In this unit, we introduce (without proof for now) a formula which relates the distribution of primes to the zeroes of the Riemann zeta function. Given a suitable zero-free region for $\zeta(s)$ in the critical strip, this can be used to prove the prime number theorem with an estimate for the error term.

1 Zeta zeroes and prime numbers

For $x \notin \mathbb{N}$, define the counting function
\[\psi(x) = \sum_{n \leq x} \Lambda(n), \]
where $\Lambda : \mathbb{N} \to \mathbb{R}$ is the von Mangoldt function
\[\Lambda(n) = \begin{cases} \log p & n = p^a, a \geq 1 \\ 0 & \text{otherwise}. \end{cases} \]
If $x \in \mathbb{N}$, it is convenient to modify the definition to
\[\psi(x) = \sum_{n < x} \Lambda(n) + \frac{1}{2} \Lambda(x). \]
Note that for the function ϑ we defined earlier as
\[\vartheta(x) = \sum_{p \leq x} \log p, \]
we have
\[\psi(x) - \vartheta(x) = O(x^{1/2} \log x) \quad (x \to \infty) \]
so the prime number theorem is equivalent to
\[\psi(x) \sim x \quad (x \to \infty). \]
The formula of von Mangoldt expresses the difference $\psi(x) - x$ in terms of the zeroes of $\zeta(s)$. We will prove this formula in a later unit.

Theorem 1 (von Mangoldt’s formula). For $x \geq 2$ and $T > 0$,
\[\psi(x) - x = - \sum_{\rho : |\Im(\rho)| < T} \frac{x^\rho}{\rho} - \frac{\zeta'(0)}{\zeta(0)} - \frac{1}{2} \log(1 - x^{-2}) + R(x, T) \]
with ρ running over the zeroes of $\zeta(s)$ in the region $\Re(s) \in [0, 1]$, and
\[R(x, T) = O \left(\frac{x \log^2(xT)}{T} + (\log x) \min \left\{ 1, \frac{x}{T(x)} \right\} \right). \]
Here $\langle x \rangle$ denotes the distance from x to the nearest prime power other than possibly x itself.
The region \(\text{Re}(s) \in [0, 1] \) is called the critical strip for \(\zeta \), because we can account for all of the zeroes outside this strip: they are the trivial zeroes \(s = -2, -4, \ldots \) forced by the functional equation and the fact that \(\Gamma(s/2) \) has poles at nonpositive even integers. In fact, the last term in the formula is merely \(- \sum \frac{x^\rho}{\rho} \) for \(\rho \) running over the trivial zeroes.

Incidentally, one can check by a numerical calculation that there are no real zeroes of \(\zeta \) in the critical strip, by numerically approximating the integral representation of \(\xi(s) \). This raises an interesting point: in general, direct numerical approximation can be used to prove that an analytic function does not vanish in a region, but not that it does vanish at a particular point. The best one can do is use a zero-counting formula to prove that there must be a zero near the proposed vanishing point.

Note that for \(x \) fixed, \(R(x, T) = o(1) \) as \(T \to \infty \), so we have

\[
\psi(x) - x = -\sum \frac{x^\rho}{\rho} - \frac{\zeta'(0)}{\zeta(0)} - \frac{1}{2} \log(1 - x^{-2})
\]

as long as we interpret the sum over \(\rho \) to mean the limit of the partial sums over \(|\text{Im}(\rho)| < T \) as \(T \to \infty \). This formula, while pretty, is not as useful in practice as the form with remainder; we will use the remainder form by taking \(T \) to be some (preferably large) function of \(x \) as \(x \to \infty \).

2 How to use von Mangoldt’s formula

In order to use von Mangoldt’s formula to bound \(\psi(x) - x \), we need to give an upper bound on the sum \(\sum \frac{x^\rho}{\rho} \) for \(\rho \) running over nontrivial zeroes of \(\zeta \) in the region \(|\text{Im}(s)| \leq T \).

Put \(\beta = \text{Re}(\rho), \gamma = \text{Im}(\rho) \). Suppose we can prove that \(\beta < 1 - f(|\gamma|) \) for some nonincreasing function \(f : [0, \infty) \to (0, 1/2) \); then

\[
|x^\rho| = x^\beta < x^{1 - f(|\gamma|)} < x^{1 - f(T)}
\]

and \(|\rho| \geq |\gamma| \). We thus have

\[
\left| \sum_{\rho:|\gamma|<T} \frac{x^\rho}{\rho} \right| \leq x^{1 - f(T)} \sum_{\rho:|\gamma|<T} \frac{1}{\gamma}
\]

Let \(N(T) \) be the number of zeroes in the critical strip with \(|\gamma| \leq T \). Then

\[
\sum_{\rho:0<|\gamma|<T} \frac{1}{\gamma} = \int_0^T t^{-1}dN(t) = \frac{N(T)}{T} + \int_0^T t^{-2}N(t) dt.
\]

At this point we need some information about \(N(T) \); again, we will prove this (and a bit more) later.

Theorem 2 (Hadamard). We have \(N(T) = O(T \log T) \) as \(T \to \infty \).
This implies that
\[\left| \sum_{\rho: \gamma < T} \frac{1}{\gamma} \right| = O(\log^2 T), \]
so
\[\left| \sum_{\rho: \gamma < T} \frac{x^\rho}{\rho} \right| = O(x^{1-f(T)} \log^2 T). \]
For \(x \) an integer, we now take \(T = T(x) \) to be a suitable function of \(x \), and invoke von Mangoldt’s formula with remainder to deduce that
\[\psi(x) - x = O \left(x^{1-f(T)} \log^2 T(x) + \frac{x \log^2 x}{T(x)} + \frac{x \log^2 T(x)}{T(x)} \right). \] (1)

3 The Riemann Hypothesis

Riemann calculated a few of the zeroes of \(\zeta \) and, based on this evidence, made the following remarkable conjecture (whose resolution is worth $1,000,000 from the Clay Mathematics Institute).

Conjecture 3 (Riemann Hypothesis). The nontrivial zeroes of \(\zeta \) all lie on the line \(\text{Re}(s) = \frac{1}{2} \).

This is a best-case scenario in terms of deducing error bounds on \(\psi(x) - x \). Namely, suppose every nontrivial zero \(\rho \) of \(\zeta \) satisfies \(c \leq \text{Re}(\rho) \leq 1 - c \) for some \(c \in (0, 1/2) \); then we can take \(f(T) = c \) in (1), yielding
\[\psi(x) - x = O \left(x^{1-c} \log^2 T(x) + \frac{x \log^2 x}{T(x)} + \frac{x \log^2 T(x)}{T(x)} \right). \]
By taking \(T(x) = x \), we obtain
\[\psi(x) - x = O(x^{1-c} \log^2 x). \]
If I can take \(c \) to be any value less than 1/2, that means
\[\psi(x) - x = O(x^{1/2+\epsilon}) \quad (\epsilon > 0), \]
and similarly one gets a strong estimate on \(\pi(x) \) (see exercises).

Unfortunately, for no value of \(c > 0 \) are we able at present to prove that every nontrivial zero \(\rho \) satisfies \(\text{Re}(\rho) \leq 1 - c \). We will give a much smaller zero-free region in a later unit.
4 Variants for L-functions

For χ a Dirichlet character, define
$$\psi(x, \chi) = \sum_{n \leq x} \chi(n) \Lambda(n),$$
where again we multiply the $n = x$ term by $1/2$ if it is present.

Theorem 4. For χ a nonprincipal Dirichlet character of level N,
$$\psi(x, \chi) = -\sum_{\rho : |\gamma| < T} \frac{x^\rho}{\rho} - (1 - a) \log x - b(\chi) + \sum_{m=1}^{\infty} \frac{x^{\alpha - 2m}}{2m - \alpha} + R(x, T),$$
where $b(\chi)$ is an explicit constant, $a = 1$ for χ even and $a = 0$ for χ odd, and
$$R(x, T) = O \left(\frac{x \log^2 (NxT)}{T} + (\log x) \min \left\{ 1, \frac{x}{T(x)} \right\} \right).$$

For a fixed N, one can use this formula together with a zero-free region for all of the $L(s, \chi)$ with χ of level N, to obtain a prime number theorem for arithmetic progressions of difference N with an estimate for the error term.

However, one would also like to be able to establish a prime number theorem with error term for arithmetic progressions where the difference is allowed to vary. In this case, one of course must have a zero-free region for all of the relevant characters. But there are two extra complications.

- One must understand how the constant $b(\chi)$ varies with χ.
- One must deal with possible roots of $L(s, \chi)$ that are very close to $s = 0$ or $s = 1$ (so-called Siegel zeroes).

Dealing with these goes beyond the level of detail I have in mind for this course; see Davenport §14–22 for a systematic exposition.

Exercises

1. Assume that $\psi(x) = x + o(x^{1-\epsilon})$ for some given $\epsilon \in (0, 1/2)$. Deduce a corresponding upper bound for $\pi(x) - \text{li}(x)$, where $\text{li}(x)$ is the logarithmic integral function
$$\text{li}(x) = \int_2^x \frac{dt}{\log t}.$$

Then deduce that
$$\pi(x) - \frac{x}{\log x} \neq o(x^{1-\delta})$$
for any $\delta > 0$. (This last statement can be proved unconditionally, but don’t worry about that for now.) This is the sense in which $\text{li}(x)$ is a better approximation than $x/\log x$ of the count of primes.