LECTURE OUTLINE

- Review of approximate PI
- Review of approximate policy evaluation based on projected Bellman equations
- Exploration enhancement in policy evaluation
- Oscillations in approximate PI
- Aggregation – An alternative to the projected equation/Galerkin approach
- Examples of aggregation
- Simulation-based aggregation
DISCOUNTED MDP

- System: Controlled Markov chain with states $i = 1, \ldots, n$ and finite set of controls $u \in U(i)$

- Transition probabilities: $p_{ij}(u)$

- Cost of a policy $\pi = \{\mu_0, \mu_1, \ldots\}$ starting at state i:

$$J_\pi(i) = \lim_{N \to \infty} E \left\{ \sum_{k=0}^{N} \alpha^k g(i_k, \mu_k(i_k), i_{k+1}) \ | \ i = i_0 \right\}$$

with $\alpha \in [0, 1)$

- Shorthand notation for DP mappings

$$(TJ)(i) = \min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u)(g(i, u, j) + \alpha J(j)), \ i = 1, \ldots, n,$$

$$(T\mu J)(i) = \sum_{j=1}^{n} p_{ij}(\mu(i))(g(i, \mu(i), j) + \alpha J(j)), \ i = 1, \ldots, n,$$
APPROXIMATE PI

1. **Guess Initial Policy**
2. **Evaluate Approximate Cost**
 \[\tilde{J}_\mu(r) = \Phi r \text{ Using Simulation} \]
3. **Generate “Improved” Policy \(\mu \)**

Approximate Policy Evaluation

Policy Improvement

- **Evaluation of typical policy \(\mu \):** Linear cost function approximation
 \[\tilde{J}_\mu(r) = \Phi r \]
 where \(\Phi \) is full rank \(n \times s \) matrix with columns the basis functions, and \(i \)th row denoted \(\phi(i)' \).

- **Policy “improvement”** to generate \(\mu \):
 \[\mu(i) = \arg \min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u) \left(g(i, u, j) + \alpha \phi(j)'r \right) \]
EVALUATION BY PROJECTED EQUATIONS

- We discussed approximate policy evaluation by solving the projected equation
 \[\Phi r = \Pi T_\mu(\Phi r) \]
 \(\Pi \): projection with a weighted Euclidean norm

- Implementation by simulation (single long trajectory using current policy - important to make \(\Pi T_\mu \) a contraction). LSTD, LSPE methods.

- **Multistep option:** Solve \(\Phi r = \Pi T_\mu^{(\lambda)}(\Phi r) \) with
 \[T_\mu^{(\lambda)} = (1 - \lambda) \sum_{\ell=0}^{\infty} \lambda^\ell T_{\mu}^{\ell+1} \]
 - As \(\lambda \uparrow 1 \), \(\Pi T^{(\lambda)} \) becomes a contraction for any projection norm
 - Bias-variance tradeoff

\[\text{Subspace } S = \{ \Phi r \mid r \in \mathbb{R}^s \} \]
POLICY ITERATION ISSUES: EXPLORATION

- **1st major issue:** exploration. To evaluate μ, we need to generate cost samples using μ.

- This biases the simulation by underrepresenting states that are unlikely to occur under μ.

- As a result, the cost-to-go estimates of these underrepresented states may be highly inaccurate.

- This seriously impacts the improved policy $\overline{\mu}$.

- This is known as **inadequate exploration** - a particularly acute difficulty when the randomness embodied in the transition probabilities is “relatively small” (e.g., a deterministic system).

- Common remedy is the **off-policy approach**: Replace P of current policy with a “mixture”

 $$\overline{P} = (I - B)P + BQ$$

 where B is diagonal with diagonal components in $[0, 1]$ and Q is another transition matrix.

- LSTD and LSPE formulas must be modified ... otherwise the policy \overline{P} (not P) is evaluated. Related methods and ideas: importance sampling, geometric and free-form sampling (see the text).
POLICY ITERATION ISSUES: OSCILLATIONS

• 2nd major issue: oscillation of policies

• Analysis using the greedy partition: \(R_\mu \) is the set of parameter vectors \(r \) for which \(\mu \) is greedy with respect to \(\tilde{J}(\cdot, r) = \Phi r \)

\[
R_\mu = \{ r \mid T_\mu(\Phi r) = T(\Phi r) \}
\]

• There is a finite number of possible vectors \(r_\mu \), one generated from another in a deterministic way

• The algorithm ends up repeating some cycle of policies \(\mu^k, \mu^{k+1}, \ldots, \mu^{k+m} \) with

\[
r_\mu^k \in R_{\mu^{k+1}}, \, r_\mu^{k+1} \in R_{\mu^{k+2}}, \ldots, \, r_\mu^{k+m} \in R_{\mu^k};
\]

• Many different cycles are possible
MORE ON OSCILLATIONS/CHATTERING

• In the case of optimistic policy iteration a different picture holds

• Oscillations are less violent, but the “limit” point is meaningless!

• Fundamentally, oscillations are due to the lack of monotonicity of the projection operator, i.e., $J \leq J'$ does not imply $\Pi J \leq \Pi J'$.

• If approximate PI uses policy evaluation

$$\Phi r = (WT_\mu)(\Phi r)$$

with W a monotone operator, the generated policies converge (to a possibly nonoptimal limit).

• The operator W used in the aggregation approach has this monotonicity property.
Problem Approximation - Aggregation

- Another major idea in ADP is to approximate the cost-to-go function of the problem with the cost-to-go function of a simpler problem.
- The simplification is often ad-hoc/problem-dependent.
- Aggregation is a systematic approach for problem approximation. Main elements:
 - Introduce a few “aggregate” states, viewed as the states of an “aggregate” system
 - Define transition probabilities and costs of the aggregate system, by relating original system states with aggregate states
 - Solve (exactly or approximately) the “aggregate” problem by any kind of VI or PI method (including simulation-based methods)
 - Use the optimal cost of the aggregate problem to approximate the optimal cost of the original problem
- Hard aggregation example: Aggregate states are subsets of original system states, treated as if they all have the same cost.
AGGREGATION/DISAGGREGATION PROBS

- The aggregate system transition probabilities are defined via two (somewhat arbitrary) choices
- For each original system state \(j \) and aggregate state \(y \), the aggregation probability \(\phi_{jy} \)
 - Roughly, the “degree of membership of \(j \) in the aggregate state \(y \).”
 - In hard aggregation, \(\phi_{jy} = 1 \) if state \(j \) belongs to aggregate state/subset \(y \).
- For each aggregate state \(x \) and original system state \(i \), the disaggregation probability \(d_{xi} \)
 - Roughly, the “degree to which \(i \) is representative of \(x \).”
 - In hard aggregation, equal \(d_{xi} \)
AGGREGATE SYSTEM DESCRIPTION

• The transition probability from aggregate state x to aggregate state y under control u

\[
\hat{p}_{xy}(u) = \sum_{i=1}^{n} d_{xi} \sum_{j=1}^{n} p_{ij}(u) \phi_{jy}, \quad \text{or } \hat{P}(u) = DP(u)\Phi
\]

where the rows of D and Φ are the disaggregation and aggregation probs.

• The expected transition cost is

\[
\hat{g}(x, u) = \sum_{i=1}^{n} d_{xi} \sum_{j=1}^{n} p_{ij}(u) g(i, u, j), \quad \text{or } \hat{g} = DPg
\]

• The optimal cost function of the aggregate problem, denoted \hat{R}, is

\[
\hat{R}(x) = \min_{u \in U} \left[\hat{g}(x, u) + \alpha \sum_{y} \hat{p}_{xy}(u) \hat{R}(y) \right], \quad \forall x
\]

Bellman’s equation for the aggregate problem.

• The optimal cost function J^* of the original problem is approximated by \tilde{J} given by

\[
\tilde{J}(j) = \sum_{y} \phi_{jy} \hat{R}(y), \quad \forall j
\]
EXAMPLE I: HARD AGGREGATION

- Group the original system states into subsets, and view each subset as an aggregate state.
- Aggregation probs.: $\phi_{jy} = 1$ if j belongs to aggregate state y.

\[
\Phi = \begin{pmatrix}
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}
\]

- Disaggregation probs.: There are many possibilities, e.g., all states i within aggregate state x have equal prob. d_{xi}.
- If optimal cost vector J^* is piecewise constant over the aggregate states/subsets, hard aggregation is exact. Suggests grouping states with “roughly equal” cost into aggregates.
- A variant: Soft aggregation (provides “soft boundaries” between aggregate states).
EXAMPLE II: FEATURE-BASED AGGREGATION

- Important question: How do we group states together?

- If we know good features, it makes sense to group together states that have “similar features”

- A general approach for passing from a feature-based state representation to an aggregation-based architecture

- Essentially discretize the features and generate a corresponding piecewise constant approximation to the optimal cost function

- Aggregation-based architecture is more powerful (nonlinear in the features)

- ... but may require many more aggregate states to reach the same level of performance as the corresponding linear feature-based architecture
EXAMPLE III: REP. STATES/COARSE GRID

- Choose a collection of “representative” original system states, and associate each one of them with an aggregate state

![Diagram showing original state space and representative/aggregate states]

- Disaggregation probabilities are $d_{xi} = 1$ if i is equal to representative state x.

- Aggregation probabilities associate original system states with convex combinations of representative states

$$j \sim \sum_{y \in A} \phi_{jy} y$$

- Well-suited for Euclidean space discretization

- Extends nicely to continuous state space, including belief space of POMDP
EXAMPLE IV: REPRESENTATIVE FEATURES

• Here the aggregate states are nonempty subsets of original system states (but need not form a partition of the state space)

• Example: Choose a collection of distinct “representative” feature vectors, and associate each of them with an aggregate state consisting of original system states with similar features

• Restrictions:
 – The aggregate states/subsets are disjoint.
 – The disaggregation probabilities satisfy $d_{xi} > 0$ if and only if $i \in x$.
 – The aggregation probabilities satisfy $\phi_{jy} = 1$ for all $j \in y$.

• If every original system state i belongs to some aggregate state we obtain hard aggregation

• If every aggregate state consists of a single original system state, we obtain aggregation with representative states

• With the above restrictions $D\Phi = I$, so $(\Phi D)(\Phi D) = \Phi D$, and ΦD is an oblique projection (orthogonal projection in case of hard aggregation)
• Consider approximate policy iteration for the original problem, with policy evaluation done by aggregation.

• **Evaluation of policy** μ: $\tilde{J} = \Phi R$, where $R = DT_\mu(\Phi R)$ (R is the vector of costs of aggregate states for μ). Can be done by simulation.

• Looks like projected equation $\Phi R = \Pi T_\mu(\Phi R)$ (but with ΦD in place of Π).

• **Advantages**: It has no problem with exploration or with oscillations.

• **Disadvantage**: The rows of D and Φ must be probability distributions.
DISTRIBUTED AGGREGATION I

- We consider decomposition/distributed solution of large-scale discounted DP problems by aggregation.

- Partition the original system states into subsets S_1, \ldots, S_m.

- Each subset S_ℓ, $\ell = 1, \ldots, m$:
 - Maintains detailed/exact local costs $J(i)$ for every original system state $i \in S_\ell$ using aggregate costs of other subsets
 - Maintains an aggregate cost $R(\ell) = \sum_{i \in S_\ell} d_{\ell i} J(i)$
 - Sends $R(\ell)$ to other aggregate states

- $J(i)$ and $R(\ell)$ are updated by VI according to

$$J_{k+1}(i) = \min_{u \in U(i)} H_\ell(i, u, J_k, R_k), \quad \forall i \in S_\ell$$

with R_k being the vector of $R(\ell)$ at time k, and

$$H_\ell(i, u, J, R) = \sum_{j=1}^{n} p_{ij}(u) g(i, u, j) + \alpha \sum_{j \in S_\ell} p_{ij}(u) J(j)$$

$$+ \alpha \sum_{j \in S_{\ell'}, \ell' \neq \ell} p_{ij}(u) R(\ell')$$
• Can show that this iteration involves a sup-norm contraction mapping of modulus α, so it converges to the unique solution of the system of equations in (J, R)

$$J(i) = \min_{u \in U(i)} H_\ell(i, u, J, R), \quad R(\ell) = \sum_{i \in S_\ell} d_{\ell i} J(i),$$

$$\forall \ i \in S_\ell, \ \ell = 1, \ldots, m.$$

• This follows from the fact that $\{d_{\ell i} \mid i = 1, \ldots, n\}$ is a probability distribution.

• View these equations as a set of Bellman equations for an “aggregate” DP problem. The difference is that the mapping H involves $J(j)$ rather than $R(x(j))$ for $j \in S_\ell$.

• In an asynchronous version of the method, the aggregate costs $R(\ell)$ may be outdated to account for communication “delays” between aggregate states.

• Convergence can be shown using the general theory of asynchronous distributed computation (see the text).