
Solution to Midterm, 6.231, 2009 Fall 

Problem 1 

(a) We consider a completely connected directed graph consisting of n nodes (each represents a currency). 
The length of an arc from i to j is aij = − ln rij . Now we consider the shortest path problem from some 

chosen node i to all other nodes j. With an arbitrage opportunity, there exists a negative cycle in the graph, 
and thus the optimal cost from any node i to j is not finite (−∞). 

An alternative way is to add two artificial nodes, the origin s and the destination t, to the constructed 

graph. In the new graph with n + 2 nodes, for any i, j ∈ {1, 2, · · · , n}, the length of the arc from i to j is 
aij = − ln rij . For any i ∈ {1, 2, · · · , n}, we let asi = ait = 0. With an arbitrage opportunity, there exists a 

negative cycle in the graph, and thus the optimal cost from s to t is not finite (−∞). 

(b) In the constructed graph with n nodes, we employ the label correcting algorithm to find a shortest 
path from i to another node j. To detect the existence of an arbitrage opportunity, we will find a threshold 

K for the value of “UPPER”. Once the value of “UPPER” goes below the threshold K, we know there exists 
an arbitrage opportunity. 

Let R be the set of all pairs of nodes, (i, j) ∈ {1, 2, · · · , n}2 such that i  j and rij > 1. We define the = 

threshold K as 
K = 

L 
aij = − 

L 
ln(rij ). 

(i,j)∈R (i,j)∈R 

If the value “UPPER” is lower than K, it means that some arc has been visited twice by label correcting 

algorithm. Hence there must exist an negative cycle in the constructed graph, and we conclude that there 

exists an arbitrage opportunity. 

We can also apply the label correcting method to the constructed graph with n + 2 nodes, to find a 

shortest path from s to t. The threshold K also applies to this case. 

Problem 2 

(a) The state for the DP problem is xk, and the system equation is 

xk+1 = hk(pk(xk, uk), wk). 

Thus we have, 

Jk(xk) = min [g(xk, uk) + Ewk {Jk+1 (hk(pk(xk, uk), wk))}] , k = 0, 1, · · · , N − 1. 
uk ∈Uk (xk ) 

(b) We consider a DP problem of length 2N + 1. The system evolves as 

x0 → y0 → x1 → y1 · · · , xN−1 → yN−1 → xN . 

At even stages 2k (k = 0, 1, ..., N), the state of the DP problem is xk; at odd stages 2k+1 (k = 0, 1, ..., N −1), 
the state is yk. At even stages 2k, we can apply control uk and the system equation is given by 

yk = pk(xk, uk); 
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the cost function is g(xk, uk). At odd stages 2k + 1, there is no control available and the system evolves as 

xk+1 = hk(yk, wk). 

Hence, for k = 0, 1, ...N − 1, the cost-to-go functions of the DP problem can be given by 

Jk(xk) = min [g(xk, uk) + Vk(pk(xk, uk))] 
uk ∈Uk (xk ) 

Vk(yk) = Ewk {Jk+1 (hk(yk, wk))} , 

where Jk(xk) is the cost-to-go function at stage 2k, and Vk(yk) is the cost-to-go function at stage 2k + 1. 

(c) From the cost-to-go functions obtained in part b), we have 

Jk+1(xk+1) = min [g(xk+1, uk+1) + Vk(pk+1(xk+1, uk+1))] . 
uk+1 ∈Uk+1(xk+1 ) 

Substituting xk+1 = hk(yk, wk) to the above equation, we have 

Jk+1 (hk(yk, wk)) = min [gk+1 (hk(yk, wk), uk+1) + Vk+1 (pk+1 (hk(yk, wk), uk+1))]. 
uk+1∈Uk(hk (yk,wk )) 

Substituting the above equation to the cost-to-go function Vk(yk) = Ewk {Jk+1 (hk(yk, wk))}, finally we have 

Vk(yk) = Ewk min [gk+1 (hk(yk, wk), uk+1) + Vk+1 (pk+1 (hk(yk, wk), uk+1))] . 
uk+1∈Uk(hk(yk,wk)) 

Problem 3 

(a) Let the state be the current consecutive number of days that the machine has not been maintained. 
Because there exists m such that pmB > M , we can restrict the state space to {0, 1, · · · ,m}. At each state, 
we have two controls, i.e., to maintain or not maintain. 

At state i, if we choose to maintain, we have a cost M and the system goes to state 0; otherwise, the 

system moves to state i + 1 with probability 1 − pi, or moves to state 0 with probability pi and cost B. 

J∗(i) = min[M + αJ∗(0), pi(B + αJ∗(0)) + α(1 − pi)J∗(i + 1)], i = 0, 1, . . . , m − 1, 

J∗(m) = M + αJ∗(0). 

(b) Since pi is monotonically non-decreasing in i, intuitively it is quite clear that J∗(i) is monotonically 

non-decreasing in i. Hence, the optimal policy is a threshold policy: maintain if and only if i ≥ i∗, where i∗ 

is the smallest integer i which satisfies, 

pi (B + αJ∗(0)) + (1 − pi)αJ∗(i + 1) ≥ M + αJ∗(0). 

We will show that J∗(i) is monotonically nondecreasing in i. First we have 

J∗(m − 1) = min[M + αJ∗(0), pm−1(B + αJ∗(0)) + α(1 − pm−1)J∗(m)] ≤ M + αJ∗(0) = J∗(m). 
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Based on the hypothesis that J∗(i + 2) ≥ J∗(i + 1), we will show that J∗(i + 1) ≥ J∗(i). 

J∗(i + 1) = min[M + αJ∗(0), pi+1(B + αJ∗(0)) + α(1 − pi+1)J∗(i + 2)] 

≥ min[M + αJ∗(0), pi(B + αJ∗(0)) + α(1 − pi)J∗(i + 1)] 

= J∗(i), 

where the inequality holds because 

pi+1 (B + αJ∗(0)) + (1 − pi+1)αJ∗(i + 2) − [pi (B + αJ∗(0)) + (1 − pi)αJ∗(i + 1)] 

≥ pi+1 (B + αJ∗(0)) + (1 − pi+1)αJ∗(i + 1) − [pi (B + αJ∗(0)) + (1 − pi)αJ∗(i + 1)] 

= (pi+1 − pi) [(B + αJ∗(0)) − J∗(i + 1)] 

≥ 0, 

where the first inequality is due to the hypothesis that J∗(i + 2) ≥ J∗(i + 1), and the second inequality holds 
because pi+1 ≥ pi and B + αJ∗(0) ≥ J∗(i + 1). To see why B + αJ∗(0) ≥ J∗(i + 1), first from the cost-to-go 

function we have M + αJ∗(0) ≥ J∗(i + 1). Since pmB > M , we have B + αJ∗(0) ≥ M + αJ∗(0) ≥ J∗(i + 1). 
We have finished the proof that J∗(i) is monotonically nondecreasing in i. 

(c) As for the discounted cost version, we may consider only states {0, 1, . . . , m}. The system starts at state 

0, and it will be revisited within m stages, because we must maintain the machine at state m. Hence, state 

0 is recurrent under all policies, and Assumption 7.4.1 holds. So we may apply Bellman’s equation: 

λ∗ + h∗(i) = min[M + h∗(0), pi(B + h∗(0)) + (1 − pi)h∗(i + 1)], i = 0, 1, . . . , m − 1, 

λ∗ + h∗(m) = M + h∗(0), 

h∗(0) = 0. 
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