
6.231 Dynamic Programming

Midterm, Fall 2008

Instructions

The midterm comprises three problems. Problem 1 is worth 60 points, problem 2 is worth 40 points, and

problem 3 is worth 40 points. Your grade G ∈ [0, 100] is given by the following formula:

G = 60 · f1 + 40 · min[1, f2 + f3],

where fi ∈ [0, 1], i = 1, 2, 3, is the fraction of problem i that you solved correctly.

Notice that if you solve correctly both problems 2 and 3, but you do not solve problem 1, your grade will
only be G = 40. Thus, try to solve problem 1 first, then choose between problems 2 and 3 (whichever you

prefer), and if you still have time, try to do the remaining problem.

Credit is given only for clear logic and careful reasoning.

GOOD LUCK!

1

Problem 1 (Infinite Horizon Problem, 60 points)

An engineer has invented a better mouse trap and is interested in selling it for the right price. At the

beginning of each period, he receives a sale offer that takes one of the values s1, . . . , sn with corresponding

probabilities p1, . . . , pn, independently of prior offers. If he accepts the offer he retires from engineering. If
he refuses the offer, he may accept subsequent offers but he also runs the risk that a competitor will invent
an even better mouse trap, rendering his own unsaleable; this happens with probability β > 0 at each time

period, independently of earlier time periods. While he is overtaken by the competitor, at each time period,
he may choose to retire from engineering, or he may choose to invest an amount v ≥ 0, in which case he

has a probability γ to improve his mouse trap, overtake his competitor, and start receiving offers as earlier.
The problem is to determine the engineer’s strategy to maximize his discounted expected payoff (minus
investment cost), assuming a discount factor α < 1.

(a) [15 points] Formulate the problem as an infinite horizon discounted cost problem and write the corre
sponding Bellman’s equation.

(b) [15 points] Characterize as best as you can an optimal policy.

(c) [10 points] Describe as best as you can how policy iteration would work for this problem. What kind of
initial policy would lead to an efficient policy iteration algorithm?

(d) [10 points] Assume that there is no discount factor. Does the problem make sense as an average cost per
stage problem?

(e) [10 points] Assume that there is no discount factor and that the investment cost v is equal to 0. Does the

problem make sense as a stochastic shortest path problem, and what is then the optimal policy?

Solution to Problem 1

(a) Let the set of possible offers be {xi|i = 1, . . . , n}∪{t, r}, where being in a state has the following meaning:

xi: receiving offer si; t: overtaken; r: retired.

Define the control space by {A(accept offer), I(invest), R(retire), Rej(reject)}. The state r is absorbing, and

for the other states, the set of admissible controls is

U(xi) = {A, Rej}, U(t) = {I,R}.

2

Define the corresponding transition probabilities, and per-stage costs as described in the problem. Bellman’s
equation for α < 1 is ⎡ ⎛ ⎞⎤

n
J∗(xi) = max ⎣si, α ⎝(1 − β) pj J∗(xj) + βJ∗(t)⎠⎦ , (1)

j=1 ⎡ ⎛ ⎞⎤
n

J∗(t) = max ⎣0, −v + α ⎝γ pj J∗(xj) + (1 − γ)J∗(t)⎠⎦ . (2)
j=1

(b) From Eq. (1), we see that since the second term in the minimization of the right-hand side does not
depend on the current state xi, the optimal policy is a threshold policy at states xi, i = 1, . . . , n. A single

threshold is needed since J∗(s) is clearly monotonically nondecreasing with s. From Eq. (2), we see that
once the inventor has been overtaken, it is either optimal to retire immediately, or to keep investing until
his mouse trap is improved.

(c) Consider policy iteration. If the current policy µ is a threshold policy, the cost Jµ(s) is monotonically

nondecreasing with s, so the cost of the improved policy is also monotonically nondecreasing with s. Hence,
starting with a nonoptimal threshold policy, the method will generate a new and improved policy (for at
least one offer). It follows that starting with a threshold policy, after at most n iterations, policy iteration

will terminate with an optimal threshold policy.

(d) Even without discounting, all policies have finite total cost, except the one that never sells and always
invests, which incurs infinite total cost. Thus, we see that under the average cost criterion, all of the finite

total cost policies will be optimal. Thus, the average cost criterion does not discriminate enough between

different policies and makes no sense.

(e) Since there is no discounting and v = 0, there is no penalty for waiting as long as necessary until the

maximum possible offer is received, which is going to happen with probability 1. So a stochastic shortest
path formulation makes limited sense, since it excludes from consideration all offers except the maximum

possible, no matter how unlikely this maximum offer is.

Problem 2 (Imperfect State Information Problem, 40 points)

A machine tosses a coin N times, but each time may switch the probability of heads between two possible

values h and h. The switch occurs with probability q at each time, independently of the switches in previous
times. A gambler may bet on the outcome of each coin toss knowing h, h, and q, the outcomes of previous
tosses, and the probability r that h is used at the initial toss. If the gambler bets on a coin toss, he wins $ 2

if a head occurs, while he loses $ 1 if a tail occurs. The gambler may also (permanently) stop betting prior
to any coin toss.

3

(a) [20 points] Define

r	 for k = 0,

pk = P rob{Coin with a probability of heads h is used at toss k | zk−1, . . . , z 0} for k = 1, . . . , N − 1,

where zk−1, . . . , z0 are the preceding observed tosses. Write a equation for the evolution of pk as the coin

tosses are observed.

(b) [10 points]	 Use the equation of part (a) to write a DP algorithm to find the gambler’s optimal policy for
betting or stopping to bet prior to any coin toss. (You will receive credit if you do this part correctly,
assuming a generic functional form of this equation.)

(c) [10 points] Repeat part (b) for the variant of the problem where the gambler may resume play at any

time after he stops betting, and he keeps observing the coin tosses also when he is not betting.

Solution to Problem 2

(a) The machine uses two coins, one with a probability of heads equal to h, and the the other one with a

probability of heads equal to h. We call the first coin a type h coin, while we call the second coin a type h

coin.

Let fh(z), z ∈ {head, tail}, be the probability mass function for the type h coin (clearly, fh(head) = h).
Similarly, let f (z), z ∈ {head, tail}, be the probability mass function for the type h coin (clearly, f (head) = h	 h

h).

We are faced with an imperfect state information problem where the state at stage k, that we call xk, is
the type of coin that the machine uses at stage k. We write xk = h if at stage k the machine uses a type h

coin, and similarly we write xk = h if at stage k the machine uses a type h coin.

The conditional probability pk is generated recursively according to the following equation (with p0 = r):

pk+1 =

= Pr{xk+1 = h | zk, zk−1, . . . , z0}
Pr {xk+1 = h, zk | zk−1, . . . , z 0}=

Pr{zk | zk−1, . . . , z0}

Pr{zk | xk+1 = h, zk−1, . . . , z 0} Pr{xk+1 = h | zk−1, . . . , z0}

=

Pr{zk | xk = h, zk−1, . . . , z0}Pr{xk = h | zk−1, . . . , z0} + Pr{zk | xk = h, zk−1, . . . , z0}Pr {xk = h | zk−1, . . . , z 0} 	
Pr{zk | xk+1 = h, zk−1, . . . , z0} Pr{xk+1 = h | xk = h, zk−1, . . . , z0}pk + Pr{xk+1 = h | xk = h, zk−1, . . . , z 0}(1 − pk)

=
fh(zk)pk + f (zk)(1 − pk)h

4

[
()

(
(1−q)pk q(1f z k)

k
−pfh z k q pk q pk(1 q + (1−)p (1 p ()) + (1)

k+q − k)

)
h

(
(1−q)pk+q(1−pk)

)](
− −

=

)
fh(zk)pk + fh(zk)(1− pk)

.= φ(pk, zk),

since

Pr{zk |xk+1 = h, zk−1, . . . , z0} =

= Pr{zk |xk+1 = h, xk = h, zk 1, . . . , z− 0}Pr{xk = h |xk+1 = h, zk , . . . , z +−1 0}

+ Pr{zk(|xk+1 = h, xk = h, zk 1, . . . , z0}Pr{xk = h |xk+1 = h, zk 1, . . . , z− 0} =−

Pr{xk+1 = h |xk = h, zk 1, . . . , z= fh(zk) − 0}pk +
Pr{xk+1 =(h |xk = h, zk−1, . . . , z0}pk + Pr{xk+1 = h |xk = h, zk , . . . , z (1 p)−1 0} − k

)
Pr{xk+1 = h |xk = h, zk 1, . . . , z)− 0 p

+ fh(zk)
}(1− k =

Pr{xk+1 = h |xk = h, zk 1, . . . , z0}pk + Pr{xk+1 = h (1() − |xk = h, zk−1, . . . , z0} − pk)

)
(1 q)p

= k q(1 p)
fh(zk)

−
+ fh()

(1

(
k

z
−) + k

−
q pk q(1− pk) (1− q)pk + q(1− pk)

)

(b) The DP algorithm is

Jk(pk) = max

[
︸︷︷︸0 , 2·(pkh+(1−pk)h)−1·(pk(1−h)+(1−pk)(1−h))+Ezk

{
Jk+1

(
φk(pk, zk)

stop

)}]
, k = 0, . . . , N−1,

with JN (pN) ≡ 0.

(c) In this case we have for k = 0, . . . , N − 1

Jk(pk) = max

[
0 + Ezk

{
Jk+1

(
φk(pk, zk)

)}
, 2·(pkh+(1−pk)h)−1·(pk(1−h)+(1−pk)(1−h))+Ezk

{
Jk+1

(
φk(pk, zk)

)}]
,

do not play

with JN (pN)

︸ ︷︷ ︸
≡ 0.

Thus, we do not play if

0 > 2 · (pkh + (1− pk)h)− 1 · (pk(1− h) + (1− pk)(1− h)),

that is, assuming without loss of generality that h > h, we do not play if

1− 3h
pk < .

3(h− h)

Problem 3 (Optimal Stopping Problem, 40 points)

5

A driver is looking for parking on the way to his destination. Each parking place is free with probability p

independently of whether other parking places are free or not. The driver cannot observe whether a parking
place is free until he reaches it. If he parks k places from his destination, he incurs a cost k. If he reaches
the destination without having parked the cost is C. The driver wishes to find an optimal parking policy.

(a) [20 points] Formulate the problem as a DP problem, clearly identifying, states, controls, transition prob-
abilities and costs.

(b) [20 points] Write the DP algorithm and show that it can be represented by the sequence {Ck} generated
as follows

Ck = p min[k, Ck−1] + qCk , k = 1, 2, . . . ,−1

where C0 = C and q = 1− p. Characterize as best as you can the optimal policy.

Solution to Problem 3

(a) Let the state x T̄k ∈ {T, } where T represents the driver having parked before reaching the kth spot.
Let the control at each parking spot u P̄k ∈ {P, } where P represents the choice to park in the kth spot.
Let the disturbance wk equal 1 if the kth spot is free; otherwise it equals 0. Clearly, we have the control
constraint that uk = P̄ , if xk = T or wk = 0. The cost associated with parking in the kth spot is:

g ¯
k(T , P, 1) = k

If the driver has not parked upon reaching his destination, he incurs a cost gN (T̄) = C. All other costs are
zero. The system evolves according to: {

T, if xk = T or u
xk+1 = k = P

T̄ , otherwise

(b) Once the driver has parked, his remaining cost is zero. Thus, we can define Ck to be the expected
remaining cost, given that the driver has not parked before the kth spot. (Note that this is simply Jk(T̄)).
The DP algorithm starts with

C0 = C,

and for k = 1, 2, . . ., generates Ck by

Ck = min E
{
gk(T̄ , uk, wk) + Jk 1(xk 1)

}
= min

[
p
[
k + Jk 1(T)

]
+ qJ 1(T̄) ¯

k ,
¯uk∈{P,P}wk

− − ︸ ︷︷−
park, free

︸ −

par

︸
k,

︷︷
not fr

︸
ee don

]
Since Jk(T) = 0 for all k, we have

︸Jk−1

′
︷︷(T
t par

︸)
k

Ck = min pk + qCk ,−1, Ck = p min k C + qC .−1 k−1 k−1

Thus the sequence {Ck} is the sequence

[
generated by

]
DP.

[]

6

MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

