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ABSTRACT

The focus of revenue management research efforts has historically been on the
development of seat optimizers which find revenue maximizing booking limits by fare class in a
nested fare class structure. Significantly less attention has been devoted to the input
methodologies which provide information to the seat optimization algorithm, which is then used
to calculate booking limits.

Among these inputs are a forucasting method and detruncation method. The forecaster
provides the seat optimizer with estimated mean unconstrained bookings and standard deviation
by fare class for a forecast flight. The detruncator adjusts data from historical flights used by the
forecaster which have constrained booking information because they have reached booking limits.
A third optional input methodology is an adjustment within the seat inventory control process
~ (either to booking data or booking limits provided by the seat optimization algorithm) to account
for the possibility of passenger sell-up to a higher fare class when the initially-desired class has
been closed. This adjustment has the effect of inducing more sell-up.

Using PODS (a comprehensive simulator of passenger behavior and seat inventory control
in a fully competitive framework), this thesis compares pickup, regression, and “efficient”
forecasting on a revenue basis. Similar comparisons are performed for no detruncation, booking
curve detruncation with and without scaling, projection detruncation, and pickup detruncation.
Finally, a modified booking limit strategy to induce sell-up introduced by Belobaba and
Weatherford is tested. All tests are performed under a variety of environmental conditions.

Forecasting results indicate that the efficient forecaster is nearly always revenue inferior to
pickup forecasting. Neither regression nor pickup forecasting were unambiguously superior: The
relative performance of these two forecasters is dependent on detruncation method choice and
environmental conditions. Among detruncation methods, not detruncating or pickup detruncation
is inferior. Scaling the booking curve used for detruncation yielded superior revenue results over
not scaling, and projection detruncation always performed at least as well as booking curve
detruncation without scaling. Sell-up tests indicate significant revenue gains to estimating sell-up
probabilities. Revenue gains are limited if competitors cannot collude, many alternative flights
exist, or passengers have low willingness to pay for higher-valued fare classes.

Thesis Supervisor: Dr. Peter P. Belobaba
Title: Associate Professor of Aeronautics and Astronautics
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I. Introduction

1.1. A brief introduction to revenue management and forecasting
1.1.1. Why revenue manage?

Suppose that there are but two types of consumers who purchase a preduct. The first
type values the product highly and so is willing to pay much more than the other type. This first
type also values superior product characteristics and will pay more for them. Any sensible
businessperson would try to segment the two, offer the appropriate level of services, and charge
accordingly.

Airlines are no exception. The first problem of airline revenue management is io try to
identify what passengers value, and how they fall into types ranked by willingness to pay (WTP).
If passengers all arrived at once, revenue management’s task would simply be to identify whether
a passenger was high-value or not and then charge accordingly (this raises the issue of price
discrimination, which I will address later). If a direct signal of WTP is unavailable, an airline
could resort to measures that are closely correlated. One example would be how “discretionary”
is the passenger’s trip, i.e., how flexible an individual is making a reservation on this flight.

But passengers do not arrive at once. The booking process before a flight over which
reservations may be made is up to a year in length. Neither discretionary nor nondiscretionary
passengers make reservations randomly throughout the booking process. Instead, as shown in
Figure 1.1, the greater proportion of discretionary bookings for a typical U.S. market are made
early in the process, while most nondiscretionary bnokings are made shortly before departure.

This creates a vexing problem: If low-value passengers arrive early and high-value
passengers late, how do we ensure that enough seats are saved for later-arriving passengers
without unnecessarily turning away low-value early arrivals? Much thought and not a few careers
are dedicated to finding the optimal solution to this, airline revenue management’s second
problem. The industry is continuously regaled by claimants who are sure they have found the
optimal revenue solution -- a seat optimization algorithm which strikes the correct, revenue

maximizing balance in allocating seats between high and low value passengers.
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Figure 1.1. Nondiscretionary versus Discretionary Booking Curves

As shown in Figure 1.1, the booking process is divided into N time intervals of unequal
length (the duration of each interval decreases as the departure date nears). Between each
interval, an updated forecast of final demand is made, usually based in part on actualized bookings
until that point, and the seat optimization algorithm is rerun. A booking interval is thus defined as
a length of time within the booking process i which passengers make reservations but no
reoptimization occurs. A large number of intervals is computationally impractical, while too few
allows no adjustment for differences between forecast and actual bookings as the booking history
for that flight develops. For most U.S. carriers, N is typically 10-25.

Presently, airlines address the two revenue management problems by (1) offering several
fare classes on a given flight, each with a different set of restrictions designed to target the fare
product to the appropriate passenger type, and (2) using a seat optimization algorithm to
appropriately limit the seats available to lower-valued fare classes. It is an involved and complex
process, but worth the trouble: Revenue management has repeatedly been shown to yield
significant revenue benefits over not offering different fare products at all, or offering different

products without limiting availability using a seat optimization algorithm?.

1.1.2. Where jorecasting fits in

2 Actual trials of an early leg-based seat optimizer at Western Airlines are explored in Belobaba (1987); revenue
simulations of more advanced network and quasi-network optimizers are given in Williamson (1992), Tan (1994),
and Ferea (1996). Leg-based revenue simulations utilizing PODS, a comprehensive simulator of the passenger
demand generation and allocation process, are given in Wilson (1995).

10



The two processes of constructing fare products and limiting seats to lower-valued fare
classes are not independent. As shown in a simplified, idealized diagram of the seat inventory
control process (Figure 1.2), such procedures involve only steps 1b, 3, and 4 of the process. This
description of seat inventory control is idealized: Some airlines will adopt additional procedures,

while others will not complete all the steps described here.

I(la) Collection of Historical Data Base lb) Construction of Fare Structurel
A e T

A4 A 4
(2) Forecasting Procedures by Fare Class

(3) Seat Optimization Algonthm

(4) Setting of Booking Limits by Fare Class

&

T (5a) Passenger Booking Process
| 1

' .|

- — - -—I(5b) Flight Day Loading Process !

Figure 1.2 The Seat Inventory Control Process

Between each interval in the booking process, Steps la through 4 are performed, except
Step 1b. This step is represented with a dash because realignments to the existing fare structure
(e.g., major fare changes, adjustment of the number and/or restrictions on fare products) are
performed less often and require extensive analysis of expected changes of the allocation of
bookings to each fare class under the new structure. Careful examination of historical booking
data under the existing fare structure provides clues about expected changes. Once these
expected changes have been estimated, the historical database is adjusted by the results of this

analysis, which is then input into the forecaster. Step 1b is usually considered to be a pricing

11



function; I include it in Figure 1.2 because of its extensive interaction with seat inventory control.
Step 5b is dashed because it occurs only on flight day, after the booking process is complete. I
will examine the seat inventory control process in more detail under Section 1.3.

Because seat optimization algorithms in Step 3 calculate allocations of seats between fare
classes, their success depends upon forecasting tools used in Step 2, which give an accurate
forecast of expected unconstrained demand by fare class for each leg’ or origin and destination
(O/D) pair the airline serves. The requirement of leg versus O/D forecasts depends on the
allocative level of the seat optimization algorithm: Most present optimization techniques allocate
seats at the level of the leg?, but this is theoretically suboptimal to control on an O/D basis’
because passenger travel itineraries may involve several legs. Regardless of the level of
forecasting required, inaccurate forecasts result in distortions of seat allocations to fare classes,
leading to suboptimal revenue performance.

Estimation of the Step 2 forecasts turns out to be a non-trivial problem itself, and there are
many different methods to construct these inputs. It is curious but true that much less attention
has been paid to the revenue effects of the different input methodologies than the seat
optimization algorithms themselves. Presentations of novel seat optimization techniques routinely
ignore difficulties in forecasting for their particular requirements, assuming instead that an

accurate forecasting methodology is readily available.

1.2. Objective of Thesis

This thesis is an attempt to address the traditional neglect of forecasting and other input
methodologies by testing their revenue effects in a competitive airline framework. I utiize a
comprehensive simulation of the passenger demand generation and flow process originally
developed by Boeing, called PODS (Passenger Origin and Destination Simulator). This simulator
has several advantages which recommend it for realistically predicting revenue effects according

to airline choices about input methodologies -- including barriers in the simulation between

* A “leg” is defined to be a flight stage involving one takeoff and one landing, or a nonstop flight.

4 See, e.g., the EMSRa algorithm developed in Belobaba (1987), or the EMSRb algorithm in Belobaba (1992).

% See Curry (1994) for an example of an O/D-based seat optimization scheme. Severe small number and run-time
problems prevent actual use of O/D schemes at present.

12



forecasting methods and passenger generation processes, and a passenger choice framework
which allows for realistic selection of airlines and flights under competition.

Besides testing the revsnue effect of alternative forecasting models, 1 will use PODS to
compare detruncation methods that adjust data from flights on which total demand is not known
because booking limits set by the seat optimizer were reached. Without this step, the seat
optimizer will not allocate enough seats to high-value passengers who could not book on
historical flights because seats were already filled with low-value passengers. Finally, I will test
sell-up models which adjust for the willingness of some passengers to buy a more expensive fare

should their originally requested fare be unavailable.

1.3. The Seat Inventory Control Process
1.3.1. The Internal Airline Perspective

In this section I discuss the seat inventory control process in greater detail, first
emphasizing the process which occurs internally at the airline, and then the parts of seat inventory
control involving interaction between the airline and passengers. Close examination of the
relationships between the processes I will test (i.e., forecasting, detruncation, and sell-up) and seat
inventory control provides a systematic understanding of the influences on these processes.
Again, this depiction is idealized and does not describe the practice at any particular airline. Step
1b (governing changes in the fare class structure) will not be discussed.

The process begins at Step la in Figure 1.3, when previous departures of the flight to be
forecast are initially selected from an airline’s data on historical flights to form the Historical Data
Base (HDB) for the forecast. Selection processes are designed to exclude previous flights which
might have systematic differences with the flight in question. Thus, departures on different days
of the week, with different aircraft sizes, or under ditfering competitive circumstances might be
exciuded from the data set.

The “unclean” data from the flights selected for inclusion are analyzed to remove and/or
adjust entry errors, outliers, and other anomalous patterns in the data. Each previous flight in the
database will have at least three characteristics: the total bookings BIH(0) received on each flight
before the end of the last booking intefval, which ends on the day of departure; no-shows (NS)
who book but do not show up on departure day; and denied boardings (DB) -- would-be

13



passengers who book and show up but cannot board because of capacity restrictions on the
aircraft . If there is strong seasonal variation over this dataset used for forecasting, it is adjusted
to the season of the ilight to be forecasted. Additionally, passenger loads are “detruncated” if
previous load data are constrained by booking limits, i.e., passenger loads in a fare class reach the

limits established for that fare class at any time during the booking process.

erveonprAnere crveeefe o

F/C Closed

0%

Figure 1.3. Details of the Seat Inventory Control Process

After the data have been appropriately adjusted, bookings information goes into the
forecaster (Step 2). In the first booking interval (before any bookings on the flight have been

taken) the forecaster estimates expected unconstrained total bookings BIH (0) ror demand for the

flight f singly on the basis of historical booking data. This is input into the seat optimizing
algorithm (Step 3), which also takes fare values by class and sets seat booking limits on each fare

class that maximize expected revenues.
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In Step 4, information about NS and DB from previous flights, unadjusted booking limits
provided by the seat optimizer, and the airline’s estimation of the monetary cost of a denied
boarding and no-show are analyzed by the overbooking model. It adjusts booking limits by
trading off the expected benefit of accounting for no-shows with overbooking against the
increased probability that more passengers will show up than space is available for®,

Once adjusted booking limits BL; for the ith interval have been provided by class, the
booking process for the flight opens (Step 5a) and passengers may begin making reservations and
(subsequently) cancellations. The seat availability SA or number of additional requests which will
be accepted for each class is initially BL;. Once a passenger makes a reservation, SA on this fare
class is decremented (BL; is set by the seat optimizer and therefore unchanged within booking
intervals). Other fare classes’ SA are also decremented. Many nested seat inventory control
processes decrement SA in all higher-valued fare classes; others decrement SA in every fare class’.
The rationale for the first policy is that the seat protection algorithm has already limited bookings
in low-value classes via BL;, given expected bookings in higher-valued classes. Decrementing SA
in these classes therefore doubly impacts their availability -- once when BL are set, another when
bookings are made in higher fare classes. At present, PODS decrements all fare classes. Because
this approach decrements low value classes’ SA more often, it closes low-value classes earlier.

This issue gives rise to a second measure of capacity on a fare class. For any given time
within an interval i, I define the maximum allowable bookings Mx on a fare class to be the
booking limit BL; established for that fare class, less net bookings received in i on other fare
classes which affect this class’ SA®. Unlike BL but like SA, Mx reflects the fact that the maximum
allowable bookings in a given fare class within an interval is continually adjusted for bookings
made in other fare classes.

In any case, if after the reservation there is still space available in that fare class (SA > 0),
the fare class remains open for more reservations. If not (SA = 0), the fare class is closed, and no

more reservations will be taken. However, if a passenger acts to cancel his or her reservation,

¢ An interesting recent analysis of how best to do this is given by Holm (1995).

7 Conceptually, these SA decrement strategies are heuristic compromises for the fact that adjustment =f BL via
reoptimization cannot feasibly occur after each booking/cancellation.

® Net bookings in these classes are total bookings less cancellations within interval i up until the time period of
interest. Generally, Mx = SA in a given fare class, because the latter includes bookings which occur during i within
that fare class.
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seat availability is incremented (+ SA) and the fare class is opened again. The same booking limit
BL; for each fare class remains as long as the same booking interval (as discussed in Section 1.1
above) is in effect. When a booking interval ends and more intervals remain until departure, we
keep account of the total bookings-in-hand which have been received up to this interval i on this
flight f, BIH(i);. Next, we rerun Step la (see dashed lines), taking advantage of the most recent
information provided by flights which have departed since the last run through the seat inventory
control process. Then, the forecaster (Step 2) combines the revised information from the
historical data base with present bookings BIF(i), to provide an updated forecast of total demand
for the flight, by fare class’. The seat optimizer (Step 3) and overbooking models (Step 4) are
rerun, leading to booking limits BL;; for the (i-I)th interval'®. Seat availability by class at the
start of interval i is then SA = BL; - BIH(i+1)/"".

This process is repeated until no more booking intervals exist, i.e., flight day has arrived.
On flight day, total bookings realized BIH(0); for the flight f go into the HDB, and the passenger
boarding process begins. Those passengers who do not show (NS) are recorded into the
historical data base for this flight. Among those who do show up, if the overbooking model has
correctly adjusted booking limits, there will be zero or few denied boardings (DB), which are also
input into the HDB. Boarded passengers become passenger loads for this flight, which completes
the HDB data set for this flight. The seat inventory control process for this flight is now

complete.

1.3.2. The Airline/Passenger Interactional Perspective

Now I discuss a subsection of the seat inventory control process dealing with interaction
between the passenger and airline. Steps 5a and Sb in Figure 1.3 above described the activity
space over which passengers make requests for service, and airlines respond. Figure 1.4 expands

these processes.

? Instead of reestimating final demand during every reoptimization, some forecasters estimate the bookings to come
from the present forecast interval until departure (see Section 5.2.1).

19 Many seat optimizers set booking limits on the basis of the remaining seats available on the flight. In this case,
an estimate of bookings to come (BTC) would be necessary (see Footnote 9). BTC may be derived from forecasts
estimating final demands by the simple formula BTC = BIH(0), - BIH(i);

" Tt is therefore possible that SA < 0, if BIH(i+1) << BIH(i) and BL(i+1) >> BL(i) -- say, because of unexpectedly
high bookings in high-value classes. In this case no bookings in the affected class are allowed in interval i unless
many cancellations occur.
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e Reservations Phase

When a potential passenger makes a request for a reservation on a particular O/D
itinerary, either a travel agent (approximately 70 percent of the time) or an airline
ticket/reservations agent (about 25 percent of the time) inquires the compuierized reservations
system (CRS) about space availability for the itinerary. A passenger can make a reservation in a
particular class if seat availability SA is greater than zero, after all decrements and increments up
to the present time. If so, a reservation is made and SA is decremented by one.

Otherwise, the potential passenger’s initial request is denied, and (usually) an alternative
will be offered. Those who accept the alternative -- either on the same flight in a more expensive
fare class or on an alternative flight on the same airline -- are “recaptured” by the airline. Sell-up
occurs in the former case (see Section 3.3), or if a potential passenger buys a more expensive fare
product on an alternative flight. This behavior defines sell-up, but does not describe where
adjusting for this possibility fits into the seat inventory control process. As I will show later in
Section 3.3, there are several methods to induce sell-up, each of which modifies a different part of
the process. If the consumer refuses the offered alternatives and chooses a competitor or decides

not to travel at all, the customer is lost to the airline.

o Confirmation Phase

One a passenger has made a reservation, he or she will receive a ticket upon appropriate
payment to the airline. Before or after ticketing, the passenger may change plans and thereby
explicitly cancel the reservation, in which case seat availability SA for the fare class in which the
passenger was booked increase by one. The airline may also unilaterally cancel the reservation
(resulting in an “implicit cancellation™) if the passenger fails to meet some restriction associated
with the ticket, e.g., purchase within one day of reservation (typical of low-value fare products) or

reconfirmation of a reservation (typical on some international flights).
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Figure 1.4. Airline/Passenger Interaction, With Links to Seat Inventory Control"

e Boarding Phase

Finally, on the day of departure we enter the boarding phase, and the passenger can either
show up for departure or may no-show, i.e., not show up despite having a reservation and/or a
ticket. No show probabilities are very specific to market and flight, and are generally higher on
short-haul, high frequency, and business markets.

If the passenger does show up, space may not bc available on the flight because of the
overbooking. Airlines have established various procedures to compensate passengers denied
boarding -- i.e., those who arrive in expectation of traveling but find no seats available for them.

After the flight has departed, total bookings received, loads, no-show and denied boarding

12 Adapted from Lee (1990), pp. 18-24.
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information are recorded to this flight’s HDB, which will be later be used by the forecaster to
predict total demand for future departures of the same flight.

1.4. Structure of Thesis

Chapter 2 provides a brief background of basic economic theory of supply and demand,
and the types and profit potential of price discrimination. This chapter provides a theoretical
explanation for the provision of multiple fare products with associated levels of restrictions.
Whether or not airlines price discriminate is considered by examining current fare structures and
their ability to “fence” passengers into desired groups. Finally, I discuss the arbitrary nature of
this demand division for forecasting purposes.

Chapter 3 includes a theoretical motivation and review of the present literature on the
three input methodologies this thesis focuses on: flight-level passenger forecasting, detruncation,
and sell-up. I discuss models which have been advanced in the literature, and comparative studies
using simulation or analysis of accuracy. Shortcomings of the various models and comparisons
are discussed.

Chapter 4 gives a background in the architecture and theoretical assumptions used by
PODS, a simulator of passenger flow and revenues I use for comparing forecasting, detruncation,
and sell-up schemes. This chapter summarizes the salient points of PODS without extensive
details, for which the reader is referred to Wilson (1995) -- the first installment of results from the
joint MIT/Boeing collaborative research project on PODS. I also pinpoint some different
assumptions made by the PODS methodology and previous comparative studies of forecasters,
detruncation methods, and sell-up mechanisms.

Chapter 5 describes the subset of models and methods from Chapter 3 I have chosen to
compare using PODS. The assumptions and techniques of each of the tested methods are
described. Chapter 6 is a discussion of simulation results for each of the chosen models and
methods. Each comparison is run under a variety of conditions (e.g., demand conditions, demand
stochasticity, frequencies in market, passenger characteristics) to examine the sensitivity of our
conclusions about the revenue ranking of the described models to underlying market conditions. I

present theoretical explanations of persistent revenue differences. These revenue results reinforce
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the importance forecasting, detruncation, and sell-up play in determining the performance of the
revenue management system.
Finally, Chapter 7 concludes with a detailed summary of these results and a short

discussion of the projected future research areas for the Boeing/MIT PODS research project.
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II. Revenue Management, Price Discrimination, and Product Differentiation

2.1. Uniform Pricing
2.1.1. Basic Supply and Demand Theory

Basic neoclassical economic theory posits upward-sloping supply curves and downward-
sloping demand curves in most markets'. The latter results from the differential willingness to
pay property of the simple model of competitive markets: Some potential consumers are very
willing and able to purchase a product, but others are willing to purchase only if the price is
lower. As price is successively lowered, more potential consumers are coaxed into purchasing
the product. An opposite relationship obtains for producers: As more quantity is supplied,
production costs rise as less efficicnt resources are employed to the production of the product.
These relationships are depicted in Figure 2.1 where S(g) and D(g) represent the supply and

demand curves, respectively.

Figure 2.1, Basic Supply and Demand Graph.

13 Hirschleifer and Glazer (1992), pp. 22-39 gives one of the innumerable treatments of supply and demand
relationships.
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Under these conditions an equilibrium at point E results where the price consumers are
willing to pay and the price suppliers are willing to accept is equal at Pe. Here Qe is exchanged.
Any other quantity leads to a mismatch between the price consumers are willing to pay and the
price suppliers are willing to accept. Negotiation between the two resolves the mismatch as price
and quantity are driven to the equilibrium point.

With the uniform price Pe, some consumers are willing to pay more for the product but
end up paying only Pe. For example, a customer Qi in Figure 2.1 is willing to pay up to Pi for the
product but only pays Pe. This consumer gains consumer surplus in the amount Pi - Pe.
Analogously, the supplier gains a producer surplus of Pe - Ps from trade with the Qith consumer,
because he or she would be willing to accept a price as low as Ps. The total surplus gained by
consumers and suppliers as a result of exchange to Qe is represented by the shaded areas CS and

PS, respectively.

2.1.2. Disadvantages of Uniform Pricing

From the producer’s perspective, uniform pricing has some disadvantages. Namely, CS
remains to consumers as the benefit of this transaction. If market conditions and antitrust law
permit, suppliers would prefer to obtain not only PS but CS. Under most market conditions a
uniform price will always leave some surplus to consumers'. Therefore, profits are not
maximized.

Attempting to extract CS is commonly understood to be “bad” since it requires some
consumers to pay more for the same product. There are three responses to this assertion. First,
in an economic sense costless extraction of CS by producers is neutral. It does not affect the
competitive equilibrium (Qe at price Pe in Figure 2.1), but is merely a transfer of funds from one
to another economic actor. Second, when consumers have some degree of market power, quasi-
monopsonistic conditions allow appropriation of the producer’s PS -- but society rarely considers

this to be a bad®.

1 Tirole (1988), p. 133. Of course, consumers prefer the opposite: that they not only keep CS but extract PS from

producers.
15 One example would be the market for specialized defense products that aie salable only to the U.S. government.
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Third, under certain cost conditions, a producer cannot charge a single price and break
even (let alone profit). Consider Figure 2.2, where demand D(g) is downward sloping as before
but producer marginal cost (the cost of producing an additional unit) is constant, while average
costs AC(g) (the total cost of production averaged over all units) are continuously declining.
Such a situation would obtain if there were a high fixed cost to production and low costs of
producing marginal units. In the airline industry, this is certainly true with respect to the provision
of the marginal seat, where fixed costs include aircraft, gates, administrative, and other

expenses'®.

AC(g)
Stg), MC(g)

xg), %R(q)

Figure 2.2, Declining Average Curve above Marginal Cost Curve.

Under moderately competitive conditions and uniform pricing, economic theory posits that

suppliers will charge consumers the marginal cost of producing the good'’. The supply curve

'8 It is important to note that “fixed” versus “variable” distinction is defined only with respect to the time period
within which the decision to incur a particular cost is made. Thus, the aircraft fleet size decision is fixed within a
decision period of a month, but variable within a year. For a sufficiently long time period (e.g., several years), all
costs are variable, while all costs are fixed in the extremely short run. The time period of interest in this analysis is
about a montbh, i.e., long enough for the individual flight decision to be variable while facilities and aircraft
available are fixed.

' Hirschleifer and Glazer (1992), pp. 153-156.
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S(g) is therefore equivalent to the horizontal marginal cost curve MC(g) in Figure 2.2. In this
illustrative case average costs are high relative to demanu, so AC(q) is above D(g) for all g. Since
under competitive uniform pricing the profit per unit for the producer is defined as average
revenue (the uniform price) less average cost or S(g) - AC(q), the producer will always take a loss
regardless of production level g. At quantity Q;, for example, the producer loses area A since
average costs are C; at this point but the uniform price is only P;. In the long run, this loss-making
condition is not sustainable: If firms cannot at least break-even, they will eventually exit the
industry*®.

A final argument against uniform pricing is the inefficiencies it creates by failing to account
for peak versus off-peak demand conditions. Economic theory indicates that when a good is not
storable (e.g., electricity, which must be produced on demand), demand is subject to significant
fluctuations, and provision of a unit of capacity is not free, uniform pricing will result in allocative
distortions'. That is, in peak demand conditions individuals with the highest valuations of the
good should receive the good while those with low valuations should purchase only in off-peak
demand conditions. Under uniform pricing, each is just as likely to get the good. This is not a
problem in off-peak periods because all can be accommodated. But in high periods some low-
value individuals will receive the good, denying high-value individuals.

Peak load pricing avoids this by setting a higher price in peak periods and a low price in
low periods. Only high-value consumers will be accommodated in the former, while all can be
accommodated in the latter. Such pricing encourages the efficient use of resources as low-value
consumers turned away in peak periods switch to off-peak consumption. This behavior is
exhibited in the airline industry: A major point of studies of seat optimizers under variable demand
conditions is the automatic protection of more seats for high fare passengers as market demand

increases, thereby restricting availability of low fare seats to low demand flights®.

2.2. Price Discrimination: An Alternative to Uniform Pricing

'8 Hirschleifer and Glazer (1992), pp. 159-161.

' Crew and Kleindorfer (1986), pp. 33-37; and Borenstein (1983), pp. 111-115,

2 See, e.g., Wilson (1995). Chapter 6 of this thesis will confirm these results. A significant benefit of seat
optimization algorithms is the ability to identify and dynamically adjust to demand variations on a per flight basis
as bookings develop. This is opposed to relying on generalizations about which seasons or days of week, etc. have
high demand, and performing blanket adjustment of availability over presumably affected flights.
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In certain circumstances, producers avoid the suboptimal condition of uniform pricing by
price discriminating -- charging different prices to different consumers for the same product. The
objective here is to somehow identify consumers by willingness to pay and charge accordingly,
and thus extract as much of the CS of Figure 2.1 as possible. Price discrimination is only
operative if: it is legal®!, the producer/s can influence prices22 and can snccessfully identify
consumers by willingness to pay (WTP), and resale of product among consumers is impossible

(otherwise the identified low-WTP consumer buys all the product and resells to others).

Figure 2.3, Second Degree Price Discrimination with Declining Average Cost.

21 The Robertson-Patman Act prohibits some price discrimination, but it has never been applied to the airline
industry. Several difficulties prevent such an application, including the understood exemption from the law of
services and intangibles (Areeda [1981], p. 1058), the “like commodities” requirement that the products offered at
varying prices be substantially similar, the cost differential by product defense (Areeda [1981], pp. 1102-1105),
and the “meeting competition in good faith” defense (Areeda [1981], p. 1115). The recent antitrust lawsuits
against airlines’ pricing practices are a case in point. The allegations involved alleged price fixing attempts using
CRS systems (Hunt [1994]). The Department of Justice did not raise a price discrimination issue, despite wide
price ranges in fares which airlines allegedly attempted to fix.

2 This traditionally requires the market to be either monopolistic or oligopolistic. However, Borenstein (1983)
shows that price discrimination can occur in reasonably competitive circumstances if products are somewhat
heterogeneous between suppliers and consumers have brand preferences. A spatial model of monopolistic
competition is used to prove this result.
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Economists categoiize methods of price discrimination into several types®. Airlines are
often accused of second-degree price discrimination, where a set of product “bundles” are
offered. By voluntary market exchange, consumers choose the bundle most suited to them and
incidentally forfeit more or less CS to the producer depending on their WTP. This type of price
discrimination in the decreasing AC(g) with constant MC(q) case is shown in Figure 2.3. The
producer has offered seven distinct products / ... 7 in decreasing order of price, and has
successfully segregated consumers by decreasing WTP into the seven groups. Thus, consumers
with the highest WTP purchase Q, at price P;. Suppose in this way a total of Q; consumers
purchase the product. At this production level the average cost per unit is C;, which is above the
demand curve D(q). However, because each of the seven groups of consumers have paid greater
than the uniform price P, at Q;, the average revenue curve AR(g) (i.e., average price paid per unit
at Q) is no longer coterminous with the demand curve D(q). Instead AR(g) shifts out so P;, the
average price at O; under the seven-product strategy, is greater than the uniform price P, and
average cost C;. A profit per unit of P; - C; is earned. In this case price discrimination is preferred

by consumers and producers: It is the difference between the market existing or not.

2.3. The Discriminatory Nature of Airline Fare Structures

2.3.1. Identifying Passenger WTP and Type

Traditionally, airlines divided passengers into two types, business and leisure. Business
travelers were assumed to have the higher WTP or, equivalently, lower price sensitivity. But
consumer research in the late 1970s demonstrated that the distinction which should be drawn was
between discretionary and nondiscretionary business travel, since some non-business travel is
mandatory (e.g., emergencies among close relations), while some business travel is optional™.
Second, it was noted that passengers differ on variables other than simply price sensitivity: Some

operate under extreme time constraints and others have more flexible schedules.

2 Tirole (1988), p. 135.
% Belobaba (1987), pp. 20-22, discussing CTC (Canadian Transport Commission) survey.
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A two-axis representation of passenger type on price and time sensitivity variables was
developed by Belobaba®. As shown in Figure 2.4, this creates four types of passengers based on

price and time sensitivity.

e Type I: Time-sensitive and price-insensitive. This category characterizes
the nondiscretionary business traveler, especially one who is not personally
paying for the trip. Such passengers have extremely tight schedules (requiring
nonstop travel when possible), firm up travel plans very late, and often change
plans. They are sometimes willing to pay for a superior cabin class. Type I
business travelers dislike spending weekends out of town.

o Type IHI: Time-sensitive and price-sensitive.  These passengers are
nondiscretionary but are more concerned about price. They will not pay for
first or business class and exhibit limited flexibility in schedules in order to
obtain cheaper fares.

o Type III: Time-insensitive and price-sensitive. ~ The typical leisure
passenger falls into this group, which finds changes in travel date and even
destination acceptable if it means a lower fare. Their schedule plans are
typically set far in advance of travel.

e Type IV: These few travelers have few constraints on travel dates, and are
willing to pay for superior service cabins and flexibility of travel arrangements
in case they make alternative plans.

Low € Price Sensitivity > High

High | I |
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§ | il |
| I |
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Figure 2.4. Market Demand Segmentation Model

Based on this information, the WTP ranking of the four passenger types is:
WTP,, 2 WTP, > WTP, 2 WTP,,;. When a potential passenger makes a request for a reservation

 Belobaba (1987), pp. 24-27.
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as previously described (see Section 1.3 above), the request will contain information on at least
the following characteristics listed below. If these variables signal underlying passenger type and

associated WTP, tailoring specific products accordingly allows discrimination.

Days before departure that request is made

One way or round trip

If round trip, duration of stay at destination

If round trip, does stay involve a Saturday night
Desired time of departure/s or arrival/s

Desired cabin of service

Table 2.1 provides hypothetical results by passenger type for each of the characteristics
revealed by a potential passenger at time of request. Most characteristics appear to be good

predictors of passenger type. Do airlines introduce different fares on these bases?

| Hypothetical Revealed Characterisiics at Time of Reques:
Fax { Days Until | One Way or If RT, IfRT, Departure/ Cabin of
Type | Departure | Round Trip | Durationof | Saturday | Arrival Time Service®
Stay Stay?

I <7 ow <1 week No peak hours YorC
14 <14 ? <1 week No more flexible Y
Ifl 214 RT > 1 week Yes very flexible Y
1A% ? ow ? ? ? ForC

Table 2.1. Hypothetical Characteristics of a Request by Pax Type

2.3.2. Evidence of Possible Price Discrimination

An example of the array of fare classes offered on a hypothetical market is shown in Table
2.2 below. In this market, there are three cabins with varying levels of restrictions on each of the
fare classes offered in the cabins. A “luxury” Type IV passenger will select to class C or F
because of the superior service offered, the absence of restrictions, and full refundability of the
product. Type I passengers, however, make reservations shortly in advance of travel, wish to

spend weekends with family, and often travel for indeterminate lengths -- thus making round trip

% These are standard cabin class (as opposed to fare class) distinctions: F is first class, C is business class, and Y
is coach.
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travel difficult. Combined with their desire to avoid to avoid the strict nonrefundability conditions
of the low-valued classes, in these circumstances they will likely select a C, Y, or B fare.

Type II passengers are more flexible in timing arrangements but stili dislike travel
involving a Saturday, and sometimes change travel plans (thus making nonrefundability onerous,
given their higher price sensitivity). They are likely to select a B, M, or (perhaps) an H fare.
Finally, the typical leisure passenger is completely flexible with travel dates and Saturday night
stays, and can make reservations far in advance. This type will therefore typically purchase the
cheapest Q fare class.

Airlines include fine gradations of fares within each fare class, which sorts between the
types of passengers who might select a particular fare class. For example, successively lower
fares within the M fare class will be associated with more stringent restrictions on time of day,
connections vs. one-way, and day of week to sort between the Types I and II passengers who
typically purchase that fare class. The percentage rroportion of the base Y-Class fare for each
fare class is therefore an average over fares offered in that class. The illustrative example of Table
2.2 indicates significant price diffcrences between and within cabin classes: A first class fare (F)
costs five times the cheapest (Q) fare on the flight, while the most expensive coach class fare (Y)

is about three times as expensive as the cheapest coach fare.

Fare Avg. Percent
Cabin Class of Y Fare Restrictions on Fare Ciass
First F 150% None (First Class)
Business C 120% None (Business Class)

Y 100% None (Full Fare Coach Class)
B 5% 3 Day Advance Purchase (A/P)

Coach M 60% 7 Day A/P, Sat. Night Stay
H 45% 14 Day A/P, Sat. Night Stay, Non Refundable, Round Trip
Q 30% 21 Day A/P, Sat. Night Stay, Non Refundable, Round Trip

Table 2.2: Typical Airline Fare Class Structure®

Limited informaiion is available on how successfully these restrictions or “fences” direct
passengers to the appropriate fare product. The complication involves an imprecise ability to

identify a passenger’s type from the information provided at time of request. The variables we

27 Adapted from Ferea (1996), p. 22 and Lee (1990), p. 30.  Fare class structures vary slightly by airline and by
market (only a limited number of markets have business class cabins, for example).
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have examined are only imperfectly correlated with a passenger’s willingness to pay, and some
passengers will always be able to circumvent the designed sorting mechanisms by replanning their
trip or other evasive methods?®. Thus, it is not possible to quantify the proportion of passengers
in each type.

A few independent attempts have been made at identifying the effectiveness of restrictions
by passenger type. Results of a Boeing survey which asked passengers on markets of greater than
1,300 miles to classify themseives into one of three categories and then indicate whether they
would on their present trip be able to meet a specified set of restrictions are given in Table 2.3
below?. The three categories -- nondiscretionary business (NDB), discretionary business, and

leisure - match fairly closely to Types I, II, and III, respectively.

Requiremeni % of Travelers Able to Meet Restriction, by
Type
Minimum | Advance | Non-Disc. | Discretionary | T eicnre sotal
Stay Purchase | Business Business
0 7 72% 86% 95% 86%
0 14 53% 77% 90% 76%
0 30 30% 61% 74% 59%
7 0 28% 32% 64% 48%
7 7 25% 28% 62% 45%
7 14 21% 27% 58% 41%
7 30 14% 23% 49% 34%
Saturday 0 47% 56% 80% 66%
Saturday 7 39% 51% 77% 61%
Saturday 14 30% 47% 72% 55%
Saturday 30 19% 40% 61% 45%

Table 2.3: Percentage of Travelers Able to Meet Fare Restrictions,
By Pax Type, Flights over 1300 Miles
While the restrictions considered are limited to a minimum stay and/or advance purchase
requirement, the survey indicates that offering differing prices on these signals effectively fences

passengers into appropriate fare classes: Only 28 percent of NDB travelers could accept a seven-

% One common technique to avoid the Saturday night stay restriction is to buy two round trip tickets, one from
one’s origin and the other from the destination, with scheduled departure dates on the first leg of each ticket
matching one’s original preferences. This is sensible only if the price of a Saturday stay round-trip ticket is less
than half of the unrestricted price.

 Boeing (1988).
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night stay restriction, while 64 percent of leisure travelers could. Similarly, the percentage of
travelers able to meet advance purchase restrictions increases as we move from NDB to leisure,
while declines as the restriction is tightened are more precipitous for NDB and discretionary
business. Over the markets surveyed, the advance purchase restriction is most effective in
screening between NDB and discretionary business, while the minimum stay requirement
segments between business and leisure passengers. Table 2.3 in concert with Table 2.2 confirm
the assertion that characteristics of the reservation request are important signals of differences in
WTP®, which airlines exploit by offering restricted fare products accordingly. That is, some

evidence indicates that airlines offer different prices for substantially the “same” service.

2.3.3. Is Airline Behavior Actually Price Discrimination?

However, the arguments in Section 2.3.2 are absolutely not conciusive about whether or
not airlines actually price discriminate. In this section I examine three arguments that the pricing
structure in current practice is not discrimination at all. The primary point is that the various fares
offered to passengers are not similar. If the fare products airlines offer are not the same, the
evidence in Section 2.3.2 indicates only acceptable differential pricing.

First, consider the fact that potential passengers do not make requests for service at the
same time. Some requests arrive carly, others arrive late. If airlines adopted a first-come-first-
serve strategy in that late arrivals would simply be denied service, it is justifiable that all be
charged the same price. However, recognizing that many passengers cannot make decisions until
late in the decision process, airlines save space for late-arriving passengers -- often explicitly
turning away earlier-arriving passengers to do so.  The result of this, of course, is a different
price. Those arriving late also pay for having space saved for them until just before the flight.
Early arrivals should pay less because there is a minimal likelihood that the airline has had to turn
someone else away in order to serve them. The entire purpose of seat optimization schemes, as

has been noted, is to strike the correct balance between saving enough seats for the uncertain

*® There are two caveats to Table 2.3. First, it is self-reported and therefore are subject to all the problems of
surveys (e.g., correct interpretation of questions, class misidentification, and the stated versus revealed preferences
problem). Second, the percentages are a function of fare differences between fare products assumed by respondents
and the characteristics of the markets surveyed (e.g., a shori-haul market will be more significantly affected by
advance purchase restrictions).
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number of late-arriving passengers without turning away too many certain early-arriving
passengers, given a set of fares. Availability of a seat before depariure becomes a product
characteristic which differentiates the fares purchased early and late in the booking process.

Generally, the variety of restrictions attached to specific fares create numerous different
products. A reduced-fare product (say, H in Table 2.2) requiring round trip travel and not
refundable cannot plausibly be considered to be same product as a full-Y fare product which does
not entail round trip travel and is refundable. This situation is exactly analogous to the division of
seating in a theater according to desirability, charging the highest prices for close-in seats, and
limiting of discount seats before the pecformancc. No one argues that such a division is
appropriate, since high-WTP theater patrons derive more utility from a close-in view of the
performance. This is true even though the physical seats are identical, and everyone sees
substantially the same performance regardless of seating location. Similarly, the physical seats on
an airplane are substantially identical, and passengers in the same cabin receive approximately
equivalent levels of service. However, high-WTP passengers derive more utility from tne
flexibility and availability of a fare product.

Finally, it has been argued that because nondiscretionary passengers place a high value on
travel flexibility and options, they should compensate for cost inefficiencies inherent in catering to
their demands®'. For example, offering a given capacity in a market would be cheapest if there
were but one frequency on a large aircraft. Since the economies to aircraft size are well-
established, demand consolidation via reduced frequencies clearly reduces cverall costs.

Discretionary leisure passengers would be satisfied with this outcome because of their time
insensitivity. However, the one frequency option imposes a large disutility on time sensitive
nondiscretionary passengers, who place a high cost on “schedule dislocation” between desired and
available departure time/s. The offering of multiple frequencies reduces time sensitive passengers’
schedule dislocation costs. Since the additional costs are almost completely borne for the benefit
of the high-WTP time sensitive passengers, it is entirely equitable that they should pay more for
that flexibility™.

3! Frank (1983), pp. 238-255. This depends critically on the existence of scale economies in provision of air
transportation services, which is discussed in Botimer (1994), pp. 56-58.
32 Borenstein (1983), pp. 115-116.
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These considerations suggest not only that there are plausible reasons for charging
different prices, but also that such prices are not necessarily discriminatory. There may be
elements of both differential and discriminatory pricing in the airlines’ pricing structures. It is not
possible to identify from the information reviewed in this chapter the portion of observed price

dispersion due to each.

2.4. Arbitrary Nature of Demand by Fare Class

Regardless of intent, the effect of this variable pricing mechanism is to distribute demand
into several fare classes. As discussed above, the imperfect nature of this segmentation implies
that each fare class will not be composed of a homogenous type of passengers. That is,
passengers who take a particular fare product have heterogeneous demand functions. Passengers
can and will switch to other fare classes if the fare originally targeted to them is not available.

Therefore, the demana for a particular fare class is not isolatabie in wecry -- it ic not
independent of demands in other tare classes. It is defined only with respect to and situated
within the particular suite of other fare products offered in the market, by the same and competing
airlines. Demand by passenger type is more plausibly independent than by fare class, since the
characteristics which influence the respective demands in the former case differ by type. Thus,
demand among Type IV passengers is most influenced by service variables like frequency,
amenities on the flight, etc. while among Type III passengers the price variable is paramount.
Even by passenger type, however, interdependencies exist: Types I and II are both sensitive to
frequency and related service variables, and differ only according to price sensitivity.

This immediately creates a problem, because (as described in Section 1.1 above)
forecasting and the seat optimizing algorithm are both done by fare class, and both assume
independence among fare classes. One simple example of the revenue consequences of assuming
independence indicates its naiveté: Suppose an airline has but two fare classes, full-coach and
deep-discount with appropriate restrictions. The airline feels its current fare structure is
inadequate, since it believes a large intermediate group of passengers unwilling to pay the full-
coach price but unable to meet the deep-discount fare’s restrictions is not being served.

This problem is remedied by introducing an intermediate fare product, with a moderate

level of restrictions. Revenue estimates are performed assuming this is an independent market not

33



yet served. Ignored in the calculation are passengers previously paying full-coach but willing to
make the tradeoff to the lower fare (which could significantly dilute revenues) and those
previously purchasing the low-fare product but happier with the less onerous restrictions of the
intermediate product (thus increasing revenues). Under most circumstances, the number of
passengers stimulated by the intermediate fare product is insubstantial relative to the reailocations
from existing passengers, so ignoring the latter in the name of independence will lead to grossly
incorrect supply decisions.

In practice, recognizing and adjusting for the limitations of our independence assertion is
sufficient for forecasting and scau optimizing. Generated forecasts by fare class based on
historical booking data are valid, even though the demands are not indenendent, if the fare
product context does not change between the historical and forecast period. If it does,
appropriate adjustment of the historical database (Step 1b in Figure 1.2) can eliminate this
difficulty.

Adjustment for the independence problem is further enhanced by the examnation of
passenger behavior under constraints. Forecasts of unconstrained demands by fare class are
required by the seat optimizer. I will discuss methods to unconstrain demands in Chapter 3. This
does not ensure that enough space will be allocated to serve every fare class: The seat optimizing
algorithm will limit bookings on lower-valued fare classes if the forecaster indicates that many
high-value passengers will arrive. Under the independence assumption, the denied low-value
passengers simply do not travel. Realistically, when faced with the closure of their initially desired
fare class, some will sell-up to an available, higher-priced fare class. This occurs precisely
because the present fare structures are imperfect. Consideration of this possibility further
improves revenues as this behavior may be induced by limiting seats available in low-value fare

classes. I discuss methods to induce sell-up in Chapter 3.
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III. Literature Review of Methods and Past Assessments

This chapter considers each of forecasting, detruncation, and sell-up. I detail the purpose
and assumptions of each methodology, various formulation methods which have been advanced in
previous work, and existing comparative studies between models. Differences with the PODS
simulation approach to comparing the effects of differences in these input methodologies will be

discussed in Chapter 4.

3.1. Forecasting

3.1.1. Types of and Issues in Forecasting

3.1.1.1. Forecasting Applications in the Flight Planning Process

Forecasting is defined as the use of some systematic procedure (e.g., judgment, a “ruie Gi
thumb,” or mathematical technique) and historical data describing some process to predict how it
will be realized in the future. Although this thesis’ forecasting section focuses on applications
specific to the seat inventory control process, there are many other airline-specific uses for
forecasting tools.

Figure 3.1 details some of these applications and their ideal period of relevance for a single
flight departure. Differences in application require the selection of the appropriate forecasting
technique, which I discuss below. Strategic planning involves long-term assessments of the
airline’s objectives, e.g., what kind of route structure it should have, which specific markets it
should serve, and which aircraft it should serve these routes with. At this stage, macro-forecasts
describing long-term economic and social conditions are most appropriate. The results of the
strategic planning exercise will decide whether or not a particular flight should be offered.

Approximately a year before initiation of the flight, budgeting involves the coordination of
financing to meet forecast expenditures. Here micro-forecasts which describe the expected
financial costs incurred with introduction of a specific flight, facilities, etc. are required.
Preliminary aircrajft assignment also occurs at this stage, and includes forecasts of expected fleet
size and aircraft availability at the time of departure, and medium-term expected economic and

seasonal trends affecting flight demand.
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rigure 3.1. Ideal Flight-Specific Timeframes for Airline Forecasting Applications®

This stage also includes the initiation of the seat inventory control process for this flight.
Booking limits are somewhat uncertain at this stage, since final aircraft assignment may vary with
the results of the aircraft assignment exercise. Forecasts for this process are flight-specific
estimations of total bookings to come. Other short-term processes requiring forecasts as
departure date approaches include cargo load planning (which can be done only when aircraft
assignment has been fixed due to the variety of cargo pallets used by aircraft, total weight
restrictions, etc.) and inflight meal ordering, based on immediate-term forecasts of expected
show-ups for this particular departure.

The time frames illustrated for this hypothetical flight are generalizations, and are often
collapsed if opportunity presents itself. Thus, an airline may decide to immediately serve a market
that has been opened via a new bilateral agreement, or that a competitor has suddenly ceased
service in due to reallocation of resources to other markets, bankruptcy, or grounding. In this
case, most long-term forecasting of market demand (part of the strategic planning exercise) is
perfunctory or ignored, while aircraft assignment and seat inventory control are compressed into

the available time before the first flight departure.

% Figures 3.1 and 3.2 are from Wickham (1995).
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3.1.1.2. Forecasting Types and Techniques

Taneja divided forecasting methods used in airline industry applications into three groups
by type of analysis: qualitative (judgmental), quantitative (using mathematical methods), and
decision analysis (combining the first two methods). Example techniques for each method appear

in Figure 3.2. The chosen technique varies by the application, technical expertise, and resource

constraints.
| ] |
Quantitative Qualitative Decision Analysis
I [
Rule of Thumb Moarket Research
Judgement System Dynamics
Delphi Heuristic
| | =
Causal Methods Time-Senes Analysis
Regression Ratio Analysis
Econometrics Trend Projection
Simulation Moving Average
Bayesian Spectral Analysis
Spatial Equilbrium Adaptive Filtering
Box-Jenkins

Figure 3.2. Forecasting Techniques34

Lee segregated airline forecasting methods according to applicationg’5 . Macro-level
forecasts detail expectations of large-scale global, national, and regional passenger flows
dependent on socioeconomic conditions. Such forecasts are used for strategic planning purposes
and do not break out market shares by airline or forecast at the city-pair level. Taneja*® and
Kanafani’’ have written the primary academic treatments of macro-level airline forecasting. The
former book discusses regression for national and total airline traffic forecasting, while the latter

focuses on forecasting strategy for aggregate airline travel activity, stratified on variables such as

* Wickham (1995), pp. 34-35.
3 Lee (1990), pp. 47-49.

* Taneja (1978).

%" Kanafani (1983).
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trip purposes, length of haul, etc. Governmental and quasi-governmental organizations like the
Federal Aviation Administration®® and the International Civil Aviation Organization routinely
publish forecasts of airline travel between regions.

Lee’s second category, passenger choice modeling, involves the allocation of traffic in a
given market to the individual alternatives (which may be travel modes or, in the case of the
airline industry, individual airlines) offering service in the market. The most common approach to
this problem involves logit models which attempt to quantify the (dis)utility a perscn derives from
a trip on the various alternatives, and assigning a probability of travel choice accordingly. The
general reference in transportation on this and other “discrete choice modeling” techniques is
Ben-Akiva and Lerman®; airline-specific examples include Hansen*® and Alamdari and Black®.
Micro-level forecasting, the final category, invc'ves exactly the concern of this thesis --
forecasting passenger demands by flight, date, and fare class. I cover previously proposed micro-
level techniques in Section 3.1.2 below.

Regardless of the technique chosen or the process of interest, every forecast will have a
period (the unit of time over which the forecast is produced), a horizon (the time span covered by
the forecast, divided into a number of periods), and an interval (the time period over which
forecasts are revised). While the forecast interval is typically coterminous with the forecast period
(so that forecasts are revised at the end of every period), this is not necessarily so. For the
purposes of seat inventory control, the interval and period are equivalent and span the booking
interval as defined in Section 1.1. The horizon is equivalent to the booking process for the flight

of interest.

3.1.1.3. Time Series versus Causal Quaniitative Forecasting Techniques

This study will exclusively consider quantitative forecasts at the micro-forecasting level.
Such techniques make extensive use of data from previously departed flights which are “similar”
and predict what total realized bookings should be for the flight of interest. Quantitative methods

are divided into two types. Time-series analysis examines the movement of the dependent

® FAA (1995).

% Ben-Akiva and Lerman (1985).
“ Hansen (1990).

! Alamdari and Black (1992).
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variable of interest over time, and describes the nature of the stochastic variation in the process
under study. It assumes that whatever trends or variables influenced the progression of this
variable on previous departures will continue into the future. Time series techniques are also
referred to as “historical bookings” models, since they use booking information from past
denartures to infer the booking levels for a flight.

A major difficulty with time-series analysis is that there is no explicit consideration of
which factors influence demand levels, so a sudden change in economic or system components
influencing the flight will lead to a very inaccurate prediction. Causal methods remedy this
problem by examining historical data on possible influences of demand to identify relevant factors,
which are then weighted according to their importance in affecting historic demand. The most
common causal methods are regression and associated econometric techniques, and are also
called “advance bookings” models because most use information about BIH(i); (bookings already
received by interval i for the forecast flight f) to infer eventual total bookings.

All else equal, causal methods should be superior because they consider factors
determining demand. However, they have a significant drawback: an extensive database of the
many relevant variables must be kept to predict future demands. At any given time, an airline
must keep data on all flights which are at any stage of the booking process, so the requirement is
for the number of daily flights multiplied by the length of the booking process. With up to 2,000
departures daily and a booking process of up to a year in length, major U.S. airlines require an
active historical data base of up to 730,000 flights at any one time. Brevity in the historical data
base (HDB) required therefore becomes an important factor in the selection of forecasting
mechanisms. A causal model with many independent variables will not be considered if it is
impracticable or expensive to obtain values of these required variables on each of an airline’s
flights.

For the seat inventory control process, airlines typically utilize advance bookings models
which use as independent variables only information internally generated by the process (i.e.,
bookings in hand data). Such models are not strictly causal, since bookings up to interval i or
BIH(i) information does not “cause” total bookings received before departure or BIH(0). Rather,
both are influenced by the same factors. These “non-causal advance bookings models” are an

appropriate compromise, given the short-term nature of seat inventory control process (where
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causat’ve factors are less likely to vary significantly) and data storage requirements of true causal

models.

3.1.1.4. Forecasting in the Seat Inventory Control Process

The forecasting step of seat inventory control (Step 2 of Figure 1.3) is further detailed in
Figure 3.3. Before the beginning of each of the N intervals in the booking process for each flight

and fare class, a forecast is generated to determine the total expected bookings BIH(0) £ Which
will materialize before departure on flight f, assuming that demand is not constrained by booking
limits. If this is the first forecast for this flight (and therefore performed before the Nth interval,

since we index backwards), there are no bookings yet on this flight. Therefore, the forecaster

only has previous total bookings BIH(0) from the last departed n flights usable to predict
BIH(0) s for this flight. Here n is the choice of the number of past observations to use; some
airlines and our PODS experiments assume n = 52. Not all » flights need have equal weight:

some forecasters exponentially weight most recent departed flights, on the justification that these

flights were influenced by conditions most likely to still apply to the forecast flight.

Before Before
Mth interval N-i...&.. istinverval
BIH(0) from BIH(0), BIH() for | | BIH®)s for
past n flights past n flights this flight
g/ h 4 3/
Forecasting Model Forecasting Model
h 4 3
Predicted BIH(0), Predicted BIH(0)¢
for this flight for this flight

Figure 3.3. Forecasting in the Seat Inventory Control Process (Step 2 of Fig. 1.3)

For all other intervals i where ie(N-1,...,1), information available to the forecaster

includes: bookings BIH(i); which have already materialized for this flight up to interval i;
incremental bookings BIH(i) until i for the n flights in our historical database; and total bookings
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BIH(0) for the n historical database flights. Some forecasters do not use all this information to

predict final bookings BIH(0)  for this forecast flight”.

3.1.1.5. Assumptions of Forecasting

Forecasting methods in the seat inventory control process assume that the process which
is to be predicted -- demand by fare class for a given flight -- has certain propertics. These
presumed characteristics also apply to the historical data set from which the forecast will be made,
and underlay the theoretical treatment of the data. Formally stated, these assumptions are:

Demands are segregated by fare class and are mutually independent
Demands by fare class are not constrained by bocking limits
Demands are normally distributed

Cancellation rates are similar between HDB and forecast fiights

I have briefly considered the independence assumption and possible adjustments for
observed interdependence of demands in Section 2.5 (analysis of sell-up will be discussed in
Section 3.3 below). The second assumption that historical data are unconsirained -- ie., that
bookings were not artificially suppressed because the booking limit for a particular class was
reached -- is central to the forecaster’s unbiased operation”. Predictions based on constrained
data will always be too low, since only those flights with high demand reach booking limits (see
Section 3.1.3.2 below). Low forecasts lead to inadequate protection levels for higher classes, in
turn causing yield dilution. Seats which could have been sold to late arriving high-value
passengers are taken early by those with lower values (detruncation methods will be discussed in

Section 3.2). The unconstraired assumption also applies to the bookings for the present flight --
if a fare class has a constraining limit, materialized demand will be less than predicted BIH (0 f

No distortions are introduced by this assumption: the seat optimizer decides how many seats to

offer to each fare class, and in constrained situations will limit bookings on low-value fare classes.

“2 Note BIH(0), and passenger loads are not equivalent. Pax Load = BIH(0) - DB - NS, where DB are denied
boardings and NS are no-shows. The forecaster dces not predict loads net of DB and NS since these are separately
analyzed by the overbooking model (see Step 4 in Figure 1.3).

3 A few forecasters include internally a detruncation mechanism, in which data from the HDB may be constrained.
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Some distributional form for passenger demand must be assumed by detruncation schemes
(it is otherwise impossible to extrapolate frem data constrained at a booking limit), and by the
forecaster (because parameters describing the data must be estimated for input into the seat
optimizer). Analysis of reservation patterns indicates that the normal distribution of demand
typically holds for flights of low, moderate, and high bookings, with some positive skewness for
low-demand flights and a “spike” in the demand distribution at capacity level for high-demand
flights*. The normal distribution is assumed in virtually all seat inventory control processes used
by airlines, and will be followed throughout this study.

A final assumption of most forecasters is that cancellation rates do not vary between the
flights in the HDB and the flight f being forecast. If a forecaster uses any information from HDB

flights or f containing reservations which are later canceled (BIH(i) is an example) to predict final

demand, it is utilizing gross measure/s to predict BIH(0) f»anet measure®. Distortions will not

occur if cancellations on the predicted flight f follow the same proportionate gross/net
relationships as occur for HDB flights. Thus, forecasters “predict” a certain proportion of
cancellations for the forecast flight on the basis of previous demand. Underprediction of

cancellations causes more than expected final bookings, and vice versa.

3.1.2. Literature Review of Available Forecasting Techniques

This section reviews academic and industry literature about forecasting techniques and
uses an example HDB booking data matrix to pinpoint the data used by the various models

reviewed. I classify the models into three groups, which are defined as follows:

e Historical Bookings: Bookings data from flights in the HDB are input as
predictors of the unknown increase in bookings on the forecast flight from the
forecast interval until departure.

o Advance Bookings: Bookings-in-hand data from the forecast flight are
input as predictors of the unknown increase in bookings on the forecast flight.
e Combined: Both bookings data from the HDB and bookings-in-hand data
from the forecast flight are used to predict the unknown increase in bookings
on the forecast flight from the forecast interval until departure.

“ Lee (1990), pp. 122-135. Lee discusses some studies suggesting that airline bookings are log-normal and
gamma distributed.
*5 This is true because cancellations by definition cannot occur after the end of the booking period. However,

passengers can no-show.
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Only that data directly used to infer the unknown bookings increase is relevant for this
categorization. For example, a model which takes HDB data to estimate model parameters and
then bookings-in-hand data to generate a forecast is an advance bookings model, not combined:

In this case, HDB data only establishes model parameters.

3.1.2.1. Historical Bookings

The simplest historical bookings approach is the arithmetic mean of historical bookings at
the end of the booking process, calculated over selected departures from the HDB. Scandinavian
Airlines proposed this basic model in a paper that also addressed related issues like the quantity of
historical data necessary for accurate forecasting and outlier removal*®. This paper is closely
related to the work of Duncanson®’, who incorporated improvements to the basic model including
exponential smoothing to disproportionally weight the most recent departures and seasonality
adjustments. However, his focus was toward stable European markets in the 1970s, and the
forecasting horizon was only three months. Neither model broke down forecasting to the fare
class level.

Formalized versions of these simple or exponential bookings models by fare class are
given by Wickham*®, and are represented by equations (3.1) and (3.2) below, respectively.

" 1 f=t
3.1 BIH(0); = ——. S BIH(0);
G.1) O =47, ZBIHO)
(3.2) BHO), = S %L BIHO) S =1
X = —. .St o, =10,y <..<0,_
I iefiu M-t U el T =

where BIH(0) 1 is final bookings on day O of the flight f being forecast

M is the number of flights considered in the forecast plus the
number of flights leaving before f but not yet departed®.
t is the booking interval from which the prediction is being made.

“ SAS (1978).

47 Duncanson (1974).

“ Wickham (1995), pp. 45-46.

“ Therefore, M - ¢ is the number of HDB flights used by the forecaster.
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The booking information used by these methods is illustrated by the booking data matrix
given in Figure 3.4 below. Our objective is to predict the heavy boxed cell, or the total bookings

BIH(0) 7 at the end of the last interval 0 before flight day (FID) on flight f. At this particular

snapshot in the booking process, flight f has two booking intervals before departure. Assuming
that booking intervals are equally long, this means flight /-2 took off today, yielding its final
bookings and departing load, or BIH(0);., and Loady.,. Flights earlier than f-2 have a complete set
of information, while those leaving after have not yet departed and so only have bookings in hand
information up to the last booking interval they have traversed. The mean historical bookings

models described in equations (3.1) and (3.2) make use only of information contained in the

shaded block A of Figure 3.4.

Departure Date
M J9 J3 2 S J S
Loadgpy| | Load, | Loadgs | Loadg,| 2 ? ?  |mD
LR ” T - 1,
BIKC1), p t++| BIEK1), | BIFC1) 5| BIH(D), ? ? |1

BIH(D); | | BIK2); | BIH(2) 5| BIFC2), | BIF(2),, i
BIF(3)g \,| | BIFK3)p,| BIF(3) 5| BIN(3), BIN(3)¢ | | BIH(3), ? 3

-
o
adnupdag si0i0g spasstur 3uoog

BIH), y | BIHAY), ,| BIHQY), 5 BIH(N), | BIHQ) | | BIHGN),  |---|BIHQ), ¥

Figure 3.4. Booking Data Utilized in Historical Bookings Models

Sa also proposed a historical bookings model by calibrating two Box-Jenkins’ ARIMA
(Auto-Regressive, Integrated Moving Average) models for a single fare class on a particular
flight™®. This process makes use of autoregressive and moving average models and the same
block A of information in Figure 3.4 to estimate parameters that minimize the squared difference
between the actual and estimated time series. His results yielded high standard errors, reflecting
high inherent variability in the data. The poor results led Sa to abandon the ARIMA approach.

Completing the examination of historical bookings models are pickup or ‘“historical

moving average” methods, which estimate the average increase in bookings from the interval of

% Sa (1987), pp. 75-82.



analysis ¢ to the last booking process for selected HDB flights®. Equations (3.3) and (3.4) give
the classical pickup models for equal and exponential weighting, respectively. Figure 3.5
indicates the bookings data used by the classical pickup model.

- f-t
(33) BIH(0) = .;ll__; % (BIHO); = BIHO) )+ BIH()
HO), = 3 % BIH(t);)+ BIH
(3.4) BIH(0) ¢ —i_f_M-A—th-(BIH(O),-— (1);)+ BIH() ¢
It
S.t. j=;$_‘,_ﬁ,. =l@, y<.<0y,
Departure Date
J-M J9 3 J2 71 f fn .
Load , | Load,, ? »  |[mp§
? ? o %
v g
i (N
BIH(.3)f_M BIF(3); | BIH(3); 5| BI(3) | BIH(3), | BIF(3), i 3 §
BIHGY), || BIHAY), , BIH(N)f_3| BIFQY), | BIHQY), | [BIHQD, |- (BHAD,, |V &

Figure 3.5. Bookings Data Utilized by Classical Pickup

The advanced pickup model takes into account information from soon-to-depart flights
with incomplete booking histories. This modification, developed at Canadian Pacific by
L’Heureux™, is expected to respond to variations in demand more rapidly. As shown in equation
(3.5), the advanced pickup model breaks up the pickup estimation pzocess into ¢ “pickup periods”
measuring pickup in each time interval, with subsequent summing of results. This permits

incorporation of all data frcm incomplete flights. The process is illustrated in Figure 3.6, where

3! Pickup models are not combined because bookings-in-hand (advance bookings) is simply added to the estimate
of pickup (derived from historical bookings) to derive the estimate of B/H(0) f - Bookings-in-hand are not used

to infer bookings on the intervals £ ... 0 which have not yet occurred.
52 L’Heureux (1986).
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advanced pickup uses a series of shifting, overlapping data “blocks” to estimate interval-by-

interval pickup.
R 1 f~t f-t+1
(3.5) BIHO)f =— > (BIH(O),- - BIH(l),-)+ > (BIH(I),- — BIH(2); )+
M-t |i=f-Mm i=f-M+1
f-1
vt X (BIH(t -1; - BIH(t),-)]+ BIH(1) ¢
i=f-M+t
Departure Date
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Figure 3.6. Bookings Data Utilized by Advanced Pickup
3.1.2.2. Advance Bookings

Harris and Marucci of Alitalia developed a simple advance bookings model providing
forecasts by class of aggregate bookings for groups of selected flights on the basis of two data
sets: One contained “snapshots” of bookings for the flights in question at five different points in
their booking history, and the other described the total booking levels on all of Alitalia’s flights
for a 45-day time period®. This aggregation (necessary because of the less-than-daily frequency
of most of the company’s flights) significantly limits applicability to present forecasting problems,
since specificity and sensitivity to variation in particular flights is lost. Additionally, in the U.S.
airline industry most routes have at least daily frequencies.

A modified expression for a general regression model proposed by Lee™ is given in

53 Harris and Marucci (1983), p. 186.
* Lee (1990), pp. 108-110.
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equation (3.6). The regression includes three groups of terms: the first for bocokings already
obtained for the given flight at time ¢, the second for exogenous causal factors, and the last for the
random error term in all regression models. This regression model was not calibrated on any data
set, nor were possible exogenous variables W specified. A reduced version of this model utilizing
only the BIH(0) and BIF(t) data from HDB flights was proposed and tested by Wickham™. A
non-causal regression model is used in Wickham’s formulation, since BIH(t) is not a variable

which “causes” BIH(0) data -- both are the results of a common set on eXxogenous causes.

(3.6) BIH(0); = _sﬁo,- - BIH(i) ; + g - W(f,i)+v(f,i)

where 1, are the coefficients on BIH in previous time periods
g is a vector of coefficients on exogenous factors

W is a vector of exogenous factors
v is a random error term
The HDB data used for advanced bookings models is detailed in Figure 3.7 below.
Blocks BI and B2 form the endogenous part of the dataset on which the regression is estimated.
Only fully departed flights (in our example, up to f-2) are included in this estimation. The
estimated relationship between the BI variables and the final B/H(0) data in B2 is then used (in

concert with exogenous variables) to predict BiH(0) r given the partially complete booking

history of flight f in block A.

An unusual advance bookings model was proposed by Lee, who suggested that the airline
booking process was Poisson distributed with a certain probability of a request or cancellation
materializing within a specified interval. Lee develops a censored Poisson forecasting model
based on this assumption which may be estimated with maximum-likelihood techniques. The
development of a censored model thus incorporates the detruncation process into the forecasting
mechanism. Formulation of this moedel is complex and will not be described here’®. The Poisson
approach adopted by Lee assumes that the request probability, cancellation probability, and

booking limits for the fare class are all constant within the intervals being forecast’’.

55 Wickham (1995), pp. 47-48.
% The necessary equations are 7.6, 7.9, and 7.10 in Lee (1990), pp. 182, 184-185.
5 Lee (1990), pp 84, 178.
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Figure 3.7. Bookings Data Utilized in Advance Bookings Models

Two issues complicate his approach. First, it is computationally intensive. A maximum-
likelihood estimation (MLE) procedure in two variables is required for each flight, between each
interval. A typical large U.S. airline with 1,500 flights a day, 15 intervals in the booking process,
and a booking process of 100 days would have to perform, on average, about 10,500 MLEs a
day. Decreasing the number of intervals to reduce computation requirements is infcasible because
the three intra-interval assumptions underlying the Poisson approach are increasingly less likely to
hold -- besides reducing revenues by being slower to reoptimize for developing traffic trends in
advance bookings for the forecast flight.

Second, the assumptions about arrival rates, cancellation rates, and booking limits are
unrealistic. Lee’s adoption of three intervals in his simulations suggests that the booking curve
and cumulative cancellation probability is linear but for two “kinks” (see Figure 1.1 for
representative booking curves)®. While it is true that booking limits BL; as defined in Section
1.3.1 do not change within the booking interval i, Lee’s definition of “booking limit” is actually
Mx (maximum bookings in a fare class) which does®. The nested nature of most present seat
optimization algorithms requires a booking in any fare class to decrement the booking limit not
only in that class, but some or all other classes. In these circumstances, the censored Poisson

model’s assumption of constant “booking limits” is a requirement that no request occurs in any

%8 Lee (1990), p. 186.
% Recall from Section 1.3.1 that maximum allowable bookings Mx within booking interval i is the booking limit
BL, on that fare class less bookings on other fare classes which affect the fare class’ SA.
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other fare class which affects seat availability SA on this class. Thus, sufficiently small intervals
must be chosen that Mx does not vary, i.e., no request occurs either in a lower-valued class or (if
all fare classes’ SA are decremented) any other fare class. Either condition easily increases the
interval requirement for a typical flight to far above 30, further taxing computing capacity. Lee
acknowledges that assuming one fare class ignores the nested nature of seat optimizers®, but does

not address the implications on intra-interval stability of Mx.

3.1.2.3. Combined Historical and Advance Bookings

There are also many models utilizing both historical and advance bookings data. Sa
(disappointed with his time series results) calibrated causal regression models for bookings to
come on a particular flight given BIH(t), a seasonal index, day of week index, and a historical
average of bookings to come or “pickup” between interval ¢ and departure. Sa’s method is

distinguished from advance bookings models because both types of bookings data are used as

variables to estimate BiH(O) f- In the advance bookings models, one data set (historical

bookings) is used to calibrate coefficients which will be applied to the other (advance bookings).
This effort was much more successful in predicting demands by fare class, however there were no
tests of forecasting ability®'.

Ben-Akiva et. al. proposed a model for microforecasting by flight and class®, combining a
non-causative regression model for advance bookings and a time series model for historical
bookings on previous departures. While the calibrated models fit the data set well, the analysis
was done on a monthly basis due to data limitations. There were also no validation tests of
forecasting ability on future flights.

Lee developed a non-causal “full-information” model combining weighted final bookings
information from flights already departed, BIH(i) for flights not yet departed, and BIH(i), for the
forecast flight /. A modified version of his formulation is given in equation (3.7) below. The
full-information forecasting model takes advantage of the fact that flights with incomplete
booking histories (flights which have not yet departed) are likely to reflect recent changes in

% Lee (1990), pp. 93-94.
8! Sa (1987), pp. 83-108.
‘2 Ben-Akiva et. al. (1987).
% Lee (1990), pp. 115-117.
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demand conditions which will have the strongest effect on bookings for the flight being forecast.
Thus, the coefficients in equation (3.7) should be ranked as @; <y; < A. Lee’s model makes use

of all the shaded squares in Figure 3.4.

A f-t F-1
3.7 BiH(O); = "X@;-BIHO);+ S, BIH(t+i- f); +A-BIH()f
i=f-M+i i=f—t+1

where @, are coefficients on total bookings for flights in the HDB
y,; are coefficients on most recent BIH information for flights

which have not yet departed
A is a coefficient on BIH(t), data for the flight in question f at
interval ¢ in its booking process

Lee’s formulation of the “full-information” model combines forecasting and detruncation

in a recursive substitution method whereby final demand BIH(0) r is derived by interval-by-

interval demand estimation until interval 0 is reached®. He uses the same MLE procedure as the
Poisson-based model to estimate demand for each of the intervals. Unfortunately, this makes it
even more computationally intense. An airline must now compute N - ¢t MLE estimates (where N
is the total number of intervals and ¢ the interval from which we are forecasting) for each flight,
for each interval ¢, for a total of N/ MLE computations per flight®. For the typical major U.S.
airline case I have described, this implies 42,000 MLEs per day! Additionally, the full-information
model retains the assumption of invariant “booking limits” within each interval®. I will consider a

type of “full-information” model which does not require MLE estimation in Section 5.2.3.

3.1.3. Critical Review of Past Comparative Assessments

Many of the authors I have reviewed above who have formulated forecasting models also
evaluated alternative models on some metric, usually forecast accuracy. In this section I review
these comparison techniques, and highlight the misleading nature of using measures of forecast

error as a comparative metric or to evaluate forecasting performance.

3.1.3.1. Past Comparative Studies of Forecasting Methods

 Lee (1990), p. 190.
% This is compared to N computations per flight for non-recursive forecast estimation procedres.
% Lee (1990), pp. 187-188.
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o Sa: ARIMA Time-series and Regression

Sa’s comparisor of ARIMA time-series versus regression models for short-term
forecasting rested on goodness-of-fit tests, using bookings data from ten markets. The ARIMA
models were dismissed on the basis of poor performance in one class on one of these markets.
Subsequent regression models were estimated for all markets (with the same variable set), and
significantly differed in overall model fit and statistical significance of certain coefficients. There
were no tests of forecasting ability on a different data set for any of the fitted models, nor was
information about time-series fitting on the nine other markets provided. Because airline
reservations data are significantly disparate by market and comparative testing was incomplete,

the study has limited implications about the relative desirability of the models tested.

o Ben Akiva: ARIMA Time-series, Regression, and Combined

The result of Ben Akiva et. al. was a combined model with a ARIMA time series
component (using historical bookings) and a regression component (using advance bookings).
When the two components were run separately, correlation coefficients between the predicted and
actual observations declined; however, the regression model was found to fit the data better than
the time series®’. An absence of tests for forecasting ability on a different data set, the monthly
nature of data, no consideration of the effect of booking limits on demand levels, and an

aggregation of fare class data into two classes limit the applicability of Ben Akiva’s conclusions.

s Wickham: Pickup, Regression, Time-series

Wickham’s study obtained a database of airline booking histories by fare class and day of
week, selected several forecasting methods, then evaluated each on measures of forecast
accuracy. The forecasting models included classical and advanced pickup (utilizing both simple
means and exponential smoothing of the HDB), time series (again with and without weights on
the HDB), and regression based on BIH(t). These tests were performed for a variety of HDB

sizes and forecast horizons; additionally, a simple unconstraining mechanism was applied,

57 Ben Akiva (1987), p. 12.
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allowing accuracy comparison with forecasts performed using the constrained data®™. His

principal conclusions were as follows®:

o Pickup consistently outperformed regression and time-series models.

e Increasing forecast horizons (the distance between the present t and
departure date of the flight) favored the advanced pickup model with
exponentiation.

e Advanced pickup was more sensitive to dramatic shifts in demand.

¢ All models had positive biases; forecasts overpredicted demand. This was
attributed to a positive bias in demand variability.

o Increasing the size of the HDB did not significantly affect model
performance.

One primary advantage of this comparative study was its validation of results on an
independent data set. Wickham’s in-depth consideration of alternative model specifications and
various measures of forecast error make his thesis the most complete evaluation of alternative
forecasting models on an accuracy basis presently available. There were a few minor detractions.
First, two fare classes were selected from an airline’s database were selected without analysis of
whether the relative performance of forecasters might differ according to this selection. The
data was aggregated over 24 distinct markets without explicit consideration of characteristics like
stage length or dominant passenger type. Finally, positive bias was correctly identified but

attributed (probably mistakenly) to outliers. Section 3.1.3.2 below will discuss this issue.

e Lee: Censored Poisson, Full-Information, Regression, and Pickup

Lee’s thesis on the airline reservations forecasting process compares his censored Poisson
and full-information models with a regression and pickup model. An airline dataset for a single
market was chosen, with a forecasting period of two months and an HDB of approximately nine
months. All forecasters had only three intervals, with forecasts at 60, 28, and 14 days from
departure™. Class-specific forecasts were generated and the chosen forecasting models compared

on the basis of three measures of forecast accuracy. His results indicated that the full-information

58 See Wickham (1995), p. 59, for a discussion of which specific scenario combinations were tested.
% Wickham (1995), pp. 113-117.

" Wickham (1995), p. 56.

" Lee (1990), p. 192.
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model usually was most accurate, followed by the censorc(i Poisson, regression, and pickup
models™. Expanded tests considering several markets and other fare classes were performed on
the pickup and full-information models; the three booking interval restriction was kept. These
tests confirmed his initial results: Pickup was decidedly poorer than the full-information model”.
Such results indicate the power of Lee’s models despite the unrealistic assumpiions about
constancy of “booking limits” and request/cancellation rates.

However, this comparison of error does not address the tradeoffs involved between
accuracy and updating. An airline faced with computing constraints might utilize the full-
information model but update forecasts less frequently than if a non-recursive, non-MLE
forecaster (e.g., pickup) were used. It is not clear that more accurate forecasts less often is
preferable to less accurate forecasters more often (thus taking advantage of developing BIH(i),
information). A better procedure would compare load and revenue between Lee’s advanced

models with few booking intervals, and traditional models with frequent updating.

e Lee: Revenue Cost of Forecast Error

Lee’s thesis comes closest to the present PODS effort by examining the revenue effects of
forecasting. Here the revenue cost of forecasting error was estimated via simulation. Revenues
for a particular flight obtained with the EMSRa seat optimizing algorithm are computed when
forecast demand by fare class varies by some positive or negative proportion from actual,
materialized demand. This is compared with the revenue result when the forecast demand is
exactly correct, and differences are attributed to forecasting error. The procedure is repeated for
proportionate errors in measuring the standard deviation of demand. These tests are performed
under a variety of demand levels.

All fare classes are assumed to have equal proportionate variation. Lee constructs a
simplified simulation of the seat inventory control process in which all demand arrives at once, in
increasing order of value; there is no competition and no interdependence of demand™. Results

indicated the following:

7 Lee (1990), pp. 199-202.
7 Lee (1990), pp. 204-215.
7 Further information on Lee’s simulation methodology is found in Lee (1990), pp. 242-245.
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e Varying forecast standard deviation had little impact on revenues, even at

extreme demand levels.

o Varying forecast mean demand significantly impacted revenues in high
demand conditions. Larger revenue drops were exhibited when the forecast
exceeded the actual demand ({(overprotection) than when it was less

(underprotection).

A simplified version of Lee’s revenue loss graphs appears in Figure 3.8 for medium and
high demand levels”. Increased revenue losses with overprotection were attributed to the fact
that seats protected for high value passengers would go empty, while low-value passengers would
be denied. By contrast, with underprotection seats are still filled (since by assumption demand

levels are uniformly high for each fare class) but with more low-value passengers, who fill up

spaces which are later denied to high-value passengers’.
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Figure 3.8. Revenue Losses as a function of Forecast Error, High and Low Demands

This conclusion is dependent on the assumption of independent fare class demands. Since
demand is interdependent, a passenger denied 2 seat in a low-value class will often sell-up to a
higher-value seat (see Section 3.3 below). Interdependence also applies to competitive interaction
in the marketplace: passenger loads by fare class result from trade-offs between all airlines’ fare
products in the market; the process is not separable by airline. While these considerations qualify

the asymmetric nature of revenue decline with forecast error, the general parabolic shape of the

7 Lee (1990), p. 258.
" Lee (1990), pp. 253-254.
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curves in Figure 3.8 (indicating greater-than-linear revenue declines with linearly increasing

forecast error) is probably correct.

3.1.3.2. Problems Using “Forecast Error” in Comparative Assessments
e Definition of inherent bias, and conditions under which it occurs

Most troubling in all these assessments of alternative forecasting methods on error-based
metrics is an unclear treatment of what base to use when measuring error, and an absent or
incorrect analysis of biases created by the comparison methodology. Depending on the base used
in error definition, the existence of constrained observations in the dataset, and the forecaster
used, inherent forecast biases will occur. Bias is said to exist when the summed difference
between predicted and actual bookings over all flights being forecast is not zero'|. Failing to
eliminate built-in biases confuses the ranking of forecasters: observed differences may be due as
much to the construction of the comparative experiment as to inherent performance differences
with other models. This analysis, while directly applicable to these comparative efforts, is also

relevant to airlines desiring an unbiased measure of forecast error.
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Figure 3.9. Inherent Biases in Measurements of Forecast Error

™ Wickham (1995), pp. 64-65, 111.
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First, most forecasters assume an unconstrained dataset’®, but all comparative analyses of
forecasters except Wickham ignore the issue and assume their data are unconstrained. Second,
the various error “metrics” comparing the observed versus predicted bookings™ operate on one of

two measures of observed bookings: either BIH(0). (observed total bookings before departure
constrained by closure occurring on some of the forecast flights) or BiH(O)u (expected total

unconstrained bookings; this must be estimated). The choices a forecast error analysis makes on
these two issues creates four possible combinations which I divide into types, with expected bias
as described as described below (see Figure 3.9).

Type I analyses (constrained data and a constrained error measurement) contain uncertain
forecast bias. This is true because without detruncation, the treatment of censored observations
relative to unconstrained observations varies according to the forecaster used. Consider Figure
3.10, which relates the time ¢ before departure and total bookings received BIH(i); The average
relationship between bookings-in-hand and time is a “booking curve;” for flights which do not
close in this example, it is A (the maximuri: bookings achieved on A flights is Uy, and Uy < BL).
A booking curve B’ for a flight which exhibits high demand and closes at cl is also given (if there
wore no booking limit on these flignts, the high demand flight’s booking curve would be B).

The classical pickup forecaster in equation (3.3) estimates the average increase in
bookings from time period i to 0, which is Uy - U; for unconstrained flights. Without detruncation
of the historical dataset, the pickup on the constrained flight is BL - C;. Since BL - Ci< Uy - U;
(that is, the slope of a line a drawn between bookings at i and 0 for unconstrained flights is
steeper than for constrained flights b’), averaging the pickup on the constrained with
unconstrained flights A decreases the classical pickup forecasts below U,*°. But average realized
bookings BIH(0). will always be between U, and BL, since closed fiights have BL bookings.

Therefore, under Type I condivions classical pickup has an inherent negative forecasting bias.

7 Certain forecasters incorporate both detruncation and forecastiny in one methodology. For the purpose of the
typology in Figure 3.9, the forecast dataset in these cases is unconstrained.

7 Wickham (1995), pp. 65-67 gives several altemnative measures of forecast error.

% Note also that if B flights are detruncated, the resulting pickup forecast increases as expected, since C, - G > U,
- U;. Chapter 6 discusses this fact in more detail.
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Figure 3.10. Pickup Forecasting With Censored Flights

Now consider the simple time-series of final bookings forecaster in equation (3.1). There
is no inherent bias in predicting final constrained bookings BiH(O)c, since this forecaster does

not treat constrained observations differently than unconstrained observations. Therefore, the
inherent bias under Type I conditions is uncerzain: it depends on the forecaster’s treatment of the
fact that constrained observations all have final bookings of BL. Determining the direction of
forecast bias in these circumstances requires specific analysis of each forecaster tested.

Most comparative studies of forecasting (including all the studies examined above) are
Type I because they use a constrained measure for error calculations and do not consider
detruncation. For example, Lez recognizes the difficulties involved in assuming a detruncated

data set. Because the formula for determining the unconstrained bookings in a fare class
BfH(O)u given an effective booking limit is “quite complex and ... difficult to apply,” especially

for his censored Poisson model, he excludes censcred data from the data set when calculating
forecast performance measures’’. Wickham finds a positive bias in forecasts based on his
constrained dataset. He attributes this to outliers, which may have merit (all forecasters had the
bias) but does not consider whether each forecaster creates a differential bias™.

Type II forecasting error analyses occur when an unconstrained forecast dataset is used in

combination with a constrained measure of forecast error. A positive inherent forecasting bias

8 1 ee (1990), pp. 156-157. This leaves an “unconstrained” but downward-biased dataset.
% Wickham (1995), p. 111.
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results because the forecast bookings are not constrained by booking limits, but observed final
bookings BIH(0). are necessarily limited by BL. The single comparative forecasting study to examine
this issue is Wickham, who detruncates his dataset and reruns his model set on the detruncated data.
He finds the forecasting models run on the detruncated data have a significantly higher bias than
when run on truncated data, which is again attributed to outlier distortions. Here the increased bias
is almost certainly due to Type I effects®®. Some airlines often engage in Type II forecast error
analyses in the course of monitoring the effectiveness of seat inventory control. As discussed
extensively in this section, airlines forecast total bookings for a flight f on the basis of flights in an
unconstrained HDB and/or advance bookings on the flight. This is then compared with actual
constrained total bookings BIH(0). for the forecast flight to yield post facto forecasting ability of
utilized forecasters™.

Under Type III conditions, the dataset includes flights with constrained data, but final
booking data BIH(0). for each flight is unconstrained by some method for the purpose of calculating
error. Such a situation is unlikely, since it seems illogical to develop a detruncation technique to
calculate forecast error and not use the same method to detruncate the data used to make forecasts.
This circumstance causes a marked negative bias in predicted final bookings, because flights in the
forecast dataset which close will be have constrained final bookings BIH(0). = BL but detruncated
“actual” bookings level will be BfH(O)u > BL. No comparative studies of forecasts were Type III.

Finally, Type IV error analyses involve a dataset which is unconstrained and a base for the
measure/s of forecast error which is similarly unconstrained. This type of analysis is rarely
performed; studies of forecast error routinely forget the purpose of the forecaster (to predict
unconstrained demand by fare class) and suppose constrained demand is instead the goal. Forecast

errors calculated under Type IV conditions yield the only comparisons free of methodology-induced

bias. There is one significant disadvantage: because the base unconstrained bookings BiH(O),, on

¥ Wickham (1995), pp. 111-112. Positive bias also results from a “double-counting” problem. Most detruncation
procedures assume independence of fare class demands. Thus, a passenger denied space in a fare class because of
closure is assumed not to sell-up to a higher-valued fare class. Since this often occurs, the passenger will be counted
twice: First, as a denied passenger in the low-valued fare class, and again as an accomodated passenger in the higher-
valued fare class.

¥ In this case the “forecast dataset” is the HDB and the comparison is between actual and expected bookings for a
specific forecast flight based on information in the HDB -- as opposed to the comparative forecasting methodology
case, where the comparison is between actual and forecast bookings on a set of flights within the forecast dataset. The
analysis is the same. Note that airline forecast error calculations are not strictly Type II if bookings at time interval i
for the flight BIH(i) ever reach Mx and an airline does not unconstrain this measure over all i before departure.
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which forecast error is calculated must be estimated via detruncation for every flight which closes,
systematic biases in the detruncation method will similarly bias error calculations. Thus, a Type IV
analysis is only truly unbiased if the detruncation method involved is unbiased, or if there are no
constrained observations among the flights being compared. Of course, this complaint is also true of

the other analysis types (II, IITI) which require detruncation.

o Difficulty in achieving zero “forecast error”

Error measurement and reduction is a desirable goal because (as demonstrated by Lec in
Figure 3.8 above) only with zero forecast error can maximal revenue be achieved. However, even if
definitional issues about forecast error are resolved, the achievement of zero error in actuality nearly
impossible. The problem lies in assuming that an input with zero forecast error results in flight loads
that exactly adhere to the “zero error” predictions, and thus maximize revenue. Such an event rarely
occurs.

To illustrate, suppose a particular constrained flight f departs and the airline is certain that
passengers on the next departure f+1 of this flight have exactly similar demand characteristics.
After detruncation, the airline inputs as its forecast for the f+1 flight the expected unconstrained
bookings based on constrained bookings from f. Does this “zero error” forecast result in a “zero
error”’ result, with passengers materializing as predicted?

No, because the seat optimizer will adjust optimal booking limits to these inputs, causing
different class closure properties, sell-up and/or lost passengers, and thus a different (constrained)
observed booking pattern than f. The associated unconstrained booking level for f+1 will also be
different. Hence, “forecast error” for flight f+I will be nonzero despite perfect knowledge about the
requests which will materialize on this flight, given present fare structures. There are two conditions
in which this rule does not apply: First, if no fare class is constrained at this demand level; and
second, if each passenger has been placed in the maximum fare class he or she is willing to pay and
the airline effectively prevents dilution. In these two circumstances, bookings will materialize as
expected: No closure occurs with low demands (and thereby no sell-up), and with effective
segmentation no sell-up occurs in the face of closure because the maximum WTP of passengers has
already been identified.
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These comments bring us back to the issue addressed in Section 2.5 -- the arbitrary nature
of “demand by fare class.” It is theoretically problematic to compute forecast errors on fare class
categories when the underlying generative process occurs by passenger type -- and a precise
mapping between passenger type and fare class happens only in the two limited circumstances
above. Otherwise, observed demands in each fare class are the result of the time in the booking
class that lower-fare classes close, and the segmentation ability of each fare class. Such
difficulties suggest that an emphasis on “forecast error” to compare forecasting methods is
misguided. I argue that a more appropriate comparison is a revenue analysis, comparing the
revenues an airline can expect to earn under a variety of different forecasters, given similar
demand and competitive conditions. This avoids the methodological flaws involved in defining
and measuring forecast error, and the intermediate step of abstracting from forecast error to

revenue performance. I discuss the advantages of PODS for this purpose in Chapter 4.

3.2. Detruncation

3.2.1. Detruncation as a Step in the Flight-Level Forecasting Process

Unconstraining, detruncating, or uncensoring distributions refer generically to the process
of estimating parameters of a distribution based on a sample from which certain values have been
removed or censored®. In the airline-specific case, we refer to a situation when bookings-in-hand
BIH(i) reaches BL during some interval i. Now the involved fare class is closed, and no more
requests will be taken in this fare class unless a cancellation occurs or the seat optimizer
determines to make more space available at the next reoptimization (see Section 1.3).

A truncated distribution of demand for a particular flight is shown in Figure 3.11. The
random variable BIH(0); is, as before, the total bookings received for the flight. Now suppose a
mzximum of Mx bookings will be allowed in this fare class. Ther, if bookings are less than Mx,
the maximum is never reached: the fare class will always be open. However, if Mx or more
requests are received (which occurs with probability A), only Mx will be carried. The probability

distribution is therefore censored from above at Mx, and will have a “spike” at that point.

% In statistics a distinction is drawn between truncation (where offensive values are excluded entirely from the
population, and thus not countable) and censoring (where the observations may be identified and counted) [Cohen
(1959), p. 217 and Schneider (1986), pp. 1-2]. I use the terms interchangeably.
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Without unconstraining the expected value of BIH(0) for this flight is X,, but actual mean

demand for this fare class is X. The objective of the various detruncation methods is to

determine X given X, , Mx, and (often) supplementary information about the booking curve.

—d
X X Mx BIH( O)f

Figure 3.11 A Censored Demand Distribution

Not detruncating could theoretically have severe revenue consequences for an airline. This
is due to the self-fulfilling nature of forecasting in airline seat inventory control. If a forecaster

underpredicts demands for higher-value fare classes due to not detruncating (which will always

occur, since X >X, ), more low-value passengers will be accommodated, leaving no room for

high-value passengers who arrive later. This resuit becomes part of the HDB for future flights,
depressing the high-value fare class forecasts further. Dilution becomes extreme as bookings of
high-value passengers spiral downward, replaced by low-fare passengers. This worst-case
scenario is mitigated to the extent that high-value passengers arrive early, since any indication of
higher than expected bookings in a high-value fare class leads to increased protection levels at the
next reoptimization. Further, demand levels are typically not so impacted and booking curves for
high versus low value passengers are not so disparate (see Figure 1.1) that the plane would fill
with the latter before the former arrived.

Another issue is the variability of Mx over the booking process. It is easily possible that a
fare class closed at one point will later open (see Section 3.2.2 below). Theoretically, the HDB

could include information on open/close dates for later incorporation into the detruncation
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process. However, few methods have been developed to take advantage of this informaticn.
Most present detruncation methods and tests in this thesis assume that the flight is closed after ihe
first closure until departure. This assumption generally leads to over-detruncation and therefore
over-forecasting of fare classes with significant closure. Concerns about resultant spoilage (seats
protected that go empty) are somewhat mitigated because closure occurs most often in lower-

value fare classes, with few or no lower fare classes to “overprotect” against.

3.2.2. Literature Review of Available Detruncation Techniques

For flight-level forecasting, we have a situation similar to Figure 3.11: the object is to find
the unconstrained mean X for final bookings BIH(0) among all selected HDB flights, given
knowledge of X, its standard deviation, the number of constrained and unconstrained

observations, and Mx. This circumstance lends itself to maximum likelihood estimation (MLE).
In statistical parlance, this distribution is singly Type-I censored from the right at Mx. The
problem is solved (assuming an underlying normal distribution) without the exhaustive iterative
process typically used in MLE problems® using a method developed by Cohen®’.

Alas, the detruncation problem in revenue management is complicated by two unfortunate
facts. First, on the same flight Mx is not fixed over the booking process: The maximum allowable
bookings for a fare class changes each time a booking is received or canceled in another fare class
which affects this class’ seat availability SA, and during reoptimizations of the seat optimizing
algorithm between booking intervals when bookings limits BL are modified (see Section 1.3.1).
Second, between flights there is even more Mx variability: Mx for each flight and fare class

depends on BL, which is based on the expected forecast of BiH (0) for higher-valued fare classes.
Obviously, total bookings BIH(0) on each flight varies by various trend and cyclical factors.
Since the HDB to be detruncated involves multiple flights with Mx variation beiween and within
flights, the distribution of BIH(0) is actually multiply censored. Solving for the unconstrained
mean and standard deviation of BFH(0)in this case is significantly more difficult than the single

censoring case. In fact, no simplified MLE prediction method has been developed for multiply-

% Details for the general MLE problem are found in Ben Akiva and Lerman (1985), pp. 20-22, 82-84.
¥ Cohen (1959).
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censored normal sémples“. Preliminary work on the density functions of multiply censored Type-
I distributions indicates the difficulty in attempting a solution to this MLE problem®.

Besides general references to MLE techniques, there is almost no literature on
detruncation methods for the airline industry. Brummer et. al. attempted to solve the detruncation
problem using an MLE technique, but the random variable was total bookings on the flight over
all fare classes™. Such analysis does not consider Mx variability problems, nor the requirement in
seat inventory control of forecasts by fare class. The only other reference to detruncation is
Wickham. His selected model set (see discussion of Wickham in sections 3.1.3.1 and 3.1.3.2) is
run twice on a database of flights, once constrained and once not. The unconstraining process
circumvents the difficulties of MLE estimation by assuming that flights which close possess
similar proportionate relationships between bookings at any interval i and total bookings at 0 as
those which do not.

First, a representative booking curve is calculated for each fare class which has closed
flights. An average BIH(i) for all intervals i is calculated, selecting the R flights in the entire”'
database which never reach booking limits. Then, the proportion of bookings in period i relative
to period i-1 is calculated by the simple division of averages in equation (3.8)’. The resulting
proportions f;;.; form an average booking curve derived from those flights which do not close.
Applied to closed flights, equation (3.9) is used to multiply together the proportions between
closure interval k and departure, creating an “average proportion of final bookings received by
interval k.” Bookings at closure interval k are then divided by this net average to derive

unconstrained demand for the closed flight.

1 R
Z 5 BIHG),
(3.8) Biin1 = urn

1R
= S BIH(i - 1),
n j=1

% Nelson (1982), p. 327.

¥ Schneider (1986), pp. 59-60.

% Lee (1990), pp. 50-51.

%! “Entire” refers to all flights in the HDB, not simply the M most recent flights used by the forecaster.
%2 This proportion will be less than one if positive bookings are received in the ith booking interval.
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- BIH (k
(3.9) BIH(0) fI[SA(k) =0]= —0—(—2!-

T Bi,i-1
i=k

This method critically depends on the assumption that flights which close have similar
booking histories as those which do not. I will discuss in Chapter 5 reasons why this might not be
so. I will also examine detruncation models tested in PODS which adjust for the likelihood that
flights which close have different booking curves than open flights.

3.2.3. Critical Review of Past Assessments

The typical approach among comparisons of forecasting models is to ignore detruncation
step entirely, thus implicitly assuming that their datasets are unconstrained (see Section 3.1.3.2).
Wickham discussed extensive comparisons of several forecasting models with and without a

detruncated dataset. His detruncation results are summarized as follows”:

¢ Unconstraining had no significant effect on higher booking classes, which
close least often.

e Unconstraining decreased the spread of performance metrics among the
models considered.

e Some performance metrics improved with detruncation.

e Inherent positive forecast bias significantly increased.

These results are generally consistent with our expectations about detruncation®. High-
value classes will not be affected significantly by detruncation except on flights with extremely
high demands, since the seat optimizer closes them last. The bias issue has been discussed in
Section 3.1.3.2. Unfortunately, there has been no comparative study of different detruncation
methods. PODS allows the testing of alternative detruncation methods with revenue performance

as the comparative metric. I will test several methods, as detailed in Chapter 5.

33. Sell-Up

% Wickham (1995), pp. 112-113.

% One unresolved issue is the decreasing spread of performance metrics. Some of Wickham’s chosen metrics
(Wickbam 1995, pp. 65-66) include some terms with squared terms, which places more weight on outliers.
Clearly, detruncating (i.e., moving from Type I to II error analyses) will significantly increase these error metrics.
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3.3.1. Sell-Up as a Consequence of Demand Interdependence

Sell-up has already been mentioned in reference to the seat inventory control process
(Section 1.3.2) and as a complicating factor in forecasting error definition and cost measurement
(Section 3.1.3). It is defined as the situation when a passenger, denied his or her :nitially desired
fare option, instead makes a reservation on the same airline in a higher-valued fare class. This
study assumes that sell-up occurs only within the flight that the passenger has initially identified,
although a passenger denied on an initial flight who accepts a more expensive product on another
flight of the same airline also strictly fits the definition.

The phenomena results from the imperfect segmentation of passengers into fare classes.
As I have discussed in Chapter 2, airlines use signals or proxies of WTP to create different fare
classes, with a gradation of prices according to the airline’s estimate of each group’s approximate
willingness to pay. Some passengers will always be able to evade their designated group because
the ability of signals to differentiate is limited, and some will have atypical characteristics (e.g.,
some businesspeople may require a weekend stay as part of their trip, rather than wishing to
avoid it). These passengers will retain much of their consumer surplus by purchasing a lower-
valued fare when available. The airline has therefore misidentified these passengers, as its
mechanism to segment passengers by WTP fails.

High demand conditions cause closure of low-value fare classes, and the probability
increases that these passengers previously able to avoid proper segmentation wil! be denied their
initially selected, low-fare product. In this situation, potential passengers whose signals correctly
exhibit their WTP will drop out of the system; they will not pay more. The misidentified
passenger, however, will sell-up to a higher-valued fare class. It follows that generally, high
demand flights incur the lowest proportion of dilution of passengers to lower-valued fare classes.
All sell-up methods aim to produce this effect, and indice misidentified passengers to. purchase

the fare product targeted to their WTP group.

3.3.2. Literature Review of Available Techniques

3.3.2.1. Refine the Fare Structure
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There have been several attempts to modify the seat inventory control process to induce
sell-up. The first is simply to refine the fare structure, and eliminate the imperfections which
cause yield dilution and sell-up possibilities in the first place. Such changes (Step 1b in Figure
1.3) aim to reduce the mismatch between passenger WTP and targeted WTP of the passenger’s
taken fare class. No formalized approach or adjustment mechanism exists to eliminate fare
structure problems; tools available include the number of fare classes, restrictions attached to each
category, and absolute fare levels. As discussed in Chapter 2, airlines’ ability to distirguish
between passengers is limited by potential signals. Lacking a perfect mechanism to discover
passengers’ WTP and establish the optimal fare structure accordingly, other methods which

assume an imperfect fare structure are necessary.

3.3.2.2. Modify Booking Limits

In this regard, Belobaba provided a simple modification of his basic EMSRa seat
optimization algorithm to account for an estimated probability of sell-up between adjacent pairs
of fare classes given closure of the lower class”. Shifts of more than one fare class were
considered unlikely, and so not addressed in his model. Protection levels for higher-value classes
increase as the projected sell-up probabilities increase. This modification to the seat optimization
algorithm (Step 3 in Figure 1.3) therefore induces sell-up by closing off lower-valued fare classes
when less demand has materialized.

This basic modification introduced by Belobaba and independently by others® was
modified for n fare classes and adapted to the EMSRb seat protection algorithm by Belobaba and
Weatherford”’. Like the earlier formation, this heuristic adjusts seat protection levels for higher-
valued fare classes by the probability that passengers in lower-level adjacent fare classes will sell-
up given closure. It was assumed that fare classes which close do not subsequently reopen (ie.,
no cancellations or variable BL due to reoptimizations), and that movements over more than one

fare class do not occur.

% Belobaba (1987), pp. 128-131.
% Brumelle et al. (1990), Pfeifer (1989).
%7 Belobaba and Weatherford (1996).
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Their methodology is explained by comparing the EMSRDb seat protection algorithm®® with
and without sell-up. The basic EMSRb algorithm finds the number of seats 7, to jointly protect
for the fare classes I ... n (in declining order of fare value) by equating the expected revenue of
the marginal seat protected for these classes with the fare of the (n+1)th fare class, as in equation
(3.10a) below. Rearranging (3.10a), we have in equation (3.10b) that the number of protected
seats 7, for fare classes 1 ... n should be set such that the probability of selling that number of
seats is equal to the ratio of the fare for the (n+1)th fare class and the weighted average fare for
the 7 ... n fare classes. The booking limit BL for the (n+1)th fare class is then the seats available

on the plane” less the seats 7, protected for higher fare classes.

(3.10a) EMSR,(r,) =P, (7,) fin = fanr
(3.10b) P(r,)= RERY
Jin
SfX
where f,, =*-—— is the weighted average fare between fare classes I and n.
X;

i=]

Belobaba and Weatherford modified equation (3.10b) for nonzero sell-up probabilities
SU,+1.. between adjacent fare classes n+I and n in equation 3.1, Increasing the sell-up
probability SU,.:» decreases the R.H.S. of (3.11), which requires commensurate increases in

protections 7, for high-valued fare classes.

fn+1 - fl,n ) SUnH.n
fl.n (1 - SUn+l.n )

(3.11) P(m,)=

% Further details are found in Belobaba (1992).

* In most implementations, this will be the aircraft capacity cap beiore the beginning of the booking process and

cap — i BIH (i), for intermediate booking intervals i where ¢ indexes all fare classes, assuming no overbooking.
c=1

100 Bolobaba and Weatherford (1996) discusses the derivation of this modification.
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One important assumption of this technique is that misidentified passengers in each fare
class targeted for sell-up do not arrive earlier than other passengers in their respective fare
classes. Otherwise, those willing to pay more take up seats in low-value fare classes early,
denying later-arriving passengers who are not. A policy of adjusting protection levels is most
successful if misidentified passengers in low-value classes arrive last. If misidentified passengers
have even a modest tendency to plan trips later than bona fide discretionary passengers in a given
fare class (which is likely), they will arrive toward the end of the low-value fare classes’
availability periods.

3.3.2.3. Prematurely Close Fare Classes

A third published attempt to induce and measure sell-up is discussed by Bohutinsky'”,

who documented the common ad hoc approach to inducing sell-up by airline revenue
management analysts. This involves the premature closure of low-value fare classes before their
normal expiration as specified by advance purchase (AP) restrictions. It is essentially a specific
case of fare structure modification (Step 1b of Figure 1.3), as it tightens the advance purchase
restriction for identified fare classes. A fare class could be identified as having a high proportion
of misidentified passengers if, for example, a consistent spike in bookings occurs in higher-value
fare classes immediately upon closure of the class. Targeted premature closure dates are
structured to avoid closure of identified fare class/es before the normal AP cutoff of lower-valued
fare classes. This prevents incongruities like a higher-value fare class being closed while a low-
value fare class is still open (which could precipitate further dilution if targeted passengers
otherwise going to the prematurely closed class are able to satisfy the restrictions of the low-value
class). Like other methods, this approach assumes that misidentified passengers do not arrive

early.

3.3.3. Difficulties in Estimation of Sell-Up

The methods I have examined in 3.3.2 above all rely on information about how imperfect
the present fare siructure is in segmenting passengers. Adjacent fare class seil-up probabilities,

for example, depend on the degree to which misidentified passengers dilute revenues and “get off

191 Bohutinsky (1990), pp. 67-68, 77-80.
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cheap.” Such information is by definition difficult to determine (since these passengers have
atypical signals), and misidentified passengers obviously have no incentive to identify themselves
to the airline.

Further, sell-up is difficult to identify even when it occurs. About 70 percent of
passengers purchase tickets from a travel agent, in which case airlines only have information about
the final reservation accepted. The initial fare class request and subsequent examination/exclusion
of available fare classes by the potential passenger is completely unknown. Nothing is known
about would-be passengers who make requests to a travel agent for a low-fare product, but upon
denial seek accommodation on another carrier (or decide not to make the trip). Thus, airlines
cannot determine any information about sell-up from bookings occurring through travel agencies.

Even if the potential traveler makes requests directly with the airline, only by direct
monitoring of phone calls can airlines estimate the proportion of passengers who are initially
denied but then sell-up to another fare class. These procedures are expensive, time-consuming
(since opportunities for sell-up occur only on the relatively few flights which close), and possibly
misleading. Passengers often make a provisional reservation on a higher-valued fare class when
denied a lower fare, only to cancel after they search other airlines for cheaper fares'®%.

Seli-up is also a function of a myriad of variables besides the particular fare structure
adopted by an airline. Competitive environment exerts a primary influence: markets with many
alternative flights (on either the same or other carriers) will have limited sell-up potential, since
the probability of finding the initially-requested fare on an alternative flight is higher. Fluctuations
in demand composition (which occur around holidays, or on Monday and Friday with many
business passengers) influence sell-up probabilities because nondiscretionary travelers are more
iikely to sell-up. Sell-up between adjacent fare classes also becomes more probable among classes
of higher value, since misidentified passengers are progressively less likely to meet the

increasingly stringent requirements of successively lower-value fare classes'®. The extreme

192 Bohutinsky (1990), p. 58. Bohutinsky discusses limited surveys performed by American Airlines and the
Canadian Transport Commission (CTC) about passenger willingness to sell-up. As she correctly notes, these
surveys are of very limited use, since the studies were of very small size (the American study considered only 30
passengers) or had specificity problems (the CTC survey aggregated over all airlines and markets out of Toronto
and Vancouver, and relied on stated preferences of surveyed passengers. The survey also suffers from the well-
known problem of relying on stated as opposed to revealed preferences).

193 This occurs unless misidentified passengers are completely insensitive to restrictions imposed on the lowest fare
classes.
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specificity of sell-up and the difficulty in procuring information to estimate its probabilities

indicate the caution with which airlines should approach this issue.

3.3.4. Critical Review of Past Assessments

There have been few published assessments of fare structure modification to maximize
revenues. This is due in large part to an inability to systematize a methodology for identifying the

maximizing fare structure, as discussed above.

3.3.4.1. Closure Experiments at Delta Air Lines

Bohutinsky documented an example implementation of the premature closure strategy at
Delta Air Lines. This study was intended to illustrate the ad hoc closure methods often practiced
by analysts. A small number of flights with historically high demand levels were selected, and
“paired” two departures of the same flight on the same day of week (for example, the July 21 and
July 28 departure of flight 1131 might be paired). One of the flights served as a control or base
case flight which provided expected loads and revenue data without intervening for premature
closure. On the other adjusted flight, two lower-value fare classes were closed earlier than as
specified by AP restrictions'®. Revenue differences between the control and adjusted flights were
attributed to the premature closure. In total, 108 flight pairs in 21 markets were tested. Her

results are summarized below:

e The premature closure policy was generally revenue negative; i.e., more
revenues were lost by premature closure than gained by induced sell-up to
higher-value fare classes.

e Comparisons of flights within the same week and across two weeks
typically did not affect the negative revenue result.

e Sell-up was more prevalent in higher-value fare classes, and almost
nonexistent at the lowest fare classes.

These results have discouraging implications for the sell-up methodologies, especially
since they occurred in an actual airline context. However, some issues prevent the conclusion that

sell-up generally is an unprofitable pursuit. First, the selected flights all had historically high

demand levels, but there was no analysis on any of the many factors which Bohutinsky identified

1% Bohutinsky (1990), pp. 77-79.
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as being important influences on sell-lup (e.g., competition, day-of-week, passenger
composition)'”. Second, revenue comparisons were drawn on the basis of the paired control and
adjusted flights in the same market, but no information was provided on inherent passenger
demand variability on the markets studied. This issue could have been partially addressed by
using average revenue information from all other departures of this flight on the same day-of-
week, within similar seasons, etc. Without a sense of thc normal expected variation between
flights in loads, observed revenue differences could be entirely due to chance demand variation in
both the control and adjusted flights. However, this concern is significantly mitigated because of
the large number of paired flights Bohutinsky tested.

Third, it was unclear how analysts selected the particular interval in the booking process in
which to prematurely close a flight. Selection of closure interval has significant revenue effects: if
closure occurs too early, many passengers unwilling to sell-up will be denied space relative to the
few passengers willing to buy a more expensive fare. If closure occurs too late, most passengers
willing to sell-up have already arrived -- leaving little room for improving revenues. Optimal
closure interval also depends on the arrival within the booking process of passengers willing to
sell-up relative to those whose maximum WTP is being extracted.

Similarly, analysts’ evaluation of demand on prospective flights before closure was not
clear. Poor analysis causes revenue deterioration: A flight which has already been closed by the
seat inventory optimizer will not be affected at all by the “premature” closure, while a flight with
low demand will incur significant revenue losses if closure is attempted. Bohutinsky’s study
provided many useful insights into sell-up, but numerous issues indicate that the ad hoc premature

closure strategy should be considered only with careful analysis.

3.3.4.2. Belobaba and Weatherford’s Sell-Up Simulations

The other study to assess a sell-up methodology is by Belobaba and Weatherford. As part
of their work on modifying the EMSRDb seat optimization algorithm to account for sell-up in n
fare classes, 2 simulation was constructed to quantify the revenue benefits of this heuristic relative
the basic EMSRb framework, and the previous decision rule formulated by Belobaba and others.

The simulation assumes an isolated market with one airline and Poisson generated demands per

195 Bohutinsky (1990), pp. 62-65.
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class over each of the 18 intervals in their booking process. Price and demand data were taken
from actual airline cases. Revenues with and without incorporation of the EMSRDb sell-up
modification were calculated under several demand factors, assumed versus actual sell-up
probabilities (which declined with declining fare class value, and ranged from 40 to 15 percent),

and sizes of the fare class structure. Their results can be summarized as follows:

e Belobaba and Weatherford’s method outperformed both EMSRbD and the
previous formulation by increasing amounts as DF increases.

e As the number of fare classes increases, this superiority increases over the
previous formulation but decreases over EMSRb. With more fare classes basic
EMSRDb performed better than the previous formulation.

e Revenue superiority over EMSRb and the previous formulation increases
with the sell-up propensity of demand.

e The new heuristic outperforms basic EMSRb by up to two percent at
reasonably high demand factors with few fare classes and up to one half
percent with many fare classes.

e Increasing the difference between assumed and actual sell-up probability
decreased the revenue improvement with sell-up adoption.

This simulation confirms expectations about sell-up adjustment mechanisms regarding
superiority over EMSRb and improving performance with impacted demand. Further, the
decreased superiority over EMSRb with more fare classes suggests that additional segmentation
decreases misidentification of passengers -- thus limiting the benefit of sell-up adjustments. While
the relative revenue performances established in the Belobaba/Weatherford study are reasonable,
one assumption made by the model may qualify the estimated absolute percentage revenue
improvements.

The study assumed an unbiased forecaster -- it had perfect knowledge of the mean demand
and standard deviation for analyzed flights (realized demands were unknown but based on the
distribution created by the known mean and standard deviation of demand). In reality, forecasters
lack this information, and must infer it from observed bookings on previous flights. The result of
this imperfect information is that forecasts are rarely unbiased. In actual application, this
forecaster property could cause overprotection problems for high-valued classes if a large

overforecasting error is combined with the heuristic sell-up adjustment. Of course, large negative
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forecasting errors may also occur, in which case the Belobaba/Weatherford heuristic moderates
the dilution associated with underprotection.

These two studies are the only airline-specific tests of proposed sell-up methods.
Belobaba and Weatherford’s study compared two alternative sell-up methodologies among the
few available, but little work has been done on the relationship between estimated sell-up rates
and revenue performance given competition and unknown actual sell-up propensity. PODS will

be used to address this issue in Chapter 6.
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IV. The Passenger Origin / Destination Simulator (PODS)

This chapter provides an overview of the Boeing PODS simulator'*, which is used in this
thesis for all simulations. A detailed investigation into the structure and theory behind it has
already been written by Wilson (1995), thus my focus is only on areas relevant to this thesis. I
will also discuss the differences between the PODS simulator and other comparative assessments
of forecasters, detruncators, and sell-up mechanisms. This thesis is the second in a series of
reports resulting from the research collaboration between Boeing and the MIT Flight
Transportation Laboratory. Our joint objective is to use PODS to examine how different tools
and methods used in seat inventory control affect revenues, in as realistic a simulation

environment as possible.

4.1. PODS System Fiow

This section provides a macro perspective on PODS; Sections 4.2 and 4.3 will provide
limited micro details on some components. First, some definitions: A case is defined to be a
complete set of input values for all the variables used in the PODS system. An observation is a
complete run through the seat inventory control process for the flights in the input case. To
determine the revenues, loads, and other statistics which would result from this case, a number of
these observations are performed and averaged together. There are assumed to be no trends in
any of the input values of variables over the observations; However, many variables are
stochastic. Further, a completed observation affects the performance of subsequent observations
because PODS correctly simulates the forecasting process of predicting bookings on a forecast
flight by extrapolating (in part) from completed flights in the HDB. Similar to the steps described
in Figure 1.3, after each observation has run entirely through the seat inventory control process, it
becomes part of the HDB which is then used to predict future observations.

At the beginning of the case, PODS has no HDB of completed observations from which to
predict subsequent observations. It therefore initializes an HDB by running some (currently 200)

observations under “cold-start” conditions, with user-input initial forecasts'”’. Gradually, these

19 pODS Version 5C or 5D was used for all simulations.
197 All experiments used the same input values which were arbitrarily derived. These numbers have no affect on
final results because of the burn process, but are required for the simulation to begin.
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forecast values are replaced with completed observations (since the HDB always includes the
most recent departures), until the HDB contains no flights either with the initial forecasts or
substantially affected by them. These affected observations are “burned” from the simulation, and
are not included in final case statistics.

Because of the absence of trends and the reliance of the forecast for the present
observation on HDB data, it was noted that the revenue and load results of successive
observations would eventually stabilize. However, it was also discovered that the stabilized
values occasionally varied significantly depending on random events in the “burn phase” of the
first 200 observations, or shortly thereafter. To combat this problem, the total observations which
are averaged to derive average resulis for the case are split into a number of trials (currently 20).
At the start of each trial, the HDB initialization process is run and observations after the first 200
are recorded into case results. Each trial consists of 1,000 observations total, the last 800 of
which are included in results for the case. Thus, each case is the averaged result of 16,000
observations, taken over 20 trials. The results reported in this thesis should be seen as the
expected results from a flight on a particular day with all trend effects removed.

PODS system flow is illustrated in Figure 4.1. After the input of variables in Step I (see
Section 4.2) and the HDB generation process for this first trial, demands for each market and
passenger type for the first observation are stochastically generated (Step II; see Section 4.3).
No-shows (if included) are estimated using HDB data, allowing the computation of overbooking
“rates” (the percentage by which total aircraft capacity cap is multiplied to derive total
“authorized units” which may be sold for this flight)'®.

Then, for each booking interval, the forecaster estimates demand for all flights based on
data from historical bookings data (from the most recent 52 observations in the HDB) and/or
advance bookings information (bookings-in-hand BIH(i) on the forecast flight f). This is Step 111
in Figure 4.1, and is discussed in Section 4.4. On this basis the seat optimizer sets booking limits.
Separately, the total proportion of simulated actual requests which are to arrive in this booking
interval for each flight is generated (Section 4.3), with some variation around a booking curve for

each passenger type. Cancellations which will occur in this period are calculated, according to an

198 1h PODS this overbooking model occurs before the setting of booking limits unlike my description of seat
inventory in Figure 1.3, where it immediately followed the seat optimizer.
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assumed constant input probability that a request made in a previous booking interval will be

canceled in a following interval.

1| Input varniable values for case
‘lb(
|Construct Initial HDB|

\
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Figure 4.1. PODS System Flow™”

For each passenger (pax) request or cancellation in this period, the “pax activity loop” is
followed. If the activity is a request, choice of flight and fare class occurs by evaluating available
alternatives against a passenger’s willingness to pay and monetary valuation of service attributes
(Section 4.5). This process is also done for each possible itinerary involving more than one flight,
and also includes disutilities associated with connections, longer flight duration, etc. inherent in

services which are not non-stop. For cancellations, an existing booking made in any previous

1% Adapted from Hopperstad (1996), p. 5.
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booking interval is randomly seiccted. Increment or decrement of seat availability is performed as
appropriate for each passenger activity.

Once all passenger activity in the booking interval has been accomplished for all flights,
the “booking interval loop” is followed. New forecasts are performed on the basis of HDB flights
and/or bookings-in-hand BIH(z) information up to the #th interval. The simulation proceeds to the
(t-1)th interval and repeats the passenger activity loop according to the stochastic number of
passengers arriving and canceling in the period. Once all bookings intervals have occurred,
relevant statistics for each flight in this observation are kept, and the process is repeated for the
next observation. After all observations have been recorded, average statistics are recorded and
this trial is complete. Upon the repetition of this process for all trials and the generation of final

statistics, this case is complete.

4.2. PODS Inputs (Step I)

The simulator takes three levels of inputs for each trial. System-level inputs operate over
all flights and markets in the network; airline-level inputs are specific to the airline operating a
given set of flights; finally, market-level inputs concern passenger and airline characteristics by
airline. I list the present input variables in PODS in Tables 4.1-4.3 below. No further explanation
will be provided on these inputs except in the following sections, or where revenue effects of their

variability are being tested. More explanation on these inputs is provided in Wilson (1995).

Table 4.1. PODS v5D System-Level Inputs

Sizing Variables: Booking Process Variables: Simulation Variables:
No.of Airlines No. of Booking Intervals No. of Observations
No. of Legs No. of HDB Obs. Used by Fcster  No. of Obs. Burned
No. of Markets Length of Each Booking Interval No. of Trials
No. of Pax Types

Variables by Passenger Type:
Measures of Stochasticity: Schedule Tolerance
System K-factor (skf) Booking Curve
Market K-Factor (mkf) Acceptable Cost Ratic (ACR)
Pax Type K-Factor (tk) Attributed Costs:
Attributed Cost K-Factor (ckf) Cost for Replanning
Z-Factor 1, by Pax Type Cost by Restriction Category, Airline
Z-Factor 2, by Pax Type Cost for Degraded Paths

Cost for Disfavored Airline
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Table 4.2. PODS v5D Airline-Level Inputs

Seat Inventory Control Methods: Variables by Leg:

Seat Optimizer Method Capacity on Leg

Forecaster Method Distance of Leg

Detruncation Method Initial Forecast Demand, by Fare Class

Scaling for Closed Obs. (Bk Cv Detrunc)  Initial Forecast Error, by Fare Class

7 (Projection Detrunc)

Adjustment for Overbooking Variables by Fare Class:

Prob. of SU, Adj. Fare Classes Last Available Booking Interval
Cancellation Penalty
Applicability by Restriction
Probability of Cancellation
Probability of Show-Up

Table 4.3. PODS v5D Market-Level Inputs

Demand Characteristics: Miscellaneous Variables:

Mean Demand by Pax Type Fare by Airline

Time-Of-Day Demand Curve Denied Boarding Penalty
Distance in Market

Variables by Path: Preference Coefficient by Airline

Scheduled Arrival/Departure Times Delta-T

Quality Index

4.3. Demand Generation by Market and Booking Interval (Step 1I)

To generate simulated demand, PODS first takes for each observation measures of
stochasticity (Table 4.1) and the input mean demand d,‘,,‘p for a market m by passenger type p

(Table 4.3). This generation process is completely hidden from the forecaster, which must divine
loads for an observation from historical flights and/or the developing booking history of the
observation. The generated “demand” is unconstrained -- it represents total requests which are,
on average, received for the flight -- not average passenger loads. A single multiplier kmultm,
accounting for stochasticity on this observation is derived by equation (4.1a) below, which

110

multiplies each component of demand which is k-variable’ " by independently drawn standard

normal variates NV. This measure is then combined with d#,p, another independent standard

110 A k-factor specifies a constant relationship between the standard deviation and mean of a random variable, i.c.,
o =k-u. System, market, and passenger type are k-variable because averaged loads over large numbers of flight

data, grouped by each of these categories, exhibit this property. This variability is also called “cyclical.” See Swan
(1978), pp. 84-86.
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normal variate NV, and a z-factor"" zf; in equation (4.1b). The equation yields total demand dy,

to be realized during this observation in market m by passenger type p.

(4.1a) kmultmp=1+NV-skf+NV-mkf+NV-tkf
(4.1b) G = by - lemultyy + NV -\l - kmultyy - 2

Now that total demand for this observation has been determined, allocation of the requests
to each of the booking intervals in the booking process proceeds according to an input booking

curve (see Table 4.1 and Figure 1.1). Actual demand d,?,’p for time period N, the initial booking

interval in the booking process, is given by equation (4.2), where pbook,y is the average

cumulative booking probability for passenger type p at booking period N.

4.2) dpp = diyp - Phookpy

From this the conditional probability cpb, that a type p passenger who will appear in
observation o will book in booking interval ¢, given that the passenger has not booked previously

(i.e., from intervals N ... t+1), is given in equation (4.3).

pbook ,, — pbook
(4.3) cpbp = p pt+1)
1— pbook y;41)

This conditional probability is applied to the total demand which has not yet arrived by
interval ¢ in the first term of equation (4.4). If there were no variability in passenger arrival
interval (i.e., passenger arrivals strictly followed the booking curve), this term would be the
requests realized in each period N - I ... I for passenger type p. However, PODS also allows
variability around the booking curve by the second term of equation (4.4). The standard normal
variable NV is independently drawn for each interval ¢, and zf2 (the “secondary z-factor”) is

constant over all time periods N.

Ul A z-factor specifies a constant relationship between the variance and mean of a random variable, i.e.,
0% =z-y. According to Swan’s taxonomy, this is the remaining variability after cyclical factors have been

removed (see preceding foomote). The inclusion of the z-factor here results from Boeing studies indicating that
such a relationship obtains for residual variability in air travel demand.
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4.4) df,,p =(d,?,p ]§ dmp -cpbp +NVJ[ d,‘,’,p Z dl ] -2fp - cpbpy .(l—cpbp,)]

The secondary z-factor zf> is a measure of intratemporal demand variation which occurs
within a given booking interval. As zf, approaches zero, passenger demands by interval are less
likely to vary from the relationships provided by the booking curve. Correlation in bookings
between intervals is clearly higher as the booking curve is more closely followed. At the limit with
zf2=0and j > 1, BIH(z) is simply a multiple of BIFH(j) given by pbook, [pbookj ''*. Further, it is

apparent that exactly d,?,p requests will eventually arrive over all booking intervals (since, in the

final inierval before departure, cpbyo = 1 and the second term in equation [4.4] is zero).

PODS’ division of the booking process into a number of intervals (with interspersed
arrivals of each passenger type and fare class according to specified booking curves) is more
realistic than simulations which collapse the booking process into one instantaneous period, or
impose an “arrival in increasing order of value” condition. Under these simulation conditions, we
account for differences in input methodologies’ ability to adjust to booking patterns revealed
gradually, as a flight progresses through each booking interval. Clearly, if PODS did not include
interspersed arrivals by fare class, there could be no meaningful comparison between advance and
historical bookings forecasting models. The principal advantage of advance bookings models
(i.e., adjusting protection for high-value classes according to developing trends on the flight) is

defeated if no information is received until after all lower-value passengers have arrived.

4.4. Forecasting and Inventory Control (Step III)

A basic construction in PODS is the separation of generative demand processes in Section
4.3 from forecasting processes. Although the simulation has stochastically determined total

demands, cancellations, and no-shows which will occur on the flight, the yield management

112 This assumes there is no closure. Total bookings BIH(1) at interval ¢ is related to total demand drtnp received in

interval ¢ by the simple relation BIH(t) = Z d]
Jj= N
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system can only estimate these activities as they are revealed throughout the booking process.
This realistic separation draws out differences in inherent bias among between alternative
forecasting and detruncation methods, and allows comparison of performance degradation as
stochastic variation is increased.

Additionally, the zero-error problem (see Section 3.1.3.2) is avoided by using revenue
performance as the comparative metric, and especially by having completed observations become
a part of the HDB for future observations in the case. As shown in Figure 4.2, this mimics the
recursive nature of forecasts affecting booking limits, which then affect realized loads, which

affect future forecasts.

Demand Forecast

h 4

A 4

Setting of Booking Limits

\y/
Passenger Flow

Next Departure

Figure 4.2. Recursive Nature of Seat Inventory Control

Comparison on a revenue basis (combined with passenger generation by passenger type
rather than fare class) avoids the pitfalls of assuming independent demands. The resulting choice
process by passengers among various fare classes (see Section 4.5) allows for misidentification of
passengers and resulting sell-up opportunities. This realistic simulation process casts uncertainty
on Lee’s assertion that both positive and negative forecast “error” or bias causes revenue declines
(Figure 3.8). It is theoretically possible that a systematic forecast bias towards overprediction of
higher-valued fare classes may actually induce sell-up and therefore be revenue positive. There
are two necessary (but not sufficient) conditions for this event to occur. First, the fare structure
assumed by the forecaster must be imperfect, so some passengers are misidentified. Second, the
flight being forecast must be constrained in some fare classes as a result of the overprotection

(otherwise no misidentified passenger is forced into a higher-value class).
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The treatment in PODS of forecasting, detruncation, and seat optimizing is exactly
analogous to Steps la, 2, and 3 of the general seat inventory control process in Figure 1.3.
Methods and algorithms for each of these processes may be tried in various combinations as

desired for comparative purposes, as I will detail in Chapter 5.

4.5. Passenger Assignment/Cancellation (Step IV)

Passenger assignment is the process of selecting for each request an available path, or
“spilling” the passenger from PODS if no paths are available which meet the passenger’s WTP.
Cancellations occur when a passenger decides before the end of the booking process not to travel
according to originally sei plans, thus freeing a space previously unavailable. I will briefly discuss
the theoretical assumptions made by PODS with respect to passenger assignment (Section 4.5.1),

_then cover the implementation of this theory in PODS (Section 4.5.2).

4.5.1. Boeing Decision Window Concept

PODS’ passenger assignment process assumes that the governing factor in flight selection
is schedule relative to the times individuals wish to travel. Generally, travel demand is almost
always defined within a concrete band of time. A nondiscretionary traveler, for example, may
only travel within a tightly defined interval to accommodate a time-inflexible schedule. Even the
most discretionary passenger has a limited duration (e.g., the time a person has set aside for
vacation) within which travel must occur. The matching of the schedule of flights or groups of
flights which may be taken in a given airline O/D market with the limited times within which
passengers’ travel must occur forms the core of the decision window concept. Also developed by
Boeing, this concept is used to assign each passenger generated in Section 4.3 to the various
flights in the market.

Formally, any O/D airline market has a number of paths by which a passenger travels from
the origin to destination. A path is defined as one non-stop flight or a set of connected flights by
which a passenger may travel over the O/D market'”?. The available paths in the O/D market

create a number of schedule states, each of which is a unique (Boolean) combination of paths

13 In PODS, we presently restrict paths to contain flights on only one airline, and assume that passengers always
take the first available flight to their destination from the connecting airport/s.
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which the passenger in that state is equally willing to travel. A “1” indicates inclusion of a path
and “0” exclusion. Thus, for the simple O/D market described in Figure 4.4 with two paths (A
leaving at 0900, arriving at 1130; B leaving at 1700, arriving at 1930), there are three possible
states. Passengers in state “10” could possibly take flight A but not B, and “01” state passengers
are reversed; Passengers in the final state “11” could take either flight. Every passenger is
assumed to have an earliest possible departure from the origin and a latest possible arrival at the
destination. This creates a “decision window” within which the passenger can choose paths. The
duration and placement over the day of a passenger’s decision window depends on three input

variables:

Distribution of passenger demand over the day (“time of day” curves)
Delta-T, the “sunk time” of the shortest flight over the O/D'"*
® “Schedule tolerance” or average window length, by passenger type

Nondisc. Disc.
10 049 005
01 047 0407
11 604 088

Figure 4.3. Schedule States for a Simple Market'"”

In Figure 4.3, passengers 1 through 3 have decision windows of varying lengths.
Passenger 1 will not fit in any state, since the latest arrival time of his/her flight occurs before the
arrival of A, the earliest flight. Passenger 2 could possibly take flight A but not B (and therefore
falls in state 10), while passenger 3 could take either flight (i.e., state 11). The clear portion of

!4 This includes nominal differences induced by time zones. All passengers are assumed to have decision
windows at least as large as the minimum “sunk time.”
'3 Adapted from Wilson (1995), p. 51.
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each state in Figure 4.3 indicates the minimum length of a passenger’s decision window to belong
to the state; the shaded portion indicates the maximum length without falling into another state.
PODS builds the probabilities of being in a particular state for each market by passenger
type, with consideration of the three variables listed above. The hypothetical probabilities in
Figure 4.3 for nondiscretionary and discretionary passengers are the state probabilities for this
market. Clearly, nondiscretionary passengers are much less likely (and discretionary travelers
much more likely) to fit in state 11 because they are by definition time sensitive. Becausc states
10 and 01 have approximately equivalent probabilities for both passenger types, the time of day
distribution in this case has two approximately equal peak demand periods (morning and evening).
PODS decision window technology presently assumes that all trips are one-way and a passenger

has uniform preference for the location of a flight wholly within his/her decision window.

4.5.2. The Fassenger Activity Loop

Figure 4.4 expands the passenger activity loop of Figure 4.1. If the activity is a
cancellation, PODS simply increments seat availability SA over all flights in the involved path and
proceeds to the next passenger activity. For a request, the process is more involved. First, the
potential passenger’s fype is chosen according to input probabilities with some variability, and
paths which are unavailable (e.g., because SA = 0) are eliminated from consideration. Given this
type, the potential passenger’s maximum WTP for travel is set as some multiple of the lowest fare
in the market (the acceptable cost ratio or ACR), which is again stochastic. Nexi, “attributed
costs” or monetary valuations of the (dis)utility incurred with various travel attributes are
calculated, including: path quality (the number of stops and/or connections), use of a disfavored
airline, restrictions on certain fare products, and state replanning (which will be explained below).
All available paths and fare classes for which the nominal fare -- not including attributed costs --
is greater than the passenger’s maximum WTP are summarily excladed from the potential
passenge.’s choice process. If no paths remain, this individual is spilled from the system, and we

proceed to the next passenger activity.
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If some paths are still possible, the probabilities attached to states with at least one
retained path are updated, proportional to each included state’s previous probability''®. Next total
costs by path and fare class are calculated by adding attributed costs and the nominal fare, and the
potential passenger’s state is selected given the updated probabilities. A “replanning cost” is
added to all retained paths not included in the selected state.

([
. Camcellation _ I¥

Request
Set Passenger Type, Exclude Unavailable Paths

T
[ Set Maximum WTR various Attributed Costs §

Y

Exclude Paths and Fare Classes with
Fare > Max WTP

A

| Any Remaining Paths?| 20

yes

&y

Retain States with at least one Retained Path
¥

Find Total Cost for each Retained Path (TCP) by Fare Class

K2
Set State, add Replanning Cost to all
Retained Paths in other States (RPOS)

h- 4

doo7 duanoy xoq

Spill Pax

h 4

o/

Any RPOS with TCP < Lowest TCP 4| Assign Pax to Lowest
of Retained Paths in Selected State? | yes]| RPOS' TCP and Fare Class

no
h 4

Assign Pax to lowest TCP and Fare Class in Selected State
N/
>l Adjust Path Avaiability

J

Figure 4.4. Passenger Activity Loop

Now the passenger compares the path with the lowest total cost in his/her selected state
with all retained paths in other states (RPOS). If there are RPOS with total costs (including the

replanning cost) less than the lowest cost path in the passenger’s selected state, he/she will replan

"¢ The process is really a simple case of Bayesian updating where the conditioning event (“removing the path does
not make a state’s minimum decision window equivalent to another’s, or eliminates the minimum decision window
completely”) is a binary random variable,

85




-- i.e., accept the cost of changing one’s initial schedule to take advantage of better options
outside the initial decision window. The RPOS with the least total cost is chosen, seat
availabilities SA are decremented on all involved paths and the appropriate fare class, and we
proceed to the next passenger activity. Essentially, the replanning step is a simplified accounting
for passenger willingness to travel beyond the bounds of the initially generated decision window,
though at higher cost than within the window. Obviously, the replanning cost is significantly
higher for time-sensitive passenger types. If a passenger’s replanning cost is high and/or RPOS
are not attractive, the passenger will select the lowest-cost path in the initially-identified state, SA
for the appropriate paths and fare class/es will be decremented, and we proceed to the next
passenger activity.

This chapter has discussed the general PODS system flow, input values, the demand
generation process, and passenger assignment using decision window methodology. While some
of the input values (mentioned in Section 4.2) utilized in this thesis have been discussed in
passing, no formal statement of the environmental conditions assumed by this case study has been
presented. Chapter 5 begins with such a presentation, and continues with a discussion of the

forecasting, detrurication, and sell-up methods to be compared using the PCDS simulator.
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V. Description of Evaluated Methods and Simulation Environment

In this chapter, I first provide a review of the standard market and passenger
characteristics (Section 5.1) used in our simulations of alternative input methodologies for
forecasting, detruncation, and sell-up. These “base-case” values for the variables listed in Tables
4.1 through 4.3 provide a simplified, standardized context from which to discuss revenue
differences in these methodologies. Resuits in Chapter 6 will establish revenues under this “base”
environment, and also examine revenue effects when many of these environment variables are
altered. Further information on these base conditions is provided by Wilson (1995), who uses a
substantially equivalent base environment. Next, this chapter reviews the models for each of the
three input methodologies that will be analyzed using PODS: forecasting (Section 5.2),
detruncation (Section 5.3), and sell-up (Section 5.4). A brief list of alterations under which each

methodology is tested is also included.

5.1. Base Case Simulative Environment
5.1.1. System-Level Inputs

The simple base case has two airlines, each of which operates one non-stop flight in a
single market. Hence, there is no consideration of network effects -- all passengers on each
airline’s flight belong to one O/D market only''’. There are only two passenger types,
nondiscretionary and discretionary, which correspond to Types I and III (respectively) of the
typology in Section 2.3.1. Booking processes for both airlines consist of eight booking intervals.
The length of each booking interval and booking curves for the two passenger types is depicted in
Figure 1.1. The total number of observations per trial, number of trials, and “burn” information is
described in Section 4.1.

Significant stochastic variation is included in the base case. System and attributed cost K-
factors are (.3, i.e., the standard deviation for systemwide demand and each attributed cost listed

in Table 4.1 is 30 percent of their respective means. This level of system demand variability is

17 Extension to a full-network base simulative environment is expected within the year.
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18 However, the market K-factor is zero

consistent with past studies of airline booking variability
in this single market case (this measure is only useful in multiple-market scenarios), as is
passenger-type K-factor. The primary and secondary z-factors are 4.0 and 2.0, respectively,

implying moderate correlation in bookings between intervals and variation in bookings received
for each observation dy, (see equation [4.1b]).

The monetary valuations of attributed costs and the acceptable cost ratio are systerm-level
inputs, but describing their values here is not informative without consideration of the underlying
fare structure. I will therefore consider these issues under Section 5.1.3, where fare levels are

defined.

5.1.2. Airline-Level Inputs

Each airline is assumed to use the EMSRb seat optimizer originally proposed by
Belobaba''’, Use of EMSRb alone is appropriate because our purpose is to test revenue
differences induced by input methods to seat optimizers, not the optimizers themselves. Further,
EMSRD technology is in use at a variety of airlines worldwide. In the base case, there are no
cancellations nor no-shows (all initial requests will result in a show-up if an available path is
successfully chosen). Thus, the two airlines do not adjust for no-shows (so the overbooking
model step of Figure 1.3 is not performed).

Other airline inputs include the choice of forecaster and detruncator. Unless variation in
the input methodology is being specifically tested, the default forecaster is a simple classical
pickup model as described in equation (3.3). The default detruncation method uses booking
curves derived from unclosed observations, as in equations (3.8) and (3.9). There is no scaling
for the possibility that closed observations have different proportional booking relationships than
unclosed observations. No adjustment of booking limits for the assumed probability of sell-up is

performed.

5.1.3. Market-Level Inputs and all Fare-Related Inputs

S E.g., Sa (1987), pp. 35-70 shows results for 28 flights between January and June, 1986. Derived K-factors are
generally well above 0.3. However, this study mixed seasons and did not control for changes in the operational
environment (e.g., frequencies offered by the airline).

' Belobaba (1992).
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At the market level, the airlines’ non-stop flights are offered at the same time each day.
Thus, they have equivalent arrival and departure times. A demand factor (DF) which relates mean
total unconstrained demand to total capacity available in the market is a convenient way to
describe demand conditions when no leg carries passengers from more than one market. The base
DF is 0.9, which is sufficiently high that yield management is of some benefit (with stochastic
variation, many observations will have closure in some fare classes) -- but not so high that the
optimal airline response, given its particular fare structure, is simply to offer only the highest-
value fare.

Both carriers are assumed to adopt the same fare structure, which is given in Table 5. 1'%,
There arc four fare classes, each of which has a variety of restrictions and associated attributed
costs bv passenger type. As the monetary fare decreases, more restrictions are introduced which
limit access to the fare: Advance purchase, Saturday night stay, round-trip, and other restrictions
are added. This is in addition to increasing restrictions on seat availability for lower-fare classes,
which is accomplished automatically by the seat optimizer. The base fare class structure shown in
Table 5.1 draws heavily on investigations into common industry practice, as discussed by
Wilson'”!. Monetary fare levels (e.g., $100 for unrestricted Y class and $40 for the most
restricted, cheapest Q class) are approximately representative of present relative differences in
fare products (compare Table 4.1 with Table 2.2). Note that nondiscretionary (ND) travelers’
total attributed costs for restrictions are significantly higher than for discretionary (D) passengers,
and that individual restrictions have differential impacts on the passenger types. For example, the
attributed cost of a Saturday-night stay is five times greater to a nondiscretionary passenger, while
refundability matters more to discretionary travelers (who must pay for their trips, as opposed to
the nondiscretionary group primarily composed of business travelers not directly paying for the
trip).

Several cost-related passenger tvpe variables are described in Table 5.2. These variables

120 This approximates airline practice, where very low information costs enabled by the CRS prevent significant
differences in fare structures.
12! wilson (1995), pp. 57-61.
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are all subject to stochastic variation according to the attributed cost K-factor (Section 5.1). As
described in Section 4.5.7 the acceptable cost ratio (ACE) governs what multiple of the lowest
nominal fare ($40) each passenger type is willing to pay, on average, in the initial path screening
process. Thus, a nondiscretionary passenger will never exclude any fare product, while
discretionary passengers will on average include all fare classes but Y under the base conditions.
Table 4.2 indicates that the replanning cost is significantly higher for nondiscretionary passengers,
as is expected given their time sensitivity. Costs for degraded paths and disfavored airline use are
not relevant in the present PODS scenarios: With only non-stop paths in the simple cne-airline,
two-airline base environment, no paths are “degraded.” Finally, disfavored airline use is not

considered in the base case, where there are equal preferences among airlines.

5.2. Forecasting Models

The variety of forecasting models and the myriad of simulation variables under which
revenue performance may be tested presented a significant problem: Limited resources required
either testing many forecasting models under a limited set of conditions, or testing a small or
selected set of models under a variety of environmental conditions. This thesis adopts the latter
approach. Testing a select number of representative models under many conditions yields insight
into how well fundamental differences in forecasting approaches adapt to changing environments,
and is more rewarding than examining methodological nuances which yield substantially similar
results. To this end, the three forecasting models I will consider are described in Sections 5.2.1
through 5.2.3 below. I analyze one advance bookings, one historical bookings, and one combined
model. PODS revenue comparisons of these alternative forecasters avoids the pitfalls associated
with “error” comparisons (see Section 3.1.3.2), and incorporates a passenger choice framework

thz* avoids the difficulty with simulations assuming independence of demand between fare classes.

5.2.1. Non-Causal Regression (Advance Bookings)

The first selected forecasting method is a non-causal regression model relating bookings in
hand BIH(t); at booking interval ¢ to either bookings to come from intervals ¢ to 0 (equation [5.1])
or total bookings BIH(0)yat completion of the bookings process (equation [5.2}). If bookings-to-
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come were estimated via regression, final bookings BIH(0)  would be derived by adding the

result of equation (5.1) and BIH(1),.

(5.1) BIH(0); - BIH(t) f =ty +7; - BIH(t) f +&,
(5.2) BIH(0); =y, +9, - BIH(t) s +v,

where 1, and 1), are coefficients on 3JH(t) found via OLS estimation

v: and & are random error terms
o, and ¥ are intercept terms
t is the booking interval from which estimation occurs

It has been speculated that predicting total bookings yields different results than prediction
using bookings-to-come data (which are then added to bookings-in-hand). The latter method was

expected to be superior, since predicting BIH(0) f intuitively introduces prediction error for that

part of final bookings already in hand by interval t. This information BIH(t); is already known by

interval ¢, it seems obvious that only the unknown part of BiH(O) f should be forecast, ie.,

bookings-to-come. I will show, however, that equations (5.1) and (5.2) are equivalent (assuming
no cancellations).
Following the standard technique of bivariate ordinary least squares estimation (OLS)'%,

the coefficient?}, in equation (5.2) above is given by the solution to equation (5.3a). For the

discussion which follows I have introduced the following simplified notation: BIH, = BIH(t);, and
BTC, = BIH(0), - BIH(t)y.

3 (BiH; - BIR)-|(BTC, + BIH ) - (BTC+ BIH)|
j=1

(5.32) O =

>’§(Bmk -~BIA)
k=1

where BIH is average BIH(t) over the N flights
BTC + BIH is the average BIH(0) over the N flights
N is the number of flights in the HDB used for estimation of the
regression

2 Further details on the OLS regression process can be found in any standard econometrics or statistical analysis
textbook, e.g., Cohen and Cohen (1975).
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Distributing the terms of equation (5.3a), we have

N N \
3. (BIH; - BIH)-(BTC; + BIH ;) - ¥ (BIH; - BIH)-(BTC+ BIH)
(5.3b) 9, =Lt - I=!
—2
Y. (BIH, - BIH)
k=1

The second term of equation (5.3b) self-evidently cancels out. The first term, after

appropriate multiplication and distribution, can be transformed to equation (5.3c).

N —_ N —
> (BIH;-BTC; - BIH-BTC;)+ ¥, BIH;-(BIH - BIH)
(5.3c) 3, =12 - ’=‘2
Y. (BIH - BIH)
k=1

If the numerator and denominator of the second term of equation (5.3c) are distributed,

the second term reduces to one, and the derivation of1}, has been sufficiently simplified. Next,

OLS estimates the coefficient 1), for equation (5.1) by equation (5.4a) below.

M=

| I(BIHJ- ~BIH)-(BTC; - BTC)
(5.4a) n =2

N —_—

> (BIH - BIH)2

k=1

Distribution of terms and canceling yields equation (5.4b) below, which is equivalent to

(5.3c) minus one. Thatis,n, =1, -1 .

N _—
3., (BIH; - BTC; ~ BIH - BTC;)

=1
(5.4b) n, =2

3. (BIH, - BIH)’
k=1

Now the intercept terras can be estimated. The standard OLS formula for the intercept o

of equation (5.1) is given by equation (5.5) below. The intercept ¥ for equation (5.2) is given by
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equation (5.6). Simple algebra establishes that equations (5.5) and (5.6) are equivalent, i.e., @, =

Y.
N _
X (BIH, - BTC; ~ BIH - BTC,)
(5.5) o, =BTC-BIA | Sy -
3 (BIH, - BIH)
k=1
N —_
( Y (BIH; - BTC; - BIH - BTC;)
(5.6) v, = BTC+ BIH - BIH | .=—; - +1
3. (BIH, - BIH)
k=1

Substituting 7, =9, —1 and &, = % in equation (5.1) reduces it to (5.2), and the equality
of the two is proved. Not all descriptive statistics for the two models will be equal: For example,
R’ will in general be different. Predicting total bookings given bookings in hand will be
equivaient to predicting bookings-to-come, so long as results are not adjusted by descriptive
statistics (e.g., if a weighting scheme were employed which placed more confidence in the

regression model as R’ improved).

3.2.2. Classical Pickup (Historical Bookings)

The second model I will analyze is simple classical pickup, introduced in Section 3.1.2.3
and repeated in equation (5.7) below. Booking matrix data utilized by classical pickup is
indicated in Figure 3.5. This forecaster and the regression model in Section 5.2.1 are
representative of the two primary forecasting models presently utilized by many airlines. Unlike
non-causal regression models (which assume total bookings are a function of the present bookings
in the forecasting interval ), pickup disregards the booking history of the forecast flight £ until

interval ¢ and assumes that absolute increases in bookings until departure will mimic patterns on

previously-departed flights. Only historical bookings are used as signals to estimate BIH(0) f

advance bookings are simply added to the result of the estimation process.

. et
G.7) BIH(0) ; = ———Ml -~ X (BIH(O); - BIHG);) + BIH(),
—t j=f-M
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5.2.3. Boeing Efficient Forecaster (Combined)

A “full-information” model potentially yields significant benefits, since it estimates final
bookings BIH(0) r With consideration of all possible signals of demand on the forecast flight f.

This includes historical bookings from flights already departed and flights with incomplete
booking histories, and advance bookings on the forecast flighi. However, Section 3.1.2.3 pointed
out the computational difficulties with “full-information” models which rely on maximum
likelihood estimation (MLE). Some estimation procedure is necessary because truncated flights
(i.e., completed flights which close and incomplete flights) do not have measures of unconstrained
BIH(C), MLE has desirable statistical properties under a wide range of conditions'?*, but it is not
presently practicable for very-large scale airline forecasting problems.

An alternative “efficient” forecaster has been proposed by Hopperstad'?> which uses all
possible bookings information'?®, but does not rely on cumbersome MLE estimation. This
procedure is similar to Lee’s approach in that the forecaster and detruncator are combined into
one model. Suppose we desire to forecast the final bookings on a flight f, and we are at booking
interval ¢ in this flight’s booking process. The efficient forecasting method involves three steps;
first is detruncation of the last M - ¢ observations used as the HDB'?. Instead of relying on a
mathematically involved estimation procedure, Hopperstad takes advantage of the observed
stability in proportional relationships between BIH(i) and BIH(j), where i and j are any two
intervals in the booking process. This is true regardless of demand level?®. A limited set of these
proportional relationships form the booking curve relating bookings received in each booking

interval i (i > 0) as a percentage of final bookings BIH(0).

124 Ben-Akiva and Lerman (1985), pp. 20-22. For example, with MLE the underlying relationships between
variables need not be linear or transformable-to-linear, unlike OLS estimation.

12 Hopperstad (1991).

126 Besides the information previously mentioned, a version of the efficient forecaster has been developed which
includes advance bookings data on flights which depart on dates after the forecast flight. See Hopperstad (1991).
This version is not incorporated into PODS.

127 Recall from Section 3.1.2 that M is the number of observations used by the forecaster plus an “offset” due to the
t most recent, incomplete flights. Since the full-information and efficient forecasters also use data from incomplete
flights, it follows that the HDB for these forecasters includes the most recent M - ¢ flights. The HDB for forecasters
using complete flights only includes M flights, of which the M - ¢ earliest (and therefore complete) flights are used.
128 In fact, flights which close are more likely to have atypical booking curves. The adjustment for this fact (see
Section 5.3.1) is applied to the efficient forecaster’s detruncation step.

95



Of the last M - ¢ previous complete booking histories, some will be truncated: Some
completed flights will have closed fare classes (so BIH(0) does not represent final unconstrained
bookings), and all uncompleted flights will not yet have BIH(0). The efficient forecaster estimates
the booking curve for each market based on all complete, unclosed observations since the
beginning of the trial. This is exactly equivalent to Wickham’s generic detruncation method
described in equations (3.8) and (3.9). Using the information provided by equation (3.9),

equation (5.8) gives upbookly , the estimated cumulative booking probability for leg m in fare
class ¢ for each booking interval h'?. Unconstrained final bookings BIH 0) g for each truncated

flight g is estimated by equation (5.9), where h is the interval of closure in the case of closed

flights, and the latest booking interval available in the case of uncompleted flights.

0
(5.8) upbookly, = Il B:i-1
i=
" BIH(h
(5.9) BIH(0), =~ s
upbook [y,

Now that unconstrained final bookings on all flights have been estimated, the second step
of efficient forecaster generates a weighted mean of unconstrained final bookings WBIH 0)7 for
leg m and fare class c. As shown in equation (5.10), this mean is calculated over the M - ¢ flights
in the HDB. Each flight i is weighted by the correlation coefficient CC,~2 (j), calculated between
BIH(j) at flight i’s booking interval of truncation j and total bookings BIH(0). A completed flight
k which does not close has the highest weight, where CC,%(O) =1. The correlation coefficient is

also calculated over all the M - ¢ flights which do not close.

' The B;,., must be calculated over the specific fare class ¢ and leg m. We forecast at the leg level because the seat
optimizer used in these simulations (EMSRDb) operates at this level. Other optimizers operate at the O/D market
level.
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S
2CCi(j)

i=1

where CC?(j) is the estimated correlation coefficient at period of

truncation between BIH(j) and PIH(0) for the ith observation,
calculated over all M - ¢ flights'*®
J is the interval of truncation for the ith observation

Essentiaily, the efficient forecaster assumes that the most confidence can be placed in

observations not requiring detruncation, and that correlation coefficients are a good measure of
how much confidence should be placed on BiH(O) of deuuncated flights. There is no

differentiation among detruncated flights according to the cause of their incomplete booking
history. The correlation between BIH(j) and BIH(0) increases as departure date nears, since the
number of booking intervals remaining (over which variability in pickup may occur) declines.
Hence, the earlier in the booking process a flight is truncated, the less is the weight on thai

observation.

The final step is to combine this weighted average of total bookings for HDB flights with
estimated final bookings information BIH(0) r for the forecast departure f. The forecast flight f

is detruncated using the same procedure (described in equation [5.9]) as is followed for other

flights with incomplete booking histories, yielding BTH(0) r- The weight WP attached to
BTH(0) f is given by equation (5.11) below, where ¢ is the present booking interval for flight f.

Final estimated forecast bookings BIH(0) 1 for flight f immediately follows in equation (5.12).

130" Assuming that all demand stochasticity is included in the z-factors (see Section 4.3) and perfectly adjusted
pbook (see below), an alternative definition of the correlation coefficient is given by

CCZ(j) = apbook -zfl/(apbookj - Zfi +(l—apbookj)- zf2).
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1+1/ TCCF ()
(5.11) WP = B
1/CCFr)+1 _):lcc,-z( J)
I=

(5.12) BiH(0) ; = WP- BTH(0) ; + (1~ WP) WBIH(0)5,

5.2.4. Conditions to be Tested

The three forecasting methods discussed in this chapter are compared under a variety of
conditions which vary from the base scenario in Section 5.1. Each of these conditions is tested
with each detruncation model, which both airlines share. Following is a list of the conditions, and

a brief rationale for changing each:

e Base simulation context (Section 5.1)

¢ Low and high demand factor (DF = 0.7, 1.2). Forecasters may not adjust
equally well to different underlying demand levels.

¢ Low and high secondary z-factor (zf2). Forecasters may not adjust equally
well to booking curve variability in HDB flights.

e Low cnd high systemwide k-factor (skf). Forecasters may not adjust
equally well to total demand variability between HDB flights.

Two other conditions not listed above were also tested. The first was nonzero
cancellation rates. It was supposed that not all forecasters adjust equally to the presence of
bookings which later vanish. However, no substantial differences between forecasters were
revealed under a variety of cancellation rates. Second was multiple frequencies. As will be
discussed extensively in Chapter 6, one primary difference between forecasters is differential
protection for high-value fare classes, which induces sell-up. Multiple frequencies was
hypothesized to limit passenger captivity and thereby sell-up opportunities. Again, no significant
differences by forecasting method were revealed. The presentation of results for nonzero

cancellation rates and multiple frequencies has been suppressed.

5.3. Detruncation Models

To date, there have been no published comparisons of detruncation methods. Comparing

unconstraining alternatives in the PODS context provides a valuable contribution to the airline
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forecasting literature. The detruncation methods I will study include two of the most common

methods (pickup detruncation and booking curve detruncation ), and a third developed by Boeing.

5.3.1. No Detruncation

If an airline does not detruncate observations in the HDB which close, they are simply
ignored by the forecaster. This is distinguished from the method used by some airlines, where *“no
detruncation” means that observations which close are input to the forecaster without either
adjustment or exclusion. Such a practice would magnify any negative effects of not detruncating
reported here, since an extreme downward bias in pickup (i.e., zero pickup) from closure interval

until the end of the booking process is implicit with unadjusted inclusion.

5.3.2. Booking Curve Detruncation

Simple booking curve detruncation has been described in Sections 5.2.3 and 3.2.2. As
implemented in PODS, booking curves have no monotonicity restriction or “shape” requirement.
Therefore, in the presence of significant cancellations booking curves may not be strictly
increasing, and may not exhibit the typical “sideways-S” shape depicted in Figure 5.1. Presently
in PODS, booking curves are estimated from unclosed flights only by fare class and leg, and are
exponentially weighted (the most recent flight departures have the highest weight). The number
of observations used to estimate the booking curve includes the entire observation set for each
trial, up to the flight being forecast.

Booking curve detruncation assumes that the proportional relationships between BIH(i)
and BIH(j) (where i and j are two booking intervals) are constant over ali flights. Therefore,
positive correlations between BIH(i) and BIH(j) are assumed. The posited proportionality is
probably true over all unclosed flights -- so unadjusted booking curve detruncation of open but
incomplete flights (which have not yet departed) is appropriate. However, flights which close
typically do not exhibit equivalent proportionate booking relationships as those which remain
open throughout the booking process. This section describes a modification to account for this
possibility.

Suppose a hypothetical market and fare class has typical unclosed booking curves given by
B in Figure 5.1. Booking curves to the left of B (e.g., A) fall in R1, and receive more of their
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total bookings early in the booking process relative to B. Booking curves to the right (e.g., C)
fall in R2, where an opposite relationship occurs: Most of their bookings are received later than
the typical unclosed flight. Thus, for a given booking interval before departure i, flight A will
have received A; percent of its bookings, while flight C has received a much smaller C; percent.
Under revenue management, flights in R2 are much more likely to close than those falling
either in R1 or following the typical path B. Suppose we have data on three flights in a given fare
class. For simplicity, final unconstrained bookings on these flights are equal, but with three
distinct booking curves according to the three patis in Figure 5.1. If the fare class involved is
high-value, the high early bookings flight (path A) induces additional seat optimizer protection for
the fare class, reducing closure probabilities in that class. This effect is magnified if the forecaster
includes advance bookings information to predict final bookings. However, the high late
bookings flight (path C) has an elevated closure probability, since less-than-anticipated bookings
earlier in the booking process causes the seat optimizer to reduce seat protections for the high-
value fare class. Hence, low-fare passengers are allowed to fill seats which would otherwise be
occupied by the (unanticipated) late spate of high-value passengers. Therefore, closed flights in

high-value fare classes are more likely to have path C booking curves.

upbook(t)
1.0]
Aj

Ci1

00!

Figure 5.1. Representative Booking Curves

Now suppose the three flights involve a low-value class. If this low-value class has high
early bookings (path A), its booking limits are unaffected: The seat optimizer is sensitive only to

changes from expected bookings levels on higher-valued fare classes. Similar reasoning holds for
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the “typical” flight with booking path B in the low-value class. Since high-value bookings
generally arrive later than low-value bookings, neither paths A nor B will be affected by atypical
booking behavior in higher-valued fare classes: The bulk of the low-value bookings will already
have been received by the time the variation in high-value bookings occurs. It follows that neither
the high early bookings flight nor the “typical” flight with booking path B will be especially likely
to close. In contrast, the flight with high late bookings in the low-value class (path €) is more
likely to be affected by a surge in high-value fare class demand. Low-value passengers under path
C conditions will not have claimed seats before the high-value arrivals, and the seat optimizer
quickly reduces booking limits for the former to accommodate the latter. Thus, regardless of
class value, closed flights are more likely to involve atypically high late arrivals (path C) than open
flights (which will involve paths A and B).

If booking curves estimated on the basis of unclosed path A and B flights are
indiscriminately applied to closed path C flights, unconstrained demand on the latter flights will be
underpredicted -- causing a negative bias in the unconstrained data set and underprotection of the

involved fare <lass(es). A simple heuristic adjustment for this possibility is described in equation

(5.13) below, where the unadjusted estimated booking curve upbook}, is modified by a constant

term pbscl (0 < pbscl < 1.0), yielding the adjusted cumulative booking probability apbooky, for

each market m, fare class ¢, and booking interval h. Our comparative detruncation tests will
include unadjusted and various levels of pbscl-adjusted booking curves. Note the chosen pbscl is
based on reasonable hypotheses and not systematic comparison of booking curves for flights

which do close and those which do not, since the latter is by definition unavailable.

(5.13) apbook[}, = pbscl - upbook [y

5.3.3. Projection Detruncation

The second detruncation method this thesis will consider is projection detruncation,
developed by Hopperstad”'. For any flight which closes, the conditional probability that

unconstrained bookings on a flight g are greater than its unconstrained forecast (given closure)

13! Hopperstad (1995).
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can be specified, if some assumptions are made about the distribution of closed flights. This
detruncation method proceeds from the idea that this probability should be a specified constant.

Suppose we are at forecasting a flight f from booking interval ¢, and must estimate BIH(0) g for

2 The projection detruncator

some HDB flights g which close at various intervals x (all x < #)
first calculates the mean 1, and standard deviation o; of “pickup” -- the increase in bookings
between intervals ¢ and 0 -- based on those flights among the M - ¢ in the HDB which do not close
at any time during the booking process. Next, projection takes the input conditional probability,
the (nondetruncated) pickup statistics, and (for each truncated flight) incremental pickup c!
between the interval of prediction £ and the interval of closure x. It then projects estimated pickup
¢l for the closed observations g, assuming that closed observations come from the same demand
distribution as the unclosed observations'*>. This situation is illustrated for one flight g in Figure
5.2, where area A is the probability of receiving between c! and ¢l pickup, area B the probability

that more than ¢/ pickup occurs, and area C the probability of less than ¢! pickup.

l
I
I
P!
I
|
I
|

ol A a BIG(,0),

Figure 5.2. Projection Detruncation

2 Any HDB flight which closes in booking interval ¢ or before cannot be detruncated by projection, and is ignored
in detruncation calculations.

33 This seems unlikely -- clearly closed observations will have greater pickup, on average, than open flights. As |

will show below, projection detruncation always estimates ¢/ > g4, Recalculating average pickup with inclusion of

detruncated observations wculd then increase y,, as expected.
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Define T to be the conditional probability of receiving more than ¢l bookings given closuie

at ¢/. Then 7= AfB , and the projection ¢l is found via iteration on equation (5.14), or using

normal distribution functions in equation (5.15) where ®(-)and ®~'(-)are the cumulative and

inverse cumulative normal distribution functions, respectively. From equation (5.15), our
estimate of final bookings for the detruncated flight g under projection detruncation is simply

given by equation (5.16).
2 2
1 1 1 X = U, cl 1 l(x"‘llz)
(5.14) - -exp| ——| —— =1- -exp| —— —— dx
r)| G "( 2( o, )J L 2,

(5.15) o= d)“[c-(d)(-cl—”i'-)- 1)+1J
C

(5.16) BIH(0), = BIH(t), +cl

Like booking curve detruncation, projection also creates a positive correlation between
“incremental pickup” from prediction interval ¢ to closure interval x and final projected bookings,
since increasing c/ in equations (5.14) or (5.15) increases ¢l. Decreasing the input 7 has a similar
effect; as T-— 0 the probability of underpredicting demand decreases (protection levels are
increased), with a concomitant increase in the probability of overprediction (given by area A™*).
Input 7 should satisfy the inequality 7 < 0.5, since otherwise the resulting estimated pickup ¢/ for
the closed observation is less than the average pickup u; for unclosed observations. Base case
PODS tests let 7= 0.15. Tests on the sensitivity of projection d=truncation results to various T
have been performed, and indicate generally that T > 0.15 makes projection forecasting

substantially inferior to other detruncation methods**.

5.3.4. Pickup Detruncation

134 This assumes that closed observations have the same unconstrained distribution as unclosed flights’ N(u;, 63),
which is not likely. Overprediction probability should therefore be less than A.
135 Skwarek (1996a), p. 13.
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In contrast to projection methods, pickup detruncation assumes that no proportional
relationship exists between bookings in hand BIH(x) at the closure interval x and final bookings
BIH(0). Instead, it asserts that absolute increases in bookings between x and the last interval 0 on
unclosed flights are the best indicator of what pickup would have been on the closed flight g, had
space been available. As shown in equation (5.17), the estimate of final unconstrained bookings

BIH(0) g is derived by adding the simple average of pickup after the closure interval on unclosed

HDB flights to bookings received until closure BIH(x),.

~ C
(5.17) BiH(0), = BIH(x), +%- 3 (BIH(0); - BIH(x);)
j=1

where j indexes the C (of M - t*°°) flights in the HDB which do not close at
any time during the booking process
x is the interval of closure for the HDB flight g being detruncated

5.3.5. Conditions to be Tested

The detruncation methods are compared under a variety of conditions. The condition set
is exactly similar to those discussed in Section 5.2.4 for forecasting methods. Base-case pickup
forecaster is used by both airlines in all comparisons of detruncation methods. All detruncation
methods are compared utilizing the base-case booking curve detruncation without scaling as a

benchmark. Following is a list of the selected conditions, which repeats Section 5.2.4:

Base simulation context (Section 5.1)

Low and high demand factor (DF = 0.7, 1.2).
Low and high secondary z-factor (zf3).

Low and high systemwide k-factor (skf).

e @ o o

Nonzero cancellation rates and multiple frequencies were also tested for each detruncation
method comparison. Because no significant differences among methods was revealed, these

results will not be shown.

5.4. Sell-Up Models

13¢ In pickup detruncation the M - ¢ earliest (complete) HDB flights are used. See Footnote 127 in this chapter.

104



5.4.1. Modify Booking Limiis

In this thesis, I will examine the Belobaba/Weatherford modification of booking limits
strategy only, as has been extensively described in Section 3.3.2.2. For simplicity, airlines in
PODS experiments will assume a constant sell-up probability SU,+s,. for all adjacent fare class
combinations n+1, n, given closure of the nth fare class. This is somewhat unrealistic and ignores
Bohutinsky’s conclusion (see Section 3.3.4.1) that sell-up is more likely to occur between
adjacent fare classes of higher value. However, this avoids the complex issue of estimating sell-up
rates by fare class combination, and yields a sufficient “first order” approximation to expected
revenue differences.

This PODS simulation improves on the more limited simulation environment used by
Belobaba and Weatherford. As with any simulation, PODS cannot claim the direct actual
experience of testing performed by Bohutinsky, but as described in Section 3.3.4.1, “real world”
experiments are subject to many underlying variables and random events which cannot always be
controlled for. Because PODS abstracts away from the trends and random events influencing
demand for flights, I argue that a simulation is appropriate for assessing the systematic revenue

impact of incorporating sell-up estimates in setting booking levels.

5.4.2. Conditions to be Tested

Most base market conditions (Section 5.1) are retained. Estimates of sell-up probability
SUp+1n rates range 0.0 to 0.8. Three competitive sell-up environments are considered: no
adoption (neither of the two carriers adopts an estimate of sell-up), single adoption (one airline
adopts, the other does not), and joint adoption (both airlines adopt). These three environments

and sell-up probabilities are tested against the following conditions:

o Base simulation context (Section 5.1)

e High demand factor (DF = 1.2). Sell-up may be more effective at high DF.
Low DF is not considered because there are few sell-up opportunities if
demand is not high.

e High price sensitivity, at normal and high DF (DF = 0.9, 1.2). Sell-up is
less effective as passengers become more price sensitive.

e Scaling of booking curve (pbscl = 0.2, 0.4, 0.6, 0.8, 1.0), at normal and
high price sensitivity. Previous studies indicate that excessive scaling induces
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sell-up'’. Combining scaling with estimations of sell-up may separate out
these factors.

e Additional frequencies in market. More alternatives reduce passenger
captivity on a flight, thus limiting sell-up possibilities. This effect may vary
depending on whether the airline with additional frequencies also (in the single
adoption case) estimates sell-up.
Now that mode} description and the outline of testing conditions is complete, I proceed to
the PODS simulation results in Chapter 6. These results will emphasize, where possible,

consistent theoretical explanations for observed revenue differences.

137 Skwarek (1996a).
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VI. PODS Revenue Results

This chapter details the revenue comparisons for the three input methodologies under the
conditions described in Chapter 5. While I provide a theoretical justification for presented
revenue differences, these results should be treated with caution: the multiple levels of
stochasticity and interaction between input methodology choices, passenger flows, and
subsequent model behavior allow many interpretations of observed differences. Sections 6.1
(comparing forecasting methods) and 6.2 (comparing detruncation methods) are closely
interconnected because forecasting results depend heavily on the detruncation methodology
chosen. Thus, most of the theoretical distinctions I draw for detruncation methods will be
introduced in Section 6.1 and simply elaborated on in Section 6.2. Bullet summaries of principal

conclusions are included for each major section in this chapter.

6.1. Forecasting Model Comparisons

This thesis compares alternative forecasters in a “pair-wise” fashion against the base-case
pickup forecaster, under a variety of scenarios as described in Chapter 5. This creates two pairs:
pickup versus regression, and pickup versus the efficient forecaster. In each sub-section I give

results for these two comparisons. Recall from Sectior 3.1.1.4 that the purpose of forecasting in
seat inventory control is to predict final bookings BIH(0) ron a forecast flight f before each of
the N booking intervals in the booking process. Depending on the forecaster chosen, this
prediction is made on the basis of historical bookings data (final bookings BIH[0] on previous
departures of the same flight), advance bookings data (bookings-in-hand BIH[i], for the forecast
flight f until the forecast interval i), or both. All historical data is taken from the Historical Data
Base (HDB), which contains bookings-in-hand BIH(i) data over each booking interval i for recent
departures of the flight being forecast.

6.1.1. Pickup/Regression Comparison

6.1.1.1. Base Case and High/Low Demand Factor Scenarios

Table 6.1 lists the percentage revenue difference of pickup over regression forecasting

under three demand factors (DF). These differences are calculated for each detruncation method,
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where both airlines use the same method. Methods include no detruncation; booking curve
detruncation with extreme scaling138 (pbscl = 0.6), moderate scaling {pbscl = 0.8), and no scaling
(pbscl = 1.0); projection detruncation; and pickup detruncation.

Neither regression nor pickup dominates these results. It is immediately apparent that the
detruncation pair used in the market significantly influences the relative performance of the
forecasters. With limited exceptions, there are no substantial revenue differences at low or
moderate demand levels. Pickup forecasting performs markedly better than regression forecasting

at high demand factors under booking curve detruncation, but worse under projection

detruncation.
% Rev Difference, Airline with Pickup over Airline with Regression’>’
DF None | Bk Crv (0.6) { Bk Crv (0.8) | Bk Crv (1.0) | Projctn Pickup
0.7 ] -0.26% -0.79%* -0.38%* 0.06% -0.17% | -0.38%*
09 } -0.05% 0.19% -0.13% -0.74%* -0.57%* | -0.12%
1.2 | -0.50%* -0.45%* 4.89%* 7.95%* -1.54%* | -0.49%*

Table 6.1. Pickup versus Regression Forecasting Relative Revenue Performance

Figure 6.1 graphs absolute revenues for each airline for each detruncation pair; low
demand factor revenues have been omitted because no differences are substantial. In these
comparisons, Airline A has regression and Airline B has pickup forecasting. At moderate demand
factors (DF = 0.9), revenues are more influenced by detruncation method choice than forecasting
choice (i.e., Airlines A and B schieve approximately equal results for each detruncation pair
choice). This changes under high demand conditions, when detruncation choice is still controlling
but significant differences emerge between the airlines according to forecaster choice. In
particular, regression significantly underperforms pickup forecasting with booking curve
detruncation and no scaling, but is superior with projection detruncation. Not detruncating yields
the lowest revenues as expected, but adopting pickup detruncation yields marginal improvements
over this worst-case scenario. I will now discuss theoretical explanations for observed revenues

by detruncation method pair.

¥ Recall from Section 5.3.2 that scaling of booking curves is necessary because closed flights exhibit different
proportional booking relationships than unclosed flights.
1% Results marked with * have statistically significant revenue differences using a paired t-test, at a 95% level of

confidence. This notation is repeated throughout Chapter 6.
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e No Detruncation

When neither airline detruncates, there are no substantial performance differences between
regression and pickup forecasting, used by Airline A and Airline B respectively -- even under high
demand conditions. As shown in Table 6.2, passenger loads under both forecasting methods are

equivalent.- From this we can infer that their forecasts were largely equal.

Passenger Loads, Airline A With Regression | Passenger Loads, Airline B With Pickup
Scenario Y B M Q Total Y B M g Total
DF=0.7 9.1 43 2.6 50.9 66.9 9.0 4.3 2.7 51.0 67.0
DF=0.9 | 10.0 5.6 3.2 62.3 81.1 9.9 5.6 3.2 62.5 81.2
DF=1.2 | 9.8 7.2 37 71.1 91.8 9.3 7.2 3.7 71.2 91.8

Table 6.2. Loads for No Detruncation Scenarios

These results may be explained with the aid of Figure 6.2, which has a representative
booking history for a fare class on an unclosed flight. Suppose that the booking curve in Figure
6.2 represents the “path of average bookings by interval #” for unclosed flights in the HDB. Then
at booking interval h, B, bookings on average have been received. Average total bookings at the
end of the booking process are L;. A line drawn from average final bookings L4 to any previous
interval (e.g., ray be between intervals h and 0) represents the truncated pickup forecasting
predicted increase in bookings between the specified intervals (see Section 5.2.2). Assuming
approximately zero variation around the booking curve (ie., zf: = 0), the ray be also represents
truncated regression forecasting predicted final bookings Ly given B, bookings at h. Thus,
without detruncation and assuming stationary demand conditions, regression and pickup
forecasting on average always yield equivalent forecasts.

To see this, consider the unadjusted booking curve information estimated on the basis of
unclosed observations in the HDB, and given by upbook: for each interval h (see Section 5.2.3).
With no variance from the propertional relationships specified by upbooks, the regression slope
relating bookings to come BTC(0) by departure (Ls - By in Figure 6.1) to bookings-in-hand
BIH(h) (B in Figure 6.2) will be equal across all the unclosed HDB observations'?’. Therefore,

140 A5 noted in Section 5.2.1, we could also estimate a regression curve between BIH(x) and fotal bookings before
departure BIH(0) with equivalent results.
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the R? for the regression is 1, and its slope is equal to S for the regression perfocrmed at
upbooky,

booking interval k"', If a forecast flight f has B, bookings at A (i.e., it has the mean bookings by
interval h on HDB unclosed flights), regression and pickup forecasting yield equivalent estimates
of final demand at L,.

Figure 6.2. Sample Booking History

What if bookings on the forecast flight f at interval h are not equal to the average for

unclosed observations, e.g., BIH(h) = By +€? In this case the forecasts are no longer

equivalent: The pickup forecast of finai demand is unchanged at L, but regression differs by

—-——l-—--e. Thus, there is no guarantee that the forecast for f based on an undetruncated HDB
upbooky,
will be equal if f does not have the average bookings-in-hand on unclosed flights at forecast
interval h. However, for comparative purposes we are interested in average forecast and revenue
differences. Since these comparisons are drawn over 16,000 observations, the mean of ¢ is zero.

Over this large sample size, forecasts and revenues are equivalent.

14! This assumes the intercept term in OLS has been suppressed. Also, the unclosed flights in the HDB must form
a similar booking curve as is constructed for booking curve estimation (recall that booking curves are constructed
using all observations since the beginning of the trial). Two facts suggest that this is true. First, both the forecast
based on unclosed HDB data and beoking curves are estimated on the basis of unclosed observations. Second, the
minimum sample size for 95% confidence that a forecast will be within 10% of its “true” value under forecast
errors of about 35% is 47.06 observations -- less than 52, the size of the HDB. The 35% is above the demand
variability evinced by present system k-factors of 0.3. See Wickham (1995), p. 58.
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One consideration has until this point been ignored. What if there is significant variation
in proportional booking relationships among observations? Suppose that poor correlation exists
in bookings between intervals over HDB flights, so a given bookings-in-hand at the forecast
interval is not a good signal of final bookings on the forecast flight f. Will regression and pickup

still yield, on average, equivalent forecasts?

BIA )

Figure 6.3. Booking Correlation Between Intervals and Range of Final Demand

In Figure 6.3 a hypothetical flight is at booking interval k in the booking process, with b
bookings-in-hand. If the correlation in demand between booking intervals is high (zf2 = 0),
demand in the each remaining interval is closely related to the bookings in the interval before. A
relatively tight distribution in final bookings between S; and S, results. But if the correlation
between intervals is poor (zf2 is high), a much wider possible distribution of final bookings
between W; and W, occurs. The implication of this phenomenon is an increased presence of
outliers as correlation between intervals declines. Suppose knowledge of b bookings received by
h yields an expectation of receiving F bookings by departure. As the correlation between booking

intervals declines and the range of final demand increases, the likelihood of receiving F declines

significantly.
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Regression and pickup forecasting do not treat outliers equally: Pickup weights an outlier

observation the same as all others at , where M - ¢ is all observations used by the forecaster.

Regression forecasting is more influenced by outliers because the OLS regression technique
minimizes mean square error (MSE) -- which grows with the square of the distance between the

regression forecast and actual demand for each observation. Thus, outlier observations’ weight

on the slope will be greater than [YEre

This implies that the addition of an outlier observation to the HDB induces a larger
absolute change in the regression than pickup forecast. Consider the linear regression curve
F(RIH[t]) between bookings-to-come BTC and bookings-in-hand at interval / in Figure 6.4. The
curve is upward sloping (indicating that more bookings-in-hand at interval h imply greater
increases in BTC), and always passes through the means of the two variables -- in this case,
through the point (B Pj). Pickup forecasting assumes that bookings to come will be simply the
mean of past BTC for HDB observations, or P;. This yields the zero-slope line Pk representing
the pickup forecast of BTC for any bookings in hand BIH(h) level at interval h.
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Figure 6.4. Pickup versus Regression Forecasting -- Treatment of Outliers

Now suppose an outlier O is added to the HDB. The minimum MSE property of
regression significantly affects the regression forecast, yielding a new forecast curve F'(BIH[t])

with a significantly higher slope. Means for the two variables are now (B.,P,). Pickup forecast
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increases by the differences of means P, - Py, yielding a new pickup forecast curve Pk,. Under
regression forecasting, however, the forecast has changed by more than this amount for all
BIH(h) € (0,a) U (b,o). Thus, outliers have potentially significant impacts on regression
forecasts. We therefore expect regression and pickup to perform differently without detruncation
as variability in proportional booking relationships increases. This topic will be discussed in
Section 6.1.1.2. As we will see, the differential treatment of outliers property has many

implications for observed differences between forecasters..

e Booking Curve Detruncation

Next I turn to a comparison between pickup and regression forecasting when both airlines
have booking curve detruncation. Referring again to Table 6.1, the challenge is to explain first
why pickup and regression forecasters are almost exactly equal at all but the highest demand
factors (where the latter’s revenue performance declines significantly); and second, why scaling of
the booking curve used for detruncation eliminates the revenue gap. Without detruncation, the
“path of average bookings by interval £’ for unclosed HDB observations is shown as U in Figure

6.5. A flight C which has departed and closed in interval x is to be added to the HDB'*,

BIH®)

!
I
I
X

Figure 6.5. Booking Curve Detruncation

142 Since the HDB size is constant at 52 observations, it is assumed throughout that dropping the last observation to
add flight C has no effect on forecasts.
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If booking curve detruncation without scaling is applied to this HDB observation between
its closure interval x and the end of the booking process at 0, curve CI results. Final bookings d

for the now-unconstrained observation CI are a muitiple of average bookings on the unclosed

flights U given by d = 1 b=5.b. Given this situation, the curves U and CI cannot be
upbook, a
parallel at any point in the booking process: Both have the same origin (0 bookings at interval N,

the first booking interval) yet CI has more bookings by closure interval x. After interval x, the

1 . . . .
constant term oo is multiplied to b and a, again ensuring nonparallel curves: Two curves
upbook,

are parallel if their difference is an additive (not multiplicative) term. It follows that C7 has a
steeper curve than U.

Now suppose we wish to forecast a future flight f which is presently at interval h. Pickup
forecasting supposes that the increase in bookings for the forecast flight f is best approximated by
the average bookings increase on HDB observations from the forecast interval & until departure.
Among unclosed observations, the average increase between intervals h and 0 is ¢ - Bx. With
booking curve detruncation, closed observations like CI are now included. Since the slope of C7
is always steeper than U, we may conclude that booking curve detruncation always increases
pickup forecasts, since the ray B.d is steeper than Byc.

The change in regression forecast, however, is uncertain. Suppose that the HDB
detruncated flight CI perfectly follows the booking relationships given by upbook; for all intervals
t before closure at x (it will necessarily follow upbook: for periods after closure since it is
detruncated using this information). In this case, detruncation does not change the slope of the
BTC/BIH regression curve over not detruncating: The newly detruncated observation fits exactly
on the regression line F(BIH[t]) (see Figure 6.4) calculated singly on unclosed observations! This
analysis critically depends on whether “no detruncation” means exclusion of closed observations
(as is assumed here and in PODS) or inclusion with no adjustment. In the latter case, booking
curve detruncation without scaling will always change the regression curve, since the inclusion of
closed observations with zero pickup from closure until departure obviously creates booking
relationships that do not follow the upbook: relationships (specifically, upbook. = 1.0 for the

truncated flight, which is clearly implausible for x > 0).




Now suppose the HDB detruncated flight CI does not perfectly follow the upbook,
relationships. This may occur for every booking interval before x, since bookings on the closed
HDB flight before closure need not follow upbook,'*. Figure 6.6 repeats the F(BIH[h]) curve of

Figure 6.4, and has a slope of —l;l—[— If total bookings in hand BIH(h), for the detruncated
upbool:y,

HCB observation w by interval h are less than upbook: percent of total estimated detruncated
bookings d = BIH(0),, but more than the average received for unclosed HDB observations by
interval & (i.e., BIH(h); > Bs), the regression forecast between intervals h and 0 will increase.
This occurs because the detruncated HDB observation falls in region Ja of Figure 6.6, thus
shifting up the regression curve and increasing its slope’*. A dark shading is applied to indicate

this effect.

BIC(0)
‘ F(BIHM])

BIHh)

Figure 6.6. Effect on Regression Slope of an Additional Observation, by Region

But if more than upbook percent of total bookings on the detruncated observation w are
received by interval h yet less than the average bookings at h have been received (i.e., BIH(h). <
B;), the observation falls in region Ib and the slope of F(BIH[h]) increases -- but the regression

curve also shifts down. The addition of an HDB observation in region Ib therefore has an

13 1t is a requirement that the forecast interval h for a forecast flight f be before the closure interval x on the closed
HDB observation w for the booking curve detruncation of w to have this effect on the regression forecast. If i = x,
the closed observation must follow upbook,.

"4 This is true because if BIH(h), > By and BIH(h),/ BIH(0), < upbooks, if follows that BIH(0)., > F(BIH[h]),
since F(BIH[h]) = BIH(k) / upbook,..
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uncertain effect on the regression forecast between intervals h and 0, and both dark and light
shadings are used. Detruncated cbservations in this region are unlikely, since closure usually does
not occur on a flight w with fewer than anticipated bookings by interval k. Ray cf in Figure 6.2
illustrates this type of relationship on a representative booking curve at interval '*.

Now if the detruncated flight w being added to the HDB has higher bookings than average
before closure without commensurably higher bookings after closure, i.e., BIH(h). > By and
BIH(h)., / BIH(0)., > upbooky, the detruncated observation falls in region Ila. This situation
decreases the slope and shifts the regression curve downward, thereby decreasing regression
forecasts. See ray af in Figure 6.2. Finally, if low bookings on the detruncated observation
before interval h are combined with more than the expected BIH(h). / upbook: bookings
afterward, the effect on regression forecasting in region IIb is again uncertain. The slope of the
regression curve decreases, but the curve is shifted up (see ray cd in Figure 6.2).

Thus, the effect on regression forecasts of booking curve detruncation is almost
completely ambiguous, depending entirely on the booking properties of detruncated relative to
undetruncated flights. I have previously established that detruncated observations often come
from flights with low bookings in early intervals and higher bookings in later intervals (Section
5.3.2). This suggests that many detruncated observations fall in the uncertain region IIb --
providing no further clues. Detruncated observations are also sure to include region Ia examples,
ie., flights which have higher than expected bookings throughout their open booking periods.
These two facts suggest weakly that booking curve detruncation (like pickup) increases
regression forecasts. More precise details must be inferred from the observed revenue and load

differences.

Passenger Loads, Airline A With Regression | Passenger Loads, Airline B With Pickup

Scenario Y B M Q Total Y B M Q Total

DF=0.7] 9.3 4.3 2.8 50.9 67.2 9.1 44 2.6 51.6 | 67.6

DF=0.9] 120 | 79 ] 69 80.6 | 103 | 86 | 79 | sa6 | 814
pr=1.2| 17.0 [[[NANINIEAAIIE 956 | o940 | 1s.1 (AR

Table 6.3. Loads for Booking Curve (No Scaling) Detruncation Scenarios

15 To see this, note first that ¢ < Bj, (i.e., less than average bookings by interval k). Second, ray cf has f total
bookings at the end of the booking period, which is below the average e.
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To this end, Table 6.3 shows load results for both airlines under the three demand factors
(DF) when both carriers have booking curve detruncation without scaling. Because pickup
(Airline B) unambiguously increases with booking curve detruncation, it protects significantly
more than regression at high demand factors. This effect is clear from the dramatically reduced Q
loads for Airline B at DF = 1.2 relative to the Airline A (see shaded boxes). While regression
does protect additional seats for higher-valued fare classes (vertically-lined boxes), this increase is
substantially less than for pickup. It appears that the weight of outliers under regression (with
presumably more outliers at high demand factors) does not successfully counteract the
inconsistent effect of booking curve detruncation on regression forecasts. Significantly more
revenues for the airline with pickup results.

How does this analysis change if the booking curve for detruncation is also scaled?
According to Table 6.1 and Figure 6.1, the pronounced revenue difference at DF = 1.2 between
pickup and regression forecasting vanishes. As shown in Figure 6.5, scaling beyond closure

interval x of the closed HDB observation pushes its detruncated curve out further to C2. Final

bookings for the detruncated HDB observation with scaling are e = C— _.b. The pickup

forecast increases (since ray B.e is steeper than B.d), as does the tendency of the detruncated
observation w to fall in regions Ja and IIb of Figure 6.6 (since BIH(0), increases). The effect on
loads as pbscl decreases from 1.0 to 0.6 at DF = 1.2 is shown in Table 6.4. With detruncated
HDB observations showing high bookings increases, pickup forecasting almost completely shuts
down Q class and largely closes M class (shaded boxes). This stimulates further increases in B
class bookings (lined boxes). Tightening low-value class availability by lower pbscl also causes a
net decrease in total ioads.

Airline A also experiences dramatic declines in Q class loads -- which is consistent with
the hypothesis that detruncated observations in regions I« and IIb increase regression forecasts.
Curiously, M class loads first increase as pbscl decreases and then decline as B class loads
increase. The phenomenon results from the gradual closeout of lower value fare classes as lower
pbscl is applied: First Q class is closed when pbscl = 0.8 (shaded box in Figure 6.4), yielding
increased bookings in M class (lined box). A lower pbscl = 0.6 repeats this same pattern between

M and B classes.
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Passenger Loads, Airline A With Regression | Passenger Loads, Airline B With Pickup
Scenario] Y B M Q Total Y B M Q Total

pbscl=1.0| 17.0 | 195 | 224 | 350 | 940 | 181 | 337 | 281 | 82 | 882
pbscl=0.81 19.4 | 26.3 933 | 1938 . 29 | 858

pbscl=0.6 | 22.6 125 | 902 | 202 10 | 830

Table 6.4. Loads for Booking Curve (DF=1.2) Detruncation Scenarios, Variable Scaling

The gradual tightening of low-value class availability explains why pickup forecasting’s
revenue advantage over regression declines to approximately zero with lower pbscl. Without
scaling, regression forecasting is a poor performer because it does not protect enough seats for
high-valued passengers, allowing low-value passengers to flock to it. . As pbscl decreases, the
increased observations in Ja and IIb create more outliers to which the regression curve
aggressively responds by increasing protection levels for high-value classes. Passengers are left
without an inexpensive alternative, and must sell-up. Further tightening by pickup forecasting
fails to maintain its revenue lead because successively more protection begins to have diminishing
returns: Instead of reducing booking limits for low-value fare classes, they are simply made
unavailable -- yielding little additional sell-up. Regression forecasting results in a passenger
distribution with more bookings in lower-value fare classes, but this is offset by the fewer total

bookings pickup forecasting receives with almost complete closure of low-value classes.

Passenger Loads, Airline A With Regression | Passenger Loads, Airline B With Pickup
Scenario]l Y B M Q Total Y B M Q Total

pbscl=10] 120 | 79 | 69 | 538 | 806 | 103 | 86 7.9 546 | 814
I

bscl=0.8 | 12.9 809 | 109 | 107 81.0 |
pbscl=0.6 | 14.1 812 | 121 | 140 JUHHEI

Table 6.5. Loads for Bookmg Curve'(DF =0.9) Detruncation Scenarios, Variable Scaltg

Curiously, this phenomenon occurs only at high demand levels. Under more reasonable
demand conditions (DF = 0.9), pickup and regression forecasting have approximately equal
revenue results regardless of scaling. Table 6.5 details load results for DF = 0.9, and indicates
that regression and pickup forecasting have substantially the same forecasts. Lower pbscl again
induces the differential protections (pickup directs significantly more Q class passengers to M

than regression forecasting), but this is offset as Airline A retains equality with its competitor in
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high-class bookings, and offsets revenue losses induced with lower M class loads by more Q class
passengers. Thus, Airline A’s loads increase with scaling, while Airline B’s loads decrease.
Moderate demand levels prevent the dramatic underprotection of regression relative to
pickup forecasting because closed observations are much less likely. With fewer observations to
operate on, the load differences induced by detruncation do not occur (recall Table 6.2, which
suggests that without detruncation, pickup and regression forecasts are equal). This revenue
equality is maintained if scaling is applied to booking curve detruncation): Scaling does induce
increased closure of low-value fare classes under pickup forecasting, and makes outliers of the
detruncated observations for regression forecasting. But the “super-weighted” tveatment of
outliers under regression and the few observations to which this technique is applied ensures the

retention of revenue equality.

o Pickup Detruncation

Booking curve detruncation adopts the approach that proportional booking relationships
are constant between closed and unclosed HDB flights. Pickup detruncation instead assumes that
the absolute increase in bookings from closure interval x to departure on the closed HDB
observation is best approximated by the average increase in bookings between these time periods
on HDB flights which do not close. This situation is illustrated by Figure 6.7, where the increase
in bookings after closure interval x on a closed HDB flight C is the mean pickup c¢ - a in bookings
between x and O for unclosed HDB flights U. The difference between the curves C and U is
therefore constant at b - a = d - ¢ between intervals x and 0.

As is apparent by inspection of the curve, this results in pickup detruncation yielding low
estimates of final bookings d on closed HDB flights -- certainly lower than booking curve
detruncation (compare Figure 6.7 and 6.5). Suppose a flight f is being forecast from booking
interval h. In Figure 6.7, if the forecast interval h is before the closure interval x for the
detruncated HDB flight C, pickup detruncation results in a slight increase in the pickup
forecasting estimate of final bookings BIH(0), for the forecast flight £, This is true because the
slope of the ray B.d representing pickup from interval h for the detruncated HDB flight C is

marginally greater than the slope of Bic, representing average pickup for all unclosed HDB
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flights'*. The effect on regression forecasting is uncertain for reasons already described.

Relative to booking curve detruncation, the regression forecasts under pickup detruncation will

certainly be lower.
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Figure 6.7. Pickup Detruncation

In Table 6.6, loads are approximately equivalent for both forecasters. This is explained as
another result of Figure 6.7: A pickup detruncated HDB observation w will not have substantially
different estimated final bookings BIH(0),, than the mean final bookings BIH(0) for all unclosed
observations. No outliers are created, which are treated differently according to forecasting
method.

Passenger Loads, Airline A With Regression | Passenger Loads, Airline B With Pickup
bcenario Y B M Q Total Y B M Total
DF=0.7 9.2 4.3 2.7 51.1 67.3 9.1 4.4 2.7 67.1
DF=0.9 10.2 5.6 3.3 62.0 81.0 10.1 5.7 3.3 81.0
DF=1.2 Emli]mmm" 7.7 39 92.0 7.6 3.9 91.9

Table 6.6. Loads for Pickup Detruncation Scenarios

This explains why regression does not underperform pickup forecasting at high demand
factors, as it does when booking curve detruncation is used. There is simply little impact of the

“larger” forecast slope with inclusion of the detruncated HDB observation. 'Comparing Table 6.6

146 However, if the forecast interval h for the flight being forecast is equal to the closure interval x of the
detruncated HDB flight C, pickup detruncation has no effect on the pickup forecast.
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and Table 6.2 (loads with no detruncation), we see almost no difference -- except for a modest
increase in Y and decrease in Q bookings (as shown by the lined and shaded boxes, respectively).
The implication is that pickup detruncation is marginally better than no detruncation at all. 1 will

return to this topic in Section 6.2 below.

o Projection Detruncation

Finally, we have projection detruncation. In Figure 6.8, this detruncation method predicts
the increase in bookings for a closed HDB observation between booking intervals & to 0, given
closure at interval x (x < h). Following the terminology of variables already introduced, interval
is the forecast interval for a flight f that is being forecast. Interval x is the closure interval on an
HDB observation w which closes’”’. Between intervals h and x, b - B, bookings are received on
w. The average increase in bookings for HDB flights which remain open over these intervals is a
- Bix. Then the average increase on unclosed HDB observations from intervals x to 0 is ¢ - a,

yielding average total “pickup” from intervals h and 0 for unclosed HDB flights of 4, =c—Bj,.
Projection detruncation estimates final estimated unconstrained pickup ¢l between the forecast

mterval h and € on the closed HDB flight w given this information and 7, an input conditional
probability (see Section 5.3.3).

t-a

|
aByb-B, 4 BIC(h,0)
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Figure 6.8. Projection Detruncation for a Closed Flight

147 Projection detruncation may also be used when more than one observation in the HDB is closed.
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In this situation the several input variables complicate general statements about regression
or pickup forecasts under projection detruncation. Effects on these forecasts may be inferred by
examination of the results of the projection deiruncator relative to pickup and booking curve
detruncation already discussed. First I compare projection and pickup detruncation. Projection
estimates of final BIH(0), for the closed HDB flight w will be greater than the pickup
detruncation estimate (ie., b - B. + c -a < ¢l ) if a=By =b-B, and 7 < 0.5. The latter

condition will always be true (see Section 5.3.3); the former is not likely to be true (bookings
received up until forecast interval h are usually highcr on HDB observations which later close than

those which do not). As a— By <b- B, the projection detruncation estimate BIH(0)., on the

closed HDB flight w tends to decrease relative to pickup detruncation. Tests of sample values
indicate that the projection detruncation estimate of unconstrained demand will be larger than
pickup detruncation if b - B. is not larger than a relatively generous 150-175% of a - B,. This
condition is robust under a wide range of values for the other variables. As 7 — 0, the projection
detruncated estimate increases relative to pickup detruncation; our base case T = 0.15 is relatively
low. Based on this information, pickup detruncation should consistently yield lower detruncated

estimates than projection.

BIHG)

N | X

Figure 6.9. Projection Detruncation

Projection detruncation may be compared to bocking curve detruncation using Figure 6.9.

Unclosed observations U in the HDB have, on average, ¢ total bookings by the end of the
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booking process. Repeating the detail of Figures 6.7 and 6.5, pickup detruncation will estimate d;
total bookings on the closed HDB flight w. Booking curve detruncation without scaling estimates
d, final beokings, and ds with scaling. I have established that projection detruncation generally
estimates BIH(0), higher than pickup detruncation at d;. Since increasing T causes projection
estimates of BIH(0).,to increase, projection detruncation may be anywhere within the shaded area
of Figure 6.9, and even higher than ds for sufficiently small 7.

Table 6.7 (loads for both forecasters under projection detruncation) indicates no especially
consistent difference in bookings between forecasters. At DF = 1.2, regression forecasting
outperforms pickup forecasting for Y class bookings -- but it underperforms on B and M classes,
and its excess of Q bookings suggests slight underprotection relative to Airline B’s pickup. On a
revenue basis, regression outperforms pickup forecasting, which increases with demand factor
(Figure 6.1). More surprising is the extreme shift in bookings from Q-class to M and especially B
class with high demand and projection detruncation. This far surpasses other detruncation
methods in the degree of fare class distribution shift as demand factor increases (compare Table
6.7 with Tables 6.6, 6.5, and 6.4). Projection is apparently very sensitive to high demand
situations.

This suggests that projection detruncation responds to high demand conditions by causing
extreme outliers in the HDB dataset (i.e., projected demands on closed HDB flights are greater
than d; in Figure 6.9). Such reasoning is consistent with the observed superiority of regression
over pickup forecasting under projection detruncation: Estimating BfH(0),, on a closed flight w
beyond the level d; (which occurs under booking curve detruncation with extreme scaling at pbscl
= (.6) further improves the performance of regression forecasting due to the disproportionate

weight of outliers.

Passenger Loads, Airline A With Regression | Passenger Loads, Airline B With Pickup
Scenario] Y B M Q Total Y B M Q Total
DF=0.7] 9.2 4.3 2 7 50.8 67.1 9.1 4.3 2 7 51.0 67.1
DF=09] 11.1 6.8 58.8 81.3 10.5 6.9 593 | 814
=1.2 Jeal e IIIIIIHNI!JIIIHI i IIHIMI'I'!IIIIIHIIIIIIIIHI!f'illflilllllllllllll.|I"||EI L 30 | 811

Table 6.7. Loads for Pro;ectlon Detruncation Scenarios
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e Summary

The following may be concluded from this discussion of base case and higlv/low demand

scenarios:

o Neither regression nor pickup dominates revenue results. The difference
between the two is dependent both on underlying demand and detruncation

method choice.
e Detruncation tends to introduce outliers, though the extent to which these

observations deviate varies significantly by detruncation method.

e Because regression gives disproportionate weight to outliers, it tends to
perform better when large outliers are associated with high demand situations.
o Applying detruncation always increases pickup forecasts, but not
necessarily regression forecasts.

e Substantial differences between the forecasters emerge only under
moderate and high demand conditions.

6.1.1.2. High/Low Bocking Curve Variability Scenarios

The discussion surrounding Figure 0.3 idicated twn ™ts: First, outlier« in the HDB are
more likely as the correlation in bookings between intervals decreases. Second, regression and
pickup forecasting do not treat outliers equally. This section tests the revenue effect of increasing
“variability around the booking curve” to determine how this phenomenon changes the revenue
comparisons reported in Table 6.1. Table 6.8 gives revenue results as the z-factor zf2 varies from
1 to 4, where the base zf>is 2 (see Section 4.3 for a discussion of the influence of zf; on variability

around the booking curve). The low-demand scenario has been suppressed for lack of significant

revenue differences.

% Rev Difference between Airline with Pickup over Airline with Regression, by

Detruncation Method Pair
DF ) None BkCrv(0.6) | BkCrv(0.8) | BkCrv(1.0) Projctn Pickup
1.0 | -022%*| -0.11% -0.36%* -2.90%* | -0.60%* | -0.41%*
09| 20 | -0.05% -0.13% -0.74%* | -0.57%* | -0.12%
40 | -0.10% 0.98%* 031% | -047%* | -0.32%
1.0 | -0.76%* 2.26%* ] -1.34%* | -049%*
1.2 | 20 |-0.50%* 4.89%* 1 .1.54%* | -0.49%*
40 | -0.37%* 11.89%* 1 -0.76%* | -0.02%

Table 6.8. Percentage Revenue Dljferences between Pickup and Regresszon under Variable zf
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These results consistently show that increasing variability from booking curve
relationships specificd by upbook, causes the performance of regression forecasting to deteriorate.
This is true regardless of the detruncation method considered, and is magnified at high demand
factors. The revenue underperformance of regression is exacerbated when the selected
detruncation method is booking curve detruncation without scaling. Curiously, the revenuc
difference almost completely vanishes as more scaling is applied (see two shaded regions in Table
6.8). To explain these results, Table 6.9 details loads for booking curve detruncation with pbscl
= 0.6 and 1.0 (extreme and no scaling, respectively). I examine the high demand scenario, where

the revenue effect of not scaling is most pronounced.

Passenger Loads, Airline A With Regression Passenger Loads, Airline B With Pickup
poscll z6 | Y B M Q_ | Toal | Y B M Q | Total
10] 234 | 303 ] 213 | 149 | 899 | 20 419 | 190 | 12 | 827
06 | 20| zz6 H81 ) 125 | 902 | 202 IIIIIII!"I"I""IIIIIH 7| 1.0 | 830
40] 211 5 T 114 | on1 | 194 A "‘lllllll‘*’" [ 09 | 848

| 20] 201 | 179 | 237 933 | 182 8.6 | 88.1
10 | TR 195 b 040 | 18.1 [llliad, [ 82 | 852
1.8 F 3722 AllsH 946 | 17.2 IIllII"'FHﬁHIIIIIIT% 123 | 58.6

Table 6 9 Loads wzth Variable zf,, Bookmg Curve Detruncation, pbscl = 0.6 or 1.0, DF = 1.2

Without scaling, regression performs worse than pickup forecasting as variability over the
booking curve increases because their bookings by fare class (and thereby revenues) move in
opposite directions. Airline A (with regression forecasting) loads in Y and M class decline
precipitously, while Q class loads increase. In complete contrast, Airline B’s Y and Q class loads
are not affected by increased zf;, while M class loads decline significantly and B class loads
increase. When scaling is applied, regression assumes the same fare class distribution as pickup
forecasting: M loads decline while B class loads increase, with relatively little movement in other
classes.

The absolute revenue effect of these dramatic differences is illustrated in Figure 6.10,
which shows the revenues achieved by Airline A (with regression) and Airline B (with pickup) for
each of the three zf; levels by detruncation method. From this graph we may determine how

increasing variability around the booking curve affects the absolute revenues achieved by the
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forecasters, not the proportionate difference between them at each zf>. There are many revenue
lines which complicate reading of the graph, but they fall into three easily identifiable groups.
First are no detruncation and pickup detruncation, which severely underprotect for higher-valued
fare classes. Regression and pickup forecasting yield equivalent revenue results, and revenues
decline slightly as zf, increases.

Second, projection and booking curve detruncation with pbscl = 0.6 adequately protect.
Revenues are again approximately equal between regression and pickup forecasting. Moreover,
they increase with increasing booking curve variability! Finally, intermediate cases (booking
curve detruncation with little or no scaling) offer moderate underprotection. The only significant
differences between forecasting methods are exhibited here: Regression performs worse than
pickup forecasting. The difference increases with larger zf:. It is apparent from Figure 6.10 that
the revenues resulting from the initial fare class distribution due to forecaster and detruncator
choices is most relevant in predicting the effects of variation in proportional booking relationships.

The causes of these revenue differences are not clear. If revenues increase simply because
of the presence of additior... HDB ontliers o ™nzl b~ okings as zf> increases causing forecasters
to aajust by increasing protections (e.g., booking curve with scaling in Table 6.9), why does it
apply only to B and M classes? The positive outliers (where present bookings-in-hand for an
HDB observation are less than upbook, percent of final bookings, represented as ray cd in Figure
6.2) implicit in this explanation are no more likely to occur than negative outliers, which have the
opposite effect on forecasting.

In fact, in a detruncated HDB negative outliers are more likely than positive outliers. The
latter, with unexpectedly high later bookings, are much more likely to close (see Section
5.3.2).Increasing zf> magnifies the difference between expected booking relationships upbook; for

each booking interval ¢ and actual relationships for the positive outlier HDB observation w. Thus,
upbook, >> upbook,® . Therefore, relative to a moderate zf3, all detruncation methods -- even
with scaling -- subsequently applied to a closed outlier HDB flight w tend to underestimate the
actual upbook;* . Negative outliers, however, fail to close -- which suggests that protections for

higher-valued fare classes decline as zf increases. This is implausible, given the observed load
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shift toward higher-valued fare classes in Table 6.9. At present, no consistent explanation may be
offered for observed revenue shifts 2s zf> is varied.
The following conclusions may be drawn from this discussion of pickup versus regression

forecasting as variability around the booking curve changes:

o Regression deteriorates relative to pickup forecasting as booking curve
variability increases.

e This difference is magnified at high demand factors.

¢ The difference is almost completely suppressed if booking curve
detruncation with scaling is the chosen detruncation method.

6.1.1.3. High/Low System K-factor %ariability Scenarios

Section 4.3 described the effect of system k-factor skf on total demand for each
obscrvation. A larger k-factor increascs the variability between observaticns of demand by
passenger type. Testing several skf is of interest because regression and pickup forecasting may
not equally adjust to this variation. To this end, alternative skf values of 0./ and 0.5 were tested
in addition to base case skf = 0.3 at DF = 0.9. The high demand case will not be discussed, since
it largely repeats the results of DF = 0.9. Revenue results are listed in Table 6.10).

% Rev Difference between Airline with Pickup over Airline with
Regression, by Detruncation Method Pair

skf None | BkCrv(0.6) | BkCrv(0.8) | BkCrv(1.0) | Projctn Pickup

0.1 -0.12% 0.06% 0.02% -0.05% -0.02% 0.00%

03 | -005% | 0.19% -0.13% -0.57%* | -0.12%

05 1-071%* | 848055 =~ 38&dE 1 2 aaiE | -1.76%* | -0.58%*

Table 6.10. Percentage Revenue Difference under Vanable System K-factor; DF = 0.9

It is clear by inspection that increasing systemwide demand variability benefits regression
forecasting at the expense of pickup forecasting, regardless of detruncation method chosen. The
relative loss due to pickup forecasting is significantly influenced by the detruncation method. As
indicated by the shaded regions of Table 6.10, the difference is reduced under booking curve
detruncation when scaling is applied. When there is little variation in demand between

observations (skf = 0.1), there is no statistically significant difference between regression and
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pickup forecasting under any detruncation method choice. These resuits strongly suggest that
differential ireatment of outliers is responsible for the observed revenue differences.

This effect is demonstrated in Table 6.11, which compares loads under each skf when
booking curve detruncation without scaling is the selected detruncator. Here, both airlines record
moderate declines in bookings as systemwide demand variability increases. Airlines A and B
begin with equivalent bookings in all classes. However, Airline A’s declines come completely
from the lowest-value Q class, while higher-valued class bookings increase. Pickup forecasting,

in contrast, records decreases in both the highcst-value Y and the lowest-value Q classes.

Passenger Loads, Airline A With Regression | Passenger Loads, Airline B With Pickup

skf Y B M Q Total Y B M Qo Total

0.1 11.6 7.9 60.8 86.0 11.0 6.4 8.7 59.7 85.8

b li::||':'|l||1lIIIIIII':ill::llllllllz, W o3 1 86 | 19
ML . EDE T R

Table 6.11. Loads under Vanable skf; Booking Curve Detruncation (pbscl=1.0); DF 0.9

These results may be explained by the differential approach adopted by regression and
pickup forecasting: the former assumes an equality of proportional booking relationships per
interval ¢ among flights, and the latter assumes equality of absolute bookings increases from
forecast interval ¢ until departure. Since varying skf has (on average) no effect on the booking
relationships specified by upbook,, the regression curve will not be significantly affected by
increasing demand variability. Its forecast depends on the detruncation model chosen, as has
already been discussed.

The pickup forecast will be negatively affected if increased skf reduces the average
increase in bookings for HDB flights between any forecast interval ¢ and 0. This is exactly what
occurs: The increased number of HDB outlier observations with unusually low pickup do mot
close, and therefore lower the unclosed HDB average estimate of pickup between intervals ¢ and
0. Clearly, the (now increased number of) observations with high pickup are more likely to be
closed. So without detruncation, pickup forecasts decline relative to regression forecasts.

With the adoption of detruncation methods, outlier HDB observations with high pickup
may also be included in forecasts. At higher skf, observations w that close are more likely to have
exhibited exceptionally high final bookings BfH(0).. This magnifies the degree to which
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detruncated HDB observations differ from mean final bookings levels for unclosed flights. Since
regression forecast disproportionally weights outliers in the HDB, the clear effect is increased
protection for regression over pickup forecasting. This is true for all detruncators, which explains
regression’s consistently superior performance at skf = 0.5. However, how is it then the case that
applying scaling reduces revenue differences? If regression benefits because it disproportionally
weights HDB outliers, this effect should be magnified and not reduced when extreme scaling is
applied to closed HDB observations.

Passenger Loads, Airline A With Regression } Passenger Loads, Airline B With Pickup

pbscl 1 Y B M Q Total Y B " M Q Total

10 1133] 89 [ 66 | 445 | 732 | 79 57 | 543 | 756
08 | 142 IIIIIIII"'H"!!IIIIHIHIIII M Age T 134 | ss ||||lI!,HI'QIIIHIIIHIIIH., il 412 | 75.5
06 | 153 [[[MAIMIGAENT 28€ 738 | 100 [IIHHIIIA I..,Illlll;%’« 1737

Table 6.12. Loads with Variable Scalmg under Booking Curve Detruncation; skf = 0.5; DF = 0.9

To explore this issue further, Table 6.12 has load information for each pbscl under high
skf. The extreme revenue differences under pbscl = 1.0 are apparently due to the superior load
distribution for Airline A with regression forecasting, which is consistent with the outlier
hypothesis. As scaling is applied Airline A benefits -- higher-value class loads increase (lined
boxes), but Airline B benefits much more. Both the decline in its Q class bookings and the
increase in higher-value class bookings are more significant. Thus, by pbscl = 0.6 there is a barely
significant revenue difference between the two airlines (see Table 6.10), even though regression
has significantly more Y and Q class bookings than the pickup carrier. This result is analogous to
the “catch-up” which regression forecasting undergoes when scaling is applied in the base case
(see Table 6.4): Revenue results are equivalent, though the load mix is not.

Under booking curve detruncation, then, scaling functions as a revenue equalizer for
forecasting models: The forecaster which underperforms due to the vagaries of booking curve
detruncation gains differentially when scaling is applied. This differential gain may occur because
of a limited potential of sell-up among passengers. Table 6.4 (under high DF) indicated that
further gains to pickup forecasting from overprotection were limited, since lower-value fare

classes were all but closed. In the same fashion, further gains to regression forecasting in Table
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6.12 may be limited because underiying demand conditions do not permit significant further sell-
up among M and Q class passengers.
From this final analysis of regression versus pickup forecasting, we may conclude the

following when systemwide demand variability increases:

e Relative to regression, pickup forecasting underperforms on a revenue
basis.

e The difference is mostly eliminated if booking curve detruncation with
scaling is the chosen detruncation method.

¢ Adding scaling tends to equalize differences between forecasters, possibly
because of the limited potential of sell-up.

6.1.2. Efficient/Pickup Comparison

The pairwise comparison between the efficient and pickup forecaster proceeds in the same
fashion as with regression and pickup (Section 6.1.1), with one significant difference: Since the
efficient forecaster requires the use of booking curve detruncation {Section 5.2.3), the alternative
detruncators assumed by both forecasting methods are reduced to three, and vary only by choice
of scaling pbscl.

6.1.2.1. Base Case and High/Low Demand Factor Scenarios

Revenue comparisons under base conditions are given for three demand factors in Table
6.13 below. Pickup forecasting consistently outperforms the efficient forecaster, though scaling
again tends to reduce the revenue difference between forecasters (especially at high DF). These
results are not encouraging for the efficient forecaster, and are contrary to initial expectations that
it would yield superior results because of its “full-information” property (i.e., it uses all available
information from the HDB to forecast).

The explanation for efficient forecasting’s persistent underperformance and improvement
with scaling will, if consistent with the results in Section 6.1.1, show that the efficient forecaster
exhibits two central characteristics. First, without scaling it increasingly underprotects for high-
value fare classes relative to the pickup forecaster as demand factor increases. Second, either it
lends outliers a differential weight, or sell-up opportunities with pickup forecasting diminish as

scaling is applied -- thus allowing it to “catch up.” The presence of the first characteristic is
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examined in Table 6.14, which gives loads by fare class at three demand factors when booking

curves are not scaled.

% Rev Diff between Airline with Pickup over Airline
with Efficient
DF Bk Crv (0.6) Bk Crv (0.8) Bk Crv (1.0)
0.7 -0.12% 0.32% 0.12%
0.9 1.25%* 3.35%* 3.02%*
1.2 -0.47%* 3.05%* 8.10%*

Table 6.13. Pickup versus Efficient Forecasung Relative Revenue Performance

These results are entirely consistent with underprotection by the efficient forecaster. Both
forecasters have approximately equivalent results at DF = C.7. By DF = 0.9, mosit of the increase
in bookings for Airline B (with pickup) occur in B and M fare classes (lined boxes); Pickup
forecasting has predicted more bookings for these classes and thereby limited any increase in Q
class. In contrast, Airline A with the efficient forecaster does not protect significantly more seats
for B and M classes, causing the bulk of its increased loads to occur in Q class (lined box). Under
extreme demand conditions, the differences are more significant: The pickup forecaster has tightly
constricted Q-class bookings (shaded box), and high demand causes increases in all high value
classes. While the efficient forecaster experiences a similar phenomenon, it is clear that it has
underprotected for high-value classes relative to pickup forecaster. Both the decline in Q class

and increase in B and M class bookings are much smaller.

Passenger Loads, Airline A With Efficient | Passenger Loads, Airline B With Pickup
DF Y B M Q Total Y B M Q Total
0.7 9.1 4.3 2.9 50.8 67.1 9.1 4.4 2.6 51.2 67.3
0.9 9.5 6.7 3.9 815 | 10.8 543 | 80.6

88.6

Table 6.14. Efficient and Pickup Loads with Variable DF, pbscl =

The primary reason for the underperformance of the efficient forecaster probably lies not
in its “full-information” property, but in the weighting system applied to c bs=rvations which are
truncated. Recall from the description in Section 5.2.3 that the efficient forecaster detruncates all
HDB observations which either close or have incomplete booking histories using booking curve

detruncation (with scaling as appropriate). A detruncated HDB observation is weighted
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according to equation (5.10) by correlation coefficients CC,-2 () which measure the consistency of

proportional relationships between bookings at truncation interval j and the end of the booking
process, calculated over all unciosed flights in the HDB. This process is repeated for each
truncated observation. Next, a weighted average of final bookings is calculated over all HDB

observations. This is then combined in equation (5.12) with a detruncated estimate BTH(0) ! of

bookings on the forecast flight f, based singly on booking curve detruncation applied to present
bookings on this flight in the forecast interval . The weight W acsigned to the estimate

BTH(0) r is governed by the correlation coefficient between intervals ¢ and 0, as shown in

equation (5.11).

The justification for weighing HDB observations with final bookings data that must be
inferred less than those which can be directly observed'® is that detruncation (the inference
procedure) is inexact. This intuitively appealing system ensures that the most confidence is placed
in observations for which we have complete data. However, it also creates a systematic
downward bias in the weighted average of final bookings on HDB flights. High demand flights
are obviously more likely to close. Thus, they will always be weighted less than low and
moderate demand flights which never close. This effect is magnified if the closure interval occurs
earlier in the booking process: The correlation coefficient naturally declines when calculated
between earlier booking intervals and interval 0, since there are more intervals over which
variation from the proportional relationships specified by upbook; may occur (see Section 6.1.1.1
and Figure 6.3). As demand for a flight increases, its closure will occur earlier (assuming stability
of the underlying booking curve). High demand flights are therefore doubly likely to be weighted
less than low demand flights: once because they are more likely to close, and again because they
are more likely to close early.

It is therefore apparent that the efficient forecaster underperforms because it
underprotects. This is primarily due to the present assumption that the cause of an incomplete
booking history should not be used in the weighting mechanism. If the efficient forecaster were
adjusted to reflect the fact that HDB observations which close tend also to be those with high

"% Recall that a flight g with a complete, unclosed booking history will already have BIH(0),. In these
circumstances the correlation coefficient is 1. See Section 5.2.3.
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demands (as opposed to flights which are truncated because they have not yet reached interval 0
in their booking process), these results might be significantly different. Conclusions drawn here
are also tempered by the limited consideration of the efficient forecaster in PODS. The
forecaster’s ability to use the incomplete booking histories of “future flights” which depart after
the forecast flight was not exploited'®.

In any case, the underprotecticn argument still has one ambiguity: How can the efficient
forecaster “‘catch-up” in revenues when scaling is applied to booking curves? Certainly it does
not super-weight outliers like regression; instead closed observations are weighted less. The fact
that the efficient forecaster’s weighting scheme is not seasitive to scaling applied to detruncated
observations indicates that scaling unquestionably results in higher forecasts. Obviously,
however, this will not occur to the extent of regression forecasting. We are thercfore left with the

diminishing returns to scaling argument.

Passenger Loads, Airline A With Efficient Passenger Loads, Airline B With Pickup

u SR A ihss

) ‘IIIHI'""“'"Illlll]lllll!" |2 85.7
08 ] 174 | 298 [I[HRIHI] 92.7
1.0 | 131 | 220 93.7

Table 6.15. Efficient and Pickup Loads with Varzable pbscl, DF = 1.2

Table 6.15 shows loads for the three scaling levels at DF = 1.2, where the revenue
consequence of not scaling is most apparent. Without scaling, Airline B with pickup forecasting
has already induced significant sell-up, thus allowing few Q class bookings. Airline A with
efficient forecasting, however, has many Q class bookings. As scaling is performed, Airline B
induces significant sell-up from M to B class. Airline A is still significantly behind at pbsc! = 0.8,
but it has achieved substantially equivalent loads when maximal scaling is reached. Airline B has
clearly exhausted much of its sell-up possibilities by pbscl = 0.6: Q class is entirely closed and M
not so far behind. It seems apparent that diminishing returns to more protection for higher-valued
fare classes effectively prevents the pickup forecaster from maintaining its revenue superiority

over the efficient forecaster. To summarize:

149 Suppose our forecast flight fis at interval A in the booking process. A “future flight” is one which departs after
flight f, e.g. f+ 1. Flightf + I will be at interval & + I in its booking process, assuming booking intervals of equal
length. The booking histories of future flights are less complete than the forecast flight’s.
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e The efficient forccaster generally underperforms pickup forecasting. This
situation worsens as demand factor increases.

e Underperformance of the efficient method is likely due to a weighting
system with an inherent downward bias.

e Revenue equality is attained when maximal scaling of booking curves is
applied. This is probably due to diminishing returns to scaling.

6.1.2.2. High/Low Booking Curve Variability Scenarios

When more variability around the booking curve is exhibited, the relationships specified by
upbook; are less likely to be followed. PODS evaluates the, effect by the z-factor variable zf>, as
previously discussed. ‘With increasing zf>, more flights deviate from the proportional booking
curves. Section 6.2.2 explains that in these circumstances the number of closed flights in the
HDB increases. These closed flights are disproportionally likely to be “early-low, high-late”
bookings flights (i.e., booking curve C in Figure 5.1). Because closed or truncated flights are
insufficiently weighted by the efficient forecaster, its underprotection liability should be magnified
as 7f> increases. Table 6.16 indicates that this is so: Not only does its performance decline

precipitously with increasing variability around the booking curve, but the effects are generally

worse at high DF.
% Rev Diff between Airline with Pickup
over Airline with Efficient Forecaster
DF zh Bk Crv (0.6) | Bk Crv (0.8) Bk Crv (1.0)
1.0 0.15% 2.05%* 2.31%*
0.9 2.0 1.25%* | 3.35%* 3.02%*
T
/ 0.59%* 5.11%*
1.2 3.05%* 8.10%*

L MR

Table 6.16. Pickup versus Eczent recastmg Relative Revenue Performance
under Variable zf;

Underperformance is further ensured by an intensification of the weighting bias against
high demand HDB observations. A large zf; creates numerous deviations from proportional
booking relationships specified by upbook:.
final bookings BIH(0), related to bookings-in-hand BIH(i), in booking interval j by the

Thus, an HDB observation g is less likely to have
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relationship BIH(C), = BIH(j)g fupbook; .  Correlation coefficients Cng (j) for all paired

intervals therefore decline, further reducing the weight on truncated observations relative to those

with complete booking histories. Since high demand situations have more closure by definition,

revenue losses in Table 6.16 will increase with demand level.

Passenger Loads, Airline A With Efficient Passenger Loaaus, Airline B With Pickup
pbscl] 1 Y B M Q | Toa | Y B Q] Ton
1.0} 242 , 355 | 23.1 30 | 857 | 194 | 403 | 249 10 | 856
06 |20 230 [THERI %46 | 1.8 | 857 | 194 452 | 07 | 858
40 ¢ 7a8 lowEll 82 | 10 [ 874 | 187 ... N
. . 933 | 179 | 273 | 336 | 97
1.0 937 | 17.8 %8 | 91 | 886

93.8 16.3 319 E 249

Table 6.17. Efficient and Picku Loads with Variable zf5, pbscl = 0.6 or 1.0; DF = 1.2

I examine the load effect of variable zf> assuming booking curves with pbscl = 1.0 and
0.6. Only the high demand case (DF = 1.2) is considered, since differences are most apparent at
this level. As is shown in Table 6.17, without scaling the efficient forecaster has an inferior load
distribution even with minimal booking curve variation at zf> = 1.0. It has fewer passengers in all
high-value fare classes, which its excess of Q class passengers does not offset. As zf> increases,
the fare class distribution of both airlines declines. Airline B with pickup is able to increase its Q
and B class loads (lined boxes) at the expense of M class (shaded boxes); Airline A, however,
loses Y and M class passengers, balancing this with increases only in Q class. At high booking
curve variability and without scaling, the efficient forecaster’s fare class distribution inferiority is
intensified. This is consistent with the theorized weight reduction on HDB high demand
observations, causing the seat optimizer to underprotect for high-valued fare classes.

In contrast, Table 6.17 indicates that when booking curves are scaled, the efficient
forecaster has a superior load distribution (distinctly more Y class bookings) regardless of
variation in the booking curve. This results in superior revenue results for efficient forecasting
(shaded boxes in Table 6.16) at high demand levels. A curious inconsistency is created: Table
6.16 shows that at extreme scaling (pbscl = 0.6), increasing the demand factor removes the

revenue superiority of the pickup forecaster, while under moderate or no scaling the superiority is

intensified.
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This revenue shift could be attributed to diminishing returns to scaling. But other facts --
especially the superiority of Y bookings by Airline A (Table 6.17) -- cannot be explained by this
reasoning. I argue that two factors interact to favor the efficient forecaster under high DF and
scaling conditions. First, Airline B (with pickup forecasting) has substantially limited sell-up
possibilities as already discussed. Second, scaling booking curves for detruncation purposes has a
disproportionate effect on the efficient forecaster. This may be seen by examination of equation

(9.12), which gives the final estimate of unconstramed bookings on the torecast fligg ~ The
weight WP is assigned to estimated bookings BITH(0) ¢ for the forecast flight f, where BTH(0)

is derived using only advance bookings information BIH(t);, and booking curve detruncation. The
remaining weight 1 - WP is assigned to a weighted average of final estimated bookings on HDB

flights. It is clear from equation (5.11) that the weight WP is relativeiy high, since WP = CC} ().

That is, bookings on the flight f being forecast are always weighed at least as much as the
correlation coefficient between bookings at the forecast interval ¢ and final bookings.

The influence of booking curve scaling on pickup forecasts is limited by the number of
closed observations in the forecast HDB; each HDB observation is weighted equally.

But BTH(0) fexerts significant influence on the efficient forecast. If the forecast interval ¢ is not

too early and there is moderate booking curve variability, CC}(t) is typically above 0.5. This
influence increases as zf> decreases, since lower variability around the booking curve increases

CC} {t) and thereby WP. Hence the increasing revenue superiority of the efficient forecaster as
7> decreases at high DF (Table 6.16): If demands are high, detruncated BTH(0) f and therefore
the ultimate efficient forecast are likely to be high. This is not true under moderate demands (DF
= 0.9), where BTH(0) r will only be high if the flight f being forecast exhibits atypically high

bookings-in-hand at the forecast interval z. In this case, efficient forecasting’s sell-up
opportunities are limited, and it can at best attain revenue equality with pickup forecasting at low

zf>. We may conclude the following:

e Increasing booking curve variability aiways makes pickup perform better
relative to the efficient forecaster.
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e Elevated demand levels increase the revenue differences at no or moderate
scaling.

o Under extreme scaling, increasing demand reverses the revenue trend:
Pickup forecasting is inferior under high demands.

o This is probably due to high weight placed on detruncated observations at
high demand factors and low booking curve variability.

6.1.2.3. High/Low System K-factor Variability Scenarios

Like the regression forecaster, the efficierit model should not be significantly affected by
the variability of total demand between repeated instances of the same flight. This is contrasted
with pickup forecasting, which (as explained in Section 6.1.1.3) will be negatively impacted
because it uses average absolute bookings increases on HDB flights. Table 6.18, giving revenue
differences for variable system demand k-factor skf at DF = 0.9, generally confirms this
hypothesis: The superiority of the pickup fcrecaster declines as skf increases. In keeping with the

regression versus pickup comparison, variable skf under DF = 1.2 is not considered here.

% Rev Diff between Airline with Pickup over Airline

with Efficient
skf Bk Crv (0.5)
0.1 2.99%*
0.3 1.25%*
0.5 0.75%*

Table 6.18. Pickup versus Efficient Forecasting Relative Revenue Performance
under Variable skf, DF = 0.9

There are two exceptions to the general decline in pickup forecasting revenues with
increasing skf: The efficient forecaster manages to make revenue inroads at low skf when
moderate or no scaling is applied (shaded boxes in Table 6.18). I investigate this issue by
comparing loads for both forecasters under booking curve detruncation with pbscl = 0.6 (which
exhibits the expected relationships) and 1.0 (which does not) in Table 6.19. It is difficult to
generalize from load results. When both airlines scale, substantial gains occur in fare class
distribution: Both airlines gain high-value class bookings (lined boxes) at the expense of lower-
valued classes. Airline A with the efficient forecaster differentially gains, allowing it to almost

eliminate its revenue losses relative to pickup forecasting.
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In contrast, without scaling Q class loads still decrease, but there is no significant increase
in higher-class bookings. The revenue effect of these different load changes with increasing skf is
shown in Figure 6.11, which graphs absolute revenue results for each airline and the total market,
given a scaling level and skf. It is clear from the graph that for pbscl = 0.8 or 1.0, increasing sk
causes revenue declines for both airlines and the total market. However, with extreme scaling,
dramatically improved loads when skf increases from 0.1 to 0.3 result in improved revenues for
both airlines and the total market (see arrow in Figure 6.11)! This result is contrary to our
expectations: Unless the forecaster and/or detruncator increases forecast demands as variability
increases, or the seat optimizer increases protections in the face of demand variability, increasing

uncertainty should reduce average revenues.

Passenger Loads, Airline A With Efficient Passenger Loads, Airline B With Pickup
pbscl } skf Y B M Q j(iTotal Y B M Q | Total
to1] 93 5.3 44 | 702 | 89.2 | 13.0 7.3 142 | 48.0

06 |03 | 823 | 122 35

05] 116 | 129 317 % ] 751 10.2 155 b 255 1 2

011 9.6 49 46 | 68.1 | 872 | 11.7 59 8.4
10 {03 95 39 | 61 815 | 108 7.5

05| 85 7.3 3.7 %6 1 751 F 87 | 84 5.3

Table 6.19. Efficient and Pickup Loads wzth Variable skf, pbscl = 0.6 or 1.0; DF = 0.9

I will discuss in Section 6.2.3 why seat optimizers usually decrease protections as skf
increases. As was mentioned in Section 6.1.1.3 (and further justified in Section 6.2.3), an
increased number of closed observations should occur as demand variability increases, simply
because a greater proportion of HDB observations have outlying final unconstrained booking
demands'®. This assertion, combined with the efficient forecasting property of placing lower
weight on truncated HDB observations, suggests that the forecaster’s downward bias is magnified
as variability increases. Lower high-value class demands are forecast, causing the seat optimizer
to underprotect for higher-value passengers. Fewer high-value passengers arrive (since their fare

classes are more often closed), and revenues decline. Table 6.19 and Figure 6.11 are obviously

150 1t is implicit in this argument that the booking limit for the involved fare class(es) do not vary. ButI have just
noted the contrary, i.e., booking limits on lower-valued classes increase with increasing demand variability.
Assuming that variability in booking demand is not correlated among fare classes, this implies that seat availability
on higher-valued classes tends to decline, on average. This consideration strengthens the argument which follows.
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contrary to this conclusion. Apparently some as yet unknown feature of booking curve scaling
operates to increase high-value fare class protections as variability in demand increases.

Therefore, under increasing systemwide demand variability:

e The efficient forecaster improves relative to pickup.

e Total loads decline, and the fare class distribution deteriorates (assuming
no scaling of booking curves used for detruncation).

e If booking curves are scaled, loads still decline but the fare class
distribution inexplicably improves.

6.2. Detruncation Model Comparisons'®’

The examination of alternative forecasters in Section 6.1 also included much discussion of
the various detruncation methods tested in PODS. Significant theoretical groundwork for the
revenue differences I will explore in this section has therefore already been presented. Some of
the apparent differences between detruncators have already been mentioned, through as yet
different detruncation schemes have not been compared within the same PODS case. This section
explores differences among detruncation methods, making reference to Section 6.1 (and the
discussion of methods in Section 5.3) when appropriate to avoid repetition of theoretical details.
I compare detruncation models under the base case scenario described in Section 5.1. The two
airlines generally differ only in choice of detruncation method, and pickup forecasting is used for
all comparisons. All comparisons are between detruncation methods relative to the base case

booking curve detruncation without scaling, unless specifically noted otherwise.

6.2.1. Base Case and High/Low Demand Factor Scenarios

Table 6.20 presents comparisons for three demand factors between booking curve
detruncation without scaling and other detruncation alternatives. Generally, there are few
significant differences between detruncation methods at low demand factors. Differences emerge

only at moderate and high demand factors. I will discuss each detruncation method in turn.

131 Many results in this section are adapted from Skwarek (1996a). Changes have been made where tests were
rerun on a newer version of PODS; no significant changes in relative or absolute relationships have been noted
over these cases.
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% Rev Diff between Airline with Booking Curve (No Scaling)

Detruncation over Airline with Selected Detruncation Method
DF None Bk Crv (0.6) | Bk Crv (0.8) | Projctn Pickup
0.7 -0.29% 0.20% -0.23% -0.41%* | 0.00%
0.9 3.62%* -2.09%* -2.04%* -0.02% | 2.56%*
1.2 50.29%* -1.10%* -1.73%* -2.63%* | 42.01%*

Table 6.20. Booking Curve (No Scaling) Versus Other Detruncators:
Relative Revenue Performance at Several Demand Factors

6.2.1.1. Booking Curve (No Scaling)/No Detruncation Comparison

It is clear from Table 6.20 that not detruncating closed observations has serious
consequences for an airline. Without detruncation, HDB observations which close are ignored by
the forecaster (Section 5.3.1). Since these flights are precisely those which are more likely to
close, dramatic underprotection results. Table 6.21 details passenger loads for Airline A (with
booking curve detruncation, no scaling) and Airline B (without detruncation). At low demand
factors, there is no appreciable difference between the carriers. At moderate demand, both
airlines experience substantial increases in loads. Airline A is able to direct most of this increase
to higher-valued fare classes, while increases in Airline B loads are nearly all in the low-value Q
class. This is consistent with the result shown in Figure 6.5, where booking curve detruncation

causes higher estimates of unconstrained demands among HDB flights.

Passenger Loads, Airline A With Bk Cv (1.0) |Passenger Loads, Airline B With No Detrunc
DF | Y B M Q__| Total Y B M Total
07 ] 90 | 43 26 | 514 | 613 9.1 43 2.7 _ 67.4
09 | 558 | 80.6 9.4 5.5 3.2 |l 819
1.2 41| 846 6.1 7.1 6.0 [lllwaiill 97.3

Table 6.21. Loads under Variable DF between Booking Curve (No Scaling) and No Detruncation

Under high demand conditions, the contrast is stark: booking curve detruncation almost
completely closes down Q class (shaded box in Table 6.21) and strongly limits bookings in M
class, causing the fare mix to shift heavily toward Y and B classes. Average loads increase at the
high demand factor, yet on average 15 of 100 seats go empty despite unconstrained average
demands of 120 passengers per airline (assuming passengers split evenly between the two).

Airline B operates consistently full flights, but nearly all its passengers are low-fare Q class
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passengers (see lined boxes). Indeed, its Y class bookings decline as the demand factor increases!

This is certainty due to underprotection for high-valued classes and thus a lack of seat
availability when high-value passengers arrive. Consider Table 6.22, which yields closure rates
(CR) by class for each of the scenarios in Table 6.21. The closure rate by fare class is an output
of a standard PODS case. It is defined to be the proportion of observations in the case for which
the fare class closes over the portion of the booking curve during which it is available'’>. CR
measures the proportion of observations for which seat availability SA reaches 0 at some time
during the booking process for the given fare class.

Closure statistics increase for one or a combination of three reasons. First, the fare class
involved may experience high bookings, so booking limits BL become effective. Second,
bookings in other fare classes may decrease seat availability SA for the fare class. Third, the seat
optimizer may adjust BL downward if more bookings are expected in a higher-value fare class.

Which combination accounts for a given CR must be considered in tandem with load information.

CR, Airline A With CR, Airline B With
Booking Curves (1.0) No Detruncation
DF Y B M Q Y B M Q

0.7 1 0.13 | 0.08 0.11 007 § 0.13 | 0.08 § 0.10 | 0.08
0.9 § 0.35 0.26 0.36 0.52 | 040 | 0.33 | 0.38 | 0.35
1.2 P65 1 048 | 098 J 10861 0.89

Table 6.22. Closure Rates under Variable DF between Bk Crve (No Scaling) and No Detruncation

Table 6.22 indicates that as demand increases, Airline B closes off higher-value fare
classes without commensurably high bookings, implying SA = 0 induced closures as bookings in
lower-value fare classes fill up seats on the airplane. In contrast, Airline A significantly limits the
increase in high-value class CR via adjustment of BL on lower-valued fare classes (see shaded
boxes). The effect of this action is seen clearly, as Q-class CR for Airline A approaches 1.00 with
few bookings. Airline B’s Q-class CR is also elevated, but because of very high bookings in that
class as price sensitive passengers denied by Airline A find seats on Airline B. These results are
all consistent with results in Section 6.1, which provides theoretical reasons why adoption of any

detruncation method increases final forecasts of bookings, thus inducing additional protection.

52 Thus, comparison of CR between fare classes is net appropriate if the fare classes are not defined to be available
over the same number of booking intervals,
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The dramatically poorer performance of Airline B begs the question of whether seat
inventory control without detruncation is better than no yield management system at all. Wilson
(1995) established that EMSR seat inventory control was always superior to FCFS or “First
Come First Served” control, where no booking limits are set but restrictions built into the fare
structure allow limited differential pricing. However, these comparisons assumed the use of
booking curve detruncation by the EMSR airline throughout. How much of Wilson’s
demonstrated revenue improvement is truly attributable to the selected seat inventory control
method alone, and how much is due to the added effect of detruncation?

To address this issue, a special three airline case was constructed. One airline has FCFS,
one has EMSRb without detruncation, and the third has EMSRb with booking curve detruncation
and no scaling. All other base conditions (e.g., DF = 0.9) are retained. Comparison of these three
combinations within one case is superior to two pairwise comparisons, since stochastic elements
vary considerably among successive runs of even the same case™. Table 6.23 indicates revenues
and seat distributions for this case. The airline with the EMSRDb seat optimizer alone yields a
6.02% revenue benefit over FCFS; with booking curve detruncation, a 9.25% improvement is
realized (the latter result is substantially similar to results discussed by Wilson'>*). Thus, in this
limited scenario, seat optimizing even without detruncation is a significant improvement over
using only a fare structure to differentiate fares. EMSRDb alone accounts for approximately 65%
of the previously reported differences between FCFS and full seat inventory control. The

remaining 35% is due to adoption of booking curve detruncation.

% Over Passenger Loads
Control Method Revenues| FCFS Y B M Q Total
FCFS $3,890 -- 7.1 3.7 2.3 69.4 82.4

EMSRb (No Detrunc) { $4,124 ] 6.02% | 9.9 5.5 3.0 63.8 82.1

EMSRb (Bk Crv [1.0]) | $4,250 | 9.25% | 11.6 7.8 5.2 55.2 79.8

Table 6.23. Three-Airline Variable Control Method Revenue Results

The results of Tables 6.23 and 6.20 illustrate the importance of detruncation in

determining the benefit airlines may expect to achieve with revenue management. An airline

133 Pairwise comparisons were calculated and yielded results not significantly different than the three-airline single
comparison reported here.
14 Wilson 1995, pp. 91-92.
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which invests heavily in a seat inventory control method without carefully considering input
methodologies (including detruncation) substantially limits its revenue gain. From this section we

may conclude:

¢ Not detruncating yields substantial revenue losses, especially at high DF.

o This is due to underprotection for high-valued fare classes.

e Detruncation accounts for a significant proportion of the gains due to the
implementation of a yield management seat optimizer.

e The bulk of the revenue gain, however, is due to the adoption of the
cptimizer, not the detruncation method.

6.2.1.2. Booking Curve Detruncation With and Without Scaling

The results of Table 6.20 suggest that not scaling the booking curve used for detruncation
has a deleterious revenue effect. This is consistent with the discussion in Section 6.1.1.1 on
booking curve detruncation, where (given a forecaster) scaling the booking curve results in higher
forecasts of unconstrained demand relative to not scaling. Load results for Airline A (which does
not scale) and Airline B (which does) for DF = 0.9 and 1.2 are shown in Table 6.24 below. The

low demand factor case has been suppressed due to lack of notable revenue differences.

Passenger Loads, Airline A (No Scaling) Passenger Loads, Airline B (Scaling)

DF | B pbscl Y B M Q Total Y B M Total

1.0 10.2 7.5 6.5 56.8 81.0 10.3 7.5 §1.0
091 08 9.9 7.6 6.6 57.8 81.8 10.9 80.2

0.6 99 | 8.8 ||l||["'|I"'|| Mt 226 1 840 | 122

10 | 163 | 29.1 510 | 165 ] 291 | 36 )3

08 ! 163 [l Jlllll':lllll " 18.5 Il "l"'l"lllllll»f"’" 4 8

06§ 164 [l 377 | 46 A . 82.5

Table 6.24. Loads under Varzable D and Scalmg Levels for Booking Curve Detruncanon

Both airlines have equivalent loads when Airline B does not scale (pbscl = 1.0), at both
demand factors. However, as Airline B scales, it begins to protect more than Airline A. At DF =
0.9, Airline B quickly drops Q class bookings, increasing class M and B bookings significantly.
By contrast, Airline A has no significant movement in B class loads, and only modest increases in
M loads at the expense of Q bookings. The effects are more extreme with high demands, as

Airline B completely closes Q class and significantly limits M class bookings, yielding increases in
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Y and B class bookings. Airline A also experiences declines in Q class bookings, with increased
B class loads.

Why should Airline A experience this spike in M class loads when Airline B adopts more
scaling? Since it does not respond by adopting a similar pbscl, Airline A should at best experience
no effect due to Airline B’s scaling, and at worse lose higher-class bookings to Airline B as its
relative underprotection increases. In the typical situation with asymmetry in relative protection
for high-valued fare classes, the carrier which underprotects presumably receives most of the low-
value passengers; only the airline with greater protection gains from its actions.

This assertion is incorrect, for the simple reason that the competitive nature of airline
markets may also work against the scaling airline. As it continues to scale, the ever-higher
predictions of unconstrained demand result in tighter limits on low-value class bookings. This
effort usually nets yet more high-value passengers, since sell-up is induced as low-value
availability is constricted. However, the probability that those denied space in the lower-valued
classes will refuse to sell-up (and seek accommodation on the airline with relatively less stringent
protection) increases commensurably. The observed increases in Table 6.24 suggest that
increased protections are beginning to have this effect in M class and perhaps B classes. Such a
situation indicates that scaling may at some point have the unintended effect of yielding more
benefit to the airline not adopting sell-up than the adopting carrier.

This issue is addressed further in Figure 6.12, which shows the revenue difference of
Airline A (which does not scale) over Airline B (which does) for pbscl from 0.2 to 1.0, under DF
=0.9 and 1.2. Clearly, Airline A earns less than Airline B when the latter chooses pbscl between
0.5 to 1.0. However, scaling choices below this level confer more revenues to Airline A as
passengers unwilling to sell up to the extent required by Airline B flock to it. Airline A’s gain is
not singly restricted to Q-class bookings. Gains occur in all but the highest-value classes as its
yield management system induces sell-up in recognition of high-demand conditions for its
capacity'®. If Airline B desires to maximize s revenue superiority over the competition, it
should restrict pbscl to a relatively modest 0.7. Note that conditions deteriorate faster under high

demand conditions. With high market demands, significant sell-up is automatically induced via

155 Obviously, the sell-up is less extensive than that which Airline B would impose. Otherwise nz > .ngers have no
incentive to switch to Airline A.
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the BL adjustment process of the seat optimizer. Further increases via pbscl are therefore limited.

This issue will be discussed further in Section 6.3 below. In summary,

e Not scaling under booking curve detruncation imposes revenue losses
because higher-value classes are underprotected.

¢ If only one airline adopts scaling, the ability of the adopting carrier to
induce higher revenues is limited. More revenues will be given to the non-
adopting competitor at extreme pbscl, as passengers refuse to sell-up.

6.2.1.3. Booking Curve (No Scaling)/Projection Detruncation Comparison

Table 6.20 indicates no large differences between projection and booking curve
detruncation without scaling, except at high demand factors. Under high demand conditions,
projection detruncation becomes approximately revenue equivalent to booking curve detruncation
with extreme scaling. How is it that projection detruncation is unremarkably better until high DF,
when it then outperforms most alternative methods? I have discussed a possible answer in
Section 6.1.1.1 above, i.e., the creation of extreme outliers with high demand. This is justified by
equations (5.15) and (5.16), which derive the projection detruncation estimate of unconstrained
“pickup” from the forecast interval ¢ until departure on a constrained HDB observation. Here we
desire to forecast unconstrained bookings on a particular forecast flight f which is currently at
interval ¢ in its booking history, and at least one of the HDB observations w closes in an interval
past t. In equation (5.15) as the difference ¢/ (bookings from forecast interval ¢ until closure on
w) less i, (mean “pickup” on unclosed HDB flights between ¢ to flight departure) decreases, the
projection estimate of “pickup” and thus final bookings BIH(0). on w dramatically increases --

especially for 2 low value of 7. Do high demand conditions cause cl to approach y,?

Passenger Loads, Airline A With Bk Cv (1.0) | Passenger Loads, Airline B With Projection
DF Y B M Q Total Y B M Q Total
0.7 9.0 4.3 2.6 514 67.3 9.2 4 3 2 7 51.2 67.4
0.9 10.3 7.3 59 574 80.9 10.6 596 81.4

)

MERELSI M ML Illllllllllllll!l.!lI"llIIIIIIIHIIIZIIIiI!I il 27 | se4

" Table 6.25. Loads under Variable DF between k Crve (No Scaling) and Pro;ectzon Detruncatlon

Certainly. With moderate demand, u; is well below average booking limits at forecast

interval 7. Relatively low ¢/ will induce closure, since the seat optimizer (expecting moderate
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high-value bookings) aliows low-value bookings to fill the plane.h In contrast, high demands cause
I to increase, but this increase is limited by the fact that unclosed observations must have
incremental bookings below the remaining capacity on the plane. At the same time, bookings cl
which induce closure are significantly higher (since high demand situations cause the optimizer to
protect more seats for higher-valued fare classes). Therefore, the difference y; - ¢l declines as
demand factor increases. It is clear that projection detruncation will detruncate closed HDB
observations to high (outlier) estimates of unconstrained bookings. This is demonstrated in Table
6.25, where both detruncation methods dramatically reduce Q-class bookings (see shaded boxes)
and increase higher-valued fare class (lined boxes). Airline B with projection scores significantly
higher gains in Y and B fare classes, while Airline A’s booking curve detruncation increases M

class loads.

6.2.1.4. Booking Curve (No Scaling)/Pickup Detruncation Comparison

The poor showing of pickup detruncation in Table 6.20 suggests that it is hardly better
than no detruncation at all. Comparison of load results when Airline B has pickup (Table 6.26)
versus no detruncation (Table 6.21) indicate that this is exactly the case. As DF increases, the
increase in low-class bookings without any substantial increase in high-value class bookings is
exactly similar. Curiously, pickup detruncation even yields less M class passengers than without

detruncation at all, though this is compensated for by higher Y class bookings.

Passenger Loads, Airline A With Bk Cv (1.0) | Passenger Loads, Airline B With Pickup

DF Y B M g Total Y B M Q Total

0.7 9.0 4.3 2.7 51.2 67.2 9.1 4.3 2.7 51.0 67.1

09 104 ] 75 6.1 | 567 | 807 | 9.8 5.6 3.2 ,Illlllfiiii‘;ll;fiilll | 81.
[TEHITT DT X TG R R N
ARG 22 4 850 | 8o [ 70 [ 34 [[IHKIKIIL 969

Table 6.26. Loads under Variable DF benzeen Bk Crve (No Scaling) and Pickup Detruncatio. o

The reason for pickup detruncation’s remarkably substandard revenue performance has
been explained in Section 6.1.1.1 and Figure 6.7. Assuming that the average increase in bookings
for unclosed HDB observations would have been obtained on closed HDB flights completely
ignores the fact that fare classes close precisely because they have high demand. High and low
demand flights do not exhibit the same absolute booking characteristics!
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6.2.1.5. Detruncation “Zero-Sum” Analysis

The comparisons in Table 6.23 between EMSRb with and without detruncation, and
FCFS are possible because detruncation of HDB observations which are closed is not a requisite
element of seat inventory control. Unlike forecasting, seat optimizers operate sufficiently (albeit
suboptimally) without detruncation. This optional nature of detruncation permits a “zero-sum”
analysis of detruncation. That is, since airlines operate in competitive contexts, do the gains to
detruncation come simply at the expense of competitors? Is detruncation adoption zero-sum, so
that total market revenues do not vary depending on whether one or both carriers obitain it?

Figures 6.13 and 6.14 give for DF = 0.9 and 1.2 the percentage revenue improvement for
each airline and the total market over the case where neither detruncates, for each detruncation
pair. According to the first two columns of Figure 6.13 for DF = 0.9, when Airline A adopts
booking curve detruncation, it earns an approximate 3% revenue improvement assuming Airline B
does not. Limited losses of less than 1% are imposed on Airline B, yielding a total market
improvement of approximately 1.5%. If Airline B responds by introducing projection
detruncation, it earns approximately the same as Airline A, or a 2% improvement. As I have
discussed, Airline B does little better by adopting pickup detruncation than not detruncating at all.
Finally, Airline B may achieve superior revenues by adopting booking curve detruncation and also
scaling, which also improves Airline A’s revenue results. Both airlines earn a 2% revenue
improvement by both adopting booking curve detruncation. Therefore, detruncation is not zero-
sum: Total market revenues increase in both the single and joint adoption cases, though the airline
adopting first (Airline A in Figure 6.13) may lose some of its gain when the competition catches
up. These events are repeated at high DF (Figure 6.14), though the proportionate improvements

over not detruncating are significantly higher.

6.2.2. High/Low Booking Curve Variability Scenarios

The revenue performance measures in Table 6.20 were also calculated under low and high
Zf», giving the sensitivity of the compared detruncation methods to variation in bookings received

around the booking curve. This process was repeated for moderate and high demand factors in
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Figure 6.13. Revenue Change Over No Detruncation, DF = 0.9
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Table 6.27; DF = 0.7 has been excluded as demand levels are not sufficiently high to cause

observable differences.

% Rev Diff between Airline with Booking Curve (No Scaling)
Detruncation over Airline with Selected Detruncation Method

DF > None Bk Crv (0.6) | Bk Crv (0.8) Projctn Pickup

4.0 49.9%*

Table 6.27. Booking Curve (No Scalmg)Versus Other Dptruncators
Relative Revenue Performance at Several Z-Factors

1.0 | 321%* | -0.59%* T1.83%* | 0.77%* | 2.80%"
09 | 20 | 3.62%* . 04%* . 2.56%*
40 | 388%* 1 iaas . asas g
10 | 46.22% . . 1, 57%* 37.15%*
12 [ 20 [ 5029%* | -1.10%* | -1.7: N 42.01%" |
Z 7% PROPIRA ,_ ', '/ .',/' = .f. DR R , , ":!!;’I”: :u I::‘l ""

Table 6.27 indicates generally that performance differences between booking curve
detruncation without scaling and aliernatives vary in consistent directions as zf; increases. Thus,
since booking curve detruncation with scaling and projection detruncation are superior at
moderate zf>, this superiority increases as booking curve variability increases (see shaded boxes).
In contrast, the superior protection levels and revenue performance of booking curve detruncation
without scaling over pickup detruncation is magnified as variability around the booking curve
increases.

These facts suggest an outlier-based analysis of these results. I have established in Section
6.2.1 that revenue and load differences between detruncators arise because their generation of
outliers and subsequent protection levels by fare class varies. Further, Section 5.3.2 discussed
why flights with low early bookings and higher late bookings are more likely to close than those
with typical proportional booking patterns, or high bookings early in the booking process. The

effect of increasing zf; is to increase the number of flights which deviate from the

ook proportional relationships. This was illustrated in Figure 5.1, where additional variation
upbook;

around the typical booking curve B increases the likelihood of outlier observations with high early
bookings A and high late bookings C.
Since closed observations are more likely to occur among flights with booking curves

similar to C, it follows that increasing zf> generates a higher proportion of closed observations in
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the dataset. Thus, the revenue consequences of adopting an inferior detruncator increase: Its
systematic underprotection will be applied to more flights. This situation is illustrated in Table
6.28, where loads under booking curve detruncation without scaling are compared with pbscl =
0.6 scaling at DF = 1.2. Even without significant booking curve variation (zf2 = 1.0), Airline A
(without scaling) attains a different fare class distribution than Airline B with scaling. However,

they are approximately revenue equivalent.

Passenger Loads, Airline A With Bk Cv (1.0) |Passenger Loads, Airline B With Bk Cv (0.6)

e A e

2> Y B M Q Total Y B M Q | Toul
1.0 | 17.3 30 o 400 | 5.8 93.1 | 20.6 | 385 | 236 | 0.8 | 835
20 | ik 377 | 46 | 941 | 211 Illﬂl!:!I"lII M 227 | 06 | 825
4.0 398 | 49 959 | 21.8 [[IE&HIE 54 0.4 83.0

Table .6 28. "Loads under Variable 7f> between Bk Crve (No Scaling) and Bk Crve (pbscl = 0.6)

As variation around the booking curve increases, Airline A experiences a significant
decline in Y class bookings and a commensurate increase in B class loads, suggesting inferior
protection for Y class due to underpredicted final demands. Other fare classes are not affected.
In contrast, Airline B maintains approximately the same Y class bookings but sees a substantial
transfer of M class bookings to the higher-value B class. In so doing Airline B gains a significant
revenue advantage over its competitor. These results are consistent with the underprotection of
inferior detruncators as the number of closed observations in the HDB increases. We may

conclude that:

e Increasing variability around the booking curve leads to more closed
observations.

o Inferior detruncators will cause greater revenue losses at high zf2, since
they are applied to an increased number of observations.

6.2.3. High/Low System K-factor Scenarios

Comparison of detruncation methods under variable skf allows the determination of how
well each method responds to underlying stochastic variation in demand between repeated
observations of a flight. Revenue resuits for each detruncation method relative to booking curve
without scaling are shown, for skf = 0.1 through 0.5, in Table 6.29. Low demand factors have

again been excluded, since the absence of effective booking limits on the seat inventory
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management system tends to eliminate revenue differences due to alternative methodologies. The

high demand factor case also will not be discussed for brevity.

% Rev Diff between Airline with Booking Curve (No Scaling)
Detruncation over Airline with Selected Detruncation Method

skf None Bk Crv (0.6) | Bk Crv (0.8) | Projctn Pickup
0.1 | 2.18%* 0.22% -0.27%* 0.41%* 1.53%*
0.3 | 3.62%* -2.09%* -2.04%* -0.02% 2.56%*
0.5 | 1.73%* -6.22%* -3.40%* -1.74%* 1.27%*

Table 6.29. Booking Curve (No Scaling) Versus Other Detruncators:
Relative Revenue Performance at Several skf

Table 6.29 clearly indicates two dichotomous groups. When booking curve detruncation
without scaling (the base case detruncator) is compared with pickup detruncation or no
detruncation, an apparently inconsistent trend with increasing skf results: The revenue superiority
of booking curve is maximized at moderate variability, declining as skf increases. The second
group is composed of detruncation methods which clearly outperform unscaled booking curve
detruncation, to an increasing degree as demand variability increases.

We may explain these results with Figure 6.15, which graphs the distribution of
unconstrained demand for a moderate and high skf distribution, as represented by the probability
density functions M(-)and H(:) respectively. Theoretically, varying skf has no effect on mean
unconstrained bookings By, though the likelihood of receiving B, decreases significantly, since
M(B:) > H(B:)"*°. Now suppose a booking limit ¢/ has been imposed on this fare class. For
simplicity, ¢l is invariant over the booking period, between flights, and various skf values.

Then the mean unconstrained demand for observations which close increases with skf, so
¢l > cly. Therefore, detruncators which generate higher unconstrained estimates of demand for
closed flights will perform better in a high skf environment. This is exactly what occurs for
detruncators in the second group, and is consistent with the result of Section 6.1.1.1 that booking
curve detruncation without scaling generally yields lower estimates of unconstrained demand than

these detruncation methods. Figure 6.15 also indicates that the likelihood of closure increases

1% Though Figure 6.15 is drawn and treated as a continuous distribution, the distribution of final bookings BIH(0)
for a flight is obviously discrete.
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with skf, as | M(x)dx < [H(x)dx. Since detruncation is applied over a greater proportion of

x=cl

the HDB, inferior detruncators should therefore perform worse. This is contrary to the results of

the first group, where (inferior) pickup detruncation and no detruncation partially recover their

revenue losses at high skf.

H(B,)

FBIE)

By

1 1 e O
et elyecly

» BIH(0)

Figure 6.15. Probability Distribution of Bookings under Moderate and High skf

To gain insight into this incongruity, Table 6.30 compares loads when Airline A has
booking curve detruncation without scaling, and Airline B utilizes no method. Contrary to Figure

6.15, both carriers lose significant bookings as system variability increases.

Airline A loses

significant Y and M class bookings, while Airline B’s losses occur primarily in Q class (see shaded
boxes). Airline A’s superiority declines at high skf because it loses more high-value class

bookings.

Passenger Loads, Airline A With Bk Cv (1.0) VPassenger Loads, Airline B With No Detrunc
skf | Y B Q Total Y B M Total
01 | 117 ] 60 580 | 84.2 9.8 45 3.4 87.5
03 | 107 | 77 b 52 55.8 80.6 9.4 5.5 3.2 1 819
05 VEa | 69 | A1 | 556 | 749 | BB | 59 28 b sa6 | 752

Table 6.30. Loads under Variable skf between Bk Crve (No Scaling) and No Detruncation, DF=0.9 |
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The loss in total bookings and disproportionate losses in high-value bookings may be
explained by a structural component of the seat optimizer which causes protection levels to
decline as demand variability increases. Given a constant mean bookings level, many seat
optimizers including EMSR protect fewer seats for high-valued fare class(es) as their variability
increases, assuming that the ratio of fares between adjacent fare classes is greater than 0.5 (which
is reasonable in present airline practice)’”’. Such a procedure is intuitively justified by the
marginal protective logic of most seat optimizers. Recall from Section 3.3.2.2 that EMSRb
jointly protects seats for higher-value fare classes until the expected marginal revenue from
receiving the next passenger in one of these classes is equated with the expected marginal revenue
from receiving the first passenger in the next lowest fare class'®. Clearly, increasing the variation

in demands for higher-value fare classes causes the probability of receiving n passengers to begin

declining (from 1) at a lower value of n, yielding lower expected marginal revenues'>.

CR, Airline A With Bk Cv (1.0) ICR, Airline B With No Detrunc
skl Y | B M Q Y B | M Q

0.11025]0.14] 030 | 063 | 036 [ 028 ]038] 033
0.3 [lsiall 0.26 0.52 0.33 | 038 | 0.35
0.5 [l 0.33 0.42 036 | 039 | 036

Table 6.31. Closure Rates under Variable skf,
Bk Crve (No Scaling) and No Detruncation; DF=0.9

This is confirmed in Table 6.31: As skf increases, Airline A loses bookings in Y and M
class while its closure rates increase (see lined boxes). Such an event occurs in cne of two
instances. The first is if the seat optimizer sets inadequately low protection levels for the
(presumably high-value) fare class, causing it to close with fewer bookings. Second, the scat
optimizer will reduce booking limits on a (presumably low-value) fare class if additional bookings
are expected in higher fare classes. Since the second case is not relevant, we may conclude that
the seat optimizer increasingly underprotects high-valued fare classes as skf increases. A similar

effect occurs for Airline B, though somewhat diminished (lined boxes). This causes its revenue

17 Belobaba (1987), pp. 153-157.

138 Since this latter expectation is always approximately one if there are sufficiently few classes, the expected
revenue from receiving the first passenger in the next lowest fare class is simply the fare for that class.

19 However, this more rapid onset of probability decline is balanced by a less steep decline with higher values of 7.
This is the reason for the fare ratio > 0.5 condition. Belobaba (1987), p. 155.
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“comeback.” It is, however, ironic that in this case underprotection (which is usually associated
with higher low-value class loads) is paired with lower total loads and lower loads in Q class.
When variability in total demand increases between observations, the following occurs:
o The mean unconstrained demand on closed observations increases.
Therefore, detruncation methods with larger estimates of unconsirained
bookings perform better.
e Most seat optimizers decrease protection levels. Total bookings tend to
decline, while closure rates for high-valued fare classes increase.
The comparative discussion of detruncators is concluded. I will complete this chapter

with results on attempts to induce sell-up by modifying seat protection levels.

6.3. Sell-Up Analysis'®

Throughout the discussion in Sections 6.1 and 6.2, revenue superiority was consistently
shown to be obtained by using forecasters and detruncators which yielded higher estimates of
demand, thereby causing the seat optimizer to protect more seats for high valued classes. This
resulted in the earlier closure of low-valued classes, causing some passengers who would
otherwise have traveled in a lower fare class to sell-up, or buy a more expensive ticket than the
passenger would have selected had the low fare class been available. The discussion also
indicated that certain limitations to sell-up exist; passengers are increasingly less likely to buy up
to progressively higher-valued fare classes as low-valued classes close. This section focuses on
PODS tests of an explicit attempt to induce sell-up by adjusting booking limits in each class. It
uses a method developed by Belobaba and Weatherford, and discussed in Section 3.3.2.2. The
approach of Sections 6.1 and 6.2 (with a more theoretical explanation for revenue differences
between input methodologies) is inappropriate for this section because we are not comparing
among alternative methods with differing assumptions about demand processes. Here I will focus
on a descriptive comparison of observed revenue effects at various assumed sell-up levels, and
intuitive explanations for these effects.

Recall from the discussion of simulation context in Section 5.4 that tests of the EMSRb

sell-up model are performed over a variety of sell-up rate (SU) estimates between all adjacent fare

10 Many results in this section are adapted from Skwarek (1996b).
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class pairs. Estimated SU rates are the assumed probability that a passenger able to meet the
restrictions in his or her initially desired fare class (but denied) will buy a seat in the next most
expensive fare class. Three sell-up scenarios are created: no adjustment (i.e., SU = 0.0), single
adjustment, and joint adjustment. In these experiments, Airline B always adjusts for estimated
SU, while Airline A does or does not depending on the scenario. In the joint adjustment case,
both carriers adopt the same estimated SU, implying revenue and load symmetry. Realizing that
the competitive context of PODS ensures that an airline’s action has potentially significant effects
on the competitor, choosing estimated SU to maximize individual gains may possibly lead to
important competitor gains as well. I therefore consider three possible objectives for Airline B,

the airline always adjusting for sell-up:

e Objective I: Maximize difference between adjusting and non-adjusting
airline revenues. This is represented in the graphs which follow by a thin solid
arrow over the estimated SU rate where the objective is achieved.

e Objective II: Maximize improvement in adjusting airline’s revenues over
SU = 0.0 when only it adjusts for SU. This is the myopic individual
maximization perspective, and is represented by a thick dashed arrow.
Realistically, it is also the most likely to be considered by airlines.

e Objective III: Maximize improvement in an airline’s revenues over SU =
0.0 when both carriers adjusts for SU. This is the appropriate goal for a
collusive combination (if it were possible, and legal) to maximize joint
revenues; it is represented by a thick solid arrow. While I treat this as a
collusive case, collusion need not be occurring if both carriers have adopted
SU. Joint adjustment and common SU estimates may easily result from
individual profit-maximizing behavior.

Further, two critical points for revenue results occur because of the competitive

interaction of the two airlines. These are:

e CRI: Revenue benefit to adjusting airline equals benefit to non-adjusting
airline. Airline B (the adjusting airline) must choose an estimated SU lower
than CR1, otherwise one benefits the competitor more than oneself.

e CR2: Revenue benefit to non-adjusting airline equals individual benefit with
joint adjustment. The colluding airlines must choose an estimated SU lower
than or equal to CR2 if the objective is to maximize joint revenues. Otherwise,
it is individually optimal for an airline not to incorporate SU estimates
assuming the other does, and the collusion fails..
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It is important to emphasize that the actual success of a given estimated SU rate depends
on the actual (unknown) willingness of passengers to sell-up, and the degree to which the present
fare structure is imperfect. First, the results of this thesis include underlying assumptions about
passenger willingness to sell-up. Recall from Section 4.5.2 that within the PODS framework a
passenger eliminates paths and fare classes whose absolute fare is greater than the passenger’s
maximum willingness to pay (MWTP). This MWTP is derived from a multiple of the lowest fare
in the market (set by passenger type), and is stochastically given by the acceptable cost ratio or
ACR (Section 5.1.3). MWTP screening is the primary mechanism by which passengers exclude
expensive fare products, though subsequent choosing among qualifying paths naturally selects the
least expensive option when monetary costs of all travel attributes have been affixed to each path
and fare class option (see Section 4.5.2). Base case ACR is 5.0 for nondiscretionary and 2.0 for
discretionary travelers. Thus, the former will always take any fare class, while the latter will sell-
up to all but Y class, on average. The second factor influencing the performance of adjusting for
estimated SU is the degree to which the present fare structure imperfectly segments passengers by
passenger type. If there are no misidentified passengers (i.e., all purchase tickets in the most
expensive fare class they are willing to accept when SU = 0.0), estimating any SU > 0.0 will
cause losses for the adjusting airline(s). Results in this thesis are specific to the environment

assumed by PODS.

6.3.1. Base Case and High Demand Factor Scenarios

Figure 6.16 shows revenue results for estimated SU rates between 0.0 and 0.8 for three
cases: Airline A’s individual revenue when only Airline B adjusts (thick solid line), Airline B’s
individual revenue when only it adjusts (thin dashed line), and revenues per carrier when both
adjust (thick dashed line). Clearly, revenues experience gradual improvement until an extreme
estimated SU probability of 0.7 used in the model, in which case revenues for the adopting
airline(s) declines precipitously. When Airline A does not adjust for estimated sell-up, it
nonetheless gains substantially from Airline B’s actions. Since CRI = 0.45, Airline B is clearly
limited in its ability to induce sell-up. Further overprotection causes passengers to move en masse

to Airline A, giving it far superior revenues. A relatively high CR2 = 0.6 indicates that airlines
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adjusting for estimated sell-up have a significant range of estimated SU rates where joint
profitability is possible.

A “jointness” effect also prevents Airline B from gaining all the revenue benefit of sell-up
unless Airline A cooperates and also adjusts for estimated SU. Joint revenues are significantly
higher than revenues when only Airline B adjusts over the entire range of SU. This is consistent
with the hypothesis that sell-up depends critically on the availability of alternatives as a
prominent force governing passenger sell-up likelihood. If both airlines adjust for SU, passengers
may no longer escape to a low-priced alternative, and so must pay more consumer surplus to the
colluding airlines. Objective performance expressed in percentage terms in Table 6.32 indicates
that maximal revenue improvements are achieved only with joint adjustment (Obj. III), yielding a
32.98% revenue improvement for each adjusting carrier. Boxes outlined in Table 6.32 are the
three direct objectives of the adjusting airline(s), as outlined above. Other percentage changes are

calculated for analysis of competitive impacts.

Base Case Best Estimated SU Rates and % Revenue Improvement
Adoption | Obj. Best B % Airline B % Over | Airline A % Over
By Est. SU Rate | Over A SU=0.0 SU=0.0
B Only 1 0.3 3.17% 8.80% 6.49%
B Only I 0.7 -9.46% 20.54% 34.44%
Both I 0.6 N/A 32.98% 32.98%

Table 6.32. Sell-Up Objective Performance, Base Case. DF = 0.9, Base ACR.

The best Airline B can individually do to distinguish its revenue results from its competitor
(Obj. I) is to assume a modest estimated SU = 0.3, yielding a 3.17% revenue difference over
Airline A, and a 8.80% improvement over not adjusting for estimated SU. In this case Airline A
still gains 6.49% by doing nothing! If Airline B adopts a simple myopic “best improvement”
philosophy, its revenues can improve 20.54% with an estimated SU = 0.7, but it will
underperform Airline A by 9.46%. Two reasons suggest that these revenue results are likely
overestimates of the benefits to consideration of sell-up: First, this simulation considered very few
alternavives relative to the actual airline marketplace, where an O/D pair may be served by many

carriers using connections through their respective hubs. Second, our input values on ACR

163



Vvr

NS payswiiszy
80 20 g0 S0 vo £0 ¢0 0 0
W t { t t t } t 00.€
/.. & oozy
(ns esn yog) g'y fw T
M ,/ el Q\\ - 00LY
.,,y \ |
(nssesng Auo) & \,  ooss
\l.-“l“!
2 o e&- i “ 0%
.- \\ . -—
....... A
g B> 4d
............... - 0049
- 002
- 00LL
(ns sesn g Auo) v

YOV aseq ‘Buijeas jnouim uoneosunsiag aang bujoog asn ylog

Z2'L pue 60 = 44 ‘NS Buiseasou] UM senuanay 219 ainbi4

Suif) 1

AeY



(passenger price sensitivity) may be biased upward. I will examine the too-few alternatives
problem in Section 6.3.4 and the price sensitivity issue in Section 6.3.2.

When the base case scenario of Figure 6.16 is repeated at a high DF (DF = 1.2), we have
Figure 6.17 (which graphs the results of Figure 6.16 along with the high demand case). The
impacted demand conditions increase the total number of price insensitive nondiscretionary
travelers in the market. However, most of the revenue benefit of this effect is already gained by
the seat optimizer (compare the revenue conditions under SU = 0.0 for DF = 0.9 and 1.2, and the
slopes for the revenue graphs as estimated SU increases). Thus, propertionate revenue
improvements under any objective are lower at higher demand. This is seen by comparing the
shaded boxes of Table 6.33 with Table 6.32: The revenues Airline B may expect to gain via
individual adjustment and myopic individual maximization decline from 20.54% to 10.31%. Joint
improvements experience similarly steep declines, from 32.98% to 13.64%.

The declining revenue improvements in high demand situations suggest that the forecaster,
detruncator, and seat optimizer'® used in these tests respond exactly as expected: Booking limits
on low-value classes are adjusted downward, protecting seat inventories for later-arriving high-
value passengers. However, it also indicates that without adjustment of bookings limits for SU or
another method to induce sell-up (see Section 3.3.2), underprotection is a significant problem on

the many flights in the airline industry with moderate demand levels.

DF = 1.2 Best Estimated SU Rates and % Revenue Improvement

Adoption | Ob;. Best B % Airline B % Over | Airline A % Over
By Est. SURate | Over A SU =0.0 SU =0.0
B Only I 0.4 . s 9.44% 6.65%
Bomy | I 0.6 1.60% / i 8 74%
Boh | I 0.7 NA | sen e

Table 6.33. Sell-Up Objective Performance, DF = 1.2; Base ACR

While the proportional improvements to sell-up adjustment are less with high demand, the
optima and critical points all generally shift out to higher estimated SU. When only Ailine B
adjusts for estimated ST, Airline A experiences lower revenues over a wider SU range. This may

be explained with reference to Figures 6.18 and 6.19, which give loads for both airlines by fare

161 Recall the following base case settings: The forecasting method is pickup, the detruncation method is booking
curve without scaling, and the seat optimizer is EMSRb.
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class and demand level when only Airline B adjusts booking limits for sell-up estimates. Under
high demand conditions, Airline A is at near maximum capacity even at low estimated SU (Figure
6.19a). As Airline B increases its estimated SU, increasing numbers of M class passengers who
are unwilling to sell-up are being “dumped” (Figure 6.19b) -- But Airline A’s constant M loads
indicate that the class is already closed. Relatively few of these passengers are willing to sell-up
to B class, so Airline A is constrained from taking advantage. Only when Airline B’s SU is
extreme and even B class passengers are being dumped (see Figure 6.19b) can Airline A accept
these passengers and score significant revenue differentials.

In contrast, under low demand conditions Airline A quickly gains the M class passengers
denied by Airline B (compare Figures 6.18a and 6.18b). Interestingly, Airline A manages even to
gain a limited number of high-value B class passengers despite not adjusting for SU. Airline A
experiences gains not only from the accommodation of passengers denied by Airline B, but also
market-wide positive externalities induced by Airline B’s extreme protections at high estimated

SU. In the basic moderate and high-demand scenarios, we may conciude:

e There are significant revenue benefits to be gained from adjusting the
EMSRD seat optimizer for estimated SU rates. However, a ‘‘jointness” effect
requires all airlines in a competitive marketplace to adopt this policy for full
benefits to occur.

e Under individual adjustment, an airline can easily give more revenue to the
non-adjuster (who does nothing) by overprctecting.

e Sell-up opportunities generally diminish at high demand factors, since in
these cases the seat optimizers protect more for higher-valued seats, and
passengers are already selling up to high-valued fare classes in quantity.

6.3.2. High Price Sensitivity Scenarios

As I have discussed in Section 6.3, crucial to the revenue improvements explored in
Section 6.3.1 is PODS’ underlying assumptions about passenger price sensitivity. Price sensitivity
involves passenger response to two specific market events: First, the price for his or her initially
desired fare product increases; second, the initially desired product is unavailable and more
expensive alternatives are offered. This section tests an assumption of higher price sensitivity or
lower willingness to pay in the latter case. As previously discussed, price sensitivities are

represented by ACR. These tests examine the impact on the profitability of incorporating
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estimated SU when ACRs are reduced by 25%. Low ACRs are then 3.75 for nondiscretionary
and 1.5 for discretionary passengers. In the low ACR case, the former will still take the most
expensive fare but discretionary travelers, on average, will take only the lowest two fare classes
(the PODS base case fare structure is given in Table 4.1). Low ACR is tested at both DF = 0.9
and 1.2.

Results at low ACR are graphed against base conditions in Figure 6.20 for DF = 0.9.
Clearly, most optima and critical points contract. Faced with closure of lower-priced fare options,
passengers will sooner decide not to travel. Comparison of the top panel of Table 6.34 for DF =
0.9 and Table 6.32 clearly indicates that options for revenue improvement with low ACR are
limited. The myopic individual profit maximization objective (Obj. II) for Airline B when only it
adjusts for estimated SU records a paltry 6.83% (from 20.54) individual improvement. The
benefits of collusion decline from a 32.98% revenue improvement under base ACR to 13.10%.
Curiously, low ACR increases the maximum revenue difference Airline B is able to maintain
against Airline A, from 3.17% to 4.61%. This is confirmed in Figure 6.20, where the distance
between Airline B and Airline A revenues increases at low ACR, so that Airline B no longer
experiences an improvement with joint SU adjustment. Diminishing returns to sell-up are clearly
in effect here: Airline B has already exhausted most gains to modifying booking limits at relatively

low SU estimates. Higher estimates cause rapid revenue deterioration, and the jointness effect is

lacking.
Low ACR Best Estimated SU Rates and % Revenue Improvement, Variable DF
DF | Adoption | Obj. | BestEst.| B % Airline B % Airline A %
By SURate | Over A | Over SU=0.0| Over SU=0.0
B Only 1 0.3 4.61% 4.89% 0.29%
09 | B Only I 0.5 0.93% 6.83% 5.87%
Both 111 0.5 N/A 13.10% 13.10%
B Only I 0.3 0.92%
12| Bonly | T | 04 WIIE 3.4,
Both I 0.5 NA | BRig | 9%

Table 6.34. Sell-Up Objective Pétformance at Low ACR and Variable DF

A high demand situation (DF=1.2) combined with low ACR in Figure 6.21 create a

somewhat intermediate condition, with countervailing pushes on revenue performance. High
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demand increases sell-up potential, while high price sensitivity decreases it. Comparison between
Figures 6.21 and 6.20 immediately reveals a dramatically enlarged revenue difference at any
estimated SU rate between the base and low ACR scenarios. It follows that high demand factors
magnify the negative effect on sell-up potential of high price sensitivity.

This result is consistent with observed closure properties at each DF (recall that sell-up
may occur only with closure). At moderate demands, closure occurs a relatively low proportion
of the time. Thus, since sell-up occurs infrequently, decreasing ACR has little effect: Underlying
demand conditions do not require passengers to pay as much as they might. At high DF,
however, closure occurs often in low-value classes as the seat optimizer protects for high-valued
passengers. The number of misidentified passengers declines significantly. More passengers’
willingness to pay is correctly matched with the appropriate fare class as they must sell-up to the
extent they are willing. Decreasing ACR here substantially affects revenues, since the passengers
formerly willing to pay more now refuse to travel. The distinct revenue inferiority at low ACR
and high DF 1s not remedied by increasing estimated SU: Few passengers will sell-up.

Table 6.34 indicates that under low ACR, increasing demand factor allows Airline B to
increase its revenue improvement over not adjusting for SU when it is not colluding (lined boxes),
while both the revenue improvement when the airlines collude and Airline A’s benefit to non-
adjustment declines (shaded boxes). Airline B’s earnings improvement over not adjusting for SU
(Obj. IT) increases from 6.83% to 7.94%. More importantly, Airline A is reduced from being only
0.93% to 5.34% behind Airline B. This effect is almost certainly due to high demand conditions.
Adjusting for SU estimates enables Airline B to save seats for the few passengers willing to pay
higher-value fares. Airline A cannot take advantage of this situation because high demands fill its
capacity, and it lacks the SU adjustment mechanism to respond with equivalent protection. Thus,
Airline B achieves revenues which are superior to the joint collusive outcome over a significant
SU estimate range. Collusion in this case is not in Airline B’s interest. As the innovator with the
SU methodology, allowing its competitor to also adjust for SU estimates would lower revenue
results. Both the airlines would adjust for the few passengers willing to sell-up, yielding higher

refusals of low-valued passengers and lower revenue results. To summarize,

e Higher price sensitivity dramatically reduces the revenue benefits to both
individual and joint adjustment of the seat optimizer for estimated SU rates.
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o The revenue penalty of higher price sensitivity is magnified at high demand
levels. This occurs because passengers’ sell-up willingness is less likely to be
exploited under moderate demands.

e However, the benefit to individual adoption increases at high demand
factor, such that collusion may no longer be in the adopter’s interest.

6.3.3. Booking Curve Scaling Scenarios

I have described in Section 5.3.2 why scaling under booking curve detruncation is
necessary: Flights which close tend generally to have different booking curves than those which
do not. Section 6.1.1.1 detailed why scaling the booking curve tends to make outliers of
detruncated HDB observations, thereby increasing forecasts of unconstrained bookings. This
effectively induces sell-up via additional protection. Combining scaling with sell-up may yield
insights on the point at which scaling ceases to compensate for booking curve estimation issues
and instead becomes a vehicle for sell-up. These tests assume both airlines adopt scaling between
0.2 and 1.0 (in increments of 0.2). Moderate demand (DF = 0.9) and base ACRs are assumed.

Figure 6.22a gives revenue results for each pbscl when only Airline B adopts estimated SU
rates into the seat optimizer (representation of maxima and critical points was suppressed for
clarity). When the scaling decreases from 1.0 to 0.2 and SU = 0.0, revenues for both carriers
consistently increase. As expected, Airline B’s range of revenue superiority as it adopts estimated
SU declines; Airline A is able to earn significantly superior revenues quickly as passengers’ sell up
propensity has been exhausted. After pbscl = 0.6, nonzero SU results in no differential
improvement for Airline B, and soon strict losses. The shaded areas in Figure 6.22a represent the
range of superior revenues for Airline B. Besides clearly illustrating the diminishing returns to
protection argument, this shows pbscl = 0.6 to be an absolute lower bound on the pbscl level
which is no longer compensating for the booking curve bias but instead inducing sell-up (since
attempting to induce more by individually adopting estimated SU has no effect). In these base-
case ACR tests, the pbscl which only adjusts for the booking curve is in fact likely significantly
higher than 0.6.

Figure 6.22b provides analogous results when both airlines adopt. Inexplicably, more
extreme scaling always yields additional revenues: Rather than inducing losses, very low pbscl =
0.2 simply causes higher estimated SU to have zero revenue effect. All curves tend to converge at

estimated SU = 0.6, after which there is precipitous decline. To gain insight into this effect, load
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Figure 6.22a. A, B Single Rev. With Increasing SU, Variable Scaling
Both use Booking Curve Dstruncation; DF = 0.9; Base ACR
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Figure 6.22b. A, B Joint Rev. With Increasing SU, Variable Scaling
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totals and by fare class for pbscl = 0.2 and 1.0 are graphed in Figure 6.23 for the joint case. In
this case, both airlines have symmetric load conditions. Each fare class has the same symbol and
line type in Figure 6.23, except that pbscl = 0.2 has dashed lines while pbscl = 1.0 has solid lines.
I will examine the results by fare class. As estimated SU increases, total loads under both
scaling procedures declines, but more significantly for pbscl = 0.2. The airlines then attain exactly
equal loads for SU 2 0.6. Scaling induces a superiority in Y class loads at all estimated SU, but
this difference declines to approximate equality for SU 2 0.6. B class loads are substantially
different for most SU values: Scaling yields significantly higher loads, which increase with
estimated SU until a tapering off. Dramatic declines occur after SU = 0.6 both with and without
scaling as all but the higher fare classes close. A similar pattern is repeated for every fare class:
Generally, scaling yields an improved load distribution. But after SU = 0.6, regardless of scaling
level, all fare classes but Y close and equivalent revenue results are obtained. This explains the
convergence in revenues of Figure 6.22b. It also explains why progressively higher pbscl, by
itself, does not decrease revenues: Assuming both airlines adopt equal pbscl, no scaling level is

sufficiently high to cause closure of B or even M class.

Variable pbscl Best Estimated SU Rates and % Revenue Improvement

pbscl=1.0 pbscl=0.8 | pbscl=0.6 | pbscl=0.4 | pbscl=0.2
Objective: | Best %0vr | Best | %Ovr | Best | %Ovr | Best | %Ovr { Best | %O0vr Base
SU Base SU | Base SU Base SU | Base | SU | Base
I 03 3.2% 02 ] 13% | 0.1 09% | 00 | 02% } 00 | 0.2% A Rev
| 0.7 205% | 07 1160%] 04 | 110% | 03 | 24% | 0.1 | -0.8% | BRev(SU=0.0)
11 0.6 33.0% | 0.7 |281%j 06 | 197% | 0.7 | 93% | 0.5 | 4.8% § A/BRev(SU=0.0)

Table 6.35. Sell-Up Objective Performance under Variable pbscl; Base ACR; DF = 0.9

Table 6.35 gives objective performance data for pbscl between 0.2 and 1.0. Because of
space considerations, only the airline(s) direct objectives (outlined boxes in Tables 6.32-6.34) are
included. Consistent with the results in Figures 6.22a and 6.22b, best estimated SU and
percentage improvements all decline precipitously as pbscl increases. Airline B is completely
unable to attain any revenue difference with its competitor past pbscl = 0.6 (Obj. I), while even
under collusive conditions, by pbscl = 0.2 only a 4.8% improvement may be had over the base

case where estimated SU = 0.0. This confirms that successively lower pbscl completely removes
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an incentive for individual adjustment for estimated SU rates, and significantly limits gains to joint

adoption. In summary,

o Increased scaling limits additional individual and joint sell-up possibilities,
since scaling the booking curve exerts an equivalent effect (ie., increased
protections for higher-valued fare classes).

e Benefits due to joint adjustment converge (regardless of pbscl) as higher
estimated SU are adopted. This occurs because all but the highest-value
classes are closed.

6.3.4. Additional Frequency Scenarios

The last sell-up tests I will discuss involve the effect of an increased number of alternative
paths. This section is most relevant to industry practice, since many O/D pairs in the United
States are served by a variety of airlines -- though not even one may serve the city-pair non-stop.
Instead, passengers connect between flights at intermediate hubs which nearly every major airline
has constructed. As the number of alternative flights on competitors increase, clearly an airline’s
ability to induce sell-up is limited: Passengers instead switch to the alternatives. Adjusting for
assumed sell-up probability can only be effective if passengers are somewhat captive, or without
available alternatives. It follows that moderate demand levels (e.g., DF = 0.9) are an essential
requirement for more competing frequencies to impact Airline B’s attempts to induce sell-up. At
high demand levels, “alternative” flights are always full, and do not enlarge the choice set of
passengers subject to Airline B’s estimated SU policy.

The effect of more alternative paths on the adopting carrier is not clear. How should
additional frequencies have any effect if the adopting airline adjusts for sell-up on all its flights,
and the same unconstrained demand level obtains on all flights in the market? On the other hand,
any one passenger who arrives at a given time in the booking process will have a larger number of
available alternatives with the additional frequencies, assuming the booking patterns in the added

flights are similar. To answer these questions, three cases are constructed:

Case 1: Airline A has 1/2/4 frequencies; B has 1. Airline B adjusts for SU.
Case 2: Airline A has 1/2/4 frequencies; Airline B has 1. Both adjust for SU.
Case 3: Airline A has 1 frequency; B has 1/2/4. Airline B adjusts for SU.
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All frequencies are exactly equal with respect to attributes which might influence
passenger choice (e.g., time of departure, airline preference), and reported results are on a per-
flight basis. Thus, in Case 2 Airline A and Airline B should achieve approximately equal per flight
results, because PODS presently does not include an adjustment for the S-curve effect indicating

162 Moderate demands of

super-proportional market share for airlines which dominate the market
DF = 0.9 and base case ACRs are assumed.

Figure 6.24a graphs results for Case 1. Airline B’s per-flight revenues clearly decline as
Airline A’s frequencies increase. The slope of Airline B’s revenue lines with increasing estimated
SU decline significantly, suggesting that efforts to induce further sell-up will certainly fail as more
alternative paths become available. Surprisingly, Airline A’s per flight revenues also decline, even
though DF is constant. Airline A’s gain is likely limited because its failure to estimate SU allows
passenger switching among its flights, thereby reducing passenger captivity on its flights as well.
Hence, sell-up occurring under moderate demands by the action of the seat optimizer alone is also
limited as alternatives become available. Objective results listed in Table 6.36 indicate that under
the two individual objectives (I and II) for Airline B, significantly lower proportional gains are
achieved. The best it can individually gain declines from 20.5% if Airline A has one frequency to
5.6% if 1t has two, and only 3.5% if the competition has four frequencies.

Variable Airline A Freq. Best Estimated SU Rates and % Revenue

Improvement
A: 1 Freq A: 2 Freg A: 4 Freq
Objective: | Best | %Ovr | Best | %Ovr | Best | %Ovr Base
SU | Base | SU | Base SU | Base
1 03 | 3.2% | 0.1 1.6% 0.1 1.9% A Rev

0.7 |20.5° 41 56% | 0 | BRev(SU=0.0)

5% A b 7539%|_ A/BRev (SU=00)
Table 6.36. Sell Up Objecttve Performance under Varzable Airline A Frequency.
Base ACR; DF = 0.9

The joint adjustment in Case 2 is illustrated in Figure 6.24b. Despite the increasing
frequencies by Airline A, when both airlines adjust for estimated SU there is no appreciable effect

of additional frequencies on revenue achievement. This is confirmed in Table 6.36, which

12 The mechanism currently exists via modification of coefficient of preference on airlines. These tests assume the

same value for this variable, regardless of frequency.
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Fig. 6.24a. Single Per-Flight Rev. with Increasing SU, Variable A Freq
B has 1 frequency. Both use Booking Curve Detruncation without Scaling; DF = 0.8
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indicates that the maximize joint gains objective (Obj. III) suffers no significant loss in percentage
improvement as frequencies increase (shaded boxes). Such a result underscores the revenue
benefits to collusion when multiple travel alternatives exist

What about the intermediate case, when only Airline B introduces estimated SU but also
has the majority of frequencies? Results for this Case 3 are given in Figure 6.25. Here the
position of revenue lines are reversed from Figure 6.24a. Not only do Airline B’s revenues per
flight at any estimated SU increase as it introduces more frequencies, but Airline A also gains
more on its one frequency as its competitor increases service. Airline A’s benefit may be due to
the effect of receiving passengers unwilling to sell-up from four flights on Airline B. Figure 6.25
indicates that a dominant airline can achieve substantial benefits in attempting to induce sell-up
despite the noncooperation of competitors. However, this comes at the cost of providing some
benefit to the airline which does not adopt sell-up. These effects are also shown in Table 6.37,
where Airline B’s myopic individual improvement objective (Obj. II) yields increasing benefits as
frequencies increase. If Airline B wishes t0 maximize its revenue superiority over the comnpetition
(Obj. 1), it is less able to do so: This objective declines from 3.2% difference with Airline A when
Airline B has one frequency to 1.8% per flight if it has four (shaded boxes).

Variable Airline B Freq. Best Estimated SU Rates and % Revenue
Improvement
B: 1 Freq
Objective: | Best | %Ovr Base
SU | Base
1 03 | 32% ¢ Bk A Rev
i1 0.7 | 20.5% BRev(SU=0.0)

Table 6.37. Sell Up Objective Pélformance un;der Variable Airline B Frequency.
Base ACR; DF = 0.9
We may conclude that attempts to induce sell-up beyond that provided by use of the seat
optimizer are 'nost successful if airlines in the marketplace collude. This thesis has demonstrated
that revenur: and load performance for an airline are strongly governed by input methodologies
chosen by other airlines in the market. Because of this, it is sensible that explicit agreement

among airlines on which seat optimizing and input methodologies to use is collusive and probably
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illegal'®. Hence, the Joint adjustment case seems somewhat unlikely in practice. The most
realistic application of the Belobaba/Weatherford strategy of modifying sell-up rates is in markets

over which a carrier is the dominant airline. To summarize this multiple frequency section:

e Opportur. s for inducing sell-up exist via booking limit modification are
limited if an airline is a weak competitor, with few frequencies in the market.
The non-adjusting airline gains more than the adjusting airline at low estimated
SU rates.

¢ Opportunities are substantially enhanced if an airline is the dominant player
in the market. However, the non-adjusting carrier will gain as a result of this
pricing action.

e Revenues are highest if airlines collude and jointly adjust for the estimated
SU methodology. But this is illegal, and therefore unlikely.

This compleies the results section of the thesis. Chapter 7 now concludes with a

comprehensive summary of significant findings.

163 For example, agreement to adopt in common a sell-up inducement methodology like the Belobaba/Weatherford
SU adjustment mechanism could be interpreted as an attempt to fix prices. This mechanism affects the closure
properties of fare classes. Common adoption causes mimicry of available prices (i.e., airlines will tend to close fare
classes simultaneously), assuming the carriers involved face similar demand conditions.
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VII. Summary and Future Directions

7.1. Synopsis of the Thesis

7.1.1. Definitions

. . Chapter 1, this thesis defined the seat inventory control process to be the method by
which airlines create and then offer for sale various fare products in limited quantity. These
products are targeted to match the different characteristics and sensitivities of the passenger types
in the markets served by the airline. The purpose of this thesis was to examine the revenue
impacts of alternative input methodologies for the forecasting, detruncation, and estimated sell-
up adjustment steps of seat inventory control.

Forecasting is an essential part of the control process. Its purpose is to estimate mean
unconstrained booking demand and the associated standard deviation by fare class. This
information is then used by the seat optimizer to set booking limits for each fare class on a future
flight. Inadequate forecasting will cause the seat optimizer to set booking limits incorrectly,
resulting in less than optimal revenues.

Detruncation is also necessary when some of the historical data used by the forecaster is
constrained. This occurs when one or more fare classes on a flight receive enough bookings that
the booking limit is reached, and no more bookings in the affected fare class are permitted. The
bookings which would have occurred had space been available are not known, and must be
estimated through detruncation. Failure to detruncate or inadequate detruncation cause the
forecaster to underestimate booking demand, resulting in the seat optimizer allocating too few
seats to the affected fare classes. This is true because flights with high bookings are either absent
from the data used by the forecaster (with no detruncation) or have estimates of final
unconstrained bookings which are too low (with inadequate detruncation). Revenue losses result.

Finally, explicit consideration of sell-up (passenger willingness to buy a more expensive
fare product when the initially desired product is unavailable) may allow airlines to extract more
revenues from passengers. This occurs because the fare structures used by airlines to segment
passengers are imperfect (i.e., some passengers will be able to take a less expensive fare than is

targeted to them), and passengers will only sell up when they are denied the opportunity to take a
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cheaper fare. Modifying booking limits to induce further sell-up than already occurs with the

existing fare structure and seat optimizer may lead to revenue improvements.

7.1.2. Review of Past Comparative Studies and Models

After a discussion in Chapter 2 of whether the multiple fares offered by airlines are
“discriminatory” in an economic sense, the thesis proceeds in Chapter 3 with an analysis of
techniques for each of the three input methodologies, and a critical review of past comparative
studies.

Most comparative studies of forecasters have been based on measures of forecast error,
or the difference between predicted and actual bookings in a fare class over a data set of flights. I
argue that this comparative approach causes inherent biases vhich disfavor particular forecasters,
since either or both the forecast dataset and the base for the measurement of forecast error are
usually constrained. Further, the goal of achieving zero forecast error is not only impossible to
achieve, but misguided in principle: The assumption that zero error for each fare class maximizes
revenues is almost certainly incorrect. It is commonly assumed that demands by fare class are
independent. In fact, demands are interdependent, so setting booking limits too low in a fare class
(causing a negative forecast error) may cause passengers to switch to a higher-valued fare class,
thus increasing revenues. I argue that a more appropriate comparative metric is revenues. This
thesis adopts the revenue comparison approach, using the Passenger Origin and Destination
Simulator (or PODS), a comprehensive simulator of passenger behavior and seat inventory
control developed by the Boeing Commercial Airplane Group.

Until this thesis, there have been no known comparative studies of detruncators. A
revenue approach is also adopted for this comparative study of detruncation mechanisms. Finally,
no comparative studies of alternative sell-up mechanisms exist. Most of the sell-up methods
presented in the literature and discussed in Chapier 3 are ad hoc methods, and so are not
amenable to systematic comparison. Therefore, this thesis abandons the comparative approach
for sell-up analysis and instead focuses on the revenue effects of one formal approach to inducing

additional sell-up.

7.1.3. Models Tested in This Thesis
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Chapter 4 contains a limited discussion of the construction and assumptions of the PODS
simulation. More detailed information is found in Wilson (1995). Chapter Five discusses the
“base-case” simulation environment assumed in PODS tests, and examines the models compared
and tested in the thesis. The base-case environment includes only two airlines each operating a
single non-stop flight in one isolated market. Both airlines use the EMSRD seat optimizer. Three
forecasting models are tested: Regression, pickup, and the “efficient” forecaster developed at
Boeing. Regression estimates a linear relationship between bookings-in-hand on a flight being
forecast at a particular booking interval, and bookings-to-come until departure on that flight'®.
This estimation is done utilizing data on historical (previously departed) flights; generally, a
positive relationship is estimated between these variables. The pickup forecaster, on the other
hand, disregards bookings-in-hand on the forecast flight and assumes that bookings-to-come or
“pickup” will be a simple average of bookings-to-come on historical flights. The efficient
forecaster is a hybrid model which assumes that bookings-to-come are related to bookings-in-
hand on the forecast flight and historical flights.

Four different detruncation methods are tested: No detruncation, booking curve
detruncation, projection detruncation, and pickup detruncation. Without detruncation, data for
fare classes on flights which close are excluded from historical data. Boo: ‘g curve detruncation
estimates unconstrained bookings on closed flights by assuming that the proportional relationship
between bookings-in-hand at the booking interval of closure and bookings-in-hand at departure is
constant over all flights in the fare class of interest. Moderate or extreme “scaling” of the
booking curve by constant factors is also tested to adjust for the questionable validity of this
assumption.  Projection detruncation estimates unconstrained bookings assuming that the
conditional probability of receiving more than the forecast bookings (given closure) should be a
specified constant. Similar to pickup forecasting, pickup detruncation assumes that bookings-to-
come between the closure interval on the closed flight and departure is best approximated by
average bookings-to-come over the same intervals on unclosed flights.

Finally, the sell-up methodology tested is due to Belobaba and Weatherford (1996). Their

construction takes an input estimated sell-up rate for each fare class (or proportion of passengers

184 It is proved in Chapter S that the estimated relationship may also be between bookings-in-hand and final
bookings on the forecast flight, without changing the regression forecast.
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in the fare class who will sell-up when it is closed), and modifies EMSRb booking limits
accordingly. A large range of estimmated sell-up rates is tested in the thesis.

7.2. Principal Findings

7.2.1. Forecasting Methods

Regression and the efficient forecaster were each compared relative to “base-case” pickup
forecasting. Between regression and pickup forecasting, which methcd was superior depended
significantly on the detruncator assumed, as well as the demand factor. At low demand levels,
there was never a large difference between forecasters regardless of detruncation method.
Without detruncation, both forecasters were approximately equal regardless of demand. With
booking curve detruncation and no scaling, pickup forecasting performed significantly better than
regression as demand increased. This was less true if the booking curves used for detruncation
were also scaled. When extreme scaling was applied, there was no difference between the pickup
and regression forecaster at any demand level. Under projection detruncation, regression became
increasingly superior as demand increased. With pickup detruncation, there were no significant
differences between regression and pickup forecasting, regardless of demand level.

Regression’s improved performance at high demand factors (under detruncators with
relatively high estimates of unconstrained bookings on closed flights) was attributed to its
disproportional weighting of outliers. Tests were performed under conditions of increasing
“booking curve variability,” which increases uncertainty in the proportion of total bookings which
will have been received by any particular booking interval. The performance of regression
forecasting declines relative to pickup forecasting as this uncertainty increases, especially at high
demand factors. This is true unless booking curve detruncation with extreme scaling is used, in
which case pickup performs equally with regression forecasting. Final tests compared the
regression and pickup forecaster when variability in demand between successive flights increases.
Pickup forecasting performed worse than regression as demand variability increases under all
detruncation methods but booking curve detruncation with scaling. Such a result is explained by
the increased presence of outliers as demand variability increases. Regression disproportionally
weights outliers, and so forecasts demand for more seats for high-valued fare classes than pickup

forecasting in these circumsiances.
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The second comparison was between efficient and pickup forecasting. The efficient
forecaster consistently underperformed pickup forecasting, worsening as demand level increases.
I argue that this results from the efficient forecaster’s system of weighting observations used to
make its forecast. Its underperformance is magnified as booking curve variability increases,
mostly because the weighting bias is magnified as proportional booking relationsiiij; are less
predictable. However, the efficient forecaster generally improves relative to pickup forecasting as
demand variability increases. While results are not entirely consistent, this effect is probably the
result of pickup forecasting’s inability to disproportionally weight outlier observations.

Under a wide range of market conditions, the efficient forecaster is inferior on a revenue
basis to pickup forecasting. Pichup forecasting usually performs at least as well as the regression
forecaster, and significantly better in certain circumstances (e.g., high demand or booking curve
variability conditions). One pointed exception is a high systemwide demand variability scenario,
in which case regression forecasting is superior. A qualified revenue ranking of these three
forecasters places pickup forecasting first, regression forecasting second, and the efficient

forecaster third.

7.2.2. Detruncation Methods

Detruncation alternatives were compared against the *“base-case” booking curve
detruncation without scaling under base-case environmental conditions and the same alternatives
discussed in Section 7.2.1. Low demand factors eliminated any difference between detruncation
methods. This will occur because there are very few flights to detruncate when demand levels are
low relative to capacity. No detruncation is substantially inferior to booking curve detruncation
without scaling as demand factor increases. Curiously, pickup detruncation is not much better.
This is attributed to underprotection by pickup detruncation, which assumes that the absolute
bookings increase on closed flights is approximated by the average increase on unclosed flights.
Obviously, flights close because of high demands, which by definition receive more bookings than
(unclosed) low and moderate-demand flights!

Booking curve detruncation without scaling underperforms booking curve detruncation
with moderate or extreme scaling because the latter two methods protect more seats for higher-

valued fare classes, thus inducing sell-up. Revenue losses due to not scaling increase with
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demand level. However, there are limitations to the seli-up which may be induced by scaling:
More extreme scaling of booking curves for detruncation eventually causes revenue declines as
passengers refuse to sell up. Projection detruncation and booking curve detruncation without
scaling are approximately revenue equivalent except at the highest demand levels, in which case
the former estimates higher unconstrained demand on closed flights, thereby gaining revenue
superiority.

When booking curve variability increases, any revenue difference is intensified. Thus, the
performance of booking curve detruncation without scaling declines relative to booking curve
detruncation with scaling, but does increasingly better than pickup detruncation. This effect is
magnified at high demand factors. Outliers probably explain these results: More outliers are
generated as booking curve variability increases. Thus, the “inferior” detruncator (which
estimates lower final bookings on closed flights) will be applied to a greater proportion of
observations used by the forecaster. These effects are generally repeated as variability in demand
increases between successive flights. Booking curve detruncation with moderate or extreme
scaling and projection detruncation perform better, because more outliers are generated under
high demand variability conditions.

Previous PODS reports on the revenue benefits of a seat optimizer (i.e., Wilson [1995])
always assumed that base-case booking curve detruncation was automatically adopted along with
a seat optimizer. Since this thesis indicates that no detruncation exhibits very poor performance
relative to the base-case detruncator, there was some concern that most of the revenue benefit
previously attributed to use of a seat optimizer was in fact due to use of detruncation. To address
this issue, a special case with three airlines -- one with FCFS (first-come-first-served, where
different fare products are offered but no booking limits are set), one with EMSRb without
detruncation, and one with EMSRb and base-case detruncation -- was constructed. Results
indicated that adoption of a seat optimizer alone accounts for about 65% of Wilson’s reported
revenue improvement of EMSRb over FCFS. The remaining 35% is due to adoption of a

detruncation method.

7.2.3. Sell-Up Analysis
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The final tests performed in this thesis involve the Belobaba and Weatherford modification
of booking limits strategy for inducing sell-up. Base-case booking curve detruncation without
scaling and the pickup forecaster were used in sell-up tests unless otherwise noted. It is essential
to note that quantified revenue improvements here are very sensitive to the assumptions PODS
incorporates about passenger willingness to pay and the degree of imperfection in the base-case
fare structure.

Given this caveat, there are generally significant benefits to be gained from incorporating
sell-up estimates into the seat optimizer. These effects are magnified if collusion occurs in the
market, and both carriers adjust for estimated sell-up rates. If only one airline in the market
adjusts, its opportunities are somewhat limited: At relatively low estimated sell-up rates, it can
give more revenue to the competiror (passengers refuse to seli-up and instead divert) than it earns
from passengers selling up. Under high demand conditions, there are fewer opportunities for
further sell-up. Seat optimizers already protect more seats for high-valued fare classes, and many
passengers are already paying as much as they are willing.

The benefits to sell-up estimation under increased passenger price sensitivity was also
tested. As expected, benefits substantially decline for the airline(s) estimating sell-up under high
price sensitivity. Revenue losses due to this effect are significantly larger for all estimated sell-up
rates under high demand conditions. This is another consequence of the fact that under moderate
demand levels most seil-up opportunities are not being exploited, since closure is relatively rare.

Tests were also performed when the booking curve detruncation was scaled. Scaling the
booking curve for detruncation limited the additional gains occurring with estimated sell-up rates,
to an increasing degree as the scaling level became more extreme. This result confirms that
scaling booking curves for detruncation has the same effect as introducing estimated sell-up rates:
Protection levels for high-valued fare classes increase, resulting in higher loads in these classes
and higher revenues.

Final tests for estimated sell-up rates involved additional frequencies in the market, where
total market demand was a constant proportion of capacity as additional flights were added. Base
case conditions with two airlines and moderate demand levels were assumed. It was hypothesized
that sell-up depends on passenger captivity, which is clearly reduced if more alternative

frequencies are available in the market. Sell-up tests were divided into three cases. In the first
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case, the airline which does not adjust for estimated sell-up adds more frequencies. The second
examined more frequencies by one airline when both airlines in the market jointly adjust. In the
third case, the airline which does adjust adds additional frequencies.

First case results were as expected: The airline adjusting for estimated sell-up gained
significantly less as competitive frequencies increased. However, the per-flight revenues for the
non-adjusting carrier also declined. I argue that the negative impact of reduced passenger
captivity is not isolated to the airline adjusting the seat optimizer to cause additional sell-up: The
sell-up induced by the fare structure and seat optimizer without adjustment is also limited by
additional alternatives. This suggests that the per-flight revenue benefit to adoption of a seat
optimizer is reduced when multiple frequencies are available in the market.

In the second case, joint adjustment for estimated sell-up rates completely eliminates any
per-flight revenue loss for either airline as the number of frequencies in the market increase.
Collusion is completely able to thwart any negative “additional alternatives” effect because joint
estimation of sell-up rates limits availability on all flights in the market. Third case results indicate
that when the airline which adjusts for estimated sell-up adds frequencies, its per flight revenues
increase -- though the airline which does not adjust for estimated sell-up also gains on its one
flight. This indicates that a dominant airline may gain significant revenue benefits by adjusting the

seat optimizer for estimated sell-up, even when smaller players in the market do not cooperate.

7.3. Future Directions

This thesis illustrates the versatility of the PODS simulator. As the first output of a joint
MIT/Boeing collaboration on the revenue benefits of seat inventory control, Wilson (1995) used
PODS to argue that adoption of seat optimizers significantly increases an airline’s revenues. This
second thesis has utilized PODS to argue that an airline’s revenue performance is also
significantly impacted by the input methodologies for seat inventory control used by airlines.
Forecasting and detruncation method choice, and the modification of booking limits to induce
sell-up all have significant impacis on revenues.

However, both these theses are constrained by the simplistic market environment assumed

in these simulations. Only one market with non-stop flights by two airlines is considered'®.

165 Wilson (1995) also tests a simple three-market scenario.
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Among many other possible variables, preference variables and departure times were equal for
these airlines. In fact, most markets for air travel in the United States (where “market” is defined
between an origin and destination) have many alternatives, with varying degree of passenger
allegiance to particular airlines based on frequent flyer plan membership, ubiquity of flights out of
the origin, etc. A simulation environment which adjusis to these market realities would
significantly improve the applicability of PODS results to actual airline practice.

The sirc_'e market environment creates another significant issue.  Thus far, the
MIT/Boeing collaboration has avoided analysis of seat optimization algorithms under full network
market conditions. This is presently the most prominent issue in seat inventory control, and adds
an entirely new level of complexity. Seat optimizers which have thus far been covered (EMSRa
and EMSRD) are leg-based approaches which take forecasts and set booking limits for each leg
independently.

But airline passengers today travel largely over interconnected networks, with trips
involving multiple legs. A superior seat optimizer in this environment should theoretically
forecast and set booking limits between each origin and destination in the network. Yet this
solution is frustrated by data and computational limitations of large network optimization. Many
“optimal” and heuristic models have been advanced, which purport to achieve approximately the
revenue benefit of full network optimization without falling prey to its limitations. At present, no
comprehensive, comparative revenue simulation of these alternative network seat optimizers
exists. Applying PODS to this issue (due to commence shortly) will mark a significant step

forward in the science of revenue management.
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