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Garvin’s Generalized Problem Revisited 
 
By Francisco J. Sánchez-Sesma1, Ursula Iturrarán-Viveros2 and Eduardo Kausel3  

Abstract 
One of the great classical problems in theoretical seismology is Garvin’s problem, which 
deals with the response of an elastic half-space subjected to a blast line source applied in 
its interior. However, Garvin (1956) himself provided only the solution for points on the 
free surface of the half-space. Although a rigorous extension to points in the interior of 
the half-space was given nearly decade-and-a-half later by Alterman & Loewenthal 
(1969), these scientists published their paper in a technical journal of rather restricted 
circulation, as a result of which their complete solution remained largely unnoticed by the 
geophysical and soil dynamics communities. This article revisits Garvin’s generalized 
problem, presents a concise rendition and summary together with a very effective and 
accurate simplification, and examines the response characteristics for a pair of buried 
source-receiver location. It also includes a compact and very effective Matlab program 
for its evaluation. 

Introduction 
Among the handful of emblematic, canonical problems in theoretical seismology is one 
due to Walter William Garvin, who in 1956 found exact expressions for the vibration 
signatures elicited by a two-dimensional (i.e. line) blast source buried at an arbitrary 
depth within a homogeneous and isotropic half-plane. However, Garvin himself limited 
his formulation to the displacements observed on the surface of the half-plane and —like 
Fermat’s intriguing annotation some three centuries earlier about the margin of his copy 
of the ancient book Arithmetica being too small to contain the wonderful proof to the 
famous theorem he had found— he stated that “the method is equally applicable to any 
interior points and yields results in the same simple form”.  Unfortunately, Garvin’s 
missing proof was neither obvious nor easy to come by, and thus it remained lacking in 
the decades that followed his publication. Moreover, Garvin himself vanished without a 
trace from the scientific community only a few years later, for his last known technical 
contribution seems to have been a 1960 book on Linear Programming that he published 
while working at the California Research Corporation in La Habra, CA. At that time this 
was a research arm of the Standard Oil Corporation of California, which after a merger 
with Gulf Oil became the Chevron Research Company. 
 
Some thirteen years after Garvin’s famous paper in the Proceedings of the Royal Society 
of London, Alterman & Lowenthal reconsidered the topic and supplied in 1969 the 
missing proof to Garvin’s complete problem, but they did so in the Israel Journal of 
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Technology, a multi-disciplinary journal of limited international circulation, a situation 
which caused this valuable contribution to remain virtually unnoticed and unknown 
within the seismological and wave motion communities to this day. It is the purpose of 
this paper to revisit and divulge that solution in the context of a modern and transparent 
rendition, present a very effective simplification together with an analysis of its range of 
validity, and to examine the characteristics of the motions for a typical combination of 
source-receiver locations.  
 
In principle Garvin’s problem is intimately related to the two-dimensional version of 
Lamb’s classical problem (1904) for a set of four line loads arranged to form a pair of 
tensile dipoles. Indeed, Garvin’s solution at a point can be shown to equal a linear 
combination of the gradients of the displacements elicited by suddenly applied horizontal 
and vertical line loads with respect to the position of the source. Regrettably, this 
rigorous, formal correspondence is of no help to us in finding the analytical expression 
for Garvin’s problem because the solution to Lamb’s problem is only known for a source 
in the interior and receivers placed at the surface of the half-space and vice-versa, yet not 
for sources and receivers which lie both simultaneously at arbitrary locations in the 
interior of the half-space. A complete solution to Lamb’s problem in three dimensions 
valid for any arbitrary Poisson’s ratio was very recently given by Kausel (2012), but once 
again only for a source on the surface and receivers which are located either on the free 
surface or at depth along the epicentral axis. Conceivably, the Alterman-Loewenthal 
method might in due time allow an extension of Lamb’s two-dimensional problem to 
arbitrary locations of sources and receivers.  

Garvin’s classical problem 
Consider an elastic half-plane, i.e. a 2-D half-space subjected to a line blast source at 
some arbitrary depth 0h  . The pressure characterizing the blast load is a step function 
(i.e. Heaviside function) in time, and displacements are sought at arbitrary location in the 
half-plane. The origin of coordinates 0, 0x z   is at the free surface immediately above 
the source and the vertical axis z  points down into the half-plane and intersects the 
source. Vertical displacements are also positive down. 
 
Although direct numerical solutions existed for this problem, Garvin obtained a set of 
exact, closed-form, algebraic expressions for the displacements directly as a function of 
time t  by means of contour integration, which entails deforming the path of integration 
so that the resulting integral can be solved analytically. In a nutshell, the problem is first 
formulated in the frequency-horizontal wavenumber domain and the solution in the time 
domain expressed formally in terms of a double inverse Laplace transform into time and 
space. The latter is then cast in terms of a contour integral whose path is cleverly 
deformed so that the integrand of the double transform reduces to a form with a known 
transform, in which case the inversion ensues without much ado by direct inspection. 
This powerful strategy has been widely used and is commonly referred to as the 
Cagniard-de Hoop method, in honor of their inventors (De Hoop, 1960). After this is 
done, the response functions at the surface are found to be given by the following 
expressions (see Kausel, 2006, but appropriately modified to account for the different 
sign convention employed herein for the vertical direction): 
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where ( )a H  is the Heaviside (i.e. unit step) function and 
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and 2Im 1 0   , that is, the terms involving square roots in time must have a negative 
imaginary part when  is small. Observe from eq. 2b that the function q  is known 
explicitly in terms of time. 
 
At long times, the displacements tend asymptotically to their static values. Evaluation of 
this limit when    implies in turn q  , which results in the following trends: 
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as also given by Kausel (2006).  
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Alterman-Loewenthal extension to interior points 
Zipora Alterman (1925-1974) and Dan Loewenthal (1943-2000) —henceforth referred to 
as A&L for short— were both Professors of Geophysics at Tel Aviv University, and both 
passed away at the relatively young ages of 49 and 57 years, respectively. Although they 
had found an exact solution to a remarkable problem in elastodynamics, they chose as 
venue for their publication a relatively obscure multidisciplinary journal, as a result of 
which their contribution remained largely unnoticed by the cognoscenti. Moreover, in 
typical fashion of many papers in applied mathematics, their presentation was rather terse 
and sketchy, and they left to the readers the task of distilling the important details out of 
the formulation and deciphering how the various parts of the solution ultimately fit 
together. In the ensuing, we omit altogether the mathematical details, which can be found 
in A&L, and provide instead a synthesis of the most important formulas for the 
displacement components in a form that is easy to understand and implement. 
 
a) Travel times 
Consider an elastic, homogeneous half-space within which a suddenly applied, 
dilatational line source acts at the point  0,h , which gives rise to a wave field that is 

observed at a receiver at some arbitrary location  ,x z , see Fig. 1. Allow also for an 

image source to be placed symmetrically above the surface of the half-space, and define 
the radial distances 1 2,r r and angles of inclination 1 2,  with respect to the vertical as 
follows: 
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Figure 1: Reflection of rays at surface of half-space 
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The ray 1r  from the source defines the path of the direct P wave, while 2r  represents the 
distance traveled by the PP ray originating at the image source, and therefore, the 
distance traveled by the P ray which reflects as a PP wave at the surface. Thus, if   is the 
speed of dilatational waves, the characteristic travel times of waves along these two rays 
are simply 
 

 1
P

r
t


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PP

r
t


      (5) 

 
It can further be shown that of all PP waves with cylindrical wave fronts diffracted at the 
surface and passing through the receiver, the PP wave associated with the direct ray from 
the image point has the shortest travel time.  
 
On the other hand, as the P waves impinge on the surface, they also convert partially to 
shear (or PS) waves as they reflect at various points on the surface in their indirect way to 
the receiver. Of these converted waves, there exists one pair of P–PS rays which exhibit 
the shortest travel time, and that pair is the one that satisfies Snell’s law. Let ,P S   be the 
angles with respect to the vertical which that P–PS pair of rays form at the surface 
(observe that 3S   in Fig. 1 ). Hence 
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Elimination of the terms in the incidence and reflection angles ,P S   between equations 
6-8 is cumbersome and leads to a complicated equation. Nonetheless, a straightforward 
and highly accurate iterative solution is easily obtained by searching for the point in the 
interval [ , ]Px x  that satisfies Snell’s relationship, where Px  is the intersection of the PP 
ray with the free surface. Thus, PSt  can readily be determined to high accuracy, and can 
thus be assumed to be known.  
 
In the ensuing, we find it convenient to make use of dimensionless parameters, which we 
achieve by normalizing the time variable as follows: 
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where   is the shear wave velocity and 2r  is the distance from the image point to the 
receiver. Hence, the dimensionless travel times are 
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b) Cagniard-DeHoop paths 
As mentioned earlier, when the primary waves emitted by the source impinge upon the 
surface, they reflect as PP and PS waves, and they also convert in part into Rayleigh 
waves. As shown by A&L, a detailed analysis of the interaction of these various wave 
components leads to a pair of integrals associated with the PP and PS waves which can be 
evaluated in closed form by means of the well-known Cagniard-DeHoop technique. This 
involves deforming the integration path in the complex plane so as to achieve an 
integrand whose inverse Laplace transform can be found by simple inspection. Expressed 
in dimensionless time, these two paths are  
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where ,q q   are dimensionless, complex-valued auxiliary functions constrained in such 

a way that ,    must remain real. They must satisfy 
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Evaluation of the integrals requires an inversion of eqs. 11a,b into the form  q q    

and  q q   . The first is readily obtained by solving for q  from the quadratic 

equation inferred from eq. 11a, 
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which agrees with eq. 2b. On the other hand, and as shown in Appendix I, elimination of 
the square root terms in eq. 11b leads to the quartic equation in  q q  , with   : 
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with all real coefficients 
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This quartic equation admits four roots which can appear in one of the following 
alternative forms (further details together with an example and a figure showing the roots 
are given in Appendix I): 

a) All roots are complex and appear in negative complex conjugate pairs (this is the 
norm when PS   ): 

* *
1 2 3 1 4 2, , ,q q q q q q     

b) There exists one pair of negative complex conjugate roots and two distinct, purely 
imaginary roots: 

*
1 2 1 3 3 4 4, , = i , = iq q q q Q q Q  ,  (with 3 4,Q Q  being real quantities) 

c) There are four distinct, purely imaginary roots: 

1 1 2 2 3 3 4 4i , i , i , iq Q q Q q Q q Q    , (All jQ  are real quantities)  

d)  No purely real roots can exist. 
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When the four solutions for the case at hand are plotted in term of dimensionless time, it 
is found that they consist of four branches, two of which have negative real parts and can 
thus be discarded on account of (12b). Of the remaining two roots, it is shown in 
Appendix I that at least one of these two roots is guaranteed to have a positive imaginary 
part, and possibly even both roots have such a characteristic. Either way, we choose the 
one with the smallest positive imaginary part, which is also the sole branch which starts 
as a purely imaginary, positive root when PS  , i.e. at the arrival of the PS waves at the 
receiver, in agreement with ray theory. The rejection of the second root can be further 
justified by observing that it would introduce non-physical singularities as well as non-
causal arrivals. 
 
In principle, the quartic equation (16) could be evaluated in closed form by means of 
Ferrari’s classical formula. However, a more convenient and robust alternative is to rely 
on a numerical routine for the roots of polynomials such as the “roots” function in 
Matlab, which although conceptually slower than Ferrari’s, its slowness is irrelevant 
because in an actual problem the execution time required proves to be negligible.  
 

c) Displacements at the receiver 
Assuming that we have accomplished the inversion of q (), q ()  together with their 

derivatives q /,q / , we proceed to use these to evaluate the Rayleigh functions 
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Figure 2a,b: Response function for a source at depth 1h   observed at a receiver at 
location 1, 1x z   for Poisson’s ratio 0.25   
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where , , ,P PP PS     are defined by equations 9, 10a-c;    ,q q   are given by eqs. 15 

together with the numerical solution to eq. 16; also, the partial derivatives are given by 
13a,b. Figures 2a, 2b show the horizontal and vertical displacements for a source-receiver 
combination 1z h z    and material parameters 1  , 0.25  , which corresponds to 
Lamé parameters 1   . For convenience, we have chosen to display the time axis 
normalized with respect to 1r . The three peaks in the horizontal response correspond to 
the arrivals of the P, PP and PS waves. The vertical response shows only two peaks 
because the direct P wave travels horizontally from the source to the receiver, and thus 
has no vertical components. 
 
d) Asymptotic(static) behavior 
As time increases, the displacements approach their static values. These can be obtained 
from the limits: [Error found after publication: See CORRIGENDUM on page 25]  
 

 2i
jq e 

  , 2ijq
e 







,        2 2 21
2 1

1j j jR a q q  
  


, ,j    

so 
 

1 2 2
1 2 2

1 2
1 2

2 11 1 1
sin sin sin

2 2

1 1 3 4
sin sin

2

u
r r r

r r


  



 


  
   

 
 

  
 

     (20a) 

 

 

 
1 2 2

1 2 2

1 2
1 2

2 11 1 1
cos cos cos

2 2

1 1 3 4
cos cos

2

w
r r r

r r


  



 


  
   

 
 

  
 

     (20b) 

Approximate solution 
Inasmuch as we have just summarized the formulas for the full, exact solution to 
Garvin’s generalized problem and that they do not take a convoluted form, it might seem 
peculiar that we may also wish to provide an approximate solution, but there are good 
reasons for this. As can be seen from eqs. 19a,b, the full solution is given in terms of the 
function q () that is not known in explicit form, but which must be obtained from the 

numerical solution to a quartic equation and chosen appropriately from its four solutions, 
as explained earlier. As it turns out, an excellent, explicit functional approximation to that 
inversion can be obtained, which not only is attractive in its own right, but also provides 
insight into the problem at hand. 
 
As seen earlier, the Cagniard-De Hoop path for PS waves is defined by (eqs. 11b,c): 
 

 2 2 2 1 iH q a Z q X q           PS     (21a) 
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2 2 2

, ,
h z x

H Z X
r r r

           (21b) 

 
A close approximation to the above paths is given by 
 

 
2 2

2 2

i

cos i sin

app eq app eq app

eq app app eq

H q a X q

q a q



 

  

  
      (22a) 

where 

 eq
eq

eq

h
H

r
 ,  eq

eq
eq

x
X

r
 ,      (23a) 

 /eqh h z a    
/

eq

h z a
x x

h z





      (23b) 

2 2
2

/
eq eq eq

h z a
r h x r

h z


  


       (23c) 

 cos eq
eq

eq

h

r
  ,  sin eq

eq
eq

x

r
        (23d) 

 
in terms of which 
 

/app

h z
q q

h z a 





        (24) 

 
The approximation (22a) has exactly the same form as   in Garvin’s solution, so its 
explicit inverse is 
 

 
2 2

2 2
2 2

cos i sin

cos i sin

app eq app app eq

app app

q a

a

   

   

  

  
      (25) 

 
From eqs. 24, 25, it then follows that 
 

  2 2
2 2

2

cos i sineq
app app

r
q a

r             (26) 

where 
2

2
2 /app

eq eq

rt t h z

r r r h z a

  
  


,   PSt t     (27)  

 
On the other hand, from (13b) as well as the preceding equations, we have 
 

1

2 2 2
i

1eq eq eq

dq q qh z x

d r r rq a q

  

 



 
   
   

     (28) 
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With 26 and 28, we have now all of the instruments needed to evaluate explicitly the last 
term in the displacement equations 19a,b. Observe that in this approximation, the q  

function given by (26) is simply a time-stretched, scaled replica of the q  function, i.e. 
of the PP reflection. 
 
Figure 3 shows a comparison of the exact inversion of the quartic equation vs. the 
approximation given by eq. 26, as function of dimensionless time, for the same data 
considered earlier, i.e. a source at 1h   and a receiver at 1x z   for Poisson’s ratio 

0.25  and Lamé parameters 1   . As can be seen, the approximation is excellent, 
and in fact improves further for more distant receivers. An extensive set of additional 
numerical tests reveal that the approximation works fairly well for other source-receiver 
distances together with modest values of Poisson’s ratio  , but breaks down for high 
values, say close to or above 0.45  . 
 

 
Figure 3: Exact inversion of q  vs. approximate inversion via eqs. 26,27. 

 
An implication of this approximation concerns the time of arrival of the PS waves. As 
explained earlier in connection with the solution to the quartic, this occurs when 

 Re 0q  , /app a    , which implies /PS eqt r a  .  This leads to the explicit 

estimation formula, 
 

0

0.5

1.0

1.5

2.0

1 2 3 4 5 6

1

t

r


 

q  
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 2

2

/ / 1

cosPS PP

rh z a h z a h z
t t

h z h z   
            

    (28) 

 
Numerical tests demonstrate that the estimation for the time of arrival of PS waves works 
well. Observe that 2/ / cosh    is the travel time of P waves to the surface along the 
incident PS ray and 2/ / cosz    is the travel time of S waves from the surface to the 
receiver along the reflected PP ray. 

Conclusions 
Alterman & Lowental 1969 extension to Garvin's problem of a blast line source acting 
within an elastic, homogeneous and isotropic half-space undoubtedly constitutes a major 
advance in theoretical seismology, even if it remained dormant for some four decades. 
Unlike Garvin’s classical solution, it is not restricted to receivers on the free-surface, but 
allows computing motion signatures which are rich in all frequencies and then again at 
arbitrary points within the half-space. Thus, it is the ideal tool to be used as a benchmark 
for the validation of numerical solutions obtained with finite elements (or finite 
differences) augmented with numerical devices such as transmitting boundaries or 
perfectly matched layers. 
 
In the preceding pages we provided a succinct account of this emblematic problem, 
summarized the final exact solution for the signatures at arbitrary receivers, and 
discussed in general terms the details of the quartic equation needed for the inversion of 
the Cagniard-DeHoop path associated with PS waves. A brief Matlab program included 
as an appendix allows not only obtaining theoretical seismograms in digital and graphic 
form for any arbitrary pair of source and receiver locations, but can also be used as a 
resource to discern the details and attain a deeper understanding of the fundamental 
elements of the solution. 
 
Finally, we devised and presented a close approximation to the quartic root which not 
only provides further insight into the problem but which opens the door to obtain 
integrated versions of the displacements by convolution with any source function. This 
could be used in turn as an additional benchmark for the testing of numerical methods, 
even if it should requires further development and testing in papers yet to be written. 
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Appendix 1: Solution to quartic equation 

With the definitions / , / , /H h r Z z r X x r   , q q and r  being an arbitrary scaling 

length, we can write the Cagniard-deHoop path in dimensionless time   (eq. 11b) as 

 

 2 2 2 1 iH q a Z q Xq      ,  
t

r

  , a



  

so 

 
   

   

2
2 2 2 2

2 2 2 2 2 2 2 2 2

i 1

2 1

Xq H q a Z q

H Z q H a Z HZ q a q

     

      
 

that is 

          
22 2 2 2 2 2 2 2 2 2 2 2i 4 1Xq H Z q H a Z H Z q a q            

 
This leads to the quartic equation 
 

     
        
     

2 22 2 4 2 2 2 3

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 22 2

4i

2 3 4i

0

H Z X H Z X q X H X Z q

H X Z X H a Z H Z H a Z q X H a Z q

Ha Z Ha Z



  

 

          
                

     

 

or 
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 4 3 24i 2 4i 0Aq Bq Cq Dq E           (29) 

 
with all real coefficients 

    2 22 2 0A H Z X H Z X               (30a) 

  2 2 2 0B X H X Z           (30b) 

       2 2 2 2 2 2 2 2 2 2 2 2 23C H X Z X H a Z H Z H a Z             (30c) 

  2 2 2 2D X H a Z             (30d) 

      2 22 2E Ha Z Ha Z            (30e) 

 
Observe that 0, 0A B   are always true. Also, 0E   at / /t h z    before the arrival 
of the PS wave, at which point in time there exists one root which vanishes altogether. 
However, for times after the arrival of the PS wave PSt t , both 0D   and 0E   because 

2 2 2 2/ / / /t h z h z       , or equivalently, 2 2 2H a Z   ; in addition,  

/ / / /t h z h z       , which is the same as Ha Z Ha Z     . These conditions 

imply in turn that 0q   cannot be a solution to the quartic after the arrival of the PS 
wave. Also, in most cases real solutions cannot exist either, because these would demand 
the simultaneous satisfaction of 
 

  24 2 2

3 2

2 0

0

C C E
A A A

D
B

Aq Cq E q

Bq Dq q

      

    
 

 
Hence, we conclude that all four solutions must be either complex, purely imaginary or a 
combination of these two. 
 
The structure of the quartic equation is such that if q  is a complex solution, then *q  is 

also a solution. To prove this, assume that *q  is indeed a solution, then 
 

       

       

*4 3 2* * * * *

*4 3 2* * * *

4 3 2

4i 2 4i 0 0

4i 2 4i

4i 2 4i 0

A q B q C q D q E

A q B q C q D q E

Aq Bq Cq Dq E





            

       
     

 

 
However, if the solution were to be purely imaginary, then *q q   would not be a 
distinct solution, in which case it must be ruled out —save for exceptional points in time 
at which repeated roots can occur. The conclusion is that if purely imaginary solutions 
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iq Q  (with real Q ) exist, then they must appear in distinct pairs. Hence, the set of four 
solutions must be of one of the forms 
 

* *
1 2 3 1 4 2, , ,q q q q q q       All four roots are complex 

*
1 2 1 3 3 4 4, , i , iq q q q Q q Q      One complex pair and two imaginary roots  

 
 1 1 2 2 3 3 4 4i , i , i , iq Q q Q q Q q Q     Four imaginary roots 
 

a) All complex roots 
This is the normal case. If all roots are complex, then the quartic equation must have the 
form 
 
     * *

1 1 2 2 0A q q q q q q q q      

or 

    2 * * 2 * *
1 1 1 1 2 2 2 2 0q q q q q q q q q q q q            

 
This means that –at least in principle– it should be possible to carry out a decomposition 
of the quartic into the product of two quadratic equations, but this is no simple feat. 
Expanding the above product, we obtain 

 
      

   

4 * * 3 * * * * 2
1 1 2 2 1 1 2 2 1 1 2 2

* * * * * *
1 1 2 2 1 1 2 2 1 1 2 2 0

q q q q q q q q q q q q q q q

q q q q q q q q q q q q

              
       

 

or 

 
       

   

2 24 3 2
1 2 1 2 1 2

2 2 2 2

1 2 2 1 1 2

2i Im Im 4Im Im

2 Im Im 0

q q q q q q q q q

i q q q q q q q

          
     

 

which implies 
 

    1
1 22/ Im Im 0B A q q             (31a) 

     2 21
1 2 1 22/ 4Im ImC A q q q q           (31b) 

    2 21
1 2 2 12/ Im Im 0D A q q q q           (31c) 

2 2

1 2/ 0E A q q          (31d) 

 
In as much as the ratio /E A  in (31d) is necessarily non-negative, then eq. 30e informs us 
that this can begin to be possible only from shortly before the arrival of the PS wave, 
namely the time for a P wave to move straight up combined with the time for an S wave 
to return straight down, i.e. the exceptional zero root for 0E   referred to earlier. 
Furthermore, this very same condition guarantees also that / 0D A  , so the inequality in 
eq. 31c is a consequence of the inequality in eq. 31d. Hence, four complex solutions are 
only possible after this time.  However, this by itself does not rule out the possibility of 
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either two or four purely imaginary roots when Ha Z   , it only rules out four complex 

solutions before this time.  
 
When all roots are complex, they will appear in pairs of the form 
 1 iq a b  ,  2 iq c d   

 *
3 1 iq q a b      *

4 2 iq q c d      
 
Without loss of generality, we can readily assume that 0a  , 0c  , while ,b d  could be 
either positive or negative. However, eq. 31a implies 
 
 0b d   
 
Again, without loss of generality we can assume b d . Hence, the above relationship can 
only be satisfied if either 
 
 0b d   or 0b d   with b d  

 
We conclude that there is at least one, and perhaps even two complex roots whose 
imaginary part is positive.  On the other hand, when all roots are complex, then of the 
four solutions two will have positive real part and the other two will have negative real 
part. However, an additional requirement in our case is that 
 

 Re 0q  ,  2 2Re 0q a  ,  2Re 1 0q    

 
which we can use to reject two of the four solutions available, namely those with negative 
real part. Of the two remaining roots, there exists at least one with a positive imaginary 
part, in which case we choose the one with the smaller imaginary part (i.e. the smallest 
but still positive imaginary part). The branch for this root is the only one that starts as a 
purely imaginary root when PSt t . 
 

b) One complex pair and two imaginary roots: 
The quartic equation is now of the form 
 
     *

1 1 3 4i i 0A q q q q q Q q Q      

or 

    22 2
1 1 3 4 3 42iIm i 0q q q q q Q Q q Q Q           

i.e. 

    

   

24 3 2
3 4 1 3 4 1 3 4 1

2 2

1 3 4 1 3 4 1 3 4

i 2Im 2Im

i 2Im 0

q Q Q q q Q Q q Q Q q q

q Q Q q Q Q q q Q Q

            
      

 

so 
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  3 4 1

4
2Im 0

B
Q Q q

A
           (32a) 

     21
3 4 1 1 3 42 Im

C
Q Q q q Q Q

A
          (32b) 

    2

1 3 4 1 3 4

4
2Im

D
q Q Q q Q Q

A
         (32c) 

 2

1 3 4

E
q Q Q

A
          (32d) 

 
This case characterizes the roots at times before the arrival of the PS wave.  Moreover, at 
the very instant of arrival PSt t the two imaginary roots coalesce into one double, purely 

imaginary root  3 4Q Q  while 1q , *
2 1q q   continue to define a pair of complex roots. For 

PSt t , the pair of identical roots mutates into a pair of negative complex conjugate roots, 
in which case the equations in the previous section apply.   
 

c) Four purely imaginary roots 
The quartic is now of the form 
 
     1 2 3 4i i i i 0A q Q q Q q Q q Q      

or 

 
    

   

4 3 2
1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 3 4 1 2 1 2 3 4

i

i

q Q Q Q Q q Q Q Q Q Q Q Q Q q

Q Q Q Q Q Q Q Q q Q Q Q Q

           
       

 

 
implying 
 

 1 2 3 4

4
0

B
Q Q Q Q

A
            (33a) 

   1 2 3 4 1 2 3 4

2C
Q Q Q Q Q Q Q Q

A
           (33b) 

    1 2 3 4 3 4 1 2
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This combination of roots appears to be non-physical. 
 
Example: Consider the source-receiver configuration 1h x z    together with the 
material parameters 1  , 0.25  , which corresponds to Lamé constants 1   . 
Figure 4a shows the two roots whose real part is positive, with one being unphysical, 
while Fig. 4b shows the other two unphysical roots whose real part is negative. Solid 
lines depict the real part while dashed lines display the imaginary part.  For convenience, 
we choose to normalize the time axis with respect to 1 1r  , which makes 1P  . Although 
we plot the four roots for an extended time interval , the true branch only comes into play 
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when PSt t .  Observe that at all times there exists one pair of (negative) complex 
conjugate roots which is supplemented by another pair after the arrival of the PS wave. 
Before that time, the other two roots are purely imaginary, and they coalesce at PSt t  
(shown by an arrow). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4a: Roots of quartic with positive real part.  
Real part = solid line, Imaginary part = dashed line 

Figure 4b: Roots of quartic with negative real part.  
Real part = solid line, Imaginary part = dashed line 
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Appendix 2: Matlab program 
The Matlab program is provided in the ensuing. For a digital copy of this program, see 
the online version. 
 
function Garvin2 (x,z,pois,h,Cs,rho) 
% Solves the generalized Garvin problem of a line blast 
% source applied at depth h within a homogeneous half-space. 
% The response is sought within that same half-space 
% at a receiver at range x and depth z. 
% 
% Written by Eduardo Kausel, MIT, Room 1-271, Cambridge, MA 
% Version 1, July 19, 2011 
% 
%  Input arguments: 
%     x    = range of receiver >0 
%     z    = depth of receiver >=0 
%     pois = Poisson's ratio        Defaults to 0.25 if not given 
%     h    = Depth of source   > 0      "     "  1   "   "    " 
%     Cs   = Shear wave velocity        "     "  1   "   "    " 
%     rho  = mass density               "     "  1   "   "    " 
% 
% Sign convention: 
%   x from left to right, z=0 at the surface, z points down 
%   Displacements are positive down and to the right. 
% 
% References: 
%   W.W. Garvin,  Exact transient solution of the buried line source 
%                 problem, Proceedings of the Royal Society of London, 
%                 Series A, Vol. 234, No. 1199, March 1956, 528-541 
%   Z.S. Alterman and D. Loewenthal, Algebraic Expressions for the 
%                 impulsive motion of an elastic half-space, 
%                 Israel Journal of Technology, Vol. 7, No. 6, 
%                 1969, pp. 495-504 
 
% default data 
if nargin<6, rho=1; end     % mass density 
if nargin<5, Cs=1; end      % shear wave velocity 
if nargin<4, h=1; end       % depth of source 
if nargin<3, pois=0.25; end % Poisson's ratio        
N = 1000;   % number of time steps to arrival of PS waves 
 
mu = rho*Cs^2;      % shear modulus 
r1 = sqrt(x^2+(z-h)^2); % source-receiver distance 
r2 = sqrt(x^2+(z+h)^2); % image source-receiver distance 
s1 = x/r1;          % sin(theta1) 
c1 = (z-h)/r1;      % cos(theta1) 
s2 = x/r2;          % sin(theta2) 
c2 = (h+z)/r2;      % cos(theta2) 
 
a2 = (0.5-pois)/(1-pois); 
a = sqrt(a2);                   % Cs/Cp 
Cp = Cs/a;                      % P-wave velocity 
tS = r1/Cs;                     % S-wave arrival (none here) 
tP =  r1/Cp;                    % time of arrival of direct P waves 
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tPP = r2/Cp;                    % time of arrival of PP waves 
tPS = t_PS (x,z,h,Cs,Cp);       % time of arrival or PS waves 
dt =  (tPS-tP)/N;               % time step 
t1 = (tP+dt):dt:(tPP-dt);       % time before reflections 
t2 = (tPP+dt):dt:tPS;           % time from PP to PS reflection 
t3 = (tPS+dt):dt:3*tPS;         % time after arrival of PS waves 
 
% Find q3(tau) from  tau(q3) by solving quartic 
X=x/r2; Z=z/r2; H=h/r2; 
A = ((H+Z)^2+X^2)*((H-Z)^2+X^2); 
B1 = X*(X^2+H^2+Z^2); 
C1 = X^2*(a2*H^2+Z^2)+(H^2-Z^2)*(a2*H^2-Z^2); 
C2 = 3*X^2+H^2+Z^2; 
D1 = X*(a2*H^2+Z^2); 
E1 = (a*H+Z)^2; 
E2 = (a*H-Z)^2; 
tau = t3*Cs/r2;             % dimensionless time for PS waves 
q3 = []; 
for j=1:length(t3) 
    tau2 = tau(j)^2; 
    B = tau(j)*B1; 
    C = tau2*C2-C1; 
    D = tau(j)*(tau2*X-D1); 
    E = (tau2-E1)*(tau2-E2); 
    q = roots([A,-4*i*B,-2*C,4*i*D,E]); % in lieu of Ferrari 
    q = q(find(real(q)>=0 & imag(q)>=0)); % discard negative roots  
    [q1,I] = min(imag(q));  % find position of true root 
    q3 = [q3,q(I)];         % choose that root 
end 
 
% Sánchez-Sesma approximation: 
%***************************** 
R = (h+z/a)/(h+z);  % r_eq/r2 
r3 = R*r2;          % equivalent radius 
tapp = tau/R; 
T = conj(sqrt(tapp.^2-a2)); % conj --> T must have neg. imag part 
q3app = R*(c2*T+i*tapp*s2); 
% Compare exact vs. approximate  
plot(t3,real(q3)); 
hold on 
plot(t3,imag(q3),'r'); 
plot(t3,real(q3app),'--'); 
plot(t3,imag(q3app),'r--'); 
grid on 
title ('q3 --> exact vs. Sánchez-Sesma''s approximation') 
xlabel('Time') 
pause 
close 
 
% Find and plot the time histories 
% **************************** 
% a) From tP to tPP 
T1 = sqrt(t1.^2-tP^2); 
f1 = (0.5/r1)*t1./T1; 
u1 = f1*s1; 
w1 = f1*c1; 
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% b) From tPP to tPS 
T1 = sqrt(t2.^2-tP^2); 
T2 = sqrt(t2.^2-tPP^2); 
f1 = (0.5/r1)*t2./T1; 
f2 = (0.5/r2)*t2./T2; 
q2 = (c2*T2+i*s2*t2)*Cs/r2; 
dq2 = c2*t2./T2+i*s2;  % derivative 
Q2 = q2.^2; 
Q2S = sqrt(Q2+1); 
Q2P = sqrt(Q2+a2); 
S2 = (1+2*Q2).^2; 
D2 = S2-4*Q2.*Q2S.*Q2P; % Rayleigh function 
u2 = f1*s1-f2*s2-(4/r2)*imag(q2.^3.*Q2S.*dq2./D2); 
w2 = f1*c1+f2*c2-(1/r2)*real(S2.*dq2./D2); 
 
% c) From tPS and on 
T1 = sqrt(t3.^2-tP^2); 
T2 = sqrt(t3.^2-tPP^2); 
f1 = (0.5/r1)*t3./T1; 
f2 = (0.5/r2)*t3./T2; 
% Contribution of PP waves 
q2 = (c2*T2+i*s2*t3)*Cs/r2; 
dq2 = c2*t3./T2+i*s2;  % derivative 
Q2 = q2.^2; 
Q2S = sqrt(Q2+1); 
Q2P = sqrt(Q2+a2); 
S2 = (1+2*Q2).^2; 
D2 = S2-4*Q2.*Q2S.*Q2P; % Rayleigh function 
f3 = (4/r2)*imag(q2.^3.*Q2S.*dq2./D2); 
f5 = (1/r2)*real(S2.*dq2./D2); 
% Contribution of PS waves 
Q3 = q3.^2; 
Q3S = sqrt(Q3+1); 
Q3P = sqrt(Q3+a2); 
S = 1+2*Q3; 
S3 = S.^2; 
D3 = S3-4*Q3.*Q3S.*Q3P; % Rayleigh function 
dq3 = 1./((h/r2./Q3P+z/r2./Q3S).*q3-i*x/r2); 
f4 = (2/r2)*imag(q3.*S.*Q3S.*dq3./D3); 
f6 = (2/r2)*real(Q3.*S.*dq3./D3); 
u3 = f1*s1-f2*s2-f3+f4; 
w3 = f1*c1+f2*c2-f5+f6; 
 
% Combine the results and plot 
time = [[0,tP],t1,t2,t3]*Cs/r1; 
u = [[0,0],u1,u2,u3]*(r1/pi); 
w = [[0,0],w1,w2,w3]*(r1/pi); 
plot(time,u); 
tit = sprintf('Horizontal displacements at x =%f z =%f' , x, z); 
title(tit); 
xlabel('t*\beta/r1'); 
ylabel('Ux*r1*\mu'); 
grid on 
pause 
plot(time,w); 
tit = sprintf('Vertical displacements at x =%f z =%f' , x, z); 
title(tit); 
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xlabel('t*\beta/r1'); 
ylabel('Uz*r1*\mu'); 
grid on 
pause 
close 
return 
 
%-------------------------------------------------------------- 
function [tPS,xP,xS] = t_PS (x,z,h,Cs,Cp) 
% Determines the total travel time of the PS reflection 
% Arguments 
% ********* 
%  x = range of receiver 
%  z = depth of receiver 
%  h = depth of source 
%  Cs = S-wave velocity 
%  Cp = P-wave velocity 
 
if z==0, tPS=sqrt(x^2+h^2)/Cp; return; end 
a = Cs/Cp; 
% Bracket the S point 
xP = x*h/(h+z);    % point of reflection of PP ray 
ang1 = atan(xP/h); % minimum angle of incident ray 
ang2 = atan(x/h);  % maximum angle 
% Find the S point by search within bracket 
dang = (ang2-ang1)/10; 
TOL = 1.e-8; 
TRUE = 1; 
while TRUE 
    angP = ang1+dang; 
    angS = asin(a*sin(angP)); 
    L = h*tan(angP)+z*tan(angS); 
    if L>x 
        if L-x<TOL*x, break, else, dang = dang/10; end 
    else 
        ang1 = angP; 
    end 
end 
tPS = h/cos(angP)/Cp+z/cos(angS)/Cs; 
if nargout<3, return, end 
xS = h*tan(angP);  % point of reflection of PS ray 
return 
 
%-------------------------------------------------------------- 
function [q] = Ferrari(A,B,C,D,E) 
% Solves quartic equation 
%   A*q^4 - 4*i*B*q^3 - 2*C*q^2 + 4*i*D*q + E 
% by Ferrari's method 
 
B = B/A; C=C/A; D=D/A; E=E/A; 
a = 2*(3*B^2-C); 
b = 4*i*(D-B*C+2*B^3); 
c = E-4*B*D+2*C*B^2-3*B^4; 
if b==0 
    s2 = sqrt(a^2-4*c); 
    s1 = sqrt((s2-a)/2); 
    s2 = sqrt((-s2-a)/2); 
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    q1 = i*B+s1; 
    q2 = i*B-s1; 
    q3 = i*B+s2; 
    q4 = i*B-s2; 
else 
    P = -(a^2/12+c)/3; 
    Q = a/6*(c-a^2/36)-b^2/16; 
    R = sqrt(Q^2+P^3)-Q; 
    U = R^(1/3); 
    V = U-5/6*a; 
    if U==0 
        V = V-(2*Q)^(1/3); 
    else 
        V = V-P/U; 
    end 
    W = sqrt(a+2*V); 
    s2 = -(3*a+2*V); 
    s1 = sqrt(s2-2*b/W); 
    s2 = sqrt(s2+2*b/W); 
    q1 = i*B+0.5*(W-s1); 
    q2 = i*B+0.5*(-W+s2); 
    q3 = i*B+0.5*(W+s1); 
    q4 = i*B+0.5*(-W-s2); 
end 
q = [q1, q2, q3, q4].'; 
return 
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CORRIGENDUM 
 
Garvin’s generalized problem revisited 
 
by Francisco Sánchez-Sesma, Ursula Iturrarán Viveros, and Eduardo Kausel 
Soil Dynamics and Earthquake Engineering, Volume 47, April 2013, Pages 4-15 
 
Equations 20a,20b in Section 3.4 providing the asymptotic (static) behavior at long times 
are incorrect, or more precisely, incomplete. This is the result of having neglected in our 
asymptotic expansion some higher-order terms which still contribute to the limiting value 
at infinite times. As it turns out, the exact derivation of those additional terms requires 
some rather substantial and sophisticated algebra, which would occupy considerable 
space in this journal. For this reason, we omit the details herein and merely provide the 
final results. The correct asymptotic expressions are: 
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We obtained these expressions first by direct formulation and evaluation of the static 
problem based on integral transform methods. Thereafter, a sophisticated (and lengthy) 
evaluation of the asymptotic expressions was obtained directly from the Garvin-
Alterman-Loewenthal dynamic solution in our original paper by Prof. Paul Martin at the 
Colorado School of Mines, who kindly made it available to us. Delightfully, these 
expressions coincided perfectly.  
 
The agreement of the two independent methods provides in turn a strong indication that 
the dynamic equations after Alterman and Loewenthal (eqs. 19a, 19b) are correct, 
because our first static, direct method made no use of that dynamic solution in the first 
place.  
 




