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Human Mobility Prediction based on Individual and Collective
Geographical Preferences

Francesco Calabrese, Giusy Di Lorenzo, Carlo Ratti

Abstract— Understanding and predicting human mobility is a
crucial component of transportation planning and management.
In this paper we propose a new model to predict the location of a
person over time based on individual and collective behaviors.
The model is based on the person’s past trajectory and the
geographical features of the area where the collectivity moves,
both in terms of land use, points of interests and distance of
trips. The effectiveness of the proposed prediction model is
tested using a massive mobile phone location dataset available
for the Boston metropolitan area. Experimental results show
good levels of accuracy in terms of prediction error and prove
the advantage of using the collective behavior in the prediction
model.

I. INTRODUCTION

Understanding and modeling people’s mobility is a cru-
cial component of transportation planning and management.
Methods currently being used are divided in two categories
(see for instance [1]):
• Trip-based, where aggregated mobility is considered

(trips between areas are usually estimated from surveys,
and generate the Origin Destination matrices);

• Activity-based, where individual mobility is considered
(each person is given a set of resources he/she has to
access, and trips are generated as a consequence of this).

During recent years, it has also been of interest to model
and predict individual mobility, both to provide guidance for
cars in the form of smart GPS navigation systems (see e.g.
AIDA1) or for personal recommendation systems (see e.g.
iTour2).

Recently, a very large scientific community, from trans-
portation to computer science and physics, has been working
in this area. Individual mobility patterns has been studied
in [2]–[4] using personal GPS data. Car trip destination
prediction using GPS data has been studied in [5], [6].
Predicting people’s location from WiFi and Bluetooth data
has been one of the study conducted on the Reality Mining
dataset and obtained encouraging results [7], [8]. All the
studies mentioned above have typically required end-user
consent, and so have relied on sample sizes of, at most,
several hundred simultaneous users, limiting scalability and
generalization of derived results. Recently, however, massive
mobile phone location data have been studied and shown
to have great potential to model human mobility [9], [10].

Authors are with the Senseable City Laboratory, Massachusetts
Institute of Technology, 77 Massachusetts avenue, Cambridge,
MA, USA fcalabre@mit.edu, giusy@mit.edu,
ratti@mit.edu
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2http://www.itourproject.com/

In particular in [10] the authors considered the theoretical
limits of predictability of mobile phone users location based
on their individual temporal patterns. The authors found
that temporal patterns of locations are consistent over a
large population, and then mobility prediction is indeed
possible. The authors however did not provide any prediction
algorithm, and did not consider another important parameter
which is crucial in each individual mobility choice: the
reasons for moving. In this paper we propose an individual
mobility predictor that combines the person’s past mobility
choices and collective behavior in terms of:
• Propensity to change location;
• Type of geographical areas that are of interest for the

collectivity at a give time, both in terms of land use,
points of interest (POI) and distance of trips. This
feature is assumed to be affecting the mobility choices
as a proxy for activities.

The idea of using collective behavior is not new, and
was already used in car trips prediction [11]. However, no
information about geography has been combined so far.
Trajectory patterns are instead considered to see whether
different cars are moving in the same direction. Propensity
to change location has already been considered in [12],
considering a daily routine, and used to simulate human
mobility. However, no prediction has been considered in
that case, and no temporal considerations have been done
in evaluating the simulation errors. Finally, no geographical
information has been considered to improve the mobility
simulation. The proposed model instead makes explicitly use
of the geographical features of an area, as well as the habits
of the collectivity.

The paper is structured as follows. Section II introduces
the predictive model. Section III presents the data used in
the proposed case study, and general statistics. Section IV
presents the results of experiments made on the avaialble
individual trajectories. Finally, some conclusions are given
in Section V.

Notations. The following notation will be used in the rest
of the paper: Nn = {1, 2, . . . , n}, bac = max{n ∈ N : n <
a}, ∀a ∈ R.

II. PREDICTIVE MODEL

Let us divide the space in n grid cells i ∈ Nn and denote
the time with k, which can be chosen for instance as days,
hours, minutes. Let us hypothesize that we have a population
of individuals for which we know their past trajectories. Let
us denote each of the m considered individuals as u, and the
location of a person u at time k as x(u)k = i.



Our problem is to predict the person’s next location
x(u)k+1 given historical data.

We follow a probabilistic approach and define a probability
for each grid cell j to be the next location of the person
as function of the person and collective past behaviors. The
cell with greatest probability is then chosen as predicted next
location of the person. We hypothesize that the behavior is
periodic over time, with a period T , e.g. weekly behavior.
Then to predict the person’s location at time k we use infor-
mation about previous choices at times k − T, k − 2T, . . . .
Periodic behavior is in line with what has been shown in
[13], [14].

A. Individual behavior
We model the individual behavior as follows:

PI(xk+1 = j|xk = i) =

∑bk/Tc
kt=1 fI(xk−Tkt+1 = j|xk−Tkt = i)

bk/T c
∀j ∈ Nn, (1)

where the frequency on the right hand side is defined as:

fI(xk+1 = j|xk = i) =

{
1 if xk+1 = j and xk = i
0 elsewhere

.

The model says that the probability of a cell j to be the next
destination of a person is equals to the frequency of visiting
that cell starting from cell i during all previous periods k−
T + 1, k − 2T + 1, . . . . If the person has never been in cell
i at those times, the frequency is then computed as follows:

fI(xk+1 = j|xk = i) =

{
1 if xk+1 = j
0 elsewhere

.

B. Collective behavior
We use the collective behavior to help predicting the

likelihood the person changes location, and in that case, the
type of place he/she will visit. We take into account the
collective behavior in two elements:
• distances being traveled;
• types of places being visited. Since from the mobility

traces we are not able to directly infer the activities
that people make (many activities could be performed
at a same location) we use information about an area’s
resources as a proxy for it.

In other terms, we design the probability to choose a given
destination to be a function of the distance of the destination,
the presence of points of interests similar to the ones the col-
lectivity has visited, and the type of land use the collectivity
has been in. The next subsections explain the three different
contributions.

1) Distance: It is usually assumed that people tend to
travel short distances, following a gravity-like model (the
probability of a trip of length d is inversely proportional to
d2), or more sophisticated distance-based probability distri-
butions [9]. It is also important to note that the length of
trips that people make might depend on the time of the day
or of the week when people start their trip. Using collective
information, we can define a distance-based probability

PD(xk+1 = j|xk = i) = fd(dij , k),

where dij is the distance between cells i and j, and fd(d, k)
is the normalized frequency of collective trips at distance d
at times k − T, k − 2T, . . . . For instance,

fd(0, k) =
1

mbk/T c
·

·
m∑
u=1

bk/Tc∑
kt=1

P (x(u)k−Tkt+1 = x(u)k−Tkt).

where P (x(u)k−Tkt+1 = x(u)k−Tkt) is the non-moving
probability, e.g. the probability that a person does not change
location.

2) Points of Interest: To each cell i a list of POIs is asso-
ciated, belonging to Q categories. We can then characterize
each cell with a vector poii = {poii(1), . . . , poii(Q)}, where
poii(q) is the number of POIs of category q that are found
in cell i. By analyzing the collective traces, we can infer the
probability to find a person at a give time k close to a POI
of category q:

fPOI(q, k) =

∑bk/Tc
kt=1

∑m
u=1 poix(u)k−Tkt

(q)∑m
u=1

∑Q

q′=1
poix(u)k−Tkt

(q′)

bk/T c
.

It then results, that given a cell j, the probability to find a
person in that cell as function of the POIs available in that
cell can be written as follows

PPOI(xk = j) =

Q∑
q=1

fPOI(q, k)
poij(q)∑Q

q′=1 poij(q
′)
.

3) Land use: An analogous argument can be made for the
land use, once we define the percentage of land use belonging
to a grid cell i as lui = {lui(1), . . . , lui(R)}:

PLU (xk = j) =

R∑
r=1

fLU (r, k)
luj(r)∑R

r′=1 luj(r
′)
,

where

fLU (r, k) =

∑bk/Tc
kt=1

∑m
u=1 lux(u)k−Tkt

(r)∑m
u=1

∑R
r′=1

lux(u)k−Tkt
(r′)

bk/T c
.

Combining the three components, we obtain the following:

PC(xk+1 = j|xk = i) = PLU (xk+1 = j)PPOI(xk+1 = j)·
· PD(xk+1 = j|xk = i)· n∑
j′=1

PLU (xk+1 = j′)PPOI(xk+1 = j′)PD(xk+1 = j′|xk = i)

−1
∀j ∈ Nn. (2)

Please note the scaling factor being used to ensure that∑n
j=1 PC(xk+1 = j|xk = i) = 1.



C. Combined behavior

We define the model to predict an individual behavior as
a combination of individual and combined models (1) and
(2):

P (xk+1(u) = j|xk(u) = i) = (3)
(1− α(k))PI(xk+1(u) = j|xk(u) = i)+

+ α(k)PC(xk+1 = j|xk = i),

∀j ∈ Nn,

where the combination parameter α ∈ [0, 1] can change over
time to model periods where individual behavior is more
important, and periods where collective behavior is better
able to model future decisions.

D. Observations

The proposed model could be further extended to take into
account the following:

1) Temporal component: The prediction model starts
working from time k > T , since it requires information from
the first time period in order to predict what could happen
in following periods. It might be useful to add a forgetting
factor, to take into account that the most recent data might
contain more useful information compared to older one. This
element could be implemented by introducing a forgetting
factor λ, and modifying the formula (1) as follows

PI(xk+1 = j|xk = i) =
1

bk/T c
∑bk/Tc
kt=1 λbk/Tc−kt

·

·
bk/Tc∑
kt=1

λbk/Tc−ktf(xk−Tkt+1 = j|xk−Tkt = i), ∀j ∈ Nn.

Similar changes have to be made on the collective probabil-
ities. λ generally ranges from 0 to 1 and the closest it is to
1, the more the older samples are considered. Samples older
than τ = 1

1−λ carry a weight that is less than about 0.3.
2) Collectivity selection: The prediction model is based

on the collectivity’s habits. It is then of importance to choose
the right sample of people that represent the collectivity. The
model indeed can be refined by customizing, for each person,
the group of users to be considered as collectivities. Those
people can be selected so that they behave similarly (based
on past data). As example, if we consider a person who is
a business man, we might want to chose a collectivity with
similar habits in terms of working hours. At the same time,
if the person is a retired person, it might be better to chose
a collectivity of people who do not travel for work. It might
also be possible to select different collectivity groups and
give them different weights in the combined model, with
higher weights to groups with behaviors more similar to the
individual one. For instance, in the case of 2 collectivity

groups, the combined model (3) will become:

P (xk+1(u) = j|xk(u) = i) =

(1− α1(k)− α2(k))PI(xk+1(u) = j|xk(u) = i)+

+ α1(k)PC1(xk+1 = j|xk = i),

+ α2(k)PC2(xk+1 = j|xk = i),

∀j ∈ Nn.

III. CASE STUDY

We performed a case study of the proposed prediction
model using a massive mobile phone mobility dataset avail-
able for the Boston metropolitan area.

A. Datasets

1) Mobile phones location: The dataset consists of anony-
mous location estimations collected by AirSage3 and gener-
ated each time a device connects to the cellular network,
including:
• when a call is placed or received (both at the beginning

and end of a call);
• when a short message is sent or received;
• when the user connects to the internet (e.g. to browse

the web, or through email programs that periodically
check the mail server).

In the remaining of the paper we will call these events
network connections. These events represent a superset of
the ones contained in the Call Details Records, previously
considered in [9], [15]. Moreover, not only the id of the
cell the mobile phone is connected to is available, but also
an estimation of its position within the cell is generated
through triangulation by means of the Airsage’s Wireless
Signal Extraction technology.

Each location measurement mi ∈ M is characterized by
a position pmi expressed in latitude and longitude and a
timestamp tmi . For each user, the locations measurements are
then connected into a sequence {m1 → m2 → ......→ mn}
according to their timestamp.

From a spatial point of view, mobile phone-derived loca-
tion data estimated by Airsage has a greater uncertainty range
than GPS data, with an average of 320 meters and median
of 220 meters as reported by AirSage based on internal and
independent tests. Moreover, some peak errors appear when
the user is connected to the network not using the closest
cell phone tower. In these cases it can appear that the user
travels for several kilometers in just a few seconds.

Based on the area covered by the mobile phone locations
dataset, we analyzed the movements among areas in 8
counties in east Massachusetts (Middlesex, Suffolk, Essex,
Worcester, Norfolk, Bristol, Plymouth, Barnstable) with an
approximate population of 5.5 million people. The available
dataset consists of 829 millions of anonymous location
estimations - latitude and longitude - from close to 1 million
devices (corresponding to a share of approximately 20% of
the population) in 4 months.

3http : //www.airsage.com/



For this dataset, we extract traces for 2,000 users, who
make at least 100 network connections per day (with individ-
ual inter-event time below 1 hour in 75 percent of the cases).
The raw mobile phone data is then processed expanding the
methodology in [16] to obtain traces with sampling rate of 1
hour. Since localization errors might generate fictitious trips,
we propose a pre-processing step in which we manipulate
the data applying the same methodology used for analyzing
GPS traces, see [5], [6]. The methodology is composed of
the following steps:
• We infer measurement series Ms =
mq,mq+1, .....,mz ∈ Mz−q−1 where the user
makes network connections over a certain time interval
∆T = tmz

− tmq
> 0 into an area within the radius

∆S, i.e.

max distance(pmi , pmj ) < ∆S ∀ q ≤ i, j ≤ z
The spatial threshold has been defined as 1km, to
take into account the localization errors estimated by
Airsage.

• The points Ms = mq,mq+1, .....,mz ∈ Mz−q−1 are
fused together so that a single geographic region ps =
(z − q)−1

∑i=z
i=q pmi

(centroid of the points) can be
regarded as a virtual location characterized by a group
of consecutive location measurements. This location
becomes the origin or destination of a trip.

• Once the virtual locations are detected, we can evaluate
the stops (virtual locations) and trips as paths between
user’s positions at consecutive virtual locations.

• Each location is associated to a 500m × 500m cell of
a grid covering the whole Boston metropolitan area.

We consider the 2,000 users as collectivity, and compute
the non-moving probability fd(0, k) for k corresponding to 1
hour period and T = 168 corresponding to 1 week, as shown
in Figure 1. The one week period has been chosen according
to results presented in previous work [13], [14]. The distance-
depended normalized frequency fd(dij , k), dij > 0, is shown
in Figure 2 averaged over all values of k.
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Fig. 1. Collective non-moving probability in one week period (starting
Monday 12am).
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Fig. 2. Collective normalized frequency of trips as function of distance.

2) Landuse data: Landuse data has been collected from
MassGIS4 and grouped at the level of a 500m× 500m cells
grid. Different landuses have been grouped in 33 categories.
Figure 3 shows the spatial distribution of land use, while
Figure 4 shows the average preference of users for the
different categories 1/T

∑T
k=1 fLU (r, k), r = 1, . . . , R.

Looking at the most visited areas, Multi-family, high density
residential and commercial combined have more than 50% of
the preferences, followed by transportation and recreational
areas.
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Fig. 3. Map of land uses (each cell in the map associated to the LU which
covers the largest area in the cell).

3) POI data: POIs have been extracted from Yelp5 at
the same cells grid level, and grouped in 22 categories.
Figure 5 shows the spatial distribution of points of interest,
while Figure 6 shows the average preference of users for the
different categories 1/T

∑T
k=1 fPOI(q, k), q = 1, . . . , Q.

Looking at the most visited areas, Food-related POIs cover

4http://www.mass.gov/mgis/lus2005.htm
5http://www.yelp.com/boston/
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Fig. 4. Collective Land use preferences.

almost 50% of the preferences, followed by beauty, shopping
and medical. Other categories have very low impact.
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Fig. 5. Map of points of interest (each cell in the map associated to the
POI which is most present). Dark blue corresponds to no points of interest.

IV. EXPERIMENTS

To test the accuracy of the proposed prediction model, we
implemented it for all 2000 traces, and evaluated the accu-
racy of the individual location prediction as error between
predicted location xPk+1(u) = P (xk+1 = j|xk = i) and
observed one xk+1(u). We measured the errors as:

e(k) =
∣∣xk+1(u)− xPk+1(u)

∣∣ .
We made different experiments for different values of α (kept
constant over time) from 0 (individual only) to 1 (collective
only), as shown in Figure 7. It results that α = 0.8 allows
obtaining the smallest mean error (1.34 km). All errors are
less than half the mean error in case we always predict
the individual most visited cell (mean error 2.8km). For the
optimal value of α, Figure 8 shows that 60% of the errors
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Fig. 6. Collective Point of Interest preferences.

are zero (we are able to correctly estimate the user’s next
location). We also compare results of the prediction made
considering a collectivity composed only by the same user, so
no information from other users. Results show an increased
error due to the absence of global preferences from other
users (see Figure 7).
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Fig. 7. Mean prediction errors e(k) as function of α, considering collective
behavior of 2000 users, or just the analyzed one.

A. Recommending places

To show an application of the proposed predictive model,
we implemented a location-based service in the form of
personal places recommender system. We created a service
that recommends a list of places where he/she would possible
go in the future and measure the error as minimum distance
between recommended places and real one. As the length
of the list increases, the error decreases (see Figure 9(a)).
Already for lists of 3 elements, we are able to achieve almost
the smallest error. In fact, the best prediction is almost always
in the first three recommended places (see Figure 9(b)).
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Fig. 8. Cumulative distribution of the prediction errors e(k) for different
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V. CONCLUSIONS

In this paper we have proposed a new model to predict
the individual location of a person based on individual and
collective behaviors. The model is based on the geographical
features of the area where the person moves, both in terms of
land use, points of interests and collectivity’s habits. Using
a massive mobile phone location dataset, we have tested
the model for users living in the Boston metropolitan area.
Experimental results show good levels of accuracy in terms
of prediction error and prove the advantage of using the
collective behavior in the prediction model. Future work
will concentrate on improving the model and integrate it in
current activity-based models.
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