
Want to fork? Do some work.

by

Alin Tomescu

B.S., Stony Brook University (2012)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2015

@ Massachusetts Institute of Technology 2015. All rights reserved.

Signature redacted
A u th o r

Departrhent of Electrical Engineering and Computer Science
August 28, 2015

Certified by...............
Signature redacted

Srinivas Devadas
Professor

Thesis Supervisor

Accepted by
Signature redacted

'Lesl0 AJ Kolodziejski
Professor

Chair, Department Committee on Graduate Theses

ARCHNES

MASSAOFTECHNOLOGY

NOV 0 2 2015

SLIBRARIES

PowMail:

2

PowMail: Want to fork? Do some work.

by

Alin Tomescu

Submitted to the Department of Electrical Engineering and Computer Science
on August 28, 2015, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

We design and implement PowMail, a secure email framework that uses proof-of-work
to prevent impersonation attacks. PowMail uses a novel authenticated data structure
called a Po W-tree to enable email users to jointly certify the history of all users' public
keys. An implementation is given in the Go programming language. We evaluate
PowMail and demonstrate its feasibility for securing email communications today.

Thesis Supervisor: Srinivas Devadas
Title: Professor

3

4

Acknowledgments

To my dear friend Ilusha; my muse, my rock, my inspiration. This thesis would have

been impossible without your help.

First of all, I would like to thank my advisor, Professor Srinivas Devadas, for

guiding me towards this work, for his constant support, wisdom and inspiration. I

would also like to thank Mashael Saad Al-Sabah for giving me the opportunity to

help with her secure email project and for our many interesting discussions that led to

this work. I would like to acknowledge the constant support of my family, my friends

and my girlfriend. Without their love and kindness, I wouldn't have had the strength.

Finally, I would like to thank our Computation Structures Group at MIT CSAIL

for all their useful feedback and productive discussions that steered this work into a

unique direction.

5

6

Contents

1 Introduction 15

1.1 Motivation . 16

1.2 Background . 16

1.2.1 Our friends: Alice and Bob 16

1.2.2 Public key cryptography . 17

1.2.3 Impersonation . 17

1.3 Challenges . 18

1.3.1 Equivocation . 18

1.3.2 Trust . 19

1.3.3 Scalability . 19

1.3.4 User interface . 20

1.4 Summary . 20

2 The secure email problem 21

2.1 Actors . 21

2.2 Key servers . 21

2.3 Threat model . 22

2.4 Security goals for key servers. 22

2.5 Security goals for email transmission. 23

2.6 Functional goals . 24

2.7 Summary . 25

7

3 Existing work

3.1 Secure/Multipurpose Internet Mail Extensions

3.2 Pretty Good Privacy (PGP)

3.3 Lightweight Email Signatures (LES)

3.4 Lightweight Email Encryption (LWE)

3.5 Certificate Transparency (CT)

3.6 Enhanced Certificate Transparency (ECT) . .

3.7 CONIKS .

3.8 Nam ecoin .

3.9 Sum m ary .

4 PowMail architecture

4.1 Overview .

4.2 K ey-trees .

4.3 Proof-of-work

4.4 Mining incentives

4.5 PoW -trees .

4.5.1 Computing proofs-of-work and creating

4.5.2 PoW-trees as distributed signatures . .

4.5.3 Verifying PoW-trees

4.6 Protocol operation

4.6.1 Epoch creation

4.6.2 PoW-tree strength evolution

4.6.3 Public key registration and update . .

4.6.4 Monitoring and public key maintenance

4.6.5 Public key lookup

4.7 Message encryption

4.8 Forward secrecy mechanism

4.9 Message signing

4.10 Sum m ary .

8

(S/MIME)

PoW-trees

27

27

28

28

29

30

31

32

35

35

37

37

38

38

39

41

41

42

43

44

44

45

45

46

47

48

48

49

. 49

5 PowMail security analysis

5.1 Key-tree attacks

5.2 PoW-tree attacks

5.2.1 Reused and bogus proofs-of-work

5.2.2 Duplicating proofs-of-work

5.2.3 Bogus tree height

5.3 Key server security properties

5.4 Email transmission security properties .

5.5 Sum m ary

6 PowMail implementation

6.1 Key server API .

6.2 PoW server API .

6.3 Summary .

7 PowMail evaluation

7.1 Key-tree lookups .

7.2 Key-tree new epoch computation .

7.3 PoW-tree construction .

7.4 Summary .

8 Future work

8.1 Webmail .

8.2 Fighting (encrypted) spam .

8.3 Forward secrecy for the first email .

8.4 Append-only authenticated dictionaries

8.5 W histleblowing .

8.6 Summary .

9 Conclusion

9

51

. 51

. 52

. 53

. 53

. 55

. 55

. 56

. 56

57

58

58

59

61

61

63

63

64

65

65

66

67

68

69

69

71

A Discussions 73

A.1 Initial email-based authentication . 73

10

List of Figures

7-1 Client (non)membership proof verification time histogram 62

7-2 Server (non)membership proof computation time histogram 62

7-3 Server time to insert 131,072 bindings as a function of key-tree size . 63

7-4 PoW-tree construction time as a function of its size 64

11

12

List of Tables

4.1 The PowMail API. 38

6.1 The key server API 58

6.2 The PoW server API . .. 58

13

14

Chapter 1

Introduction

In this thesis, we address the problem of end-to-end email security in the presence of

powerful adversaries. While exiting email privacy techniques exist and are used today

(PGP[55], S/MIME[11], STARTTLS[43]), we argue that they are not sufficient for

security in the face of strong adversaries who can compromise email service providers

or trusted entities such as certificate authorities. We propose a proof-of-work-based

solution for end-to-end email security. We believe our approach could be effective

at preventing impersonation attacks early by requiring attackers to expend a lot of

computational power. We believe that making attacks computationally and thus

monetarily expensive is a viable way of securing the email network. Our approach

does not share the disadvantages of blockchain-based solutions such as high-bandwidth

and storage requirements, nor does it require users to engage in competitive mining

Roadmap. In this chapter, we describe our motivation, give some relevant back-

ground and present the challenges of building a secure email system. In chapter 2, we

describe the actors in our system, our threat model assumptions and our goals. In

chapter 3, we present existing work and explain why it is unsuitable for email security.

In chapter 4, we detail our system's architecture and in chapter 5, we analyze the

security of our system. In chapter 6, we describe our implementation and we evaluate

it in chapter 7. We address future work in chapter 8 and conclude in chapter 9.

'Users still have to mine, but they can profit without being the first to find the proof-of-work.

15

1.1 Motivation

It is well known that users share sensitive data over email[33] and recent email leaks

serve as a constant reminder of that fact[53, 30, 32]. Thus, we believe email security

is important and needs to be addressed.

Firstly, encrypting and authenticating email in transit is important to preserve

secrecy and integrity of messages transmitted across an insecure network. Emails

can easily be snooped on or tampered with as they are transmitted. Encrypting

emails stored on service providers is crucial for preventing data leaks when service

providers are compromised[9, 45]. Secondly, authenticating the senders of emails can

prevent impersonation attacks and phishing attacks[14]. Thirdly, signing emails using

non-repudiable digital signatures can enable users to close contracts over email or

enter legal agreements over email. Note that due to concerns over digitally signed

emails[17, 20, 14], non-repudiable signatures should be strictly optional, while message

authentication can be performed by default using deniable message authentication

codes (MACs).

1.2 Background

1.2.1 Our friends: Alice and Bob

In this work, we will often discuss two fictional characters Alice and Bob who want to

communicate securely via email. Alice and Bob are two email users with email accounts

alicefwonderland. com and bob@puzzleworld. com respectively. In addition, we will

sometimes use Mallory to refer to active network adversaries. Mallory can snoop on

network messages, tamper with messages, and he can create, duplicate or redirect

messages on the network.

16

1.2.2 Public key cryptography

In public key cryptography, Alice can simply obtain Bob's public key (PK) and encrypt2

a message for Bob. Bob is the only one who can decrypt the message using his secret

key (SK) which only he knows. If the message were an email message, then Alice's

email client can transparently look up Bob's public key without imposing additional

work onto Alice. User transparency is an important goal (see 2.6), as it enables fast

adoption of a secure system. We believe using public key cryptography is fitting for

email communication, where there is a pre-established expectation that users be able

to send an email to anyone in the world simply by obtaining the recipient's email

address.

1.2.3 Impersonation

Impersonation is a central problem in public key cryptography. While users can easily

generate a public key and its corresponding secret key (i.e. a key-pair), it remains

difficult to securely obtain someone else's public key. Simply put, since anyone can

generate a key-pair, Alice cannot know whether the public key PKB she obtained is

indeed Bob's public key. For example, Mallory can generate a key-pair (PKBf, SKB')

and impersonate Bob by sending the generated public key PKB, to Alice. Alice will

think PKB, is Bob's public key and use it to encrypt messages for Bob. However, all

her encrypted messages will be decrypted by Mallory who has SKB'. Furthermore,

instead of dropping the encrypted message, Mallory can reencrypt the message for

Bob under the real PKB and forward it to him, thereby avoiding detection by Bob,

who could otherwise get suspicious about not receiving messages from Alice.

Importantly, note that impersonation is a fundamental problem for public key

cryptography: the binding between a user and their public key is not guaranteed to

be correct. In order to enforce a correct, verifiable binding, additional techniques

need to be employed. For instance, in TLS[52], the binding between a domain such

as google. com and its public key is enforced by certificate authorities (CAs) via a

2In this thesis, we always mean encrypt and authenticate when talking about encryption

17

cryptographic proof of the binding known as a certificate. A certificate consists of a

signature under the secret key of a CA on the domain's name and its public key. A

certificate is only issued by a CA after it has verified the true identity of the requesting

domain3 . The certificate is verifiable by anyone in possession of the CA's public key.

The certificate is an unforgeable statement by the CA, since only the CA knows its

secret key used for signing certificates. The certificate attests that a specific domain

is the owner of a specific public key, enabling users to trust this binding is correct as

long as they trust the CA and have the CA's public key. In TLS, there are hundreds

of CAs who can sign certificates. Users will verify certificates from any CA and, if the

signature is correct, they will trust that the CA is not lying about the binding.

Unfortunately, certificate authorities do not fully solve the impersonation problem;

they only make it smaller. CAs act as gatekeepers, preventing fake bindings from

being created by verifying the domains who request certificates. However, certificate

authorities may still equivocate (or lie) about public key bindings; all they have to do

is sign another certificate. Of course, CAs are trusted not to do so, but we argue that

such trust is misplaced.

1.3 Challenges

Below, we describe the main challenges in building a secure email system. We argue

that equivocation remains a challenge simply because CAs are not trustworthy and

that finding an appropriate trust model, while ensuring scalability of our system, is

difficult.

1.3.1 Equivocation

As discussed in 1.2.3, TLS certificate authorities can impersonate users by equivocat-

ing, enabling man-in-the-middle attacks and resulting in loss of user privacy. Even if

CAs were trusted not to equivocate, they may still be hacked[16, 37] and, to make

3This verification can be performed in-person for high-assurance certificates.

18

things worse, there is circumstantial evidence to suggest that CAs are susceptible to

government coercion[22, 48, 44].

Unfortunately, TLS does not provide a way for websites to check what certificates

have been issued in their name, making detection of equivocation difficult. While

existing techniques like Convergence[2] and Perspectives[5] can sometimes detect

equivocation, they are far from being foolproof and require user intervention and

knowledge. One promising solution is Certificate Transparency (CT)[36], which was

deployed by Google and is being used by modern day browsers such as Google Chrome.

We will discuss CT and other similar approaches in 3.5. We believe that preventing

equivocation is the main challenge in building a secure email system.

1.3.2 Trust

One of the problems with the CA system in TLS is the lack of trust agility[12]: users

cannot decide that certain CAs are untrustworthy. Instead, users are required to trust

all CAs in TLS not to engage in impersonation attacks. This leads to a weakest-link

security model for TLS, where if one CA is compromised, then the entire CA system

is compromised[5 1]. We believe it is important to avoid placing too much trust in our

system's actors. Thus, we seek to audit the actors in our system and verify that they

behaved correctly. Note that, ultimately, trust in the email users to check that they

are not being impersonated is still required.

1.3.3 Scalability

The size of the email network and the number of emails being sent every day mandate

a scalable solution for the email security problem. The simple requirement that email

users need to be able to look up each other's public keys creates a high bandwidth

requirement and a storage requirement. Our solution needs to address this.

19

1.3.4 User interface

We recognize the paramount importance of having a good user interface to a secure

email system. However, this thesis does not address this problem. We choose to focus

on how to prevent equivocation in a secure email system and defer the user interface

problem to future work.

1.4 Summary

In this chapter, we described why email security is an important problem. We provided

some background on public key cryptography and explained why it is necessary for

email security. We discussed unique challenges that arise in email security. Most

importantly, we introduced the equivocation problem as a central problem in email

security.

20

Chapter 2

The secure email problem

2.1 Actors

Email communication involves several actors. First, email users want to communicate

securely and quickly by sending each other electronic mail. Second, service providers

(SPs) enable email users to communicate. An email service provider allows users to

register for an email account. Email service providers send and receive emails on behalf

of their users. SPs also provide persistent storage for user emails, giving each user

convenient access to all her past emails. Finally, SPs act as initial identity providers

for their users. An SP can help its users authenticate themselves to a certificate

authority for the purpose of obtaining a certificate. Secure email communication

requires an additional actor called a key server which replaces trusted certificate

authorities. Key servers are very similar to certificate authorities, except that they

are auditable, enabling email users to check if they have been impersonated.

2.2 Key servers

Key servers allow users to register public key bindings for themselves and to efficiently

and securely look up public keys. Instead of signing individual bindings such as

(Alice, PKAzice), a key server commits to the history of all bindings it has signed. The

purpose of committing to the entire history is to allow any user to discover if they

21

have been impersonated. For instance, Alice would quickly find out if she has been

impersonated by discovering a fake binding in the history committed by the key server.

Most importantly, key servers are auditable: they enable users to monitor their own

bindings to detect if they are being impersonated.

2.3 Threat model

Email Service Providers. Email service providers are not trusted in our system.

They may attempt to read the emails of their users and to impersonate their users but

they will be detected. They can be compromised by attackers or by corrupt employees.

Key Servers. Key servers can be compromised by attackers. Key servers are not

trusted to respond correctly to public key lookups. Instead, users will verify proofs

generated by a key server to ensure that the key server is behaving correctly. Key

servers can try to equivocate about users' bindings as described in 1.2.3.

Network adversaries. We assume the existence of both passive and active network

adversaries. Network adversaries can snoop on messages, redirect messages, duplicate

messages or create new messages.

Powerful adversaries. We assume the existence of powerful adversaries who can

coerce system actors into misbehaving or can compromise actors. Our goal is to

prevent equivocation in the face of such adversaries.

Email users. Email users are trusted to verify that key servers respond correctly to

public key lookups and that key servers are not impersonating them. We assume users

access their email accounts from uncompromised machines, which is a requirement for

end-to-end secure communication where compromise of an endpoint would immediately

lead to compromise of the secret keys used to secure the communication.

2.4 Security goals for key servers.

Key servers keep track of the users' public key history and cryptographically commit

to this history. We describe our security requirements for key servers below.

22

Commitment efficiency: The server's commitment of the history is small enough

for Alice to download and store.

Query efficiency: Alice can search the history quickly 1.

Query correctness: Alice can verify her search results against the history via a

(non)membership proof.

Append-only: When the server commits to a newer history, the previous history

needs to be fully included in the new one. The server should not be able to remove or

change PKs in the committed history and then commit to a new history, which would

be inconsistent with the previous one.

Secure binding update: After Alice has registered a public key for herself, thereby

creating a binding, only Alice should be able to update her binding.

Freshness: The server cannot withhold the latest history and prevent Alice from

finding out about fake bindings.

Non-equivocation: The server cannot easily fork the history and show Alice a view

where her fake PK is not present, while showing Bob a view where her fake PK is

present.

Fork-consistency: If the server forks the history, then the server can never unfork

it later [39].

Proof of misbehaviour: If the server misbehaves by creating a fake binding, the

misbehaviour is evident (i.e. users can quickly find out about it) and provable.

2.5 Security goals for email transmission.

Authentication, integrity and secrecy. Email messages should be sent and stored

with secrecy and integrity. Email senders as well as recipients should be authenticated.

If an email is claimed to have been sent by Alice, then there must be cryptographic

proof attesting this. Similarly, if Alice is sending an email to Bob, then she needs to

be sure only Bob can decrypt that email.

'We aim towards O(log n)-time when there are n bindings in the history.

23

Forward-secrecy. Compromise of user's long-term secret keys should not affect the

confidentiality of previously exchanged emails[20]. Each email2 should be encrypted

with a symmetric key that is generated independently of the communicating users'

key-pairs.

Deniable and non-deniable authentication. Previous work has expressed con-

cern over digitally signing emails[17, 20, 14]. Thus, our goal is to allow users to

authenticate each other either with deniability or non-deniability. Non-deniability

means Bob can prove that Alice sent him a message and Alice cannot deny it and can

be achieved by signing emails before sending them. Deniability means Bob cannot

prove Alice sent him a message and can be achieved if Alice only MACs her message

to Bob, preventing Bob from proving that Alice sent him that message, since Bob

could have computed the MAC as well.

Note that currently deployed systems like DKIM[26] can break non-deniability, as

DKIM digitally signs all outgoing message of a service providers. In that case, even if

Alice only MACs her messages, her service provider signs all outgoing email, including

hers. This seems to take away from Alice's deniability to some extent. Even though

her MAC is deniable, the service provider's signature suggests that Alice did send the
3message

2.6 Functional goals

User-transparency. Security should not impose additional work for users. On the

contrary, users should experience security as a transparent process, similar to TLS.

This increases adoption of the system and prevents users from misusing the system

and breaking their security.

Deployability. Our system must be deployable in order to achieve its security goal.

For example, if Alice is using our system and wants to send a secure email to Bob,

but Bob's email provider has not adopted our system, then Alice will have to send

2With the exception of the first sent email (see 4.8).
3Assuming the SP is not misbehaving, of course.

24

Bob the email in plaintext thereby losing desirable properties such as secrecy and

authentication.

Performance. Users are accustomed to sending emails quickly and receiving emails

instantly after they are sent. Our goal is to maintain the same speed of email delivery

while securing it.

Deployment flexibility. Users should not have to wait for their providers to deploy

our system before they are able to use it. Either no deployment should be necessary

from service providers or incremental deployment should be possible. We adopt this

goal from Lightweight Email Signatures (LES)[14].

Scalability. There are nearly 100 billion legitimate emails being sent everyday[31].

Our system should be scalable in order to handle the load of the email network. Public

key lookup should be efficient as many users will be monitoring their own public keys

and looking up other users' public keys. Similarly, public key registration and update

should be fast, since many users will want to register public keys or updated existing

ones.

2.7 Summary

In this chapter, we introduced the main actors that interact in a secure email system.

We introduced a new actor called a key server that behaves similarly to a certificate

authority but can be audited to detect impersonation attacks. We postulated a set of

goals that a secure email system should achieve and detailed the threat model under

which the system should remain secure.

25

26

Chapter 3

Existing work

3.1 Secure/Multipurpose Internet Mail Extensions

(S/MIME)

S/MIME[11] relies on certificate authorities (CAs) to vouch for the binding between

a user and her public key. In S/MIME, Alice is required to trust all TLS certificate

authorities not to impersonate her. If Alice is willing to trust all CAs, she can request

an email certificate from one CA and give that certificate to Bob. Likewise, if Bob

trusts the CA not to impersonate Alice, then he can use the certificate to extract

Alice's public key and send her a secure message.

S/MIME does not specify a mechanism for users to look up each other's public

keys and their certificates. Therefore, users have to resort to publishing their S/MIME

certificates on a public forum such as their personal websites. This inhibits adoption

of S/MIME due to the lack of user transparency (see 2.6). Another problem with

S/MIME is that it requires too much trust in CAs. If a CA misbehaves, there is no

easy way to make this evident to users. A CA may simply sign a fake certificate for

Alice, give it to other users and decrypt all incoming messages for Alice.

To conclude, since S/MIME does not consider how users are to obtain each other's

public keys and does not offer a mechanism to prevent equivocation, we cannot consider

it a secure email solution.

27

3.2 Pretty Good Privacy (PGP)

PGP is a popular email security tool developed in 1991 by Phil Zimmermann[55]. PGP

allows users to encrypt and sign their emails. PGP tries to solve the impersonation

problem without certificate authorities via a decentralized Web of Trust (WoT). The

WoT relies on social networks instead of certificate authorities to attest the binding

between users and their public keys. For instance, if Alice wants to certify her binding,

she needs to obtain signatures from other users she knows and trusts. Alice can then

upload her binding along with its signatures to a key server such as MIT's PGP key

server[3]. Bob can look up Alice's key on MIT's key server and download it along

with its signatures from other people. For Bob to validate Alice's binding, Bob needs

to trust the signers of Alice's binding, or find a certification path from users he trusts

to the users who signed Alice's certificate. However, such certification paths dilute

trust as they may contain untrustworthy users. For instance, if Bob trusts Charlie,

and Charlie trusts Dan, it is not clear that Bob should trust Dan as well: trust is not

always transitive. PGP leaves the decision of trusting Dan to Bob but this can be

confusing for Bob who might be an inexperienced user lacking an understanding of

PGP's trust model. We argue that the WoT model makes PGP hard to use, as it is

difficult to quantify trust in social structures[54].

3.3 Lightweight Email Signatures (LES)

Lightweight Email Signatures (LES)[14] is an extension to DomainKeys Identified

Mail (DKIM) whose main goal is to prevent against email spoofing by digitally signing

all outgoing emails. For instance if Alice has a Gmail account and sends an email

to Bob, then Gmail, a DKIM-enabled provider, will sign her email to Bob. Bob can

verify the signature by obtaining Gmail's public key from the Domain Name System

(DNS) where each service provider will store their public key in a DNS TXT record.

After verifying the signature, Bob will know the email indeed came from a Gmail user.

If Bob trusts Gmail not to lie about the email's sender, then Bob is assured that the

28

email did indeed come from Alice. Note that DKIM is deployed and used today and

can be effective at preventing phishing attacks.

LES is similar to DKIM with the exception that it relies on identity-based cryp-

tography (IBC)[49] in place of normal public key cryptography. By using IBC, LES

can be deployed in settings where DKIM would not work because the email service

provider cannot always differentiate between its users. For instance, MIT's SMTP

server does not authenticate email senders. As a result, MIT cannot use DKIM to

sign outgoing emails since the SMTP server would not know who the real sender of

the signed email is.

LES uses identity based cryptography to distribute key-pairs to email users and

solve the SMTP authentication problem explained above. An email provider has a

master public key (MPK) and a master secret key (MSK). The provider can use its

MSK to generate a key-pair for any user. A user can obtain any other user's public

key if she has their email address and their provider's MPK. The MPK of providers

are stored in the DNS system and can be obtained easily. As a result, once users

have obtained their key-pairs, they can send each other digitally signed emails and

authenticate each other.

LES also addresses privacy concerns regarding the use of non-repudiable signatures

in DKIM. In LES, users are allowed to obtain evaporating key-pairs whose corre-

sponding secret key is revealed after a certain time interval. Evaporating keys turn a

non-repudiable digital signature into a repudiable one, because revealing the secret

key implies other users could have used it to sign a message.

Much like DKIM, LES-enabled email providers are trusted not to impersonate

their users, since they can derive any user's SK using the MSK. Unfortunately, there

is no way to verify that providers are not engaging in impersonation attacks.

3.4 Lightweight Email Encryption (LWE)

Lightweight Email Encryption (LWE) [15] is an email encryption solution similar to

LES[14] (see 3.3). LWE uses identity-based cryptography and the DNS system to

29

distribute public keys, but adjusts the threat model in LES to prevent providers

from learning their users' secret keys. Email providers should not be able to learn

their users' secret keys, otherwise they could easily decrypt -their users' emails. Also,

compromise of an email service provider should not lead to an attacker learning the

master secret key (MSK). This would be disastrous, as an attacker who obtains the

provider's MSK can decrypt all communication of all users.

To prevent service providers from learning user secret keys, LWE allows users to

add their own shares to their secret keys. Note that this will also change the public

keys corresponding to the secret key, which means the provider's MPK is not sufficient

to derive a user's PK; users will also need the additional share added to the key,

meaning users must publish their shares and disseminate them to other users. To

prevent service provider compromises from revealing the provider's MSK, LWE splits

the MSK on multiple machines. As a result, compromising a single machine will not

reveal the MSK.

LWE does not defend against actively malicious service providers who can create

fake key-pairs for their users without being detected. While LWE splits the MSK on

multiple machines, it is not clear if this helps as the lack of software diversity means a

successful attack on one machine may be applied to many other machines[34].

3.5 Certificate Transparency (CT)

Certificate Transparency (CT)[36] uses tamper evident logs[24] to build an auditable

history of all certificates issued by TLS certificate authorities. The goal of CT is to

deter CAs from engaging in impersonation attacks by making such attacks evident in

the log. A victim can discover a fake binding for herself by auditing the log.

Tamper evident logs can be securely extended with new certificates, satisfying the

Append-only property discussed in 2.4. They support membership proofs, allowing

users to verify that a certificate is indeed present in the log. However, they do

not support non-membership proofs: users cannot efficiently check whether a fake

binding exists for them. As a result, expensive monitoring has to be performed by

30

users, who must download and inspect the entire log in order to check that no fake

binding has been inserted. This monitoring can be in the realm of practicality for TLS

certificates and website owners, since the number of TLS certificates is only around

the millions[1O, 13]. However, such monitoring is not practical for email users whose

number is in the billions[31]. To deter log servers from equivocating about the latest

version of the log, CT relies on users and auditors exchanging the commitments of

the logs they see with each other via a gossip protocol[19]. However, even though the

gossip protocol is critical for security, it is not specified in the CT proposal[36].

Certificate Transparency is a promising technique for preventing impersonation

attacks, but its lack of efficient non-membership proofs and reliance on an unspecified

gossip protocol makes it unusable in the email setting.

3.6 Enhanced Certificate Transparency (ECT)

Enhanced Certificate Transparency (ECT)[47] extends Certificate Transparency (CT)

(see 3.5) with non-membership proofs and more efficient monitoring capabilities.

ECT uses a binary search tree (BST) called a LexTree to map a user's identity to their

public key bindings and a tamper evident log[24] similar to CT[36] called a ChronTree,

which keeps track of the changes in LexTree.

LexTree is a BST sorted by user identities which effectively maps a user's identity

to their public key binding (i.e. 'Alice" -+ list of last N PKs for Alice). LexTree can

be used to provide non-membership proofs. ChronTree is a tamper evident log that

logs each addition to LexTree (i.e. (Alice, PKAlice, root hash of LexTree after adding

PKAlice)).

Similar to CT, ECT can efficiently prove the append-only property of ChronTree

using consistency proofs as explained in [36, 24]. Additionally, ECT provides a

monitoring mechanism by which users can collectively check that the correspondence

between ChronTree and LexTree is correct. A user randomly picks a leaf 1i in ChronTree

and extracts the binding (user, PKuser) as well as the hash hi of the LexTree obtained

after adding the binding to it. She also extracts the LexTree hash hi_ 1 from the

31

previous ChronTree leaf li-1. Next, the user simulates adding PKuser to the LexTree

committed by hi_ 1 and she checks that the newly obtained LexTree is committed by

hi .

To prevent equivocation about ChronTree and LexTree, ECT assumes a gossip

protocol exists by which users can exchange ChronTree and LexTree commitments.

However, unless the gossip protocol can guarantee integrity, ECT remains vulnerable

to equivocation. Finally, because ECT only stores the last N public keys of a user in

LexTree instead of storing the full history, it has a vulnerability by which a user can

be impersonated 'in plain sight," without efficient detection. However, this can be

easily remedied[23].

3.7 CONIKS

CONIKS [40] implements a key server that satisfies the properties described in 2.4.

CONIKS uses authenticated dictionaries [25] to store public key bindings, similar to

ECT.

An authenticated dictionary in CONIKS is implemented as a Merkle-ized prefix

tree. The internal nodes of the tree store cryptographic hashes of their subtrees.

The leafs store PK bindings of the form (VUF(user), PKuser), where VUF(-) is a

verifiable unpredictable function[41] (VUF) used to hide the identities of users in the

tree. The root of the tree is signed by the CONIKS key server, creating a small-sized

non-repudiable commitment of the server to all the PK bindings in the tree. This is

referred to as a root commitment and satisfies the Commitment efficiency requirement.

To find Alice's PK binding, the binary representation of VUF(IDAlice) is used to

traverse the tree from the root, down to the leaf where the binding is stored (i.e a zero

indicates the binding is in the left subtree; a one indicates it is in the right subtree).

A membership proof for Alice consists of a leaf 1 = (VUF(IDAlice), PKAjIce) and the

hashes of the neighbouring nodes along the path to that leaf 1 (including the hash

of l's neighbouring leaf). The proof can be verified against the root commitment by

hashing up from the leaf I until a root hash is obtained. If the obtained root hash is

32

the same as the hash in the root commitment, then the membership proof is correct1

(i.e. the key server is not lying about the contents of the leaf 1). A non-membership

proof for Alice is identical, except that there could either be no leaf found or the

found leaf will contain VUF(IDuser) # VUF(IDAlice), which proves to the client that

Alice does not have a binding in the tree. (Non)membership proofs satisfy the Query

correctness and the Query efficiency2 requirements.

To provide the Append-only property, CONIKS divides time into epochs and

generates a new tree every epoch. The new tree includes all items from the old

tree plus any new public keys that users registered or updated. The root of a new

tree is appended to a hash-chain of all previous tree roots. The head node of the

hash-chain is signed and becomes the new root commitment: a commitment of the

current tree's root and of all the previous tree roots, linked together in a hash-chain.

Suppose equivocation occurred in epoch n. Then, Alice is presented with a new tree

T,, different than Bob's tree T,. As a result, two different hash-chains will be created.

The head node of Alice's hash-chain will commit Tn, while the head node of Bob's

hash-chain will commit T,. Since nodes can only be appended to the hash-chain and

the hash function used is collision resistant, Alice and Bob will disagree on all future

root commitments. Thus, CONIKS satisfies the Fork consistency requirement.

When the CONIKS key server creates the new tree, it promises to include everything

from the previous tree, but users do not trust this promise and instead verify the new

tree. Every time a new tree is announced, each user verifies via a membership proof

that their own public key has stayed the same or has been updated as they requested.

This process is called monitoring. Note that a user will not be able to (efficiently) tell

if other users' public keys have been removed in the new tree3 . Moreover, a user cannot

know if other users' updated public keys are fake or not, so he has to trust that every

other user in the system will monitor their own bindings and will whistleblow if they

detect impersonation. Having users efficiently monitor their own public key deters the

'Note that the path to the leaf needs to correspond to the binary representation in the VUF.
2All paths will have O(log n) nodes because mapping with a VUF will balance the tree.
3 Consistency proofs for append-only authenticated dictionaries remain an open problem (see

8.4).

33

CONIKS key server from misbehaving, satisfying the Append-only requirement.

Finally, to prevent equivocation and freshness attacks, instead of having a global

CONIKS key server responsible for all users from all service providers, each service

provider (Google, Microsoft, etc.) runs their own CONIKS key server. Each SP

commits itself only to the history of their own users' public keys. Next, all CONIKS

key servers participate in a user-verifiable gossip protocol with each other to prevent

each other from equivocating. Every time a new tree is computed by a key server,

the new root commitment is gossiped to all other key servers in the system. When a

user receives a new root commitment, he checks it against a random subset of other

CONIKS key servers. If the other CONIKS key servers have not received this new

root commitment, then it is likely (with the exception of network delays) that the

key server is equivocating. Thus, the user needs to wait until it can confirm that

root commitment. If the other CONIKS key servers have received a different root

commitment for the same epoch, then an equivocation attack is taking place. The

two different commitments for the same epoch constitute non-repudiable, globally

verifiable, cryptographic proof of equivocation. Under reasonable assumptions about

key server collusion, this gossip mechanism satisfies the Freshness, Non-equivocation

and Proof of misbehaviour requirements in 2.4.

For a CONIKS deployment to be secure, many service providers need to deploy

their own CONIKS servers and gossip with each other. This breaks our Deployment

flexibility goal (see 2.6). However, we believe that small changes to the CONIKS

design can allow providers to deploy CONIKS faster by only deploying a gossip server

and outsourcing their key server to another provider they trust.

Unfortunately, CONIKS is vulnerable to coercion and compromise by powerful

adversaries as defined in 2.3. Such an adversary can compromise or compel sufficient

CONIKS servers and break the gossip protocol, which will lead to equivocation attacks.

34

3.8 Namecoin

Namecoin[4] is a decentralized cryptocurrency similar to Bitcoin[42], leveraging

blockchains to build a tamper evident log of transactions. Namecoin was inspired by

Bitcoin and shares some of its features such as its proof-of-work mechanism. Unlike

Bitcoin, Namecoin is not a monetary currency. Instead, Namecoin was designed to

replace the centralized DNS system, enabling users to register (name, value) pairs by

paying for them using the Namecoin currency (i.e. with "namecoins" or NMCs).

Namecoin offers very strong protection against equivocation attacks via its proof-

of-work mechanism. Specifically, Namecoin prevents equivocation about the past

by storing transactions and (name, value) registrations in a block-chain protected by

proof-of-work, in the same way Bitcoin stores monetary transactions in its block-chain.

Additionally, by using merged mining[1], Namecoin can use (part of) the power of the

Bitcoin network to secure itself.

Unfortunately, as it currently operates, Namecoin is not practical for email security.

Users need to download the entire Namecoin block-chain4 in order to verify that a

(name, value) pair has been registered and paid for. This is simply impractical for

email users as it would require too much bandwidth both on the users and on the

Namecoin network to distribute the block-chain.

3.9 Summary

In this chapter, we presented existing work related to email security and analyzed

the strengths and weaknesses in each work. We conclude that none of the existing

techniques are resilient to impersonation attacks by powerful adversaries.

4 The size of the Namecoin block-chain was 2.7GB on August 23rd, 2015

35

o'"m

M
['-"

***.,----
,

Chapter 4

PowMail architecture

4.1 Overview

PowMail uses an auditable key server design that meets all goals defined in 2.4 and

is resilient to attacks by powerful adversaries as defined in 2.3. PowMail key servers

employ two data structures to enable users to verify the history of public keys. First,

a key-tree similar to the prefix tree in CONIKS[40 is used to verifiably store public

key bindings. Key-trees can provide (non)membership proofs when users query for

someone's public key. Second, a novel PoW-tree data structure is used to certify

the key-tree that users will query. Since key servers can equivocate about the latest

key-tree, PowMail employs PoW-trees to enable email users themselves to jointly

certify the latest key-tree before they start querying it. PoW-trees are built out of

proofs-of-work submitted by email users and are inherently difficult to create, even by

powerful adversaries. PoW-trees eliminate the need to gossip key-tree commitments

by allowing users to jointly certify the latest key-tree.

Similar to CONIKS (see 3.7), we divide time into epochs and generate a new

key-tree that includes all bindings from the previous tree as well as any new bindings

that have been registered or updated. A new PoW-tree is also generated every epoch

and certifies the previous epoch's key-tree. The PoW-tree generated in epoch n will

certify the key-tree generated in epoch n - 1. PoW-trees give users certainty that

the key-tree has been verified by all users and that the key server is not equivocating

37

about the key-tree. PowMail exposes a simple API for users to register, update and

lookup public keys, as illustrated in Table 4.1.

Table 4.1: The PowMail API

API call Description

Register(user, PKuser, POWuser) Registers a first-time public key

Update(user, PKuser, POWuser) Updates the user's existing public key

Lookup(epoch, user) 4 (PKuser, proof) Looks up the specified user's public key

4.2 Key-trees

PowMail uses Merkle-ized prefix trees called key-trees. Key-trees are similar to the

trees used in CONIKS, as described in 3.7. The only difference is that PowMail's

key-trees use path-copying to save space and computation time when inserting new

bindings into the next epoch's tree.

4.3 Proof-of-work

The design of PowMail starts from the observation that proof-of-work can be used

to minimize the number of users that an adversary can impersonate. For instance,

if a malicious key server wants to perform an undetected man-in-the-middle attack

(MITM) on Alice and Bob, it needs to create two different trees: one tree for Alice

that contains a fake binding for Bob, and one tree for Bob that contains a fake binding

for Alice. Similarly, to avoid detection when MITM'ing n victims, n different trees

have to be created; one for each user with fake bindings for the other users.

Unfortunately, such attacks are very practical, since it is computationally inexpen-

sive to create a key-tree, as a malicious key server only needs to compute cryptographic

hashes and a signature on the root hash. Thus, in order to prevent key servers from

equivocating, we seek to make key-tree creation a computationally expensive step. We

38

can do so by requiring the key servers, the email users, or both to provide some kind of

proof-of-work that attests the newly created key-tree. For example, the proof-of-work

can be a cryptographic hash that commits the root hash of the key-tree and is smaller

than a certain target, achieving a pre-established difficulty level.

Requiring key servers to compute proof-of-work creates the risk of asking for either

too little or too much proof-of-work. A motivated and powerful key server could

launch an attack unless it is required to produce sufficient proof-of-work. Yet asking

for too much proof-of-work could result in the key server being unable to compute it

in time for a new epoch. Moreover, asking for too much proof-of-work increases the

costs of running a key server, as additional hardware is required. Since it is difficult

to make a trade-off between the cost of running a key server and the difficulty of the

proof-of-work, we have to turn to the email users for computing the proof-of-work.

Instead of asking a few key servers to compute overly expensive proofs-of-work, we

can ask the large number of email users to compute reasonably expensive proofs-of-

work. Users will need a way of verifying that enough proof-of-work has been generated

for the newest key-tree without resorting to block-chains which are impractical for

email (see 3.8).

4.4 Mining incentives

Our system needs to incentivize users to compute proofs-of-work, a process known as

mining. We think there are a few reasons for which email users would mine:

Mine to register or update public keys. Users can be required to mine before

their public keys are registered or updated and they would never use a public key

unless it was backed by proof-of-work. The lack of proof-of-work would be a a strong

indicator that the public key is fake. Unfortunately, this might not result in generating

sufficient proof of work, unless users update their public keys often or new users enter

the system frequently, assumptions which are difficult to validate.

Mine to look up public keys. Users can be required to pay for lookups using

proof-of-work and would never accept an encrypted email without a fresh proof-of-work

39

associated with the looked up public key used to encrypt the email. The problem is

that a malicious key server can discard these proofs-of-work without being detected

because, as opposed to public key registrations and updates which are published in

the key-tree, look ups are not published anywhere. Thus, such lookup proofs-of-work

would need to be published in a tamper evident log. Note that this could prevent DoS

attacks on the key server by making lookups expensive and could also prevent mass

encrypted spam, as spammers would need to compute many proofs of work, one for

each email address they want to spam. The problem with this approach is that our

system loses performance if public key lookups become too expensive. However, this

approach could be promising if the difficulty of the lookup proof-of-work is not too

high. We plan on investigating this in future work.

Mine to send an email. Users can be required to pay for sending an encrypted

email using proof-of-work. Proofs-of-work would be published in a tamper evident log

and users would not accept an encrypted email without a proof-of-work. This could

also have the advantage of preventing encrypted spam. However, requiring users to

mine before sending an encrypted email would affect the performance of our system,

breaking our requirements in 2.6.

Mine to keep public key published. Users can be required to pay for keeping

their public key published on the key server. This way, mining only needs to be done

once per epoch, which could be reasonable for epoch lengths of one day. If a user

does not pay, then her public key will be implicitly revoked, preventing her from

sending and receiving secure emails. If a public key is not backed by proof-of-work in

every epoch, then users have an incentive not to use that public key, as it could have

been published by a malicious key server which did not have enough computation

power to compute the proof-of-work. As a result, users will not accept or continue to

use revoked public keys, as they could be risking their privacy. PowMail adopts this

mining incentive since it only requires users to mine once every epoch.

40

4.5 PoW-trees

As discussed in 4.3, once enough proof-of-work has been generated for a new key-tree,

users need a way to verify it without downloading too much data. PowMail uses a

novel construction called a PoW-tree which allows users to probabilistically verify that

a certain amount of work has been generated for a key-tree. PoW-trees provide a way

to aggregate proofs-of-work submitted by users into a single joint proof-of-work that

is efficiently verifiable. PoW-trees are different than blockchains. A PoW-tree that

aggregates n proofs of work of cumulative difficulty nW can be verified using 0(log n)

bandwidth. A blockchain that aggregates n proofs of work needs O(n) bandwidth to

be verified. Note that proof-of-work computation can be parallelized for PoW-trees,

as each user can compute their own proof-of-work independently of other users. Thus,

mining in PowMail is not a competition, as opposed to Bitcoin or Namecoin where

users compete to find the proof-of-work for the latest block.

4.5.1 Computing proofs-of-work and creating PoW-trees

Each user will compute a proof-of-work that attests the current key-tree KT and is

bound to that user's identity. Specifically, a user will compute a cryptographic hash h

as follows:

h = H(VUF(userid), H(KT), H(PT_ 1)), such that h <difity
difficulty

where H(KT) denotes the root hash of the key-tree being attested in epoch i and

H(PT) denotes the root hash of the previous PoW-tree created in epoch i - 1.

Depending on the difficulty, the proof-of-work h will require more computation

and thus more time to be created. Note that the proof-of-work h contains the root

hash H(KT) of the newest key-tree as well as the identity of the user who produced

it, in the form of a VUF[41] similar to CONIKS[40]. Including the user's identity in

the proof-of-work prevents theft and allows the key-server to identify the user who

produced the proof-of-work.

41

To aggregate the proofs-of-work into a PoW-tree, a set of (VUF(user), h) key-value

pairs is produced, which maps a user's VUF to her proof-of-work. Next, a balanced

binary search tree (BST) is built that stores the proofs-of-work in-order, sorted by

the user's VUF. We require that the difference in height between any two PoW-tree

leafs be no more than one and we give users a way to verify this. This is the same as

requiring the tree to be complete, except the last level need not have all leafs as far

left as possible. We call such a tree an almost-complete tree.

When a new key-tree is published, users will begin certifying it, helping the key

server build a PoW-tree for it. Users first verify their binding is valid in the key-tree

and will then compute a proof-of-work that certifies the key-tree. Next, users send

their proofs-of-work to the key server which aggregates them into a PoW-tree. Once

the PoW-tree has aggregated sufficient proof-of-work, it will attest that enough users

have verified the key-tree.

4.5.2 PoW-trees as distributed signatures

A PoW-tree can be compared to a distributed signature on a key-tree by all users

who have verified their binding in the tree. This signature is unforgeable under the

assumption that an adversary will not have sufficient computation power to produce all

the required proofs-of-work in the PoW-tree. Note that this computational assumption

is similar to Bitcoin's assumption. Bitcoin will remain secure (i.e. the block-chain will

not be forked) as long as there is no adversary that has more than 50% of the Bitcoin's

mining network computation power[42]. PoW-trees solve the gossiping problem: gossip

is now implicitly achieved via a valid PoW-tree signature. Furthermore, this gossip

channel cannot be easily tampered with, as that would require computing many

proofs-of-work. PoW-trees also solve the problem with CONIKS described in 3.7,

where if enough CONIKS key-servers were compromised or coerced, then the gossip

mechanism in CONIKS would not work anymore and key-servers could equivocate to

users without being detected.

42

4.5.3 Verifying PoW-trees

PoW-trees are verifiable by users, who can check that there is sufficient work in a

PoW-tree. A successful check proves that the key-tree signed by the PoW-tree has

been verified by enough users, which implies the bindings stored in the key-tree are

correct. To ensure that a PoW-tree is a valid signature on a key-tree, users need to

verify its:

" Strength: Users will check that there are sufficient proofs-of-work in the PoW-

tree.

" Correctness: Users will check that all the proofs-of-work in the PoW-tree

attest the expected key-tree.

" Difficulty: Users will ensure that the difficulty of the proofs-of-work in the

PoW-tree is sufficiently high.

" Uniqueness: Users will ensure that proofs-of-work are not duplicated in the

PoW-tree.

Users can validate a PoW-tree by randomly requesting paths in the tree and

verifying that:

* The inferred height of the tree is equal to its expected height.

* The difference between path heights is at most one.

" The BST invariants are correct at every node in the paths.

* The proofs-of-work along the paths are sufficiently difficult, commit the expected

key-tree and are not duplicated.

The random paths requested by the user are called a PoW-tree proof. Note that

PoW-tree verification is probabilistic: a user can be certain with high probability that

the PoW-tree has a certain strength and commits the expected key-tree. We will

analyze the security properties of PoW-tree verification in more detail in 5.2.

43

4.6 Protocol operation

Below we describe key interactions in the PowMail protocol between users and the

key server. We also explain how epochs are created in PowMail.

4.6.1 Epoch creation

An easy way to understand how epochs evolve in PowMail, is to start at the first

epoch and detail how public key bindings are added to the system.

When a key server is first deployed, epoch 0 is created which contains an empty

key-tree KTO. The epoch is advertised and users start submitting Register requests

to the key server with proofs-of-work that certify KTO. At the end of epoch 0, all the

proofs-of-work from the Register requests are verified and aggregated in PoW-tree

PTO. Similarly, all the bindings from the Register requests are inserted in key-tree

KT1, which will be published at the beginning of epoch 1. Finally, at the end of the

epoch, the key server transitions from epoch 0 to epoch 1, publishing KT and PTO.

In epoch 1, users will not yet be able to query KT as it is not yet certified by a

PoW-tree. This is because in epoch 0, the proof-of-work was used to certify KTO, not

KT which was just being built. Thus, users will start certifying KT by submitting

proofs-of-work in epoch 1. Users are incentivized to do this; they have to "pay" for

keeping their public key bindings in the next epoch's key-tree. Additionally, new users

will submit Register requests to have their public keys registered in the next epoch's

KT2 key-tree. At the end of epoch 1, all proofs-of-work are verified and aggregated in

PT. Also, all newly registered bindings as well as any updated bindings are inserted

in KT2. Note that KT2 will include all the bindings from KT1, including non-paying

users' bindings, even though they will not be valid. The key server transitions from

epoch 1 to epoch 2, publishing KT2 and PT1. Users can now validate KT by checking

that the PT PoW-tree certifies KT, as described in 4.5.3. As a result, users will be

able to securely perform lookup queries on KT1. Note that KT2 will not be ready to

be queried until it is certified in epoch 3, when PT2 is created.

This simple process is repeated during every epoch. At epoch i, the next epoch's

44

KTjij key-tree is being built. Concurrently, the PT PoW-tree, which certifies epoch

i's key-tree KT, is also being built.

4.6.2 PoW-tree strength evolution

For PowMail to remain secure, every new epoch's PoW-tree must be at least as strong

as the previous epoch's PoW-tree. Otherwise, a malicious key server can create its own

PoW-trees that would have insufficient proof-of-work but would be able to attest a

key-tree, possibly leading to equivocation attacks. Thus, PowMail needs a mechanism

for increasing proof-of-work difficulty and PoW-tree strength as a function of time

and as a function of the number of users. Since we expect the number of secure email

users to strictly increase over time, PowMail requires new PoW-trees to be at least

as strong as previous PoW-trees. Users will verify this is the case and whistleblow

otherwise. Note that our system's security will increase with the number of users since

PoW-trees will accumulate more proof-of-work. To account for Moore's Law, we can

double the proof-of-work difficulty once every 18 months. If epochs are one day long,

then this will be easy to enforce and verify by the users.

An interesting case could arise where the key server is unable to collect sufficient

proofs-of-work from its users for the next epoch. This could happen due to network

problems for instance. In this case, the key server should still publish that epoch's

PoW-tree but it should indicate in its commitment that the PoW-tree is not strong

enough. As a result, users will know the key server is not misbehaving and wait until

the next epoch's key-tree is created and certified. Unfortunately, this can lead to an

increased waiting time for users who are trying to register or update their public keys,

but we do not expect this case to arise often.

4.6.3 Public key registration and update

To register a public key in PowMail:

1. The user generates her key-pair (either a kex keypair, a sig keypair, or both).

45

2. The user catches up with the latest epoch n by asking for a non-membership proof

in each epoch's key-tree. This proves to the user she has not been impersonated.

3. The user computes a proof-of-work that certifies the key-tree KT, in the latest

epoch n. This will be time consuming, but registration only happens once.

4. The user sends a Register request to the key server containing her public key

and proof-of-work

5. The key server uses email-based authentication to ensure the user is the owner

of the account (see Appendix A.1).

6. The key server ensures the proof-of-work submitted with the request is correct

and has enough work.

7. The key server schedules the public key to be included in the next epoch's

key-tree KTn+1.

8. The key server saves the proof-of-work in the next epoch's PoW-tree PT" which

will certify the current epoch's key-tree KT,.

9. The user's public key will be published in the next epoch n + 1. However,

key-tree KTn+1 will not be certified until epoch n + 2. As a result, the user's

public key will not be visible until then.

Updating a public key operates in the same manner as registration. However,

during public key update, a signature under the old sig secret key on the new public

key is required. Note that this mechanism achieves our Secure binding update goal in

2.4, as it only allows the user who registered her initial public key to update it later.

This makes impersonation attacks harder for key servers because they will not possess

the sig secret key of the user. Thus, in order to impersonate a user, a malicious

key-server will have to fork the key-tree at an earlier epoch when the victim user was

not registered.

4.6.4 Monitoring and public key maintenance

Once the user has registered her public key as described in 4.6.3, she will have to

monitor the key server to detect impersonation. Also, the user will have to "pay" for

46

keeping her public key on the key server by computing proofs-of-work every epoch.

The proofs-of-work will certify the key-tree in that epoch, preventing the key server

from equivocating.

If the user has registered her public key during epoch n and the key server has

included her PK in the next epoch's key-tree KT+1 , then the user will (have to) start

monitoring and compute proofs of work once every epoch, starting at epoch n + 1.

For every new epoch n + i where i > 0, the user will do the following:

1. The user checks that her binding has remained unchanged in epoch n + i by

asking for a membership proof in the KTn+i key-tree.

2. The user computes a proof-of-work that certifies the KTn+i key-tree and sends it

to the key server. This step will be time consuming. However, if epochs change

once a day, then this can be practical.

3. The user repeats this process for all new epochs.

If the user is offline and misses an epoch, then she will fail to pay for keeping her

public key in the key-tree. As a result, the user's public key will be automatically

revoked. This is because other users will not use a public key which is not backed by

proof-of-work; other users would find it hard to tell whether such a public key is fake

or not.

When the user comes back online, she can "catch up" with the current epoch

by simply downloading the key-tree in each epoch and verifying via a membership

proof that her public key binding has stayed the same. She can then start computing

proof-of-work to have her old public key be valid again or she can update her old

public key.

4.6.5 Public key lookup

To look up Bob's public key, Alice will do the following:

1. Alice needs to catch up with the latest epoch n, as described in 4.6.4.

2. Alice looks up Bob's PK in key-tree KT,, 1 by asking for a (non)membership

proof for Bob and verifying it.

47

3. Alice looks up Bob's proof-of-work in PoW-tree PT_1 and verifies it.

Alice can use Bob's public key to send him an encrypted message, as described in

4.7 or she can use Bob's public key to verify his signature on a message, as described

in 4.9.

4.7 Message encryption

PowMail uses an elliptic curve public key cryptosystem such as Ed25519[18], allowing

users to perform an ECDH key exchange[8] and derive a shared key. The obtained

key can be used to encrypt messages between Alice and Bob. Also, the obtained key

can be used to deniably authenticate messages between Alice and Bob by computing

message authentication codes (MACs). PowMail encrypts email messages using an

authenticated encryption scheme such as AES-GCM[28].

4.8 Forward secrecy mechanism

To achieve per message forward secrecy, PowMail uses different message keys for

every email sent, with the exception of the first outgoing email between two users.

The first email has to be encrypted with the recipient's public key as users will not

have a pre-agreed message key. Message keys are generated independently from users'

key-pairs, such that compromise of secret keys does not lead to loss of message secrecy,

thereby achieving forward secrecy.

The message keys are agreed upon by piggybacking authenticated Diffie-Hellman

key exchanges[27] on top of every email exchanged between users. This way, a new

message key can be derived for each email sent and used to encrypt the next email,

continuing the cycle. Again, note that the first email message sent from Alice to

Bob will not have a pre-agreed message key, and thus will not have forward secrecy.

However, cautious users can still protect their secrecy by initially sending a dummy

message to the recipient and waiting for a reply, which will implicitly perform the

authenticated key exchange. The reply message will be encrypted with a newly

48

generated message key and will thus have forward secrecy. From that point on, all

messages exchanged between the two users will have forward secrecy. We plan on

investigating ways to provide forward secrecy for the first email message in future

work (see 8.3).

4.9 Message signing

PowMail can enable users to perform non-repudiable digital signatures by allowing

them to store different key types on the key server. Users already have a kex key-pair

that will be used for establishing shared keys using ECDH but using the kex secret

key for performing digital signatures is ill-advised and could lead to security issues[38].

For instance, an adversary might be able to use peculiarities in the key-exchange

protocol to trick the victim into signing arbitrary messages with her secret key. Thus,

we introduce a new sig key-pair type that can be used to sign and verify messages.

Alice can sign a message to Bob using her sig secret key and Bob can verify Alice's

signature by looking up her sig key on the key server.

4.10 Summary

In this chapter, we presented PowMail's architecture. We explained how we use proof-

of-work to certify key-trees, obtaining consensus on the public key history in PowMail.

We enumerated the mining incentives of email users and argued that the need to keep

public keys valid can be used as a strong mining incentive in PowMail. We introduced

our novel PoW-tree construction and compared PoW-trees to a distributed unforgeable

signature. We explained how PoW-trees can be externally verified by all email users

and how they can be used to bootstrap users' trust on the latest commitment of the

public key history.

49

50

Chapter 5

PowMail security analysis

5.1 Key-tree attacks

Hiding a fake binding. A key server can try to create a fake binding for Alice and

hide it next to her real binding. One way to do this would be to use a non-deterministic

VUF that can produce different outputs for the same input. In this case, Alice's real

binding can be mapped to the leaf determined by v, - VUF(ri, Alice) while her fake

binding would be mapped to a different leaf v 2 = VUF(r2, Alice). Note that r1 and

r2 denote the randomness or coin flips used to compute the non-deterministic VUF.

This attack is easily thwarted by using a deterministic VUF such as a deterministic

signature scheme.

Another way to hide a binding would be for the key server to place the real binding

in the correct leaf while placing the fake binding somewhere along the path from the

leaf to the root (or vice versa). This attack only works if users incorrectly verify the

authenticated path returned by the key server. This attack can be detected by Alice

when she monitors her binding. The key server will have to show Alice either the real

leaf at the end of the path or the fake leaf embedded in the middle of the path. If

Alice is shown the real leaf then, when she verifies by hashing up from it, she will

obtain an incorrect key-tree root hash due to the extra fake leaf embedded along the

path. If Alice is shown the fake leaf only, she will immediately detect impersonation

since her real public key is not in that leaf.

51

Finally, the server can try embedding the fake binding in a wrong leaf (i.e. a leaf

that is different than v = VUF(Alice)). Again, this only works if users incorrectly

verify (non)membership proofs. Users can easily detect the wrong leaf has been

returned by verifying that the path to the leaf (i.e. the left and right directions that

the path takes) matches the binary representation of the VUF of Alice (i.e. zeros

correspond to taking a left pointer, ones, to taking a right pointer).

Equivocation. A key server can try equivocating to users about Alice's binding.

The key server can present a new key-tree KTAlice to Alice, which contains her real

binding, and present a different key-tree KTOthers to the rest of the users. To be able to

equivocate, the key server has to produce two PoW-trees: one for KTAice and one for

KTOthers. However, producing a PoW-tree requires having as much computation power

as the users, which we assume key servers do not have. A key server can equivocate

about the key-tree, asking half of its users to produce a PoW-tree for KTAlice and the

other half for KTOthers. However, the key server will still have to compute half of the

remaining work for each PoW-tree or find a way to inflate the PoW-tree with fake

work. If we assume that the key server's computational power does not exceed 50% of

the users' power, the key server will be unable produce a sufficiently strong PoW-tree.

If the server tries to fake the proof-of-work, it will be detected when users validate

the PoW-tree (see 5.2).

5.2 PoW-tree attacks

In this section we describe attacks that try to spuriously inflate the amount of work

in a PoW-tree, in order to forge a signature on a key-tree. Our main goal is to prevent

the attacker from creating fake PoW-trees that have a significant fraction f of fake

proofs-of-work. Recall our threat model assumption that a malicious key server's

computation power will not exceed 50% of the computation power of its users. Thus,

the fraction f of fake proofs-of-work will typically be close to -. When users detect

an attack, they will whistleblow and announce misbehaviour to everyone.

52

5.2.1 Reused and bogus proofs-of-work

An attacker might try to inflate the work in a PoW-tree by inserting proofs-of-work

from previous PoW-trees or bogus proofs-of-work which commit the wrong key-tree

hash or the wrong VUF or which are not sufficiently difficult. For now, we assume

the attacker inserts the bogus proofs-of-work in the tree correctly, respecting BST

invariants, and deal with the case where the attacker breaks BST invariants in 5.2.2.

Reused proofs-of-work will be quickly found in the PoW-tree when users randomly

query it and, when verified, a wrong key-tree root hash will be detected which proves

key server misbehaviour. Bogus proofs-of-work that have a smaller-than-required

difficulty or commit the wrong key-tree hash or wrong VUF will be detected in the

same fashion.

Proof sketch. Recall that PoW-trees are balanced binary search trees that store

(VUF(user), POWuser) pairs, sorted by VUF(user). Suppose the malicious key server

claims there are n proofs-of-work in the tree, but a fraction f of them are bogus. First,

note that by asking for a random node in the tree, a bogus proof-of-work will be found

with probability f. Second, note that by asking for a random path in the tree, a bogus

proof-of-work will be found with probability Pr [bogus PoW found] > f. Thus, the

probability of not finding a bogus proof of work after asking for one random path is

Pr [bogus PoW not found] < 1 - f. Third, note that by asking for k random paths in

the PoW-tree, the probability of not finding a bogus proof becomes arbitrarily small:

Pr [bogus PoW not found after k queries] < (I - f)k

5.2.2 Duplicating proofs-of-work

Since reused and bogus proofs-of-work can be detected, an attacker might try du-

plicating valid proofs-of-work in the same PoW-tree. Recall that the PoW-tree is a

BST sorted by the user's VUF. As a result, an attacker cannot insert a duplicate

proof-of-work without breaking the tree's BST invariant at some node. The attacker

can try inserting the duplicate proof-of-work under a different user's VUF, but this

53

will be detected as a bogus proof of work (see above). We show below that BST

invariant violations will be quickly detected when users randomly verify the PoW-tree.

Proof sketch. Suppose the key server claims there are n proofs-of-work in the tree, but

a fraction f of them are duplicated and, as a result, break BST invariants. Recall

that a BST invariant violation is a pair of any two nodes along a path that are not

properly ordered. First, notice that each duplicate proof-of-work inserted will have

to increase the number of BST invariant violations by (at least) one. Second, notice

that each BST invariant violation creates one or more invalid paths in tree (i.e. a

path containing two nodes that are out of order). For instance, if the violation is

between the root of the tree and a leaf of the tree, then the violation creates a single

invalid path. However, if the violation is between the root of the tree and a non-leaf

node, then the violation creates multiple invalid paths; as many as the number of leafs

below the non-leaf node. It can be shown that the number of invalid paths created is

related to the number of violations and hence the number of duplicate proofs-of-work

inserted.

no. of BST invariant violations
no. of invalid paths;>-

2
no. of duplicate proofs-of-work

no. of invalid paths;>
2

Thus, since a fraction f of nodes contain duplicate proofs-of-work, it follows that

a fraction f/2 of paths will be invalid. Then, as explained in 5.2.1, the probability of

not finding a duplicate proof-of-work will be:

Pr [duplicate PoW not found after k queries] = I -)

Finally, we can decrease the failure probability to (1 - f)k during verification by

including the proof-of-work in the neighbours of the nodes in the PoW-tree proof,

instead of only providing their hashes. This will enable detection of BST violations

between the nodes along a path and their neighbours, effectively doubling the number

'Any node below the root can suffice though.

54

of invalid paths.

5.2.3 Bogus tree height

We have shown that increasing the tree's height by inserting a fraction f of duplicate,

reused or bogus proofs-of-work fails with high probability. Thus, the adversary might

try rearranging the tree by increasing its height to make it appear larger, but without

inserting any proofs-of-work. As a result, the adversary will create empty subtrees in

the PoW-tree, resulting in a tree that is not almost-complete as described in 4.5.1.

We show that such empty subtrees can be easily detected, proving misbehaviour.

Proof sketch. We can reduce this case to the previously examined case where the

adversary inserts bogus proofs-of-work. Note that the empty subtrees that are created

after the height of the tree is artificially increased are equivalent to bogus proofs-of-work

subtrees inserted in a PoW-tree to make it appear larger. Using a similar argument

as in 5.2.1, an adversary who wants to add a fraction f of fake proofs-of-work by

artificially increasing the PoW-tree's height will succeed with negligible probability:

Pr [bogus PoW-tree height not detected after k queries] = (1 - f)k

5.3 Key server security properties

First, since PowMail uses prefix Merkle trees that are monitored by users, much like

CONIKS[40] does, it achieves all goals described in 2.4, except for Non-equivocation.

Second, PowMail's novel use of PoW-trees enables it to meet the Non-equivocation

goal in the face of powerful adversaries, as defined in 2.3. Third, the Freshness goal

can be met by assuming users have loosely synchronized clocks and can thus tell when

a new key-tree and PoW-tree should be published.

As we detailed in this chapter, PoW-trees are employed to certify a key-tree.

Creating a PoW-tree requires computing many proofs-of-work, which a powerful

adversary will not be able to do without investing a large amount of capital in an

attack. Furthermore, the adversary's cost will double with the number of forks he

55

wants to maintain, as each fork has a different key-tree, which requires a different

PoW-tree to certify it. We believe the high costs associated with creating forks will

prevent attackers from equivocating. Thus, PowMail's key server design achieves all

properties described in 2.4.

5.4 Email transmission security properties

PowMail's secure key servers enables users to correctly obtain each other's public

keys and to send and receive emails with all properties described in 2.5. As a result,

PowMail can easily achieve its security goals for email transmission:

* Deniable authentication is achieved by allowing users to exchange a shared secret

key via ECDH[8] (see 4.7).

e Secrecy and integrity is achieved by encrypting using an authenticated cipher

mode under the shared secret key (see 4.7).

o Forward secrecy is achieved by exchanging message keys over email communica-

tion using piggybacked Diffie-Hellman key-exchanges (see 4.8).

9 Non-deniable authentication can be achieved by signing messages using the sig

key-pair type (see 4.9).

5.5 Summary

In this chapter, we detailed attacks that key servers can attempt. We explained how key-

tree attacks are easily detected and thwarted by correctly verifying (non)membership

proofs. For PoW-tree attacks, we showed that under a reasonable computational

assumption for key servers, our system remains secure. We conclude that PowMail

achieves all of its key server security goals as well as its email transmission security

goals.

56

Chapter 6

PowMail implementation

We used the Go programming language to implement a key server and a PoW server

in 3500 lines of code. The key server manages the key-tree: it allows users to register,

update and verify their bindings, it enforces the mining of proofs-of-work by rejecting

public key registration or update requests unless they include the required proof-of-

work. The PoW server manages the PoW-tree: it collects the proofs-of-work submitted

to the key server, it creates PoW-trees and replies to queries from users that verify the

PoW-tree. Note that the PoW server could also be implemented within the key server.

We chose to separate their implementations to increase the key-tree and PoW-tree

query throughput by having services run on different machines. Below, we describe

some of the details of our implementation.

Protocol Buffers. We used the Protocol Buffers[6] library built by Google to

implement tree path serialization for key-tree (non)membership proofs and PoW-tree

proofs.

gRPC. We used the gRPC library to implement the key server and PoW server as

RPC servers. The gRPC library has the advantage of not having to rewrite client RPC

code when writing PowMail clients for different platforms. For instance, a JavaScript

client would be required for a webmail implementation of PowMail, while a C++ or

Java implementation would be needed for porting existing mail clients to use PowMail.

Using gRPC, we can generate RPC client code automatically for any language we

write a PowMail client in.

57

Path-copying. We used path-copying to save memory when new key-trees are

created. This speeds up insertion in the key-tree and allows PowMail to create epochs

instantly without cloning the previous epoch's key-tree.

6.1 Key server API

The key server exposes a simple API which allows users to obtain the root commitments

of key-trees, register public keys and update public keys.

Table 6.1: The key server API

API call

GetCommit (epoch)

LookupPk(epoch, user)

RegPk(user, PKuser, POWuser)

UpdPk(user, PKuser, POWuser)

Return type

(Commit(KTepoch), Commit(PTepoch))

(PKuser, KTroof, PTproof)

Signed promise to include PKuser

Signed promise to update user's PK

6.2 PoW server API

The PoW server exposes a simple API for queuing proofs-of-work to be added to the

next PoW-tree, for verifying PoW-trees and for finding proofs-of-work submitted by

users.

Table 6.2: The PoW server API

API call

AddPow(user, PoWuser)

Verify(user, rand)

FindPow(epoch, user)

Return type

Signed promise to include POWuser in the next PoW-tree

PoW-tree paths as selected by rand coin-flips

(POWuser, PTproof)

58

6.3 Summary

In this chapter, we described our Go implementation of PowMail. Our prototype

exposes a simple interface which clients can use to register, update or look up public

keys.

59

Chapter 7

PowMail evaluation

7.1 Key-tree lookups

For this experiment, we set up a key-tree with 224 = 16777216 bindings and we

measured -the rate at which the key server could compute (non)membership proofs for

public key lookups. We then measured clients' (non)membership proof verification time.

We did not measure the client signature verification time for the (non)membership

proof since the client can simply compare the root hash in the proof against the root

hash in its latest key-tree commitment, whose signature it has verified at the beginning

of the epoch. In both experiments, we sampled by executing 65,536 LookupPk queries.

The results can be seen in Figure 7-1 and 7-2.

Most client verification times fell within 5-10 pseconds, with a 7.5 psecond average

and 3.2 psecond standard deviation. Most server proof computation times fell within

20-40 pseconds, with a 20.1 psecond average and 3.2 pusecond standard deviation.

These results indicate that the key server can handle up to 201 0 ~ 50,000 proofs

per second, the equivalent of 4.3 billion proofs per day. Note that since an epoch's

key-tree does not change after it is created, we can improve server proof throughput by

using multiple threads to generate proofs. Finally, we can further increase throughput

by replicating the read-only key-tree on multiple machines.

61

0.10

0.08 1

0.06 -

Lun
0

0.04

0.02

0.00 L
10

Client (non)membership proof verification time
(16M bindings)

20 30 40 50 60

Verification time (pIs)

Figure 7-1: Client (non)membership proof verification time histogram

Server (non)membership proof computation time

0.05 (16M bindings)

0.04-

0.03

Lu
.0
0

&
0.02 F

0.01 I

0.002
20 40 50 60 70 80

Computation time (gs)

Figure 7-2: Server (non)membership proof computation time histogram

62

-- - -

7.2 Key-tree new epoch computation

For this experiment we measured the time to compute new key-trees for new epochs.

We setup an initial key-tree with 220 bindings. Next, we added a batch of 217 new

bindings to the key-tree and measured the server insertion time. We then repeated

the experiment with key-trees of size 221, 222, 223 and 224 bindings. We sampled 50

executions for each key-tree size. The results can be seen in Figure 7-3.

8

6

4

2

Key-tree size vs. time to add 2" = 131072 bindings

0,0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Existing # of bindings in key-tree
1.6 1.8

l 7

Figure 7-3: Server time to insert 131,072 bindings as a function of

[h]

key-tree size

Our results show that insertion time increases slowly despite doubling the key-tree

size for each point. Our insertion performance is higher than CONIKS because we use

path-copying when creating a new key-tree, avoiding the need to clone the tree when

a new epoch is generated.

7.3 PoW-tree construction

For this experiment we measured the time to build a PoW-tree as a function of

the number of proofs-of-work to be aggregated in the tree. We doubled the PoW-

tree size for each test, starting with 220 = 1048576 proofs-of-work and going up to

224 = 16777216 proofs-of-work. We then measured the time it took the PoW server to

compute the balanced binary search tree. The results can be seen in Figure 7-4.

63

0

E
P1

---1

of proofs-of-work vs. time to compute PoW-tree
600

500

400

~0

300

E

200

100

0
2 0221 2 2 2 4

of proofs-of-work

Figure 7-4: PoW-tree construction time as a function of its size

Since we are sorting the proofs-of-work by their users' VUF and creating a balanced

BST, the time to create a PoW-tree is dominated by the time to perform the sort.

7.4 Summary

In this chapter, we evaluated the performance of our system. We showed that key

servers can support 50,000 key-tree lookup queries per second and can be easily scaled

using replication and concurrency. Also, we showed that path-copying key-trees insert

performance can scale easily. Finally, we showed that PoW-tree construction is the

most expensive step and it should be further optimized.

64

Chapter 8

Future work

8.1 Webmail

Webmail is difficult to secure since providers such as Gmail or Hotmail could easily

extract secret keys from users' browsers by serving modified JavaScript code to their

users. For example, users' trust in ProtonMail[7], a secure webmail provider, could

be misplaced not only because ProtonMail could undetectably misbehave but also

because users are required to trust all TLS certificate authorities not to impersonate

ProtonMail and inject modified JavaScript that reads users' secret keys. We propose

two possible solutions to the secure webmail problem.

The first (and preferred) solution involves dramatically redesigning browsers to

verify encrypted web applications such as secure webmail. Browsers should be re-

designed to verify that webserver-provided JavaScript code abides by a security policy

specified via a domain-specific language in a trusted policy file. Browsers can pin such

policy files and ask the user to inspect policy updates. Ideally, the domain-specific

language used to specify the policy should be user-comprehensible. Furthermore, to

prevent equivocation about the policy file, a policy transparency technique similar to

Certificate Transparency[36] could be used.

The second solution is for users to use a trustworthy browser extension. Instead of

trusting a web-mail provider, users can trust a browser extension to safely store their

'Of course, leaving security decision to users can be ill-advised and would need careful consideration.

65

secret keys and secure their webmail communications by transparently encrypting

and decrypting emails within browser pages. Such an extension can be verified by

third parties to ensure it does not leak user's secret keys or their data. We plan on

addressing secure webmail in future work.

8.2 Fighting (encrypted) spam

Email encryption can be a spammer's paradise, exacerbating the spam problem by

enabling spammers to obfuscate their emails using encryption and avoid detection

on the service provider side. However, we believe our proof-of-work mechanism

for registering public keys coupled with email authentication can deter large-scale

spamming. If botnets did not exist, then a spammer using a single account for sending

encrypted spam could be easily stopped: users simply report the spam email and the

spammer's account is flagged by their provider. As a result, spammers would have

to register many accounts which would require computing expensive proofs-of-work

thereby making spam cost-ineffective.

Since botnets are a reality, with over 1.9 million bots on the internet[50], they need

to be addressed. A spammer can use a bot to create one or more spam accounts by

stealing the victim's computation power and computing the required proof-of-work to

register and maintain the public key bindings in PowMail. The spammer can then

send encrypted spain from these accounts, but, as discussed before, such accounts

would be easily reported by users and flagged as spam accounts. Also, the high CPU

usage associated with computing the proof-of-work could be noticed by some users who

would suspect their machines are compromised. To avoid being detected, spammers

can find the secret key of the victim's PowMail account and use the victim's account

instead of creating new accounts, avoiding the need to consume the victim's CPU

and minimizing detection risk. Such spam emails would be authenticated, making

the email appear legitimate to the recipients, further increasing the effectiveness of

the spam. We believe this kind of spam could be detected or at least throttled at

the service provider (SP) level. For instance, service providers could deploy spam

66

filters that use machine learning over encrypted data algorithms, as proposed in recent

work[21]. Another approach would be for service providers to monitor the number of

emails sent by their users in order to detect potentially compromised accounts. For

this to work, a service provider should only accept encrypted email with a signature

by the sender's service provider who has verified that the sender's account is not

compromised. This could be effective, since the number of bots is in the millions

while the number of spam emails is in the tens of billions[50], meaning bots need to

send thousands of emails from individual accounts which would send a loud signal to

service providers that an account is compromised2 .

While requiring proof-of-work for sending an email has been shown infeasible

for preventing spam due to spammers ability to control end-user machines[35], we

believe requiring proof-of-work for account registration could be more effective, as

it could prevent spammers earlier by limiting the number of accounts they can use.

We plan on addressing spain botnets in future work by taking advantage of the

implicit authentication in secure email to detect and throttle spam, hopefully making

it cost-ineffective.

8.3 Forward secrecy for the first email

Forward secrecy for the first email message can be hard to obtain since users will not

agree on message keys until the sender gets a reply to the first email from the receiver.

To provide forward secrecy for the first email message, we can provide an option in

the user interface that enables a user to start a message key exchange with one of

her contacts without sending a dummy email and waiting for a dummy reply (see

4.8). Such a feature can be implemented transparently so that no additional emails

will be displayed in the communicating users' inboxes. A different route would be to

introduce a special kind of forward-secure email conversation in which, before sending

the first email in the conversation, a transparent key-exchange is performed by sending

2Multiplexing compromised accounts will not give bots any advantage as the number of emails
seen and thus filtered out by SPs will remain the same.

67

a request key-exchange email which prompts the recipient to reply with an accept

key-exchange email, bootstrapping an authenticated Diffie-Hellman key-exchange[27].

When the sender receives the accept key-exchange email, he sends the actual first email,

encrypted under the exchanged message key. Note that the key-exchange emails would

be sent and handled transparently by PowMail clients, not creating any overhead for

the user. The disadvantage of this method is that email delivery will not happen

instantly. If Alice sends the first email in a forward-secure conversation to Bob and

then goes offline for a year, then Bob will not receive the email until a year later when

Alice comes back online, finishes the key-exchange and sends the actual email to Bob.

We plan on addressing forward secrecy for the first email in future work.

8.4 Append-only authenticated dictionaries

To prevent key servers from equivocating about the history of its users' public keys,

an append-only authenticated dictionary is needed along with a gossip protocol, which

prevents the key server from equivocating about the dictionary itself. While this

thesis addresses the need for a gossip protocol by introducing PoW-trees to certify the

latest dictionary, the append-only authenticated dictionary problem remains unsolved.

Note that CONIKS is not an append-only dictionary because, while users can ensure

their own history of bindings has remained append-only, they cannot ensure that the

history of other users' bindings has remained append-only. However, the monitoring

done by all users, the dividing of time into epochs and the CONIKS gossip protocol

together provide the append-only property for all monitoring CONIKS users. Previous

work such as ECT[47] and Balloon[46] also try to solve the append-only authenticated

dictionary problem but they can only enforce the append-only property by requiring

users to monitor the data structure, which can be expensive. The problem of providing

logarithmic-sized consistency proofs in append-only authenticated dictionaries remains

an open problem which we will explore in future work.

68

8.5 Whistleblowing

In our security analysis (see 5), we mentioned that users will whistleblow when they

detect an attack, without fully specifying how this will happen. We believe that

enabling users to whistleblow and making this evident to other users will provide an

important health metric for PowMail's security and we plan on addressing it in future

work.

8.6 Summary

In this chapter, we proposed future work to better deal with the challenges of secure

webmail, encrypted spam, forward secrecy for the first email and whistleblowing to

announce misbehaviour in PowMail.

69

70

Chapter 9

Conclusion

In this thesis, we showed that a secure email solution can be built using proof-of-work

consensus. We presented PowMail, an architecture for secure email communication

that leverages proof-of-work and a novel PoW-tree primitive to prevent impersonation

attacks by powerful attackers.

Our contributions were the following:

" We designed, implemented and evaluated PowMail, a secure end-to-end email

security architecture.

" We introduced a novel authenticated data structured called a PoW-tree which

allows a large number of users to compute a distributed unforgeable signature

and reasoned about its security.

* We proposed a security model for key servers in email.

* We summarized promising previous work on secure email and secure public key

distribution.

" We proposed directions for future work on secure web-based email, encrypted

spain, whistleblowing and forward-secrecy for the first email message.

71

C

Appendix A

Discussions

A.1 Initial email-based authentication

Before users allowing users to register a public key, the key server needs to authenticate

them via their service provider. Without such authentication, Mallory, an active

adversary, could register accounts for many users of the system (as many as he can

compute proofs-of-work for) and, as a result, create a denial of service (DoS) attack,

since these users will not be able to override the fake public keys published by Mallory

without knowing their corresponding secret keys. To authenticate Alice's Register

request, the key server can email Alice and verify her ownership of the account by

having Alice click on a unique link stored in the email[29. However, since active

attackers can intercept that (unencrypted) email, the key server needs a way of

authenticating Alice's service provider and asking it to deliver the email to Alice. This

can be achieved via the existing TLS infrastructure with the caveat that this initial

email-based authentication remains secure only if all TLS CAs behave correctly.

73

74

Bibliography

[1] Bitcoin merge mining specification. https://en.bitcoin.it/wiki/Merged_
miningspecification. Accessed: 2015-08-23.

[2] Convergence. http: //www. convergence. io/. Accessed: 2015-08-22.

[3] MIT PGP Public Key Server. https : //pgp .mit. edu.

[4] Namecoin. https: //namecoin. inf o/. Accessed: 2015-08-23.

[5] Perspectives project. http: //perspectives-project. org/. Accessed: 2015-08-
22.

[6] Protocol Buffers. https: //developers .google. com/protocol-buf fers/?hl=
en.

[7] ProtonMail. http: //protonmail. ch.

[8] SEC 1: Elliptic Curve Cryptography. http: //www.secg. org/sec1-v2.pdf, may
2009.

[9] A new approach to China. http://googleblog.blogspot.com/2010/01/
new-approach-to-china.html, jan 2010. Accessed: 2015-08-24.

[10] Internet SSL Survey 2010 Results. https://community.qualys.com/blogs/

securitylabs/2010/07/30/internet-ssl-survey-2010-results, July 2010.

[11] Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.2 Message
Specification. RFC 5751, RFC Editor, Jan 2010.

[12] SSL And The Future Of Authenticity. http: //www.thoughtcrime. org/blog/
ssl-and-the-future-of -authenticity/, April 2011.

[13] January 2014 web server survey. http: //news.netcraft. com/archives/2014/
01/03/january-2014-web-server-survey .html, January 2014.

[14] Ben Adida, David Chau, Susan Hohenberger, and Ronald L. Rivest. Lightweight
email signatures (extended abstract). In Proceedings of the 5th International

Conference on Security and Cryptography for Networks, SCN'06, pages 288-302,
Berlin, Heidelberg, 2006. Springer-Verlag.

75

[15] Ben Adida, Susan Hohenberger, and Ronald L. Rivest. Lightweight encryption for
email. In Proceedings of the Steps to Reducing Unwanted Traffic on the Internet
on Steps to Reducing Unwanted Traffic on the Internet Workshop, SRUTI'05,
pages 13-13, Berkeley, CA, USA, 2005. USENIX Association.

[16] Heather Adkins. An update on attempted man-in-the-middle at-
tacks. http://googleonlinesecurity.blogspot.com/2011/08/
update-on-attempted-man-in-middle .html. Accessed: 2015-08-22.

[17] Steven M. Bellovin. Spamming, phishing, authentication, and privacy. Commun.
ACM, 47(12):144-, December 2004.

[18] DanielJ. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang.
High-speed high-security signatures. Journal of Cryptographic Engineering,
2(2):77-89, 2012.

[19] Ken Birman. The promise, and limitations, of gossip protocols. SIGOPS Oper.
Syst. Rev., 41(5):8-13, October 2007.

[20] Nikita Borisov, Ian Goldberg, and Eric Brewer. Off-The-Record Communication,
or, Why Not to Use PGP. In Proceedings of the 2004 ACM Workshop on Privacy
in the Electronic Society, WPES '04, pages 77-84, New York, NY, USA, 2004.
ACM.

[21] Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. Machine
Learning Classification over Encrypted Data. In 22nd Annual Network and
Distributed System Security Symposium, NDSS 2015, San Diego, California,
USA, February 8-11, 2014, 2015.

[22] Peter Bright. http://arstechnica.com/security/2010/03/
govts-certificate-authorities-conspire-to-spy-on-ssl-users/. Ac-
cessed: 2015-08-22.

[23] Vincent Cheval, Mark Ryan, and Jiangshan Yu. DTKI: a new formalized PKI
with no trusted parties.

[24] Scott A. Crosby and Dan S. Wallach. Efficient data structures for tamper-evident
logging. In Proceedings of the 18th Conference on USENIX Security Symposium,
SSYM'09, pages 317-334, Berkeley, CA, USA, 2009. USENIX Association.

[25] Scott A. Crosby and Dan S. Wallach. Authenticated dictionaries: Real-world
costs and trade-offs. ACM Trans. Inf. Syst. Secur., 14(2):17:1-17:30, September
2011.

[26] M. Kucherawy D. Crocker, T. Hansen. RFC: DomainKeys Identified Mail (DKIM)
Signatures. http: //tools. ietf . org/html/rf c6376. Accessed: 2015-08-23.

[27] W. Diffie and M.E. Hellman. New directions in cryptography. Information Theory,
IEEE Transactions on, 22(6):644-654, Nov 1976.

76

[28] Morris Dworkin. Recommendation for Block Cipher Modes of Operation: Ga-
lois/Counter Mode (GCM) and GMAC. http: //csrc . nist . gov/publications/
nistpubs/800-38D/SP-800-38D.pdf, nov 2007.

[29] Simson L. Garfinkel. Email-based identification and authentication: An alternative
to pki? IEEE Security and Privacy, 1(6):20-26, November 2003.

[30] Doug Gross and Brandon Griggs. Snapchat CEO 'Mortified' by
Leaked E-Mails. http://www.cnn.com/2014/05/29/tech/mobile/
spiegel-snapchat-leaked-e-mails/. Accessed: 2015-5-14.

[31] The Radicati Group. Email statistics report, 2014-2018.
http://www.radicati.com/wp/wp-content/uploads/2014/01/

Email-Statistics-Report-2014-2018-Executive-Summary.pdf, 2014.

[32] Jen Heger. Inside Job? FBI Focusing On Sony Employee As Poten-
tial Source Of Hacker Leak. http: //radaronline. com/exclusives/2014/
12/sony-email-leak- inside-j ob-claim-fbi-interview-staff/. Accessed:
2015-05-14.

[33] Eduard Kovacs. Study: Most Firms Send Sensitive Data via
Email, but Fail to Protect It. http://news.softpedia.com/news/
Study-Most-Firms-Send-Sensitive-Data-Via-Email-But-Fail-to-Protect-It-Video-27
shtml. Accessed: 2015-01-31.

[34] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz. SoK: Automated Software
Diversity. In Security and Privacy (SP), 2014 IEEE Symposium on, pages
276-291, May 2014.

[35] Ben Laurie and Richard Clayton. "proof-of-work" proves not to work. In IN
WEAS 04, 2004.

[36] Ben Laurie, Adam Langley, and Emilia Kasper. RFC: Certificate Transparency.
http://tools.ietf .org/html/rfc6962. Accessed: 2015-5-13.

[37] Ravi Mandalia. Security breach in CA networks - Comodo, DigiNotar, GlobalSign.
http://blog.isc2. org/isc2 blog/2012/04/test .html. Accessed: 2015-08-
22.

[38] K.M. Martin. Everyday Cryptography: Fundamental Principles and Applications.
OUP Oxford, 2012.

[39] David Mazieres and Dennis Shasha. Building secure file systems out of byzantine
storage. In Proceedings of the Twenty-first Annual Symposium on Principles of
Distributed Computing, PODC '02, pages 108-117, New York, NY, USA, 2002.
ACM.

77

[40] Marcela S. Melara, Aaron Blankstein, Joseph Bonneau, Edward W. Felten, and
Michael J. Freedman. Bringing deployable key transparency to end users. In 24th
USENIX Security Symposium (USENIX Security 15), Washington, D.C., August
2015. USENIX Association.

[41] Silvio Micali, Michael Rabin, and Salil Vadhan. Verifiable random functions. In
In Proc. 40th IEEE Symposium on Foundations of Computer Science (FOCS,
pages 120-130. IEEE, 1999.

[42] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[43] C. Newman. RFC: Using TLS with IMAP, POP3 and ACAP. http: //tools.
ietf.org/html/rfc6376.

[44] Danny O'Brien. Web users in the United Arab Emirates have more to worry about
than having just their BlackBerries cracked. http: //www. slate. com/articles/
technology/webhead/2010/08/theinternetssecretbackdoor.html. Ac-
cessed: 2015-08-22.

[45] Nicole Perlroth. Yahoo Breach Extends Beyond Yahoo to Gmail,
Hotmail, AOL Users. http://bits.blogs.nytimes.com/2012/07/12/
yahoo-breach-extends-beyond-yahoo-to-gmail-hotmail-aol-users/?_r=
0, 2012. Accessed: 2015-08-24.

[46] Tobias Pulls and Roel Peeters. Balloon: A forward-secure append-only persistent
authenticated data structure. Cryptology ePrint Archive, Report 2015/007, 2015.
http://eprint.iacr.org/.

[47] Mark D. Ryan. Enhanced certificate transparency and end-to-end encrypted mail.
Cryptology ePrint Archive, Report 2013/595, 2013. http: //eprint . iacr. org/.

[48] Bruce Schneier. New NSA Leak Shows MITM Attacks Against Major Inter-
net Services. https: //www. schneier. com/blog/archives/2013/09/newnsa_
leaksh.html. Accessed: 2015-08-22.

[49] Adi Shamir. Identity-based Cryptosystems and Signature Schemes. In Proceedings
of CRYPTO 84 on Advances in Cryptology, pages 47-53, New York, NY, USA,
1985. Springer-Verlag New York, Inc.

[50] Symantec. 2015 Internet Security Threat Report, Volume 20. https: //www.
symantec.com/securityresponse/publications/threatreport.jsp.

[51] Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky, and Bryan
Ford. Decentralizing authorities into scalable strongest-link cothorities. CoRR,
abs/1503.08768, 2015.

[52] E Rescorla T. Dierks. RFC: The Transport Layer Security (TLS) Protocol,
Version 1.2. https : //tools. ietf .org/html/rf c5246. Accessed: 2015-08-22.

78

[53] Debra Cassens Weiss. Leaked Emails that Led to Exposure of Petraeus
Affair Violated Socialite's Privacy, Suit Claims. http://www.abajournal.
com/news/article/leakedemailsthatledto_exposure of petraeus_
affairviolatedsocialitesp. Accessed: 2015-5-14.

[54] Alma Whitten and J. D. Tygar. Why Johnny Can't Encrypt: A Usability
Evaluation of PGP 5.0. In Proceedings of the 8th Conference on USENIX
Security Symposium - Volume 8, SSYM'99, pages 14-14, Berkeley, CA, USA,
1999. USENIX Association.

[55] Philip R. Zimmermann. The Official PGP User's Guide. MIT Press, Cambridge,
MA, USA, 1995.

79

