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18.785: Analytic Number Theory, MIT, spring 2006 (K.S. Kedlaya) 
Dirichlet series and arithmetic functions 

1 Dirichlet series 

The Riemann zeta function � is a special example of a type of series we will be considering 
often in this course. A Dirichlet series is a formal series of the form 

�� ann−s with an � C. n=1 
You should think of these as a number-theoretic analogue of formal power series; indeed, our 
first order of business is to understand when such a series converges absolutely. 

Lemma 1. There is an extended real number L � R � {±∗} with the following property: 
the Dirichlet series 

�� ann−s converges absolutely for Re(s) > L, but not for Re(s) < L. n=1 
Moreover, for any φ > 0, the convergence is uniform on Re(s) → L+φ, so the series represents 
a holomorphic function on all of Re(s) > L. 

Proof. Exercise. 

The quantity L is called the abscissa of absolute convergence of the Dirichlet series; it is 
an analogue of the radius of convergence of a power series. (In fact, if you fix a prime p, and 
only allow an to be nonzero when n is a power of p, then you get an ordinary power series in 
p−s . So in some sense, Dirichlet series are a strict generalization of ordinary power series.) 

Recall that an ordinary power series in a complex variable must have a singularity at the 
boundary of its radius of convergence. For Dirichlet series with nonnegative real coefficients, 
we have the following analogous fact. 

Theorem 2 (Landau). Let f(s) = 
�� 

n=1 ann−s be a Dirichlet series with nonnegative real 
coefficients. Suppose L � R is the abscissa of absolute convergence for f(s). Then f cannot 
be extended to a holomorphic function on a neighborhood of s = L. 

Proof. Suppose on the contrary that f extends to a holomorphic function on the disc |s−L| < 
φ. Pick a real number c � (L, L + φ/2), and write 

f(s) = ann −c n c−s 

n=1 

= ann −c exp((c − s) log n) 
n=1 

= 
�� ann−c(log n)i 

(c − s)i . 
i! 

n=1 i=0 

Since all coefficients in this double series are nonnegative, everything must converge abso­
lutely in the disc |s−c| < φ/2. In particular, when viewed as a power series in c−s, this must 
give the Taylor series for f around s = c. Since f is holomorphic in the disc |s − c| < φ/2, 
the Taylor series converges there; in particular, it converges for some real number L→ < L. 
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But now we can run the argument backwards to deduce that the original Dirichlet series 
converges absolutely for s = L→, which implies that the abscissa of absolute convergence is 
at most L→ . This contradicts the definition of L. 

2 Euler products 

Remember that among Dirichlet series, the Riemann zeta function had the unusual property 
that one could factor the Dirichlet series as a product over primes: 

�(s) = n −s = (1 − p −s)−1 . 
n=1 p 

In fact, a number of natural Dirichlet series admit such factorizations; they are the ones 
corresponding to multiplicative functions. 

We define an arithmetic function to simply be a function f : N � C. Besides the obvious 
operations of addition and multiplication, another useful operation on arithmetic functions 
is the (Dirichlet) convolution f ∈ g, defined by 

(f ∈ g)(n) = f(d)g(n/d). 
d|n 

Just as one can think of formal power series as the generating functions for ordinary se­
quences, we may think of a formal Dirichlet series 

�� 
n=1 ann−s as the “arithmetic generating 

function” for the multiplicative function n ≤� an. In this way of thinking, convolution of 
multiplicative functions corresponds to ordinary multiplication of Dirichlet series: 

⎛ �⎛ � 

(f ∈ g)(n)n −s = f(n)n −s g(n)n −s . 
n=1 n=1 n=1 

In particular, convolution is a commutative and associative operation, under which the 
arithmetic functions taking the value 1 at n = 1 form a group. The arithmetic functions 
taking all integer values (with the value 1 at n = 1) form a subgroup (see exercises). 

We say f is a multiplicative function if f(1) = 1, and f(mn) = f(m)f(n) whenever 
m, n � N are coprime. Note that an arithmetic function f is multiplicative if and only if its 
Dirichlet series factors as a product (called an Euler product): 

⎛ � 

f(n)n −s = f(p i)p −is . 
n=1 p i=0 

In particular, the property of being multiplicative is clearly stable under convolution, and 
under taking the convolution inverse. 
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We say f is completely multiplicative if f(1) = 1, and f(mn) = f(m)f(n) for any 
m, n � N. Note that an arithmetic function f is multiplicative if and only if its Dirichlet 
series factors in a very special way: 

f(n)n −s = (1 − f(p)p −s)−1 . 
n=1 p 

In particular, the property of being completely multiplicative is not stable under convolution. 

3 Examples of multiplicative functions 

Here are some examples of multiplicative functions, some of which you may already be 
familiar with. All assertions in this section are left as exercises. 

•	 The unit function �: �(1) = 1 and �(n) = 0 for n > 1. This is the identity under ∈. 

•	 The constant function 1: 1(n) = 1. 

•	 The Möbius function µ: if n is squarefree with d distinct prime factors, then µ(n) = 
(−1)d, otherwise µ(n) = 0. This is the inverse of 1 under ∈. 

•	 The identity function id: id(n) = n. 

•	 The k-th power function idk: idk(n) = nk . 

•	 The Euler totient function �: �(n) counts the number of integers in {1, . . . , n} coprime 
to n. Note that 1 ∈ � = id, so id ∈µ = �. 

•	 The divisor function d (or ε): d(n) counts the number of integers in {1, . . . , n} dividing 
n.	 Note that 1 ∈ 1 = d. 

•	 The divisor sum function ζ: ζ(n) is the sum of the divisors of n. Note that 1 ∈ id = 
d ∈ � = ζ. 

•	 The divisor power sum functions ζk: ζk(n) = 
� 

d|n d
k . Note that ζ0 = d and ζ1 = ζ. 

Also note that 1 ∈ idk = ζk. 

Of these, only �, 1, id, idk are completely multiplicative. We will deal with some more 
completely multiplicative functions, the Dirichlet characters, in a subsequent unit. 

Note that all of the Dirichlet series corresponding to the aforementioned functions can be 
written explicitly in terms of the Riemann zeta function; see exercises. An important non-
multiplicative function with the same property is the von Mangoldt function � = µ ∈ log; see 
exercises. 
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Exercises 

1. Prove	 Lemma 1. Then exhibit examples to show that a Dirichlet series with some 
abscissa of absolute convergence L � R may or may not converge absolutely on Re(s) = 
L. 

2. Give a counterexample to Theorem 2 in case the series need not have nonnegative real 
coefficients. (Optional, and I don’t know the answer: must a Dirichlet series have a 
singularity somewhere on the abscissa of absolute convergence?) 

3. Let f : N � Z be an arithmetic function with f(1) = 1. Prove that the convolution 
inverse of f also has values in Z; deduce that the set of such f forms a group under 
convolution. (Likewise with Z replaced by any subring of C, e.g., the integers in an 
algebraic number field.) 

4. Prove the assertions involving	 ∈ in Section 3. Then use them to write the Dirichlet 
series for all of the functions introduced there in terms of the Riemann zeta function. 

5. Here is a non-obvious example of a multiplicative function. Let r2(n) be the number 
of pairs (a, b) of integers such that a2 + b2 = n. Prove that r2(n)/4 is multiplicative, 
using facts you know from elementary number theory. 

6. We defined the von Mangoldt function as the arithmetic function � = µ ∈ log. Prove 
that	

�

log(p) n = pi, i → 1


�(n) = 
0 otherwise 

and that the Dirichlet series for � is −� →/�. 

7. For t a fixed positive real number, verify that the function 

Z(s) = �2(s)�(s + it)�(s − it) 

is represented by a Dirichlet series with nonnegative coefficients which does not con­
verge everywhere. (Hint: check s = 0.) 

8. Assuming that	 �(s) − s/(s − 1) extends to an entire function (we’ll prove this in a 
subsequent unit), use the previous exercise to give a second proof that �(s) has no 
zeroes on the line Re(s) = 1. 

9. (Dirichlet’s hyperbola method) Suppose f, g, h are arithmetic functions with f = g ∈ h, 
and write 

G(x) = g(n), H(x) = h(n). 
n�x	 n�x 
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Prove that (generalizing a previous exercise)

⎝	 � 

⎛	 � 

f(n) = g(d)H(x/d) + � h(d)G(x/d)� − G(y)H(x/y). 
n�x d�y	 d�x/y 

�� −s10. Prove	 that the abscissa of absolute convergence L of a Dirichlet series n=1 ann
satisfies the inequality 

⎞ ⎠ 
log |an|

L ∪ lim sup 1 + 
n�� log n 

(where log 0 = −∗), with equality if the |an| are bounded away from 0. Then exhibit 
an example where the inequality is strict. (Thanks to Sawyer for pointing this out.) 
Optional (I don’t know the answer): is there a formula that computes the abscissa of 
absolute convergence in general? Dani proposed 

log m�n |am|
lim sup 

n�� log n 

but Sawyer found a counterexample to this too. 

5



