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Corona phase molecular recognition (CoPhMoRe) uses a heteropolymer adsorbed onto and

templated by a nanoparticle surface to recognize a specific target analyte. This method has

not yet been extended to macromolecular analytes, including proteins. Herein we develop a

variant of a CoPhMoRe screening procedure of single-walled carbon nanotubes (SWCNT)

and use it against a panel of human blood proteins, revealing a specific corona phase that

recognizes fibrinogen with high selectivity. In response to fibrinogen binding, SWCNT

fluorescence decreases by 480% at saturation. Sequential binding of the three fibrinogen

nodules is suggested by selective fluorescence quenching by isolated sub-domains

and validated by the quenching kinetics. The fibrinogen recognition also occurs in serum

environment, at the clinically relevant fibrinogen concentrations in the human blood. These

results open new avenues for synthetic, non-biological antibody analogues that recognize

biological macromolecules, and hold great promise for medical and clinical applications.
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M
olecular recognition elements are central to a wide
variety of applications, including chemical assays
and sensors1,2, catalysis3 and directed assembly of

nanoparticles4–6. The most advanced, generic molecular
recognition schemes involve natural systems, including
antibodies7 and aptamers8. Molecular imprinting3 is one
example of a purely synthetic recognition scheme, however,
imprinting of biological macromolecules, such as proteins,
remains challenging9,10. We have recently introduced a concept
that we term corona phase molecular recognition (CoPhMoRe) as
a generic molecular recognition scheme using a nanoparticle
surface to template a heteropolymer. An adsorbed phase of a
surfactant or a polymer on a nanoparticle, called the corona,
and normally selected from a library of such molecules, is
necessarily constrained and structured by the molecular
interactions with the nanoparticle surface. CoPhMoRe is
achieved when a heteropolymer–nanoparticle hybrid selectively
binds a target analyte owing to the structure adopted by the
polymer when folded onto the particle surface. In practice, a
CoPhMoRe screen of a heteropolymer or surfactant library is
accelerated if the underlying nanoparticle has an optical response
to the molecular binding event, allowing for high-throughput
detection of selective phases. Our work to date has used
near-infrared (nIR) fluorescent single-walled carbon nanotubes
(SWCNT) as an underlying reporter of this molecular
interaction11–14, where non-covalent functionalization12–20 was
used to produce distinct corona phases.

CoPhMoRe screening16,17 for small molecules normally
proceeds with the construction of a heteropolymer library such
that each element can suspend the nanoparticle (SWCNT in this
case) creating an array of colloidal dispersions. The specific
synthetic polymers for library screening necessarily have
hydrophobic segments or moieties that adsorb onto the
hydrophobic surface of the SWCNT, pushing hydrophilic
segments into solution. The composition of the polymer
controls the specific configuration, either static or dynamic, that
can recognize a target analyte of interest. For small molecules, we
have previously shown that the interaction between the polymer,
nanotube and analyte can be described using a two-dimensional
(2D) equation of state model, allowing reasonably accurate
prediction of molecular recognition21. In the case of SWCNT,
high-throughput fluorescence spectroscopy that scans for spectral
changes associated with analyte binding as either fluorescent
intensity or emission wavelength modulation can then be used to
identify CoPhMoRe phases. Previous work has demonstrated
CoPhMoRe SWCNT sensors for riboflavin, L-thyroxine, and
estradiol, using boronic acid-substituted phenoxy dextran,
polyethylene glycol (PEG) brush, and rhodamine isothiocyanate
difunctionalized-PEG SWCNT coronae, respectively16. In
addition, a variety of DNA oligonucleotides demonstrated
discrimination among a panel of neurotransmitters17. Despite
initial success with small organic molecules detection, CoPhMoRe
has not yet been adapted or demonstrated for macromolecules,
with an open question of whether such coronae are capable of the
large area, selective interactions necessary to discriminate
between soluble proteins.

Although antibodies can be raised to identify both small and
macromolecular targets alike, the need of a living organism for
production poses a limitation in high-throughput exploratory
research22. In principle, a pinned configuration of a specific
polymer could be found such that it maps the contours and
localized chemical affinities of a certain face of a protein
analyte23, but experimental realization of this has not yet been
demonstrated. As a synthetic approach for recognizing biological
molecules, it is possible that protein CoPhMoRe would find
extensive use in a variety of sensor and assay arrangements where

degradation, stability, cost and production scale prevent natural
recognition elements from being employed.

In this work, we adapt the CoPhMoRe screen to
macromolecules, developing a series of validation assays
to unequivocally assign fluorescence modulation to CoPhMoRe
phase binding and recognition. We construct the first library and
conduct a screening of CoPhMoRe phases against 14 protein
analytes, selected for their abundance and clinical significance in
human whole blood24–26. The human plasma proteome consists
of hundreds of proteins whose concentrations span over 410
orders of magnitude27, from which we selected albumin,
immunoglobulin G (IgG), fibrinogen, a1-antitrypsin,
transferrin, haptoglobin, a2-macroglobulin, immunoglobulin A
(IgA), immunoglobulin M (IgM), a1-acid-glycoprotein and
apolipoprotein A-I, owing to their high abundancy, and insulin,
human chorionic gonadotropin and C-reactive protein, owing to
their clinical importance. Despite our limited initial library size, a
screen of 20 distinct SWCNT corona phases against the protein
panel shows surprising recognition of fibrinogen to the exclusion
of the other 13 using a dipalmitoyl-phosphatidylethanolamine
(DPPE)-PEG (5 kDa)—SWCNT CoPhMoRe phase. We show
that this recognition is not related to isoelectric point,
aggregation, molecular weight, protein hydrophobicity or any
other non-selective mechanism. Further, we demonstrate that the
fibrinogen recognition still occurs in competitive binding assays,
starting from testing in the presence of albumin, which is a
common agent for surface passivation and blocking of non-
specific binding28–30, followed by a successful demonstration of
fibrinogen detection in serum environment. We hypothesize
that a combination of the SWCNT corona phase formed by
the specific phospholipid-PEG along with the unique
three-dimensional conformation of the fibrinogen protein, a
high aspect ratio elongated molecule, is responsible for the
molecular recognition. This is supported by high-resolution
atomic force microscopy (AFM) images, which manifest the facile
recognition of fibrinogen on the CoPhMoRe phase by physical
binding and the alignment of the fibrinogen molecules with the
nanotube axis, and by quartz crystal microbalance with
dissipation (QCM-D) measurements, which show fibrinogen
monolayer adsorption on top of the SWCNT layer such that the
protein molecules lay with their long axis parallel to the nanotube
surface layer. In addition, kinetic measurements confirm a three-
step molecular adsorption, consistent with the three nodule
structure of the fibrinogen31,32. Moreover, photo-absorption
measurements and cryo-transmission electron microscope
(TEM) imaging rule out aggregation or precipitation of the
SWCNT, which is supported by a demonstration of the sensor
functionality while encapsulated within a thin hydrogel bed or
when adsorbed onto a surface. The functionality at the single
sensor level of individual surface-immobilized SWCNT, along
with the optical read-out in real-time, enables a detection with
both spatial and temporal resolution. These results open the door
to protein CoPhMoRe-based recognition for proteomic and
medical research, while expanding the applicability of the
CoPhMoRe concept to bio-macromolecules for the first time.

Results
SWCNT suspension characterization. SWCNT produced by the
HiPCO catalysis, were suspended with ssDNA and ssRNA by
direct sonication33, or with phospholipid-PEG polymers (listed in
Fig. 1a), by exchanging sodium cholate (SC) wrapping using
dialysis. Successful suspensions were evident from the
distinct absorption peaks (Supplementary Fig. 1a) and the
bright fluorescent emission under 785 nm laser excitation
(dashed black curve in Fig. 1b and Supplementary Fig. 1b). In
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Figure 1 | SWCNT suspension library. (a) The structure of the phospholipid-PEG constructs used in this study to suspend the SWCNT. (i) DPPE-

PEG(5000), (ii) DMPE-PEG(5000), (iii) DSPE-PEG(5000), (iv) DSPE-PEG(2000), (v) DSPE-PEG(2000)-Cyanur, (vi) DSPE-PEG(2000)-carboxylic acid

(CA), (vii) DSPE-PEG(2000)-Maleimide, (viii) DSPE-PEG(2000)-[3-(2-Pyridyldithio)-propionyl] (PDP), (ix) DSPE-PEG(2000)-Amine, (x) DSPE-

PEG(2000)-Biotin, (xi) DSPE-PEG(350). The number in parentheses is the molecular weight of the PEG chain in Daltons. (b) The solvatochromic shift as a

function of the SWCNT diameter to the power of negative 4 (d�4, blue dots) and its linear fit (solid red curve), and the fluorescent emission intensity for

each wrapping (dashed black curve). (c) The relative surface coverage of the polymer wrappings ranked in descending order.
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addition, when the excess phospholipid-PEG molecules were
removed from the solution by filtration or dialysis, the suspension
retained its stability, manifested by the absorption and fluorescent
spectra, as opposed to the initial SC-SWCNT suspension, which
underwent massive aggregation and lost both its absorption and
fluorescence emission (Supplementary Fig. 2).

The fluorescent emission34 peaks correspond to the radiative
decay of excitons35, which are influenced by the local dielectric
environment of the SWCNT surface36. Fluctuating electric fields
resulting from random orientations of dipole moments in the
close proximity of the SWCNT can induce a dipole moment on
the highly polarizable SWCNT. Although SWCNT have no net
dipole moment, the electric fields can cause a shift in their
electronic transitions (solvent Stark effect). The semi-empirical
functional form describing this shift is given by36:

Eiið Þ2DEii ¼ � Lk
2 e� 1ð Þ
2eþ 1

� 2 n2� 1ð Þ
2n2þ 1

� �
1

R4
¼ C

R4
ð1Þ

where Eii is the optical transition energy, DEii is the difference
between the optical transition energy in the dielectric
environment and the optical transition energy of pristine
SWCNT in air, L is a fluctuation factor, k is a scaling constant
of the SWCNT polarizability, e is the static dielectric constant,
n is the refractive index and R is the nanotube radius. The
constant C gathers all the parameters that are constant for a
specific chirality.

The experimental optical transitions of the various SWCNT
suspensions, E11, were calculated by deconvoluting the fluorescent
emission spectra to the different chiralities in the HiPCO
sample37 (Supplementary Fig. 3), and the optical transitions in
air were calculated according to36:

Eair
11 ¼

hc
A1þA2d

þA3
cos y

d2
ð2Þ

where h is Planck’s constant, c is the speed of light, d is the
SWCNT diameter, y is the chiral angle corresponding to the
SWCNT chirality (n, m), A1¼ 61.1 nm and A2¼ 1,113.6. By
noting mod((n�m), 3)¼ j, A3¼ � 0.077 eV nm2 for j¼ 1 and
A3¼ 0.032 eV nm2 for j¼ 2.

The solvatochromic shift, (E11)2DE11, is plotted against the
SWCNT diameter to the power of negative 4 (d� 4) for the
various chiralities in each suspension in Fig. 1b, and the data is
fitted with a linear curve (blue dots, and solid red curve,
respectively). The slopes of the fit curves and the corresponding
R-squared parameters are listed in Supplementary Table 1. These
slopes can be used to estimate the effective dielectric constant, eeff,
in the vicinity of the SWCNT, by comparing them to the slope of
a reference system38,39 of SWCNT suspended in N-methyl-2-
pyrrolidone (NMP)36:

C
CNMP

¼
eeff � 1

2eeff þ 1 � n2 � 1
2n2 þ 1

eNMP � 1
2eNMP þ 1 �

n2
NMP � 1

2n2
NMP þ 1

ð3Þ

where CNMP¼ 0.060 eV3 nm4, eNMP¼ 32.2 and nNMP¼ 1.47
(Supplementary Table 1). We assume that the refractive indexes
of the DNA, RNA and phospholipid-PEG wrappings are equal to
that of water (n¼ 1.333). On the basis of the effective dielectric
constant, we can estimate the relative surface coverage of the
SWCNT, a, by its wrapping, by assuming a linear combination of
the surrounding water (ewater¼ 88.1) and the wrapping polymer
(ep) contributions:

eeff ¼ aepþ 1� að Þewater ð4Þ
where ep¼ 4 for DNA and RNA wrappings40 and ep¼ 2.08 for
the phospholipid wrappings39. The parameter a was used to rank
the polymer wrappings in descending order (Fig. 1c). As we show

below, the molecular recognition of fibrinogen occurs for DPPE-
PEG(5000) to the exclusion of the others, and this CoPhMoRe
phase has one of the highest polymer surface coverages.

Protein library screening. We have constructed a library of 14
proteins of human origin, some of which are highly abundant in
blood27 (such as albumin, IgG, fibrinogen, a1-antitrypsin,
transferrin, haptoglobin, a2-macroglobulin, IgA, IgM, a1-acid-
glycoprotein and apolipoprotein A-I), whereas the others are
relatively rare but of clinical significance (insulin41, human
chorionic gonadotropin42 and C-reactive protein43). The
responses of the fluorescent emission of the DNA, RNA and
phospholipid-PEG SWCNT suspensions were recorded following
an hour incubation with each of the proteins at 20 mg ml� 1 in
phosphate buffered saline (PBS). The normalized fluorescence
response of the joint peak of the (9,4) and (7,6) tubes, which is
readily distinguishable, (Supplementary Fig. 1b) is presented in a
heat-map in Fig. 2a.

Manifested in the heat-map, the DPPE-PEG(5000)-SWCNT
(Fig. 1a (i)) shows an obvious distinguishable response to
fibrinogen, of an 80% decrease in fluorescence intensity, whereas
other proteins induce a negligible response of o5% for this
complex. Hence, the DPPE-PEG(5000)-wrapped SWCNT can be
considered as a selective sensor for fibrinogen.

Protein parameters such as molecular weight, relative hydro-
phobic surface area or isoelectric point, cannot explain the
pronounced response of the DPPE-PEG(5000)-SWCNT fluores-
cence to fibrinogen, which appears as an outlier in plots of the
normalized response as a function of these three variables
(Fig. 2b).

The DPPE-PEG(5000) wrapping that renders the SWCNT a
selective sensor for fibrinogen has the second highest
relative coverage of the SWCNT surface (85.5%) among the
phospholipid-PEG wrappings, following DSPE-PEG(5000) with
87.5%, whereas the relative surface coverages of the rest of the
phospholipid-PEG molecules were o85% (Fig. 1c). However,
there was no evident correlation between the relative surface
coverage and the normalized response to fibrinogen (Fig. 2c).
Even when looking at the absolute value of the normalized
response versus the surface coverage, the correlation factor, which
was found to be 0.26, was not statistically significant. Among the
DNA wrapping, all the responses to the proteins were o30%
intensity modulation. In comparison, a recently published work
by our group showed that in response to small molecule
neurotransmitters, DNA-wrapped SWCNT exhibited up to 80%
intensity modulation17.

The discovery of a CoPhMoRe phase for fibrinogen has several
practical implications (Supplementary Note 1), as it is one of the
largest and most abundant plasma proteins, having a molecular
weight of 340 kDa and normal concentrations44 of 1.75–
4.30 g l� 1. It has an elongated trinodular structure of 45–50 nm
in length31,32, consisting of two outer globular domains
(D-domains) of 6.5 nm in diameter and one central globular
domain (E-domain) of 5.0 nm in diameter, which are connected
by coiled coils of helical chains of 1.5 nm in diameter45.

We therefore hypothesize that both the corona phase
specifically adopted by the DPPE-PEG(5000) upon adsorption
onto the SWCNT surface and the unique conformation of
fibrinogen, an elongated molecule of high aspect ratio, which is
distinctive relative to the structure of the other proteins
in the study (Supplementary Fig. 4), must be important factors
in this molecular recognition. Moreover, the three-dimensional
structure of fibrinogen enables multiple binding sites on the
protein to be in close proximity to the SWCNT corona
simultaneously, owing to the one-dimensional structure of the
nanotube, as illustrated in Fig. 2d.
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SWCNT–fibrinogen interaction spectroscopy. To elucidate the
mechanism of fibrinogen binding, we tested the response of
the DPPE-PEG(5000)-SWCNT sensor to various fibrinogen
fragments, including the D-domain, E-domain, D-dimer,
fibrinopeptide A and fibrinopeptide B (Fig. 3a). A significant
decrease in fluorescent emission, comparable to the response
induced by the full-length fibrinogen protein, was observed for
the D-domain, while the D-dimer, which is comprised of two
D-domains, showed a large response as well, but to a lesser extent.
The E-domain and the two fibrinopeptides produced no response.
We thus conclude that the two outer D regions of the fibrinogen
are the driving force of the interaction between the whole protein
and the DPPE-PEG(5000)-SWCNT complex. Owing to the evi-
dent affinity between the D region and the DPPE-PEG(5000)-
SWCNT corona, we hypothesize that the underlying interaction
mechanism is a three-step sequential binding initiated by one of
the D regions, followed by the other D region, culminate in the
binding of the middle E region, leading to the strong interaction
between the full-length protein and the SWCNT scaffold. This is
supported by previous studies showing multistage adsorption of
fibrinogen onto surfaces46, where an initial binding is followed by
the reorientation of the elongated fibrinogen molecule.

To support this mechanism, we examined the fibrinogen
concentration-dependent interaction with the various SWCNT
chiralities47. We have recorded the fluorescent spectra of the
DPPE-PEG(5000)-SWCNT with increasing concentrations of the
protein, clearly observing a gradual decrease of the emission
intensity, and a redshift of the emission peaks (Fig. 3b). The
SWCNT absorption peaks heights remain invariant to the
addition of the fibrinogen, ruling out nanotube aggregation
effects, while the absorption peak wavelength undergoes a modest
redshift (Fig. 3b, inset), indicating an increase in the dielectric
constant and higher water content in the close proximity of
the nanotube surface48. The relative fluorescent response of the
SWCNT with larger band gaps, corresponding to smaller
diameters49, is more pronounced relative to the larger diameter
nanotubes, manifested in the excitation–emission profiles of
the SWCNT sample before (Fig. 3c) compared with after (Fig. 3d)
the addition of fibrinogen.

The fluorescent emission spectra in Fig. 3b were deconvoluted
to the various SWCNT chiralities within the sample16

(Supplementary Fig. 3) to analyse each chirality independently.
The normalized fluorescent response of each nanotube species is
plotted in Fig. 3e versus the fibrinogen concentration in the
solution, yielding a calibration curve of the fibrinogen sensor.
Following our three-step sequential binding hypothesis, we model
the fibrinogen–DPPE-PEG(5000)-SWCNT interaction by the
following reaction scheme50:

yþ 2DþE$
Kd1

yDþDþ E$
Kd2

yD2þE$
Kd3

yD2E ð5Þ
Where y is an empty binding site on the SWCNT surface, D and
E stand for the D and E regions of the fibrinogen, respectively,
and Kd1, Kd2 and Kd3 are the corresponding dissociation
constants. To simplify the picture, we assume that upon the
initial binding of the first D region, the fibrinogen molecule aligns
with the SWCNT principle axis, and the remaining D and E
regions bind instantaneously, allowing us to combine the last two
steps of the reaction:

yþ 2Dþ E$
Kd1

yDþDþE$
Kd23

yD2E ð6Þ
where Kd23¼Kd2Kd3. For further simplicity, we label the two
types of the fibrinogen domains by L, which now stands for a
single nodule of the protein molecule:

yþ 3L$
Kd1

yLþ 2L$
Kd23

yL3 ð7Þ

The total binding sites remain constant and thus fulfil the
following equality:

y½ �total¼ y½ � þ yL½ � þ yL3½ � ð8Þ

where the brackets represent concentration of the relevant
variable.

The normalized fluorescent intensity response is linearly
proportional to the relative number of bound sites on the
SWCNT surface16:

I� I0

I0
¼ b 1� y½ �

y½ �total

� �

¼ b 1� 1

1þK � 1
d1 L½ � þ Kd1Kd23ð Þ� 1 L½ �3

 !
ð9Þ

where I0 and I are the initial and final fluorescent intensity and b
is the proportional factor. The fit to the data is plotted in Fig. 3e
(solid lines), and the corresponding fit parameters, b, Kd1 and
(Kd23)1/2 and their 95% confidence intervals are summarized in
Fig. 3f (diamonds in the top panel, and blue squares and red
circles in the bottom panel, respectively). Since (Kd23)1/2 is larger
than Kd1, we can conclude that there is no accumulation of the
intermediate reactants, implying that once the first nodule of
fibrinogen is bound, the complete binding of rest of the molecule
follows50.

On the basis of the deconvolution data, we plotted the
wavelength redshift of the (6,5) fluorescent emission peak
versus the fibrinogen concentration in the solution, yielding
an additional calibration curve for the fibrinogen sensor
(Fig. 3g). The advantage of calibrating based on the
wavelength shift, as opposed to the intensity modulation, is
that the units in the former case are not arbitrary and can be
taken to be either the wavelength or the energy, eliminating the
need for an internal standard or pre-calibration. The fit to the
data points was achieved using the same model described
above, yielding the fit parameters Kd1¼ 30.11 nM, and
(Kd23)1/2¼ 7.41 nM, both within one order of magnitude
of the fit parameters in the normalized intensity modulation
calibration.

This observed solvatochromic shift corresponds to an increase
of the dielectric constant in the close proximity of the SWCNT36

due to the adsorption of the fibrinogen molecules on the
nanotubes’ surface. Such an effect, explained by dielectric
screening of repulsive Coulomb interactions51, has been
shown to induce a decrease in fluorescent emission intensity52,
and hence has an important role in the underlying quenching
mechanism in this case. Moreover, a quenching effect of
SWCNT fluorescent emission was previously reported
for proteins adsorbed directly onto the surface of the
nanotubes in the work of Barone et al.53, for example, where a
significant decrease in emission intensity was observed on
the exchange of a tightly packed SC wrapping with a glucose
oxidase layer.

To assess the sensor performance in a complex environment,
we tested its response to fibrinogen in the presence of albumin
(Fig. 3h), which is the most abundant protein in the blood
and constitutes about half of all the plasma proteins54. A
DPPE-PEG(5000)-SWCNT suspension was first incubated with
either albumin (Fig. 3h, columns 1–3), fibrinogen (columns 4–6),
or an equal mixture of both proteins (columns 7–9), followed
by the addition of just buffer (PBS, columns 1, 4 and 7),
albumin (columns 2, 5 and 8), or fibrinogen (columns 3, 6 and 9).
In contrast to the interaction with albumin, which produces
little to no response (columns 1 and 2), the addition of
fibrinogen results in a significant fluorescence decrease
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(columns 3–9), regardless of the order of the addition of
the proteins. Further, we tested the response of the fibrinogen
sensor in serum environment by adding fibrinogen solution to
DPPE-PEG(5000)-SWCNT suspension in 10% fetal bovine
serum (FBS) in PBS, to a final fibrinogen concentration of
0.05 mg ml� 1, 0.5 mg ml� 1 and 5 mg ml� 1 (Fig. 3i and
Supplementary Fig. 5a). The normal fibrinogen concentrations
in human blood44 are between 1.75 and 4.3 mg ml� 1, and

are included in the tested range. The SWCNT sensor showed
a significant signal quenching in response to fibrinogen of
17, 31 and 47% for the tested protein concentrations, respectively.
Compared with the sensor response in PBS solution with
similar conditions (90% quenching for 5 mg ml� 1 protein
concentration, Supplementary Fig. 5b), the response in serum is
less pronounced, in agreement with previously published
results55,56 showing that many serum components interact with
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SWCNT and can interfere with the interaction with the
fibrinogen in this case.

An additional spectroscopy tool that can be used to determine
the structure and conformation of proteins is circular dichroism.
The circular dichroism spectrum of fibrinogen shows two peaks,
at 209 and 220 nm (Supplementary Fig. 6, black solid curve), in
agreement with previous findings57, and is typical to the mostly
alpha helical structure58 found in fibrinogen31. The DPPE-
PEG(5000)-SWCNT, however, has no characteristic circular
dichroism signature59,60 except for mild absorption (Supplemen-
tary Fig. 6, dotted green curve). Comparing the circular dichroism
spectra of fibrinogen with DPPE-PEG(5000)-SWCNT
(Supplementary Fig. 6, dashed blue curve) to a pure fibrinogen
solution, the positions of the two major peaks remain invariant,
indicating that the SWCNT corona phase did not catalytically
denature the fibrinogen protein60.

The Raman scattering spectrum of the DPPE-PEG(5000)-
SWCNT also remains invariant to the interaction with
fibrinogen, including the G-peak position and the G/D peak
ratio (Supplementary Fig. 7a–c), assuring that there is no
covalent interaction between the fibrinogen molecule and the
carbon lattice of the nanotube, which keeps its sp2

hybridization17. The net surface charge of both the fibrinogen
and DPPE-PEG(5000)-SWCNT does not change upon their
interaction, shown by constant zeta potential values for all cases
(Supplementary Fig. 7d).

SWCNT–fibrinogen interaction dynamics. The emission spectra
of DPPE-PEG(5000)-SWCNT, to which either PBS or fibrinogen
was added, were recorded every 2 s under continuous 785 nm
laser excitation for 15 min (Fig. 4a). The fluorescent intensity of
the DPPE-PEG(5000)-SWCNT suspension rapidly drops
following the addition of fibrinogen, while the emission intensity
of the control sample remains stable throughout the course of the
experiment. This is manifested by tracking the (10,2) chirality
peak, at 1,069 nm, in both cases (Fig. 4b).

To fit the dynamic data, we numerically integrated the rate
equation resulting from our model in equation (9):

d
dt

yL½ �
y½ �tot

� �
¼ kf 1 L½ �3� kf1 L½ �3þ kr1þ kf2ð Þ L½ �2

� � yL½ �
y½ �tot

þ kr2� kf1 L½ �3
� � yL3½ �

y½ �tot

d
dt

yL3½ �
ytot

� �
¼ kf2

yL½ �
y½ �tot

L½ �2� kr2
yL3½ �
y½ �tot

ð10Þ

where kf1, kf2 and kr1, kr2 are the forward and the reverse
rate constants of the first and second sequential steps in the
association model, respectively, such that Kd1¼ kr1/kf1 and
Kd23¼ kr2/kf2. The fit parameters resulted in Kd1¼ 39.7 nM and
(Kd23)1/2¼ 42.7 nM, which is within one order of magnitude
agreement with the dissociation contents of the (10,2) chirality
peak calculated from the calibration curve fit (4.3 and 5.34 nM,
respectively, Fig. 3e). A possible source for the difference is the
additional data processing performed on the calibration data,
which involved deconvoluting the spectra to find the individual
fluorescent intensity contribution of the various nanotube
chiralities in the sample.

Given that this set of experiments was done in solution phase
as illustrated in Fig. 4c, one can speculate about the role that free
DPPE-PEG(5000) polymer has in the interaction and signal
transduction. To address this, we immobilized the
DPPE-PEG(5000)-SWCNT on top of a thin agarose hydrogel
bed61, followed by exhaustive washing of any unbound SWCNT
or polymer molecules. The fluorescent emission peak of the (6,5)
SWCNT chirality was monitored over 100 min, where both a
control sample and a sample to which fibrinogen was added
showed similar behaviour to the solution phase experiments, but
on a longer time scale (Fig. 4d). This is expected based on the fact
that only the fibrinogen molecules are mobile and can diffuse in
the solution and the agarose hydrogel, while the SWCNT sensors
are immobilized within the gel (Fig. 4e). Fitting the dynamic
data with numerical integration of equation (10) results
in Kd1¼ 49.8 nM and (Kd23)1/2¼ 33.7 nM, which is within
approximately one order of magnitude agreement with the
dissociation contents of the (6,5) chirality peak calculated from
the calibration curve fit (3.5 and 4.4 nM, respectively, Fig. 3e).
Similarly, a source for the difference is that the immobile sensor
single channel detector integrates the fluorescent emission in the
range of 950–1,050 nm, whereas the calibration spectra were
recorded with a nIR spectrometer and were deconvoluted to the
various SWCNT chiralities in the suspension.

Further experiments were conducted with surface-immobilized
single SWCNT to conclusively demonstrate that nanoparticle
aggregation is not responsible for the optical response.
DPPE-PEG(5000)-SWCNT solution was deposited on a glass
slide and was left to dry. Subsequently, the slide was extensively
washed to remove any unbound nanotubes from the surface.
The fluorescence of the individual nanotubes was imaged
continuously using a 2D nIR camera attached to an inverted
microscope, allowing the visualization of diffraction limited
spots of single nanotubes (Fig. 4f and Supplementary Movie).
Following the addition of fibrinogen, the fluorescent emission
intensity significantly decreases (Fig. 4g), as evident from the

Figure 3 | Fluorescence spectroscopy of the SWCNT–fibrinogen interaction. (a) Relative fluorescent response of DPPE-PEG(5000)-SWCNT (1 mg l� 1)

sensor to fibrinogen fragments (20mg ml� 1). (b) Fluorescent emission spectra of DPPE-PEG(5000)-SWCNT with 0, 10�4, 2� 10�4, 4� 10�4,

8� 10�4, 1.2� 10� 3, 1.6� 10� 3, 2� 10� 3, 4� 10� 3, 8� 10� 3, 1.2� 10� 2, 1.6� 10� 2, 2� 10� 2, 4� 10� 2, 8� 10� 2 and 0.2 mg ml� 1 fibrinogen

show substantial decrease in emission intensity with increasing protein concentration. Inset: absorption spectra of DPPE-PEG(5000)-SWCNT suspension

before (solid black curve) and after (dashed red curve) the addition of 0.02 mg ml� 1 fibrinogen. (c) Excitation–emission profile of the DPPE-PEG(5000)-

SWCNT solution before and (d) after the addition of 0.02 mg ml� 1 fibrinogen. (e) The normalized fluorescent response of the various chiralities in the

DPPE-PEG(5000)-SWCNT suspension to the addition of different concentrations of fibrinogen (dots). The fit according to the model described in the text

is plotted as solid lines. (f) The parameters of the model used for data fitting in d and their 95% confidence intervals. Dashed lines are guides to the eye.

Top panel: the proportional parameter b used to fit the normalized fluorescent response model. Bottom panel: the parameters Kd1, and (Kd23)1/2 used to fit

the normalized fluorescent response model (blue squares and red circles, respectively). (g) Wavelength redshift of the (6,5) fluorescent emission peak of

the DPPE-PEG(5000)-SWCNT suspension to the addition of different concentrations of fibrinogen (dots). The fit according to the model described in the

text is plotted as a solid line. (h) Sensor performance in a complex environment: relative fluorescent response of DPPE-PEG(5000)-SWCNT suspension

following a two-step analyte addition. First, either albumin (columns 1–3), fibrinogen (columns 4–6), or an equal mixture of both (columns 7–9) was added

to the solution to a final concentration of 20mg ml� 1 and incubated for an hour. Then either PBS (columns 1, 4 and 7), albumin (columns 2, 5 and 8), or

fibrinogen (columns 3, 6 and 9) was added to a final protein concentration of 40mg ml� 1. The fluorescent response was measured after an additional 1 h

incubation. (i) Relative fluorescent response of DPPE-PEG(5000)-SWCNT (5 mg l� 1) sensor to fibrinogen (0.05, 0.5 and 5 mg ml� 1) in serum. Error bars

represent the s.d. between three replicate experiments.
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Figure 4 | Dynamics of the SWCNT–fibrinogen interaction. (a) Fluorescent emission spectra of 1 mg l� 1 DPPE-PEG(5000)-SWCNT, to which either PBS

(top) or 0.02 mg ml� 1 fibrinogen (bottom) was added 10 s after the beginning of the experiment. Since laser excitation was turned off while adding the

solutions, the time point of the PBS or fibrinogen addition appears as a horizontal line with zero intensity. (b) The (10,2) chirality fluorescent emission peak

over time of 1 mg l� 1 DPPE-PEG(5000)-SWCNT, to which either PBS (control) or 0.02 mg ml� 1 fibrinogen was added. Data taken from a. (c) Illustration of

solution phase experiment. (d) Fluorescent emission over time of immobilized DPPE-PEG(5000)-SWCNT in agarose hydrogel, to which either PBS

(control) or 0.02 mg ml� 1 fibrinogen was added. (e) Illustration of hydrogel phase experiment. (f) Single DPPE-PEG(5000)-SWCNT fluorescence recorded

by a 2D nIR camera before and (g) after the addition of fibrinogen. (h) Corresponding intensity time traces of the four diffraction limited single SWCNT

spots marked in panels f and g. The dotted line represent the time point at which fibrinogen was added. (i) Frequency change (dashed blue curve) and layer

thickness (solid orange curve) as measured by QCM-D, and calculated by the Voigt viscoelastic model, respectively, for a fibrinogen layer deposited on top

of a DPPE-PEG(5000)-SWCNT layer, and for (j) fibrinogen layer deposited directly on top of the gold-coated quartz crystal.
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intensity traces over time (Fig. 4h). These results support the
claim that the mechanism of emission intensity decrease does not
involve nanotubes aggregation effects, since a similar decrease is
observed when the SWCNT are either in solution phase, or
immobilized within a hydrogel or on a glass slide, where they
cannot aggregate.

The gradual adsorption of the fibrinogen proteins to the DPPE-
PEG(5000)-SWCNT was further verified by QCM-D measure-
ments. The QCM-D instrument (Q-sense E4) was used to gain
additional insight on this process by monitoring the adsorption of
the fibrinogen proteins onto a nanotube layer deposited on a
gold-coated crystal and calculating the resulting layers’ thickness.
Both of the adsorption steps demonstrated a gradual decrease in
the frequency of the oscillating crystal, indicating a gradual
increase in the layer thickness (Fig. 4i). The thickness of the
SWCNT bottom layer was estimated as 4.4±0.1 nm, and the total
thickness of both the SWCNT and the fibrinogen layers was
estimated as 9.4±0.2 nm, yielding a protein layer of B5 nm in
thickness. In the case of SWCNT, the PBS wash resulted in the
loss of B20% of the layer thickness, whereas in the fibrinogen
layer, the rinse resulted in the removal of B25% of the layer. In
contrast, when the fibrinogen solution was added directly to a
gold-coated quartz crystal surface, the final thickness of the
protein layer was 14.2±0.1 nm (Fig. 4j), which is more than twice
the thickness of the fibrinogen layer formed on top of the
SWCNT layer. Previous studies of fibrinogen adsorption onto a
gold surface using QCM-D technique have shown that the
fibrinogen proteins form a monolayer on the surface62, in
agreement with the widely accepted assumption of a monolayer
surface-adsorption of proteins in general63. Taking into account
the physical dimensions of the protein, our findings imply that
the fibrinogen molecules mostly lay horizontally flat (side-on)
when adsorbed onto the DPPE-PEG(5000)-SWCNT, whereas
when adsorbed directly onto the gold surface, they can adopt
different configurations, including an end-on adsorption with the
other unbound end sticking out into the aqueous solution.
Previous studies of fibrinogen adoption onto various surfaces for
haemocompatibility evaluation have reported monolayer
thickness ranging between 2 and 37 nm, depending on the
surface properties, where thickness values above 10 nm indicated
an end-on adsorption64,65.

SWCNT–fibrinogen interaction microscopy. Fibrinogen mole-
cules were imaged on a mica surface with tapping mode AFM,
clearly showing the unique dumbbell structure of the fibrinogen
(Fig. 5a). The fibrinogen molecules were scattered uniformly on
the surface, randomly orientated, with each molecule being
composed of three small spherical nodes. The height profiles
along the principle axis of the fibrinogen (labelled as 1 and 2 in
Fig. 5a) show characteristic three-peak traces (Fig. 5b, top panel),
as expected from the tri-nodule structure of the protein and in
agreement with previous findings31.

Following incubation with DPPE-PEG(5000)-SWCNT, most of
the fibrinogen molecules appear to be bound to SWCNT (Fig. 5c),
demonstrating the physical interaction between the two. Com-
paring the height profiles across a bare SWCNT and across a
fibrinogen molecule that is bound to SWCNT (labelled as 3 and 4
in Fig. 5c), we can conclude that the fibrinogen molecule is
stacked on top of the nanotube (Fig. 5b, bottom panel). The
inter-molecular distance between the adsorbed fibrinogen
molecules is 22±20 nm, resulting in an average of 8 to 9 proteins
per SWCNT. Furthermore, the fibrinogen orientation does not
appear to be isotropically distributed, but rather the protein
molecules seem to align along the axis of the nanotubes. In
Fig. 5d, a schematic of the adsorbed fibrinogen constructed from

the experimental AFM positions and orientations underscores
this observation. This further supports the layer thickness of
fibrinogen adsorbed onto SCWNT calculated from the QCM-D
data, which indicate a monolayer adsorption of the protein
molecules laying horizontally flat (side-on).

Cryo-TEM captures solution samples in their native hydrated
environment and avoids artifacts of sample drying66. A sample of
DPPE-PEG(5000)-SWCNT incubated with fibrinogen was
rapidly frozen in liquid nitrogen and imaged with cryo-TEM.
The resulting images show that the SWCNT remain individually
suspended in the solution, and no aggregation occurs following
the interaction with the protein (Fig. 5e). This finding
additionally confirms that nanoparticle aggregation is not the
mechanism of the fibrinogen optical response.

Discussion
We have demonstrated protein CoPhMoRe for the first time. By
screening the response of the fluorescent emission of a library of
DNA, RNA and phospholipid-PEG suspended SWCNT following
the interaction with a library of human proteins, we discovered
that the DPPE-PEG(5000)-SWCNT complex acts as a selective
sensor for fibrinogen.

Although DPPE-PEG(5000) had one of the highest relative
SWCNT surface coverages compared with various PEGylated
lipids, DNA or RNA wrappings, no correlation between surface
coverage and recognition was found. Moreover, the selective
response is not explained by elementary protein parameters such
as molecular weight, isoelectric point or relative surface
hydrophobicity, whereas circular dichroism spectroscopy rules
out protein denaturation. Lastly, the invariant height and width of
the absorption peaks, and the individually suspended SWCNT
imaged by cryo-TEM, rule out nanotube aggregation or
precipitation as the fluorescent quenching mechanism, supported
by the successful demonstration of the sensor response when
immobilized within a hydrogel or on a glass surface. Hence, we
conclude that the specific corona phase formed by the
DPPE-PEG(5000) enables recognition of the unique tri-nodule
fibrinogen protein.

A detailed analysis of this interaction reveals a mechanism of
sequential binding of the three fibrinogen nodules, starting with
one of the outer D regions binding to the SWCNT, followed by
the other D and E regions, and the alignment of the protein along
the nanotube, resulting in the complete binding of the three
fibrinogen nodes to the SWCNT surface and a substantial
fluorescent emission quenching. This reaction mechanism
is supported by fitting kinetic experimental results and
high-resolution AFM. Moreover, QCM-D measurements show
the monolayer adsorption of fibrinogen onto surface-deposited
DPPE-PEG(5000)-SWCNT, forming a thin layer whose thickness
indicates that the protein molecules lay horizontally flat on the
underlying nanotubes.

The DPPE-PEG(5000)-SWCNT sensor responds to fibrinogen
in the presence of albumin, which is the most abundant protein in
blood and usually used as the gold standard in assessing non-
specific protein adsorption, thus paving the way to use the sensor
in a controlled environment with additional components.
Furthermore, the sensor can detect fibrinogen in serum environ-
ment over a concentration range covering the clinically relevant
concentrations of fibrinogen in human blood44 (1.75–4.3 g l� 1).
Finally, the ability of the sensor to detect the fibrinogen protein
when immobilized within agarose gel opens the possibility of use
in vivo with an implantable biocompatible hydrogel15.

In summary, we have demonstrated a molecular recognition
motif, based on the corona phase of fluorescent nanoparticles, for
the detection and quantification of fibrinogen, an important
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protein biomarker that is an essential factor in the blood
coagulation cascade and the principal element of a thrombus.
Our work motivates the search for novel CoPhMoRe phases for
protein recognition. This methodology can generate new
synthetic non-biological antibodies and provide an alternative
for conventional antibodies, which suffer from major limitations
including the need of a living organism for initial production,
long development times, high production costs and challenging
reproducibility, poor stability due to hydrolysis in ambient
temperature and moderate acidic conditions resulting in limited
shelf life, and sensitivity to degradation while circulating in vivo.
In contrast, our SWCNT template recognition overcomes these

shortcomings by offering a stable and reproducible construct that
can push forward discovery research in the field allowing
multiplexed high-throughput synthesis and library screenings.

Methods
DNA and RNA SWCNT suspension. Raw HiPCO (Unidym, 0.8–1.2 nm in dia-
meter with 1 nm mean diameter and 100 nm—1 mm initial length) were processed
by organic–aqueous phase separation followed by drying and homogenizing, as
previously described37. DNA or RNA (2 mg) (Integrated DNA Technologies, Inc.)
were added to 1 mg of SWCNT in 1 ml of 0.1 M sodium chloride solution, and
sonicated while in an ice bath with 3 mm probe tip (Cole Parmer) for 40 min at a
power of 4 W. Subsequently, samples were bench-top centrifuged (Eppendorf) for
180 min at 16,100 relative centrifugal force (RCF). The top 80% of the supernatant
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Figure 5 | High resolution microscopy of the SWCNT–fibrinogen interaction. (a) AFM image of fibrinogen molecules on MICA surface. Scale bar,

200 nm. (b) Height profiles along the lines in the AFM images. (c) AFM of DPPE-PEG(5000)-SWCNT with fibrinogen on a silicon wafer. Scale bar, 200 nm.

(d) Illustration of the SWCNT (blue lines) and fibrinogen molecules (green dumbbells) in panel c. (e) Cryo-TEM image of DPPE-PEG(5000)-SWCNT with

fibrinogen, showing individually suspended SWCNT and no bundling. The dark spheres are catalyst particles. Scale bar, 50 nm.
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was carefully collected for further experimenting and the pellet was discarded.
Successful suspensions were validated by recording their ultraviolet–visible-nIR
absorption spectra (Shimadzu UV-3101PC).

Single-stranded DNA sequences used in this study were (GT)15, (AT)30, (GC)30,
(AT)15, (AAAT)7, (ATTT)7 (GGGT)7, (GTTT)7, and the single-stranded RNA
sequence used was (GU)15.

Phospholipid-PEG SWCNT suspension. SWCNT were first suspended in SC,
which was later removed by dialysis in the presence of phospholipid-poly(ethylene
glycol) (phospholipid-PEG, Avanti Polar Lipids) as previously published16. Briefly,
40 mg of SWCNT was added to 2 wt% SC solution to a final SWCNT concentration
of 1 mg ml� 1and was bath sonicated (Branson 2510) for 10 min, followed by 6 mm
probe tip sonication for 60 min at a power of 12 W while in an ice bath. The
resulting dark solution was ultracentrifuged in a SW32 Ti rotor (Beckman Coulter)
at 150,000 RCF for 4 h to remove SWCNT aggregates and impurities. The top 80%
of the supernatant was carefully collected for further experimenting and the pellet
was discarded (see Supplementary Fig. 8 for scanning electron microscopy image of
the SC-SWCNT suspension). The mean nanotube length following the initial
processing was 550 nm (ref. 16).

A 5 mg ml� 1 solution of phospholipid-PEG in water was bath sonicated for
5 min to ensure complete dissolution. The phospholipid-PEG was diluted to a final
concentration of 2 mg ml� 1 in 40 mg l� 1 of SC-SWCNT suspension and the
mixture was dialysed using 1 kDa molecular weight cutoff dialysis cartridge against
water for a period of 4 to 5 days with multiple water changes to ensure the
complete removal of SC from the SWCNT surface, allowing for the adsorption of
the phospholipid-PEG instead.

Successful suspensions were validated by recording their ultraviolet–visible-nIR
absorption spectra (Shimadzu UV-3101PC) in a 1-cm path length quartz cuvette
(Starma). The absorption spectra showed a redshift relative to the initial SC-
SWCNT suspension (Supplementary Fig. 9), indicating the surfactant exchange18.

Phospholipid-PEG used in this study were DPPE-PEG(5000), DMPE-
PEG(5000), DSPE-PEG(5000), DSPE-PEG(2000), DSPE-PEG(2000)-cyanur,
DSPE-PEG(2000)-CA, DSPE-PEG(2000)-maleimide, DSPE-PEG(2000)-PDP,
DSPE-PEG(2000)-amine, DSPE-PEG(2000)-biotin, and DSPE-PEG(350), where
DPPE, DMPE and DSPE stand for dipalmitoyl-, dimyristoyl-, and distearoyl-
phosphatidylethanolamine, respectively, CA denotes carboxylic acid and PDP
denotes 3-(2-pyridyldithio)-propionyl (Fig. 1a). The number in parentheses is the
molecular weight of the PEG chain in Daltons.

High-throughput nIR photoluminescence screening. Human proteins were
purchased from Sigma-Aldrich (USA) and were handled according to the supplier
instructions. SWCNT suspensions were diluted in PBS to 1 mg l� 1 concentration
(0.036 absorption at 632 nm (ref. 16)) and aliquots were added to a 96-well plate
followed by the addition of 2 vol% of the test protein analytes to a final protein
concentration of 20 mg ml� 1. Following 1 h incubation on a tabletop orbital shaker,
the fluorescent spectra of the SWCNT were recorded using a custom-made nIR
microscope array. Briefly, the 96-well plate was placed on top of a motorized stage
of a Zeiss AxioVision inverted microscope, and the samples were excited by a
785-nm photodiode laser (B&W Tek Inc.) with 80 mW at the sample plane focused
by � 20 objective for 10 s exposure time. The resulting fluorescent light was
collected by a coupled nitrogen-cooled Princeton Instruments InGaAs 1D detector
through a PI Acton SP2500 spectrometer (Supplementary Fig. 10a).

For testing the fluorescence response in serum, the SWCNT suspension was
diluted in FBS (10 vol% in PBS) to 5 mg l� 1 concentration. Samples of 100 ml
fibrinogen solution in PBS were added to 100 ml of SWCNT in FBS, in a 96-well
plate, to a final protein concentration of 0.05, 0.5 and 5 mg ml� 1. Following
1 h incubation, the fluorescent spectra of the SWCNT were recorded using the
custom-made nIR microscope array, as described above.

Excitation–emission profile. A white light source coupled to a monochromator
was used for the excitation of SWCNT samples that were placed on the stage of the
nIR array described above (Supplementary Fig. 10a). The corresponding fluores-
cence of the sample was collected for excitation wavelength range of 400–800 nm in
5 nm steps with 90 s exposure time.

Zeta potential. Samples were measured in a zeta potential analyzer (Zeta PALS,
Brookhaven Instruments Corporation) with 10 runs of 20 cycles each, following 1 h
incubation. All samples were kept in PBS at pH 7.4.

Circular dichroism. Samples were analysed, following 1 h incubation, in a circular
dichroism spectrometer (Aviv Model 202) in the wavelength range of 190–260 nm
in 1 nm intervals, using a 1-mm path length quartz cuvette (Hellma). Signal from a
reference sample of the PBS buffer was subtracted from the results.

Raman spectroscopy. Raman spectra were acquired with a confocal Raman
spectrometer HR-800 (Horiba JY) using a 633-nm laser source focused with a � 10
objective on the sample plane. Light was collected for 10 s with five accumulations.

Samples of 300ml fibrinogen and SWCNT in PBS were measured in a 96-well plate
on top of the microscope stage, following 1 h incubation.

Continuous fluorescent emission monitoring. Fluorescent emission was col-
lected using the custom-made nIR microscope array as described above, with
continuous laser excitation of a sample within a 96-well plate, and spectra
acquisition every 2 s. The fibrinogen was added to the SWCNT solution while on
the microscope stage during a 10-s break in laser illumination using the microscope
port shutter. The shutter was opened immediately after analyte addition enabling
laser excitation resumption.

Immobilized sensors fluorescent monitoring. Agarose solution (0.2 wt% in
water) was heated on top of a hot stirring plate until completely dissolved. The
resulting clear solution was allowed to cool for 10 min, following which 50 ml
aliquots were cast into the wells of a 96-well plate that was kept in a humidified
environment for 30 min for the solution to gel. SWCNT solution (20 ml of
20 mg l� 1) was spotted on top of each gel and the plate was placed in a humidified
incubator at 37 �C for 30 min to allow for the incorporation of the SWCNT within
the top layer of the agarose gel that was partially melted. Subsequently, the gels
were washed with PBS to remove any unbound materials, and the well-plate was
kept in a humidified environment at room temperature for additional 30 min for
cooling and equilibrating before testing.

The fluorescent emission of the immobilized SWCNT on top of the agarose
hydrogel was analysed using a custom-made portable nIR detector. Briefly,
high-power 565-nm light-emitting diode was focused on the sample, and the
emitted fluorescence was collected by a single channel InGaAs detector (Thorlabs)
through a 900-nm long-pass dichroic mirror, followed by a 1,050-nm short pass
filter, and a 950-nm long pass filter (Supplementary Fig. 10b), which isolated the
fluorescent emission of the (6,5) SWCNT chirality.

2D nIR fluorescence microscopy. Single SWCNT fluorescence data were
collected by a Zeiss AxioVision inverted microscope coupled to a nitrogen-cooled
InGaAs 2D detector (Princeton Instruments), with 250 mW, 785 nm, laser
excitation (Invictus, Kaiser Optical Systems), through � 100 objective (Zeiss,
Apochromat, oil immersion). For surface immobilization of single SWCNT, a
droplet of 50 ml of 1 mg l� 1 SWCNT solution was deposited on a microscope slide
and left to dry. Subsequently, the slide was extensively washed with PBS to remove
any unbound nanotubes. The slide was placed on top of the microscope stage and
imaged continuously with 1 s acquisition time. Fibrinogen was added by carefully
dropping 20ml of 0.1 mg ml� 1 on top of the glass slide, without changing the
imaging focal plane.

Quartz crystal microbalance with dissipation. QCM-D measurements were
conducted with a Q-Sense E4 instrument (Q-Sense, Sweden) on a gold-coated
quartz crystal substrate mounted within a flow module. Both frequency and
dissipation responses of six overtones of the crystal were monitored throughout the
experiment. All the experiments were conducted at a fixed temperature of 25 �C.
The crystal was first equilibrated under continuous flow of PBS (150 ml min� 1)
before introducing the SWCNT suspension (5 mg l� 1 in PBS, 150 ml min� 1),
which was then allowed to adsorb under no flow. Afterwards, the flow cell was
washed with PBS to remove unbound material. Subsequently, the protein solution
(0.1 mg ml� 1 in PBS, 150 ml min� 1) was introduced into the flow chamber, fol-
lowed by PBS wash. In a control experiment, only the protein solution was
introduced into the flow cell and washed with PBS afterwards. Owing to the large
dissipation response, indicating that the adsorbed layers do not behave as rigid
materials67, the data were fitted by the viscoelastic-Voigt model for the SWCNT
and the protein layers68 in two steps with the QTools software (Q-Sense, Sweden),
to calculate the layers’ thickness over time. The density of the SWCNT layer was
estimated as 1.6 g cm� 3 according to the manufacture (Unidym), whereas the
density of the protein layer69 was taken to be 1.3 g cm� 3.

Atomic force microscopy. Silicon wafers were washed by isopropanol and water,
and were blown dry by a nitrogen gun. Samples of 147ml of 1 mg l� 1 SWCNT were
mixed with 3 ml of 0.1 mg ml� 1 fibrinogen in PBS, and following 1 h incubation,
40 ml of the mixture was pipetted onto the wafer. In addition, 40 ml of 0.1 mg ml� 1

fibrinogen in PBS was pipetted on top of a freshly cleaved mica (Grade V-1
Muscovite, SPI Supplies, Structure Probe, Inc.). The substrates were allowed to dry
for 10 min in the fume hood and were washed again with water before imaging
with Asylum Research MFP-3D AFM in tapping mode.

Hydrophobicity maps. The three-dimensional structure of the proteins was
visualized with Pymol Molecular Graphics System software (Version 1.7.1.3,
Schrodinger LLC), using the corresponding protein data bank files (Supplementary
Note 2). The hydrophobicity was visualized by a colour map from white
(hydrophilic) to red (hydrophobic), according to a normalized scale70. The
hydrophobic surface area was obtained by calculating the solvent accessible surface
area of the hydrophobic amino acids relative to the total area.
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Cryo-TEM. A sample droplet (4ml) was placed on top of a support film (lacey
formvar/carbon on 200 mesh grid), which was then mounted on a Gatan 626 cryo-
holder. The specimen was cooled by liquid nitrogen and was subsequently loaded
onto a high-resolution analytical cryo-TEM (JEOL 2100 FRG) for imaging, oper-
ating at acceleration voltage of 200 kV, with magnification range between 10,000
and 60,000. Images were recorded with a Gatan 2� 2 k UltraScan charge-coupled
device camera.

Scanning electron microscopy. A droplet of 20 ml of 10 mg l� 1 SC-SWCNT was
placed on top of an aluminium slab and was left in a fume hood to dry overnight.
The sample was imaged with JEOL 6700F scanning electron microscope, using
5 kV accelerating voltage and the secondary electrons detector.
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