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SUMMARY

Modulation of neural responses is frequently
observed in the superior colliculus (SC), a retinoreci-
pient midbrain structure that controls orienting and
the localization of attention. Although behavioral
contingencies that influence SC responses are well
documented, the neural pathways and molecular
mechanisms responsible for this modulation are
not completely understood. Here, we illustrate a
dopaminergic system that strongly impacts neural
responses in the SC. After using RNA sequencing
(RNA-seq) to detail the transcriptome of dopamine-
related genes in the SC, we show that D1 receptors
are enriched in the superficial visual SC, while D2 re-
ceptors segregate to the intermediate multimodal/
motor SC. Retrograde injections into the SC consis-
tently label A13, a small dopamine cell group located
in the zona incerta. We surmise that A13 mimics
dopaminergic effects that we observed in SC slices,
which suggests that dopamine in the SC may reduce
the tendency of an animal to orient or attend to
salient stimuli.

INTRODUCTION

Neurons in the superior colliculus (SC) exhibit different re-

sponses to the same stimulus based on current behavioral

demands (Knudsen, 2011; Basso and Wurtz, 1998; Wurtz and

Mohler, 1976; Ikeda and Hikosaka, 2003, 2007). Understanding

the neural basis of this modulation is critical, because the SC ex-

erts an incredible amount of control over spatial attention and

behavioral target selection, with the ability to override current

behavioral tasks to shift attention to new, more salient environ-

mental stimuli (Merker, 1980; M€uller et al., 2005; Lovejoy and

Krauzlis, 2010; Krauzlis et al., 2004). Two pathways that modu-

late the SC have already been functionally described, including
Cell Re
the cholinergic and GABAergic nucleus isthmi (Goddard et al.,

2014; Gruberg et al., 2006; Dudkin and Gruberg, 2003) and the

GABAergic substantia nigra pars reticulata (Hikosaka andWurtz,

1985; Basso and Wurtz, 2002; Knudsen, 2011). However,

although the neuromodulator dopamine has been shown to alter

sensory responses to visual input in frontal cortex (Jacob et al.,

2013), odor stimuli in the olfactory forebrain (Schärer et al.,

2012), and auditory stimuli in A1 (Happel et al., 2014), a detailed

anatomical and electrophysiological description of its impact on

the SC has never been shown. We therefore used genetic,

anatomical, and electrophysiological approaches in order to un-

derstand dopamine’s influence on SC function.

Modulation of the SCmust be understood in the context of the

complex SC structure, which contains multiple interconnected

neural layers that are ostensibly distinct in terms of electrophys-

iology (Isa and Hall, 2009), functionality (Northmore et al., 1988;

Dean et al., 1989), and molecular expression (Illing, 1996; Mize

et al., 1992; Behan et al., 2002). The superficial SC consists of

three layers (the stratum zonalae [SZ], stratum griesium superfi-

cialae [SGS], and stratum opticum [SO]) that receive direct input

from the retina and contain neurons with exclusively visual

receptive fields (Huerta and Harting, 1984b; Dräger and Hubel,

1975). Single neurons in the largest superficial layer, the SGS,

receive converging input from both V1 and retinal ganglion cell

axons that terminate along the SC surface in a topographic ‘‘vi-

sual map’’ of contralateral space (Sperry, 1963; Phillips et al.,

2011; Huerta and Harting, 1984b); these retinal axons enter the

SC via the SO ventral to the SGS and give rise to activity in super-

ficial SC neurons that encodes the spatial locations of salient

visual stimuli.

The visual SC layers project ventrally to the intermediate SC,

which translates the topographic map of visual space to interme-

diate layer neurons (Helms et al., 2004). However, unlike the

purely visual superficial SC, the intermediate SC layers (the stra-

tum griesium intermediale [SGI] and stratum album intermediale

[SAI]) aremultimodal, responding topographically to somatosen-

sory and auditory input in addition to vision (Huerta and Harting,

1984a; Dräger and Hubel, 1975). The intermediate SC also con-

tains a ‘‘motor map’’; that is, activation of neurons in these layers
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evokes orienting movements (Robinson, 1972; Schiller and

Stryker, 1972; Northmore et al., 1988; Dean et al., 1986; Ewert,

1984), or shifts in covert attention (M€uller et al., 2005), to pre-

scribed locations in space. The alignment of SC sensory andmo-

tor maps means that salient sensory input can induce spatially

precise movements or focal attention toward interesting stimuli

(Ingle, 1975).

Here, we describe a dopaminergic modulatory pathway that

terminates in the SC, where D1 and D2 receptors are arranged

in a behaviorally relevant pattern: D1 receptors are enriched in

the superficial visual SC, while D2 receptors are concentrated

in the multimodal/motor SC layers. Dopamine, which is found

at higher levels in the SC than the frontal cortex or hippocampus

(Versteeg et al., 1976), arises from a small diencephalic cell

group called A13 and possibly from the locus coeruleus, the

only two TH+ brain regions shown here to consistently receive

retrograde labeling from SC injections. We use transcriptome

profiling as well as anatomical and patch-clamp methods to

describe the specifics of dopamine uptake, metabolism, and

electrophysiological function within the SC. Overall, our results

lay the groundwork for understanding how dopamine may

modulate SC-mediated attention shifts and orienting behaviors.

RESULTS

Characterizing the Dopamine Transcriptome in the SC
An ongoing study in our laboratory has characterized the tran-

scriptome within the superficial and intermediate SC layers of

the 3-week-old rat (R.K. and M.C.P., unpublished data). Three

samples of RNA were sequenced, each containing three or

four superior colliculi (Figure 1A). Figure 1B shows the expres-

sion of all transcripts related to the dopamine system in the

SC, arranged into receptor-related genes and uptake/break-

down-related genes. We observed strong expression of only

two dopamine receptor subtypes in the SC: Drd1a, which

codes for the D1 dopamine receptor, and Drd2, which codes

for the D2 dopamine receptor (1.88 ± 0.27 FPKM [fragments

per kilobase per million reads] and 5.53 ± 0.15 FPKM, respec-

tively; Figure 1B [see the Figure 1 legend for an explanation of

FPKM]; Trapnell et al., 2010). By comparison, genes coding

the two most common NMDA receptor subtypes in the brain,

Grin2B and Grin2A, show average FPKM values similar to

Drd1a and Drd2, respectively (2.96 and 7.07 FPKM). Darpp32

(aka Pppr1r1b), a phosphatase inhibitor known to facilitate

dopamine receptor signaling (Hemmings et al., 1984), is ex-

pressed on the order of Drd2 (4.39 ± 0.94 FPKM), indicating a

prominent role in the SC.

With respect to the breakdown and clearance of synaptic

dopamine, genes encoding the breakdown enzymes COMT

(catechol-O-methyltransferase) and MAO (monoamine oxidase)

are strongly expressed in the SC (Comt 18.66 ± 3.50 FPKM,

Maoa 20.49 ± 1.50 FPKM, Maob 14.93 ± 1.35 FPKM). Break-

down, however, can only occur after dopamine is transported

into neurons or glia, because soluble COMT, MAOA, and

MAOB proteins are all cytosolic and membrane-bound COMT

is oriented intracellularly (Schott et al., 2010). The dopamine

and norepinephrine transporters (DAT and NET) are candidate

uptake mechanisms, but we did not observe expression of Dat
1004 Cell Reports 13, 1003–1015, November 3, 2015 ª2015 The Aut
or Net in the SC (Figure 1B). Our studies also suggest that DAT

is not even pre-synaptically expressed in SC dopamine terminals

(see Results), leading us to search our RNA sequencing (RNA-

seq) data for an alternative method of dopamine clearance in

the SC.

mRNA for a recently described high-capacity dopamine trans-

porter, Pmat (plasma membrane monoamine transporter; Duan

and Wang, 2010), is the only candidate transporter that is highly

expressed in the SC (9.43± 2.98 FPKM; Figure 1B). This elevated

expression level is confirmed by a recent immunohistochemistry

study showing that the superficial and intermediate SC layers are

two of the most highly enriched regions of the brain for PMAT

protein (Dahlin et al., 2007). Another class of recently described

organic cation transporters does not appear at high levels in the

SC (Emt 0.26 ± 0.06 FPKM, Oct1 0.56 ± 0.20 FPKM, Oct2 0.02 ±

0.02 FPKM; Haag et al., 2004; Busch et al., 1996; Gr€undemann

et al., 1998).

Mthfr (methyl tetrahydrofolate reductase) is significantly ex-

pressed in the SC (3.26 ± 0.42 FPKM). The MTHFR enzyme is

required for dopamine breakdown, as it supplies COMT with

methyl groups for dopamine methylation (Tunbridge et al.,

2008). Our sequencing results therefore suggest that the main

mode of action following dopamine release in the SC is activation

of D1 and D2 dopamine receptors, uptake after receptor activa-

tion into post-synaptic cells via PMAT, and eventual breakdown

via COMT/MAO/MTHFR-mediated metabolism.

D1+ and D2+ Cells Are Segregated in the SC
We next characterized the collicular locations of the two highly

expressed dopamine receptors from our RNA-seq data as a first

step toward understanding dopamine’s effect on SC function.

D1+ and D2+ neurons were visualized using mice expressing

tdTomato under the Drd1a promoter (D1-tdTom; Ade et al.,

2011) and enhanced GFP under the Drd2 promoter (D2-EGFP;

Gong et al., 2003). We immediately noticed a remarkable laminar

pattern of dopamine receptor expression. D1+ neurons were

enriched in the superficial visual layers of the SC, while D2

expression was scarce in this area (Figures 1C–1E). D2-express-

ing neuronswere instead enriched ventral to the SGS, with stron-

gest expression in the intermediate SC (Figures 1C–1E). In total,

29,343 SC neurons (identified by NeuN immunostaining) were

counted in our D1-tdTom 3 D2-EGFP samples: similar propor-

tions of SC neurons expressed D1 and D2 receptors (11.3%

D1+, 9.4% D2+). Only 1.2% of SC neurons were both D1+ and

D2+; double-labeled neurons did not appear to show any spe-

cific spatial arrangement within the SC (Figure 1C). Overall,

D2+ neurons were located significantly deeper in the SC than

D1+ cells (p < 0.0001; Figures 1D and 1E; 262.23 mm versus

462.02 mm median depth from dorsal SC surface). See Table 1

for counts in the rostral, medial, and caudal planes of all D1

and D2 cells.

Characterizing the Inhibitory/Excitatory Identity of D1
and D2 Neuron Populations
Identifying D1+ and D2+ neurons as excitatory or inhibitory

is necessary for understanding how these cells operate within

the SC circuit. D1-tdTom and D2-tdTom (D2-Cre 3 floxed-

tdTomato) mice were therefore crossed to a line expressing
hors
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Figure 1. RNA Sequencing Shows Significant Expression of D1 and D2 Dopamine Receptors, which Are Segregated within the SC

(A) Crowns of the superior colliculus were dissected from P20 rats. Tissue samples contained the superficial SC, intermediate gray (SGI), and part of the in-

termediate white (SAI) layers.

(B) RNA-seq values for dopamine-related genes in the SC are reported in fragments per kilobase per million reads (FPKM). FPKM normalizes the amount of reads

observed to the length of the gene, preventing large genes from being over-represented in the analysis and small genes from being under-represented.

(C) D1-tdTom mice were crossed to D2-EGFP mice to produce a D1-tdTom 3 D2-EGFP double-transgenic mouse. Two-dimensional (2D) histograms indicate

D1+ or D2+ cell density for each 80-mm-wide hexagon of collicular space. D1-tdTom expression is enriched in the superficial SC, while D2-EGFP is more highly

expressed in the intermediate SC. Total numbers of cells counted across three animals are correlated to bin color in legends left of each panel. Unlike D1+ and D2+

neurons individually, D1+ D2+ neurons showed no particular spatial pattern. Scale bars represent 300 mm.

(D) Scatterplot showing the distribution of D1+ and D2+ neurons binned by depth from the dorsal SC surface. All neurons counted from all coronal planes of three

D1-tdTom 3 D2-EGFP, three D1-tdTom 3 VGAT-Venus, and three D2-tdTom 3 VGAT-Venus animals were pooled.

(E) Boxplot showing the distribution of median depths of D1 and D2 neurons from the dorsal SC surface. Median depths were calculated in each slice (rostral,

middle, and caudal) of three D1-tdTom 3 D2-EGFP, three D1-tdTom 3 VGAT-Venus, and three D2-tdTom 3 VGAT-Venus samples, totaling 18 medians per

distribution. D2+ neurons were significantly deeper in the SC than D1+ cells (***p < 0.0001, D1: 262.23 mm versus D2: 462.02 mmmedian depth). Ends of whiskers

are maximum and minimum of the distributions, box edges are first and third quartiles, and lines inside boxes are medians.

Cell Reports 13, 1003–1015, November 3, 2015 ª2015 The Authors 1005



Table 1. Total Neuron Counts of D1, D2, and Dopamine Receptor Overlap with VGAT

D1-tdTom 3 D2-EGFP D1-tdTom 3 VGAT-Venus D2-tdTom 3 VGAT-Venus

D1+ D2+ D1+ D2+ NeuN D1+ VGAT+ D1+ VGAT� D2+ VGAT+ D2+ VGAT�

Rostral 763 878 91 10,787 520 510 503 960

Middle 1,166 787 118 11,018 726 443 608 952

Caudal 1,036 737 140 7,538 547 330 381 604

Total 2,965 2,402 349 29,343 1,793 1,293 1,492 2,516

VGAT, vesicular GABA transporter; D1, dopamine receptor 1; D2, dopamine receptor 2; NeuN, neuronal nuclei stain.
the yellow fluorescent protein Venus in neurons expressing the

vesicular GABA transporter (VGAT), which is only found in

GABAergic SC neurons (Wang et al., 2009).

Overall, D1+ SC neurons expressed VGAT at a 58% rate

(1,793/3,076), Figure 2A; Table 1). Critically, however, seven

out of every ten D1+ cells were VGAT+ in the superficial SC

(<200 mm deep, 69.4%; Figure 2C). This is clearly shown in Fig-

ure 2A, where the majority of D1+ neurons in the SGS are yellow

and the bulk of D1+ VGAT+ cell density is in the SGS. Figure 2A

(right) shows a high-magnification image of the D1-tdTom 3

VGAT-Venus SGS, where nearly every D1+ cell imaged in the

SGS is VGAT+. Figure 2C shows a scatterplot illustrating that

D1 co-localization with VGAT is correlated with depth from the

dorsal SC surface. Below the dorsal-most 400 mm of the SC,

D1 neurons no longer preferentially co-localize with VGAT (Fig-

ure 2C). This change was statistically significant (p < 0.0001),

as the average depth of a D1+ VGAT� neuron was significantly

more ventral than D1+ VGAT+ cells (Figure 2D; average depths:

229.58 mm D1+ VGAT+, 380.34 mm D1+ VGAT�).
Contrary to the primarily inhibitory nature of D1+ neurons, 63%

of D2+ neurons were VGAT� while only 37% were VGAT+ (Ta-

ble 1; Figure 2B). D2 co-localization with VGAT, unlike D1, was

uniform across the depth of the SC at �30%–40% (Figure 2C),

and the average depth of D2+ cells expressing VGAT versus

those not expressing VGAT did not reach statistical significance

(Figure 2D).

D2 Islands
D1+ and D2+ neurons maintained the same laminar segregation

and excitatory/inhibitory identity across the rostro-caudal axis

(Figure S1; Table 1). However, a unique feature of the rostro-

medial SC, which is known to map ventro-temporal retina,

were clusters of �30 D2+ neurons per confocal optical section

(Sperry, 1963). These clusters, which we call ‘‘D2 islands,’’

were localized within the SC commissure where the two SC

hemispheres begin to connect at the midline and communicate

through cross-collicular projections (Figure S2A). Interestingly,

nearly all D2 island cells counted (56/59) were negative for

VGAT (n = 2 D2-tdTom 3 VGAT-Venus rostral slices from two

different animals; Figure S2B).

Dopamine Source to the SC Is Primarily DAT�

Wenext sought to characterize the source of SC dopamine using

retrograde labeling. The SCs of seven mice (five wild-type [WT]

mice and two DAT-IRES-Cre knockin mice crossed to the

floxed-tdTomato reporter line [DAT-tdTom]) were stereotaxically

injected with latex microspheres that travel retrogradely along
1006 Cell Reports 13, 1003–1015, November 3, 2015 ª2015 The Aut
axons (Retrobeads, Lumafluor). Serial sections were prepared,

and each sample was stained with antibodies for the dopamine

synthesizing enzyme tyrosine hydroxylase (TH) and the dopa-

mine transporter (DAT), which is known to re-uptake dopamine

into presynaptic terminals after dopamine release. TH catalyzes

the conversion of tyrosine to the required dopamine precursor

L-DOPA and is therefore only present in neurons capable of

dopamine production. However, because dopamine can be con-

verted to norepinephrine or epinephrine in hindbrain cell groups

(A1–A7, the locus coeruleus, and C1–C3: Mejı́as-Aponte et al.,

2009), TH marks all dopamine, norepinephrine, and epinephrine

neurons. DAT, on the other hand, is thought to only demark

dopamine-releasing cells (Fu et al., 2012; Tritsch et al., 2012; Te-

cuapetla et al., 2010). DAT co-localizes with TH at close to 100%

in ventral midbrain dopamine neurons and is found in every

known dopaminergic cell group except group A13 in the dien-

cephalon, which is critical for this report (Fu et al., 2012; Tritsch

et al., 2012). We first focus on the dopaminergic axons within the

SC and next show that the TH+ axon pattern in the SC corre-

sponds perfectly to the pattern of retrogradely labeled TH+

neurons.

In all of our samples, TH+ axons were extremely dense in the

SC (Figure 3A, left), with no preferential targeting to specific

SC layers. This means that axons capable of producing dopa-

mine terminate broadly in the mouse SC, which has been

observed in other species (Mooney et al., 1990; Arce et al.,

1994; Metzger et al., 2006). DAT-tdTom reporter (Figure 3A, cen-

ter) and DAT antibody staining (Figure 3A, right), on the other

hand, were sparse or nearly absent in SC axons, respectively,

although both DAT-tdTom and DAT immunohistochemistry

(IHC) were highly coexpressed in the ventral midbrain in the

exact same slices, and show full co-localization in the same

samples in the basal ganglia (Figure S3). DAT IHC stained an

average of only 7.5 axons per SC slice (4 DAT IHC-stained SC sli-

ces counted; Figure 3A, right) compared to the thousands of TH+

axons observed in the SC. Additionally, nearly all DAT-tdTom+

terminals found within the SC were TH� (502/520 DAT+ axon

endings were TH�, n = 7 slices across three animals; Figure 3B),

meaning that these axons arise from DAT-tdTom-expressing

neurons that are incapable of synthesizing dopamine. This was

not typical as both ventral midbrain in the same slices and basal

ganglia in the same samples show that DAT-tdTom- and DAT-

IHC-expressing axons overlap robustly with our TH antibody

(Figure S3).

The expression pattern of TH, DAT-tdTom, and DAT IHC

agreed fully with the pattern of retrobeads observed in the seven

injected animals. A typical retrobead injection into the SC is
hors



shown in Figure 3C. Retrobeads transported retrogradely from

SC injection sites were consistently observed in only two TH+

cell groups in all seven animals, and both labeled groups were

DAT�. The first group is the locus coeruleus (LC), a canonical

noradrenergic hindbrain region previously shown to project

strongly to the superficial SC (Arce et al., 1994; Figure 3D). It

has been recently demonstrated that the locus coeruleus can

co-release dopamine, which provides a possible basis for dopa-

mine receptor activation in the SC (Devoto et al., 2005a, 2005b).

The second retrogradely labeled TH+ region is the A13 cell

group of the zona incerta (Figure 3E). As noted, this cell group

is known as the only DAT�, TH+ dopamine cell group in the brain

(Tritsch et al., 2012). All seven injections showed retrograde la-

beling of A13, which never stained positive for DAT antibody

nor showed DAT-tdTomato expression (Figure 3E; note DAT

and TH antibody co-stained axons, typical of midbrain dopamine

projections, right next to A13, running from midbrain to the

caudate putamen).

Midbrain dopamine neurons were practically devoid of retro-

beads in all animals studied (two total DAT+, TH+ neurons found

in seven animals). No clear retrogradely labeled neurons were

observed in any of the three major midbrain dopamine cell

groups [the retrorubral field (A8), the substantia nigra pars com-

pacta (A9), and the ventral tegmental area (A10)], which all

stained for DAT and showed DAT-tdTom reporter expression

(Figure S4). A previous line of research suggested that dopamine

neurons coexpressing GABA in the substantia nigra pars reticu-

lata (SNr) project to the SC in the rat (Campbell et al., 1991). Ret-

robeadswere found consistently in all samples in TH� neurons of

the substantia nigra pars reticulata (SNr; Figure S4), which likely

represent the GABAergic projection found by Hikosaka and

Wurtz (1985) that tonically inhibits the SC. However, we never

observed any retrograde labeling of TH+ neurons in the SNr. It

is possible that our retrobead injections were simply not taken

up by terminals described by Campbell et al. or that our injec-

tions were not in the same locations within the SC.

We alsomanaged to identify whyDAT-tdTom+ axons in the su-

perficial SC do not stain for TH (Figure S5). A small packet of

hindbrain neurons lying just underneath the fourth ventricle

was retrogradely labeled in both DAT-tdTommice tested. These

neurons lacked TH (Figure S5A) and were not stained by the DAT

antibody (Figure S5B), indicating a lack of dopaminergic identity

in the adult animal. Due to the DAT reporter being an IRES-Cre,

DAT was likely expressed in this cell population at some point

during development. Whether this population ever expressed

TH or provided dopamine to the SC is unknown.

Dopamine Alters Electrophysiology of D1 and D2
Neurons
Patch-clamp electrophysiology was used in acute sagittal SC sli-

ces to determine how D1+ and D2+ cells may respond to dopa-

mine released from A13 or the LC. D1+ neurons in the SGS

were current clamped while their afferent visual axons in the

SOwere electrically stimulated to mimic visual input. Stimulation

intensity was increased until each delivered stimulus evoked a

spike in the postsynaptic D1+ cell (Figure 4A). When dopamine

(50 mM) was washed onto the slice, these evoked spikes were

eliminated in 12/14 cells tested (11 complete spike elimination,
Cell Re
1 partial with 18/31 failures, 2 no reduction: average 1 spike/

stimulation control versus 0.18 spikes/stimulation DA, p <

0.0001; Figure 4A). Spike failures began on average 52.65 s

(± 27.11 s) after initiation of dopamine wash-in, occurred inde-

pendently of resting voltage shifts (4 cells show an increase in

Vm with dopamine whereas 8 cells show a decrease; p > 0.05),

and were completely reversible after dopamine washout in 10

out of 12 cells. Of the 14 cells tested, 3 out of 3 pre-bathed

with gabazine (20 mM) showed full spike elimination upon dopa-

mine wash-in, suggesting that despite D1+ cells being �70%

GABAergic in the SGS, spike elimination was not due to an indi-

rect increase in GABAergic inhibition. Furthermore, in voltage-

clamp experiments (�70 mV holding voltage, Mg-containing

artificial cerebrospinal fluid [ACSF], 20 mM gabazine), dopamine

reduced compound excitatory post-synaptic currents (EPSCs)

evoked by SO stimulation by an average of 65% (p < 0.01, n =

9; Figures 4B and 4D), suggesting that spiking was eliminated

because EPSCs were incapable of driving the neurons to spike

threshold.

Interestingly, spike elimination in response to SO stimulation

was not replicated by the D1 agonist SKF81297 (10 mM, n = 4

cells, 3 no spike reduction, 1 temporary resting drop that re-

bounded after 132 s) or the D2 agonist quinpirole (n = 2 cells,

no reduction). Instead, the main effect of SKF81297 wash-in ap-

peared to be a reduction in GABAergic inhibition among the

network of D1+ GABAergic SGS neurons. Spontaneous inhibi-

tory post-synaptic currents (IPSCs) were recorded in six D1+

SGS cells (voltage clamp at +30 mV, NBQX [10 mM], AP5

[25 mM] in bath). Five cells showed a reduction in average IPSC

amplitude, while four showed a reduction in IPSC frequency

2 min after SKF81297 washin. The most prominent effect on

IPSCs, however, appeared after the washout of SKF81297.

SKF81297 washout induced a rebound effect on IPSC frequency

in all cells that maintained constant seal during 5 min of washout

(5/5, p < 0.05, Wilcoxon signed rank test; Figures 4C and 4D). On

average, there were 29% more IPSCs recorded 5 min after

SKF81297 washout than during SKF81297 incubation, which

can be clearly seen in two representative cells in Figure 4C.

Next, D2+ neurons in the intermediate layers were current

clamped to read out raw resting voltage. When dopamine

(50 mM) was washed into the bath, resting potential decreased

on every neuron tested, sometimes severely (up to 14 mV shifts,

4.31 mV mean decrease, n = 14 cells, p < 0.001, Figures 5A and

5D). In a subset of neurons, equivalent injected current ramps

were performed in control and dopamine conditions. Dopamine

exposure significantly decreased spiking during current ramps

as seen in Figure 5A (mean drop of 15.06 spikes per ramp, p <

0.05, n = 8, Figure 5D, right). Moreover, in 2/2 neurons where

spontaneous network firing was observed in control conditions,

dopamine washin remarkably silenced spontaneous firing (Fig-

ure 5C), indicating that dopamine has a strongly depressive influ-

ence over the SC circuit. The D2 antagonist sulpiride (10 mM)was

effective in blocking the resting shift induced by dopamine (n = 4,

�0.8 mV shift, p = 0.167; Figures 5B and 5D); furthermore, with

all synaptic conductances blocked (20 mM gabazine, 10 mM

NBQX, Mg-ACSF for NMDAR), the D2 agonist quinpirole

(10 mM) was highly effective at replicating the resting shifts

(drop on all cells tested, �2.67 mV average, n = 7, p < 0.05;
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Figure 2. D1 Neurons in the SGS Are Primarily Inhibitory, while D2 Neurons Are Mostly VGAT�

(A and B) D1-tdTommice (A) and D2-tdTommice (B) were crossed to a line expressing the yellow fluorescent protein Venus under the Vgat promoter. D1-tdTom

neurons in the SGS co-localized strongly with VGAT, as illustrated by the high density of D1+ VGAT+ cells in the SGS in the 2D histogram and the zoomed image in

the rightmost panels (representing the area inside the white dashed box on the leftmost panel). D2-tdTom cells, on the other hand, were primarily negative for

VGAT. The highest density bins for D2+ VGAT� cells were in the upper SGI (shown in zoomed image and histogram), while density of D2+ VGAT+ bins was spread

throughout the SGI and SAI, leading to a slightly deeper average depth for D2+ VGAT� cells (2D). Total numbers of cells counted across three animals are reflected

by bin color according to legends left of each panel. Scale bars represent 300 mmon full SC images and 50 mmon rightmost zoomed images. Hexagons are 80 mm

wide in histograms.

(C) Scatterplot displaying percent co-localization of D1+ and D2+ neurons with VGAT, binned according to depth from the dorsal SC surface. D1+ neurons

expressed VGAT far more commonly in the most superficial SC (0 to 200 mm bin), where �70% of cells were VGAT+. This percent overlap of D1 with VGAT

decreased with depth from the SC surface. There was no apparent change in VGAT co-localization with D2 across the SC layers.

(D) Boxplot illustrating the distribution of median depths of D1+ VGAT+, D1+ VGAT�, D2+ VGAT+, and D2+ VGAT� neurons from the dorsal SC surface. Median

depths were calculated in each slice (rostral, middle, and caudal) of three D1-tdTom3 VGAT-Venus and three D2-tdTom3 VGAT-Venus samples. D1+ neurons

(legend continued on next page)
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Figures 5B and 5D), indicating that resting drops induced on D2+

neurons are cell autonomous and D2 dependent. We therefore

conclude that the primary action of dopamine on D2 neurons

of the intermediate layer is to reduce resting potential, thereby

hampering the cell’s ability to fire in response to excitatory cur-

rents induced by injection or network activity.

DISCUSSION

Responses of neurons in the SC are modulated by current

behavioral demands of the animal (Felsen and Mainen, 2012;

Ikeda and Hikosaka, 2003, 2007; Basso and Wurtz, 1998). Our

characterization of the anatomy, gene expression profile, and

electrophysiological consequences of the dopamine input to

the SC lays the groundwork for understanding how A13 and

dopamine receptor activation within the SC may modulate SC-

mediated behaviors.

We began our study by using transcriptome analysis, showing

thatDrd1 andDrd2 are the only two dopamine receptors that are

strongly expressed in the SC (Figure 1B). Cells expressing these

receptors were then localized within the layered SC structure.

D1+ cells were enriched in the ‘‘visual map’’ of the SGS, where

D1 strongly co-localized with VGAT. D1 localization to the super-

ficial SC is supported by previous in situ and D1 agonist binding

studies (Mansour et al., 1992; Mengod et al., 1991). D2+ cells, on

the other hand, were dense in the intermediate layer ‘‘motor

map’’ and tended to be non-GABAergic (Figures 1 and 2).

As previously noted, dopamine is present at higher concentra-

tions in the SC than in either the hippocampus or frontal cortex

(Versteeg et al., 1976). The dopamine-synthesizing enzyme TH

shows dense axonal expression in the mouse SC (Figure 3), as

has also been seen in other species (Arce et al., 1994; Metzger

et al., 2006; Mooney et al., 1990). Moreover, previous studies

have shown that the COMT-generated dopamine breakdown

product 3-MT, which does not arise after norepinephrine or

epinephrine breakdown by COMT, is found in the SC at the

same order of magnitude as the striatum (Weller et al., 1987),

again suggesting a significant dopamine input to the SC. Our

retrograde tracing results support a role for A13 and possibly

the LC in providing this dopamine to the SC, and our RNA-seq

and IHC results, coupled to other’s findings, hint at how this

dopamine may be recycled and metabolized. Specifically, the

fact that 3-MT is highly concentrated in the SC is not surprising

considering we found abundant Comt mRNA in the SC and a

means for COMT and MAO to access dopamine via PMAT (Fig-

ure 1B). Moreover, the dopamine transporter, which clears

dopamine from synapses for reuse and does not generate 3-

MT, was nearly undetectable in the SC using DAT IHC, a DAT re-

porter line (Figure 3), and RNA-seq (Figure 1B). This lack of DAT

expression supports previous data showing that dopamine re-

uptake by axons does not occur in the SC (Weller et al., 1987)

and was the initial indicator that the primary source of dopamine

to the SC is not the DAT-expressing midbrain dopamine centers
expressing VGAT were significantly superficial to D1+ cells that were negative for

they expressed VGAT or not, with the average depth of D2+ VGAT+ neurons (447.

significance (p = 0.055, right boxplots). Ends of whiskers are maximum and minim

boxes are medians.
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(A8, SNc, and VTA) traditionally associated with dopamine func-

tion (Schultz, 2007). The fact that dopamine breakdown appears

to be the only mode of dopamine clearance in the SC is impor-

tant for future studies considering that COMT-generated dopa-

mine breakdown products like 3-MT and homocysteine can

modulate synaptic conductances (Bolton et al., 2013; Sotnikova

et al., 2010).

TH+ axons in the superficial hamster SC were previously

shown to co-localize with dopamine beta-hydroxylase (DBH),

the norepinephrine-producing enzyme, at a 92% rate. This pre-

vious study determined the locus coeruleus as the primary

source of the DBH+, TH+ projection to the superficial SC (Arce

et al., 1994), which is consistent with our retrograde labeling of

the LC in all injected mice. We surmise that the remaining 8%

of TH+, DBH� axons in the SC are from the dopamine cell group

A13, the only other ubiquitously labeled TH+ cell group found in

our retrograde experiments. A recent line of research has found

that dopamine is co-releasedwith norepinephrine from locus co-

eruleus terminals, meaning that both A13 and the LC could be

the SC dopamine source (Devoto et al., 2005a, 2005b). More-

over, a second line of research describes the promiscuity of

dopamine receptors regarding which catecholamine activates

them. Norepinephrine, for example, can activate D2 receptors

(Onali et al., 1985; Odagaki et al., 1995; Lanau et al., 1997; John-

ston et al., 2001) and in doing so can modulate HCN currents

(Arencibia-Albite et al., 2007). It may therefore be possible that

the locus coeruleus does only release norepinephrine from its

TH+ SC terminals but that this norepinephrine can activate D2

dopamine receptors in the SC. Moreover, recent evidence has

shown the opposite scenario: dopamine can activate norepi-

nephrine receptors (Cilz et al., 2014), which could explain why

the D1 agonist SKF81297 did not mimic dopamine’s ability to

reduce evoked spiking in D1+ cells.

Howmight the arrangement of dopamine axons and receptors

in the SC affect behavior? The depressive effects of dopamine

on D2+ cells were often severe (sometimes reaching 14 mV

drops; Figure 5A), reducing the ability of D2+ neurons to spike

during current injection (Figures 5A and 5D). Under such condi-

tions, dopamine would practically shut down D2+ SC neurons,

which are primarily non-GABAergic and lie in the SC layer where

excitatory neuron activation induces orienting behaviors and

attention shifts (e.g., Robinson, 1972; M€uller et al., 2005; North-

more et al., 1988; Ewert, 1984). The inhibition of retina-driven

EPSCs by dopamine and the reduction of D2+ neuron firing

resemble the dampening of visual responses and the silencing

of the intermediate layer in the toad tectum by dopamine recep-

tor activation (Glagow and Ewert, 1997, 1999); these physiolog-

ical effects resulted in a phenotype where the toad no longer

oriented or attended to prey items. Future experiments could

address whether A13 activation results in this type of ‘‘waiting

behavior.’’ Considering that neurons in the intermediate SC

have visual, auditory, and somatosensory receptive fields

(Huerta and Harting, 1984b), and that the intermediate SC can
VGAT (***p < 0.0001). D2+ neurons, however, showed similar locations whether

82 mm) slightly below D2+ VGAT� cells (410.86 mm) without reaching statistical

um of the distributions, box edges are first and third quartiles, and lines inside
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Figure 3. Dopamine-Producing Axons Are Present in the SC, but DAT Is Sparse, and DAT Reporter Does Not Localize to TH+ Elements

(A and B) TH IHC reveals dense termination of catecholaminergic axons in the SC (A, left). However, DAT-tdTom (A, center) and DAT IHC (A, right) were sparse or

absent, respectively. The sparse DAT-tdTom-expressing terminals found in the superficial SC did not co-localize with TH (B), suggesting that these axons arrive

from cells that are non-dopaminergic in the adult mouse (TH IHC andDAT-tdTom are on the same slice, and DAT IHC is one serial slice later). Scale bars represent

300 mm (A) and 50 mm (B).

(legend continued on next page)
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Figure 4. Electrophysiological Effects on D1+ SC Neurons

(A) Spikes were evoked in D1+ neurons by SO stimulation to mimic visual input. Stimuli were applied every 5 s in current clamp; dopamine washin eliminated

spiking in most cells tested (11/14) and partially eliminated spiking in an additional cell (18/32 failures). These effects were completely reversible in 11 cells. Red

stars indicate brief pauses in the electrophysiological record to test seal and access resistance.

(B) EPSCs evoked by SO stimulation were significantly reduced (average 65% reduction, n = 9 cells) by dopamine, measured after 2 min of dopamine exposure.

Again, this effect was reversible.

(C) Although SKF81297 did not replicate dopamine’s effect on spike elimination, this D1 agonist did affect amplitude and frequency of spontaneous IPSCs

(+30 mV holding, NBQX [10 mM], AP5 [25 mM] in bath). This was especially clear during SKF81297 washout (shown here in two different neurons), where IPSC

frequency significantly increased in all five cells tested.

(D) Boxplot showing the complete distribution of percentage drops for evoked EPSCs (dopamine/control) and spontaneous IPSCs (SKF/washout). Ends of

whiskers are maximum and minimum of the distributions, box edges are first and third quartiles, and lines inside boxes are medians.
project back to and influence responses in the SGS (Vokoun

et al., 2010; Phongphanphanee et al., 2011), it will be interesting

to see whether D2 activation specifically affects particular mo-

dalities or particular feedback circuits.

Although it appears that dopamine is primarily inhibitory to SC

neurons, dopamine’s effect on neural circuit function is likely

complex considering that D1+ and D2+ populations both co-

localize with VGAT to some degree (Figure 2) and that electro-

physiological effects on these inhibitory cells were noted using

D1 agonists (Figure 4). To understand how dopamine truly influ-

ences the SC, it is critical to discover how A13 responds during

tasks typically thought to require dopamine. Although the dopa-

mine architecture described in this study could be responsible

for the modulation of SC activity by reward (Ikeda and Hikosaka,

2003, 2007), A13 may be involved in tasks not normally ascribed

to dopamine. Moreover, it will be critical to understand dopa-

mine’s role in the SC within the context of brain-wide dopamine

signaling. Neurons in the striatum, for example, receive a large

dopamine projection from themidbrain and express D1 or D2 re-

ceptors on nearly every cell (Thibault et al., 2013). The direct ef-

fects of dopamine on the SC may therefore be less significant
(C) Typical injection site of retrobeads, restricted to the SC.

(D) Retrobeads (center, right) transported from the SC co-localize with TH+ neur

(E) TH+ neurons in A13 (top, bottom left), a DAT� region in the zona incerta, are co

the DAT+ terminals emanating from the SN/VTA that run laterally to A13 toward th

and 50 mm (E, bottom).

Bottom panels are composites of eight 603 images taken in A13 stitched togeth

Cell Re
than indirect effects of dopamine on neurons efferent to the

SC. However, we believe the direct behavioral effects of dopa-

mine on the SC will prove to be important considering that our

electrophysiological findings on D2+ neurons were cell autono-

mous (Figure 5; all synaptic conductances blocked on quinpirole

experiments) and the fact that D1 and D2 receptors are ex-

pressed on the order of two of the most common and funda-

mental glutamate receptor transcripts in the brain (Figure 1).

In conclusion, we believe our study lays a genetic, anatomical,

and electrophysiological foundation for the future exploration of

dopamine in the SC. Linking behaviorally relevant dopamine

neuron activity in A13 to dopamine release and D1+/D2+ cell

modulation in the SC should be the primary goal of future

research in this area, which should hopefully explain how the

laminar arrangement of D1 and D2 cells relate to the SC’s role

in attention and sensorimotor transformations during orienting.
EXPERIMENTAL PROCEDURES

All experiments were carried out with the approval of the Committee on Animal

Care at the Massachusetts Institute of Technology.
ons (left) in the locus coeruleus.

nsistently labeled with retrobeads from the SC (top, bottommiddle, right). Note

e basal ganglia. Scale bars represent 300 mm (C), 100 mm (D), 300 mm (E, top),

er with Nikon NIS-Elements.
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Figure 5. Electrophysiological Effects on D2+ SC Neurons

(A–C) Dopamine application (50 mM) to current clamped D2+ neurons in the intermediate SC reduced resting voltage on all cells tested (n = 14) (A). This often

severe effect of dopamine washin significantly reduced spiking during injected current ramps (1 and 2) (A and D) and robustly eliminated spontaneous network

firing in two cells where spontaneous spiking was observed (C). The D2 agonist quinpirole (10 mM) also reduced resting voltage in all cells tested (n = 7) and resting

drops induced by dopamine were blocked by the D2 antagonist sulpiride (10 mM) (B).

(D) Left: boxplot showing the distribution of resting voltage drops in response to dopamine, dopamine and sulpiride, and quinpirole. Ends of whiskers are

maximum and minimum of the distributions, box edges are first and third quartiles, and lines inside boxes are medians. Right: each color represents a D2 cell

where equivalent current ramps were injected into the neuron both in control conditions and during dopamine exposure. Solid lines indicate that spikes were

taken first in control ACSF and second in dopamine ACSF, and dotted lines indicate that spikes were recorded first in dopamine ACSF and second after washout

to control ACSF, ruling out order-related effects. Red stars in (C) indicate brief pauses in the electrophysiological record to test seal and access resistance.
Animals

Mice listed asWT are C57B6/J. Strains fromGENSAT include D1-Cre (FK150),

D2-Cre (ER44), and D2-EGFP (S118). D2-EGFP mice were backcrossed to

C57B6/J after arriving on a Swiss Webster background. Strains from Jackson

Laboratory include D1-tdTomato (#016204), floxed-tdTomato (#007914),

DAT-Cre (#006660), and TH-Cre (#008601). VGAT-Venus mice were gener-

ously given to us by Janice Naegele (Wang et al., 2009). Venus was developed

by Dr. Atsushi Miyawaki at RIKEN (Wako).

RNA-Seq

Total RNA from the 3-week-old rat superior colliculuswas extractedusingQiazol

(QIAGEN) reagent according to the manufacturer’s instructions. Total RNA was

cleaned up using the RNeasyMinElute kit (QIAGEN) and stored at�80�. The pu-
rity ofRNAwasassayedusing aNanoDrop, andsampleswith260/280 ratios less

than 1.8 or 260/230 ratios less than 2.0 were subjected to a second round of

cleanup and discarded if they were still not pure after the second cleanup. Sam-

ples were run on the Agilent 2100 Bioanalyzer and samples with RIN numbers

less than 9 were discarded. Samples were stored at �80� until library creation.
DNA libraries for paired-end sequencing on the Illumina Genome Analyzer II

were prepared following the Illumina protocol (#1004898 Rev. D) with a few al-

terations. The resulting product was PCR amplified for ten cycles using
1012 Cell Reports 13, 1003–1015, November 3, 2015 ª2015 The Aut
primers against the Illumina adaptors. The final library was run on an Agilent

Bioanalyzer to confirm proper size selection. Samples were submitted to the

BioMicro Center at MIT for sequencing on the Illumina Genome Analyzer II

with 36-bp paired-end reads.

We processed the RNA-seq data using the best-practice RNA-seq pipeline

implemented in version 0.7.9a of the bcbio-nextgen framework. In brief,

we trimmed off poor-quality ends with AlienTrimmer version 0.3.2, using a

cutoff of a phred score of 5 or less, and trimmed portions of reads and

anything after it matching the first 13 bases of the Illumina universal adaptor

sequence to remove read-through contamination caused by the read length

being longer than the insert size for a fragment. We also trimmed polyA and

polyT homopolymer sequences from the 50 ends of reads. Reads were aligned

using the STAR aligner version 2.3.14z against the rattus norvegicus

genome build rn5 and Ensembl release 74 of the gene annotation. Counts of

reads mapping to genes in the Ensembl annotation were calculated using

FeatureCounts version 1.4.4 and FPKM expression was estimated using Cuf-

flinks version 2.1.1.

Animal Surgery

Postnatal day 10 (P10) to P16 mice were anesthetized with isoflurane and im-

mobilized in a stereotaxic frame. The skin overlying the skull was incised and a
hors



dental drill was used to burr a hole though the skull above the SC. Glass pi-

pettes (Drummond) were pulled and �2 ml latex microspheres (Retrobeads

IX, Lumafluor; green beads were injected at 100% and red beads injected at

25%beads:PBS) were loaded into the pipette tip using a DrummondNanoject.

Loaded pipettes were lowered under stereotaxic guidance into the SC. Micro-

spheres were injected (�45–100 nl total), and the pipette was slowly retracted

5 min later. Animals were sutured and returned to their home cages for

�2 weeks before perfusion.

Anatomy and Histology

Animals were perfused through the heart with 15ml PBS followed by 15ml 4%

paraformaldehyde in PBS under isoflurane anesthesia. Brains were extracted

and post-fixed in 4% paraformaldehyde at 4�C overnight. After post-fixing,

brains were transferred to 30% sucrose in PBS for cryoprotection at 4�. Slices
were cut at 75–90 mMusing a Leica freezingmicrotome or a Leica cryostat with

OCT as a freezing medium. For IHC, free-floating slices were incubated for

R2 hr at room temperature in a blocking buffer containing 1% Triton X-100

and 5% goat or donkey serum in PBS. Slices were then incubated on a shaker

overnight at 4� in blocking buffer containing primary antibody. Primary anti-

bodies used included rabbit anti-tyrosine hydroxylase (Millipore AB152;

1:1,000), rat anti-DAT (Millipore MAB369; 1:1,000), rabbit anti-RFP (MBL

PM005; 1:2,000), chicken anti-GFP (Abcam ab13970; 1:10,000), and mouse

anti-NeuN (Millipore MAB377; 1:3,000). After primary antibody incubation, sli-

ces were washed in PBS for 15 min three times. Slices were then incubated in

Alexa-conjugated immunoglobulin G (1:500 or 1:1,000) directed to the species

of the primary antibody in blocking buffer at room temperature for 2 hr. After a

second round of three 15 min PBS washes, slices were mounted with Fluoro-

mount. All samples were imaged using a Nikon C2 confocal system equipped

with 488 nm, 561 nm, and 647 nm lasers. A 203 Nikon Plan Apo objective

was used for most images, while a Nikon 603 Plan Apo Oil objective was

used for high-magnification imaging. Images in figures were edited in Adobe

Photoshop using the autocontrast function, and brightness was enhanced in

some cases for display purposes. All axon and cell counting was performed

on raw images.

Cell Counting

Custom software for counting and assigning coordinates to fluorescent

neurons was written in Python by A.D.B. This software with instructions

is freely available at http://github.com/LarryLegend33. Heatmap histograms

were created using Python Matplotlib’s ‘‘hexbin’’ function with a minimum

count of 1 (i.e., bins with 0 or 1 counts appear as white). Histograms

were overlaid with atlas pictures from Paxinos’ Mouse Brain in Stereotaxic

Coordinates. Samples chosen for cell counting came from three coronal

planes of the SC. Caudal samples were �4.4 mm caudal to bregma, rostral

samples were �3.4 mm caudal to bregma, and middle slices were approx-

imately halfway between the chosen caudal and rostral slices (Paxinos’

Mouse Brain in Stereotaxic Coordinates). The dorsal surface of each SC

slice was traced using our cell-counting software; points along the dorsal

surface served as a reference for calculating cell depth within the SC struc-

ture. Dorsal surface traces included the full medial-lateral expanse of the

SC from the midline SGS to the lateral-most SGI, terminating when the

tracing line became vertical. Median depths of each neuron type were

calculated for each slice in each sample, and t tests were used to compare

the distributions of these average depths between cell groups (e.g., Figures

1E and 2D).

Slice Electrophysiology

P20–P45 mice were anesthetized in a bell jar using isoflurane and decapitated

(D2-tdTom, D2-EGFP, D1-tdTom, and D1-Cre 3 Flox-tdTom). The brain was

quickly removed and submerged in an ice-cold sucrose cutting solution con-

taining 206 mM sucrose, 2.5 mM KCl, 1.2 mM NaH2PO4, 24 mM NaHCO3,

5 mM HEPES, 12.5 mM glucose, 0.4 mM sodium ascorbate, 10 mM MgSO4,

and 0.5 mM CaCl2. After 1 min of cooling, the brain was mounted on a Leica

vibratome and submerged in sucrose solution. Before slicing, the brain rostral

to the SC was dissected off and the rhombencephalon caudal to the inferior

colliculus was removed. Sagittal SC slices, containing the full dorsal-ventral

expanse of the midbrain only, were prepared at 280 mm. Slices were then incu-
Cell Re
bated at 32� for 15 min in a carbogenated slice chamber filled with ACSF

composed of 124 mM NaCl, 2.5 mM KCl, 1.2 mM NaH2PO4, 24 mM NaHCO3,

5 mM HEPES, 12.5 mM glucose, 0.4 mM sodium ascorbate, 2 mM MgSO4,

and 2 mM CaCl2. The chamber was then removed from the 32� water bath

and allowed to return to RT. Slices recovered for at least 1 hr before being

added to a recording chamber under continuous perfusion of ACSF

(�2 ml/min). For voltage clamp, pipettes were filled with a solution containing

105 mM Cs-gluconate, 10 mM phosphocreatine (Na), 0.07 mM CaCl2, 4 mM

EGTA, 10 mM HEPES, 4 mM Na-ATP, 1 mM Na-GTP, and 3 mM MgCl2,

brought to osmolarity of �290 mOsm with sucrose. In some experiments, su-

crose was omitted and neurobiotin (0.5%) was used. Current clamp internal

solution was identical except 105 mM K-gluconate replaced Cs-gluconate.

Cells were patched with glass pipettes (Sutter) pulled to 3–7 MU using a Multi-

clamp 700B with pClamp10 software or an Axopatch 1D with pClamp8, sam-

pling at 20 kHz and filtering at 2–10 kHz. Cells recorded in current clamp were

rejected if resting voltage after breakin was greater than�50mV. Fast bath ex-

change (�10 s until arrival of drug) was performed using an ALA VM-4 perfu-

sion system with a Millimanifold attached directly to the bathing chamber,

with the bath kept at �30�C–32�C. Neurons were visualized before patching

with an Arclamp and identified as D1+ or D2+. For experiments stimulating

the SO, a concentric bipolar electrode (FHC) driven by a World Precision In-

struments IsoStim 320 was placed in the SO axons at the rostral pole of the

SC. Stimulating intensities were raised until spikes were driven in the post-syn-

aptic neuron. Typical current applied was �0.1 mA. Data were analyzed using

Clampfit (Axon Instruments) and MiniAnalysis (Synaptosoft). Resting voltages

in D1 and D2 experiments were calculated in Clampfit using the ‘‘mean’’ calcu-

lation in the Statistics suite over a 10 s window. For D1 EPSCs, amplitudes of

currents evoked every 5 s were averaged in a 30 s windows before, exactly

120 s after DA washin, and an average of 5 min after washout (average

300.77 s). Paired two-tailed t tests were used as significance tests (unless

noted).
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