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ABSTRACT

We study the orbital evolution of hot Jupiters due to the excitation and damping of tidally driven g-modes within
solar-type host stars. Linearly resonant g-modes (the dynamical tide) are driven to such large amplitudes in the
stellar core that they excite a sea of other g-modes through weakly nonlinear interactions. By solving the dynamics
of large networks of nonlinearly coupled modes, we show that the nonlinear dissipation rate of the dynamical tide
is several orders of magnitude larger than the linear dissipation rate. We find stellar tidal quality factors Q

*
¢  105–

106 for systems with planet mass M M0.5p J and orbital period P 2 days, which implies that such systems
decay on timescales that are small compared to the main-sequence lifetime of their solar-type hosts. According to
our results, there are 10 currently known exoplanetary systems, including WASP-19b and HAT-P-36-b, with
orbital decay timescales shorter than a Gyr. Rapid, tidally induced orbital decay may explain the observed paucity
of planets with M Mp J and P 2 days< around solar-type hosts and could generate detectable transit-timing
variations in the near future.
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1. INTRODUCTION

The tide raised by a hot Jupiter excites large amplitude
waves within its host star. These waves transfer energy and
angular momentum from the orbit to the star and as a result the
planet gradually spirals inward. The rate of orbital decay is
determined by the efficiency of tidal dissipation and depends
on the amplitude of the waves as well as the effectiveness of
frictional processes within the star.

Tidal dissipation is often parameterized by the stellar tidal
quality factor Q

*
¢, where larger Q

*
¢ implies less dissipation.

Perhaps the best constraints on Q
*
¢ for solar-type stars come

from the observed circularization rate of solar-type binaries,
which yield Q 106

*
¢ ~ (Meibom & Mathieu 2005). However,

because Q
*
¢ is not a fundamental property of the star (it depends

on the shape and size of the orbit and the mass of the
perturber), this result does not necessarily imply Q 106

*
¢ ~ for

hot Jupiter systems. There have been a number of efforts to
measureQ

*
¢ from statistical modeling of the observed sample of

hot Jupiters (see Ogilvie 2014 for a review). Penev et al. (2012)
find that the distribution favors Q 107

*
¢ for a specific set of

assumptions about the initial conditions. Jackson et al. (2008)
find a best fit at Q 105.5

*
¢ ~ although they do not rule out much

larger values and note that it is difficult to obtain tight
constraints because of the limited sample size and uncertainties
in the initial period distribution and stellar age. Although there
are no direct observational measurements of Q

*
¢ from individual

hot Jupiter systems (e.g., from the detection of orbital decay),
Jackson et al. (2009) argue that the distribution shows evidence
for ongoing removal and destruction by tides. In addition,
Teitler & Königl (2014) propose that the observed dearth
of close-in planets around fast-rotating stars (McQuillan
et al. 2013) can be attributed to tidal ingestion of giant planets.

Linear tidal driving by the planet resonantly excites short
wavelength waves within the host star. In solar-type stars, these
“primary” waves are excited near the radiative-convective
interface since in this region their wavelengths become large
and they can couple to the long length scale tidal potential.

Although the primary waves initially have relatively small
amplitudes and are thus well-described by linear theory, as they
propagate toward the stellar center their amplitudes increase
due to geometric focusing (i.e., in order to conserve WKB flux
within an ever decreasing volume). In hot Jupiter systems, the
primary waves reach large amplitudes as they approach the
stellar core and become nonlinear, exciting many secondary
waves through nonlinear wave–wave interactions (Barker &
Ogilvie 2010, 2011; Weinberg et al. 2012, hereafter WAQB).
These secondary waves can have much shorter wavelengths
than the primary waves and, as a result, they can have much
larger damping rates (due to radiative diffusion). Systems in
which nonlinear interactions are important may therefore
dissipate tidal energy much more rapidly than the linear theory
estimates. Indeed, in the case of solar-type binaries, the linear
theory estimates yield dissipation rates that are too small by a
factor of 100 (Q*

¢∼108–1010; Goodman & Dickson 1998;
Terquem et al. 1998; Ogilvie & Lin 2007). This may indicate
that nonlinear processes are playing an important role in these
systems.
For a planet with mass M M P3 dayp J

0.1( ) - orbiting a
solar-type star, the primary waves reach such large amplitudes
near the stellar center that they overturn the background
stratification and break (Barker & Ogilvie 2010; Barker 2011).
In this strongly nonlinear regime, the primary waves
deposit nearly all of their energy and angular momentum in a
single group travel time through the star. The tidal dissipation
rate therefore equals the energy flux of the initial, linearly
driven primary waves. The three-dimensional numerical
simulations of wave breaking by Barker (2011) yield
Q P10 1 day5 2.8( )
*
¢  for M M3p J and a solar-type star.

This corresponds to an inspiral time of 1 Gyr» for a M3 J planet
in a 2 day orbit.
For a planet with mass M M0.5 3,p J  the primary waves

do not, in general, break. Nonetheless, they are sufficiently
nonlinear that they excite many secondary waves near the
stellar center. In this weakly nonlinear regime, the primary
waves only deposit a fraction of their energy and angular
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momentum in a single group travel time. The value of that
fraction, which determines the rate of tidal dissipation, depends
on the detailed interaction between the primary waves and the
sea of secondary waves. The aim of our study is to calculate
this interaction (and its saturation) in the weakly nonlinear
regime. Similar types of analyses have been carried out in the
context of the r-mode instability in spinning neutron stars
(Brink et al. 2005; Bondarescu et al. 2009).

This paper is structured as follows. In Section 2 we describe
the formalism we use to study the weakly nonlinear tidal
interactions and present the equations of motion for our mode
decomposition. In Section 3 we describe how we construct our
networks of interacting modes and our method for integrating
the coupled equations of motion. In Section 4 we present a
pedagogical discussion of how different mode networks
behave. The main results of our calculations are presented
in Section 5, with particular emphasis on the tidal evolution
of known exoplanetary systems. Finally, in Section 6 we
summarize our results and describe some of the limitations of
our analysis that can serve as directions for future work.

2. FORMALISM

We are interested in calculating the orbital evolution of hot
Jupiters due to tidal dissipation within the host star. We assume
that the planetʼs orbit is circular, as is the case for most of the
observed hot Jupiters (Udry & Santos 2007; Ogilvie 2014). If
the system is also sufficiently old so that the planetʼs rotation is
synchronous with the orbit (Barker & Lithwick 2014; Storch &
Lai 2014), then there is no tidal dissipation within the planet.

The tide raised by the planet excites a variety of oscillation
modes within the star. Here we limit our analysis to solar-type
hosts and focus on the excitation of resonant g-modes due to
linear and (weakly) nonlinear forces. Because the orbital period
of a hot Jupiter is much shorter than the rotational period of a
solar-type star, the g-modes are not strongly modified by
Coriolis forces and we therefore neglect the starʼs rotation.

2.1. Equations of Motion

We calculate the orbital evolution using the formalism
developed in WAQB for studying tides in close binary systems
in which weakly nonlinear wave interactions are important (see
also Van Hoolst 1994; Schenk et al. 2001). We now briefly
summarize the method and refer the reader to WAQB for a
more detailed discussion.

The equation of motion for the Lagrangian displacement
r t,( )x of the stellar fluid at position r and time t relative to the

unperturbed background is

f f a¨ , , 11 2 tide[ ] [ ] ( )x x x xr r= + +

where ρ is the background density, f1 and f2 are the linear and
leading-order nonlinear restoring forces,

a U U 2tide ( · ) ( ) x  = - -

is the tidal acceleration, and U is the tidal potential. We include
only the dominant l=2 tidal harmonic and since we assume
that the orbit is circular,

rU t r W Y e, , , 3
m

m m
im t

0
2 2

2

2

2 2( ) ( ) ( ) åw q f= -
=-

- W

where M M R a ,p
3( )( ) = GM R0

3 1 2( )w = is the dynamical
frequency of a star with mass M and radius R, Mp is the planet
mass, a and Ω are the orbital semi-major axis and frequency,
and W 5 ,20

1 2( )p= - W 3 10 ,2 2
1 2( )p= and W 0.2 1 =

We solve Equation (1) using the method of weighted residuals
in which we expand the six-dimensional phase space vector as
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where α labels a linear eigenmode with eigenfunction ,xa
eigenfrequency ,wa and amplitude q t .( )a The sum over α runs
over all mode quantum numbers and frequency signs to allow
both a mode and its complex conjugate. We normalize the
eigenmodes as

E
GM

R
d x2 , 50

2
2 3 · ( )*ò x xw rº = a a a

so that a mode with dimensionless amplitude q 1∣ ∣ =a has
energy E0. Plugging Equation (4) into (1), adding a linear
damping term, and using the orthogonality of the eigenmodes
leads to a coupled, nonlinear amplitude equation for each mode

q i q

i U t U t q q q , 6

( )˙

( ) ( ) ( )
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥* * * * *å å
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U t
E
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1
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3( ) · ( )*ò x r= -a a

U t
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d x U b
1

, 7
0

3 ( )( ) · · ( )ò x x  r= -ab a b

f
E

d x c
1

, . 7
0

3
2· ( )⎡⎣ ⎤⎦ò x x xk =abg a b g

The coefficient ga is the linear damping rate of the mode, Uα

andUab represent the linear and nonlinear tidal force, and kabg
represents the three-mode coupling.

2.2. Expressions for the Coefficients

We consider the dynamics of high-order, adiabatic g-modes
within a solar-type main-sequence star. These modes are
restored by buoyancy and propagate between inner and
outer turning points determined by the locations at which

N r ,( )wa  where N is the Brunt–Väisälä buoyancy frequency
(Aerts et al. 2010). The inner turning point is very close to
the stellar center (r R P10 day,inner

3 1( )a a
- - ) and the outer

turning point is near the radiative-convective interface at
R0.7 . Individual modes are described by the quantum

numbers (l, m, n), where l is the spherical degree, m is the
azimuthal order, and n is the radial order. Since the g-modes we
consider are all very high order (n 50 ), their properties are
well approximated by the asymptotic WKB expressions given
in WAQB. Using a 5 Gyr old solar model from the EZ code
(Paxton 2004), we find

l

n
a7 , 80 ( )w wa

a

a
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b2 10 , 811 2 0
2

0 ( )
⎛
⎝⎜

⎞
⎠⎟g

w
w

w´ La a
a

-

where l l 1 .2 ( )L = +a a a The dominant linear damping mechan-
ism of the high-order g-modes is radiative diffusion of the
temperature fluctuations that accompany the mode density
perturbations (Goodman & Dickson 1998; Terquem et al.
1998). Shorter wavelength modes therefore have larger
damping rates.

By plugging Equation (3) into Equation (7a), we can express
the linear driving coefficient Uα in terms of the dimensionless
linear overlap integral

I
MR

d x r Y a
1

9m2
3 2

2( )· ( )*ò x r=a a

b2.5 10 , 93

0

11 6

( )
⎛
⎝⎜

⎞
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w
w

´ a-

where the numerical expression assumes l m m2,= =a a and
is accurate for mode periods P 0.3 daya (Figure 11
of WAQB). Low-order, l g2= -modes have large Iα but

;w Wa  they comprise the quasi-static response of the fluid
(the equilibrium tide). High-order, l g2= -modes have small Iα
but can nonetheless have large linear amplitudes if 2 ;w Wa 
they comprise the resonant response of the fluid (the
dynamical tide).

The three-mode coupling coefficient kabg is symmetric under
the interchange of mode indices. Angular momentum
conservation leads to the following angular selection rules
for the three modes: (i) l l l+ +a b g must be even, (ii)
m m m 0,+ + =a b g and (iii) the triangle inequality,
l l l l l . - +a b g a b We focus on the parametric instabil-
ity involving three-mode interactions between a high-order
“parent” g-mode and a pair of high-order “daughter” g-modes
whose summed frequency nearly equals the parentʼs frequency.
For such a triplet, the coupling is strongest in the stellar core
where the Lagrangian displacements of the modes peak. For a
solar-type star (Appendix A in WAQB)

T P
2 10

0.2 1 day
, 103

2

( )⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟k ´abg

a

where Pα is the period of the parent mode and T≈0.1–1 is an
angular integral that depends on each modeʼs l and m. The
coupling occurs mostly near the parentʼs inner turning point
r ,innera and scales as P2

a because the parentʼs displacement there
varies as r P .,inner

2 2x ~ ~a a a
-

Although the equilibrium tide amplitude is large, its three-
mode coupling cancels significantly with nonlinear tidal
driving Uab (WAQB; see also Venumadhav et al. 2014). As a
result, for a hot Jupiter system, the nonlinear dynamics are
dominated by three-mode coupling to the dynamical tide; the
energy dissipated in the equilibrium tide is small by
comparison.1 We therefore restrict our mode networks to
parent modes that comprise the dynamical tide response of the
star (i.e., linearly resonant parents) and ignore the equilibrium
tide response and nonlinear tidal driving.

Finally, we assume that only linearly resonant modes
(parents) have non-zero linear tidal forcing Uα. This is justified
because the linear forcing coefficient Uα is much smaller for
daughter modes and their driving is far off resonance. Its
secular effect will therefore be negligible compared to the
resonant three-mode interactions. Ignoring such forcing allows
us to adopt a convenient change of coordinates that
significantly speeds up the integration of the amplitude
equations (see Section 3.3).

2.3. Instantaneous Orbital Decay Timescale

The energy of the stellar modes is E E q q0*
*= å +a a

k q q q c c1 3 . .( ) ( )å +abg a b g The rate of energy loss within a
solitary star is therefore

E

E
q q c c k q q q c c

q q k q q q c c

E E

. .

2 . ,

2 , 11

0
( )
( )

( )˙
˙ ˙

˙ ( )

* *

*

*

å å

å å

å

g g

g

= + + +

=- + +

»-

a
a a

abg
abg a b g

a
a a a

abg
abg a a b g

a
a a

where we substituted the equations of motion (Equation (6))
for the mode amplitudes and neglected the terms from the
three-mode couplings because they are much smaller than
E q q E .0*=a a a This is the rate at which energy is dissipated
within the star by radiative diffusion.
The dissipation of tidally excited stellar modes removes

energy from the orbit, and the orbit therefore decays. We
assume that the only dissipation in the system is due to the
linear damping of waves excited within the star. Although the
rotational energy of a synchronized planet increases as the orbit
decays, this change is small compared to the corresponding
change in orbital energy. Similarly, the energy in the excited
stellar modes themselves may change with orbital period, but
this also is a small effect (see Appendix A).
Because E E ,orb∣ ˙ ∣* W where E GMM a2porb = - is the

orbital energy, we model the back-reaction on the orbit as a
steady decrease in Eorb of quasi-Keplerian circular orbits. The
timescale of the instantaneous, orbital energy decay is then
given by

E

E
, 12E

orb

˙ ( )
*

t =

at each P, and we can compute a corresponding time-averaged
decay timescale

a

a

E

E
, 13E

orb

˙ ˙ ( )
*

tá ñ = =

where Ė*á ñ is the time-averaged energy dissipation rate with
the average spanning several resonance peaks (if aE

ntá ñ µ
then the “inspiral time” into the star will be nEtá ñ ). We
describe our method of time-averaging in Appendix A. Using
the language of linear tidal theory, Etá ñ is often parameterized
in terms of the starʼs tidal quality factor (Goldreich &
Soter 1966; see also Jackson et al. 2008)

Q
M

M

P
7.5 10

Gyr day
14E p6

J

13 3

( )
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟*

t¢ = ´
-

1 Turbulent dissipation of the equilibrium tide within the convection zone
yields Q

*
¢∼108–109 (Penev & Sasselov 2011), which is much larger than the

Q
*
¢ we find due to nonlinear damping of the dynamical tide (Section 5).
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where the expression assumes a circular orbit about a solar-type
star and ignores dissipation within the planet. Although Q

*
¢ is

often taken to be a constant and fundamental property of the
body, in general it depends on the companion mass, orbital
frequency, and the tidal harmonics l m, .( )

3. BUILDING AND INTEGRATING
THE MODE NETWORKS

In the absence of nonlinear three-mode interactions, the
energy of a linearly driven parent mode α is (Equation (29)
in WAQB)

E

E
q

U
, 15lin

0
,lin

2
2 2

2 2
( )w

g
= =

D +a
a a

a a

where mwD = - Wa a a is the linear detuning. The parent is
unstable to nonlinear three-mode interactions if there exists a
pair of daughter modes β and γ such that E E ,lin thr where the
threshold energy is (see Appendix B)

E

E

1

4
1 . 16bthr

0
2

2

( )
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥k

g g
w w g g

= +
D
+abg

g

b g

bg

b g

Here mw wD = + + Wbg b g a is the nonlinear detuning of the
daughter pair. Daughter pairs with smaller ∣ ∣Dbg and larger
∣ ∣kabg (i.e., stronger nonlinear coupling) yield smaller Ethr and
are more readily unstable. In a three-mode system, unstable
daughters with small initial amplitude undergo a phase of
exponential growth at a rate

E E2 . 173md lin 0 ( )kG » W abg

Eventually, the daughters reach an energy comparable to or
greater than the parentʼs and the system reaches a nonlinear
equilibrium (see Section 4.2 and Appendix B).

For the tide raised by even a M0.1 J companion in a 3 day
orbit, there are 103~ daughter pairs for which E Ethr lin< (see
Section 3.1). In Section 4, we systematically explore the
dynamics of large multi-mode, multi-generation systems. In
brief, we find that the parent drives many of the unstable
daughters to large amplitudes and these daughters, in turn,
drive granddaughters to large amplitudes, and so on. The total
number of potentially unstable modes and the number of
couplings is larger than the number we can integrate on a
computer in a reasonable time ( 104~ and 10 ,5~ respectively).
The issue then is whether we can reliably calculate the total
tidal dissipation rate with a mode network that contains only a
subset of the potentially unstable modes. We will present
evidence in Section 4 that this is possible but we must build our
networks carefully and systematically.

In Sections 3.1 and 3.2, we describe how we build networks
consisting of sets of three-mode couplings (i.e., sets of triplets)
and collective couplings, respectively. And in Section 3.3, we
describe our method for integrating the coupled mode
amplitude equation (Equation (6)).

3.1. Building Three-mode Networks

Although there are many daughter pairs with E E ,thr lin< we
show in Section 4 that pairs with low Ethr dominate the
dynamics of large multi-mode systems. We find that if we
gradually increase the size of our networks by adding pairs

with progressively higher E ,thr the system converges to a
dissipation rate Ė* that does not change significantly as we add
even more modes. We must also include a sufficient number of
generations (at least parents, daughters, and granddaughters) in
order to obtain convergent results. Therefore, to build our mode
networks, we comprehensively search the mode parameter
space and construct, for each generation, a complete list of
pairs ranked by E .thr
In order to carry out our search, we use the expressions for ω,

γ, and κ (Equations (8a), (8b), and (10)) to solve for E .thr For a
given parent mode α, we first find the local minima of Ethr in
the daughter parameter space n l m n l m, , , , , .{( ) ( )}b b b g g g In
general, Ethr is minimized approximately where the sum in
quadrature of Dbg and g g+b g is minimized (modulo the
angular selection rules and a relatively weak dependence on the
angular integral T). Daughters with higher l have smaller Dbg
(because they are more densely spaced in frequency) but
larger γ (because l2g ~ ); the regions of small Ethr therefore
occur where these two countering effects are balanced.
After finding the local minima, we expand our search around
those minima and find pairs with progressively higher E .thr
Because l ,2g ~ at high enough l the damping dominates
detuning, and Ethr increases with increasing l. We truncate our
search upon reaching an lmax such that E Ethr lin> (i.e., a stable
triplet). In practice, we find that for parent–daughter coupling,
the dissipation Ė* is dominated by the 10–100 lowest Ethr
triplets.
Figure 1 shows the distribution of Ethr for parent–daughter

coupling assuming a 0.1 MJ companion in an orbit near three
days. There are a few pairs with very low Ethr because they just
happen to have particularly small Dbg despite having l 3.
There is a much larger sample of 103~ pairs that have larger
Dbg and/or γ which still yield E E .thr lin

We carry out a similar search when we consider the coupling
of daughters to granddaughters. We show the distribution of
Ethr for daughter–granddaughter coupling in Figure 1. The Ethr
of the most unstable daughter–granddaughter triplets is much
smaller than the Ethr of the most unstable parent–daughter
triplets (i.e., the red curve in Figure 1 is far to the left of the

Figure 1. Cumulative distribution of Ethr for M M0.1p J= and P 3 days
(257928 s). (blue) Couplings from parents to daughters. The vertical blue line
corresponds to the parentʼs linear energy E .lin (red) Couplings from daughters
to granddaughters.
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blue curve). Because 2k wµabg a
- and ,w wD µbg a a for low

Ethr pairs we find E .thr
2 6( )k w wµ D µbg abg a a The factor of

two decrease in frequency with each generation therefore
means that Ethr decreases by 26~ (for a full discussion, see
Appendix F). Physically, Ethr decreases because lower
frequency modes (i) penetrate deeper into the core where
Lagrangian displacements are larger, and (ii) are more densely
spaced in frequency and therefore can have smaller detunings.
As a result, each generation is evermore susceptible than its
predecessor to three-mode instabilities. This has important
implications for the dynamics of large multi-mode, multi-
generation systems, as we describe in Section 4.

3.2. Building Collective Networks

For high-order g-modes, the frequency spacing between
neighboring modes is n .∣ ∣w w wD ~  Therefore, if a pair of
daughters is resonantly excited by a parent, there is a good
chance that neighboring modes will also be resonantly excited
by that same parent. The dynamics of such a system can be
very different from that of a simple three-mode system; in
particular, the daughters can grow as a single, collective unit
with growth rates that are much higher than the three-mode
case (see WAQB and Appendix E).

To appreciate why collective sets can grow so quickly,
consider a simplified system in which a single parent mode α is
coupled to N daughter modes that are closely spaced neighbors
in l n,( ) space. A study of the dynamics of such a system
reveals that the modes all oscillate nearly in phase with each
other. The equations of motion for each of the N daughter
modes can thus be approximated as

q i q i q q

i N q q . 18

( )˙

( )

* * *

* * *

åw g w k

w k

+ + =b b b b b
g

abg a g

b abg a g

The dynamics look like the three-mode case, but with an
effective coupling coefficient that is N times larger. In
particular, the instability growth rates (threshold amplitudes)
are approximately N times larger (smaller) than the three-
mode case.

When building our mode networks, we use separate
algorithms to search for collective sets and three-mode sets.
A simple but incomplete way to build collective sets is to first
find a daughter with a frequency nearly equal to half that of the
parents and then progressively add neighbors with nD =±1,
±2, ±3,K. At first, Ethr will decrease as more modes are added
and N increases. However, for large enough n,D the detuning
of the outer most modes becomes so large that adding more
modes does not decrease Ethr any further.2 More detail is
provided in Appendix E.4. Although this method naturally
picks out collective sets (and is similar to the approach
described in WAQB), it potentially misses many collectively
unstable modes. For example, there can be distinct groups of
modes that are not nearby neighbors and yet together form a
collective set. For this reason, we use a more sophisticated
method when building collective networks. We describe this
method in Appendix D.

In Section 4, we show that collective sets are excited and
initially grow much more rapidly than three-mode sets.
However, when the entire network ultimately reaches its
nonlinear equilibrium and saturates, we find that the collective
sets do not alter Ė* significantly. We therefore find that we can
accurately calculate Ė* with networks that include only three-
mode sets.

3.3. Integration Method

We integrate the amplitude equation (Equation (6)) for each
mode of a network using an adaptive step-size 4th–5th order
Runge–Kutta integrator. Our integrations take advantage of a
convenient change of coordinates, also described in Brink et al.
(2005). The integration step size is limited by the fastest
frequency in the equations. Because the linear and nonlinear
forcings all involve resonant interactions3, the linear and
nonlinear detunings (Da and Dbg) are all small ( W ). In fact,
the fastest timescale in these equations is typically the natural
frequency wa of each mode. By changing coordinates to
x q e ,i t=a a

wa we can remove these frequencies from the
equations of motion at the cost of adding a slowly varying
time-dependent term to each three-mode coupling.
This increases the typical integration step size by approxi-
mately the ratio of wa to the detuning (≈102–104).
In order to further speed up the integrations, we parallelize

across multiple CPUs. We achieve this using standard
parallelization techniques, with care taken to equally distribute
the amount of work across each CPU. For example, the
computation of ẋa scales with the number of couplings
included for that mode. Therefore, when we parallelize the
computation of ẋa by splitting modes among processes, we
attempt to divide modes into sets with equal numbers of
couplings, rather than equal numbers of modes. We test several
different parallelization methods, including an implementation
using Pythonʼs subprocess module, Pythonʼs multiprocessing
module, and a Python wrapper for OpenMPI. All our
implementations scale better than N ,CPU

0.8- although which
implementation is fastest depends on specifics of the hardware.
The Python multiprocessing implementation generally per-
formed best, and parallelized across 15 2.7 GHz Quad-Core
AMD Opteron Processors, it takes 40 s to integrate one of our
largest networks ( 2.4 104´ modes with 3 105´ cou-
plings) through 10 orbital periods.

4. MODE DYNAMICS

In order to build up intuition for the results from large multi-
mode, multi-generation networks, we describe the mode
dynamics of increasingly complicated networks. We begin in
Section 4.1 with a network that consists only of linearly
resonant parents (i.e., we ignore all nonlinear couplings) and
show that our simulations recover the dissipation rates of
standard linear theory. In Section 4.2 we couple linearly
resonant parents to unstable daughter modes but do not allow
the daughters to couple to granddaughters. We find that
including even just this first generation of nonlinear couplings
enhances the dissipation rate by a factor of 100» ( 10» ) relative
to the linear result for P 1 day= (3 day) and M M .p J= In
Section 4.3 we allow the daughters to couple to granddaughters
and find that this further enhances the dissipation, yielding a

2 In addition, the magnitude of kabg becomes small for n nD a because the
coupled daughters are no longer spatially resonant with the parent (see Figure
12 in WAQB).

3 For reasons described in Section 2.2, we assume that only the linearly
resonant parent modes have a non-zero linear tidal forcing Uα.
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rate that is 105» ( 103» ) times larger than the linear result for
P 1 day= (3 day) and M M .p J= We find in Sections 4.4 and
4.5 that the dissipation rates do not change significantly when
we include even more generations (great granddaughters and
beyond) and collective sets, respectively, suggesting that the
system has reached a convergent, saturated state. In Section 4.6
we explore the minimum network size needed to attain such a
convergent state.

4.1. Linear Parents Only

If we include only linearly driven parents in the network,
then E E2 ,lin∣ ˙ ∣ ( )* g= å a a where the parent linear energy E lin( )a
is given by Equation (15). The dissipation is typically
dominated by the most linearly resonant parent, although other
modes can contribute if no single mode is particularly resonant.
In Figure 2, we show Ė* due to the ten most resonant parents
over a small range in orbital period. In the absence of nonlinear

Figure 2. Energy dissipation rate Ė* as a function of orbital period P for networks that include different numbers of mode generations N .gens We show results for
M Mp J= and orbits near P 1 day= (left panel) and P 3 days= (right panel). The sharp linear resonance peaks occur when the tidal driving frequency is resonant
with an l g2= -mode of the star. (blue squares) Networks with only the ten most resonant parents. (red circles) Networks with parents and daughters. (green triangles)
Networks with parents, daughters and granddaughters (shown here are the results of our “reference network”; see Section 4.6). (gray lines) The analytic estimate of the
steady state dissipation for parent-only networks that contain the 100 most resonant parents. (red crosses) The analytic estimate of the steady state dissipation for
parent–daughter networks (see Equation (21)). We do not have an analytic estimate for parent–daughter–granddaughter networks.

Figure 3. Orbital decay timescale Et as a function of the number of modes Nmodes for networks that include different numbers of mode generations N .gens We show
results for a Jupiter-mass companion orbiting at a period near three days (257928 s, chosen to be approximately half way between a resonance trough and resonance
peak for our stellar model). The left panel networks have a single parent mode and the right panel networks have 10 or 25 parent modes. (blue squares) Networks with
only parents. (red circles) Networks with parents and daughters. (green triangles) Networks with parents, daughters, and granddaughters. The filled triangle
corresponds to a reference network with collective granddaughter modes added. (purple pentagons) Networks with parents, daughter, granddaughters, and great-
granddaughters. The structure of the networks with only a single parent (left panel) are as follows: N 2gens = networks range from one daughter pair up to 500
daughter pairs. N 3gens = networks mostly correspond to 10 daughter pairs and either 25, 50 (our reference network; Section 4.6), 75, 150, or 200 granddaughter pairs
per daughter, although there are networks with 50 and 200 daughter pairs, each with 50 granddaughter pairs per daughter. N 4gens = networks are all extensions of our
reference network, adding 10, 25, 50, 100, 200, or 500 great-granddaughter pairs per granddaughter. The structure of the multi-parent networks (right panel) are as
follows: either 10 or 25 parent modes; 0, 10, 25, or 50 daughter pairs per parent; and either 0, 50, 100, or 200 granddaughter pairs per daughter.
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interactions, the orbit evolves rapidly through the sharp
resonance peaks where Ė* is large. As we describe in
Appendix A, the time average dissipation rate is the sum of
the instantaneous Ė* weighted by the amount of time spent at
that period (see also Goodman & Dickson 1998). In the left
panel of Figure 3, we show Et (Equation (12)) due to the single
most resonant parent assuming P 3 day, M M .p J= An
analytic calculation using Equations (8b) and (15), and
assuming n2 ,w gD ~a a a a yields (see Appendix G)
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This is in good agreement with our numerical integrations. The
Mp dependence of E lintá ñ is due to the linear forcing coefficient
Uα and the dependence on P is due to a combination of ,ga ,Da
and Uα. We will show that when we include nonlinear
interactions, the instantaneous decay time has a dramatically
different magnitude and scaling with Mp and P.

The right panel of Figure 3 shows the results for the same
parameters as the left panel, but for networks with either the 10
or 25 most resonant parents. Despite including these additional
modes, the instantaneous decay time is nearly identical in both
cases. More generally, we find that including multiple parents
has very little effect on the total dissipation (even for networks
with nonlinear interactions) as long as P 4 days. This is
because, for P 4 days, the parent mode spacing is suffi-
ciently sparse that the most resonant parent typically has a
much larger Elin than the neighboring parents, and it therefore
dominates the dynamics (Appendix C).

4.2. Parents and Daughters

In Figure 4 we show the mode dynamics of networks that
include daughters (but not granddaughters) coupled to a
linearly resonant parent. The top panel shows a simple three-
mode system involving a parent coupled to only its lowest Ethr
daughter pair. Initially, the daughters are at small energy and
the parent is at its linear energy E .lin Because E E ,lin thr> the
system is unstable and the daughters undergo a rapid initial
growth at the rate given by Equation (17). Eventually the
system reaches a nonlinear equilibrium in which the parent
has energy E Ethr=a and the daughters have energy
E U E2, 0∣ ∣kb g a abg (see Appendix B and WAQB).

The middle panel of Figure 4 shows the same parent now
coupled to the ten lowest Ethr daughter pairs. Because
E Elin thr> for all ten pairs, initially all the daughters grow.
However, eventually the parent energy drops to the minimum
Ethr and only the lowest threshold daughter pair remains
excited; the other daughters decay due to linear damping. The
nonlinear equilibrium of this system is therefore equivalent to
the three-mode network shown in the top panel.

The network shown in the middle panel of Figure 4 assumes
that each of the ten triplets only share a parent. If the triplets
also share daughters (e.g., daughter a couples to daughter b and
daughter c), then the dynamics can be more complicated. Such
a network is shown in the bottom panel of Figure 4 and
illustrates how such additional couplings parasitically excite

other daughters.4 O’Leary & Burkart (2014) consider a similar
mechanism in order to explain the odd resonances observed in
the KOI-54 light curve. Despite these additionally excited
modes, the lowest Ethr pair still dominates the dissipation.
In Figure 3, we show Et for networks that include only

parent–daughter couplings (N 2gen = ) assuming P 3 day,
M M .p J= We find that at this period parent–daughter coupling
decreases Et by a factor of ∼10 relative to the linear result.
Numerically, both Et and Etá ñ are nearly independent of the
number of daughter modes in the parent–daughter networks
because the daughter pair with the lowest Ethr dominates the
dynamics and dissipation. The other daughters, while excited,
do not reach significant amplitudes and therefore have little
effect. Even for large numbers of modes, parent–daughter
systems behave much like those shown in the middle and
bottom panels of Figure 4. We therefore find that Etá ñ is well-
approximated by the analytic calculation that assumes only one
parent and its single lowest Ethr daughter pair (see Appendix G
and Figure 10)
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The agreement between the numerical result for parent–
daughter networks containing multiple daughters and the
above three-mode estimate is further illustrated in Figure 2.
The open circles show the numerically computed Ė* of a
parent–daughter network consisting of the 20 lowest Ethr

Figure 4. Parent–daughter networks (N 2gens = ) with different structures. The
left panels show the energy Eα of each mode as a function of time. In each of
these panels, the parent is the blue line and is initially at Elin but ultimately
settles into a nonlinear equilibrium at an energy E E .lin The right panels
show the coupling diagrams in the n–l plane, with circles representing the
included modes and line connections indicating the coupling structure. (top) A
parent and the lowest Ethr daughter pair. (middle) A parent and the ten lowest
Ethr daughter pairs with each daughter mode couple to only one other daughter
mode. (bottom) A parent and the ten lowest Ethr pairs with all allowed
couplings between daughters.

4 This is a form of nonlinear inhomogeneous driving and is described
in WAQB.
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daughter modes. Each of these open circles is covered by an
“x,” which represent the analytically computed Ė* assuming
only the minimum Ethr daughter pair.

We will now see, however, that the dynamics are much more
complicated when granddaughters are included, with many
more modes excited to significant amplitudes.

4.3. Parents, Daughters, and Granddaughters

In the absence of granddaughter couplings, the lowest Ethr
daughter pair settles into a nonlinear equilibrium at an energy
E U E2 ., 0∣ ∣kb g a abg However, as discussed in Section 3.1,
there are many granddaughter pairs that are unstable to such
high energy daughters (see Figure 1). The parent–daughter
solutions of the previous section are therefore unstable and
never realized.

For very small networks that include granddaughters we
sometimes observe periodic limit cycles. However, for even
slightly larger networks with more complicated coupling
topologies, the limit cycles begin to take on a more chaotic
appearance. And for the very large networks that we find yield
convergent dissipation results ( 103 modes), the dynamics
cease to display any clear limit cycle behavior over long
timescales and instead show persistent large amplitude
fluctuations involving many excited modes (Figure 7).

We can roughly understand the behavior of these networks
using intuition from simple three-mode systems. Initially, an
unstable, linearly driven parent excites daughters to large
energy. The daughters drain energy from the parent and the
parentʼs energy drops. However, the daughters then excite
granddaughters and the daughters’ energy drops. The daughters
no longer drain enough energy from the parent and the parent
begins to recover due to linear driving. The rising parent
excites the daughters again and the cycle restarts.

Unstable granddaughters have lower frequencies and, in
general, higher l than the parents and daughters. They therefore
often have much smaller radial wavelengths (i.e., much larger
n) and thus much larger linear damping rates ( n2g µ ). This
means that granddaughters can dissipate energy more rapidly
than daughters even if they are at a lower amplitude.

In Figure 3 we show Et for large networks that include
parents, daughters, and granddaughters (N 3gen = ) assuming
P 3 day and M M .p J= We see that networks with grand-
daughters are more dissipative than parent–daughter only
networks and yield 10E E

3
,lint t- at P 3 day. The figure

also shows Et as a function of the number of modes Nmodes in
the network. We find a systematic uncertainty in Et associated
with the structure of the network. However, this uncertainty is
small compared to the increase in dissipation associated with
the inclusion of granddaughter modes. In this sense, we find
that Et is not particularly sensitive to the number of
granddaughters nor to the details of the network structure as
long as the number of granddaughter modes is sufficiently large
( 103 ). We illustrate this point further when we discuss our
reference networks in Section 4.6.

When we build networks with larger N ,modes we do so by
adding modes of increasingly larger Ethr (see Section 3.1). The
fact that Et does not change as we increase Nmodes above 103~
suggests that the lowest Ethr modes dominate the energy
dissipation and, therefore, that our method for building
networks reliably captures the bulk of the dissipation. We
illustrate this more explicitly in Figure 5, which shows that
the overwhelming majority of the energy is dissipated by the

modes with the lowest Ethr and that modes with ever larger Ethr
contribute less and less to the total dissipation. This suggests
that selecting modes based on their Ethr identifies the
dynamically relevant couplings and that including enough
modes in this way yields convergent results.

4.4. Great Granddaughters and Beyond

If daughters and granddaughters are excited, what about
great granddaughters (N 4gen = ) and so on? This seems
particularly likely given that Ethr

6wµ - (see Section 3.1).
Indeed, based on our experiments with networks that include
up to five generations, we observe that the cascade continues
into many generations. However, as long as we include enough
modes, we find that the total dissipation rate plateaus once we
include granddaughters. In effect, we do not need to resolve the
innermost scales of the energy cascade in order to obtain an
accurate estimate of E .˙

*
We illustrate this in the left panel of Figure 3, which shows

Et for networks that go up to N 4.gen = There are dramatic
decreases in Et when going from just parents (N 1gen = ) to
parents and daughters (N 2gen = ), and again when adding
granddaughters (N 3gen = ). However, we see only a slight

Figure 5. Cumulative distributions of the number of modes included in the
network (blue) and the energy dissipation rate of the modes (red) as a function
of each modes E .thr For granddaughter modes coupled to more than one
daughter, we take their minimum E .thr (top) a network consisting of one parent,
50 daughter pairs, and 50 granddaughter pairs per daughter. (bottom) a network
consisting of one parent, 500 daughter pairs, and 50 granddaughter pairs per
daughter. Approximately 90% of the energy dissipation is due to the first 50%
(40%) of modes ordered by Ethr for the smaller (larger) network.
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decrease in Et when we add great-granddaughters (N 4gen = ).
In particular, for sufficiently large N 4gen = networks
(N 2 10modes

4 ´ ), we find that Et plateaus at a value that
is only 3 times smaller than that of our N 3gen = reference
network at this P. This suggests that truncating at N 3gen =
yields reasonably accurate estimates of Et .

4.5. Dynamics of Collective Networks

WAQB showed that sets of modes can be collectively
unstable even if each pair within the set is stable by itself. We
describe algorithmic approaches to identify and select such sets
of modes in Section 3.2 and Appendix E. These collective sets
can have growth rates that are hundreds of times faster than the
separate three-mode growth rates (Equation (17)). We illustrate
this in the left panel of Figure 6, which shows several
collectively unstable sets of modes being rapidly driven to large
amplitudes after only a few hundred orbital periods. However,
for P 10 days (see Figure 7 of WAQB), the lowest Ethr for
individual three-mode triples is lower than the collective
stability threshold. This means that after the collective modes
grow rapidly, the parentʼs amplitude is still large enough to
drive three-mode triples. The right panel of Figure 6 shows that
the slowly growing three-mode triples eventually reach large
amplitudes and drive the parent below the collective instability
threshold. At that point, all the collective modes “turn off” and
decay, leaving the steady state predicted by simple three-mode
systems.

The network in Figure 6 only includes parents and
daughters. However, because these daughters are unstable to
granddaughter interactions (Section 4.3), the collective modes
may not decay forever but instead may saturate at non-trivial
amplitudes. In principal, because collective modes can have
significantly larger l than the minimum Ethr pair and thus larger
damping coefficients, they may dissipate energy more rapidly.
Nonetheless, numerical experiments reveal that sufficiently
large networks constructed out of only three-mode pairs yield
nearly the same Ė* as networks that also include collective
excitations. This can be seen in Figure 3; the filled triangle

corresponds to the reference network (Section 4.6) with the
addition of collective granddaughters. Because collective
networks are expensive to simulate and do not change the
calculated E ,˙

* from here on we do not include them in our
calculations.

4.6. Reference Network Integrations

To summarize, we find that networks with parents,
daughters, and granddaughters yield convergent dissipation
results as long as they include a large enough number of low
Ethr daughter and granddaughter modes. Moreover, it is not
necessary to include collective sets of daughters and grand-
daughters; although they can modify the dynamics somewhat,
the low Ethr three-mode sets ultimately model the total
dissipation well.
Further numerical experiments reveal that a network

consisting of one parent, its 20 lowest Ethr daughters, and
1500 low Ethr granddaughters is sufficiently large that it

yields convergent results while still allowing us to efficiently
explore a range of Mp and P (see caption of Figure 3). We use
this as our “reference network” when computing Etá ñ as a
function of Mp and P in Section 5. That such a network is
sufficiently large can be gleaned from the left panel of Figure 3,
which shows that the reference network Et is very similar to
N 3gen = or 4 networks with N 10 .modes

4
We demonstrate this further in Figure 7, which shows the

mode energy and the effective number of modes participating
in the dissipation Neff as a function of time for four different
orbital periods. We estimate Neff by computing

N p pexp ln , 23eff ( )
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This statistic is related to the Shannon entropy and is similar to
one used in Brink et al. (2005). If all modes contribute equally
to the dissipation, then p N1 modes=a for each mode and
N N .eff modes= We see in Figure 7 that the dynamics are
complicated, with many excited modes. We also see that the
mode energy and Neff increase at shorter P and near linear
resonances. However, N Neff modes while both the peak
energy of the modes and Neff remain nearly constant after
∼100,000 orbits, indicating that our reference networks are
sufficiently large. The behavior of the networks as a whole is
what is important here, rather than the dynamics of any
individual mode. Individual modes fluctuate significantly but
the overall dynamics do not change over long timescales.
We now describe our procedure for calculating Etá ñ as a

function of Mp and P, the results of which we present in
Section 5. For each reference network run at a given (Mp, P)
point, we simulate at least 5 105´ orbits in order to allow
transient effects from initial conditions to die away.5 Using
Equation (11), we then compute the average Ė* over the last

5 104~ ´ orbits of the integration. We do this in order to

Figure 6. Parent–daughter networks (N 2gens = ) that include collective sets in
addition to three-mode sets. (black dashed line) the parent mode. (black solid
line) daughters selected with three-mode algorithm. (grey solid lines) daughters
selected with collective algorithms. In the left panel we show the dynamics of
the system at early times. Several separate sets of collective modes are excited,
grow rapidly, and reach significant energies by t P200 .» In the right panel we
show the dynamics out to much longer times. The slowly growing set of
unstable three-mode daughters eventually reach large amplitudes at
t P3 10 .4» ´ This drives the parentʼs amplitude down and the collective
modes decay away. We only plot one out of every ten collective modes from
this simulation.

5 This is true of all networks in Figure 3 as well, with the exception of the
largest N 4gens = network and the collective network, where we were
computationally limited to shorter (but still convergent) integrations.
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average over the rapid fluctuations in dissipation that
characterize the nonlinear equilibria, which correspond to rms
variations at roughly a 10% level. We also find that Ė* depends
slightly (factor of 2» ) on how close the parent is to a linear
resonance peak (see the N 3gen = results in Figure 2). In order
to compute the average dissipation rate, we must therefore
average the results over several resonance peaks. We do this by
performing 21 separate integration runs, each at a slightly
different orbital period ( P Pd  ) chosen such that the runs
span three resonance peaks. We then calculate the average Ė*
weighted by the amount of time spent at that orbital period
(Appendix A) and use this Ė*á ñ to estimate Etá ñ via
Equation (13).

5. RESULTS

In this section we present the results of integrating the
coupled amplitude Equation (6) using the procedure and
reference networks described in Section 4.6. Figures 8 and 9
show Etá ñ as a function of Mp and P. We find that Etá ñ depends
strongly on P and only mildly on M .p Our numerical results are

well approximated by the fit
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over the range M M0.5 3p J  and P 4 days. This
matches our numerical results to within a factor of 2 over
this range, which is comparable to systematic modeling
uncertainties due to differences in the network structure of
large N 3, 4gens = networks (see Figure 3). By Equation (14),
this corresponds to a stellar tidal quality factor
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Thus, for M M0.5p J and P 2 day we find that Etá ñ is small
compared to the main-sequence lifetime of a solar-type star.
For M M0.5 ,p J we find that although Etá ñ increases
significantly, it can still be small at small P. For example, for
M M0.1p J= and P 1 day= we find 800 Myr.Etá ñ  At
sufficiently small Mp and/or large P, the nonlinear effects

Figure 7. Mode energy Eα (left panels) and effective number of modes Neff (right panels) as a function of time for reference networks with M M .p J= (top to bottom)
P 1 day on resonance, off resonance, P 3 day on resonance, off resonance. For clarity, on the left we plot only one out of every 25 granddaughter modes included
in the simulation.
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“turn off” and Etá ñ collapses onto the linear result. This is
particularly evident for M M0.1p J= in Figure 8. We also
illustrate this effect in Figure 10, which shows how Etá ñ
depends on P when M Mp J= for different numbers of
generations. We see that by P 10 days,  Etá ñ is very long
and close to the linear prediction (the N 1gen = line).

5.1. Implications for a Few Known Systems

Based on the Exoplanet Orbit Database (http://www.
exoplanets.org), there are currently 11 known planets orbiting
approximately solar-type stars (M M1.0 0.1=   and
T 5500 Keff  ) with decay times 1 GyrEtá ñ < according to
our results. Of these, 7 have expected decay times

0.3 Gyr;E tá ñ in order of increasing P, they are WASP-
19b, TrES-3b, HAT-P-36b, WASP-77Ab, WASP-4b, WASP-
36b, and WASP-46b. Figure 11 shows these planets on the
M isinp –P plane, with Etá ñ labeled for each system and a
contour of Etá ñ superimposed. These planets all have

M i Msin ,p J> P 2.0 days,< and eccentricities consistent with
or very close to zero. Since these are all transiting systems,
M i Msinp p and the reported errors in the measured mass are
typically M0.1 .J
We note that two of the planets (CoRoT-2b and CoRoT-18b)

have masses M i Msin 3 .p J> This suggests that they are in the
strongly nonlinear regime where the parent wave breaks within
the stellar core (Barker & Ogilvie 2010, 2011; Barker 2011).
We discuss how our results compare to the strongly nonlinear
simulations of Barker & Ogilvie in Section 6.
Of the 11 planets with 1 Gyr,Etá ñ < there are five for which

studies report at least some constraint on the age of the system.
In three of these, the age uncertainties are sufficiently large that
the systems might be relatively young, i.e., 1 Gyr~ (WASP-
64b, WASP-5b, CoRoT-2b: 1.2 ,0.7

1.2
-
+ 5.4 ,4.3

4.4
-
+ 2.7 ,2.7

3.2
-
+ respec-

tively). However, WASP-4b and WASP-19b appear to be older
systems: 7.0±2.9 and 10.2 Gyr,3.8

3.0
-
+ respectively. Assuming

that the planets arrived close to their current orbits when their
host stars first formed, such old stellar ages seem to be in
tension with the small Etá ñ we predict, especially in the case of
WASP-19b. If our results are correct, then perhaps these

Figure 8. Dependence of Etá ñ on P for fixed values of Mp (left panel) and the dependence of Etá ñ on Mp for fixed values of P (right panel). The solid lines show our
analytic fitting formula, which begins to break down for M M0.5 .p J

Figure 9. Decay time Etá ñ on the (M ,p P) plane. The size of the marker is
proportional to Qlog ,10( )*¢ with corresponding color bar for Etá ñ in years. Each
sample point is labeled with log Gyr .E10( )tá ñ The shaded region represents
Barker & Ogilvie (2011)ʼs prediction for when linearly resonant modes break.

Figure 10. Decay time Etá ñ as a function of P for different numbers of
generations and M M .p J= (blue squares) 10 most resonant parents. (red circles)
parents+daughters. (green triangles) parents+daughters+granddaughters.
(dashed lines) analytic estimates for N 1, 2gens = (Appendix G).
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planets were scattered into their current orbits well after the
stars formed or they just happened to initially reside at
separations with decay timescales very close to their
current ages.

Several recent papers consider the prospects for the direct
detection of orbital decay of individual planets by measuring
transit timing variations (TTVs) over long time baselines
( t 5 year,D see Watson & Marsh 2010; Birkby et al. 2014;
Gandolfi et al. 2014; Valsecchi & Rasio 2014). In order to
evaluate this possibility, we simulated four known systems
spanning a variety of companion masses and orbital periods
(but each with a solar-type host6), calculating their tidally
induced TTV (Tshift) and change in orbital period ( PD ) as a
function of t.D We compute these according to (see Birkby
et al. 2014 for a derivation)
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In order of increasing orbital period, we analyze WASP-19b
(Hebb et al. 2010; Hellier et al. 2011; Mortier et al. 2013),
HAT-P-36b (Bakos et al. 2012), WASP-36b (Smith
et al. 2012), and CoRoT-2b (Alonso et al. 2008; Gillon
et al. 2010).

In order to calculate the orbital decay rate of these systems,
we simulate a small range of orbital periods centered on each
systemʼs measured period. We then compute the time-averaged
decay rates following the procedure described in Section 4.6.
We do this in order to mitigate any differences between the
resonances of our stellar models and the actual resonances of
the stellar hosts. Furthermore, this allows us to compute a

minimum and maximum expected decay rate, corresponding to
the troughs and peaks of the resonances, respectively.
Table 1 lists Etá ñ as well as the minimum and maximum .Et

The Etá ñ of the four systems ranges from about 10Myr
(WASP-19b) to 600Myr (CoRoT-2b), while the minimum
(maximum) Et is approximately two times smaller (larger).
WASP-19b has by far the shortest decay time owing to its
extremely short orbital period (18.9 hr).
Table 1 also lists the systems’ average, minimum, and

maximum PD and Tshift after 10 years of evolution. These
provide an estimate of the magnitude of the tidally induced
deviations we would expect to observe from these systems over
the next 10 years.
We quantify these effects further in Figure 12, which shows

the cumulative probability of observing tide-induced deviations
as a function of time. We choose a detection threshold of

P 0.1 sthr( )D = and T 60 sshift thr( ) = based on the measure-
ment errors of P and the expected uncertainties in TTVs
(Gillon et al. 2009; Watson & Marsh 2010); different choices
will scale tD through Equation (27).
We find that Tshift should always produce a detection faster

than P.D This is because Tshift is a cumulative effect that builds
up throughout the orbital decay. According to our results,
WASP-19b should produce a detectable Tshift in the very near
future, with a ≈50% chance of observing a deviation now
given the current four year baseline (Hellier et al. 2011) and a
high likelihood of detection after only two more years. It will
take considerably longer before detections are possible in the
other three systems.
We note that even if, for some reason, our calculations

overestimate the dissipation rate by an order of magnitude, the
Tshift curves in Figure 12 would only be shifted to the right by a
factor of 10 3.~ Finally, as Watson & Marsh (2010) point
out, the Applegate effect could produce PD and Tshift values
that are comparable to the tidally induced values and
distinguishing the two may not be simple.

5.2. Comparison with Previous Estimates of Nonlinear Tidal
Dissipation

Previous studies that attempt to estimate the nonlinear
dissipation rate of dynamical tides in close binaries include
Kumar & Goodman (1996) and Barker & Ogilvie (2011). They
both argue that an upper bound to the dissipation rate is
approximately given by the product of the parentʼs linear
energy and the three-mode growth rate of the fastest growing
daughter pair:

E E . 283md lin˙ ( )*  G

This estimate does not account for the continuous linear driving
of the parent. Instead, the parent wave is initialized with an
energy equal to Elin but is otherwise undriven, and the problem
reduces to determining the amount of time it takes for
daughters to dissipate that initial energy. Although this is
appropriate for the tidal capture problem that Kumar &
Goodman (1996) consider (because the binary is on a highly
eccentric orbit and the parent is only driven strongly during the
brief pericenter passage), in our analysis the orbit is circular
and the parent is a continuously driven standing wave. The
estimate of Equation (28) also assumes that the mode dynamics
are dominated by the single, fastest growing daughter pair even

Figure 11. Period-mass distribution (M isinp vs. orbital period P) of known
extrasolar planets orbiting solar-type stars with 1 GyrE tá ñ based on our
results. Each planet is labeled by our Etá ñ fitting formula (Equation (25)), and
the color represents contours of Etá ñ. (Data taken from http://www.
exoplanets.org).

6 This requirement is why we do not consider WASP-18b, which was
analyzed in Birkby et al. (2014).
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though there may be many modes participating in the
interactions.

Using Equation (17), we find that the fastest growing
daughters have a growth rate of

M

M

P
0.6

day
yr 29

p
3md

J

11 6
1 ( )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟G
-

-

and with Equation (15)

E
M

M

P
2.4 10

day
erg s . 30

p
3md lin

28

J

3 7.5
1 ( )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟G ´
-

-

For comparison, the fit to our numerical simulations yields, by
Equations (12) and (25),

E
M

M

P
3.5 10

day
erg s . 31

p29

J

1.5 7.4
1˙ ( )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟* ´
-

-

Thus, while the two have nearly identical P scalings, the Ė*
from our simulations is 15 times larger than E3md linG for
M M .p J This factor of 15 difference can be seen in the Q

*
¢

estimates. In particular, we find Q 3 105
*
¢ » ´ at P 1 day=

for M M0.5 .p J By contrast, Barker & Ogilvie (2010) argue
that Q 5 106

*
¢ ´ for systems below the wave breaking limit

(M M3p J ) based on their assumption that E E3md lin˙
*  G in

the weakly nonlinear regime.
We suspect that the discrepancy is largely due to the

assumption in Equation (28) that only the single fastest
growing daughter pair is important. In Figure 13 we
demonstrate that this is not the case. We show the individual
and cumulative contribution to Ė* of modes in our reference
network (which consists of 1500 modes). We find that there
are several daughter modes that contribute substantial amounts
of dissipation, not just a single dominant daughter pair.
Figure 13 also shows that, in sum, the granddaughters are the
dominant source of dissipation in the network.

6. SUMMARY AND DISCUSSION

We present a first principles calculation of the saturation of
nonlinear interactions between g-modes excited within the
cores of solar-type hosts by planetary companions. Using a

Table 1
Orbital Parameters for Known Systems and a Summary of Predictions for the Orbital Decay Timescales and Change in Orbital Parameters after 10 Years

WASP-19b HAT-P-36b WASP-36b CoRoT-2b

M M( ) 0.930±0.02 1.022±0.049 1.020±0.032 0.970±0.06
R R( ) 0.990±0.02 1.096±0.056 0.943±0.019 0.902±0.018
M i Msinp J( ) 1.114±0.039 1.83±0.1 2.255±0.089 3.27±0.171

P s( ) 68155.776±0.026 114682.78±0.26 132828.36±0.23 150594.64±0.86
Eccentricity 0.0046 0.0028

0.0044
-
+ 0.063±0.032 0 0.0143 0.0076

0.0077
-
+

Age (Gyr) 10.2 3.8
3.0

-
+ null null 2.7 2.7

3.2
-
+

E E MyrE torb ( )*t º ¶ 9.2±0.128 205±3.9 454±15.7 623±27.6

min MyrE ( )tá ñ 6.3 84.7 214 241

max MyrE ( )t 12.4 311. 853 1150

P P t3 2 msE( ) ( )tD º D 110.±1.5 8.39±0.16 4.4±0.15 3.6±0.16
Pmin ms( )D 82 5.5 2.3 1.96
Pmax ms( )D 161. 20. 9.3 9.38

T t3 4 sEshift
2( )( ) ( )tº D 257±3.6 11.5±0.22 5.2±0.18 3.80±0.17

Tmin sshift ( ) 191 7.6 2.8 2.1
Tmax sshift ( ) 375 27.9 11. 9.8

Figure 12. Cumulative probability distributions for observable changes as a function of elapsed time. (blue) WASP-19b. (red) HAT-P-36b. (green) WASP-36b.
(purple) CoRoT-2b. Solid lines represent approximate fits to the simulation results, which are represented by filled circles.
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WKB approximation for high-order, adiabatic g-modes and
analytic approximations to their coupling coefficients detailed
in WAQB, we systematically investigate the number of modes
and types of couplings that are dynamically relevant. We
determine the minimum mode network size and structure that
yields total dissipation rates consistent with those of much
larger networks (to within a factor of 2» ). This minimum
network is sufficiently nimble that we can efficiently explore
broad swaths of the (Mp, P)-plane. We find that weakly
nonlinear interactions are energetically important over large
portions of this plane, including regions occupied by known
exoplanetary systems. In these regions, the orbital decay time

Etá ñ and stellar tidal quality factor Q
*
¢ follow simple power-law

relations (Equations (25) and (26)).
We find that the orbital decay of a number of observed hot

Jupiters should occur on timescales much shorter than the
main-sequence lifetime of their host star. Such rapid orbital
decay could explain the observed paucity of giant planets
with P 2 days (McQuillan et al. 2013; see also Winn &
Fabrycky 2015 for a recent review of the observations). The
short decay times would also induce TTVs that may be
observable with current technology (especially that of WASP-
19b). Precision photometry of individual systems may thus
provide a new handle on tidal interactions within the next few
years.

Our calculation comes with some caveats. First, although our
reference network yields dissipation results that are very similar
to those of the largest networks we investigate (which have

10 times more modes than the reference network), there is
still a possibility that the dynamics will change upon the
addition of even more modes. Second, our calculation assumes
that the modes are all global standing waves. However, this
prescription may break down if the amplitudes of the modes
change on timescales shorter than the group travel times
between their inner and outer turning points. Moreover,
although the parent mode is below the wave breaking threshold
(when not too close to a linear resonance), the daughter and

granddaughter modes may not be. In Appendix F, we show that
the threshold amplitude of the three-mode parametric instability
is much smaller than the wave breaking threshold and that both
have the same frequency scaling. This may mean that further
generations will be excited before the daughter and grand-
daughter modes break. Nonetheless, this issue deserves further
investigation. Finally, we do not account for possible changes
to the stellar structure due to the transfer of energy and angular
momentum from the sea of excited waves. Further work is
needed in order to determine the extent to which stellar spin-up,
heating, and/or evolution affect background properties such as
the starʼs stratification and thereby the wave interaction
dynamics (see Barker & Ogilvie 2010 for a discussion of this
issue).
Our study focuses on wave interactions in the weakly

nonlinear regime. For solar type stars, this corresponds to
planetary masses M M P3.6 1 day ;p J

0.1( ) - above this mass,
the parent wave breaks as it approaches the stellar center and
the system is therefore in the strongly nonlinear regime (Barker
& Ogilvie 2010, 2011; Barker 2011). In the weakly nonlinear
regime the parent is a global standing wave while in the
strongly nonlinear regime the parent is more appropriately
treated as a traveling wave; it does not reflect upon reaching
the stellar center. Barker & Ogilvie study the fate of such
a strongly nonlinear traveling wave with numerical
simulations using a Boussinesq-type model. Because our
calculation studies a different hydrodynamic regime, a direct
comparison with their results is not possible. Nonetheless, one
might expect the two to roughly agree near the region that
marks the transition from weakly nonlinear to strongly
nonlinear (i.e., near M M3p J ). Indeed, Barker (2011) finds
Q P9 10 day4 2.8( )
*
¢ » ´ for waves that break while we find

Q P5 10 day5 2.4( )
*
¢ » ´ for M M3 .p J We explore some of

the similarities between the two regimes further in Appendix F.
We find Q 3 105

*
¢ » ´ at P 1 day= for M M0.5 .p J This

appears to conflict with the estimate in Barker & Ogilvie
(2010), who argue that Q

*
¢ increases rapidly to Q 5 106

*
¢ ´

for systems below the wave breaking limit (M M3p J ). They
do not attempt to calculate the saturation of the nonlinear
parametric instabilities as in our study but instead base their
estimate on stability analysis scaling arguments. As we explain
in Section 5.2, the issue might be that their estimate neglects
the continuous driving of the parent and does not account for
the complicated multi-mode dynamics that we find are
important. Interestingly, we do see a steep increase in Etá ñ,
although at much lower Mp.
In order to be consistent with the observed distribution of

exoplanets, Penev et al. (2012) find that Q 10 .7
*
¢ However,

as Birkby et al. (2014) note, their analysis is for one specific set
of initial conditions with some idealized assumptions about the
chances of a planet candidate being confirmed by follow-up.
They also assume gas disk migration and, as Penev et al. (2012)
point out, their result may not be valid for other giant planet
migration mechanisms such as dynamical scattering. If gas
migration is the dominant mechanism that creates hot Jupiters,
then our results suggest that finding these systems at
P 2 days should be extremely rare. However, if scattering
populates short period orbits at random times after a systemʼs
formation, then a low Q

*
¢ may not necessarily conflict with the

observed population of hot Jupiters orbiting Gyr~ old hosts.
Our study only considers solar-type hosts even though the

observed population of hot Jupiters includes a wide variety of

Figure 13. Energy dissipation rate Ėa for each mode in our reference network,
which consists of one parent (blue square), 20 daughters (red circles) and

1500 granddaughters (green triangles). Modes are ordered by Ėa and here we
take M Mp J= and P 3 days. The blue line is the cumulative distribution of
E ;˙a we see that granddaughter modes are responsible for the majority of the
dissipation.
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host types. Since the linear and nonlinear excitation of waves
by the tide is sensitive to the detailed structure of the star, it is
not clear how our results might depend on stellar type.
Extending the analysis to non-solar type hosts would therefore
allow us to more fully assess the prospects for measuring tide-
induced orbital decay of individual hot Jupiter systems.

We thank Phil Arras and the referee for valuable comments
on this manuscript. R.E. is supported in part by the National
Science Foundation and the LIGO Laboratory (PHY-0757058).
This work was also supported by NASA NNX14AB40G.

APPENDIX A
COMPUTATION OF TIME-AVERAGES

Quantities such as the energy dissipation rate Ė* depend
on how close the system happens to be to the densely
spaced linear resonance peaks (the frequency spacing is

P10 daya
2 1∣ ∣ ( )D W » - - ). Because we are mostly interested

in time-averaged statistics, at each (Mp, P) point, we carry out
21 distinct simulations, each separated slightly in orbital period
with a spacing chosen such that they span three resonance
peaks (see Section 4.6 and Figure 2). We compute the time-
averaged statistic of a quantity X by weighting each sample by
the amount of time spent at that period

X
dtX

dt

dPP X

dPP
, 32

1

1

˙

˙
( )ò

ò
ò
ò

á ñ = =
-

-

where P dP dt˙ = is the rate at which the period changes due to
tidal dissipation. We compute Ṗ using an energy-balance
argument. We expect the time rate-of-change of the orbital
energy (Eorb), the tidal interaction-energy (Eint), the rotational
energy of the synchronized companion (Erot), and the energy
stored in the modes (Emodes) to balance with the energy lost
through dissipation

d

dt
E E E E E2 33

i
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from which we can extract the time rate-of-change of the orbital
period via
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where we have noted that dE dP dE dP ,orb int∣ ∣ ∣ ∣
dE dP dE dP, .rot modes∣ ∣ ∣ ∣ This is because Eorb is much
larger than any of the other energy scales, so even small
relative changes in Eorb dominate over the other terms.
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We use this procedure to calculate the time-averaged Ė* in the
neighborhoods of each orbital period and Etá ñ.

APPENDIX B
THREE-MODE NONLINEAR EQUILIBRIUM

Here we briefly review the nonlinear equilibrium for three-
mode systems. The calculation is similar to that of Appendix D
of WAQB except that here we provide more detail about the
phase relations amongst the modes. We begin with the
equations of motion (Equation (6)) and introduce the change
of coordinates x qe ,i t( )= w- -D yielding

x i x i U e

i k x x e a2 38
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We can cancel all time dependence in these equations by
demanding

m 39( )w w wW = - D = D + D - -a a a b g b g

and assuming that 0t¶  in order to explicitly seek time
independent solutions. Manipulating the two daughter equa-
tions yields
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which implies
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where we write x Ae .i= d We then have
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and we recover the parent instability threshold energy
E Athr

2= a (Equation (16)). The daughter equations yield
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or equivalently

A

A
k A

A

A
k A2 sin , 2 cos , 45( )g w d w d= D =b

b

g
b abg a b

b

g
b abg a

where .d d d d= + +a b g We can now use the parent equation
to determine the parent phase da and the product of the
daughter amplitudes
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After some manipulation, we find

A A

A

A

U
A

2
cos sin

cos sin

47

2
2 2

2

2 2

2 2
2

( )

( )

( )

⎛
⎝⎜

⎞
⎠⎟

⎡⎣

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

w k
d g d

d g d
g w

g

= D +

 D + +
D +

D +
-

b g

a

a abg
a a

a a
a a

a

a a

a a
a

The choice of sign depends on the sign of w ka abg and is
determined by the requirement that the daughter amplitudes be
positive. Finally, by Equation (15), we see that the instability
condition is

U E
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Note that we can solve for the parentʼs phase da and the sum of
all the mode phases δ, but we cannot break the degeneracy
between the daughters’ phases. This is observed numerically,
and carries information about the initial conditions.

APPENDIX C
TWO DAUGHTERS, N PARENTS

If we linearize around the linear-equilibrium solution, the
equations of motion for the daughter modes become

q i i q q2 49t
p

p p
parents

( ) ( )* *åw g w k¶ + + =b b b b g bg
Î

for daughter β and the equivalent equation with the exchange
g b« for daughter γ. We can analyze this system as if there is
a single parent with complex amplitude

q q . 50
p

p p
parents

( )*åk k= bg
Î

We note the possibility for parent modes to interfere with
one another when driving daughter modes, possibly rendering
daughters stable under multi-parent driving when they were
unstable to any individual parent. Most notably, if the parents
are nearly regularly spaced in frequency and driven at the
midpoint between their resonance peaks, there can be strong
destructive interference. This is because each parent is paired
with a partner on the opposite side of the driving frequency,
and each pair consists of parents oscillating with nearly
opposite phases. This narrow “trap” in the resonance troughs is
readily apparent at orbital periods above 4 days for a solar-type
host of a Jupiter mass companion. However, we did not
observe significant “trapping” below ∼4 day orbital periods,
where we focus our attention for this study. This may be due to
the asymmetric spacing of resonances, which will destroy this

near perfect cancellation, or due to the amplitudes being large
enough to overcome any cancellation that was present. In the
hot Jupiter context, this issue is probably only of theoretical
interest since the orbital evolution timescales are 10 year11 for
P 3 day, even for a M3 J companion.

APPENDIX D
DETAILS OF COLLECTIVE SET SELECTION

ALGORITHM

One can easily think of more complicated collective sets than
what is described in Section 3.2. We analyze several of these
systems in Appendix E. In order to detect and include the
diverse set of collective systems, we implement a broad search
through parameter space. We begin with a “seed” triple in
parameter space, typically taken to be a minima of Ethr. We
then expand the set of included modes in (n, l)-space around
these seeds, choosing new modes from the border of the
included set. For these border modes, we compute the three-
mode Ethr for all possible couplings between that border mode
and the interior modes. We then sort these Ethr, and divide each
by the number of couplings that produce Ethr less than or equal
to the current value. We take the minimum ratio and call it the
“collective Ethr.” This approximates the scaling with N
predicted in Appendix E and incorporates the decoupling of
large detuning modes discussed in Appendix E.4. Border
modes are added in order of increasing collective Ethr, and
these thresholds are updated each time a mode is added to the
network. If the detuning increases the three-mode Ethr faster
than the number of modes included, then small sets with low
detuning will naturally be chosen. However, if the detuning
increases Ethr more slowly than the number of modes included,
then the collective Ethr will decrease with the addition of more
modes and the algorithm will select a set of collectively
unstable daughters.
We typically find that a minimum number of daughters is

needed before the scaling with N dominates over the increase in
Ethr. Depending on Elin, these collective sets can grow to
several thousand modes. Although each mode can only directly
couple to a relatively small number of other modes (see
Section 3.2 and WAQB), we find that many smaller sets
overlap and are thereby strung together to create larger
networks. We discuss some of this behavior in Section E.2.
This algorithm scales poorly with the number of modes

included (O N3[ ]). Furthermore, as we describe in Section 4,
we find that we can accurately model the total dissipation
within the star using only three-mode pairs, rather than
collective sets. This, coupled with the fact that large
collective networks are expensive to integrate, is the reason
we choose three-mode networks with many couplings and
generations as our reference networks discussed in Sec-
tions 4.6, 5, and 5.1. We note, however, that collective sets
may be important if one is interested in accurately modeling
the dynamics of any particular mode, rather than the network
as a whole.

APPENDIX E
COLLECTIVE SET STABILITY

In this appendix we analyze collective instabilities, i.e., sets
of daughter modes that display rapid growth rates due to their
mutual inter-coupling. Although in our simulations we find that
they do not contribute significantly to the total tidal dissipation
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in hot Jupiter systems, for completeness we present here
derivations of different stability thresholds for different types
of collective instabilities. Our mode selection algorithm
(Appendix D) finds complicated collective sets that contain
these types of coupling topologies.

E.1. Single Collective Set

We first consider the stability of a single collective set. Since
we are interested in the stability of linear solutions, we can
assume that the parent is at a fixed amplitude

q A e . 51o o
i t o ( )( )= d- W -

The equation of motion of each daughter is then
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Defining a new set of variables q xe ,i t( )= w- -D we can re-write
the daughter equations as

x i x i A x e
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ab b
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¹

-

where in the last step we demanded that the time dependence
cancels

0 , . 57{ } ( )w w a bW + + - D - D = "a b a b

Analyzing this as an eigenvalue problem, separate x into real
and imaginary parts x R iI ,= +

R

I

A A
A A

R
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A A

A A

R
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2 sin 2 cos

2 cos 2 sin

.
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If we assume R I e, ,st[ ] aµ "a a then this equation becomes
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This is an eigenvalue problem for a large matrix and the general
decomposition is difficult. However, the matrix can be
made almost symmetric and if we make several approximations
the problem becomes analytically tractable. Specifically, if we
assume

, , 60
o s
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=
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then we can define

M
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,
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where aD = D "a since .w w a= "a Writing this as a
single matrix and requiring non-trivial mode amplitudes, we
obtain
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We have N 1- repeated pairs of roots and one additional pair.
The eigenvalues can be easily computed from

M M s A

s A

det 2 0

2
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In particular, we are interested in the values of Ao for which
s 0.{ }  These are
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respectively. We see that there are N 1- modes that resemble
“standard” three-mode instabilities and one collective eigenvalue,
with an amplitude threshold suppressed by a factor of N 1.-

Because of the assumptions in Equation (60), the actual
value of Athr will differ somewhat from this expression.
Nonetheless, we expect it to generalize to the requirement that

N A

N

1
4

1

modes 1, 2 collective  set  of modes, 67

o
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where .1 2 1 2w wD + D = W + +

E.2. Overlapping Collective Modes Stability

We now consider a coupling topology where there are three
types of modes. The A modes are coupled to other A modes and
to C modes. B modes are coupled to other B modes and to C
modes. C modes are coupled to all other modes. Furthermore,
we assume that all A, B, and C modes are coupled to the same
parent modes, which we treat as a single parent even though
multiple parents may be acting (see Appendix C).
The associated eigenvalue problem yields the following

characteristic equation

We again note the high degree of symmetry, which allows us
reduce the determinant to
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We recognize this as N 1a - independent A eigenvalues,
N 1b - independent B eigenvalues, N 1c - independent C
eigenvalues, one eigenvalue corresponding to the collective
modes without the coupling to C modes for each of the A and B
modes, and a collective set for the C modes with a modification
due to the couplings to the A and B modes (through Z). We
further note that when N 0,c  the eigenvalues reduce to two
separate collective sets, as expected.

The interesting eigenvalue is due to the interaction between
the C modes’ collective set and the couplings to A and B
modes. If we assume that all mode parameters are the same for
all sets of modes, and further assume that N N N ,a b c= = we
can make analytic progress on this determinant, and obtain

s A k N k N k2 1 8 0

71

s
2 2 2

0
2 2 2 2( )( )( ) ( )

( )

g w+ + D - + - + =

and the threshold amplitude

A
k N k k k N k k k k

a

4 3 2 4
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3 4
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⎞
⎠⎟

g
w

g
w

»
+ D

=
+ +

+ D

where we assumed the limit of large N. We note that this is
very similar to the case of a single collective set, except
N N N N .a b c

2 2 2 2 + + If we stitch together many separate
collective sets by overlapping them, we only expect the
effective number of modes to sum in quadrature. This was
tested numerically by taking the determinant without assuming
equal numbers of modes, and found to be in reasonable
agreement with this scaling.

E.3. Non-“Self Coupled” Collective Sets

Appendices E.1 and E.2 considered self-coupled modes.
However, the vast majority of couplings will be between modes
that do not support self-coupled daughters. For example, if the
parent azimuthal order m is odd, then the daughter modes must
have different m numbers. If we consider two sets of modes,
one with N daughters and one with n daughters, we can define
2×2 sub-matrices similar to Appendix E.1 for each group of
modes. This means we will also find collective sets with
characteristic equations like the following, with capital letters
corresponding to the N-mode set and lower case letters
corresponding to the n-mode set

M M M M M
M M M M M

M M M M M
M M M M M

M M M M M
M M M M M

M M M M M
M M M M M

0 det

0 0 0
0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

0 0 0
0 0 0
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i i i i s

i i i i s

( )

=

 
 

       
 
 
 
 

       
 
 

where this is an N n N n( ) ( )+ ´ + matrix. We can simplify
this to only a 4×4 determinant

M M
M nM
NM M

0 det det det , 74s
N

s
n S I

i s

1 1( ) ( ) ( )= - -

which looks like a set of independent eigenmodes and a 4×4
determinant for the collective modes. In general, that 4×4
determinant must be solved numerically. However, if we again
assume identical mode parameters and that N=n, we see that
this reduces to

M NM
NM M

det , 75S I

I S
( )

which looks just like the three-mode instability equations with
k Nk. Therefore, we can read off the amplitude threshold
immediately. Again, we see that the threshold is decreased by a
factor of N compared to the three-mode threshold. We expect
the threshold energy to approximately scale as

A
Nn k

1

4
. 76thr

2
2 2

2 2
( )⎜ ⎟⎛

⎝
⎞
⎠
g
w

»
+ D

E.4. Decoupling of “Very Different” Modes
from Collective Sets

In general, since all the mode parameters will be slightly
different, our previous examples are a bit artificial. We now
investigate the behavior when one mode begins to differ from
the others. Consider the following characteristic equation, with
N identical modes and one slightly different mode indicated by
Md

M M M M
M M M M

M M M M
M M M M M

0 det . 77

S I I I

I S I I

I I S I

I I I S

( )

d

=

+




   



We can reduce this to

M M
M M M

NM M M
a0 det det 78S I

N S I

I S

1( ) ( )d
d

= -
- -

+
-

M M M N M

M NM M N M M M b

det det 1 det

1 . 78

S I
N

S I

S I S I I

1

1

( )
( )

( )

( ) ( )d

= - + -

´ - + - +

-

-

As M 0,d  this reduces to a single collective set with
N N 1, + as expected. We also note that this looks like the
eigenvalues of a normal collective set with N modes and a new
eigenvalue related to the different mode. Furthermore, if Md
dominates the new eigenvalue, then we see that the different
mode will “decouple” from the other modes. Clearly, there will
be some threshold for how large Md needs to be before the
different mode decouples, and that threshold will depend on the
parentʼs amplitude in a non-trivial way. We expect that a large
parent amplitude Ao will support a larger Md before the mode
decouples.
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APPENDIX F
SCALING OF PARAMETRIC INSTABILITY THRESHOLD

AND WAVE BREAKING THRESHOLD

Our calculations treat the system of modes as a set of global
standing waves. However, if a waveʼs nonlinearity parameter
k 1,r r x the wave will invert the stratification of the star and
break (Goodman & Dickson 1998; Barker & Ogilvie 2010).
Because it does not reflect at turning points within the
propagation cavity, such a wave is more appropriately treated
as a traveling wave rather than a standing wave. Given that we
specifically focus on parent waves below the wave breaking
threshold (k 1r r x ), we know that the parent is well described
as a standing wave. Here we are interested in determining
whether the same is true of the daughters, granddaughters, etc.

As we describe in Section 3.1, the parametric instability
threshold scales as E .thr

6wµ This implies that each successive
generation has a lower Ethr and is therefore ever more
susceptible to parametric instabilities. We show below that
the energy above which a wave breaks also scales as
E .break

6wµ Moreover, we find that E E .thr break This means
that well before the daughters, granddaughters, etc. reach the
wave breaking limit k 1,r r x they will excite the next
generation of modes through parametric instabilities. Although
a mode is not necessarily limited to remain below its E ,thr we
do not expect it to greatly exceed it either. This is because as a
modeʼs amplitude increases past its E ,thr its children grow at an
ever faster rate and thereby limit how far their parent
overshoots E .thr While this issue requires further study, it
suggests that our assumption that the modes are all global
standing waves may be reasonable.

We begin by calculating E .thr For typical parameter values of
a hot Jupiter system, Ethr is limited by the nonlinear detuning of
the daughter modes rather than their linear damping (and
similarly for granddaughters, etc.). To a first approximation, the
detuning Δ is determined by half the frequency spacing
between the daughter modes n2 .w However, this assumes that
the lowest Ethr pairs are self-coupled modes. Because there is a
distribution of mode frequencies slightly above and below half
the parent frequency, there are always some mode pairs that
happen to have n2wD  (Wu & Goldreich 2001). These are
the pairs that minimize E .thr Writing n2 ,awD = where

1a  and using the expressions for ω, γ, and κ given in
Section 2.2, we find that the threshold energy for self-coupled
daughters is

E
P

E8 10
0.01 day

, 79thr
16

2 6

0 ( )⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
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a
´ -

-



where 0.01a ~ based on our three-mode network search
results (cf. Figure 1).

Now consider k .r rx It is at its maximum near the inner
turning point of the parent (where Nw  ). This is because in
the core of a solar model, k N rr wL is approximately
constant and rr

2x µ - by flux conservation. Using the WKB
relations given in Appendix A of WAQB (see also Goodman &
Dickson 1998; Ogilvie & Lin 2007), we find that the wave
breaking condition kmax 1r r{ }x = for l=2 modes corre-
sponds to an energy

E
P

E3 10
day

. 80brk
13

6

0 ( )
⎛
⎝⎜

⎞
⎠⎟´ -
-



Longer period modes break at lower amplitudes because they
reach further into the core of the star. We thus see that both
energies scale as 6w and E E ,thr brk as claimed.

APPENDIX G
ESTIMATE OF THE LINEAR AND PARENT–DAUGHTER

ORBITAL DECAY TIMESCALES

The linear dissipation rate of individual resonant modes is
E E2 ,lin lin˙ ga where Elin is given by Equation (15). For the
short periods that we consider, n2 .w gD »a a a a After
summing over many parents near the resonance, using the
WKB estimates for the damping and forcing coefficients
(Equations (8b) and (9)), and averaging according to
Appendix A, we find
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As we explain in Section 4.2, we can also estimate the
nonlinear dissipation rate of networks consisting of only
parents and daughters (but not granddaughters, etc.). This is
because the dissipation in that case is dominated by the single
daughter pair ,( )b g with the lowest instability threshold E .thr

As we show in Appendix B, for the parameters of a hot Jupiter
system, the nonlinear equilibrium energy of such a daughter
pair is E U E2 ., 0∣ ∣kb g a abg The total dissipation rate of the
system is approximately the dissipation due to these two
daughters E E2 2 .p d , ,˙ g´ b g b g-  There is a small correction to
this because the lowest Ethr daughters have slightly different
parameters and therefore do not sit at exactly the same
amplitudes. After accounting for this small correction and
plugging in Equations (8b), (9) and (10), we find
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Here we took l 1,, =b g which is representative of the typical
lowest Ethr daughters for P 2 days. We find good agreement
between the parent–daughter network integrations that include
many daughters and this analytic estimate (see circles and
dashed curve in Figure 10). In the figure, we assume l 1, =b g
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even for P 2 days.< However, at these shorter periods, the
available daughter modes are spaced further apart in frequency
and the lowest Ethr pair may be pushed to l 1., b g This causes
the small discrepancy between the circles and dashed curve at
P 2 days seen in Figure 10.
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