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Capturing dependency among link boundaries in a
stochastic dynamic network loading model

Carolina Osorio∗ Gunnar Flötteröd†

April 13, 2013

Abstract

This work adds realistic dependency structure to a previously developed analytical stochastic network
loading model. The model is a stochastic formulation of the link-transmission model, which is an op-
erational instance of Newell’s simplified theory of kinematic waves. Stochasticity is captured in the
source terms, the flows, and, consequently, in the cumulative flows. The previous approach captured
dependency between the upstream and downstream boundary conditions within a link (i.e. the respec-
tive cumulative flows) only in terms of time-dependent expectations without capturing higher-order
dependency. The model proposed in this paper adds an approximation of full distributional stochas-
tic dependency to the link model. The model is validated versus stochastic microsimulation in both
stationary and transient regimes. The experiments reveal that the proposed model provides a very
accurate approximation of the stochastic dependency between the link’s upstream and downstream
boundary conditions. The model also yields detailed and accurate link state probability distributions.

1 Introduction

A network loading modeldescribes how a time-dependent travel demand advances through a network.
The demand is typically given in terms of time-dependent origin/destination (OD) flows and a route
choice model. Given these inputs, the network loading modelthen captures the progression of the
demand through the network, accounting for congestion and the resulting delays.

A stochastic network loading modeldoes essentially the same, but it additionally accounts foruncer-
tainty in the modeling (e.g. of source terms, flows, network parameters) and captures distributional
information of the network states. This paper focuses on analytical stochastic (i.e. probabilistic)
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dynamic network loading models. The main technical limitation in developing such models is the
dimensionality of the joint distribution, which is exponential in the number of spatial discretization
units. Thus, the challenge is to approximate the dependencystructure while deriving a computation-
ally efficient approach.

In the following, we focus on the widely accepted kinematic wave model (KWM; Lighthill and
Witham (1955); Richards (1956)). Both the KWM’s original link model and its more recently de-
veloped node models (e.g. Daganzo (1995); Lebacque (1996);Lebacque and Khoshyaran (2005);
Tampere et al. (2011); Flötteröd and Rohde (2011); Corthout etal. (2012)) are deterministic. They
describe space/time average conditions but do not account for higher-order distributional information.

There has been a recent interest in the development of stochastic link models. Most studies have
considered stochastic cell-transmission models (CTMs; Boeland Mihaylova; 2006; Sumalee et al.;
2011; Jabari and Liu; 2012). Boel and Mihaylova (2006) consider the sending and receiving functions
of the CTM as random variables. The evaluation of the model involves computationally intensive
sampling in order to estimate the main link performance measures. Jabari and Liu (2012) consider
headways to be random variables. The fluid limit of their stochastic model is consistent with the
CTM. This is also a simulation-based approach, where performance measure estimates are obtained
via sampling. The stochastic CTM of Sumalee et al. (2011) allows for stochasticity in the sending and
receiving functions and in the source terms. This model is analytical (i.e. not simulation-based). The
stochasticity results from adding noise in the form of a second-order wide-sense stationary process
to otherwise deterministic model variables. Jabari and Liu(2012) detail the limitations of using such
types of noise terms.

Let us also briefly comment on the kinetic approach to stochastic traffic flow modeling. Here, one
starts out from a probabilistic description of individual-vehicle interactions, which is typically solved
by extracting dynamic equations for the first moments (in particular, mean values and variances) of
aggregate traffic characteristics (e.g. Tampere et al.; 2003). To derive operational formulations, the
assumption of “vehicular chaos” is typically made, meaningthat the states of interacting vehicles are
stochastically independent. Nelson and Kumar (2006) elaborate on the implications of omitting such
dependencies. It appears that the complexity of kinetic models with realistic stochastic dependency
structures has so far precluded their implementation in non-trivial network contexts (Helbing; 2001).

Osorio et al. (2011) recently proposed a stochastic formulation of the link-transmission model of
Yperman et al. (2007), which is an operational instance of Newell’s simplified theory of kinematic
waves (Newell; 1993). Newell’s model can in turn be derived from the variational theory of Daganzo
(2005). The queueing-theoretical model of Osorio et al. (2011) accommodates stochastic source terms
and flows across nodes. It is a (vehicle-)discretized, stochastic instance of the KWM, whereas the
aforementioned stochastic CTMs constitute stochastic instances of (space-)discretized KWMs. That
is, only the model of Osorio et al. (2011) isdirectlyderived from the KWM.

The present article adds important dependency structure tothis model, hereafter referred to as the
basic model. Thebasic modelexhibits the following additional features.

1. It is analytical. It captures the evolution of link state distributions through differentiable equa-
tions. Thus, the approach does not require computationallycostly sampling to obtain distribu-
tional estimates. This approach allows to obtain valuable insights into stochastic network dy-
namics. It also provides a differentiable description of these dynamics, which can be exploited
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when applying efficient optimization or calibration routines, e.g. for the design of signal control
strategies (Osorio and Bierlaire; 2010) or the estimation ofOD matrices (Flötteröd et al.; 2011).

2. The basic model represents the flow transmissions across anetwork node (connection of up-
stream and downstream links) in terms of a multivariate Poisson process. The node model
yields a joint distribution of the downstream boundary conditions of the node’s upstream link
and the upstream boundary conditions of the node’s downstream link.

3. The basic model represents a homogeneous link segment by two finite capacity queues that con-
stitute stochastic counterparts of the cumulative curves used in Newell’s simplified KWM, and
it coincides with a discretized version of Newell’s model when the randomness in all involved
processes vanishes. That is, the basic link model is derivedfrom the KWM (Newell; 1993;
Yperman et al.; 2007).

4. The basic model captures dependency between a single link’s upstream boundary conditions
and the same link’s downstream boundary conditions merely in terms of time-dependent expec-
tations but ignores higher-order dependencies. This implies that dependency between upstream
and downstream boundary conditions in a single link is not captured beyond what a determin-
istic model could describe.

Item 4 constitutes the main simplification in the basic model, which this article overcomes. The
presentation therefore focuses on the joint modeling of boundary conditions within a link. Details
on how across-node correlations (i.e. correlations with links further up- or downstream) are captured
appear in Osorio et al. (2011). It should be noted that none ofthe aforementioned stochastic CTMs
provide analytical expressions for the joint distributionof multiple cells: Boel and Mihaylova (2006)
and Jabari and Liu (2012) resort to simulation; Sumalee et al. (2011) model the states of adjacent cell
pairs as independent random variables.

The remainder of this article is organized as follows. Section 2 recalls the basic link model. Section 3
describes how realistic dependency structure is added, leading to the proposed new model. Compre-
hensive experiments are described in Section 4, where the distributional information extracted from
the analytical model is compared to distributional estimates obtained via simulation. Finally, Section
5 concludes the article and gives an outlook on further research questions.

2 Basic link model

We briefly recall the original link model of Osorio et al. (2011). The presentation given here follows a
different path than the original work in that it first recallsan operational formulation (Yperman et al.;
2007) of Newell’s simplified KWM (Newell; 1993) and then formulates the stochastic model as a
distributed version of Newell’s model.

Yperman et al. (2007) phrase this model within the sending/receiving function framework of Da-
ganzo (1994) and of Lebacque (1996). This framework postulates that, at any interface within the
network, the instantaneously transmitted flow is the minimum of an upstream sending function and a
downstream receiving function, reflecting the KWM’s principle of local flow maximization (Ansorge;
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Figure 1: Deterministic fundamental diagram resulting from original two-queue system

1990). The embedding of a link in a network model hence requires a link model that defines, at every
time instantt, a receiving functionR(t) (and a sending functionS(t), respectively) that reflects the
boundary conditions the link provides to its upstream node (downstream node, resp.).

Assuming a triangular fundamental diagram as shown in Figure 1, having free flow velocityv, back-
ward wave speedw (negative), flow capacitŷq, and jam densitŷρ, Yperman et al. (2007) present the
following equations for a discrete-time simulation of the KWM (detailed derivations can be found in
Yperman (2007)):

R(t) = min

{

N

(

L, t+ δ−
L

|w|

)

+ ρ̂L−N(0, t), q̂δ

}

(1)

S(t) = min

{

N

(

0, t+ δ−
L

v

)

−N(L, t), q̂δ

}

, (2)

whereR(t) is the amount of flow the link can receive at time instantt during the next time interval of
lengthδ, S(t) is the respective sending flow, andN(x, t) is the cumulative flow having passed location
x at timet, with x ∈ [0, L] in the link of lengthL. The Courant-Friedrichs-Lewy condition requires
δ ≤ L/v to hold. See, for instance, Yperman (2007) for a detailed discussion of the possible wave
configurations given a triangular fundamental diagram and Nagel and Nelson (2005) for a discussion
of its empirical validity.

Defining the two quantities

UQ(t) = N(0, t) −N(L, t+ δ− L/|w|) (3)

DQ(t) = N(0, t+ δ− L/v) −N(L, t) (4)

allows to rewrite (1), (2) as follows:

R(t) = min {ρ̂L− UQ(t), q̂δ} (5)

S(t) = min {DQ(t), q̂δ} . (6)

Formally, UQ(t) and DQ(t) are just summary representations of differences in cumulative flows.
However, they also allow for a tangible interpretation of these otherwise rather abstract cumulative
flow differences. For this, UQ(t) is interpreted as the number of vehicles in a finite capacityupstream
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queue(UQ) that keeps track of the upstream boundary conditionswithin the link, and DQ(t) is inter-
preted as the number of vehicles in a finite capacitydownstream queue(DQ) that keeps track of the
downstream boundary conditionswithin the link.

Allow both queues to hold at mostρ̂L vehicles. The receiving function in (5) is hence limited by the
available space in UQ, which iŝρL−UQ(t). This means that the link behavesas if UQ was embedded
within its upstream end, andas if vehicles trying to enter the link actually tried to enter UQ.Further,
the sending function in (6) is limited by the number of vehicles in DQ, which is DQ(t). This means
that the link behavesas if DQ was embedded within its downstream end, andas if vehicles leaving the
link actually left DQ. (Charypar (2008) describes essentially the same approach in a microsimulation
framework, but without any analytical considerations).

This interpretation carries further. Equations (3) and (4)can be recursively written as

UQ(t) = UQ(t− δ) + δ
[

qin(t− δ) − qout(t− L/|w|)
]

(7)

DQ(t) = DQ(t− δ) + δ
[

qin(t− L/v) − qout(t− δ)
]

(8)

whereqin(t) is the link’s instantaneous inflow rate at timet, qout(t) is the instantaneous outflow
rate, and both quantities are held constant throughout a time step of durationδ, consistently with the
underlying framework of Yperman et al. (2007). Equation (7)indicates that the change in UQ during
[t− δ, t] is given by the difference between

i) the flow that entered the link during that time

ii) and the flow that left the link during[t− L/|w|, t− L/|w|+ δ].

Similarly, Equation (8) indicates that the change in DQ during [t − δ, t] is given by the difference
between

i) the flow that entered the link during[t− L/v, t− L/v+ δ]

ii) and the flow that left the link during that time.

That is, UQ and DQ evolve through timeas if the link in- and outflows actually entered the respective
queues. It needs to be re-iterated, though, that UQ and DQ aremerely intuitive representations of the
boundary conditions provided by the link to its up- and downstream nodes.

Figure 2 shows the fictitious embedding of UQ and DQ within thelink. The lower path (solid arrows)
represents the actual mass transfer: flow enters the link, isdelayed byL/v time units (corresponding
to the free-flow travel time) and then becomes available for departure in DQ. The upper path (dashed
arrows) captures how vehicle departures eventually enablenew vehicle entries, in that flows that have
departed from DQ are delayed byL/|w| time units (corresponding to the time it takes a kinematic
backward wave to traverse the link) before they are removed from UQ.

The stochastic link model results from a stochastic modeling of UQ and DQ, relying on finite capacity
queueing theory, where the evolution of the distribution ofthe number of vehicles in either queue is
tracked through time. The dynamics of these queues are guided by time-dependent arrival and service
rates as well as the probabilities of the queues being perfectly empty (i.e. being unable to send more
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Figure 2: Original two-queue system

flow) or perfectly full (i.e. being unable to receive more flow). Since UQ and DQ represent differences
in cumulative flows, this approach corresponds to Newell’s model with stochastic cumulative curves.

Assume a time-dependent Poisson arrival process with intensity λ(t) (i.e. a non-homogenous Poisson
process) at the upstream end of the considered link, whereλ(t) ≤ q̂ in order to capture the sec-
ond constraint in Equation (1). That is, inter-arrival times of vehicles to the link are exponentially
distributed. This captures uncertainty in the source term (or, in a network context, in the demand
from upstream). The probability that an arrival at timet encounters an available space in UQ is
P(UQ(t) < ℓ) whereℓ is the link’s space capacity (corresponding to a rounded version of ρ̂L). Al-
lowing for losses (which would translate into spillback in the full node model not considered here),
the effective inflow becomesqin(t) = λ(t)P(UQ(t) < ℓ).

Furthermore, assume exponentially distributed service times at the downstream end of the link with
rateµ(t) ≤ q̂ in order to capture the second constraint in Equation (2), whereµ(t) can be interpreted
as a downstream capacity constraint (which would in a network embedding, amongst other things,
capture spillback from downstream). Distributed service times may capture a distribution of headways
across vehicles or stochastic flow interactions in the downstream node, the latter being possibly due
to a gap acceptance distribution. The probability that there are vehicles ready to leave the link is
given by the probability that there are vehicles in DQ. Thus,the outflow of the link is given by
qout(t) = µ(t)P(DQ(t) > 0).

The basic model captures uncertainties in upstream demand patterns and downstream supply con-
ditions. Specifically, this model assumes arrivals to arisefrom a Poisson process. Two common
criticisms of this assumption are mitigated by features of the present model, which are absent in other
Markovian-type road traffic models. As discussed in Osorio et al. (2011), thedynamicsallow to cap-
ture temporal dependency effects (e.g. platooning) deterministically through the joint dynamics of
the time-dependent rates of all involved Poisson processes. The finite capacityassumption of this
model ensures that unrealistically high flows do not arise. Such flows could arise in an infinite capac-
ity queue setting, due to the Poisson distribution’s fat right tail. Ultimately, these assumptions will
require empirical justification.

This link model is a simplification in the sense that UQ and DQ are modeled independently. To clarify
this, let thelagged inflowLI(t) at timet be the stochastic amount of flow that has entered the link
betweent − L/v andt. In Figure 2, this corresponds to the flow on the lower left path, which has
already entered the link but has not yet entered DQ. Further,let the lagged outflowLO(t) at time
t be the stochastic amount of flow that has left the link betweent − L/|w| andt. In Figure 2, this
corresponds to the flow on the top right path, which has already left the link but has not yet left UQ.
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Mass conservation then requires

LI(t) +DQ(t) = UQ(t) − LO(t) (9)

to hold. Both sides denote the number of vehicles on the link attime t, such that a substantial
dependency between the distribution of UQ and DQ can be expected.

The remainder of this article develops and analyzes an improved link model formulation that almost
perfectly captures this dependency while maintaining consistency with the network modeling fram-
work of Osorio et al. (2011).

3 New link model

The main difficulty when trying to capture a joint distribution of UQ and DQ is the fact that these
evolve in reaction to the same inflows and outflows but evaluate these flows with different time lags.

Assuming as from now a discrete model wherek is the time index,kfwd is a rounded version ofL/v,
kbwd is a rounded version ofL/|w|, andℓ is a rounded version of̂ρL, a joint distribution of all time-
lagged model variables would result in an exponential statespace increase as the involved time lags
get larger.

The proposed solution to this problem is to add only two additional dimensions to the (UQ,DQ) state
space, which are called thelagged inflow queue(LI) and thelagged outflow queue(LO). The LI queue
captures, at an aggregate level, the distribution of all link entries that have not yet reached DQ, cf.
Equation (8). Symmetrically, the LO queue captures, at an aggregate level, the distribution of all link
exits that have not yet been removed from UQ, cf. Equation (7). Modeling a joint evolution of a four-
dimensional state space (UQ,LI,DQ,LO) is expected to capture relevant aspects of the dependency
between UQ and DQ.

Figure 3 gives an overview. In discrete time, the lags of inflows and outflows correspond to moving
them through a sequence ofkfwd (respectively,kbwd) buffers. LI (resp. LO) contains the sum of
the lagged inflows (resp. outflows) in the corresponding buffers. That is, each dotted box contains
three alternative ways of representing a lag: the original lag in continuous time, the discrete-time
representation as a series of buffers, and the aggregation into one single queue.

Let UQ(t;k) denote the number of vehicles in UQ at continuous timet within time intervalk of
durationδ. Similarly, we defineLI(t;k), DQ(t;k) andLO(t;k). At a given point in time, we have:

UQ(t;k) = DQ(t;k) + LI(t;k) + LO(t;k). (10)

Let us emphasize the purpose of each of these queues. DQ represents the number of vehicles that
could possibly leave the link. LI represents the number of vehicles that have entered the link but
are not yet available for departure due to the finite link traversal time. LO represents the number of
“spaces” that correspond to departures from the link that, due to the finite backward wave speed, have
not yet propagated to the link’s upstream end. Thus, UQ in (10) represents all vehicles on the linkplus
those vehicles that have recently left the link but whose available space has yet to become available
for use upstream.
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Figure 3: Lagged in/outflow buffers, aggregated into four-queue system

We only model the joint evolution of the three independent queues (LI,DQ,LO), noting that the state
of the fourth queue can be deduced from (10). The state space of a link consists of all feasible values
of this triplet of random variables. It is defined as:

{(li, dq, lo) ∈ N
3, li+ dq+ lo ≤ ℓ}. (11)

Let p(t;k) denote the joint transient probability distribution of (LI,DQ,LO) at continuous timet
within time intervalk of durationδ. The evolution of this distribution is given in continuous time
t from 0 to δ by the following linear system of differential equations (see, for instance, Reibman
(1991)):

dp(t;k)

dt
= p(t;k)Q(k) ∀t ∈ [0, δ] (12)

wherep(t;k) is a probability vector andQ(k) is a square matrix, known as the transition rate matrix,
which is described below. Initial conditions ensure continuity at the beginning of the time interval:

p(0;k) = p(δ;k− 1). (13)

The general solution to Equations (12) and (13) is given by:

p(t;k) = p(0;k)eQ(k)t ∀t ∈ [0, δ]. (14)

Equation (14) is a discrete-time differentiable expression, which guides the transition of the queue
distributions from one time step to the next. It holds under the assumption of constant link boundary
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initial states new statej rateQ(s, j;k) condition
(li, dq, lo) (li+ 1, dq, lo) λ(k) li+ dq+ lo < ℓ

(li, dq, lo) (li− 1, dq+ 1, lo) µLI(li;k) li > 0

(li, dq, lo) (li, dq− 1, lo+ 1) µDQ(k) dq > 0

(li, dq, lo) (li, dq, lo− 1) µLO(lo;k) lo > 0

Table 1: Transition rates between queues LI, DQ and LO.

conditions during a time step, i.e.Q(k) is constant during time intervalk. This assumption was
already introduced in the framework of Section 2.

For a given system of queues,Q(k) is a function of the arrival rates and service rates of each of
the queues. This matrix contains the transition rates between all pairs of states. The non-diagonal
elements,Q(k)sj for s 6= j, represent the rate at which the transition from states to statej takes place.
The diagonal elements are defined asQ(k)ss = −

∑
j 6=s Q(k)sj. Thus,−Q(k)ss represents the rate of

departure from states.

The non-diagonal and non-null elements of the transition rate matrix are given in Table 1. Assume an
initial state of(LI ,DQ, LO) equal to(li, dq, lo). The first line of the table describes arrivals to the
link. They occur with rateλ(k) and may enter the link as long asli + dq + lo < ℓ, i.e. they may
enter as long as UQ is less than the space capacity,ℓ. Flow from LI to DQ (line two of the table) is
transmitted with rateµLI(li;k), and this can occur as long as LI is nonempty (li > 0). Line three
describes departures from the link. They occur at rateµDQ(k) as long as DQ is nonempty. The last
line describes departures from LO, which occur at rateµLO(lo;k).

The link dynamics are described via the queueing parametersλ(k), {µLI(li;k)}li=1,..,ℓ, µDQ(k), and
{µLO(lo;k)}lo=1,..,ℓ, which are derived in the following.

• λ(k) is exogenous to the single-link model considered here.

• µDQ(k) defines the rate at which flow may leave the link. It also is considered exogenous in this
paper.

• µLI(li;k) is the rate at which the LI queue discharges into DQ, given that LI containsli vehicles.

At the beginning of time intervalk, queue LI contains all arrivals to the link at time intervals
k−kfwd, k−kfwd+1, ..., k−1. It represents a sequence ofkfwd buffer cells, where cellj contains
the entries to the link during time intervalk− j. The number of vehicles in LI is the sum of the
vehicles in thesekfwd cells. The vehicles that can leave LI during time intervalk are those that
are in LI’s last (i.e. most downstream) cell, which is denoted LLI. That is, LLI represents the
kfwdth buffer cell of LI. Hereafter, we useLI(k) to denoteLI(0;k), i.e. the number of vehicles in
LI at the beginning of time intervalk; an according notation is used for all other time-dependent
quantities as well.

The flow from LI to DQ during time intervalk is given by the number of vehicles in LLI at
the beginning of time intervalk, i.e. LLI(k). We proceed by deriving E{LLI(k) | LI(k) = li},
which is the expected flow transferred from LLI into DQ duringtime intervalk, given that LI
containsli vehicles.
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The arrival process to the link during time intervalk is a Poisson process with rateλ(k). Arrivals
may enter the link as long as it has not spilled back. This occurs with probabilityP(UQ(k) < ℓ).
Thus, the vehicles enter the link according to a Poisson process with rate

qin(k) = λ(k)P(UQ(k) < ℓ), (15)

whereqin(k) represents the expected inflow to the link during time interval k. Updating the ar-
rival rates across time intervals allows the model to account for temporal dependency between
arrivals. This occurs, for instance, in a network context without losses, where vehicles that were
blocked (i.e. could not enter) in previous time steps enter in later time steps. Additionally, tem-
poral dependence is introduced through UQ, which modulatesthe inflow through its probability
of not being full in Equation (15) and evolves relatively slowly along the time axis.

The only simplifying assumption made here and in the following is to neglect the stochastic
temporal dependence between inflows (and, as explained later, outflows) at different time steps.
The experiments of Section 4 demonstrate the very minor effect of this approximation. Given
this, the arrivals to each inflow buffer cell constitute independent Poisson processes with corre-
sponding ratesqin(k−1), .., qin(k−kfwd), andLI(k) is the sum of these independent processes.
Thus, the conditional distribution ofLLI(k) given thatLI(k) = li is BinomialB(li, r(k)) with

r(k) =
qin(k− kfwd)

kfwd∑

j=1

qin(k− j)

(16)

being the probability of encountering a randomly selected vehicle fromLI(k) in LLI(k). For
a derivation of this result (i.e., the Binomial distributionand its corresponding parameters) see
Section 2.12.4 of Larson and Odoni (1981).

In consequence,
E{LLI(k) | LI(k) = li} = li · r(k). (17)

The service rateµLI(li;k) can now be derived. By definition, the service rate is the inverse of
the expected time between successive departures from LI. Inorder to derive this expectation, we
observe that departures from LI form a Poisson process, and the expected number of departures
given that LI hasli vehicles is given by E{LLI(k) | LI(k) = li}.

Given thatm events of a Poisson process have occurred during a fixed time intervalδ, then inter-
event times are independently, uniformly distributed overthe fixed time interval of interest with
expected inter-arrival timeδ/m (see, for instance, Section 2.12.3 of Larson and Odoni (1981)).
In our case,m = E{LLI(k) | LI(k) = li}, such that the service rate becomes

µLI(li;k) =
li

δ
·
qin(k− kfwd)

kfwd∑

j=1

qin(k− j)

. (18)

• µLO(lo;k) is the rate at which “spaces” resulting from downstream vehicle departures become
available upstream. Queue LO contains all departures from DQ at time intervalsk − kbwd, k −
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parameter value
v 36 km/h
w -18 km/h
ρ̂ 200 veh/km
q̂ 2400 veh/h = 0.67 veh/s

µ(k) 1080 veh/h = 0.3 veh/s
λ(k) varies by experiment

ℓ, L, kfwd, kbwd varies by experiment

Table 2: Link parameters

Time interval k: [0,999] [1000,1999] [2000,2999]
Profile 131 0.1 0.3 0.1
Profile 151 0.1 0.5 0.1
Profile 353 0.3 0.5 0.3

Table 3: Arrival rate profiles,λ(k), in veh/s

kbwd+ 1, ..., k− 1. Symmetrically to the derivation that led to Equation (18),the departure rate
from LO given that LO containslo vehicles is

µLO(lo;k) =
lo

δ
·
qout(k− kbwd)

kbwd∑

j=1

qout(k− j)

. (19)

In summary, the overall link model is solved by repeated evaluations of Equation (14), using the ex-
ogenous parametersλ(k) andµDQ(k) and the endogenous transmission rates defined in Equations (18)
and (19). The linkage between Equation (14) and these rates is given through Table 1.

4 Experiments

A single-lane link with parameters shown in Table 2 is considered. Nine experiments are conducted,
combining three different arrival rate profiles and three different link lengths (and, hence, different
space capacities and forward/backward lags).

Each experiment starts with an initially empty link at time zero and runs for 3000 one-second time
steps. The arrival profiles are displayed in Table 3. Profile 131 (resp. 151) corresponds to a step-
change from undercritical to marginally critical (resp. overcritical) conditions and back. Profile 353
corresponds to a step-change from marginally critical to overcritical conditions and back.

The considered space capacities areℓ = 10, 20, 30, resulting in link lengthsL = 50, 100, 150m,
forward time lagskfwd = 5, 10, 15 and backward time lagskbwd = 10, 20, 30. Table 4 labels the
experiments for the resulting nine parameter combinationsas concatenations of the respective arrival
profile and space capacity.
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λ-profile 131 151 353
ℓ

10 “Exp 131 Cap 10” “Exp 151 Cap 10” “Exp 353 Cap 10”
20 “Exp 131 Cap 20” “Exp 151 Cap 20” “Exp 353 Cap 20”
30 “Exp 131 Cap 30” “Exp 151 Cap 30” “Exp 353 Cap 30”

Table 4: Experiments

λ 0.1 veh/s 0.3 veh/s 0.5 veh/s
ℓ

10 0.57 0.68 0.52
20 0.45 0.76 0.50
30 0.38 0.81 0.46

Table 5: Stationary correlations between UQ and DQ

Particular attention is paid in the following to the stochastic dependency between up- and downstream
conditions within the link, corresponding to dependency between UQ and DQ. For this, the results of
the proposed analytical model are compared to empirical distributions obtained from106 replications
of an event-based microsimulation.

This microsimulation implements only an UQ and a DQ. It does not resort to the LI and LO approxi-
mation but instead explicitly implements the time lags experienced by vehicles entering the link until
they reach DQ and by spaces becoming available due to exitingvehicles until they reach UQ. The
stochasticity of the arrival and service process is explicitly simulated by drawing corresponding ran-
dom numbers. That is, the microsimulation implements an instance of the proposed model that comes
with no approximations of the time lags – at the cost of being able to only draw from the underlying
distributions (as opposed to an analytical approach). Since the microsimulation perfectly captures all
dependencies, it serves as a benchmark for the analytical model.

Figure 4 shows for all nine experiments the evolution of the correlation between UQ and DQ over time.
The red crosses represent results from the analytical model, and the blue circles represent results from
the event-based simulation. Figure 5 (resp. 6) shows in greater detail the transient dynamics of the
correlation around second 1000 (resp. 2000). As a first impression, the deviations between simulation
and analytical model are visually negligible, indicating an excellent overall fit.

Table 5 contains the stationary correlations between UQ andDQ for the three space capacitiesℓ =

10, 20, 30 and the three stationary arrival ratesλ = 0.1, 0.3, 0.5 veh/s. Figures 7(a),(g),(d) show the
corresponding (UQ,DQ) distributions forℓ = 30, obtained with the analytical model. The correlation
values can be interpreted based on the joint distributions in the following way.

• All correlations are positive and quite large. This is plausible given that both UQ and DQ
represent aspects of the link’s occupancy and have substantial overlap, cf. also Equation (10).

• For each given space capacityℓ, the correlation is in marginally critical conditions higher than
in under- or overcritical conditions. Under- and overcritical conditions differ from marginally
critical conditions in this regard because Equation (10) implies that UQ is always fuller than
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Figure 4: Correlation between UQ and DQ over time
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Figure 5: Correlation between UQ and DQ during the transitionaround second 1000
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Figure 6: Correlation between UQ and DQ during the transitionaround second 2000
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(c) λ = 0.1→ 0.5 veh/s overshoot
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(b) λ = 0.1→ 0.5 veh/s undershoot
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(f) λ = 0.1→ 0.3 veh/s undershoot
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(h) λ = 0.3→ 0.1 veh/s overshoot
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Figure 7: (UQ,DQ) joint distributions. Figures (a), (g), and (d) show stationary distributions forλ = 0.1, 0.3, 0.5 veh/s, respectively.
Arranged between these figures in circles along the indicated directions are (UQ,DQ) distributions at the moments of largest under- and
overshoot during the respective transients, cf. Figures 4,5, and 6. All results are obtained with the analytical model and ℓ = 30.
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DQ. In undercritical conditions, this limits joint downwards fluctuations of UQ and DQ because
DQ is already close to zero; the (UQ,DQ) distribution is truncated at DQ=0 in Figure 7(a). In
overcritical conditions, this limits joint upwards fluctuations because UQ is already close toℓ;
the (UQ,DQ) distribution is truncated at UQ=ℓ in Figure 7(d). In marginally critical conditions,
the probability of these bounds taking effect is relativelylow, allowing joint fluctuations of UQ
and DQ to occur most freely in Figure 7(g).

• For λ = 0.1 and0.5 veh/s, the correlation decreases with increasingℓ. This is so because in
undercritical (resp. overcritical) conditions, DQ (resp.UQ) dictates the link dynamics, and the
respective other queue follows. The longer the link is, the more room exists for independent
fluctuations of the queues, resulting in reduced correlation. In terms of Equation (10), the
LI+ LO addend ofUQ = DQ+ (LI+ LO) increases relative to and somewhat independently
of DQ, moving away from what would be a perfectUQ = DQ dependency.

• For λ = 0.3 veh/s, the correlation increases with increasingℓ. As explained before, the distri-
butions of UQ and DQ evolve most freely in marginally critical conditions. Indeed, Figure 7(g)
reveals that the (UQ,DQ) distribution stretches in marginally critical conditions all the way from
undercritical to overcritical conditions. As the link getslonger, this distribution stretches even
further, resulting in the observed increase in correlation.

Figure 5 (resp. Figure 6) provide a more detailed evaluationof the correlation dynamics during the
transient periods around second 1000 (resp. 2000). These transitions are captured very accurately by
the analytical model. Figure 7 shows snapshots of the (UQ,DQ) distribution forℓ = 30 during sta-
tionarity and the times of largest correlation under- and overshoot. Here, one observes the following.

• For second 1000 and arrival profile 131 (first column in Figure5), the correlation undershoots
before attaining its new stationary value. These dynamics are reflected by the sequence of
(UQ,DQ) distributions shown in Figure 7(a),(f),(g). The undershoot can be explained by UQ
starting to increasekfwd time steps before DQ, such that UQ initially changes independently
of DQ. The (UQ,DQ) distribution first stretches out only horizontally before expanding also
vertically. Eventually, this effect ceases as the two queues synchronize again. Consistently with
this, the time of maximum undershoot coincides with the respective forward time lagkfwd.

• For second 1000 and arrival profile 151 (second column in Figure 5), the correlation first un-
dershoots and then overshoots before attaining its new stationary value. These dynamics are
reflected by the sequence of (UQ,DQ) distributions shown in Figure 7(a)(b)(c)(d). The under-
shoot is explained in the previous item (initial horizontalexpansion of (UQ,DQ) distribution
from Figure 7(a) to 7(b)). The overshoot results because, whatever the initial (most likely,
upwards) fluctuation of UQ is, the same fluctuation reaches DQafterkfwd time steps. The rela-
tively empty DQ is able to follow quite freely UQ’s earlier fluctuation. This is reflected by the
diagonal stretch of the (UQ,DQ) distribution in Figure 7(c). Eventually, the upper bound on UQ
then takes effect, reducing the probability of joint fluctuations, which results in Figure 7(d).

• For second 2000 and arrival profiles 131 and 151 (first and second column in Figure 6), the
correlation overshoots before attaining its new stationary value. These dynamics are reflected
by the sequence of (UQ,DQ) distributions shown in Figures 7(g)(h)(a) and 7(d)(e)(a). The
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overshoot in arrival profile 151 can be explained by the link going all the way from over-
to undercritical conditions, passing through a transient state of marginal criticality shown in
Figure 7(e). The transient overshoot in arrival profile 131,cf. Figure 7(h), exceeds the already
extreme correlation in marginally critical stationary conditions, cf. Figure 7(g). A careful
comparison of these two figures reveals that the transient distribution is slightlynarrower than
the stationary distribution.

• For arrival profile 353 (last column in in Figure 5 and 6), there are no over- or undershoots.
In marginally critical and overcritical conditions, UQ takes at least partial effect on the link
dynamics. Since the change in boundary conditions also occurs upstream, the immediate reac-
tion of UQ absorbs the link dynamics that in the previous cases resulted from the time-lagged
interactions of UQ and DQ. This leads to a smooth transition between the band-like (UQ,DQ)
distribution in marginally critical conditions (Figure 7(g)) and the more constrained overcritical
distribution (Figure 7(d)).

So far, only correlation as a measure of linear dependency was considered. Figure 8 shows the joint
distribution of LI, DQ and LO for different arrival profiles and at particularly interesting points in
time (shortly after the jump-changes in the arrival profile). Only results forℓ = 10 are shown; the
figures forℓ = 20, 30 do not reveal additional information. The horizontal axis represents the indices
of the different states, and the vertical axis represents their probabilities. All feasible states of (LI,
DQ, LO) are represented. One observes an almost perfect match between simulated and analytical
results, across all experiments.

These experiments demonstrate an extremely high precisionof the analytical model when approxi-
mating an event-based microsimulation of the exact stochastic KWM model for a homogeneous link.
It hence is possible to analytically capture full link statedistributions in consistency with a stochastic
Newell model.

5 Summary and outlook

This article presents a new model for traffic flow along a linear link, which analytically captures
queue length distributions. When compared to a previous approach, the new model adds realistic
dependency structure between the link’s upstream and downstream boundary conditions. In order to
maintain tractability of the new model, some simplifications are adopted, which result in a negligible
loss of precision when compared to a stochastic microsimulator.

The relationship of the proposed model to the kinetic theoryof traffic flow may be worth investigating
further. In kinetic models, stochasticity enters at the level of individual vehicle interactions, rendering
the stochastic performance of a whole link an accumulation of such interactions. The present work
limits itself to (demand) stochasticity at a link’s upstream end and (supply) stochasticity at its down-
stream end. This in combination with the Poissonian assumption leads to an operational but arguably
simplified representation of real traffic. An effort to derive the present model from (or to link it to)
kinetic theory may enable richer distributional assumptions and may also facilitate the derivation of
more operational kinetic models.
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Figure 8: Joint distribution of LI, DQ and LO
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Further efforts will focus on network modeling. This article describes how dependency across a ho-
mogeneous link can be captured; previous work demonstratedhow dependency across a node can be
captured (Osorio et al.; 2011). A logical next step is to combine these two models into an approxima-
tion of the joint queue length distributions in a complete network.
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