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Abstract

This project analyzes designs for physical redundancy which are modeled abstractly
as a bipartite graph. The goal is to determine the characteristics of graph struc-
tures which optimize the trade-off between the number of edges and the number of
redundant components or nodes needed while correcting a deterministic number of
worst-case errors. This thesis looks at finite-sized designs, asymptotically large de-
signs with finite error correcting values, and designs with asymptotically large error
correcting values. Results include some small optimal graph structures and funda-
mental limits on what the optimal design structure can achieve for the cases where
a small number of errors are corrected and for where the number of errors to be
correctly grows asymptotically.
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Chapter 1

Introduction

Information theory has developed a very mature model for adding redundancy to
data. In particular, there is an understanding of how to design systems so that if data
sent is corrupted by certain noise sources, the original message can still be received
with little or no error. This idea along with others from Shannon set a standard for
developing algorithms for building redundancy into data. Since the formulation of
information theory, there has been significant progress in the both the practical and
theoretical understanding of how to design robust information for transmission.

However, these developments are confined to information. There is no such in-
depth model when it comes to adding redundancy for physical objects. What are the
fundamental rates that can be achieved given constraints on the number of errors to
be corrected? What are the structural designs we can use for replacing broken coin-
ponents of a larger system, which are analogous to Hamming codes for transmitting
data? These are the types of questions which prompted this project. Our overarching
goal is to be able to develop a theory of redundancy for replacing tangible objects.

In this thesis, we will look at finding optimal structures for physical redundancy,
taking a first step towards a general theory. The details of this model are given in
Chapter 2. We will first give some motivation for this model.

1.1 Motivation

1.1.1 Reconfigurable Circuits

We refer to reconfigurable circuits as a device where multiple stages of configuration
are used to build the circuit. First, the circuit is created where only spaces for circuit
parts and interconnections between spaces for circuit parts is fabricated. Once an
application is decided, the circuit undergoes the first stage of configuration where the
specific components needed are chosen for each space. Such a scenario is similar to
what is needed to program an FPGA (field-programmable gate array). The look-up
tables and wiring is what the FPGA comes with. The first stage configuration selects
which values go into which look-up tables.

After this configuration stage, it is possible that some of the configured com-
ponents have defects, which can occur from contamination, process variation, and
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material defects. A single mistake in one component can completely undermine the
function of the entire circuit. One way to solve this is to add redundancy to the de-
sign. Suppose that extra spaces are allocated as redundant spaces. While configuring
the components for the original circuit, some choice of redundant components is also
chosen for the redundant spaces. Then after the first stage of configuration, we can
test the circuit to determine where the defective components are. Afterwards, we can
run a second stage of the configuration, where the redundant components replace any
components with defects.

In such a design, it is not feasible for every redundant component to be able to
replace every functional component. Wiring needs to exist between spaces for this to
occur. What then, is the optimal way to design the redundant spaces and its wiring?

This question was the original motivation for our exploration of physical redun-
dancy. However, we do not wish to confine the model developed in this project only
to reconfigurable circuits. The next motivation illustrates how other problems can
also benefit from the analysis of redundancy systems.

1.1.2 Server Farms

Consider a network of server farm designed to be sold to a client. The servers available
are very basic. Once the client purchases a network of k servers, each server is
configured to perform one of q functions. However, it is possible that some of the
servers are down at certain moments of operation. Thus, the k servers also come
with an additional m redundant servers which can be used to pick up the work of
a server which is not operating fully. Each of these redundant servers must also be
configured by the client to one of the q functions before operation. Infrastructure
needed to connect the m redundant servers to the original comes at a cost. As the
designer of the complete network of k + m servers, what is the best way to make the
most efficient connections between the redundant servers and original servers?

1.1.3 Graph Coloring

Imagine that you have a bipartite graph G. G has k left-side nodes and m right-side
nodes. Node can be colored one color from the set X. What is the minimum number
of edges necessary for G, so that for any coloring of the k left-side nodes, there exists
a coloring for the m right-side nodes so that each left-side node has t neighbors with
the same color as itself?

While this problem in graph coloring is not about redundancy, it has everything
to do with the question we are trying to solve. We list this graph coloring problem
as a motivation because we just also interested in solving this problem for the sake
of combinatorics. This motivation can be seen as a pursuit of inner beauty.
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1.2 Overview of Main Contributions

In this thesis, we developed a simple model for physical redundancy. The model is a
bipartite graph which we call a design. Each design consists of

" Functional nodes

" Redundant nodes

" Inconnections between the functional nodes and redundant nodes

The main goal is to determine what are the trade-offs in wiring complexity (average
degree) and number of redundant nodes for designs that correct t number of worst-
case errors simultaneously for any functional node realization.

Given this model, we have determined the following results in this thesis:

" Optimal designs on small number of nodes

* Fundamental limits and optimal designs on small alphabet sizes and small error
correcting values t

* Fundamental limits on all designs and optimal designs when t is asymptotically
large.

The optimal small designs can be used practically for physical redundancy appli-
cations if these applications meet the parameters of the design.

The fundamental limits for small error correcting values tells us importantly that
the optimal designs are those which are a linear combination of two basic designs.
These basic designs are when:

9 All redundant nodes are each dedicated to correcting only one functional node

e All redundant nodes can correct errors for any functional node

Combinations of these two designs are optimal for large designs correcting small
errors.

The fundamental limits for asymptotic t defines all possible trade-offs any design
can have. It expresses the bound which no design can surpass. The results also tell
as that the asymptotically best designs are ones which are symmetric graphs.

1.3 Related Work

1.3.1 The Theoretical: A Design for Fault Tolerance

The the best of out knowledge, no has has studied abstract physical redundancy
models in the way we have developed in the thesis. However, there has been previous
work on adding redundancy to for many circuit applications.
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Von Neumann is known to have made the first contribution to the area of designing
redundancy for circuit applications [1]. He explored the problem of how to correct
faulty signals coming from noisy gates. Since von Neumann was connecting his work
to the functions of the human nervous system, he used terminology from biology, and
describes what we know as gates to be organs. The main idea behind von Neumann's
construction is that the error probability of a faulty organ can reduced when the single
organ is replaced with a network of multiple organs and single wire lines are replaced
with a bundle of wires. The two parts to his construction are called the executive
organ and the restoring organ. The executive organ consists of several copies of
the desired organ. The output signals of these copies undergo a permutation before
entering the restoring organ, which are a set of organs that take a majority vote.

The unfortunate aspect of von Neumann's design is that in order to be effective
in correcting errors, a very large number of lines and organs are needed, which makes
the design not practical. Nevertheless, von Neumann's work is very influential and
commonly referenced. Von Neumann's ideas inspired even Shannon, who co-authored
a paper with Moore on designing a redundancy system for reliable relays [3].

One major follow-up on von Neumann's paper is by Pippenger, who proved results
on how many noisy redundant gates are needed asymptotically to achieve certain
functions 121. Pippenger's main construction follows von Neumann's ideas. He uses
a concept called a compressor graph to permute wires more precisely, and he has
a hierarchy structure in many of his constructions. However, overall, Pippenger's
construction, while only needing a linear number of gates asymptotically, still requires
too many components to be practical. For instance, one construction of Pippenger's
requires 817 elements. Yet, von Neumann's and Pippenger's designs are important to
many theoretical work on redundancy.

1.3.2 The Practical: A Design for Defect Tolerance

The work started by von Neumann focuses on fault tolerance, fixing mistakes which
occur in one instance of some calculation. These are sometimes called transient
errors. Another line of work focuses on defect tolerance, which involves physical
errors permanently present in the device. Von Neumann's design can also used to fix
defects, but this was not the primary goal of the original construction. A well-known
project which specifically aims at correcting defects Teramac. Teramac is a computer
build by HP labs [4]. The goal of Teramac is to build a computer using FGPAs with
defects in them by reconfiguring around the defects. Researchers were able to do this
by implementing a hierarchical design. Each level of devices can communicate with
adjacent levels using a fat tree structures. The benefit of this kind of structure is that
any two nodes have many possible communication connections between them.

The Teramac project concluded importantly that it is possible to build a powerful
computer from defective parts. However, this comes at the expense of needing to
test the machine for defects and then using an algorithm to reconfigure it. Teramac
needed a large number of wires in order to be versatile enough so that finding a
configuration is possible.

Another fault tolerant technique worth mentioning is the Network-on-Chip design
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used in VLSI circuits. This design lays out small IP cores in a grid structure. Each
IPs does its own computation, and can communicate data to adjacent IPs. A type
of algorithm called randomized gossip protocols have been researched on this type
of network [5]. These are interesting in that the randomization reduces the com-
munication bandwidth, yet still spreads data exponentially quickly. Experimental
simulations have been conducted on this idea to show that this idea has good average
case behavior.

Some theoretical work has also been done on the Network-on-Chip design by
Leighton who analyzed procedure to wiring around faults which result in the shortest
wire length [6].

1.3.3 Experimental Comparisons

Researchers study the designs and techniques created by von Neumann and Teramac
in order to find solutions for fixing defects in nanotechnology. There has been work
done on experimental simulations which compare these different structures for defect
tolerance in terms of amount of redundancy.

One such work models how much redundancy is needed for a given amount of
reliability in von Neumann's model [8]. In this project, probability model checking is
used and results were shown that adding more restorative stages is effective for small
probability of failures, but not effective when the gate failure probability is large.

Another interesting work compares the reliability and redundancy of von Neumann
designs, with the reconfiguration design, which is based on the design of Teramac,
and modular redundancy [7]. (Modular redundancy is a design where a single unit is
replaced by three copies of the unit, and a majority gate. The output of the majority
is the output of the system.) This work theoretically models the behavior of each
design to compare their performances. The result is that reconfiguration is able to
handle larger defect rates, though the amount of redundancy will become extremely
large. In general though, reconfiguration performs better than modular redundancy
and von Neumann's technique, even if there are still drawbacks to the design.

This experimental result that reconfiguration performs better on the reliability
verses redundancy trade-off for small amount of defects influences our line of research.
The major drawback to the reconfiguration design is that it uses a large amount of
wires. Our work deals with the questions of how well reconfiguration does on the
wire complexity and redundancy trade-off, which is a necessary step in the direction
of evaluating reconfiguration's overall usefulness as a redundancy technique.

While Teramac uses a hierarchical structure, we want to simplify matters in our
model, and only consider one level of redundancy.

1.4 Organization of this Thesis

Chapter 2 starts by explaining the model we developed for analyzing physical redun-
dancy. Main results are discussed in Chapter 3. In Chapter 4 we go over results
for finite number of nodes. This is similar to the problem of finding a structure for

12



physical redundancy equivalent to what the Hamming Codes are for information. We
develop some tools for our analysis in Chapter 5. In Chapter 6 we describe results
for asymptotically many components with finite error correcting value. In Chapter 7
we describes results for all asymptotically large quantities, which characterizes a fun-
damental limit of the wiring complexity and redundancy trade-off. We end with a
conclusion in Chapter 8.
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Chapter 2

Model Setup

This chapter defines the model and the notation used. We will also provide explana-
tion for the choices used in our model.

2.1 Model Specification

A design G is a bipartite graph G = (uk 7m, E), where uk = {U1, U2, ...Uk}, Vm =

{V 1i, V2 , ... Vm} and S is the set of edges between nodes in uk and vk.

U1, u2, ... , Uk are called the functional nodes and v1 , v 2 , ..., Vm are the redundant
redundant nodes. Let E = EJ

Functional nodes and redundant nodes can each be latbeled a value in the set of
elements X. For simplicity, we usually let X = {o, 1, ... , L - 1.}. We assume that
L > 2 and refer to L or IXI as the alphabet size.

A labeling of functional nodes are a k-tuple of values sk = si, 82, ... , Sk where each
8i E X and functional node ui is labeled si. Similarly, a labeling of redundant nodes
are a m-tuple of values rm = ri, r2 , ..., rm.

Definition 1. A bipartite graph is called a (k, m,t, E)-design if

* the number of functional nodes is k

" the number of redundant nodes is m

* the number of edges is E

" for every labeling sk C Xk given to the functional nodes, there exists a labeling
rm E Xm of the redundant nodes, so that for every functional node u, if u is
labeled x C X, then u has at least t neighbors also labeled x.

We are primarily interested in finding values of m and E for which there exists a
(k, m, t, E)-design normalized by k. This is captured by

" Redundancy of a (k, m, t, E)-design is p =

* Wiring complexity of a (k, m, t, E)-design is E = E
k

14



Definition 2. For a fixed X and t > 1 we define the region RZ as the closure of the
set of all achievable pairs of (E, p):

A (E Em)
lzt = closure ( k 'k ): 3(k, m, t, E) - design

Definition 3.

A m E
ROO = closure{(-, -) : 3(k, m, t, E) -- design}kt kt

Decisions for creating this model are explained in the following sections.

2.2 Physical Interpretation of Model

The functional nodes represent an objects which need to either have no errors or to
be replaced by an object which has no errors. These nodes can represent any object,
let it be circuit components, servers, graph vertices, or crayons. A redundant nodes
an object which can be used to replace functional nodes in an event the functional
has an error.

Both functional nodes and redundant nodes can have errors. A redundant node
with an error is unable to replace a functional node. Errors in the model can represent
defective, broken, or unavailable objects.

It is unknown what kind of object the functional node is (or will be) until the
functional node is labeled. Both functional nodes and redundant nodes are given a
label x E X.

Elements in X can represent any set of things. Examples of X could be

" gates such as NAND gates or NOR gates

" different instances of look-up tables

" Server functions

" Colors

The significance of X is that functional nodes with label x can only be replaced
by redundant nodes of the same label x. After all, it does not make sense to replace
a broken NAND gate with a NOR gate. As stated in Section 2.1, for simplicity we
usual let X to a set of numbers.

If any redundant nodes are able to replace any functional nodes, this situation
woud not be interesting to analyze. Also, this does not reflect real world constraints.
In a circuit, only so many wire connections exist, so not every redundant compo-
nent can replace every functional component. There may also be constraints due to
proximity.

When a specific redundant node is able to replace a specific functional node, we
recognize that by connecting the two nodes with an edge e. If a functional node and a
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redundant node are connected by an edge e, then if the functional node has an error,
the redundant node can replace it if the redundant node does not have an error and
is not already used to replace another functional node. In the circuit analog, the edge
e between the functional node and redundant node behaves as a wire.

There are certainly other models we could have chosen for a redundancy system,
but this one is selected due to its simplicity.

2.3 Metrics

To compare the performance of one design against another, we choose metrics which
favors using fewer resources. There are two types of resources we use in our model,
number of redundant nodes and number of edges. This justifies the redundancy and
wiring complexity metrics.

* Redundancy. Denoted by p, this is the ratio of number of redundant nodes
to number of functional nodes in a given design. p = i

* Wiring complexity. Denoted by 6, this is the ratio of number of edges to
number of functional nodes in a designs. This value also represents the average
degree of functional nodes. F =E

These two metrics will be the primarily focus of this research. Other metrics
which may be important for applications in redundancy include like physical layout
or maximum degree of nodes, but we will 'not consider these for this project. Another
metric which may be of interest is regularity, where the functional nodes (or perhaps
the redundant nodes) all have similar degree.

There is a natural trade-off between minimizing amount of redundancy and mini-
mizing number of edges. A design that uses more redundant nodes can get away with
fewer edges, whereas a design that uses fewer redundant nodes needs to have more
edges in order to be t error correcting. This is illustrated in Chapter 4.

For each t, we can plot E and p for all possible (k, m, t, E)-designs on the redun-
dancy and wiring complexity plot (we will call these the E, p plot) to see what point
of the trade-off it achieves. The achievable region is defined as the set of all e and p
pairs a t error correcting design can have. This is what is defined to be Rt.

2.4 Error Correcting Method

When correcting errors, we need to specify in what sense the errors are corrected.
Two possibilities are:

" Probabilistic. Each node fails with some probability p. The goal of the design
is to be able to correct all the errors with some probability.

" Deterministic. The case corrects for worst-case errors. The goal of the design
is to be able to correct all possible sets of t errors

16



While both cases are interesting, for the purposes of this thesis, we will focus
only on deterministic error correction. When we say a design with a labeling sk and
rm is t error correcting, we mean that for any t nodes with errors (recall these can
be functional nodes or redundant nodes), there is a way for every functional node u
which has an error to be replaced by a redundant node. The criteria for a redundant
node to replace a functional node is that it must:

" share can edge with functional node u

" have the same label as functional node u

" not already be replacing another functional node with an error

There is a straight forward criteria to check if a design is t error correcting.

Proposition 1. A design G is t error correcting if and only if every functional node
labeled the value x E X, has t or more neighboring redundant node also with value x.

Definition 4. Let the effective neighbors of u be the set of neighbors of node u
which has the same value as u.

Effective neighbors can only be determined once both functional nodes and re-
dundant nodes are labeled.

To be clear on our terminology, when we refer to a design G as t error correcting
it could mean one of the following:

" Design G is t error correcting means there exists rm for each sk, where each
functional node has t neighbors with the same value as itself

" Design G with labeling sk is t error correcting means there exists rm for this
specific sk, where each functional node has t neighbors with the same value as
itself

" Design G with labeling sk and rm is t error correcting means for this choice of
sk and rm, each functional node has t neighbors with the same value as itself

The fact that there is so many ways to define error correcting clearly calls for a
need to further define the problem. The next section considers these scenarios.

2.5 Design Scenarios

The design decision in Definition 1 to find structures which are t-correcting for all
sk E Xk was chosen because it is the most interesting of the possible scenarios.

Here are 3 scenarios we can design for:

o Scenario A: Given sk, design G and rm. The interconnects and labeling of
rm are designed for a specific sk that is known.
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" Scenario B: Design G, then given sk , design rm. Design G is structured
in a way such that for all sk E Xk, there is some way after sk is specified to
label rm .

" Scenario C: Design G and rm when sk is unknown. This design fixes G
and redundant labeling rm. There is no knowledge of sk.

Designs which correct errors in scenario C, also work for scenario B, and those
that work for scenario B work for scenario A. It turns out the the optimal designs in
terms of the redundancy and wire complexity metrics for scenario A and scenario C
are not very interesting.

Design A Performance

For scenario A, the optimal design is one where each functional node has t edges that
connect to t set of redundant nodes with the same value.

To see this, first note that each functional node must have at least t edges. At
minimum, there has to be at least t redundant nodes of each element. If each func-
tional node with value x is connected to all t redundant nodes of value x, this design
is t error correcting and meets the minimum number of edges and redundant nodes
requirement. Only a finite number of redundant nodes are needed, so as k -+ oc, the
amount of redundancy p = -1 goes to 0. Thus, this is the optimal design.

Design C Performance

For scenario. C, the optimal design is one where each functional node has 1X~t edges,
each connected to a t redundant nodes for each JXJ. The proof for this is similar to
be proof for scenario A. Each functional can take on one of JXJ values. Since all the
redundant nodes are already fixed, all nodes must to connected to t copies of each
value in X. The minimum number of redundant nodes occurs when all functional
nodes are connected to the same set of redundant nodes.

Performance Comparison

Define a (k, m, t, E) - A-design similarly to a (k, m, t, E) - design in Definition 1
except with the condition that 3sk where the design for some rm is so that each
functional node has t neighbors with the same value as itself.

Define a (k, m, t, E) - C-design similarly to a (k, m, t, E) - design in Definition 1
except with the condition that the design is so that 3rm where Vsk each functional
node has t neighbors with the same value as itself

Let

A rm E
= closure (, -) : 3(k, m, t, E) - A-design

k k

a m E
Rc closure ( k k) : 3(k, m, t, E) - C-design
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Redundancy and wiring trade-off for different scenarios
1.2 r-

- - - Boundary Scenario A
- - Boundary Scenario B
... ...... Boundary Scenario C

1.2 1.4 1.6 1.8 2 2.2

Figure 2-1: Plot comparing achievable region
are the boundary of the different regions.

for Scenarios A, B and C. Lines plotted

We can plot the achievable region R A for scenario A and RC for scenario C on the
E, p plot. These both are bounded by vertical lines, since E is limited by the number
of neighbors each node has to have, while p -÷ 0 as k -+ oc.

Finding the solution for scenario B, on the other hand, is not trivial. It is not
equivalent to the performance of Scenario A or C, but it lies somewhere in-between.
A plot of this is shown in Figure 2-1.

Focusing on scenario B also lets the problem become one about structures. The
answer the questions which bipartite graphs are good for redundancy, regardless of
the types of objects in the graph. A good design will need to simultaneously t error
correcting for all choices of labeling.

Focusing on scenario B for the remainder of the thesis justifies Definition 1.

2.6 Alternate Definitions: Hypergraph

An alternative way of defining our problem is in terms of graph coloring. Suppose we
have a hypergraph. We want to design the hyperedges of the hypergraph such that
for any labeling of colors for vertices, where each color is in X, there is always a way
to color the hyperedges so that each vertex has t edges with the same color as itself.

19

0.8 -

0.6 -

0.4-

0.2 F

0'
0. 8

N.'

1

1



Define

dt(k, m) = min(average edge-size: all (t, t) colorable hypergraphs on m vertices and k hyperedges)

In this definition of the problem, the vertices correspond to functional nodes and
the hyperedges correspond to redundant nodes.

Lemma 1. The boundary of Rk is given by limk,,,o dt(k, [pk]).
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Chapter 3

Summary of Main Results

The first main results of this paper finds lZt for small values of t.

Theorem 1. When IXI =2, fort= 1 andt=2, and IXI =3, fort= 1,

= {(ep) : E > t andE > IXkt - (IXI - l)p}

This is discussed in Section 6.
The second main theorem is the definition of R, the achievable region of designs

when t -÷ oc. This region is defined in terms of an optimization function for each
parameter IE[S].

Theorem 2 (Asymptotic t Result). When IXI = 2, the region R as defined in
Definition 3 is the closure of points (E, p) parameterized by Ps on Z+ with finite
support and

_I[S] 1

F(Ps)' F(Ps)'

F(Ps) min max min f (Lo, L) , E L, ( - f (LO, L1)) (3.1)
AE[0,1] O<floti<!, I1 1 - A

where the expectations are taken over S ~ Ps and given S the distribution of
LO ~ Bino(S, A) and L1 = S - LO.

This is discussed in Section 7. The achievable regions for both theorems are
plotted in Figure 3-1.

The result for RI 1 and 7Z2 demonstrates that for correcting small errors, the best
solution in the limit of a large number of functional nodes is a linear combination of
two basic designs, one where each redundant node is connected to only one functional
node and one where each redundant node is connected to all functional nodes. 1
Theorem 1 tells us that for any k no design can do better than a linear trade-off

'Though this design is not optimal for finite k. Slight improvements can be made to this basic
design.
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Figure 3-1: Plots for R2 and Ro. The shaded area
plot for R. is normalized by the number of errors
region is calculated with an approximation.

represent achievable region. The
corrected. The boundary of the
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between wiring complexity and redundancy for small error correcting values of 1 and
2.

It is unknown what exactly the region for t > 2 will look like, but the asymptotic
result Theorem 2 captures what the regions will approach as t -+ oo. All regions

Rt will lie between R, and R. Thus, the boundary for R, also acts as a lower
bound for all other region Rt. Regardless of the design structure, the tradeoff between
redundancy and wiring complexity cannot surpass the fundamental limit given by Ro.
Theorem 2 tells us that the design which asymptotically achieve the best trade-off
are symmetric graphs.
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Chapter 4

Examples: Finite k

In this section, we will discuss examples of designs and their performance on the e, p
plot. These examples show what kind of trade-offs exist for designs with small k.
Some of the examples are pivotal for proving our major theorems.

4.1 Basic Designs

4.1.1 Repetition Block

One basic design is where each redundant node is dedicated to only one functional
node. These are called repetition blocks. They are a family of (k, tk, t, tk)-designs.
We will refer to these redundant nodes which are only connected to one functional
node as private nodes. See Figure 4-1.

Definition 5 (Repetition block). K(1, t) is the repetition block on where one func-
tional node is connected to t private redundant nodes.

The repetition block of k functional nodes is written as kK(1, t). This designs
shows that the point (t, t) is achievable in 7Zt. It is straightforward to see that if
E = = t, then p = mk = t is the smallest that is possible. Since no design can have
F < t, the repetition is then the optimal design for minimizing wiring complexity.
Yet, it uses the worst amount of redundancy possible.

Note that the structure of this design does not depend on the alphabet size.

4.1.2 Complete Design

Another basic design is the complete design. The complete design has every functional
node connected to every redundant node. See Figure 4-2.

The complete graph is a family of (k, tjXJ, t, kt|Xl)-designs for different values of
t and k. This design works by labeling for each value x in X, t number of redundant
nodes to the value x. This way, every functional node will be connected to t redundant
nodes of each value, so each functional node must have t effective neighbors.
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Figure 4-1: The block design. This is an example of a (2, 6, 3, 6)-design.

Figure 4-2: The complete design. This is an example of a (3, 4, 2,12)-design.
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Definition 6 (Complete design). K(k, m) is the complete design on k functional
nodes and m redundant nodes.

For this design, 6 = tjXj and p = k. An important feature of the complete
graph is that as k -+ oc, the number of redundant nodes do not have to change,
which causes p -- 0.

For finite k, however, the complete graph is not the optimal design given the
amount of redundancy. It is possible to remove some of the edges and still maintain
a t error correcting design, as we will show in the next example.

4.2 Optimal Small Designs

In this section we will look at some examples which fixing the parameters k, m, t are
optimal in E.

4.2.1 Hamming Block

The Hamming block is a (3,4,2,9)-design. Each pair of functional nodes are con-
nected by a redundant node and there is also a redundant node connected to all
three functional nodes. The Hamming block is specifically designed to be a 2 error
correcting design when JX = 2. See Figure 4-4(a).

The Hamming block has E = 3 and p = i, outperforming the complete complete
graph with the same number of functional nodes.

In fact, it turns out that for k = 3, m = 4, t = 2 and JXJ = 2, the Hamming
block is the unique optimal design in terms of minimizing the number of edges. It is
particularly nice in that does not use too many edges or have too many redundant
nodes and has the nice feature of being symmetric.

4.2.2 Optimal Designs for Various Alphabet Sizes

Some small optimal designs are not interesting. For instance, when k < JXJ, the best
design simply the repetition block kK(1, t). The first interesting cases occur when
k = lX I + 1. In this case, the smallest number of redundant nodes is m = tI X. The
Hamming block was the first example of this discovered. Other designs were later
found through a combination of experimentation and analysis.

The optimal designs with for t = 1 are:

" *XJ = 2, k = 3, m = 2 with E = 5. See Figure 4-3(a)

" *XJ = 3, k = 4, m = 3 with E = 8. See Figure 4-3(b)

" *XJ = 4, k = 5, m = 4 with E = 12. See Figure 4-3(c)

The optimal designs with for t = 2 are:

* JX| = 2, k = 3, m = 4 with E = 9. (Hamming block) See Figure 4-4(a)
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" lXi = 3, k 4, m = 6 with E = 15. See Figure 4-4(b)

" IXJ = 4, k = 5, m = 8 with E = 21. See Figure 4-4(c)

It should be noted that some of these designs are uniquely optimal. For instance,
the Hamming block and the design for JXI = 2 and t = 1 pictured in Figure 4-3(a) are
uniquely optimal. However, it is known that for both of the IXI = 3 designs, there are
two different designs which are both optimal. We can find at least 4 optimal IX = 4
and t = 1 designs.

For JXJ = 2, there exists a family of (k, 2(k - 1), k - 1, 2(k - 1)k - k)-designs.
These are optimal for in the number of edges when the other parameters are fixed. The
designs that accomplish this are a merging of subset designs S(k, k - 1)V (V>-S(k, k))
(See Section 4.3 for these definitions.) This design can also be understood as a
complete design with a k edges removed. The Hamming block belongs to this family.

4.3 Subset Designs

We will present the development of design we refer to as subset designs1 since they
will be important results in Chapter 7.

A subset design is a design where all subsets of functional nodes of a given size
are connected together by a redundant node.

To be more precise, subset design S(k, s) is a bipartite graph with k functional
nodes and (k ) redundant nodes. Let s < k be a number we call the subset size. Each
of the (k) s-subsets of {1, ... , k} will each correspond with a specific redundant node.
All the functional nodes in that s-subset will have an edge with the corresponding
redundant node. Note that the degree of each functional node is (- ).

Design S(k, s) is what we call a single-size subset design, since we only have subset
size of one number s.

Definition 7 (Single-size subset design). S(k, s) is the single-size subset design on k
functional nodes where each s-subset functional nodes are connected by a redundant
node.

In general we allow subset designs to use multiple and possibly different subset
sizes. For two values si and s2, where s1 , S2 < k, the bipartite graph S(k, si) VS(k, 82)

contains both redundant nodes for all the si-subsets and all the s 2-subsets. The
resulting graph has a total of m = (A) + (A) redundant nodes. We call also define
S(k, s1) V S(k, 82) as identifying the k functional nodes in disjoint copies of S(k, sl)
and S(k, s2 ) 2 . If s1 = 82, then each si-subset is connected by a redundant node twice.

Definition 8 (General subset design). Given k and positive integers si, S2, ..., Sr, the
subset design is a bipartite graph V> 1 S(k, sj) = S(k, si) V S(k, s2 )V ...V S(k, sr) with

k functional nodes and m = > (k) redundant nodes.

1a term we developed for this thesis
2This operation is called merging. This is discussed in Section 5.5.
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(a) IXI=2

(b) IX=3

(c) IXI = 4

Figure 4-3: Smallest non-trivial 1-error correcting designs.
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(a) Xj = 2

(b) Xj= 3

(c) IXI= 4

Figure 4-4: Smallest non-trivial 2-error correcting designs.
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Previous examples discussed can also be described as subset designs.

" The Hamming block is a S(3, 2) V S(3, 3) subset designs.

* The repetition block is a V 1 S(k, 1) subset designs.

* The complete design is a Vlx"S(k, k) subset designs.

4.3.1 Subset Weight

To specify the subset sizes present in a graph, we will define the weight Ps(s) of
each subset size s. To make calculations simpler in later sections, Ps is defined
as the proportion of redundant nodes in the entire graph which connect s-subsets.
For instance, for the Hamming block S(3, 2) V S(3, 3) there are 3 redundant nodes
connecting 2-subsets and 1 redundant node connecting 3-subsets. So the weight
of si = 2 is P(2) = .75 and the weight of s2 = 3 is P(3) = .25. If the graph
S(3, 2) V S(3, 3) V S(3, 3), then P(3) = .4 and P(2) = .6.

4.3.2 Symmetry of Subset Designs

The specialty of subset designs is that they are very symmetric.

Definition 9 (Permuatation Invariance). A design is called permutation invariant if
there exists a group of graph automorphisms (preserving functional/redundant node
partition) that acts as the full symmetric group Sk on the functional nodes

Proposition 2. A design is permutation invariant if and only if it is a subset design.

Proof. A subset design is clearly preserved under any permutation of its functional
or redundant nodes.

If a design is permutation invariant, consider for some s > 1 and take the subgraph
of this design induced by all redundant nodes of degree s and their neighboring
functional nodes. (Assume that there is at least one redundant node of degree s).

Let any one s-subset of nodes connected by a redundant node be called the set A.
There exists a permutation of this set of A to any arbitrarily s-subset of the k func-
tional nodes. Thus all s-subsets of the k functional nodes must be the neighborhood
of some redundant node. The number of times an specific s-subset is connected by a
redundant must also be the same for all s-subsets. If each s-subset is the neighborhood
of r, redundant nodes, this corresponds to the subset design V'sS(k, s).

The original design is then expressed as a merging V,,, V> S(k, s) for a set of
subset sizes I.

4.3.3 Subset Achievability

The number of redundant nodes used in a subset design is unfortunately large. It
increases with k to the exponent of the fixed size of the subset s. With so many
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redundant nodes, subset designs are able to correct very large t. But for small values
of t, subset designs are not a practical way of providing redundancy3

Proposition 3 (Subset Achievability). Let m = (k). Then there exists a (i, k, t, E)-
design with E = s( ) and t = E(ks-.

Proof. We know that t = O(ks- 1 ), since each functional node has at most O(ks- 1 )
neighbors. To show that t = Q(ks- 1 ), fix a labeling for the functional nodes.

We will call an element x E X rare, if fewer than k functional nodes are labeled
X, for some appropriate choice of constant c. We will use the following suboptimal
labeling for the redundant nodes:

* a redundant node is labeled x if all its neighbors are labeled x.

" a redundant node is labeled x if there is only one rare element in its neighbor-
hood.

" otherwise, the redundant node can be labeled arbitrarily.

To see that each functional node has Q(ks~1 ) effective neighbors, notice that for
all functional nodes with non-rare elements, is in at least (kc<Il) = Q(ks- 1 ) subsets
were all the functional nodes are labeled x. The total number of rare elements does
not exceed j, so each rare element is in at least (k(1-I/c)) = Q(ks--l) subsets where it
is the only rare element.

Notice that the quantity E is a constant as k grows. We will use this idea to get
sharper bounds on t for subset designs in Chapter 7.
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Chapter 5

Achievable Regions

The chapter contains the necessary ideas about the achievable regions Rt and R',
for defining and showing results in Chapter 6 and Chapter 7.

When we say a (k, m, t, E)-design G achieves (E, p) on R-Z, we mean that E = Ek
and p =

5.1 Copying

We can linearly combine two designs G1 and G 2 by copying, which means that the
new graph is defined to contain both G1 and G2 as separate components.

Proposition 4 (Copying). If there exists a (ki, mi, t, E1 )-design G1 and a (k 2 , M 2 , t, E2 )-
design G2 then there exists a (k 1 + k2 , in1 + M 2 , t, El + E2)-design to be denoted by
G1 + G2.

When two designs are linearly combined, the e and p of the resulting graph is
the linear combination of the two.
redundancy of G).

E(Gi + G2 ) =

p(G1 +G2) =

If G, is
parameters

p( 2 Gi).

copied with itself (we
of G doubles for k, m,

(Let E(G) and p(G) be the wiring complexity and

ki E(G1) + k2 E(G2)
k1 +k2 k,1+k2

k1  P(G1) + k2 p (G2)k1 +k2 k1 +k2

can use the notation G, + G, = 2G,), then the
and E. Notice that e(GI) = e(2G1 ) and p(GI) =

We can now use copying to show propositions about Rt.

5.2 Region Rt

Recall
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Definition 2. For a fixed X and t > 1 we define the region Rt as the closure of the
set of all achievable pairs of (E, p):

Zs E m
RZ = closure ( k -) : 3(k, m, t, E) - design

Proposition 5. (E, p) R th if and only if there exists a sequence of (k, m, t, E)-designs
with I - p, E -4e and k,m,E -+oo.

Proof. From the definition of closure, (E, p) E Rt if and only if there is a sequence of
points {(Ei, pI)} i E Rt approaching (E, p). Each (Ej, pi) must be associated with some
design Gi that is a (ki, mi, t, Ei)-design, where mi = piki and Ej = Eiki. To show
that k, m, E -+ o, we can copy Gi with itself ni times, where ni is chosen so that
niki, nimi, niEj -* oc. El

Proposition 6. If (e, p) E Rt and E' > E, p' > p, then (E', p') E R.

Proof. For each (E, p), there is a (k, pk, t, Ek)-design G. We can create a sequence of
Gi which are copies of Gi with an addition of some appropriate number of extra edges
and extra redundant nodes added. Adding more edges and nodes does not decrease
t. The sequence (E(Gi), p(Gi)) can be created to converge to (F', p'). Il

Proposition 7. Rt are closed convex subsets of R2+-
Proof. We need to show that if a pair of values (El, pi) and (E 2 , P2) is in Rt, then any
point

(E, p) = (aei + (1 - a)E2, api + (1 - a)p2 )

is also in Rt for 0 < a < 1.

There is are sequences (E1,j, pi,i) -+ (El pi) and (E2,i, P2,i) -+ ('F2, P2), where for
each i there exists a (ki,i, pi,ikli t, 6i,jkigj)-design G1,j and a (k2,i,p2,ik2,i, t, E 2,ik2,i)-
design G2,i.

We can find a sequence of rational numbers ai = g where pi, qj E Z+ and ai -+ a.qi
Define integers wi = ki,i(qj -pi) and zi = k2,iPi. The copy ziG1 ,i +wjG 2,j achieves the
point (El, p) = (aiEi,i + (1 - ai)E 2 ,i, apii + (1 - ai)p 2,i) in Rt and (El, pi) -+ (E, p).

The regions R7 define what designs are asymptotically achievable. Given a pair

(E, p), if (E, p) E Rt, then we know that there is some design whose redundancy and
wiring complexity is within a small neighborhood of (E, p). If (e, p) is not in Rt, then
no design can be arbitrarily close to (E, p). Defining Rt determines the fundamental
limits of redundancy and wiring complexity on designs for error correcting value t.

5.3 Repetition Block and Complete Design Achiev-
ability

To determine what Rt is , we can easily see that there cannot exist a (k, m, t, E)-design
where E < t, so Rt cannot pass the vertical boundary E = t.
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Figure 5-1: Plot of the boundary of R(K) for XI = 2 and t = 2.

Next, recall that the repetition block kK(1, t) can always achieve the point (t, t)
and the complete design K(k, t) can asymptotically converge to (IXIt, 0). By convex-
ity, the line of points between (t, t) and (IXIt, 0) must in Rt.

Definition 10.

K = {(E, P) : E > 1Xt + (1 - IXI)p, e > t, p 0}

Proposition 8 (Repetition Block and Complete Design Achievability).

-(K) C -R

The corner points of R(K) are achieved by the repetition blocks and complete designs.

Ri) describes all the possible trade-offs between redundancy and wiring com-
plexity for designs which only include the repetition block and complete design. For
some cases this completely defines all of Rt. Restricting to the case when IXI = 2,
R(K) = R1. More interestingly, 7Z(K) = 7Z2- (See Chapter 6). The boundary of region
RK) is plotted in Figure 5-1 for IXI = 2.

5.4 t Normalized Achievability Regions

If some IX , we plot all the regions R(K) on the sample plot, we would see that each
successive RZK) region expands outwards as t increases. For studying the regions Rl,
what we are intuitively interested in is the shape of the region, since that shows what
points beyond RZK) are achievable. If we want to compare the shape of one region
Rt to another R, it is natural to scale the two regions so that the R ) and 7)

match up. To do this, we can divide the coordinates of points in R-z by t, a process
which we call normalizing. This way, all normalized regions will have the point (1, 1)
and (I X , 0). When we start to look at normalized regions, it makes sense to study
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what the normalized regions converge to when t goes to infinity. This result will give
the idea of what Rt tends to as t increases. We call this limiting region 7Z.

Definition 3.

A m E
Ro = closure{(- , -) : 3(k, m, t, E) - design}kt kt

The notation {7Rt will denote the achievable region when e = y and p = are
each divided by t.

Proposition 9.

RO = closure U j'Rt
tt=1

Proof. Any point (f, f) in R, and closure {Ut 1 tt} must be realized with some
sequence of (ki, kiti, ti, Ekiti)-design. E3

We refer to ' as the normalized redundancy and 1 as the normalized wiringkt kt
complexity.

5.5 Merging

Previously, we have shown convexity using copying. This section defines a different
way of linearly combining designs called merging.

Proposition 10 (Merging). If there exists a (k, Tni, ti, E1)- designG1 and a (k, M 2 , t2 , E 2 )-
design G2 then there exists a (k, m1 +M 2, t1 +t 2, E1 + E2)-design denoted by G V G 2.

By merging, we mean for two designs both with k functional nodes to be joined
together by identifying the functional nodes. To be specific, if we list the k functional
nodes of design G1 and G2 , by merging, we mean to identify the ith functional node
of G, with the ith functional nodes of G 2. The resulting ith functional node of the
merged combination G, V G 2 will have all its neighbors in G, and all its neighbors in
G2 . The number of edges and redundant nodes adds. For any labeling sk E Xk, we
can always use the respective labelings r, and r' which G1 and G2 uses to correct a
total of t1 + t 2 errors.

(If two designs G, and G 2 have a different number of functional nodes, say k, and
k2 respectively, we can always merge k1 copies of G2 and k2 copies of G1.)

We can also always merge a design with itself. Doing this once just doubles all the
parameters. Merging n times multiples all the parameters by n. Note that merging
a design with itself, does decrease normalized wiring complexity or redundancy.

If we want to merge a set of graphs {Gi}, we can express that as ViGi.

Proposition 11. R.0 is a closed convex subset of RI.
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Proof. We need to show for any two points ( 1, 91) and (2, 92) be two points in Ro,
that

( ) (a(1 + (1 -a) 2 , ai + (1 -a) 2)

is also in 7, for 0 < a < 1.
There is are sequences ((1,i, 91,i) -+ ( , g) and (2,i, 92,i) -+ (2, 92), where for each

i, there is some error correcting value ti,j and kj,j, where there is a design G1,j which is
(ki,i, ojjtjjkjj, ti, 1,t1 ,jki,)-design and there is some error correcting value t2,i and
k2 ,i, where there is a design G2, which is a (k 2,i, 02t2,k2,, t2,i, 62,t 2,jk2 ,)-design. GI,
has parameter Ei, = i1, and pii = gijtij and G 2,j has parameter 2,i = 2,t 2, and

Pii = Ql1itli.

For each i, we can merge G1,j with itself t2,i times to get a

(klig, t2,igij,jtigjkig, t2,iti,i, t2,igjt1,jkij) -design

which we will call G'i. We can also merge G2, with itself tij times to get a

(k2, t1iL02,it2,jk2,i, ti,it2,i, tIj62it2,jk2,i)-design

which we will call G'4. G' and G', correct the same number of errors, so we can
now use copying (Proposition 7) that (Ei, pi) = (at2gi, + (1 - a)t,iE 2,, at2 ip1 ,i +
(0 - a)ti,Wp 2,i) lies in RJt J 2 i. When we normalize this, we get the value

- -e + (1 - ) = aZ14 + (1 -a)
t1,it2,i ti14 t2,

Similarly, we can get

- a,- + (1 - a) = agij + (1 - 92,
tligt2,i ti'i t2,i

The point (aCi,3 + (1 - C)(2,i, agli + (1 - a)L 2,i) lies in R,, and this converges to

(, o) as i -+ o

Proposition 12. R, = lim sup 17zt

Proof. By merging, we can always show that for any t, R C 7R2t C -R-4t C

7tkRt.... t 2 t E

R represents the achievable region of designs when t -+ oc. A main goal of this
thesis is to determine RO, which is done in Chapter 7.
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Chapter 6

Fundamental Limits: Finite t

The goal of this section is to find lower bounds to Rt. In particular it will determine
that the optimal designs for t = 1,2 and IXI = 2 and for t = 1 and X| = 3 are a
linear combination of the repetition block and the complete design.

6.1 Covering Converse

We have shown that RK) C Rt in Section 5.3. In this section, we will start showing
results for converse bounds to Rt.

We focus our attention and assume that JXj = 2 for this section.
The key to the converse result for the next few sections is the idea of covering.

The main idea is to look at how many labels sk E Xk a given redundant labeling rm
covers

6.1.1 Covering Converse for R1

Definition 11. Let gt(r m ) to be the set of labels sk E Xk for which the design G with
label r' and sk is t error correcting. We will call gt(rm) the cover of rm.

Each gt(rm) can be understood as a k dimensional rectangle. For the design to
be t error correcting, a single functional node ui can only take on a value a E X
for which the neighborhood of ui contains a at least t times. Given rm , the possible
values functional node ui can take is independent of the possible values functional
node uj can take for i # j. To find to gt(rm), it is sufficient to take the product over
the possible values each functional node can take.

Theorem 3. On alphabet size |X| = 2, R, must be contained in the region defined
by e> 1 and s> 2 - p.

Proof. Let design G have rn redundant nodes and k functional nodes. Let X = 0, 1.
All labels sk E Xk need to be in gi(rm) for some label rm . So it must be that

|U g(r)| I |X~k
rm
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Then,

2k = 1xk < | U g(r)I I |g(r') 2' max |gi(rm)I
rm rmn

which implies that
2 k-rn < max jg(rn) I

If k > m, for a single redundant node labeling to be able to cover sk-m different
labelings, at least k - m functional nodes need to take on both values in X. This
implies that k - m nodes need at least 2 edges.

If we count up all the edges, we get

E > 2(k - m) + m

>2k-rm

e> 2-p

If k < m, we still need to satisfy the condition that each functional node needs at
least 1 edge, which gives e > 1.

The region matches RIZK) exactly.

6.1.2 Covering Converse for R 2

In order to extend the covering converse to larger t, we use the following lemma.

Lemma 2. In a t error correcting design G, two functional nodes which both have
degree t cannot be connected to any of the same redundant nodes.

Otherwise, if the two functional nodes were different, the two nodes cannot both
have t neighbors with the same value as itself.

Theorem 4 (2 EC Converse). On alphabet size JXJ = 2, R 2 must be contained in
the region defined by e > 2 and E > 4 - p.

Proof. The proof of this follows exactly from the main idea of Theorem 3 using
Lemma 2.

We also need that for a t error correcting design G, where lt is the number of
functional nodes of degree t, the number of redundant labelings r E X where
gt(rm) # 0 is at most I m t-1). If rm is such that the labeling of the t neighbors
of each functional node of degree t are not all the same, then for this rm, gt(rm) is
empty. The number of labelings rm which have non-empty covers is then XIr-It(t--),
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since once a single neighbor of a functional node with degree t is determined, the
other neighbors of that node can only have one value.

Only 2 m number of labelings rm can be t correcting. Thus, there must be some
labeling rm which covers

2 2 k-m+lt

labelings sk in Xk. So at least k - m + lt nodes must be able to take both 0 and 1 as
a value, meaning that these nodes must have at least 4 edges. it nodes must have 2
edges and k - (k - m - lt) - lit = m - 2 lt nodes must have degree 3 or more. So

E > 4(k -- m + lt) + 2lt + 3(m - 21t)

=4k-rn

6> 4 -p

The region matches RK) exactly. With this theorem, the achievable region of 2
error correcting designs on alphabet size 2 is completely solved. In terms of redun-
dancy and wiring complexity, a solution achieving the best trade-off for asymptotic
k is one where only linear combinations of the repetition block and complete design
are needed.

For other values of t, we can find an upper bound with 7Z(K) and a lower bound
using the General Covering Bound.

6.1.3 Covering Converse for General Design

We now examine what bounds the covering converse creates for other error correcting
values t and other alphabet sizes. This is a generalization of the same techniques
used in the Theorem 4.

Definition 12. li is the number of functional nodes in design G with degree i.

Lemma 3. For a t error correcting design G, where it is the number of functional
nodes of degree t, the number of redundant labels rm E Xm where gt(rm) 4 0 is at
most |X|-it(t-1)

In order for ui to take on c different values under some rm, it is necessary for uj
to have at least ct edges in the design, ie, deg(ui) > ct. Using this, we can find an
upper bound of the cardinality of gt(rm ),

Igt(rm) < de(u) J = t+lt+1+...+l2t-1 2 2t+
1
2t+1+. .+13t-1 3 I3t+

1
3t 1+...+4t-1

Ui

which holds for every r'.
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Urm gt(rm) needs to cover all possible sk in order for the design to be t correcting.
So we need

SUgt(r)| = sk| = IXk

Using the union bound, we have

IUt(rm)> E Igt(r')>
rm rm

< IrmlHLdeg(si)
Si

= IXlm 2 2t+-.-+3t 13 3t+ -- +l 4 t- .

So we must have that

in order for the design to be t correcting

IXk < % -l(t-1)212++!- 3+. . . . (6.1)

In addition to equation 6.1, we have the constraints

E= k

E= E
i>t

li 0

We can find the minimum E using integer linear programming. Since we are
actually interested in minimum & given p, we can divide all the equations by k and
optimize the values of '.

This optimization would be used to find a converse bound for general t and IXI.
The result are boundary lines which look piecewise linear. For t = 2, it gives exactly
the result in Theorem 4. Figure 6-1 gives a plot for when t = 2 and IX= 3.

This lower bound is not tight for other t and IX , but it is the best bound found for
values of E near IXIt. It is also worth mentioning that the covering converse provides
a linear bound at all finite values of t near the point (IXIt, 0) on the achievable region.
This shows that if p = 0 it must be that e > IX It.

There are other converse bounds we can find. For instance, we can determine a
converse bound which labels the redundant nodes using majority vote of its neighbors,
and use the average number of edges connecting nodes of the same value as an upper
bound to the error correcting number. However, we will not discuss this since results
in Chapter 7 can beat this converse. In Chapter 7, we can use asymptotic results to
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Figure 6-1: Plot of covering converse for the region 7Z2 when X| = 3.

derive a lower bound which is better for values of E away from 1X t.

6.2 Ternary Alphabet and t = 1

While the covering converse can only be used as a lower bound for X = 3 , it turns
out that on IX = 3, R, is also equivalent to RlK) . To show this, a more sophisticated
proof requiring details about graph structures is needed. The proof illustrates how
tedious it possibly is to find tight converses for larger IX and t.

Theorem 5. For IXi = 3 and t = I we have

R, = {(E,p) : E > 3 - 2p,p > O}

and equivalent to R K)

Proof. Functional nodes can have labels in X = {0, 1, 2}

Definition 13. Define (*) to be the property that for any labeling of the functional
nodes in Xk, where k is the number of functional nodes, there exists a labeling of
redundant nodes so that each functional node has at least one redundant node neighbor
with the same labeling.

The steps for this proof are:

1. Show that designs with functional nodes with degree 3 and greater can be
disregarded.

2. Show that designs with a functional node of degree 1 cannot achieve better than

3. Show that designs with functionals nodes all of degree 2 cannot achieve better
than R1.

41



(a) Show designs containing two disjoint cycles connected by a path (see Fig-
ure 6-2(a)) violate (*)

(b) Show designs containing two cycles which intersect at one point (see Fig-
ure 6-2(b)) violate (*)

(c) Show designs containing two cycles which intersect at multiple points (see
Figure 6-2(c)) violate (*)

Step (1)
For any (k, m, t, E)-design in R1 , we can find an equivalent design where all func-

tional nodes of degree 3 or more are in a separate component with an addition of
finitely many more redundant nodes. Thus, it is sufficient to only prove for connected
graphs with functional nodes with degree 1 and 2 only.

Step (2)
The key to this step is to show that if the design has a functional node of degree

1, the design must be a tree.

Definition 14. We will call two functional nodes which share a redundant node ad-
jacent.

Consider if the design has a functional node uo of degree 1 and no functional
nodes have degree 3 or more. Label uo a 0. In order to satisfy (*), the redundant
node neighboring uo must also be labeled 0. Label functional nodes adjacent to uo the
label 1. Since the degree of each functional node is at most 2, each of these functional
nodes must have its remaining unlabeled redundant node labeled 1. We will call this
labeling of functional nodes and neighboring redundant node the first iteration. On
the nth iteration, we will label functional nodes adjacent to nodes labeled in the n -1
the iteration, alternating 0 and 1 (That means if iteration n labeled nodes 0, iteration
n + 1 will label the nodes 1 and vice versa.) The remaining neighboring redundant of
each functional nodes labeled in a iteration must also be labeled in order to satisfy
(*). Each iteration builds a tree of labeled nodes starting from uo.

If there are any cycles, as the tree builds from uo, we can label the first functional
node to complete a cycle in the tree the label 2. The neighboring redundant nodes
of this functional node are labeled either 0 or 1, so (*) is violated. Since the design
is a tree, it must have the same at least the same number of redundant nodes as
functional nodes, so the design lies in R1. We can now assume that all functional
nodes are of degree 2.

Remark 1. Notice having |X| 3 is important to avoid existence of even cycles.

Step (3)
Our goal is to prove p > 1. We will prove something stronger: For k > 4, we must

have m > k and for k = 4 we must have m > 3.
Recall that it is sufficient to prove this for designs on a single component. If there

is a redundant node with degree 1, we can remove it with its neighboring functional
node as a separate component, so all redundant nodes must also have degree 2 or
more.
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Definition 15. We will call a labeling alternating if adjacent functional nodes have
different labels.

Remark 2. If a design with k functional nodes, all of degree 2, and k - 1 or fewer
redundant nodes, all of degree 2 or 3, can be labeled alternatingly, then the design
cannot satisfy (*).

Proof. If there is an alternating labeling, at most each redundant node can only match
the labeling of one of its neighboring functional nodes. There can only be at most
k - 1 matches, so there exists one functional node which does not have a neighboring
redundant with the same label as itself El

If the design does not have any cycles, then p > 1 as in Step 2. So let A be a
cycle in the design. In order for cycle A to not be a separate component, a redundant
node with more than degree 2 must also be in A. Call this redundant node vo. Call
the neighbor of vo which is not in A uo.

Let us build a path B starts at functional node uO as follows: The second node in
path B will be the neighbor of uO which is not in cycle A. We can pick the next node
in the path arbitrarily. The path ends when we reach a node in A or a node already
in B. To show that (*) does not hold on the design, it is sufficient to show that (*)
is not satisfied on A U B.

Depending on the endpoint of B, we have several cases:

Case (3a) Endpoint of B coincides with an intermediate point of B.

Let 62 be the redundant node in path B where the path B ends. Rename the
cycle created by path B to cycle C. The subgraph A U B U C satisfies the
conditions of Remark 2 so we need only show that we can find an alternating
label. vo and v 2 are the two redundant node with degree 3. We can pick any
alternatingly label for cycle A, then alternatingly label the remaining neighbor
of vo. Proceed to pick any alternating label for functional nodes in B. At v 2 ,
we can label all three neighbors alternatingly, and still have a way to label the
rest of cycle C alternatingly.

Case (3b) Endpoint of B is node vo.

Let cycle C be the cycle formed using path B and vo. As long as one of cycle
A and cycle C have more than 2 functional nodes, the design violates (*).
Consider when the labeling is so that the two functional nodes in the larger
cycle, assume this to be cycle A, neighboring 'o are labeled the same value, say
0. The functional nodes in between are labeled alternatingly, which is possible
because cycle A has at least three functional nodes. Let the two functional
nodes neighboring vo in cycle C be labeled 1 and 2. vo must be labeled 0 in
order for nodes in cycle A to each have a neighbor with the same label. Then
if cycle C is labeled alternatingly, we will violate (*).
If both cycles have only 2 functional nodes, it is possible for this design to have
k = 4 and m = 3 and satisfy (*). See Figure 6-3.
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(a) Step (3a) case (b) Step (3b) case

(c) Step (3c) case

Figure 6-2: Different cases for designs with degree 2 functional nodes

Case (3c) Endpoint of B is some node of A different from vo.

Two redundant nodes in the design have degree at least 3. Call them v0 and v1 .
Cycle A and path B make up three distinct paths which go from v0 to vi, which
we will refer to as E, F and G. As long as no two paths have only 1 functional
node, then we can find an alternating label and use Remark 2.

Label uZ,x to be the functional node neighboring vi and in path X. If all paths
E, F, and G have two or more functional nodes, label 0, 1, 2 to UO,E, UO,F, aO,G

and 1, 2, 0 to U1,E, U1,F, u1,G. Each path can be labeled alternatingly.

If there is one path with only one functional node, say path E, give the la-
bel 0, 1, 2 to UO,E, UO,F, UO,G and 2, 1 to U1,F, U1,G. Each path can be labeled
alternatingly.

If two paths both have one functional node, say E and F, as long as the third
path G has at least 3 functional nodes, the design can be labeled alternatingly.
We can label the two functional nodes cycle created by paths E and F the
values 0 and 1. Then since G has at least 3 functional nodes, we can label UO,G
and U1,G the value 2 and label the rest of G alternatingly.

If G only* has 2 functional nodes, then this is a design on k = 4 and m = 3
which satisfies (*). See Figure 6-4.

Note that the two exceptions with k = 4 are precisely the minimal non-trivial 1
error correcting designs discussed in Section 4.2.2.
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Figure 6-3: Design which satisfies (*). Exception to case (3b).

Figure 6-4: Design which satisfies (*). Exception to case (3c).
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Chapter 7

Fundamental Limits: Asymptotic t

It is surprising that while no exact fundamental limit for the achievable region has
been found for t > 2, the fundamental limit for when t -+ oo can be determined.

For this entire section, we will assume that IXI = 2, particularly that X = {0, 1}.
All the ideas are generalizable to larger alphabet sizes, but for the simplicity of the
development, we choose to only focus on alphabet size of 2. Statements for larger
alphabet will be discussed in Section 7.3.3.

Recall

Theorem 2 (Asymptotic t Result). When JXJ = 2, the region R, as defined in
Definition 3 is the closure of points (E, p) parameterized by Ps on Z+ with finite
support and

E[S] I I
F(P5)' F(Psq)

A. Lo
F(Ps) = min max min f (Lo, L1) , E (1 - f (Lo L1)) (3.1)

,\[O 0,o ,a ij: A I 1 - A

where the expectations are taken over S - Ps and given S the distribution of
Lo ~ Bino(S, A) and L1 = S - Lo.

7.1 Achievability: Subset Designs

The key proving to Theorem 2 is to use subset designs, which are key to both the
achievability and the converse result. Subset designs are the provably optimal designs
for asymptotic t. This turns out to be very lucky, because results for subset designs
are easier to determine than for other designs due to their symmetry (as mentioned
in Section 4.3.2).

Definition 16. Let T(no, ni) be the type of a redundant node v in a design G where
the functional nodes are labeled with some s no is the number of functional nodes
of value 0 v is connected to, and n1 is the number of functional nodes of value 1 v is
connected to.
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7.1.1 Optimal Labeling of Redundant Nodes in Subset De-
signs

Consider a subset design G = S(k, s) for some s > 1. Let sk E Xk = {0, I}k be a
labeling of the functional nodes in G. Since we are only using two symbols, let A
be the proportion of functional nodes with label 0 and 1 - A be the proportion of
functional nodes with label 11. The number of redundant nodes ism = (k).

Given this labeling sk of functional nodes, each redundant node has a type T(lo, l)
where 10+11 = s. Let P(lo, 11) be the proportion of redundant nodes with type T(lo, li).

kA) k(11-A))

P(lo, l) = (k)

s! ((kA)!/(kA - lo)!)((k(1 - A))!/(k(1 - A) - lo)!)
10!11! k!/(k - s)!

s )A1 (1 - A)" + o(1)

For subset designs, the question of finding the optimal labeling of redundant nodes
boils down to deciding how many redundant nodes of each type should be labeled a 0
and how many should be labeled a 1. Let f(lo, l) be the fraction of redundant nodes
of type T(lo, l) which are labeled 0.

Proposition 13. Subset design S(k, s) can correct no more than

t < k) min max min E -f(Lo, L) E (1 - f (Lo, L1))
k s AeI(k) Of(IoI) L A A

error where f(1o, l1) is represents the fraction of redundant node of type T(lo, 11)
labeled to 0 and the expectation is taken with PLO,Ll, the proportion of each redundant

node type T(lo, li). 1(k) = {0, 1/k, 2/k, ... , 1}.

Proof. For any A E 1(k), pick sk to have A proportion of O's We can count how many
ftmnctional nodes with value 0 gain an effective neighbor (recall Definition 4). This
can be expressed as lof (lo, li). Similarly, the number of functional nodes with value 1
which gain an effective neighbor from this labeling of T(lo, l) is l1(1 - f(lo, 7i)). We
can sum up these gains over all the types to get the total number of effective neighbors
functional nodes with value 0 have, and we can do the same for the functional nodes
with value 1. We can then define an average efficient neighbors for the 0 functional
nodes as

yo(A) = lm,,lof (lo, l)
(lo,I,)

'Due to permutation invariance (see Section 4.3.2), only the proportion of symbols in sk matters.
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and for the 1 functional nodes as

y1 (A) = -E M10,ti11 - f (10, 1i))
(lo,li)

where ko and k, are the numbers of functional nodes with labeling 0 and 1 respec-
tively, and ml0,i1 is the number of redundant nodes with type T(10 , li).

We can rewrite the equations above as

MLo
Yo(A) = P(10, li)lof (lo, l) = -E -f (Lo, LI)

(Io,li)

YI(A) = (1 P(10) 11)l(1 - f (10,)) = E(1 [Ll(L f(L, ))(1 - A)k (lo,) k

The expectation is taken with P(10 , l) treated as a probability measure on T(10 , li).
Since quantities yo and yi count on average how many effective neighbors func-

tional nodes with label 0 and 1 have, the error correcting value must be bounded
above by the smaller of these two. So

t(A) < min{yo(A), y1(A)}

Since S(k, s) needs to correct errors for all sk, we can pick A E 1(k) to be the
proportion which corrects the least number of errors. So

t = min t(A)
AEI(k)

While this is an upper bound on t, it turns out however that there exists a way
to label the redundant nodes so that every functional node can get every close to
having the same number of effective neighbors. In fact, it converges to the calculated
average when the number of error corrected goes to infinity. Hence we will call this
choice of f(lo, l) the optimal labeling.

Characteristics of Optimal Labeling

We will give an overview on what the optimal labeling of redundant nodes for subset
designs need to look like in order to achieve the upper bound.

In any optimal labeling, redundant node types with larger values of lo should
naturally be labeled the value 0 over redundant node types with smaller values of lo.

Suppose S(k, s) with functional node labeling sk has two redundant nodes vi and
v 2 , where v1 is of type T(10 , 11) and v 2 is of type T(jo, ji), so that jo < 10 and ji > 11.
If the v, were given the label 0 and v2 were given the label 1, we can always swap the
labeling of v, and v 2 to create a redundant labeling which strictly increases the gains
in effective neighbors.
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Using this insight it must be that in the optimal redundant labeling of S(k, s) for
some functional labeling sk, there exists a value jo and ji where jo + ji = s such that

1 if the type T(l0 , l) of vi is so that 11 > ji
r= 0 if the type T(l0 , l1 ) of vi is so that 10 > jo

0 or 1 if the type T(l0 , l) of vi is so that l0 = jo

We can all the type T(jo, jj) the splitting type, because the labeling of redundant
nodes of this type is possibly split between O's and l's. All types with greater lo are
labeled 0 and all with greater 11 is labeled 1.

Optimal Labeling for a Merged Subset Design

While Proposition 13 is written for S(k, s), it is not difficult to apply the same proof
for ViS(k, si). f(lo, 11) will be defined on each type for each subset size si. The
expectation also needs to be adjusted slightly. Recall that for any merging VjS(k, si),
we defined the weight Ps(s) of each subset size (see Section 4.3.1). The expectation
for multiple subsets will need to be over Ps(s)P(lo, li).

Proposition 14. Subset design VjS(k, s) can correct no more than

t < ( min max min E [-f(Lo, Li) ] E L[ (I - f(Lo, L1 ))
k si )AEI(k) O5f(lo,11):51 A 1-A

error where f(lo, l1) is represents the fraction of redundant node of type T(l0 , l1)
labeled 0 and the expectation is taken with PSPLo,L1, the proportion of each redundant

node with degree s type T(lo, li). 1(k) {0, 1/k, 2/k, ... , 1}

When we look at the optimal labeling f(lo, l) for a given sk, we see that there is
some ratio -y such that

1 if 1> 1 -
f(lol =1) 0 if10 1 > 1

fy if ;- 0

This is shown in detail in Appendix B. We let the type T(10 , l) where =0
be called the splitting type and f, the splitting type ratio.

For a given subset design of weights PS, the values f(lo, l) which attain the
maximum in

max min E -o f(Lo, L1 ) , E L ( - f(Lo, Li))
must alo(bo)i A w nA

must also be for when

49



E +f (Lo, L1) = E [1A(1 - f (Lo, L1))]

Otherwise, we can always change f (lo, l) to increase the smaller value. Using this
and the above form f(lo, l) must take, we can compute f(lo, l) exactly.

Proposition 15. Let

E [ol{ Lo > E}- fg Lo <lo
A Lo+Li > 10 E [1A Lo+Li -101l

f (loli) = - 1 L Io
E [-L{LOf Lo - -IQ-I [-1XE LI O1}A Lo+Ll10 +1 E I{ L-L 01

then

if f'(lo, li) > 1
f (loli) = 0 if f'(lo, 11) < 0

f '(10, 1) if 0 < f'(lo, i) < 1.

where f(lo, li) = arg maxo<f min {E [f (Lo, L1 )] , E [ ( - f (Lo, L1 ))] }.
Note that these functions are continuous and rational.

7.1.2 Asymptotic Achievability

For a type T(lo, l) where f(lo, li) is either 0 or 1, all redundant nodes of the type
are labeled the same label. If all f(lo, l) were either 0 or 1, due to the symmetry of
subset designs, all functional nodes with label 0 will have an equal number of effective
neighbors and the same holds for functional nodes with label 1. Thus, the average
number of effective neighbors for each label equals the minimum number of effective
neighbors for any functional node of that value.

The only reason the expression in Proposition 14 cannot hold for all k is because
there is not necessarily a way to ensure that redundant nodes of the splitting type
can be labeled in a way so that all functional nodes of a given label gain the same
number of effective neighbors. We now present a designs which avoid this problem.
This will show that the upper bound in Proposition 14 is asymptotically achievable.
This is defined and shown below.

Proposition 16. Given a set of rational weights PS there exists a sequence of subset
designs Gj

* Each design G has kj functional nodes and mi redundant nodes

" The weights of subsets in Gj are given by Ps

" Each design G can correct t3 errors

so that
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t min max min E -L f(Lo, L J) E A(1 - f (Lo, L =)) = F(Ps)
k E[0,1] Osf(lo,11!is

where expectation is taken with PSPLo,Lj, where PLQ,L1 ~ Bino(S, A).

Remark 3. Because it will be unclear at times which distribution PL,L1 we are taking
the expectation to, we will sometimes use the notation Ep to specify PSPLO,L1 .
Since Ps is fixed, we do not need to specify that.

Proof. Let

Pk,A(lo, 11) = - k

and

PA(lo, l) = Ao (1 - A)l1

We have that Pk,A(lo, l) -+ Px(lo, l) as k -+ oc.
Let

a Lo L,~
h(k, A) = max1 min E{,1 --- f (Lo, Li) , Epk [ A (I - f (Lo, L))]

and

(A) fmax i) {r (Lo, L)] ,p E, L, (1 - f(Lo, L1))
0<-f(10,/10<1 I A I I1 - AJ

We also have that h(k, A) -4 h(A) as k -4 oc point-wise on A. This is because
both the function

max min EP -f (Lo, Li) ,I E [--(1 - f (Lo, L1 ))
0/f(Io,1)I AI I - A

is continuous over the probability distribution P.

We will design the sequence of subset designs G. the following way. We will pick
a sequence of increasing integers where ki -- oc.

For each s in the support of Ps, let m, = (I). Since each Ps is rational, we
can express Ps with common denominator b. Express each Ps(s) as the fraction

Ps(s) = " -. Let design G' to be a merging with a merges of S(ki, s). Then G'
has weights Ps.

Since A represents the proportion of O's, for each Gj, A can take finitely many

values in 1(kj). (Recall 1(k) = {0,1/k,2/k,...,1}). For each A E I(kj), we can
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determine the optimal functions fk,,X(lo, l) which attain h(kj, A). Note from Propo-
sition 15, all values of fk3 ,A(1o, l) are all rational for each rational A. Let qj be a
common denominator of all functions fk,,x(o, l) for each type and each A.

Now let Gi be qi merges of G'. Gi must have the same weights as G'. For any
A E I(Kj), there is a way to label the redundant nodes in Gi according to fk2 ,A(lo, 1i)

evenly. Then for any fractional values of fki,A(lo, li), we will label the redundant
nodes of type T(10 , l) in the first qifk2 ,A(1o, l) merges of G' in Gi the value 0. In the
remaining qi(1 - fk,A(o, li)) merges, redundant nodes of type T(10 , l) will be labeled
1. This is possible because we are guaranteed that qi(1 - fkl,x(1o, li)) is an integer
value.

Each functional node gets the same number of efficient neighbors from redundant
nodes of type T(10 , l) under this labeling. Thus, the means that Gi with functional
labeling proportion of A, is able to correct precisely 2ih(ki, A) errors.

Let
Ai = arg min h(ki, A)

AEI(ki)

Then Gi corrects exactly ti = Mih(ki, Ai) errors.
Since A, is on a compact set, a convergent subsequence must exist. Some sub-

sequence A must approach a limit A. Since h(kij, Aja) is also on a compact set2 ,
there must be a subsequence of designs G4, call them Ga , where both Ai + and
h(kj, An ) converges.

Because h(k, A) converges to h(A) uniformly by Lemma 4 in Appendix C, it must
be that h(kj, A) A h(A). Then there exists a sequence of Gin which corrects
"'h(A). Since h(A) > minAE[o,1] h(A), that means the sequence G4 can also correct

at least 7U minA[O,1] h(I)

7.1.3 Subset Achievable Region R(S)

From Proposition 16, there exists a subset design G where

t-
ti-- F (Ps)

kj

We have that p(Gj) = and E(Gj) = m E[s]

then the point

Vm= E[s] m 1  E[s] I
kjtj kt F(Ps)' F(Ps)

must be in 7Z. The closure of such point will also be included.
We can define this region which is achievable by subset designs the region R(.

2Functions h are bounded
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Definition 17.

E[S] _ 1
R) {(?, (S) : Ps where 6 = F(Ps)' F(Ps)

where

F(Ps) min max min E -f (Lo, L) , L (1 - f(Lo, Li))
AE[0,1] O flh,1ii 1 I A _ L --

Currently we have shown that

R(S) C TZ

7.2 Converse: Symmetrization

The surprising feature of subset designs is that they are guaranteed to perform better
(or at least the same) as any other design. This is the converse result, which concludes
that RS) = RO, completing the proof of Theorem 2.

To prove this, we need the following lemma:

Proposition 17. If there exists a (k, m, t, E)-design then there exists a symmetric
(k, mk!, tk!, Ek!)-design.

Proof. Let G be a (k, m, t, E)-design.
We will merge G with each of the k! permutations of the functional nodes in G.

G acts on a specific ordering of the k functional nodes. Different permutations G' do
not change the graph structure, but will affect the merged combination G V G'.

Let GPERM be the result of merging all permutation. For any redundant node v
in G, if v has degree s, every set of s nodes in GPERM needs to be connected together
by a copy of v. Thus, GPERM is a (k, mk!, tk!, Ek!)-design and a subset design.

Corollary 1 (Subset Bound Converse). The achievable region R, is contained the
region R{(.

Proof. For any (k, m, t, E)-.design in Rt, we know there is a subset design which is a
(k, mk!, tk!, Ek!)-design which achieves the same value of (j, !). Li

While the achievable result for subset designs is for asymptotic t, even for finite
t, we can apply Theorem 17 to get a converse result.

Remark 4. Since !R7t C Ro, we can use the boundary defined in Theorem 2 can
also be used as a converse for Rt.
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(a) Single subset size example (b) Merged subset example

Figure 7-1: Plots of h(A). Figure 7-1(a) is for Ps which has weight (1) on subset size
(5). Figure 7-1(b) is for Ps which has weight (.25, .25, .5) on (3, 4, 5).

7.3 Discussion of Asymptotic Result

7.3.1 Evaluating R...

The optimization presented in Theorem 2 is difficult to evaluate exactly. The diffi-
cultly comes in that

* The optimization over A is non-convex

* It is unknown which weights Ps achieve the boundary of R,

For a given Ps and A, it is easy to evaluate

h = max min Ep, f (Lo, LI) ,Ep, [L (1 - f(Lo, L1))
Osf (10,11)<1_ 1 - A

and hence we can find the plots of h(A) over A.ijLExamples are plotted in Figure 7-
1.

Finding the value of A which attains the minimum for weights Ps when only a
single subset is used is easier than when multiple subsets are used. For a single subset,
it turns out interestingly that the minimum A must be equivalent to the value fy of
the splitting type ratio -y. However, results about single subset sizes are not helpful
for finding R, since the PS which achieve the boundary of R, seem to all require
multiple subsets.

7.3.2 Numerical Approximation

Due to calculation difficulties, we will instead provide an approximation for the bound-
ary. This approximation is a lower bound for R,,. Thus, it still holds as a converse
result for all Rt. The lower bound is found using what we call the Max Probability
method, which relaxes some of the optimization constraints so that linear program-
ming can be used to find a solution. This method captures the linear structure of the
within optimization problem. The derivation of this is given in Appendix D.
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Comparison of best converses and achievablity for R

-Lower bound approximation
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Figure 7-2: This figure plots points Max Probability converse bound and compares
it with achievable points derived using the masses found in the converse bound. The
achievable points used are arbitrarily selected.

The results are in Figure 7-2. As can be seen from the figure, the error in the
approximation is mostly indistinguishable on the whole plot. It is on the order of
10-3.

The numerical results give the following conjectures about what kinds of designs
are optimal in terms of wiring complexity and redundancy.

* 4 or 5 subset sizes will make up most of the design

* Odd number subset sizes are favored

* The subset sizes which make up most of the design will largely be consecutive,
possibly skipping even sizes

7.3.3 Larger Alphabet Size

When JXJ > 2, the converse result from the subset designs still applies, since Theo-
rem 2 works regardless of alphabet size. We can define R(') for alphabet size q can
still be defined in terms of what the subset designs can achieve.

Theorem 6 (Asymptotic t Result for Larger Alphabet). When JXJ = 2, the region
R0, as defined in Definition 3 is the closure of points (z, ,) parameterized by Ps on

Z+ with finite support and where A = (A,, A2 , ..., Aq) where A i = 1 and

f(o, 12, ... , lq) = (fi(lo, 12, ... , iq), f2(lo, 12, ..., lq), ... , fL io, 12, lq))
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where Zq I fi(io, 12, ..., iL) = 1.

F(Ps) ' F(Ps)'

FL (PS) = min max min E [-f(Lo, L 2 , ... , Lq) (7.1)
AG[0,1] f(lo,12,..,lq) i L

where the expectations are taken over S ~ Ps and the distribution of types T(lo, ... , lq)
is is given by proportions A.
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Chapter 8

Conclusion and Future Work

This thesis work developed a model for abstract physical redundancy and we are able
to find the characteristics of optimal designs under given assumptions. Notably, we
determined the fundamental trade-offs between wiring complexity and redundancy
for small error correcting values on small alphabets and for asymptotic values error
correcting values. We can also give the construction which leads to the fundamental
results we found. The asymptotic result also provides a converse result for all designs.
We can now provably determine that a design with certain number of edges and
redundancy cannot achieve a certain number of errors.

There are some other questions we have not addressed. For instance, it would be
ideal to find other small examples of optimal designs. Do to limited computing, this
is difficult to do by simple search. It would be interesting to see if there were a class
of designs which were optimal for a certain value of k. It would also be interesting to
find the fundamental limits for other alphabet sizes and values of t larger than 2.

There is also some interest in solving the optimization in Theorem 2 exactly. It
is possible that an exact solution may lead to some interesting finite designs.

The next direction we hope to take in our analysis of redundancy models is to
see what is possible beyond the bipartite graph. For instance, what are the trade-
offs when hierarchical models of redundancy are used. This model would include
intermediate nodes which can facilitate connections of edges. The presence of the
intermediate nodes can greatly reduce the number of edges. To correct t errors, we
can connect each functional node to t intermediate nodes. Regardless of the number
of functional nodes, the intermediate nodes can connect to finitely many redundant
nodes. This way, we are able to achieve a wiring complexity of t and redundancy of
0 as the number of functional nodes goes to infinity. In such a case, we are interested
in finding the fundamental tradeoffs with the number of intermediate nodes as a
parameter.
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Appendix A

NP-Hardness

If we are given a general design whose functional nodes are labeled, the problem of
finding whether there is an label of redundant nodes which is t error correcting is
NP-hard. This implies that if P # NP, then there is no general polynomial time
algorithm that exists for labeling redundant nodes for all designs and all sk E k.

To define our problem in the notation of complexity theory, we will define

C = { (Gk,m, Sk, t) Gk,,, is a bipartite graph with k functional nodes and m re-
dundant nodes, sk E Xk is a labeling of the functional nodes, so that there exists an
labeling of the redundant nodes which is t error correcting}

Theorem 7. Computing C is NP-Hard.

Proof. We will create a polynomial time reduction from 3SAT to our design problem
C. For the reduction, we only need to consider when t = 1, since if the case of t = 1
alone is NP-hard, general t must also be NP-hard. Also, it is sufficient to assume
X {0, 1}.

For any w which is a properly formatted boolean formula in conjunctive normal
form with clauses exactly of three literals, we can define the reduction function to C
as follows. There will be two redundant node for each variable xi present in w. One
redundant node will represent xi and one will represent fi. Each xi and fi pair will
both to connected to one functional node with label 0 and one functional node with
label 1. This forces one redundant node in the pair to have a 0, representing a false,
and one redundant node in the pair to have a 1 representing a true.

There will be one functional node with label 1 representing each clause. This
functional node will be connected to the 3 literals which are present in the clause.
This functional node can only be 1 error correcting if one of its neighbors is a 1,
meaning one its literals are true.

If we can find a 1 error correcting redundant node labeling for this design, then
we will also be able to satisfy w. If we can satisfy w, this leads to a 1 error correcting
redundant node labeling. Thus, finding a 1 error correcting labeling in general is
NP-hard.
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Note however, that finding the redundant labeling for a specific class of designs is
not necessarily NP-hard. We have already shown that for our subset designs, there is
a very methodical way to find the optimal labeling which has polynomial complexity.

Also, the problem we are considering above applies to only one labeling sk. To
show that a design is t error correcting, we need to check every sk, which is another
level of exponential complexity.
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Appendix B

Multiple Subsets Splitting Ratio

Even when G is a merged combination of multiple subset designs, there is the analo-
gous idea of a splitting type ratio.

Proposition 18 (Splitting Type Ratio). The optimal redundant labeling for a subset
design G for some functional node labeling is described by the following. There exists
a ratios y where 0 < -' 1.

1 if the type T(10 , l1) of vi is so that - -
j lo+11

ri = 0 if the type T(10 ,1 1) of vi is so that 10 <
0 or 1 if the type T(10, 11) of vi is so that -= -y.

Proof. To show this, we need to only change the form of the optimization function.
Instead of defining Ps where Ps is the proportion redundant nodes with degree s, we
want to define Ps as the proportion of edges which are connected to redundant nodes
of degree s.

Let E, be that number of edges connected to a redundant node of degree s. Then

PsE = E, = Psms

so we have the relations

$se= Psp
s

We want p = yE, and it turns out the only change we need to make the opti-
mization function for is to replace Ps with P S.

= max min max min PP1, f Sol, PP10, (1 -- A0,1)
P 0<,\<l 0<fJo,11! sAb~0+=S lo+1=SPsiii 2 foi, 10+11=s A

(B.1)
The difference in this optimization function is that 1 is used in place of lo. Other-

wise the form of the equation is exactly the same. So the labeling of redundant nodes
must split instead along some ratio - instead of some lo in the single subset case.S
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E

The main takeaway is that in the optimal labeling, there can be multiple types
with all the same ratio, where some of the redundant nodes of these types are labeled
1 and the others are labeled 0. Redundant nodes of any other type are either all
labeled to 0 or all labeled to 1.
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Appendix C

Uniform Convergence for h(k, A)

Lemma 4. Let

P,(lo, l)(k( ))Pk,\ 10 1) (1 () 1
and

P (lo,1) = 8) A'o(1 - A)"

max min Ek X
Lf o, L1)J

max min E p\
0-f (Io,l1:5

Lof(Lo, L)] ,EPA L (1 - f(Lo, L1 ))

Then h(k, A) as k -+ oo converges uniformly to h(A).

Proof. The maximizing set of functions f*(lo, l) on types T(10 , l) on

min EP f (Lo, L1)],E o (1 - f (Lo, Li))]

is continuous in P and A by Proposition 15. Since the space of distributions P
and A are compact, the functions f* (l, l) must be uniformly continuous in P and A.

We claim that Pj,A(lo, l) converges uniformly to P,(lo, l) as k -+ oc.
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h(k, A) ='

and

h(A) ='

}
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Px(lo, ) = (k( A))

(~)
s! ((kA)!/(kA - lo)!)((k(1 - A))!/(k(1 - A) -1)!)

lo!li! k!/(k - s)!

(s) (k A) (kA - 1)...(k A - 10 + 1) (k(1 A) (k (1 - A -
10 (k) (k - 1)...(k - s +1)

s) (kA) kA - 1) 
)k(- A) -1+I

10) k k k- I k -s + 1

(s) (A) (A - 1/k) ...((1 -A) - (11 - 1)/k)
10) 1) 1-/lk) - (s -1)/k

We have that for small enough c > 0, there is some constant c

A- e 1 - A =e
-A 1-A C

-EA 61-c

So for E > 0, we can choose k so that < so that

Pk,\(o, l) - PA (o, l) < (1oA + l1(1 - A)) + o(c) < 6
-2s

for all A.
Similarly, we can so that 1\PjA(lo, 11) and Pj,x (10, 11) also converge uniformly

to 10 PA(lo, 11) and LPA(lo, 11) as k -+ oc.
Let f,*(lo, l) be the optimal f(lo, l) for h(A) for each A and let fj%(lo, l) be the

optimal f(1o, l) for h(kj, A) for each A.
Then f>(lo, l) -+ f*(lo, l) uniformly over A. This is because since f that

maximizes h(k, A) is uniformly continuous, for every c, we can find 6 such that if
IPj,A(lo, l) - PA(lo, li)1 < 6, then If A(lo, l) - fA(lo, l)| < c for any A. Then for every
6, we can find j large enough so that IPjA(lo, l) -- PA(lo, li)| < 6 for any A, due to
uniform convergence of PA (10, 11).

For any c, there exists a kj large enough that
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- min Z
Io+1=s

PsP,A(lo, i1)-A fjA(Lo, L1 ),

Z PsPj,A(lo, l) L( If(L, L1))
10+1=s -)

= h(A) -min Z
10+11=s

(f*(Lo, L1 ) + Ef (lo, li)),

1 iPs (PA (1,
10+11=8

Ps(P(lo, li)-Lo + Ep (lo, li))

1i) I + Ep(lo, l))(1 - (fx*(Lo, L1 ) + Ec (lo, li)))
1 -AJ

<c E IEp(io, li)| +1f (lo, l1)| + (lO, l1)ef (lo,
lo+< =s

<6e

for all A.
D
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Appendix D

Numerical Results Derivation

D.1 Approximation with lower bound

The optimization problem in Theorem 2 is difficult to solve exactly, but it can be
bounded with an upper and lower bound which are very close.

We will approximate the best point (E, p) achievable in IZ, given any weights Ps
with a fixed value E[S] = Er-

Define
y =max F(S)

Ps:E[S=Cr

The notation Ps(s) will specify the weight at s.
Starting with Equation (7.1), we can rewrite the optimization in terms of the

splitting type ratio -y, where the optimal labeling will have

f if > i -

= 1 Iof i) > if
Ify-~ if y = 7-

which will give

= max mn max (EIR[lo > s-]] + ]E[lof=y[lo sy]])

O1~

(E[l1I[lo < sy]] + E[1 1(I - fy)[lo =s

Let V\ (n) - Bino(n, A) that is V, is a binomial variable with probability of 0 equal
to A. A = 1 - A.
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1o0=
-Bino(lo, s, A)loI[lo > spy]

= o _ s-1lo [o > sy
10=0 l

( o 1) (s - 10)!A (1 -

s s A10-1
-1 0 )~-

- s Bino(lo - 1, s
1o0=
s-1

= s Bino(j, s - 1, A)I[j
j=o

= sP[VA(s - 1) > sy -

(1 - A)(8-1)-(10- 1)[1 0 > s']

- 1, A)E[1o > sy]

> sy - 1]

and

IE[of,-YI[lo = s'y]] = sf^,P[VA (s - 1) = sy - 1]

Similarly,

1.
-1E[1111[10 < s7y]]
A

= 1- Bino(lo,
10=O

10=

1)=Os

10=0
10

S

= s Bino(lo,
1o0=

s, A)(s - lo)I[lo < sy]

Alo(1 - A)810 (8 - lO)1[lo < s]

A10(1 - A)-1-01[lo < s]

s - 1, A)I[lo < s-y]

= s Bino(j, s - 1, A)[j < sy
j=o

= sP[V(s - 1) < sy]

and
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E[1(1 - fy)I[lo = s'y]] = s(1 - fY)IP[V,\(s - 1) = s-Y]

We can simplify the quantities

[lo[lo > s'y] + lofylf[lo = sy]] = Z Ps(s)s(P[VA(s) > sy-Y-1]+fYP[VA (s) = 87-1])
S

[lIff[l0 < S'y]J + l1(1 - fY)11[lo = S-Y]] =3Ps(s)s(P[V>x(s) < s'Y]+(1-f)P[V'\(s) = s'Y])

{ Ps(s)s(P['(s) >
S

EPs (s)s (PVA (s) <

s-y - 1] + fyP[,V(s) = s7 - 1]),

s'y] + (1 - fy)P[V ,\(s) = -- Y]) }
We can convexify the minimum

max mn max
Oiffy 1

{c Ps(s)s([VA(s) > s'y - 1] + fyP[VK(s) = si- 1])mi

+ (1 - c) E Ps(s)s(P[P , (s) < s7] + (1 - fY)P[VA(s) = sY]) }
When we set c = , this creates an upper bound in which we can continue to2'

simplify

< nax mn max
PS O A 1 O-Y51l

O~f-~ 1
{2 Z Ps(s)s(1 + fyp[Vr = sy - 1]) + (1 - fy)P[VA (s) = sY])

(D.1)

< max min
PS O A 1 1

Ps(s)s(1 + max (fyIP[VA =
O Y 1

O: f-y 1

sy - 1]) + (I - fY)P[EVA(s) =

= max min
PS O A 1 12

Ps(s)s(1 + max (P[VA (s)
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A

= max min max min
PS O ,A< O 1y l

O: f': 1

sy]))

= X1))}

(D.2)
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Equation D.3 is what we call the Max Probability Bound, since deriving it requires
finding the value x, which achieves the largest probability value under Binomial(s -
1, A). We can define

s
Os(A) = -(I + max (P[V(s) = xS]))

2 O<rX<s-1

so that
< max min E Ps(s)#s(A)

Ps O<AC1
S

We want the minimum value over A, but since qs$A is not convex in A, this is a
difficultly in the the optimization. However, since we are only interested in an upper
bound, we can relax the condition and choose the minimal A over a countable set of
A. Let this set be

L = {A E [0, 1] : Os(A) < Os(A') for some s and VA' E [0, 1]}

which is the set of all A which minimizes 0s for some s. The set of minimal A is
exactly the set

L=

For any L C [0, 1], we must have that

< max min 1 PS(s) 0,(A) < max min Ps(s)s(A)
Pc, 0 <A< (1 PI AEL

S S

1

Since for each subset size s, there is one value of A which is the minimizing value
when s is the only subset, we can refer to this A as Amin(s). We can equivalently write

max min Ps(s)#s5(A) = max min Z Ps(s)Os (Amin(i)) = max min Ps(s)) s,i
Ps AEL Ps i Ps i

S SS

where we define (si = #s(Amin(i)).
Given a parameter E, = E, Ps(s)s, solving for maxp,, mini E. Ps(s)O,i is an

infinite dimensional linear program.
For values where Er is finite, there are only a finite number of subset sizes have

non-zero weight in the optimal labeling (see Appendix D.3). So practically, we can
solve a finite dimensional linear program to find an upper bound for y given each Er.

The linear program for n subsets is as follows:

'The specific L we choose is conjectured to make the inequality tight. We conjecture this because
the plot for 0, (A) looks to be concave at most points, and not differentiable at points j where x is
an integer. The function Z Ps (s)# ,(A) will also be concave at most points. Thus, the minimum is
probably at a non-differentiable point.
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subject to EPs(s)f,i t, VO < i < n (D.4b)
S

Ps(s) 0, Vs (D.4c)
n

Z:Ps(s) = 1 (D.4d)
s=1
n

Ps(s)s = Er (D.4e)
S=1

We can run this linear program to plot points on the Max Probability converse
bound.

D.2 Achievability Approximation

To show a point in R,, is achievable, it is sufficient to find a set of masses Ps for each
the optimization equation solved for Ps achieves that point. Searching all possible
masses Ps is not computationally efficient. It turns out we can get decently close to the
lower bound approximation by using the same masses the lower bound approximation
used. For each Er, the lower bounds finds masses P, which are optimal for Fr in the
lower bound equation. We can use the same P, and see what values are achieved
using the original optimization equation.

The result for some arbitrary Er are also plotted in Figure 7-2. The calculation of
these is shown in Table D.1

For each Er we look at the assignments of weights of subset sizes, that leads to the
upper bound of Q. Er can take on any positive real value greater than 1.

D.3 Finitely Many Subsets

To show what only finitely many subsets have positive weights when Er is positive,
we start by taking the dual of the optimization in Equations (D.4a) to (D.4e).

The Lagrangian is

L(P, iVS,77=A t Z 7ri ( P()Osi +t)

1sPs(s) + ( P, - I + A ( Ps(s)s - Er

so that the dual problem is
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Converse bounds and achievable points table

er Converse point Achievable point using converse
2 [1,3,4,5]

[.6203,.2093,.1003,.0701]
1.6081 1.6076
(1.2437,.6219) (1.2441,.6221)

3 [1,3,4,5]
[.2405,.4187,.2006,.1402]
2.2162 2.2152
(1.3537,.4512) (1.3543,.4514)

4 [3,4,5,6,7]
[.5223,.2095,.1311,.0204,.1168]
2.81855 2.817467
(1.4192,.4512) (1.4197,.3549)

5 [3,4,5,7]
[.3133,.2347,.2774,.1746]
3.4060 3.4058
(1.4680,.2936) (1.4681,.2936)

6 [5,6,7,9]
[.4450,.3125,.1411,.1013]
3.9892 3.9885
(1.5041,.2507) (1.5042,.2507)

7 [5,6,7,8,9]
[.3505,.0033,.1342,.3197,.1923]
4.5648 4.5644
(1.5335,.2191) (1.5336,.2191)

8 [7,8,9,11]
[.3969,.3616,.1638,.0777]
5.1363 5.1364
(1.5575,.1947) (1.5576,.1947)

Table D.1: This table compares the converse bound and arbitrarily selected achievable
points for different values of e,. The first column titled "Converse point " is a converse
bound obtained using the Max Probability optimization. The top entry in each box
is the subsets used and the entry below this is the weights, respectively, of each
subset used. The bolded entry is the value of and the entry below that is the point
(f, 2). The second column titled "Achievable point using converse" uses the subsets
and weights from the converse to see what and point would be achieved.
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maximize - t + 7rit - rL - E Lt

subject to - 7Ts, + r; + ps 0, Vs

7ri > 0, Vi

Complementary Slackness implies that

(D.5a)

(D.5b)

(D.5c)

Ps(s) -

so for all s such that Ps(s) = 0, it must be that the inequality - Ei 7r 08,i+'q+ps P 0
holds with equality.

-57rios,i + r1+ Ps 0

+ max (P[V\ (s) = X 81)) + r + >s
<X8 <s-1

2
5iri

0

max (P[V (s) = xS]) + + 0
0!x, s-1 s

( 1
2

+ Zri max (s) = x,])

The value of maxo xSs_1(P[V\,(s) = x,]) decreases monotonically to 0 on any
as s -+ oc. So given any set of 7ri, there is some so where for every s > s0,

i Ti maxo<x <(s-(P[V 1 (s) = 7i]) <[t - j wr. So this constraint cannot be tight
for any s > so, and so Ps(s) = 0.
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Appendix E

Characteristic of Minimzing A

The following is a statement we can make about the A used to minimize the expression
for F(S) when only one subset size is used. We will use the name notation used in
see::numresults.

Proposition 19. For given s where Ps(s) = 1 (only one subset is used), the values
of A which are local minimums are values of A where f, = A.

Since piecewise portions of the function for y is convex, so each value of -y will
have one local minimum. The function for s should have s - 1 local minimums.

Proof. For when Ps = 1 for a particular s, then

= P[Vx(s - 1) > sy - 1] + fyP[VA (s - 1) = 8y - 1]

and

(P[V(s - 1)<sy] - P[V(s- 1)>sy])
(P[V(s -1) Y - 1] + P[V(s - 1) = s'y])

Define t = sy and A = 1 - A. Then,

s-i

Y= SY = 1

and

g(A)
~h(A)

g(A)=
i=0 (

-; )Asi

where

( 5- E
i=t+1
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8 t-1s-t
t -1)

s- -+



and

h(A) = S - 1  + (s -I AtAst
(t - 1) t

Two useful identities are

d (s 1 A _-l = 1)s - 2 Ats-2-t

s 8 1 s-2
d f ( )AisA (s - 1) (t ) At 1'A-l t

Take the derivative and set the result to zero. In the derivation, constants and
factors which are A or A do not matter, so we can factor these out.
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~h(A)

=(s - s
(t -

+ (

g'(A)h(A)

2 At s-2-(t-l)

- 1) 8(A)

- h' (A) g(A)
(h(A))

0 =(h(A)) 2(S - 1) ( - 2 t-1As-2-(t-1)

+ g(A)h(A) ((t - At- 2js-t - (s - t)
( )A -

(s-"

kt -)
At-As-t)

AT-1lt - h(A) 8 1 s 2 AT-1lt

+g(A)s 1(

+ g(A)s L
8s-t

2)
s t2)

\ 

-1\S 
-

Atk-slt

g(A) ' 1(
8 - t \t

1()s i(

-2) At As t

1 2) A tA-s1 t

=h(A) S - s 1 t s-1 AA--

( t s -t ( t ) )

+ g(A) t (S1) - (- ))At -lkSt

"g(A)s1 -t S -1 ( - At1 s-t
s 8-t (t ) t - 1))

t

(h(A) g(A)
A A

- 1AtAs t

g (A)>I

+ g(A)

(~t

( 8-t - 1) 1
A

=Ah(A) - g(A)

Thus solutions of Ah(A) - g(A) = 0 must also be a solution to = 0.

f7 = g = A also fits the constraint that 0 < f< 1, it must be that fy = A.
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dA

d S-1

dA i=t ( 8i
A t-'As t )

At-2As-t - (s-t)(

Atst( 
8-

(kt - 1

+ (g'(A)h(A) -- h'(A)g(A)) (

=h(A)

Since
1:

=h(A) S I s-

+ g(A) 8 -1 t ( S Xt-t

) -
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