input will therefore overflow the

buffer.

The GenProg patch does not eliminate the buffer overflow. It instead clears

the unit table whenever the program reads an unrecognized unit (whether the

unit overflows the user input buffer or not). Any subsequent attempt to look

up the conversion for any pair of units will fail. It is also possible for the buffer

overflow to crash the patched program.

" deroff: When deroff reads a backslash construct (for example, \L), it should

read the next character (for example, ") as a delimiter. It should then skip any

text until it reaches another occurrence of the delimiter or the end of the line.

The patch is semantically equivalent to removing the statement bdelim=c (au-

tomatically generated as part of a macro expansion) at deroff.c:524. The effect

is that the patched program does not process the delimiter correctly - when it

encounters a delimiter, it skips all of the remaining text on the line, including

any text after the next occurrence of the delimiter.

" nullhttpd: The patch is semantically equivalent to removing the call to str-

cmp(..., "POST") httpdcomb.c:4092-4099. The effect is that all POST re-

quests generate an HTML bad request error reply.

* indent: The patch is semantically equivalent to adding a return after in-

dent.c:926. The GenProg 2009 paper states that "Our repair removes handling

42

of C comments that are not C++ comments." Our experiments with the patched

version indicate that the patched version correctly handles at least some C com-

ments that are not C++ comments (we never observed a C comment that it

handled incorrectly). In many cases, however, the patched version simply exits

after reading a { character, truncating the input file after the {.

" flex: The patch is semantically equivalent to removing the call to strcpy() at

flexcomb.c:13784. This call transfers the token (stored in yytext) into the

variable nmdef. Removing the call to strcpyo causes flex to incorrectly operate

with an uninitialied nmdef. This variable holds one of the parsed tokens to

process. The effect is that flex fails to parse the input file and incorrectly

produces error messages that indicate that flex encountered an unrecognized

rule.

* atris: The commments in the atris source code indicate that it is graphical

tetris game. atris has the ability to load in user options stored in the .atrisrc in

the user's home directory. A call to sprintf() at atrixcomb.c:5879 initializes the

string buffer that specifies the filename of this .atrisrc file. If the home directory

is longer than 2048 characters this sprintf(call will overflow the buffer.

The patch is semantically equivalent to removing the call to sprintf() at

atrixcomb.c:5879. The result is that the program passes an uninitialized file-

name to the procedure that reads the .atrisrc file.

The remaining 2 programs, for which GenProg generates correct patches, are used as

motivating examples in the ICSE 2009 and GECCO 2009 papers [60, 221. These two

programs contain less than 30 lines of code.

We note that many of the test scripts use weak proxies. Specifically, all uniq,

look-u, and look-s test cases do not compare the output of the patched program to

the correct output. They instead check only that the patched program produces the

correct exit code. Similarly, the deroff and indent negative test case test scripts only

check the exit code.

43

44

Chapter 8

Kali

The basic idea behind Kali is to search a simple patch space that consists solely of

patches that remove functionality. There are two potential goals: 1) if the correct

patch simply removes functionality, find the patch, 2) if the correct patch does not

simply remove functionality, generate a patch that modifies the functionality con-

taining the defect. For an existing statement, Kali deploys the following kinds of

patches:

" Redirect Branch: If the existing statement is a branch statement, set the

condition to true or false. The effect is that the then or else branch always

executes.

" Insert Return: Insert a return before the existing statement. If the function

returns a pointer, the inserted return statement returns NULL. If the function

returns an integer, Kali generates two patches: one that returns 0 and another

that returns -1.

" Remove Statement: Remove the existing statement. If the statement is a

compound statement, Kali will remove all substatements inside it as well.

Statement Ordering: Each Kali patch targets a statement. Kali uses instrumented

executions to collect information and order the executed statements as follows. Given

a statement s and a test case i, r(s, i) is the recorded execution counter that identifies

the last execution of the statement s when the application runs with test case i. In

45

particular, if the statement s is not executed at all when the application runs with

the test case i, then r(s, i) = 0. Neg is the set of negative test cases (for which the

unpatched application produces incorrect output) and Pos is the set of positive test

cases (for which the unpatched application produces correct output). Kali computes

three scores a(s), b(s), c(s) for each statement s:

a(s) = {i I r(s,i) $ 0, i E Neg} I

b(s) = I {i I r(s,i) = 0, i E Pos} I

c(s) = EiENegr(s, i)

A statement si has higher priority than a statement S2 if prior(si, S2) = 1, where

prior is defined as:

1 a(si) > a(s 2)

1 a(si) = a(s 2), b(si) > b(s 2)

prior(si, s2) = a(si) = a(s2), b(si) = b(s2),
1

c(si) > c(s 2)

0 otherwise

Intuitively, Kali prioritizes statements 1) that are executed with more negative

test cases, 2) that are executed with less positive test cases, and 3) that are executed

later during the executions with negative test cases. The Kali search space includes

the top 500 ranked statements regardless of the file in which they appear.

Search: Kali deterministically searches the patch space in tiers: first all patches that

change an if condition, then all patches that insert a return, then all patches that

remove a statement. Within each tier, Kali applies the patch to the statements in

the priority or-der identified above. It accepts a patch if the patch produces correct

outputs for all of the inputs in the validation test suite.

46

8.1 Kali Evaluation Methodology

We evaluate Kali on all of the 105 defects in the GenProg set of benchmark defects [31.

We also use the validation test suites from this benchmark set. Our patch evaluation

infrastructure is derived from the GenProg patch evaluation infrastructure [3]. For

each defect, Kali runs its automatic patch generation and search algorithm to gen-

erate a sequence of candidate patches. For each candidate patch, Kali applies the

patch to the application, recompiles the application, and uses the patch evaluation

infrastructure to run the patched applicationi on the inputs in the patch validation

test suite. To check if the patch corrects the known incorrect behavior from the test

suite, Kali first runs the negative test cases. To check if the patch preserves known

correct behavior from the test suite, Kali next runs the positive test cases. If all of

the test cases produce the correct output, Kali accepts the patch. Otherwise it stops

the evaluation of the candidate patch at the first incorrect test case and moves on to

evaluate the next patch.

Kali evaluates the php patches using the modified php test harness described

in Section 3. It evaluates the gmp patches using a modified gmp test script that

checks that all output components are correct. It evaluates the libtiff patches with

augmented test scripts that compare various elements of the libtiff output image

files from the patched executions with the corresponding elements from the correct

image files. Other components of the image files change nondeterministically without

affecting the correctness. The libtiff test scripts therefore do not fully check for correct

outputs. After Kali obtains patches that pass the modified libtiff test scripts, we

manually evaluate the outputs to filter all Kali patches that do not produce correct

outputs for all of the inputs in the validation test suite. This manual evaluation

rejects 7 libtiff patches, leaving only 5 plausible patches. Effective image comparison

software would enable Kali to fully automate the libtiff patch evaluation.

We perform all of our Kali experiments (except for the fbc defects) on Amazon

EC2 Intel Xeon 2.6GHz Machines running Ubuntu-64bit 14.04. The fbc application

only runs in 32-bit environment, so we use a virtual machine with Intel Core 2.7GHz

running Ubuntu-32bit 14.04 for fbc.

47

Defet Gn~ro RSepai AEKali
Defect GenProg RSRepair AE Result Search Space Search Time Type

fbc-5458-5459 Plausible - Plausiblet Plausible 737 2.4m SLt
gmp-14166-14167 Plausible Plausiblet Plausible Plausible 1169 19.5m DP

gzip-3fe0ca-39a362 Plausible Plausible Plausiblet Plausible 1241 28.2m SF (119)*
gzip-ald3d4-fl7cbd No Patch - Plausible No Patch

libtiff-0860361d-lba75257 Plausiblet Implausible Plausiblet Plausible 1525 16.7m SL*
libtiff-5b02179-3dfb33b Plausiblet Implausible Plausiblet Plausible 1476 4.1m DP

libtiff-90d136e4-4c66680f Implausible Implausible Plausiblet Plausible 1591 45.Om SLt
libtiff-d13be72c-ccadf48a Plausiblet Plausiblet Plausiblet Plausible 1699 42.9m SL*
libtiff-ee2ce5b7-b5691a5a Implausible Implausible Plausiblet Plausible 1590 45.1m SF(10)*

lighttpd-1794-1795 Plausiblet - Plausiblet Plausible 1569 5.9m
lighttpd-1806-1807 Plausiblet Plausiblet Plausiblef Plausible 1530 55.5m SF(21)t
lighttpd-1913-1914 Plausiblet Plausiblet No Patch Plausible 1579 158.7m SL*
lighttpd-2330-2331 Plausiblet Plausiblet Plausible$ Plausible 1640 36.8m SF(19)t
lighttpd-2661-2662 Plausiblet Plausiblet Plausiblet Plausible 1692 59.7m DP
php-307931-307934 Plausiblet - Plausiblet Plausible 880 9.2m DP
php-308525-308529 No Patch - Plausiblet Plausible 1152 234.Om SLt
php-309111-309159 No Patch - Correct No Patch
php-309892-309910 Correctt Correctt Correctt Correct 1498 20.2m C
php-309986-310009 Plausiblet - Plausiblet Plausible 1125 10.4m SF(27)*
php-310011-310050 Plausible - Plausiblet Plausible 971 12.9m SL*
php-310370-310389 No Patch - No Patch Plausible 1096 12.0m DP-
php-310673-310681 Plausiblet - Plausiblet Plausible 1295 89.00m SL*
php-311346-311348 No Patch - No Patch Correct 941 14.7m C
python-69223-69224 No Patch - Plausible No Patch
python-69783-69784 Correctt Correctt Correctt Correct 1435 16. Im C
python-70098-70101 No Patch - Plausible Plausible 1233 6.8m SL*

wireshark-37112-37111 Plausiblet Plausible Plausiblet Plausible 1412 19.6m SLt
wireshark-37172-37171 No Patch - Plausiblet Plausible 1459 10.9m SLt
wireshark-37172-37173 No Patch - Plausiblet Plausible 1459 10.9m SLt
wireshark-37284-37285 No Patch - Plausiblet Plausible 1482 11.5m SLt

Figure 8-1: Experimental Results

48

8.2 Experimental Results

Figure 8-1 presents the experimental results from our analysis of these patches. The

figure contains a row for each defect for which at least one system (GenProg, RSRe-

pair, AE, or Kali) generates a plausible patch. The second to fifth columns present

the results of GenProg, RSRepair, AE, and Kali on each defect. "Correct" indicates

that the system generates at least one correct patch for the defect. "Plausible" indi-

cates that the system generates at least one plausible patch but no correct patches for

the defect. "Implausible" indicates that all patches generated by the system for the

defect are not plausible. "No Patch" indicates that the system does not generate any

patch for the defect. "-" indicates that the RSRepair researchers chose not to include

the defect in their study [481. "!" indicates that at least one of analyzed patches is

not equivalent to a single functionality elimination modification.

Our results show that for the defects in the GenProg benchmark set, Kali generates

correct patches for at least as many defects (3 for Kali vs. 3 for AE and 2 for GenProg

and RSRepair) and plausible patches for at least as many defects (27 for Kali vs. 18

for GenProg, 10 for RSRepair, and 27 for AE).

Search Space and Time Results: The sixth column of Figure 8-1 presents the

size of the search space for each defect (which is always less than 1700 patches). The

seventh column presents the search times. Kali typically finds the patches in tens

of minutes. If the search space does not contain a plausible patch, Kali typically

searches the entire space in several hours and always less than seven hours.

It is not possible to directly compare the reported performance numbers for Gen-

Prog, RSRepair, and AE [26, 48, 59] with the numbers in Figure 8-1. First, the

reported aggregate results for these prior systems include large numbers of implau-

sible patches. The reported results for individual defects ([48J, Table 2) report too

few test case executions to validate plausible patches for the validation test suite

(specifically, the reported number of test case executions is less than the number of

test cases in the test suite). Second, these prior systems reduce the search space by

requiring the developer to identify a target source code file to attempt to patch (Kali,

49

of course, works with the entire application). Nevertheless, the search space sizes for

these prior systems appear to be in the tens of thousands ([591, Table I) as opposed to

hundreds for Kali. These numbers are consistent with the simpler Kali search space

induced by the simpler set of Kali functionality deletion modifications.

Patch Classification: The last column of Figure 8-1 presents our classification of

the Kali patches. "C" indicates that the Kali patch is correct. There are three defects

for which Kali generates a correct patch. For two of the defects (php-bug-309111-

309159, python-bug-69783-69784) both the Kali and developer patch simply delete

an if statement. For php-bug-311346-311348, the Kali patch is a then redirect patch.

The developer patch changes the else branch, but when the condition is true, the then

branch and modified else branch have the same semantics.

"SL" indicates that the Kali and corresponding developer patches modify the

same line of code. "*" indicates that the developer patch modified only the func-

tion that the Kali patch modified. "t" indicates that the developer patch modified

other code outside the function. In many cases the Kali patch cleanly identifies the

exact functionality and location that the developer patch modifies. Examples include

changing the same if condition (fbc-bug-5458-5459, libtiff-bug-d13be72c-ccadf48a),

changing the condition of an if statement when the developer patch modifies the

then and/or else clause of that same if statement (python-bug-70098-70101, libtiff-

bug-0860361d-1ba75257, wireshark-bug-37112-37111), deleting code that the devel-

oper patch encloses in an if statement (lighttpd-bug-1913-1914, php-bug-310673-

310681, and deleting the same code (php-bug-308525-308529, libtiff-bug-0860361d-

1ba75257, libtiff-bug-90d136e4-4c66680f, wireshark-bug-37172-37171, wireshark-bug-

37172-37173, wireshark-bug-37284-37285) as the developer patch. Many of the

patches correspond quite closely to the developer patch and move the application

in the same direction.

"SF" indicates that the Kali and corresponding developer patches modify the same

function. The number in parentheses is the distance in lines of code between the Kali

patch and developer modifications. The Kali and developer patches typically mod-

ify common functionality and variables. Examples include reference counting (php-

50

bug-309986-310009), caching (lighttpd-bug-1806-1807), and file encoding mechanism

functionality (lighttpd-bug-2330-2331).

"DP" indicates that the Kali and developer patches modify different functions, but

there is some dependence that connects the Kali and developer patches. Examples

include changing the return value of a function invoked by code that the developer

patch modifies (gmp-bug-14166-14167), deleting a call to a function that the developer

patch modifies (php-bug-307931-307934), modifying memory management code for

the same data structure (php-bug-310370-310389), and accessing the same value, with

either the Kali or the developer patch changing the value (lighttpd-bug-2661-2662,

libtiff-bug-5b02179-3dfb33b).

The Kali patch for lighttpd-bug-1794-1795 (like the GenProg and AE patches)

is an outlier - it deletes error handling code automatically generated by the yacc

parser generator. The developer patch changes the yacc code to handle new configu-

ration parameters. We do not see the any of the automatically generated patches as

providing useful information about the defect.

python-bug-69783-69784: Figure A-7 (see Appendix A.2) presents the Kali patch

for python-bug-69783-69784. Like the GenProg, RSRepair, and AE patches, the patch

for this defect deletes the if statement that implements two-digit years. Note that un-

like these previous systems, which generate preprocessed code, Kali operates directly

on and therefore preserves the structure of the original source code. To implement

the deletion, Kali conjoins false (i.e., !1) to the condition of the if statement.

php-bug-309892-309910: Figure A-8 (see Appendix A.2) presents the Kali patch

for php-bug-309892-309910. Like the GenProg, RSRepair, and AE patches, this patch

deletes the if statement that implements the obsolete check.

php-bug-311346-311348: Figure A-9 (see Appendix A.2) presents the Kali patch

for php-bug-311346-311348. This code concatenates two strings, ctx->buf.c and out-

put. The original code incorrectly set the result handledoutput to NULL when

the first string is empty. The Kali patch, in effect, deletes the else branch of the if

statement on line 1 so that handled-output is correctly set when ctx->buf.c is empty

and output is not empty. Figure A-10 presents the developer patch. The developer

51

patches the else branch to correctly set handled-output when ctx->buf.c is empty.

The two patches have the same semantics.

8.3 Discussion

While many of the plausible but incorrect Kali patches precisely pinpoint the defective

code, that is far from the only useful aspect of the patch. The fact that the patch

changes the behavior of the program to produce the correct output for the negative

input provides insight into what functionality is defective and how the defect affects

that functionality. Even when the Kali patch is not correct, it often moves the

program in the same direction as the developer patch, for example by deleting code

that the developer patch causes to execute only conditionally.

We note that, by directly implementing functionality elimination patches (as op-

posed to using a broader set of modifications to generate more complex patches that,

in the end, are equivalent to functionality elimination), the Kali patches can be more

transparent and easier to understand. Many GenProg patches, for example, contain

multiple modifications that can obscure the semantic simplicity of the patch. Unlike

GenProg, RSRepair, and AE, Kali operates directly on the original source code. The

prior systems, in contrast, operate on preprocessed code, which in our experience

significantly impairs the transparency and comprehensibility of the patches.

52

Chapter 9

ClearView

Of course GenProg, RSRepair, and AE (and now Kali) are not the only generate-and-

validate patch generation systems. ClearView is a generate-and-validate system that

observes normal executions to learn invariants that characterize safe behavior [471.

It deploys monitors that detect crashes, illegal control transfers and out of bounds

write defects. In response, it selects a nearby invariant that the input that trig-

gered the defect violates, and generates patches that take a repair action when the

invariant is violated. Subsequent executions enable ClearView to determine if 1) the

patch eliminates the defect while 2) preserving desired benign behavior. ClearView,

GenProg, RSRepair, AE, and Kali all use the basic generate-and-validate approach

of generating multiple patches, then evaluating the patches based on their impact

on subsequent executions of the patched application. But ClearView leverages addi-

tional information not immediately available in the test suite, specifically invariants

learned in previous executions on benign inputs. This additional information enables

ClearView to produce more targeted patches. The experimental results indicate that

this additional information enables ClearView to produce more successful patches in

less time (ClearView produces patches in five minutes on average for the evaluated

defects [471).

ClearView differs from GenProg, RSRepair, and AE in two important ways. First,

ClearView's goal is to enable the program to survive defect-triggering inputs and se-

curity attacks and to continue on to process subsequent inputs successfully. Therefore

53

the correct outputs for the inputs that trigger the defects are not required and not

available. In some cases it is not even clear what the correct output should be. More

generally, how one would obtain correct outputs for defect-triggering inputs is an

open question - in many cases we anticipate that the easiest way of obtaining such

outputs may be to manually fix the defect, then use the new version of the program

to produce the correct output. For such cases, the utility of automatic patch gen-

eration systems that require correct outputs for defect-triggering inputs is not clear.

The difficulty is especially acute for fully automatic systems that must respond to

new defect-triggering inputs with no human intervention and no good way to obtain

correct outputs for these inputs.

A second difference is that ClearView generates binary patches and applies these

binary patches to running programs without otherwise interrupting the execution

of the program. It is, of course, possible to automatically generate source-level

patches, but binary patching gives ClearView much more flexibility in that it can

patch programs without source and without terminating the application, recompil-

ing, and restarting.

ClearView Patch Evaluation: ClearView was evaluated by a hostile Red Team at-

tempting to exploit security vulnerabilities in Firefox [471. The Red Team developed

attack web pages that targeted 10 Firefox vulnerabilities. These attack web pages

were used during a Red Team exercise to evaluate the ability of ClearView to auto-

matically generate patches that eliminated the vulnerability. During the Red Team

exercise, ClearView automatically generated patches for 7 of the 10 defects. Addi-

tional experiments performed after the Red Team exercise showed that a ClearView

configuration change enables ClearView to automatically patch one of the remaining

vulnerabilities and that an enhanced set of learning inputs enables ClearView to au-

tomatically patch another of the remaining vulnerabilities, for a total of 9 ClearView

patches for 10 vulnerabilities. An examination of the patches after the Red Team

exercise indicates that each patch successfully eliminated the corresponding secu-

rity vulnerability. A manual translation of these ClearView patches into source-level

patches is available [51].

54

To evaluate the quality of the continued execution after the presentation of the,

attack, the Red Team also developed 57 previously unseen benign web pages that

exercised a range of Firefox functionality. ClearView learned invariants not from

these 57 web pages but from other benign web pages developed independently of the

Red Team. All of the 9 generated patches enabled Firefox to survive the security

attacks and continue successful execution to produce correct behavior on these 57

benign web pages.

Correctness and Functionality Elimination: Unlike (apparently) the GenProg,

RSRepair, and AE patches, the ClearView patches were subjected to intensive human

investigation and evaluation during the Red Team evaluation. The ability of the

generated patches to eliminate security vulnerabilities is therefore well understood.

Although generating correct patches was not a goal, our evaluation of the patches

indicates that at least 4 of the patches are correct (for defects 285595, 290162, 295854,

and 296134). 3 of the patches implement conditional functionality elimination - they

insert an if statement that checks a condition and returns if the condition is true. 5 of

the patches implement a conditional assignment - they insert an if statement that

checks a condition and, if the condition is true, sets a variable to a value that enforces

a learned invariant.

55

56

Chapter 10

Threats To Validity

The data set considered in this paper was selected not by us, but by the GenProg de-

velopers in an attempt to obtain a large, unbiased, and realistic benchmark set [26].

The authors represent the study based on this data set as a "Systematic Study of

Automated Program Repair" and identify one of the three main contributions of

the paper as a "systematic evaluation" that "includes two orders of magnitude more"

source code, test cases, and defects than previous studies [261. Moreover, the bench-

mark set was specifically constructed to "help address generalizability concerns" [261.

Nevertheless, one potential threat to validity is that our results may not generalize

to other applications, defects, and test suites. In particular, if the test suites provide

more coverage of the functionality that contains the defect, we would not expect func-

tionality deletion modifications to be as effective in enabling applications to produce

plausible patches.

For each defect, we analyze only the first five patches that RSRepair generates. It

is possible that the remaining patches may have other characteristics (although our

initial examination of these other patches revealed no new characteristics).

57

58

Chapter 11

Related Work

SPR: SPR is a generate-and-validate patch generation system [34, 351 that uses staged

condition synthesis. SPR first selects parameterized patch schemas, some of which

contain abstract values to represent branch conditions. For each schema, SPR deter-

mines whether there is any instantiation of the schema that can pass all test cases.

If so, SPR then instantiates the abstract value in the schema to obtain and validate

candidate patches. For schemas with abstract conditions, SPR finds a set of desired

branch directions for that abstract condition and synthesizes an expression that re-

alizes these branch directions. This technique significantly reduces the number of

candidate patches that SPR attempts to validate. For the same GenProg benchmark

set [261 (excluding the 36 deliberate functionality changes), the SPR search space

contains correct patches for 19 defects, 11 of which SPR finds as the first patch that

passes the test suite. SPR also finds the correct patch for python-bug-69783-69784.

Prophet: Prophet is a patch generation system that learns a probabilistic model

over candidate patches from a large code database that contains many past success-

ful human patches [331. It defines the probabilistic model as the combination of

a distribution over program points based on an error localization algorithm and a

parameterized log-linear distribution over program modification operations. It then

learns the model parameters via maximum log-likelihood, which identifies impor-

tant characteristics of successful human patches. Prophet uses the learned model to

identify likely correct patches within the Prophet search space. One goal is to over-

59

come the limitations of weak test suites by learning characteristics of correct patches.

For the same GenProg benchmark set [26] (excluding the 36 deliberate functionality

changes), Prophet finds 14 correct patches as the first patch that passes the test suite.

Multi-Application Code Transfer: CodePhage [56, 55] automatically locates and

transfers correct code from donor applications to eliminate defects in recipient ap-

plications. CodePhage successfully repaired 10 defects in 7 recipient applications via

code transfer from 5 donor applications.

Failure-Oblivous Computing: Failure-oblivious computing [531 checks for out of

bounds reads and writes. It discards out of bounds writes and manufactures values

for out of bounds reads. This eliminates data corruption from out of bounds writes,

eliminates crashes from out of bounds accesses, and enables the program to continue

execution along its normal execution path.

Failure-oblivious computing was evaluated on 5 errors in 5 server applications.

For all 5 errors, this technique enabled the servers to survive otherwise fatal errors

and continue on to successfully process subsequent inputs. For 2 of the 5 errors, it

completely eliminates the error and, on all inputs, deliver the same output as the

developer patch that corrects the error (we believe these patches are correct).

Boundless Memory Blocks: Boundless memory blocks store out of bounds writes

in a hash table to return as the result of corresponding out of bounds reads [52J. The

technique was evaluated on the same set of applications as failure-oblivious computing

and delivered the same results.

Bolt and Jolt: Bolt [291 attaches to a running application, determines if the ap-

plication is in an infinite loop, and, if so, exits the loop. A user can also use Bolt

to exit a long-running loop. In both cases the goal is to enable the application to

continue useful execution. Bolt was evaluated on 13 infinite and 2 long-running loops

in 12 applications. For 14 of the 15 loops Bolt delivered a result that was the same

or better than terminating the application. For 7 of the 15 loops, Bolt completely

eliminates the error and, on all inputs, delivers the same output as the developer

patch that corrects the error (we believe these patches are correct). Jolt applies a

similar approach but uses the compiler to insert the instrumentation [11.

60

RCV: RCV [361 enables applications to survive null dereference and divide by zero

errors. It discards writes via null references, returns zero for reads via null references,

and returns zero as the result of divides by zero. Execution then continues along the

normal execution path.

RCV was evaluated on 18 errors in 7 applications. For 17 of these 18 errors, RCV

enables the application to survive the error and continue on to successfully process the

remaining input. For 11 of the 18 errors, RCV completely eliminates the error and,

on all inputs, delivers either identical (9 of 11 errors) or equivalent (2 of 11 errors)

outputs as the developer patch that corrects the error (we believe these patches are

correct).

Memory Leaks: Cyclic memory allocation eliminates memory leaks by statically

bounding the amount of memory that can be allocated at any allocation site [441.

LeakFix [251 proposes to fix memory leaks in C programs by inserting deallocations

automatically. LeakFix guarantees that the inserted fix is safe, i.e., the inserted fix

will not cause free-before-allocation, double-free, or use-after-free errors.

Integer and Buffer Overflows: TAP automatically discovers and patches integer

and buffer overflow errors [571. TAP uses a template-based approach to generate

source-level patches that test for integer or buffer overflows. If an overflow is detected,

the patches exit the program before-the overflow can occur.

Data Structure Repair: Data structure repair enables applications to recover from

data structure corruption errors [15, 17, 16, 141. Data structure repair enforces a data

structure consistency specification. This specification can be provided by a human

developer or automatically inferred from correct program executions [14]. Assertion-

based data structure repair [201 starts from an erroneous data structure state that

triggers an assertion violation and uses symbolic execution to explore possible struc-

ture mutations that can repair the state.

APPEND: APPEND [181 proposes to eliminate null pointer exceptions in Java using

recovery techniques such as replacing the null pointer with a pointer to an initialized

instance of the appropriate class. The presented examples illustrate how this tech-

nique can effectively eliminate null pointer exceptions and enhance program survival.

61

Principled PHP Repair: PHPQuickFix and PHPRepair use string constraint-

solving techniques to automatically repair php programs that generate HTML 154].

By formulating the problem as a string constraint problem, PHPRepair obtains sound,

complete, and minimal repairs to ensure the patched php program passes a validation

test suite. PHPRepair therefore illustrates how the structure in the problem enables a

principled solution that provides benefits that other program repair systems typically

cannot provide.

Solver-Based Approaches: Several patch generation systems use SMT solvers to

search the patch space. SemFix uses SMT solvers to find expressions that enable

the patched program to generate correct outputs for all inputs in a validation test

suite [43]. DirectFix extends SemFix to limit the search space to small patches 1401.

NOPOL uses a solver to repair incorrect branch conditions [131. The goal is to find

a new branch condition that flips the taken branch direction for negative test cases

and preserves the taken branch direction for positive test cases [131. Infinitel uses a

solver to find new loop exit conditions that eliminate infinite loops [371.

Debroy and Wong: Debroy and Wong present a generate-and-validate approach

with two modifications: replacement of an operator with another from the same

class and condition negation 112]. The results, on the Siemens suite (which contains

seeded errors) and the Java Ant program, indicate that this approach can effectively

fix a reasonable percentage of the studied errors. Our research differs in the scale

of the benchmark programs (large production programs rather than, in the case of

the Seimens suite, small benchmark programs), the nature of the faults (naturally

occurring rather than seeded), and the identification of deletion as an effective way

of obtaining plausible patches.

Mutation-Based Fault Localization: The Metallaxis-FL system operates on the

principle that mutants that exhibit similar test suite behavior (i.e., fail and pass the

same test cases) as the original program containing the defect are likely to modify

statements near the defect [45, 46}. This principle is opposite to the Kali approach

(Kali searches for modifications that pass all test cases even though the original

program fails at least one). The results show that Metallaxis-FL works best with test

62

suites with good coverage of the code with the defect. The production test suites

with which we evaluate Kali, in contrast, have poor coverage of the code with the

defect (which we would expect to typically be the case in practice). Metallaxis-FL

was evaluated on the Siemens suite (with hundreds of lines of code per program).

Kali, in contrast, was evaluated on large production applications.

Researchers have used automated program repair to measure the effectiveness of

fault localization techniques (using the different techniques to drive patch generation

locations) [491. Kali, in contrast, uses automated program repair to, in part, generate

patches that provide useful information about defects.

Human Patch Acceptability: A study comparing the acceptability of GenProg,

PAR, and human-generated patches for Java programs found that the PAR patches

were more acceptable to human developers than the GenProg patches [281 (GenProg

works on C programs. It is not clear how the authors of the PAR paper managed

to get GenProg to generate patches for Java programs). The study only addresses

human acceptability, with apparently no investigation of patch correctness. The study

also found that PAR generated plausible patches for more defects than GenProg. The

study noted that GenProg produced plausible patches for only 13% (16 out of 119) of

the defects in the study as opposed to the 52% (55 out of 105) reported in the GenProg

paper [261. One potential explanation for this discrepancy is the use of weak proxies

in the GenProg paper, which substantially increases the number of reported patches.

Patch Characteristics: Researchers have investigated the relative frequencies of

different patch generation modifications, both for automated patch generation [321

and for patches generated by human developers (but with applications to automatic

patch generation) [391. Both of these papers characterize the syntactic modifications

(add, substitute, delete) used to create the patch. Our semantic patch analysis, in

contrast, works with the patch semantics to recognize the semantic equivalence of dif-

ferent syntactic modifications - the vast majority of the patches that we analyze are

semantically equivalent to a single functionality deletion modification (even though

the patch itself may be implemented with a variety of different syntactic modifica-

tions).

63

Fix Ingredients: Martinez et. al. studied more than 7,000 human commits in six

open source programs to measure the fix ingredient availability, i.e., the percentage of

commits that could be synthesized solely from existing lines of code. The results show

that only 3-17% of the commits can be synthesized from existing lines of code. The

study provides another potential explanation for the inability of GenProg, RSRepair,

and AE to generate correct patches - the GenProg, RSRepair and AE search space

only contains patches that can be synthesized from existing lines of code (specifically

by copying and/or removing existing statements without variable replacement or any

other expression-level modification).

Correctness Evaluation: A very recent paper [19] evaluates GenProg patches,

NOPOL j131 patches, and Kali remove statement patches for 224 Java program defects

in the Defects4J dataset [27}. The results are, in general, consistent with ours - out

of 42 manually analyzed plausible patches, the analysis indicates that.only 8 patches

are undoubtedly correct.

Discussion: A common pattern that emerges is that more structure enhances the

ability of the system to produce effective repairs (but also limits the scope of the

defects that it can handle). The availability of specifications can enable systems to

provide repairs with guaranteed correctness properties, but impose the (in many cases

unrealistic) burden of obtaining specifications. PHPRepair exploits the structure

present in the domain to provide principled patches for a specific class of defects.

Kali, GenProg, RSRepair, and AE aspire to address a different and less structured

class of defects, but without the guarantees that PHPRepair can deliver. One of

the benefits of exploiting the structure is a reduced risk of producing patches with

negative effects such as the introduction of security vulnerabilities.

A primary goal of many of the targeted systems is to enable applications to survive

otherwise fatal inputs [53, 10, 42, 11, 29, 36, 44, 15, 471. The rationale is that the

applications (conceptually) process multiple inputs; enabling applications to survive

otherwise fatal inputs enables the applications to successfully process subsequent

inputs. The techniques therefore focus on eliminating fatal errors or security vul-

nerabilities in potentially adversarial use cases. Generating correct output for such

64

adversarial inputs is often not a goal; in some cases it is not even clear what the

correct output should be. Nevertheless, the techniques often succeed in delivering

patches with identical functionality as the subsequent developer patches. They are

also quite simple - each repair typically consists of a check (such as an out of bounds

access) followed by a simple action (such as discarding the write). Although GenProg,

RSRepair, and AE may, in principle, be able to generate larger and more complex

repairs, in practice the overwhelming majority of the repairs that they do generate

are semantically very simple.

65

66

Chapter 12

Conclusion

The results presented in this paper highlight several important design considerations

for generate-and-validate patch generation systems. First, such systems should not

use weak proxies (such as the exit code of the program) - they should instead actually

check that the patched program produces acceptable output. Second, the search space

and search algorithm are critical - a successful system should use 1) a search space

that contains successful patches and 2) a search algorithm that can search the space

efficiently enough to find successful patches in an acceptable amount of time. Third,

simply producing correct results on a validation test suite is (at least with current test

suites) far from enough to ensure acceptable patches. Especially when the test suite

does not contain test cases that protect desired functionality, unsuccessful patches

can easily generate correct outputs.

Incorporating additional sources of information may be a particularly effective way

of improving patch quality. Promising sources include correct code transferred from

other applications 56, 551, learning characteristics of successful human-generated

patches 1331, learning characteristics of previous successful executions [14, 471, exploit-

ing properties of targeted defect classes 53, 10, 42, 36, 18, 36, 44, 25, 11, 29, 37, 57J,

and specifications that identify correct program behavior [58, 15, 241.

67

68

Appendix A

Correct Patches

A.1 GenProg and AE

69

I - if (y < 1000) {
2 - tmp_--0 = PyDict-GetltemString(moddict, "accept2dyear");
3 - accept = tmp__0;
4 - if ((unsigned int)accept != (unsigned int)((void -)0)) {
5 - tmp-_-1 = Pybject-IsTrue(accept);
C - acceptval = tmp__j;
7 - if (acceptval -1) {
8 - return (0);
9 - }else{

10
11
12

13 - if (acceptval) {
14 - if (0 <= y){
15 - if (y < 69){
16 - y += 2000;

17 }else {

s - goto -L;
19 - }

20 } else {

21- /* CIL Label s/
22 - (69 <= y) {
23 - if (y < 100) {

24 y + 1900;
2r -}else {

28 - PyErr.SetString(PyExc-ValueError,
27

1
year out of range");

28 - return (0);
29 - }

30 - } else {
31 -PyErr-SetString(PyExcValueError,

32 "year out of range");
33 - return (0)

34 }

25 - }

37- tmp_-2 = PyErrWarnEx(PyExcDeprecationWarning,
3 - "Century info guessed for a 2-digit year. ", 1);
2 - if (tmp___2 ! =) {
42 - return (0)

41 - }else{

42

4:5 - }
44 - }else{

45

46 -

47 - else{

48 - return (0);

49 -

52 -

52 p->tm-year = y - 1900;
54 (p->tm-mon) -- ;
s p->tm-wday = (p->tm-wday + 1) % 7;

Figure A-1: GenProg patch for python-bug-69783-69784

70

I -if (y < 1000) {
2 - PyObject *accept = PyDict-GetItemString(moddict,
3 -accept2dyear");

4- if (accept != NULL) {
int acceptval PyObject-IsTrue(accept);

6 - if (acceptval -1)
7 - return 0;

if (acceptval) {

9 - if (0 <= y &&y < 69)
'9 -= y 2000;
x - else if (69 <= y && y e 100)
12 -y 1900;
13 - else{
14 - PyErr-SetString(PyExcValueError,
15 - "year out of range");
16 - return 0;
17 - }

is - if (PyErrWarnEx(PyExcDeprecationWarning,
19 - "Century info guessed for a 2-digit year.", 1) 0)
Si - return 0;
21 }

22 - }

else
24 - return 0;
25 -}

p->tm-year y *. 1900;
V p ->tmmon
Z3 p->tm-jday (p->tm-wday + 1) % 7;

Figure A-2: Developer patch for python-bug-69783-69784

71

I if (offset >= (long)sljen) {
2 php-error-docrefO((char const *)((void *)O), I << 1L,

3 "The start position cannot exceed initial string length");

4 while () {
S --z__--_1 =return-value;

C, __z__-1->value.lval = OL;
7 _-z_--1->type = (unsigned char)3;

break;

'I }
rs return;

C-} Ise{

13 }
i - if (len > (long)sIlen - offset) {
15 - len (long)sljen - offset;

is - } else {
17

I9 if (len) {
20 tmp__1 len;
2t } else {
22 if ((long)s2_len > (long)slien - offset) {

23 tmp__-0 = (long)s2_len;
2 I } ale {
25 tmp___0 = (long)sljen - offset;

21 }
27 tmp-_1 = tmp -_O;

2S }

4 cmp-len = (unsigned int)tmp___1;

Figure A-3: GenProg patch for php-bug-309892-309910

72

I if (offset >= siljen) {
2 phperror.docref (NULL TSRMLSCC, EWARNING,

3 "The start position cannot exceed initial string length");

4 RETURNFALSE;

5}

6

7 -if (len > sljen - offset) {
- len = sllen - offset;

9 -}

10

11 cmpjlen = (uint) (len ? len : MAX(s2_len, (sllen - offset)));

Figure A-4: Developer patch for php-bug-309892-309910

73

1 if (pp) {
2 if ((unsigned int)pp < (unsigned int)p) {

3 + ...

4 p =pp;
5 +

6 + if (__genprog-mutant == 25) {
7 + if (p - s) {
8 + tmp___24 = estrndup(s, (unsigned int)(p - s));
9 + ret->path = (char *)tmp __24;

10 + php-replace-controlchars-ex(ret->path, p - s);
11 + }else{
12

13 + }

14 }
15 + ...

16 goto label-parse;
17 }else{
18

19

20 }else{

21

22

23 if (p - s) {

24 tmp_---21 = _estrndup(s, (unsigned int)(p -s));

25 ret->path = (char *)tmp -_21;
26 php-replace-controlchars-ex(ret->path, p -s);

27 }else{

28

29

Figure A-5: AE patch for php-bug-309111-309159

74

1 if (pp && pp < p) {
2 + if (pp - s) {
3 + ret->path = estrndup(s, (pp-s));
4 + php-replacecontrolchars-ex(ret->path, (pp - s));
5 + }
6 p = pp;
7 goto label-parse;
s }
9

10 if (p - s) {
11 ret->path = estrndup(s, (p-s));
12 php-replace-controlchars-ex(ret->path, (p - s));

13 }

14

Figure A-6: Developer patch for php-bug-309111-309159

75

A.2 Kali

I -if (y < 1000) {
2 +if (y < 1000 && !1) {
3 PyObject *accept = PyDictGetItemString(moddict,
4 "accept2dyear");

5 if (accept != NULL) {
6 int acceptval = PyobjectIsTrue(accept);
7 if (acceptval == -1)

8 return 0;
9 if (acceptval) {

10 if (0 <= y && y < 69)
11 y += 2000;
12 else if (69 <= y && y < 100)
13 y += 1900;
14 else {
15 PyErrSetString(PyExcValueError,
16 "year out of range");
17 return 0;
18 }
19 if (PyErrWarnEx(PyExcDeprecationWarning,
20 "Century info guessed for a 2-digit year.", 1) 1= 0)
21 return 0;
22 }
213 }
24 else
25 return 0;
26 }
27 p->tm-year = y - 1900;
28 p-->tm-mon--;
29 p->tm-wday = (p->tm-wday + 1) % 7;

Figure A-7: Kali patch for python-bug-69783-69784

76

I if (offset >= sljen) {
2 php-error-docref (NULL TSRMLSCC, EWARNING,
3 "The start position cannot exceed initial string length");
4 RETURNFALSE;

6

7 -if (len > slilen - offset) {
8 +if (len > sllen - offset && !1) {
9 len = sl-len - offset;

10 }
11
12 cmp-len = (uint) (len ? len : MAX(s2jen, (sllen - offset)));

Figure A-8: Kali patch for php-bug-309892-309910

77

-if (ctx->buf.len) {
+if ((ctx->buf.len) II 1) {

smartstr_appendl(&ctx->result, ctx->buf.c, ctx->buf.len);

smartstrappendl(&ctx->result, output, output-len);

*handled-output = ctx->result.c;

*handled-output-len = ctx->buf.len + output-len;

ctx->result.c = NULL;

ctx->result.len = 0;

smartstrfree(&ctx->buf);

} else {
*handled-output = NULL;

}

Figure A-9: Kali patch for php-bug-311346-311348

I if (ctx->buf.len) {
2 smartstrappendl(&ctx->result, ctx->buf.c, ctx-->buf.len);

3 smartstrappendl(&ctx->result, output, output-len);

*handled-output = ctx->result.c;
6 *handled-output-len = ctx->buf.len + output-len;

7

ctx-->result.c = NULL;
9 ctx-->result.len = 0;

I" smartstrfree (&ctx->buf);

ii } else {
12 - *handled-output = NULL;
13 + *handled-output = estrndup(output, *handled-output-len = output-len);
t4 }

Figure A-10: Developer patch for php-bug-311346-311348

78

Bibliography

[11 AE results. http://dijkstra.cs.virginia.edu/genprog/resources/

genprog-ase2013-results.zip.

[2] CVE-2006-2025. http://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2006-2025.

[31 GenProg benchmarks. http: //dijkstra. cs .virginia. edu/genprog/
resources/genprog- icse2012-benchmarks/.

[41 GenProg: Evolutionary Program Repair. http: //dijkstra. cs.virginia.edu/
genprog/.

[51 GenProg results. http://dijkstra.cs. virginia. edu/genprog/resources/

genprog-icse2012-results.zip.

[6J GenProg source code. http://dijkstra.cs.virginia.edu/genprog/

resources/genprog-source-v3.0.zip.

[7] GenProg virtual machine. http://dijkstra.cs.virginia.edu/genprog/

resources/genprog-images.

[81 RSRepair results. http://sourceforge.net/projects/rsrepair/files/.

[91 Claire Le Goues, personal communication, May 2015.

[10] Emery D Berger and Benjamin G Zorn. Diehard: probabilistic memory safety

for unsafe languages. In ACM SIGPLAN Notices, volume 41, pages 158-168.
ACM, 2006.

[111 Michael Carbin, Sasa Misailovic, Michael Kling, and Martin C Rinard. De-
tecting and escaping infinite loops with jolt. In ECOOP 2011-Object-Oriented

Programming, pages 609-633. Springer, 2011.

[121 Vidroha Debroy and W Eric Wong. Using mutation to automatically suggest fixes
for faulty programs. In Software Testing, Verification and Validation (ICST),
2010 Third International Conference on, pages 65-74. IEEE, 2010.

[131 Favio DeMarco, Jifeng Xuan, Daniel Le Berre, and Martin Monperrus. Au-

tomatic repair of buggy if conditions and missing preconditions with smt. In

79

Proceedings of the 6th International Workshop on Constraints in Software Test-
ing, Verification, and Analysis, CSTVA 2014, pages 30-39, New York, NY, USA,
2014. ACM.

[141 Brian Demsky, Michael D. Ernst, Philip J. Guo, Stephen McCamant, Jeff H.
Perkins, and Martin C. Rinard. Inference and enforcement of data structure
consistency specifications. In Proceedings of the ACM/SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2006, Portland, Maine,
USA, July 17-20, 2006, pages 233-244, 2006.

1151 Brian Demsky and Martin Rinard. Automatic detection and repair of errors in
data structures. In Proceedings of the 18th Annual ACM SIGPLAN Conference
on Object-oriented Programing, Systems, Languages, and Applications, OOPSLA
'03', pages 78-95, New York, NY, USA, 2003. ACM.

[161 Brian Demsky and Martin Rinard. Data structure repair using goal-directed
reasoning. In Proceedings of the 27th International Conference on Software En-
gineering, ICSE '05', pages 176-185, New York, NY, USA, 2005. ACM.

[171 Brian Demsky and Martin C. Rinard. Static specification analysis for termination
of specification-based data structure repair. In 14th International Symposium on
Softiare Reliability Engineering (ISSRE) 2003), 17-20 November 2003, Denver,
CO, USA, pages 71-84, 2003.

[181 Kinga Dobolyi and Westley Weimer. Changing java's semantics for handling
null pointer exceptions. In 19th International Symposium on Software Reliability
Engineering (ISSRE 2008), 11-14 November 2008, Seattle/Redmond, WA, USA,
pages 47-56, 2008.

1191 Thomas Durieux, Matias Martinez, Martin Monperrus, Romain Sommerard, and
Jifeng Xuan. Automatic repair of real bugs: An experience report on the defects4j
dataset. arXiv, abs/1505.07002, 2015.

[20] Bassem Elkarablich, Ivan Garcia, Yuk Lai Suen, and Sarfraz Khurshid. Assertion-
based repair of complex data structures. In Proceedings of the Twenty-second
IEEE/ACM International Conference on Automated Software Engineering, ASE
'07', pages 64-73, 2007.

1211 Ethan Fast, Claire Le Goues, Stephanie Forrest, and Westley Weimer. Designing
better fitness functions for automated program repair. In Genetic and Evolu-
tionary Computation Conference, GECCO 2010, Proceedings, Portland, Oregon,
USA, July 7-11, 2010, pages 965-972, 2010.

[22] Stephanie Forrest, ThanhVu Nguyen, Westley Weimer, and Claire Le Goues. A
genetic programming approach to automated software repair. In Proceedings of
the 11th Annual Conference on Genetic and Evolutionary Computation, GECCO
'09', pages 947-954, New York, NY, USA, 2009. ACM.

80

[231 Zachary P Fry, Bryan Landau, and Westley Weimer. A human study of patch
maintainability. In Proceedings of the 2012 International Symposium on Software
Testing and Analysis, pages 177-187. ACM, 2012.

124] Joel Galenson, Philip Reames, Rastislav Bodik, Bjbrn Hartmann, and Koushik
Sen. Codehint: dynamic and interactive synthesis of code snippets. In 36th

International Conference on Software Engineering, ICSE '14, Hyderabad, India
- May 31 - June 07, 2014, pages 653-663, 2014.

1251 Qing Gao, Yingfei Xiong, Yaqing Mi, Lu Zhang, Weikun Yang, Zhaoping Zhou,
Bing Xie, and Hong Mei. Safe memory-leak fixing for c programs. In Proceedings
of the 37th International Conference on Software Engineering, 2015.

[26] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer.
A systematic study of automated program repair: Fixing 55 out of 105 bugs for
$8 each. In 34th International Conference on Software Engineering, ICSE 2012,
June 2-9, 2012, Zurich, Switzerland, pages 3-13, 2012.

[271 Ren6 Just, Darioush Jalali, and Michael D. Ernst. Defects4j: a database of exist-
ing faults to enable controlled testing studies for java programs. In International
Symposium on Software Testing and Analysis, ISSTA '14, San Jose, CA, USA
- July 21 - 26, 2014, pages 437-440, 2014.

[281 Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. Automatic
patch generation learned from human-written patches. In Proceedings of the

2013 International Conference on Software Engineering, pages 802-811. IEEE
Press, 2013.

[291 Michael Kling, Sasa Misailovic, Michael Carbin, and Martin Rinard. Bolt: on-
demand infinite loop escape in unmodified binaries. In A CM SIGPLAN Notices,
volume 47, pages 431-450. ACM, 2012.

[301 Claire Le Goues, Neal Holtschulte, Edward K. Smith, Yuriy Brun, Premkumar
Devanbu, Stephanie Forrest, and Westley Weimer. The ManyBugs and Intro-
Class Benchmarks for Automated Repair of C Programs. IEEE Transactions on
Software Engineering (to appear).

[311 Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer.
Genprog: A generic method for automatic software repair. Software Engineering,
IEEE Transactions on, 38(1):54-72, 2012.

[321 Claire Le Goues, Westley Weimer, and Stephanie Forrest. Representations and
operators for improving evolutionary software repair. In Proceedings of the four-
teenth international conference on Genetic and evolutionary computation confer-
ence, pages 959-966. ACM, 2012.

[331 Fan Long and Martin Rinard. Prophet: Automatic patch generation via learning
from successful human patches. Technical Report MIT-CSAIL-TR-2015-019,
2015.

81

[341 Fan Long and Martin Rinard. Staged program repair in SPR. Technical Report
MIT-CSAIL-TR-2015-008, 2015.

[351 Fan Long and Martin Rinard. Staged program repair in SPR. In Proceedings of
ESEC/FSE 2015 (to appear), 2015.

[361 Fan Long, Stelios Sidiroglou-Douskos, and Martin Rinard. Automatic runtime

error repair and containment via recovery shepherding. In Proceedings of the

35th ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation, page 26. ACM, 2014.

[371 Sebastian Lamelas Marcote and Martin Monperrus. Automatic Repair of Infinite
Loops. Technical Report 1504.05078, Arxiv, 2015.

[381 Matias Martinez. Extraction and analysis of knowledge for automatic software
repair. Software Engineering. Universite Lille, (tel-01078911), 2014.

[391 Matias Martinez and Martin Monperrus. Mining software repair models for
reasoning on the search space of automated program fixing. Empirical Software
Engineering, pages 1-30, 2013.

[401 Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. Directfix: Looking for
simple program repairs. In Proceedings of the 37th International Conference on
Software Engineering, 2015.

[411 Martin Monperrus. A critical review of "automatic patch generation learned from
human-written patches": essay on the problem statement and the evaluation of
automatic software repair. In 36th International Conference on Software Engi-
neering, ICSE '14, Hyderabad, India - May 31 - June 07, 2014, pages 234-242,
2014.

142] Vijay Nagarajan, Dennis Jeffrey, and Rajiv Gupta. Self-recovery in server pro-
grams. In Proceedings of the 2009 international symposium on Memory manage-

ment, pages 49-58. ACM, 2009.

[43] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-
dra. Semfix: Program repair via semantic analysis. In Proceedings of the 2013
International Conference on Software Engineering, ICSE '13', pages 772-781,
Piscataway, NJ, USA, 2013. IEEE Press.

[441 Huu Hai Nguyen and Martin Rinard. Detecting and eliminating memory leaks
using cyclic memory allocation. In Proceedings of the 6th International Sympo-

sium on Memory Management, ISMM '07, pages 15-30, New York, NY, USA,
2007. ACM.

[451 Mike Papadakis and Yves Le Traon. Metallaxis-fi: mutation-based fault local-
ization. Software Testing, Verification and Reliability, 2013.

82

[461 Mike Papadakis and Yves Le Traon. Effective fault localization via mutation
analysis: A selective mutation approach. In A CM Symposium On Applied Com-
puting (SAC'14), 2014.

[471 Jeff" H Perkins, Sunghun Kim, Sam Larsen, Saman Amarasinghe, Jonathan
Bachrach, Michael Carbin, Carlos Pacheco, Frank Sherwood, Stelios Sidiroglou,
Greg Sullivan, et al. Automatically patching errors in deployed software. In Pro-
ceedings of the ACM SIGOPS 22nd symposium on Operating systems principles,
pages 87-102. ACM, 2009.

[481 Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. The
strength of random search on automated program repair. In ICSE, pages 254-
265, 2014.

[491 Yuhua Qi, Xiaoguang Mao, Yan Lei, and Chengsong Wang. Using automated
program repair for evaluating the effectiveness of fault localization techniques. In
International Symposium on Software Testing and Analysis, ISSTA '13, Lugano,
Switzerland, July 15-20, 2013, 2013.

[501 Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. An Analysis of Patch
Plausibility and Correctness for Generate-And-Validate Patch Generation Sys-
tems (Supplementary Material). http: //hdl.handle.net/1721.1/97051.

[51j Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. An Analysis of Patch
Plausibility and Correctness for Generate-And-Validate Patch Generation Sys-
tems (Supplementary Material). http://hdl.handle.net/1721.1/93255.

[52] Martin C. Rinard, Cristian Cadar, Daniel Dumitran, Daniel M. Roy, and Tudor
Leu. A dynamic technique for eliminating buffer overflow vulnerabilities (and
other memory errors). In A CSAC, pages 82-90, 2004.

[53] Martin C Rinard, Cristian Cadar, Daniel Dumitran, Daniel M Roy, Tudor Leu,
and William S Beebee. Enhancing server availability and security through failure-
oblivious computing. In OSDI, volume 4, pages 21-21, 2004.

[54] Hesam Samimi, Max Schafer, Shay Artzi, Todd D. Millstein, Frank Tip, and
Laurie J. Hendren. Automated repair of HTML generation errors in PHP ap-
plications using string constraint solving. In 34th International Conference on
Software Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland, pages
277-287, 2012.

[551 Stelios Sidiroglou, Eric Lahtinen, Fan Long, and Martin Rinard. Automatic error
elimination by multi-application code transfer. Technical Report MIT-CSAIL-
TR-2014-024, August 2014.

[561 Stelios Sidiroglou, Eric Lahtinen, Fan Long, and Martin Rinard. Automatic error
elimination by multi-application code transfer. In Proceedings of the 36th A CM
SIGPLAN Conference on Programming Language Design and Implementation.
ACM, 2015.

83

1571 Stelios Sidiroglou-Douskos, Eric Lahtinen, and Martin Rinard. Automatic dis-
covery and patching of buffer and integer overflow errors. Technical Report
MIT-CSAIL-TR-2015-018, 2015.

158] Yi Wei, Yu Pei, Carlo A Furia, Lucas S Silva, Stefan Buchholz, Bertrand Meyer,
and Andreas Zeller. Automated fixing of programs with contracts. In Proceedings
of the 19th international symposium on Software testing and analysis, pages 61-
72. ACM, 2010.

[591 Westley Weimer, Zachary P Fry, and Stephanie Forrest. Leveraging program
equivalence for adaptive program repair: Models and first results. In Automated
Software Engineering (ASE), 2013 IEEE/ACM 28th International Conference
on, pages 356-366. IEEE, 2013.

[601 Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest.
Automatically finding patches using genetic programming. In Proceedings of the
31st International Conference on Software Engineering, pages 364-374. IEEE
Computer Society, 2009.

84

