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Abstract

This work adds realistic dependency structure to a prelyaleveloped analytical stochastic network
loading model. The model is a stochastic formulation of thie-transmission model, which is an op-
erational instance of Newell’s simplified theory of kinemataves. Stochasticity is captured in the
source terms, the flows, and, consequently, in the cumalibws. The previous approach captured
dependency between the upstream and downstream boundalitiaas within a link (i.e. the respec-
tive cumulative flows) only in terms of time-dependent expgons without capturing higher-order
dependency. The model proposed in this paper adds an apmatiomn of full distributional stochas-
tic dependency to the link model. The model is validated weistochastic microsimulation in both
stationary and transient regimes. The experiments retiaalthe proposed model provides a very
accurate approximation of the stochastic dependency eetwree link’s upstream and downstream
boundary conditions. The model also yields detailed andrate link state probability distributions.

1 Introduction

A network loading modealescribes how a time-dependent travel demand advancegthametwork.
The demand is typically given in terms of time-dependergiofdestination (OD) flows and a route
choice model. Given these inputs, the network loading mtite captures the progression of the
demand through the network, accounting for congestion laaddsulting delays.

A stochastic network loading modébes essentially the same, but it additionally accountsificer-
tainty in the modeling (e.g. of source terms, flows, netwaakameters) and captures distributional
information of the network states. This paper focuses orytoal stochastic (i.e. probabilistic)

*Massachusetts Institute of Technology (MIT), Departmdr€iwil & Environmental Engineering, Cambridge, MA
02139, USA, osorioc@mit.edu (corresponding author)

fKTH Royal Institute of Technology, Department of Transp@&@tience, 11428 Stockholm, Sweden, gun-
nar.floetteroed@abe.kth.se



dynamic network loading models. The main technical lintatin developing such models is the
dimensionality of the joint distribution, which is exporigh in the number of spatial discretization
units. Thus, the challenge is to approximate the depend&naegture while deriving a computation-
ally efficient approach.

In the following, we focus on the widely accepted kinematiavee model (KWM; Lighthill and

Witham (1955); Richards (1956)). Both the KWM'’s original linkoatel and its more recently de-
veloped node models (e.g. Daganzo (1995); Lebacque (12865cque and Khoshyaran (2005);
Tampere et al. (2011); Flotteréd and Rohde (2011); Corthoat. 2012)) are deterministic. They
describe space/time average conditions but do not accouhigher-order distributional information.

There has been a recent interest in the development of stichiak models. Most studies have
considered stochastic cell-transmission models (CTMs; BodlMihaylova; 2006; Sumalee et al.;
2011; Jabari and Liu; 2012). Boel and Mihaylova (2006) coarside sending and receiving functions
of the CTM as random variables. The evaluation of the modellu@s computationally intensive
sampling in order to estimate the main link performance messs Jabari and Liu (2012) consider
headways to be random variables. The fluid limit of their B&stic model is consistent with the
CTM. This is also a simulation-based approach, where pedoo® measure estimates are obtained
via sampling. The stochastic CTM of Sumalee et al. (2011)allfmr stochasticity in the sending and
receiving functions and in the source terms. This model &yaical (i.e. not simulation-based). The
stochasticity results from adding noise in the form of a seleorder wide-sense stationary process
to otherwise deterministic model variables. Jabari and(R@12) detail the limitations of using such
types of noise terms.

Let us also briefly comment on the kinetic approach to staah&sffic flow modeling. Here, one
starts out from a probabilistic description of individuaghicle interactions, which is typically solved
by extracting dynamic equations for the first moments (irtipalar, mean values and variances) of
aggregate traffic characteristics (e.g. Tampere et al.3R000 derive operational formulations, the
assumption of “vehicular chaos” is typically made, mearimag the states of interacting vehicles are
stochastically independent. Nelson and Kumar (2006) etab@n the implications of omitting such
dependencies. It appears that the complexity of kineticetsodith realistic stochastic dependency
structures has so far precluded their implementation inrtneial network contexts (Helbing; 2001).

Osorio et al. (2011) recently proposed a stochastic fortimuleof the link-transmission model of
Yperman et al. (2007), which is an operational instance ofi®lks simplified theory of kinematic
waves (Newell; 1993). Newell's model can in turn be derivexhf the variational theory of Daganzo
(2005). The queueing-theoretical model of Osorio et all{3@ccommodates stochastic source terms
and flows across nodes. It is a (vehicle-)discretized, ststatinstance of the KWM, whereas the
aforementioned stochastic CTMs constitute stochastiamasts of (space-)discretized KWMs. That
IS, only the model of Osorio et al. (2011)dgectly derived from the KWM.

The present article adds important dependency structuti@ganodel, hereafter referred to as the
basic model Thebasic modekxhibits the following additional features.

1. Itis analytical. It captures the evolution of link staistdbutions through differentiable equa-
tions. Thus, the approach does not require computationaiyly sampling to obtain distribu-
tional estimates. This approach allows to obtain valuaidéghts into stochastic network dy-
namics. It also provides a differentiable description @fsia dynamics, which can be exploited
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when applying efficient optimization or calibration rowgs) e.g. for the design of signal control
strategies (Osorio and Bierlaire; 2010) or the estimatio@Dfmatrices (Flotterod et al.; 2011).

2. The basic model represents the flow transmissions acrossark node (connection of up-
stream and downstream links) in terms of a multivariate $twisprocess. The node model
yields a joint distribution of the downstream boundary dtiads of the node’s upstream link
and the upstream boundary conditions of the node’s dowarstimk.

3. The basic model represents a homogeneous link segmembliyite capacity queues that con-
stitute stochastic counterparts of the cumulative curgeslun Newell's simplified KWM, and
it coincides with a discretized version of Newell's modelemithe randomness in all involved
processes vanishes. That is, the basic link model is defioed the KWM (Newell; 1993;
Yperman et al.; 2007).

4. The basic model captures dependency between a single lipktream boundary conditions
and the same link’s downstream boundary conditions mendlgrims of time-dependent expec-
tations but ignores higher-order dependencies. This eaphat dependency between upstream
and downstream boundary conditions in a single link is nptwad beyond what a determin-
istic model could describe.

Item 4 constitutes the main simplification in the basic mpaéiich this article overcomes. The
presentation therefore focuses on the joint modeling ohdaty conditions within a link. Details
on how across-node correlations (i.e. correlations witkdifurther up- or downstream) are captured
appear in Osorio et al. (2011). It should be noted that nortkeohforementioned stochastic CTMs
provide analytical expressions for the joint distributmimultiple cells: Boel and Mihaylova (2006)
and Jabari and Liu (2012) resort to simulation; Sumalee. €2l 1) model the states of adjacent cell
pairs as independent random variables.

The remainder of this article is organized as follows. Sec# recalls the basic link model. Section 3
describes how realistic dependency structure is addedinig#o the proposed new model. Compre-
hensive experiments are described in Section 4, where #figbditional information extracted from
the analytical model is compared to distributional estesaibtained via simulation. Finally, Section
5 concludes the article and gives an outlook on further rebeguestions.

2 Basiclink model

We briefly recall the original link model of Osorio et al. (201 The presentation given here follows a
different path than the original work in that it first recadls operational formulation (Yperman et al.;
2007) of Newell's simplified KWM (Newell; 1993) and then fortates the stochastic model as a
distributed version of Newell's model.

Yperman et al. (2007) phrase this model within the send&egiving function framework of Da-
ganzo (1994) and of Lebacque (1996). This framework pastsiidnat, at any interface within the
network, the instantaneously transmitted flow is the mimmaf an upstream sending function and a
downstream receiving function, reflecting the KWM'’s prifeipf local flow maximization (Ansorge;
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Figure 1: Deterministic fundamental diagram resultingrfroriginal two-queue system

1990). The embedding of a link in a network model hence reguarlink model that defines, at every
time instantt, a receiving functiorR(t) (and a sending functiof(t), respectively) that reflects the
boundary conditions the link provides to its upstream naldevhistream node, resp.).

Assuming a triangular fundamental diagram as shown in Eiguhaving free flow velocity, back-
ward wave speed (negative), flow capacitg, and jam density, Yperman et al. (2007) present the
following equations for a discrete-time simulation of the/Kl (detailed derivations can be found in
Yperman (2007)):

R(t) = min{N (L,t—l—S— %) + pL — N(0, t), aé} (1)
S(t) = min{N (O,t+6— %) — N(L, 1), aé}, (2)

whereR(t) is the amount of flow the link can receive at time instadtring the next time interval of
lengthd, S(t) is the respective sending flow, ahdx, t) is the cumulative flow having passed location
x at timet, with x € [0, L] in the link of lengthL. The Courant-Friedrichs-Lewy condition requires
d < L/vto hold. See, for instance, Yperman (2007) for a detailedudision of the possible wave
configurations given a triangular fundamental diagram aadélland Nelson (2005) for a discussion
of its empirical validity.

Defining the two quantities
UQ(t) = N(O0,t) = N(L,t+&—L/lwl) 3)
DQ(t) = N(0,t+&—L/v) —N(L,t) 4)
allows to rewrite (1), (2) as follows:
R(t) = min{pL —UQ(t), 4o} )
S(t) = min{DQ(t), 45}. (6)

Formally, UQt) and DQt) are just summary representations of differences in cumaldiows.
However, they also allow for a tangible interpretation afgb otherwise rather abstract cumulative
flow differences. For this, UQ) is interpreted as the number of vehicles in a finite capamptream



queue(UQ) that keeps track of the upstream boundary conditwaittsn the link, and DQt) is inter-
preted as the number of vehicles in a finite capagdawnstream queu@Q) that keeps track of the
downstream boundary conditionsthin the link.

Allow both queues to hold at mo§L vehicles. The receiving function in (5) is hence limited bg t
available space in UQ, which . —UQ(t). This means that the link behavasif UQ was embedded
within its upstream end, arab if vehicles trying to enter the link actually tried to enter Ukpirther,
the sending function in (6) is limited by the number of veagin DQ, which is DQt). This means
that the link behavess if DQ was embedded within its downstream end, asid vehicles leaving the
link actually left DQ. (Charypar (2008) describes esselytihle same approach in a microsimulation
framework, but without any analytical considerations).

This interpretation carries further. Equations (3) andcgl) be recursively written as

UQ(t) = UQ(t—138)+5[q"(t—25)—q™(t—L/wl)] (7)
DQ(t) = DQ(t—28)+5[q"(t—L/v) —q®(t—3)] (8)

where g"(t) is the link’'s instantaneous inflow rate at tinig q°“(t) is the instantaneous outflow
rate, and both quantities are held constant throughouteagtep of duration, consistently with the
underlying framework of Yperman et al. (2007). Equationidicates that the change in UQ during
[t — 6, t] is given by the difference between

1) the flow that entered the link during that time

ii) and the flow that left the link duringt — L/|w|,t — L/|w| + 8].

Similarly, Equation (8) indicates that the change in DQ dgiit — 9, t] is given by the difference
between

i) the flow that entered the link during — L/v,t — L/v + §]

i) and the flow that left the link during that time.

Thatis, UQ and DQ evolve through tinas if the link in- and outflows actually entered the respective
gueues. It needs to be re-iterated, though, that UQ and D@arely intuitive representations of the
boundary conditions provided by the link to its up- and daingesm nodes.

Figure 2 shows the fictitious embedding of UQ and DQ withinlihie The lower path (solid arrows)
represents the actual mass transfer: flow enters the limlelgs/ed byl /v time units (corresponding
to the free-flow travel time) and then becomes available émagture in DQ. The upper path (dashed
arrows) captures how vehicle departures eventually emadvievehicle entries, in that flows that have
departed from DQ are delayed hy|w| time units (corresponding to the time it takes a kinematic
backward wave to traverse the link) before they are remonad Q.

The stochastic link model results from a stochastic modadilJQ and DQ, relying on finite capacity

gueueing theory, where the evolution of the distributiortha&f number of vehicles in either queue is
tracked through time. The dynamics of these queues aredjbydeme-dependent arrival and service
rates as well as the probabilities of the queues being pgbrfempty (i.e. being unable to send more
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Figure 2: Original two-queue system

flow) or perfectly full (i.e. being unable to receive more floBince UQ and DQ represent differences
in cumulative flows, this approach corresponds to Neweltslet with stochastic cumulative curves.

Assume a time-dependent Poisson arrival process withgityex(t) (i.e. a non-homogenous Poisson
process) at the upstream end of the considered link, whighe < ¢ in order to capture the sec-
ond constraint in Equation (1). That is, inter-arrival tenef vehicles to the link are exponentially
distributed. This captures uncertainty in the source tesmif a network context, in the demand
from upstream). The probability that an arrival at time&ncounters an available space in UQ is
P(UQ(t) < £) wherel is the link’'s space capacity (corresponding to a roundesieerof pL). Al-
lowing for losses (which would translate into spillback hetfull node model not considered here),
the effective inflow becomes™(t) = A(t)P(UQ(t) < ().

Furthermore, assume exponentially distributed servioegiat the downstream end of the link with
ratep(t) < g in order to capture the second constraint in Equation (2grefa(t) can be interpreted

as a downstream capacity constraint (which would in a ndtwanbedding, amongst other things,
capture spillback from downstream). Distributed servieets may capture a distribution of headways
across vehicles or stochastic flow interactions in the dowam node, the latter being possibly due
to a gap acceptance distribution. The probability thatelene vehicles ready to leave the link is
given by the probability that there are vehicles in DQ. Thilg outflow of the link is given by

q°'(t) = u(t)P(DQ(t) > 0).

The basic model captures uncertainties in upstream demattelps and downstream supply con-
ditions. Specifically, this model assumes arrivals to afieen a Poisson process. Two common
criticisms of this assumption are mitigated by featureseffiresent model, which are absent in other
Markovian-type road traffic models. As discussed in Osoral.2011), thedynamicsallow to cap-
ture temporal dependency effects (e.g. platooning) detéstically through the joint dynamics of
the time-dependent rates of all involved Poisson processks finite capacityassumption of this
model ensures that unrealistically high flows do not arisehSlows could arise in an infinite capac-
ity queue setting, due to the Poisson distribution’s faltrigil. Ultimately, these assumptions will
require empirical justification.

This link model is a simplification in the sense that UQ and D&raodeled independently. To clarify
this, let thelagged inflowLI(t) at timet be the stochastic amount of flow that has entered the link
betweent — L/v andt. In Figure 2, this corresponds to the flow on the lower leftpathich has
already entered the link but has not yet entered DQ. Furtbethelagged outflom O(t) at time

t be the stochastic amount of flow that has left the link betwteenl/|w| andt. In Figure 2, this
corresponds to the flow on the top right path, which has ajréeftithe link but has not yet left UQ.



Mass conservation then requires
LI(t) + DQ(t) = UQ(t) — LO(t) 9)

to hold. Both sides denote the number of vehicles on the linkina t, such that a substantial
dependency between the distribution of UQ and DQ can be &qgbec

The remainder of this article develops and analyzes an weprbnk model formulation that almost
perfectly captures this dependency while maintaining isbeiscy with the network modeling fram-
work of Osorio et al. (2011).

3 New link modd

The main difficulty when trying to capture a joint distriboti of UQ and DQ is the fact that these
evolve in reaction to the same inflows and outflows but evaltrese flows with different time lags.

Assuming as from now a discrete model whkris the time indexk™d is a rounded version df /v,
k"™ is a rounded version df/|w|, and{ is a rounded version ¢iL, a joint distribution of all time-
lagged model variables would result in an exponential Spéee increase as the involved time lags
get larger.

The proposed solution to this problem is to add only two aoloi#l dimensions to the (UQ,DQ) state
space, which are called tlhegged inflow queuf_l) and thelagged outflow queu@O). The LI queue
captures, at an aggregate level, the distribution of all éntries that have not yet reached DQ, cf.
Equation (8). Symmetrically, the LO queue captures, at gmeaate level, the distribution of all link
exits that have not yet been removed from UQ, cf. EquationNIodeling a joint evolution of a four-
dimensional state space (UQ,LI,DQ,LO) is expected to aaptelevant aspects of the dependency
between UQ and DQ.

Figure 3 gives an overview. In discrete time, the lags of imi@nd outflows correspond to moving
them through a sequence &9 (respectively, k) buffers. LI (resp. LO) contains the sum of
the lagged inflows (resp. outflows) in the correspondingeraff That is, each dotted box contains
three alternative ways of representing a lag: the origiaglih continuous time, the discrete-time
representation as a series of buffers, and the aggregatmoie single queue.

Let UQ(t; k) denote the number of vehicles in UQ at continuous tinweithin time intervalk of
durationd. Similarly, we defind_I(t; k), DQ(t; k) andLO(t; k). At a given point in time, we have:

UQ(t; k) = DQ(t;k) + LI (t; k) + LO(t; k). (10)

Let us emphasize the purpose of each of these queues. DQ@eafge¢he number of vehicles that
could possibly leave the link. LI represents the number dfictes that have entered the link but
are not yet available for departure due to the finite linkéraal time. LO represents the number of
“spaces” that correspond to departures from the link thag,td the finite backward wave speed, have
not yet propagated to the link's upstream end. Thus, UQ ihr@resents all vehicles on the lipkus
those vehicles that have recently left the link but whosel@vie space has yet to become available
for use upstream.
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We only model the joint evolution of the three independergwgs (LI,DQ,LO), noting that the state
of the fourth queue can be deduced from (10). The state spackné consists of all feasible values
of this triplet of random variables. It is defined as:

{(li,dq,lo) € N}, li+dq+lo < €. (11)

Let p(t;k) denote the joint transient probability distribution of (DQ,LO) at continuous time
within time intervalk of durations. The evolution of this distribution is given in continuousé
t from 0 to & by the following linear system of differential equationg€s for instance, Reibman
(1991)):

dp(t;k)

dt

wherep(t; k) is a probability vector an@ (k) is a square matrix, known as the transition rate matrix,
which is described below. Initial conditions ensure comtiynat the beginning of the time interval:

p(O;k) =p(&k—1). (13)

=p(tk)Q(k) Vvt e [0,d] (12)

The general solution to Equations (12) and (13) is given by:
p(t;k) =p(0;k)eM vt e [0,8]. (14)

Equation (14) is a discrete-time differentiable expressishich guides the transition of the queue
distributions from one time step to the next. It holds untéerassumption of constant link boundary
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initial states new statg rateQ(s,j;k) condition

(li,dq,lo) (li+1,dq,lo) A(k) li+dq+lo<!t
(li,dq,l0) (li—1,dq+1,10) w(lisk) >0
(li,dq,l0)  (li,dq—1,lo+1) wuP2(k) dq >0
(li,dq,l0)  (li,dq,lo—1) 1 (lo; k) lo >0

Table 1: Transition rates between queues LI, DQ and LO.

conditions during a time step, i.eQ(k) is constant during time intervdl. This assumption was
already introduced in the framework of Section 2.

For a given system of queue®,(k) is a function of the arrival rates and service rates of each of
the queues. This matrix contains the transition rates lextvedl pairs of states. The non-diagonal
elementsQ) (k) for s # j, represent the rate at which the transition from stdtestatej takes place.
The diagonal elements are defined ¥ )ss = — Z#S Q(k)sj- Thus,—Q(k)ss represents the rate of
departure from state

The non-diagonal and non-null elements of the transitiée maatrix are given in Table 1. Assume an
initial state of(LI, DQ, LO) equal to(li, dq, lo). The first line of the table describes arrivals to the
link. They occur with rate\(k) and may enter the link as long éis+ dq + lo < ¢, i.e. they may
enter as long as UQ is less than the space capdciBtow from LI to DQ (line two of the table) is
transmitted with rated"' (1i; k), and this can occur as long as LI is nonemgdty ¥ 0). Line three
describes departures from the link. They occur at r&f&(k) as long as DQ is nonempty. The last
line describes departures from LO, which occur at faf&1lo; k).

The link dynamics are described via the queueing paramatéss {u"' (1i; k) hizr,e, nP9(k), and
{1-°(1o; k) ho=1,..c, which are derived in the following.

e A(k) is exogenous to the single-link model considered here.

e uPQ(k) defines the rate at which flow may leave the link. It also is mered exogenous in this
paper.

e ' (1i;k) is the rate at which the LI queue discharges into DQ, givetltheontainsli vehicles.

At the beginning of time intervakt, queue LI contains all arrivals to the link at time intervals
k—kWd k—kWd 1., k—1. It represents a sequencedt? buffer cells, where cejl contains

the entries to the link during time intervial- j. The number of vehicles in LI is the sum of the
vehicles in thes&™ cells. The vehicles that can leave LI during time intefvalre those that
are in LI's last (i.e. most downstream) cell, which is dewoté.|. That is, LLI represents the
k™dth buffer cell of LI. Hereafter, we udel (k) to denote 1(0; k), i.e. the number of vehicles in

LI at the beginning of time intervad; an according notation is used for all other time-dependent
guantities as well.

The flow from LI to DQ during time intervak is given by the number of vehicles in LLI at
the beginning of time intervd, i.e. LLI(k). We proceed by deriving{ELI(k) | LI(k) = li},
which is the expected flow transferred from LLI into DQ durithge intervalk, given that LI
containgli vehicles.



The arrival process to the link during time interkab a Poisson process with ratgk). Arrivals
may enter the link as long as it has not spilled back. This@oeith probabilityP (ULQ (k) < £).
Thus, the vehicles enter the link according to a Poissongs®with rate

q"(k) = A(k)P(UQ(k) < ©), (15)

whereq™ (k) represents the expected inflow to the link during time irdekv Updating the ar-
rival rates across time intervals allows the model to actumtemporal dependency between
arrivals. This occurs, for instance, in a network contexhaut losses, where vehicles that were
blocked (i.e. could not enter) in previous time steps emtdaiter time steps. Additionally, tem-
poral dependence is introduced through UQ, which moduthtemflow through its probability
of not being full in Equation (15) and evolves relativelywslp along the time axis.

The only simplifying assumption made here and in the foltayvis to neglect the stochastic
temporal dependence between inflows (and, as explaineddatédows) at different time steps.
The experiments of Section 4 demonstrate the very minocteffiethis approximation. Given
this, the arrivals to each inflow buffer cell constitute ipdadent Poisson processes with corre-
sponding rateg™"(k—1), .., g"(k—k™d), andLI(k) is the sum of these independent processes.
Thus, the conditional distribution &fLI(k) given thatLI(k) = 1i is Binomial B(1i, r(k)) with

T kfwd

> qn(k—j)
j=1

(16)

being the probability of encountering a randomly selectekiale fromLI(k) in LLI(k). For
a derivation of this result (i.e., the Binomial distributiand its corresponding parameters) see
Section 2.12.4 of Larson and Odoni (1981).

In consequence,
E{LLI(k) | LI(k) = li} =L - r(k). (a7)

The service ratg' (1i; k) can now be derived. By definition, the service rate is the swef
the expected time between successive departures fromaddér to derive this expectation, we
observe that departures from LI form a Poisson process fenelkipected number of departures
given that LI hadi vehicles is given by 8 LI(k) | LI(k) = li}.

Given thatm events of a Poisson process have occurred during a fixedriter@ald, then inter-
event times are independently, uniformly distributed diaerfixed time interval of interest with
expected inter-arrival tim&/m (see, for instance, Section 2.12.3 of Larson and Odoni (3981
In our casem = E{LLI(k) | LI(k) = li}, such that the service rate becomes

E . qin(k_ kfwd)

6 Kfwd

; qn(k —j)
-

uH (L k) = (18)

1O (lo; k) is the rate at which “spaces” resulting from downstreamalehdepartures become
available upstream. Queue LO contains all departures fr@raftime intervalgk — k"4 k —
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parametern value
v | 36 km/h
w | -18km/h
p | 200veh/km
g | 2400veh/h = 0.67 veh/s

w(k) | 1080veh/h = 0.3 veh/s
A(k) | varies by experiment
¢, L, kWd kPwd | varies by experiment

Table 2: Link parameters

Time interval k:| [0,999] | [1000,1999]| [2000,2999]
Profile 131 0.1 0.3 0.1
Profile 151 0.1 0.5 0.1
Profile 353 0.3 0.5 0.3

Table 3: Arrival rate profiles\(k), in veh/s

kPWd 41, ...,k — 1. Symmetrically to the derivation that led to Equation (1B} departure rate
from LO given that LO containko vehicles is

lo out(k - kbwd)
HO(losk) = 2

; q°(k —3j)
-

(19)

In summary, the overall link model is solved by repeatedwatabns of Equation (14), using the ex-
ogenous parameteksk) anduP?(k) and the endogenous transmission rates defined in Equati®hs (
and (19). The linkage between Equation (14) and these tggan through Table 1.

4 Experiments

A single-lane link with parameters shown in Table 2 is coesed. Nine experiments are conducted,
combining three different arrival rate profiles and threigedent link lengths (and, hence, different
space capacities and forward/backward lags).

Each experiment starts with an initially empty link at timera and runs for 3000 one-second time
steps. The arrival profiles are displayed in Table 3. Prof& (resp. 151) corresponds to a step-
change from undercritical to marginally critical (resp.eoxritical) conditions and back. Profile 353

corresponds to a step-change from marginally critical ®roritical conditions and back.

The considered space capacities are 10, 20, 30, resulting in link lengthd. = 50, 100, 150 m,
forward time lagsk™? = 5,10, 15 and backward time lagk™d = 10,20,30. Table 4 labels the
experiments for the resulting nine parameter combinat@snsoncatenations of the respective arrival
profile and space capacity.
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A-profile 131 151 353
¢
10 | “Exp 131 Cap 10| “Exp 151 Cap 10" “Exp 353 Cap 10"
20 | “Exp 131 Cap 20"| “Exp 151 Cap 20" “Exp 353 Cap 20"
30 | “Exp 131 Cap 30”| “Exp 151 Cap 30" “Exp 353 Cap 30”
Table 4. Experiments
A | 0.1veh/s| 0.3veh/s| 0.5veh/s
¢
10| 0.57 0.68 0.52
20| 0.45 0.76 0.50
30| 0.38 0.81 0.46

Table 5: Stationary correlations between UQ and DQ

Particular attention is paid in the following to the stodimdependency between up- and downstream
conditions within the link, corresponding to dependendyeen UQ and DQ. For this, the results of
the proposed analytical model are compared to empirictilligions obtained from0° replications

of an event-based microsimulation.

This microsimulation implements only an UQ and a DQ. It doefsrasort to the LI and LO approxi-
mation but instead explicitly implements the time lags eigeed by vehicles entering the link until
they reach DQ and by spaces becoming available due to exithigles until they reach UQ. The
stochasticity of the arrival and service process is explisimulated by drawing corresponding ran-
dom numbers. That is, the microsimulation implements ataice of the proposed model that comes
with no approximations of the time lags — at the cost of beinlg o only draw from the underlying
distributions (as opposed to an analytical approach).eStine microsimulation perfectly captures all
dependencies, it serves as a benchmark for the analytici#imo

Figure 4 shows for all nine experiments the evolution of thealation between UQ and DQ over time.
The red crosses represent results from the analytical maaelthe blue circles represent results from
the event-based simulation. Figure 5 (resp. 6) shows ingreetail the transient dynamics of the
correlation around second 1000 (resp. 2000). As a first isgioa, the deviations between simulation
and analytical model are visually negligible, indicatingexcellent overall fit.

Table 5 contains the stationary correlations between UQDa@dor the three space capacities=

10, 20, 30 and the three stationary arrival rates= 0.1, 0.3, 0.5 veh/s. Figures 7(a),(g),(d) show the
corresponding (UQ,DQ) distributions fér= 30, obtained with the analytical model. The correlation
values can be interpreted based on the joint distributiomisa following way.

e All correlations are positive and quite large. This is plales given that both UQ and DQ
represent aspects of the link’s occupancy and have sulateveerlap, cf. also Equation (10).

e For each given space capacitythe correlation is in marginally critical conditions heghthan
in under- or overcritical conditions. Under- and overcaticonditions differ from marginally
critical conditions in this regard because Equation (1Qlies that UQ is always fuller than

12
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DQ. In undercritical conditions, this limits joint downwis fluctuations of UQ and DQ because
DQ is already close to zero; the (UQ,DQ) distribution is tated at DQ=0 in Figure 7(a). In
overcritical conditions, this limits joint upwards fluctians because UQ is already closelto
the (UQ,DQ) distribution is truncated at UQm Figure 7(d). In marginally critical conditions,
the probability of these bounds taking effect is relatively, allowing joint fluctuations of UQ
and DQ to occur most freely in Figure 7(g).

e ForA = 0.1 and0.5veh/s, the correlation decreases with increagin@his is so because in
undercritical (resp. overcritical) conditions, DQ (re§fQ) dictates the link dynamics, and the
respective other queue follows. The longer the link is, tleenroom exists for independent
fluctuations of the queues, resulting in reduced corrafatiln terms of Equation (10), the
LI+ LO addend ofuQ = DQ + (LI 4 LO) increases relative to and somewhat independently
of DQ, moving away from what would be a perfét€) = DQ dependency.

e ForA = 0.3veh/s, the correlation increases with increadings explained before, the distri-
butions of UQ and DQ evolve most freely in marginally criticanditions. Indeed, Figure 7(g)
reveals that the (UQ,DQ) distribution stretches in margyraitical conditions all the way from
undercritical to overcritical conditions. As the link gébsmger, this distribution stretches even
further, resulting in the observed increase in correlation

Figure 5 (resp. Figure 6) provide a more detailed evaluatiaihe correlation dynamics during the
transient periods around second 1000 (resp. 2000). Thesstions are captured very accurately by
the analytical model. Figure 7 shows snapshots of the (UQ @ ribution for{ = 30 during sta-
tionarity and the times of largest correlation under- anershioot. Here, one observes the following.

e For second 1000 and arrival profile 131 (first column in Fighiethe correlation undershoots
before attaining its new stationary value. These dynaniesreflected by the sequence of
(UQ,DQ) distributions shown in Figure 7(a),(f),(g). Thedemshoot can be explained by UQ
starting to increas&™ time steps before DQ, such that UQ initially changes inddpatly
of DQ. The (UQ,DQ) distribution first stretches out only lzomtally before expanding also
vertically. Eventually, this effect ceases as the two gaeyachronize again. Consistently with
this, the time of maximum undershoot coincides with the eetipe forward time lag"™d.

e For second 1000 and arrival profile 151 (second column inrg€iéy, the correlation first un-
dershoots and then overshoots before attaining its nevorséay value. These dynamics are
reflected by the sequence of (UQ,DQ) distributions shownigife 7(a)(b)(c)(d). The under-
shoot is explained in the previous item (initial horizongapansion of (UQ,DQ) distribution
from Figure 7(a) to 7(b)). The overshoot results becausetevier the initial (most likely,
upwards) fluctuation of UQ is, the same fluctuation reachesafd k™ time steps. The rela-
tively empty DQ is able to follow quite freely UQ’s earlier &twation. This is reflected by the
diagonal stretch of the (UQ,DQ) distribution in Figure 7(Eyentually, the upper bound on UQ
then takes effect, reducing the probability of joint fludtaas, which results in Figure 7(d).

e For second 2000 and arrival profiles 131 and 151 (first andngkcolumn in Figure 6), the
correlation overshoots before attaining its new statipwaiue. These dynamics are reflected
by the sequence of (UQ,DQ) distributions shown in Figurep(fj(a) and 7(d)(e)(a). The
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overshoot in arrival profile 151 can be explained by the limkng all the way from over-
to undercritical conditions, passing through a transi¢atesof marginal criticality shown in
Figure 7(e). The transient overshoot in arrival profile 1&1 Figure 7(h), exceeds the already
extreme correlation in marginally critical stationary ddrons, cf. Figure 7(g). A careful
comparison of these two figures reveals that the transistrilaition is slightlynarrowerthan
the stationary distribution.

e For arrival profile 353 (last column in in Figure 5 and 6), thare no over- or undershoots.
In marginally critical and overcritical conditions, UQ &k at least partial effect on the link
dynamics. Since the change in boundary conditions alsorseqmstream, the immediate reac-
tion of UQ absorbs the link dynamics that in the previous sassulted from the time-lagged
interactions of UQ and DQ. This leads to a smooth transitietavben the band-like (UQ,DQ)
distribution in marginally critical conditions (Figure@)j and the more constrained overcritical
distribution (Figure 7(d)).

So far, only correlation as a measure of linear dependensycaasidered. Figure 8 shows the joint
distribution of LI, DQ and LO for different arrival profilesnd at particularly interesting points in
time (shortly after the jump-changes in the arrival profil®nly results for{ = 10 are shown; the
figures for{ = 20, 30 do not reveal additional information. The horizontal axapresents the indices
of the different states, and the vertical axis represerds firobabilities. All feasible states of (LI,
DQ, LO) are represented. One observes an almost perfechrnatereen simulated and analytical
results, across all experiments.

These experiments demonstrate an extremely high preaitre analytical model when approxi-
mating an event-based microsimulation of the exact staich€8/M model for a homogeneous link.
It hence is possible to analytically capture full link stdistributions in consistency with a stochastic
Newell model.

5 Summary and outlook

This article presents a new model for traffic flow along a Imkak, which analytically captures
gqueue length distributions. When compared to a previousoappt the new model adds realistic
dependency structure between the link’'s upstream and daans boundary conditions. In order to
maintain tractability of the new model, some simplifica@re adopted, which result in a negligible
loss of precision when compared to a stochastic microsimmula

The relationship of the proposed model to the kinetic thedtyaffic flow may be worth investigating
further. In kinetic models, stochasticity enters at thel®f individual vehicle interactions, rendering
the stochastic performance of a whole link an accumulaticsuoh interactions. The present work
limits itself to (demand) stochasticity at a link’s upsireand and (supply) stochasticity at its down-
stream end. This in combination with the Poissonian assomfgads to an operational but arguably
simplified representation of real traffic. An effort to derithe present model from (or to link it to)
kinetic theory may enable richer distributional assummiand may also facilitate the derivation of
more operational kinetic models.
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Further efforts will focus on network modeling. This aréidescribes how dependency across a ho-
mogeneous link can be captured; previous work demonsthaedlependency across a node can be
captured (Osorio et al.; 2011). A logical next step is to coralbhese two models into an approxima-
tion of the joint queue length distributions in a completengek.
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