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SUMMARY

MicroRNAs (miRNAs) regulate diverse biological pro-
cesses by repressing mRNAs, but their modest
effects on direct targets, together with their participa-
tion in larger regulatory networks, make it challenging
to delineate miRNA-mediated effects. Here, we
describe an approach to characterizing miRNA-regu-
latory networks by systematically profiling transcrip-
tional, post-transcriptional and epigenetic activity in
a pair of isogenic murine fibroblast cell lines with and
without Dicer expression. By RNA sequencing (RNA-
seq) and CLIP (crosslinking followed by immunopre-
cipitation) sequencing (CLIP-seq), we found that
most of the changes induced by global miRNA loss
occur at the level of transcription. We then introduced
a network modeling approach that integrated these
data with epigenetic data to identify specific miRNA-
regulated transcription factors that explain the impact
of miRNA perturbation on gene expression. In total,
we demonstrate that combining multiple genome-
wide datasets spanning diverse regulatory modes
enables accurate delineation of the downstream
miRNA-regulated transcriptional network and estab-
lishes a model for studying similar networks in other
systems.
INTRODUCTION

MicroRNAs (miRNAs) are �22-nucleotide regulatory RNAs that

guide the RNA-induced silencing complex (RISC) to the 30 UTR
of mRNAs to inhibit translation and promote degradation (Baek

et al., 2008; Guo et al., 2010; Selbach et al., 2008). miRNA activity

is pleiotropic, with each miRNA repressing numerous targets

that can be identified computationally using sequence features

of mRNAs (Garcia et al., 2011; Grimson et al., 2007; Pasquinelli,

2012) or experimentally by individual nucleotide crosslinking fol-
310 Cell Reports 14, 310–319, January 12, 2016 ª2016 The Authors
lowed by immunoprecipitation (iCLIP) of Argonaute, amember of

the RISC (Chi et al., 2009; König et al., 2012; Sugimoto et al.,

2012). Misregulation of miRNAs can lead to strong phenotypes

in development (Chen et al., 2004) and disease (Lu et al., 2005;

Mendell and Olson, 2012), despite the finding that most direct

targets are only modestly (�2-fold) repressed (Baek et al., 2008).

Recent studies have found that miRNAs can have more pro-

found effects when acting within larger regulatory networks,

either alongside other miRNAs or together with transcription fac-

tors (Gurtan and Sharp, 2013; Herranz and Cohen, 2010;

Schmiedel et al., 2015). When miRNAs regulate transcription

factors, they can affect cellular phenotype, as demonstrated

by miR-134 regulation of differentiation through interactions

with mRNAs encoding Nanog and LRH1 transcription factors

(Tay et al., 2008), let-7 regulation of HMGA2 (Mayr et al., 2007),

or miR-145 regulation of SOX9 (Rani et al., 2013). Some studies

have suggested that miRNAs preferentially target transcription

factors (Lewis et al., 2003) and cause widespread changes

in transcriptional activation (Gurtan et al., 2013). Additionally,

miRNAs are often found within network motifs containing tran-

scription factors, suggesting that they act alongside transcrip-

tion factors to buffer gene expression (Gerstein et al., 2012;

Shalgi et al., 2007; Tsang et al., 2007).

Despite the known biological importance of studying miRNA-

transcription factor interactions, to date, it is still challenging to

distinguish direct miRNA-mediated effects from transcriptional

effects by measuring mRNA alone, via arrays or with RNA

sequencing (RNA-seq). While there are both experimental (Chi

et al., 2009; Wen et al., 2011) and computational (Agarwal

et al., 2015; Chiu et al., 2015; Garcia et al., 2011) methods to

identify miRNA targets, identifying miRNA-regulated transcrip-

tional changes is more challenging. Numerous computational

approaches have used computational target prediction algo-

rithms with transcription factor binding prediction tools to model

the downstream effects of miRNAs through transcription factors

(Afshar et al., 2014; Bisognin et al., 2012; Friard et al., 2010;

Naeem et al., 2011; Tu et al., 2009). Recent advances in RNA-

seq efforts have enabled the use of total RNA measurements

to capture both intronic and exonic changes. While this has

been used as an additional way to identify genes that show
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evidence of post-transcriptional rather than transcriptional regu-

lation (Du et al., 2014; Gaidatzis et al., 2015), it can still conflate

transcriptional and post-transcriptional regulation.

Recently, the use of epigenetic data such as DNase I hyper-

sensitivity assays (Song and Crawford, 2010) and histone post-

translational modification marks (Ernst and Kellis, 2010) has

improved characterization of transcriptional regulatory changes.

These assays can measure specific changes to chromatin

configuration near transcription start sites, providing accurate

identification of genes with altered transcriptional regulation in

a condition of interest. Incorporating these data into transcription

factor binding predictions can improve the identification of

genes that are transcriptionally regulated (Heintzman et al.,

2009), as well as the transcription factors that are regulating

the genes (Cuellar-Partida et al., 2012; Pique-Regi et al., 2011).

To date, however, measurement of epigenetic perturbations

alongside miRNA perturbation has been studied only in context

of general changes (Gurtan et al., 2013) and not used to charac-

terize miRNA regulatory networks.

In this work, we describe a comprehensive approach to study

the relationship between miRNAs and transcription factors

through integrative analysis of epigenetic, transcriptional, and

post-transcriptional changes. We apply this approach to immor-

talized Dicerf/f (wild-type; WT) and Dicer�/� (knockout; KO) mu-

rine fibroblast cell lines (Gurtan et al., 2013) to study the impact

of global miRNA loss in a stable system. We collect and analyze

miRNA expression, RNA expression, and epigenetic data in both

cell lines to fully quantify the contribution of transcriptional regu-

latory changes compared to post-transcriptional regulation.

Then, we introduce a network-based computational approach

that takes advantage of these diverse high-throughput measure-

ments to enable the identification of transcription factors likely to

contribute to miRNA-mediated changes. Given the widespread

availability of epigenetic and transcriptional data across various

diseases, tissues, and cell line models, this approach is highly

applicable to study the effect of miRNAs in many different

contexts.

RESULTS

Decoupling Post-transcriptional and Transcriptional
Regulation Reveals Global Changes in Transcription
upon miRNA Loss
We first collected RNA from an isogenic clonal pair of immortal-

ized Dicerf/f WT and Dicer�/� KO murine fibroblast cell lines

(Gurtan et al., 2013) to quantify the changes in gene expression

observed upon global miRNA loss. We sequenced two distinct

RNA libraries: (1) ribo-depleted total-RNA libraries from WT

and KO cells (see Experimental Procedures) to compare

changes in exonic reads upon Dicer KO (Table S1A) with intronic

read changes (Table S1B), which are unaffected by direct

miRNA-mRNA interactions, and (2) poly(A)-selected libraries

(see Experimental Procedures; Table S1C). The exonic read

changes from the total RNA library were highly correlated with

reads from the poly(A) library (Figure S1A; Spearman’s r =

0.88) as well as individually selected low-throughput targets via

qPCR (see Experimental Procedures; Figure S1B; Pearson’s

r = 0.96).
C

We then used intronic reads to estimate how much of the

observed changes in mature mRNA expression were caused

by changes in transcription. Since introns are spliced out of tran-

scripts before export to the cytoplasm, comparisons of intronic

and exonic read changes have been used as a way to isolate

post-transcriptional changes of interest, as changes in intronic

reads, which represent changes in pre-mRNA expression, can

be ‘‘subtracted’’ from mature mRNA changes represented by

exonic reads (Du et al., 2014; Gaidatzis et al., 2015). We first

confirmed that the intronic measurements of gene expression

changes were accurate in a low-throughput manner using

qPCR (Figures S1C and S1D). Then, we used the intronic mea-

surements to ask what fraction of mature mRNA changes

observed upon Dicer loss could be attributed to changes in tran-

scription. We found that changes in exonic reads were highly

correlated with intronic reads within the same library (Figure 1A;

Spearman’s r = 0.94). We repeated the same analysis with gene

expression changes measured in poly(A)-selected library and

found a statistically significant strong correlation (Figure 1B;

Spearman’s r = 0.83). Together, these correlations strongly sug-

gest that most significant mRNA expression changes observed

after miRNA perturbation can be explained by changes in gene

transcription and not miRNA-mediated degradation.

miRNA Target Identification
To identify those genes that exhibited evidence of post-tran-

scriptional regulation, we used previously published iCLIP data

(Gurtan et al., 2013) to identify bound targets of stably expressed

Flag-hemagglutinin (HA)-tagged Ago2 in Dicer WT fibroblasts

(Bosson et al., 2014; Zhang and Darnell, 2011) and small RNA-

seq measurements (Gurtan et al., 2013) (see Experimental Pro-

cedures) from the same cells. Using these two datasets, we

identified high-confidence miRNA targets as those that showed

evidence of a significant (q < 0.05) iCLIP binding event in the

30 UTR as well as a 7-mer or 8-mer seed match of an expressed

miRNA, for a total of 2,754 miRNA-targeted genes in the poly(A)

data and 2,729 miRNA-targeted genes in the ribo-depleted data

(see Experimental Procedures for more details; Table S2). As ex-

pected, these biochemically identified targets were enriched in

genes that were upregulated upon Dicer loss (p = 1.16e-11 in

the poly(A) data, p = 1.66e-40 in the ribo-depleted data) and

had a statistically significant impact on global mRNA expression

change in both libraries (Figures 2A and 2B). Furthermore, iCLIP

activity was positively correlated with an increase in expression

of those targets upon Dicer KO in both RNA libraries (Pearson’s

r = 0.24, p = 2.36e-38 in the poly(A) data; Pearson’s r = 0.27, p =

4.09e-48 in the ribo-depleted data; Figures S2B and S2C).

We evaluated the post-transcriptional gene expression

changes of biochemically identified miRNA targets by com-

paring exonic read changes (Dexon, defined as log2 ExonWT/

ExonKO) and intronic read changes (Dintron, defined as log2
IntronWT/IntronKO) between Dicer WT and KO cells. This

approach was recently introduced (Gaidatzis et al., 2015) and

uses a generalized linear model using DESeq2 (Love et al.,

2014) to assess the changes between exonic and intronic reads

in the same sample (see Experimental Procedures). Geneswith a

greater difference between exonic and intronic changes are

likely to be altered post-transcriptionally; therefore, this metric
ell Reports 14, 310–319, January 12, 2016 ª2016 The Authors 311



Figure 2. CDFs of miRNA Targets upon Global miRNA Loss

(A) Mature mRNA expression changes according to exonic reads of total RNA

of direct miRNA targets (blue) compared to non-targets (gray) upon Dicer KO.

(B) Mature mRNA expression of direct miRNA targets by poly(A)-tagged

mRNA.

(C) Dexon� Dintron values of direct miRNA targets representing differences in

exonic measurements versus intronic measurements of miRNA targets (blue)

compared to non-targets (gray).

Figure 1. Transcription Drives Gene Expression Changes following
miRNA Loss

(A) Log2 fold change of genes that exhibit significant (q < 0.05) change in ribo-

depleted exon-aligned reads from WT versus KO cells (x axis) compared to

fold change of intronic reads aligned to same genes (y axis); regression line

drawn in blue.

(B) Log2 fold change of poly(A)-collected reads from WT versus KO cells (x

axis) from significantly (q < 0.05) changing genes compared to changes in

reads aligned to introns from the ribo-depleted libraries (y axis).
can be used to assess miRNA-mediated repression of tran-

scripts. mRNAs that are post-transcriptionally repressed by

miRNAs will exhibit greater repression at the exonic level

compared to the intronic level causing the Dexon � Dintron

values of these genes to be negative. As expected,Dexon�Din-

tron values of genes that are miRNA targets are significantly (p =

7.60e-107) more negative than non-targets, as depicted in
312 Cell Reports 14, 310–319, January 12, 2016 ª2016 The Authors



Figure 3. Histone Marks Illustrate Collaboration between Tran-

scriptional and Post-transcriptional Regulatory Modes with Distinct

Impacts of Gene Expression

(A) Cumulative distribution plot of groups of genes defined by their mode of

regulation, with colors and counts indicated by inset Venn diagram; gray

represents genes without evidence of transcriptional or miRNA regulation.

(B) Fraction of genes within each fold change bracket belonging to each class.

(C) Distribution of Dexon�Dintron log2 fold change values of genes according

to mode of regulation.

C

Figure 2C. This shift confirms the post-transcriptional effect of

global Dicer loss on gene expression of direct miRNA targets.

Epigenetic Data Integration Identifies Transcriptional
Regulatory Changes
To identify genes that were transcriptionally modulated upon

Dicer deletion, we measured histone modifications, which are

altered during transcription factor activity (Ernst and Kellis,

2010). We analyzed reads from previously collected histone 3

lysine 4 tri-methylation (H3K4me3) marks (Gurtan et al., 2013),

present on active promoters, and histone 3 lysine 36 tri-methyl-

ation (H3K36me3) marks (Gurtan et al., 2013), present on active

gene bodies. Additionally, we collected data from histone 3

lysine 27 acetylation (H3K27ac), a mark associated with tran-

scriptional promoters and enhancers (Creyghton et al., 2010).

We used all three marks to identify regions that showed signifi-

cant (q < 0.05 for each mark) enrichment in WT (WT specific)

or KO (KO specific) cells (see Experimental Procedures; Tables

S3A–S3F). By pairing changes in histone marks to nearby genes

(see Experimental Procedures), we identified genes with gain or

loss of transcriptional activity in the KO (1,187 and 2,259 genes

respectively; Figures S3A and S3B). After eliminating the 66

genes that showed evidence of gain of activation with one

mark and loss of activation with another mark, we found a total

of 3,314 genes with evidence of altered transcriptional regula-

tion, representing�25%of the total number of expressed genes.

We confirmed that each of the three histone marks represent

changes in transcriptional activity by measuring correlations be-

tween changes in histone modifications and mature mRNA

expression of proximal genes (Pearson’s r = 0.61, 0.68, and

0.79 for H3K4me3, H3K27ac, and H3K36me3, respectively),

shown in Figures S3C–S3E, as well as intronic expression of

proximal genes, shown in Figures S3F–S3H (Pearson’s r =

0.56, 0.67, and 0.66 for H3K4me3, H3K27ac, and H3K36me3

respectively).

Then, we compared impact of transcriptional regulation with

post-transcriptional regulation by dividing the gene population

according to its mode of regulation (transcriptional, post-tran-

scriptional, or both; Figures 3A and 3C, insets) and then

computing the cumulative distribution functions (CDFs) of the

mRNA log fold change of each set. The CDFs of all five sets of

genes are depicted in Figure 3A, together with the genes that

show no evidence of either transcriptional or post-transcriptional

regulation (Figure 3A, gray curve). While genes regulated only

post-transcriptionally exhibit a statistically significant shift in dis-

tribution (Figure 3A, blue curve; p=1.64e-63),muchgreater shifts

were observed for the CDFs of genes that are activated only tran-

scriptionally (Figure 3A, yellow curve) or are both regulated post-

transcriptionally and activated transcriptionally (Figure 3A, green

curve). Approximately 60% of mRNAs exhibiting a >4-fold in-

crease in expression in the KO cells show evidence of transcrip-

tional activity (Figure 3B, yellow and green bars), which dwarfs

the impact of miRNAs, whose targets constitute fewer than 5%

of genes showing a >4-fold increase in expression (Figure 3B).

Thus, transcriptional changes are far greater in both magnitude

and number than post-transcriptional changes.

Lastly, we also compared Dexon � Dintron measurements

changed among genes that were transcriptionally regulated and
ell Reports 14, 310–319, January 12, 2016 ª2016 The Authors 313



Figure 4. Implementation of Hierarchical Network Algorithm

The network structure weights edges according to five types of data repre-

senting changes incurred uponmiRNA loss. Legend is inset. S, source; T, sink.
post-transcriptionally regulated. As we described earlier, genes

that are post-transcriptionally repressed in the WTwill have lower

Dexonvalues thanDintron values,whichwould cause thedistribu-

tion of Dexon � Dintron values to be more negative. We plotted

these values in cumulative distribution in Figure 3C for each of

the same groups of genes described in Figure 3A. Indeed, genes

with evidence of iCLIP activity without transcriptional activity

(Figure 3C, blue curve) exhibit a negative shift in cumulative distri-

bution of Dexon � Dintron values compared to genes without

any evidence of transcriptional or post-transcriptional regulation
314 Cell Reports 14, 310–319, January 12, 2016 ª2016 The Authors
(Figure 3C, gray curve). Additionally, we see changes in Dexon �
Dintron between genes that are both transcriptionally and post-

transcriptionally regulated (Figure 3C, green and purple curves)

compared to those that are only transcriptionally regulated (Fig-

ure 3C, yellow and magenta curves). The distinct distribution of

genes that are co-regulated by miRNAs and transcription factors

both in Figure 3C and Figure 3A (green and purple curves) under-

score the importance of characterizing the transcriptional regula-

tory changes that occur downstream of miRNA perturbation, as

miRNA and mRNA measurements alone fail to fully characterize

the impact that miRNAs can have on regulatory networks.

Measuring epigenetic changes that occur upon global Dicer loss

greatly increases the ability to characterize the broader impacts

of post-transcriptional regulation.

Hierarchical Network Algorithm Integrates All Data to
Characterize Transcriptional Programs Activated upon
miRNA Loss
We then used the epigenetic information provided by the histone

marks to enumerate the transcriptional regulatory network acti-

vated upon miRNA perturbation. Specifically, we built an algo-

rithm that explicitly modeled transcriptional activity in a network

framework together with miRNA abundance and binding activity

to identify which miRNA-regulated transcription factors best

explain the observed global expression changes. The algorithm

consists of two primary steps: assembling the diverse high-

throughput data into a graph (Figure S4) and reducing the graph

to the smallest set of nodes and edges that best explains the

observed data (see Experimental Procedures for details).

The graph structure, summarized in Figure 4, consists of no-

des and edges that represent the individual datasets measuring

changes between WT and KO fibroblasts. The nodes of the

graph represent miRNAs (squares), transcription factors (trian-

gles), predicted transcription factor binding regions (hexagons),

mRNA (circles), and two dummy nodes dubbed the ‘‘Source’’ (S)

and the ‘‘Sink’’ (T). Each edge is weighted by the likelihood of an

interaction between two of the nodes in the network, and every

possible path between the source and the sink represents a pu-

tative way in which miRNAs can affect mRNA changes (as

measured at intronic level; see Experimental Procedures; Fig-

ure S4). Thus, if a miRNA affects transcription of an mRNA, a

green edge is shown between that miRNA and a transcription

factor, a gold edge is shown between that transcription factor

and a binding site upstream of the gene that encodes the

mRNA, and a red or blue edge is shown between the binding

site and the mRNA.

To reduce the space of thousands of putative interactions be-

tween miRNAs, mRNAs that encode transcription factors, DNA-

binding proteins, and DNA binding sites, we applied a graph

reduction step that uses the SAMNet constrained optimization

algorithm (Gosline et al., 2012) to select the minimum number

of edges in the graph that connect the source to the sink while

ensuring to select the combination of edgeswith the highest total

weight. SAMNet uses a ‘‘network flow’’ approach that attempts

to find the best path from the Source node to the Sink node using

the fewest total edges while maximizing the sum of the weight on

all the edges. Once a suitable solution is found from the source to

the sink, no additional nodes are selected.



Figure 5. The Predicted Network Implicates

14 Transcription Factors in Activated mRNA

and Repressed mRNA Downstream of Ex-

pressed miRNAs

Transcription factors are indicated by triangles;

activated RNA is indicated by red circles;

repressed mRNA is indicated by blue circles; and

expressed miRNAs are indicated by squares.

Legend is inset.
The resulting network, depicted in Figure 5, maps a subset of

the observed intronic RNA changes (85 activated genes and 26

repressed genes) via six miRNAs and 14 distinct transcription

factors. Given the algorithmic goal of minimizing the selection

of nodes and edges while maximizing total weight, only the

mRNAs that exhibit the largest absolute fold change are

selected. As such, we focused our analysis on selected tran-

scription factors (Figure 5, triangles), their predicted number of

targets (indicated by size), and upregulation in the KO (indicated

by the degree of red coloring), described in Table S4. As a control

to address the possibility that the Argonaute protein complex

can affect mRNA expression without a precise miRNA seed

match (Chi et al., 2012), we allowed the algorithm to consider

the possibility that a transcription factor can be repressed

without the presence of an exact seed match (‘‘No Seed’’ in Fig-

ure 5). In this analysis, we identified two putatively active tran-

scription factors, Foxd1 and Klf5, but each had few of their

own targets predicted (Table S4), suggesting that these factors

are less biologically relevant than those with seed evidence of

miRNA binding. The complete list of transcription factors agrees

with previous miRNA-transcription factor studies: let-7 re-

presses Hmga2 (Lee and Dutta, 2007; Mayr et al., 2007), and

Nr6a1 (Gurtan et al., 2013) andmiR-145 has been shown to regu-

late Sox9 (Rani et al., 2013).

To validate the robustness of the algorithm to the method by

which miRNA targets were selected, we explored the possibility

of applying the network approach with miRNA target predictions

rather than iCLIP data. Given the steady improvements in the ac-

curacy of miRNA target prediction tools such as TargetScan

(Agarwal et al., 2015) and the difficulty of executing the iCLIP

protocol, it was important to evaluate the performance of the

network algorithm using computational predictions. To do so,

we applied the network approach using the TargetScan 6.2

mouse miRNA Context+ scores as weights on the edges be-

tween miRNA and transcription factor nodes (see Experimental

Procedures). The resulting network is depicted in Figure S5.

The network identified 28 transcription factors regulated by
Cell Reports 14, 310–319
seven miRNAs. Of these 28 transcription

factors, 10 were found in the original

iCLIP-derived network (that predicted

only 14 transcription factors; Figure 5).

The ten common transcription factors

include those that were experimentally

validated, as discussed later. The

increased number of transcription factors

in the network using TargetScan is likely

due to a combination of false-negatives
in the iCLIP data and false-positives in the TargetScan

predictions.

Model Assessment and Validation
To assess the predictions made by the model, we applied both a

computational approach and an experimental approach. The

computational approach ensured that the predictions made by

the algorithm were due to the experimental data and not based

on other biases in the prediction algorithm. The experimental

validation showed that the transcription factors selected can

partially recover the transcriptional changes observed upon

Dicer deletion.

To computationally assess the predictions, we re-ran the algo-

rithm on 1,000 different graphs, each graph comprising the same

nodes as those in the original network but with shuffled weights

on each of the edges (see Experimental Procedures). If a node in

the graph that represents a transcription factor is frequently

identified in a random network, it reduces our overall confidence

that the transcription factor is truly represented by the data.

Therefore, we favor transcription factors that show up with lower

frequency in the random networks. The frequency of each tran-

scription factor selected by the model is shown in black in Fig-

ure 6A. These results suggest that the transcription factors

selected by the network algorithm are specific to the experi-

mental data, as they all appear in less than 5% of the graphs in

which data were perturbed.

We also used the network randomization to assess precisely

which type of data contributed to each transcription factor pre-

diction. To do this, we perturbed only one type of data by

randomizing the edge weights and then measured how

frequently the resulting transcription factors appeared in the

random networks. For example, when only miRNA-targeting

data are randomized, the network algorithm cannot predict

most transcription factors with a high degree of accuracy (Fig-

ure 6A, orange points), suggesting that miRNA target information

is critical to these predictions. When other types of data are

perturbed, however, nodes are still selected by the network,
, January 12, 2016 ª2016 The Authors 315



Figure 6. Computational and Experimental

Validation of Selected Transcriptional

Factors

(A) Results of computational network perturbation

indicating how frequently the algorithm-selected

transcription factors showed up when either indi-

vidual (colored) data sources were perturbed or all

(black) data sources were perturbed.

(B–D) Genes with significant (q < 0.05) changes in

intronic RNA levels that are activated (red) and

repressed (blue) upon overexpression of Flag-HA-

Tead4 (B), Flag-HA-Sox9 (C), and Flag-HA-Pbx3

(D) are significantly enriched in genes with intronic

log2 RNA changes >0.5 (pink) or < �0.5 (cyan) in

the Dicer KO. The p values were computed via

Fisher’s exact test.
suggesting that the predictions in the final network do not rely on

each type of data equally. Specific examples of this include pre-

dictions of Ahr, Nr6a1, and Glis2, which rely heavily on miRNA

targeting data (Figure 6A, orange points) but not on mRNA

expression data (Figure 6A, yellow points). Therefore, we can

use this data-specific perturbation to assess the quality of the

predictions made in the final network.

To confirm the efficacy of the network algorithm in identifying

transcription factors that regulate miRNA-mediated response,

we validated specific transcription factors supported by the

computational model and subsequent randomizations. Specif-

ically, we selected Pbx3, Tead4, and Sox9 for overexpression

in Dicer WT cells to observe changes in gene expression. We

transduced Dicer WT cells with N-terminally Flag-HA-tagged

retroviral expression constructs for Tead4, Sox9, Pbx3, or an

empty vector negative control. We isolated ribo-depleted total

RNA and carried out RNA-seq in duplicate for each construct

(see Experimental Procedures; Figure S6A). Then, we measured

changes in intronic regions to assay transcriptional changes (Ta-

ble S6) without the confounding post-transcriptional effect of

endogenous miRNAs (Khan et al., 2009) and then compared

the genes that were activated and repressed in each of the over-

expression experiments to those genes activated and repressed
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in the Dicer KO cells. We found the over-

lap to be statistically significant accord-

ing to Fisher’s exact test, as shown in

Figures 6B–6D, confirming that each

transcription factor significantly contrib-

uted to the transcriptional changes

measured in the Dicer KO cells.

DISCUSSION

In this work, we present a comprehensive

approach to deconvoluting the impact of

miRNAs on gene expression by the iden-

tification of miRNA-regulated transcrip-

tion factors. We use ribo-depleted RNA-

seq, poly(A) mRNA-seq, small RNA-seq,

iCLIP, and histone chromatin immuno-

precipitation sequencing (ChIP-seq) to
delineate the impact of global miRNA loss on both transcriptional

and post-transcriptional regulation. Changes in mRNA expres-

sion levels are highly correlated with changes in total RNA-seq

reads mapping to introns, indicating that most genes that

change in expression after Dicer loss are altered transcription-

ally. We showed experimentally that the magnitude of changes

caused by transcription, as indicated by epigenetic measure-

ments of histone marks, is greater than changes caused by

miRNA-mediated repression. Then, we introduced a robust

computational method to identify the transcription factors that

explain these transcriptional changes downstream of miRNA

loss and experimentally validate three of these transcription fac-

tors as amplifying the effects of miRNAs.

Given the pronounced role of transcription factors inmediating

miRNA-mediated effects, the graphical modeling approach

introduced here enables reverse engineering of the regulatory

network from gene expression and epigenetic data. This

approach advances the field of miRNA analysis by leveraging

valuable epigenetic data to deconvolute the pleiotropic effects

of miRNAs and filter for miRNAs consequential to gene expres-

sion. By incorporating miRNA activity upstream and intronic

RNA changes downstream of transcription, our approach also

builds upon transcription factor prediction tools that use



epigenetic and expression data (Foat et al., 2006; Sherwood

et al., 2014). The algorithm presented here is flexible and can

be applied widely to any matched miRNA/mRNA/epigenetic

such as those in large repositories such as the NIH Roadmap Ep-

igenomics Mapping Project (Bernstein et al., 2010) or ENCODE

(Rosenbloom et al., 2013), together with miRNA target prediction

algorithms.

miRNAs have now been implicated in a stunningly wide range

of biological processes and diseases (Zadran et al., 2013; Chen

et al., 2004) and lead to large global changes in mRNA expres-

sion (Garcia et al., 2011) while causing only moderate repression

of most direct targets. This study demonstrates that decoupling

transcriptional changes from post-transcriptional changes and

integrating them with epigenetic alterations in a computational

framework can elucidate the transcriptional network that tunes

and amplifies the effect of miRNA loss. The computational

framework introduced here may benefit studies of miRNAs by

shifting emphasis to the rewired transcriptional networks that

cause the majority of the transcript-level changes.

EXPERIMENTAL PROCEDURES

miRNA Target Identification

iCLIP reads were collected from GSE45828 and aligned to mm9 using Bowtie

(Langmead and Salzberg, 2012). iCLIP events were assigned significance us-

ing GEM v1.1 (Guo et al., 2012), together with a custom read distribution

derived from reads surrounding let-7 binding sites. Significant (q < 10e-5)

events were then filtered for the presence of a 7-mer or 8-mer seed match

of a miRNA family that represented at least 1% of the reads from the small

RNA population of the Dicer WT cells fromGSE44156 as described in the Sup-

plemental Experimental Procedures. To compare the effect of iCLIP-defined

targets, we used Context+ scores from TargetScan 6.2 (Garcia et al., 2011)

from http://www.targetscan.org/mmu_61/.

RNA Expression Measurements

This work included a total of six RNA-seq datasets, each collected in duplicate.

Mature mRNA was collected from untreated KO and WT fibroblasts via tradi-

tional poly(A)-collected library preparation, and total RNA was collected from

the same cells using the Illumina Ribo-Zero Kit. Total RNA was also collected

from Dicer WT fibroblasts transduced retrovirally with vector control, Flag-HA-

PBX3, Flag-HA-TEAD4, or Flag-HA-SOX9 (see Supplemental Experimental

Procedures). DESeq v1.10.1(Anders and Huber, 2010) was used for all data

normalization and differential expression calls—a minimum of two DESeq-

normalized reads (in both conditions) was required to call a gene expressed.

The poly(A) data contained 13,413 genes expressed in both KO and WT cells,

while the total RNA data contained 12,638 genes in both genotypes at the

exonic level and 14,487 genes in both genotypes at the intronic level. qPCR

measurements of seven genes were used to confirm the exon and intron reads

from the total RNA measurements, described in the Supplemental Experi-

mental Procedures. Dexon � Dintron values were computed using DESeq 2

(Love et al., 2014) according to the exon-intron split analysis (EISA) method

previously described (Gaidatzis et al., 2015).

Histone Data Collection and Event Calling

ChIP assays for the H3K27ac mark were performed as previously described

(Macisaac and Fraenkel, 2010), and other marks were collected from previ-

ously published data (Gurtan et al., 2013), available under GEO accession

GSE: 44159. For H3K27ac and H3K4me3 marks, custom read distributions

were used to call significant (q = 0.05) events betweenWT and KOmarks using

GEM v1.1 (Guo et al., 2012), as described in the Supplemental Experimental

Procedures while the default read distribution was used for the H3K36me3

marks. H3K4me3 and H3K27ac marks were associated with a gene if they

fell within 10 kb of a transcription start site, while H3K36me3marks were asso-
C

ciated with a gene if they fell within the gene body. See the Supplemental

Experimental Procedures for more details.

Network Integration

Small RNA expression levels, iCLIP binding levels, mature mRNA expression

levels, ChIP-seq binding data, and intronic RNA expression changes were en-

coded in a graphical model depicted in Figures 4 and S4 that was reduced us-

ing a version of the SAMNet algorithm (Gosline et al., 2012), as described in

great detail in the Supplemental Experimental Procedures. The Garnet module

of the Omics Integrator package (http://fraenkel.mit.edu/omicsintegrator) was

used to predict transcription factor binding sites using the histone data.

Network inputs and additional details are described in the Supplemental

Experimental Procedures, and the code used to implement the algorithm is

freely available at http://github.com/sgosline/topaz.

Experimental Validation and Target Identification

N-terminally Flag-HA-tagged Pbx3, Sox9, and Tead4were PCR amplified from

mouse cDNA generated from Dicer KO fibroblasts. Transduced cells were

sequenced in duplicate, together with a vector control, and DESeq v1.1 was

used to compare intronic reads between conditions. Genes that were signifi-

cantly (p < 0.05) upregulated upon transfection that were also up-regulated

in the Dicer KO cells were considered to be activated by the transcription fac-

tor. Genes that were significantly (p < 0.05) downregulated upon transcription

that were also downregulated in the Dicer WT were considered repressed. De-

tails are described in Supplemental Experimental Procedures.
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