
6.231 Dynamic Programming and Optimal Control 
Midterm Exam II, Fall 2011 
Prof. Dimitri Bertsekas 

Problem 1: (50 points) 

Alexei plays a game that starts with a deck consisting of a known number 
of “black” cards and a known number of “red” cards. At each time period 
he draws a random card and decides between the following two options: 

(1) Without looking at the card, “predict” that it is black, in which case 
he wins the game if the prediction is correct and loses if the prediction 
is incorrect. 

(2) “Discard” the card, after looking at its color, and continue the game 
with one card less. 

If the deck has only black cards he wins the game, while if the deck has only 
red cards he loses the game. Alexei wants to find a policy that maximizes 
his probability of a win. 

If we formulate this as a finite-horizon DP problem, the DP algorithm 
is 

[ ( )]

b b r 
J∗(b, r) = min p + (1 − p) J∗(b− 1, r) + J∗(b, r − 1) , 

p∈{0,1} b+ r b+ r b+ r 

where b and r denote the numbers of black and red cards in the box, p = 0 
and p = 1 correspond to options 1 and 2, respectively. 

Now we wish to formulate this problem as an infinite-horizon DP 
problem. 

(a) How can you formulate Alexei’s problem as an equivalent SSP prob
lem? Identify the state space, control space, termination state, tran
sition probabilities, etc. 

(b) Does there exist any improper policy? 

(c) How many iterations does value iteration require to converge? Finite 
or infinite? 

(d) Describe how policy iteration will work for this SSP problem. 

(e) Can this problem be formulated into an equivalent discounted/average 
cost problem? Why? 

Solution. (a) The state space consists of all possible pairs (b, r) plus a 
termination state t. The termination state is the state when Alexei decides 
to predict and ends the game. At each state (b, r), there are two controls: 
to predict and go to the termination state, or to discard and go to either 
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(b, r−1) and (b−1, r) with probabilities r/(b+r) and b/(b+r) respectively. 
Moreover, if b+ r = 1 and Alexie chooses to discard, he also moves to the 
termination state with a winning probability 0. 

(b) There does not exist any improper policy. The reason is that no matter 
when you choose to predict, you always reach the termination state within 
b+ r steps. Thus all policies are proper. 

(c) Starting with an arbitrary cost vector, the value iteration always ter
minates within (b + r) iterations. The reason is that for states (1, 0) and 
(0, 1) the cost-to-go will become the optimal cost-to-go in the 1st iteration; 
the cost-to-go J(1, 1), J(2, 0) and J(0, 2) will become equal to the optimal 
in the 2nd iteration. If we argue in this way iteratively, we can show by in
duction that Jk(b, r) = J∗(b, r) when k = b+ r. Therefore for the problem 
with a given starting state (b, r), the value iteration converges in at most 
b+ r iterations. 

(d) Starting with any policy µ, we can verify that Jµ(b, r) = b/(b+ r) for 
all µ. By applying the 1-step lookahead policy iteration, we will obtain 
that any policy yield the same cost-to-go, i.e., 

TJµ = Jµ, ∀µ. 

Since the cost-to-go Jµ satisfies the Bellman equation, the policy iteration 
terminates. To conclude, the PI terminates in one step, and any stationary 
policy is an optimal policy for this SSP. 

(e) No, this problem cannot be equivalently formulated as an equivalent dis
counted problem or an average cost problem. The objective is to maximize 
the winning probability. Adding discount to future winning probabilities 
will distorts the objective of the original problem. Also, if we formulate this 
as an infinite-horizon average discounted problem, the average cost-to-go 
per stage will be 0 and thus meaningless. 

Problem 2: (50 points) 
Within the context and notation of the standard n-state discounted MDP, 
consider the mappings H and Ĥ given by 

n 
L

( )

H(i, u, J) = pij(u) g(i, u, j) + αJ(j) , 
j=1 

and 
L

n 
(

{ }

)

Ĥ(i, u, J) = pij(u) g(i, u, j) + αmin c(j), J(j) , 
j=1 

where c(j) is a given scalar for each j = 1, . . . , n. Consider the mappings 
T and Tµ corresponding to H , 

( )

(TJ)(i) = min H(i, u, J), (TµJ)(i) = H i, µ(i), J , 
u∈U(i) 
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and let T̂ and T̂µ be the corresponding mappings for Ĥ: 

( )

( ˆ ˆ ( ˆ ˆTJ)(i) = min H(i, u, J), T µJ)(i) = H i, µ(i), J . 
u∈U(i) 

(a) Show that (like H), Ĥ satisfies the Contraction and Monotonicity
 
Assumptions of Section 1.6.
 

(b) Let J∗ and Ĵ∗ be the unique fixed points of T and T̂ , respectively. 
Show that if c(j) ≥ J∗(j) for all j, then Ĵ∗ = J∗ .
 

ˆ
(c) Consider the generalized PI algorithm using H instead of H . Show
 
that the policy evaluation phase consists of solving an optimal stop
ping problem.
 

(d) Assume that c(j) ≥ J∗(j) for all j. Then, according to parts (a) and
 
(b), the generalized PI algorithms using H and Ĥ yield J∗ in a finite
 
number of policy iterations. Which one will converge faster? What
 
are some arguments for and against the use of Ĥ in place of H?
 

Solution. (a) The monotonicity of Ĥ can be proved easily since both 
linear mappings and minimization preserve the monotonicity. Now let us 
focus on the contraction property. 

We have 

|min{c(j), J1(j)} −min{c(j), J2(j)}| ≤ |J1(j)− J2(j)|, 

so 
 

 n 
 
L

(

{ } { }

 |Ĥ(i, u, J1)− Ĥ(i, u, J2)| = αpij(u) min c(j), J1(j) −min c(j), J2(j)
 

 j=1 

n 
L 

≤ α pij(u)|J1(j)− J2(j)| 
j=1 

≤ αmax |J1(j)− J2(j)| 
j 

= αIJ1 − J2I, 

where I · I is the sup-norm. Thus Ĥ(i, u, J) is a contraction in J . 

(b) If c(j) > J∗(j) for all j, the vector J∗ automatically satisfies the Bell-
man equation corresponding to Ĥ . Then by using the uniqueness of the 
solution of the Bellman equation (by using the contraction property), we 
must have Ĵ∗ = J∗ . 

(c) The policy evaluation for a given µ can be considered as solving the 
following stopping problem: at each state i, either to continue with µ or to 
stop and incur a cost of c(j) with probability pij(u). 
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(d) The PI of the modified version using Ĥ converges faster than the PI 
using H . The reason is that, by placing an upperbound c(j) for J(j), we 
have ensured that the cost-to-go cannot go way off and thus will remain 
close to the optimal cost-to-go. However, the modified version involving 
the upperbound c(j) may be computationally harder to implement, due to 
that the minimization operation can not be easily implemented with Monte 
Carlo sampling. 
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