
1

Design and Simulation of Three-Dimensional Hologram Emitting
Phased Arrays in the Near Field

by

Jerry Zhou

B.S. Electrical and Computer Engineering,
 University of Illinois (2013)

Submitted to the Department of Electrical Engineering and Computer
Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2015

© Massachusetts Institute of Technology 2015. All rights reserved

Signature of Author.. .

Department of Electrical Engineering and Computer Science
August 28, 2015

Certified by..

Michael R. Watts
Associate Professor

Thesis Supervisor

Accepted by... .

Leslie A. Kolodziejski
Chair of the Committee on Graduate Students

2

3

Design and Simulation of Three-Dimensional Hologram Emitting Phased
Arrays in the Near Field

by

Jerry Zhou
Submitted to the Department of Electrical Engineering and Computer Science

on August 28, 2015, in partial fulfillment of the

requirements for the degree of

Master of Science in Computer Science and Electrical Engineering

Abstract

Silicon photonics technology is gaining attention in both research and industry because of its potential to

revolutionize optical components and systems while utilizing the well-established silicon semiconductor

fabrication processes. Similarly, three-dimensional holography technology is emerging to build the

foundation for three-dimensional displays, interfaces, and many other applications. This work attempts

to combine these two technologies to generate a method to design a phased array that will emit three-

dimensional holograms and investigate the scalability of the phased arrays.

This thesis will cover the design and functionality of optical phased arrays and how they have been

previously used to emit patterns in the far field. It will then explore three-dimensional hologram theory

to prompt its incorporation into a phased array design. In order to accomplish three-dimensional

holograms, this design technique takes advantage of the fact that the near field allows for multiple planes

of focus, as opposed to the single focal pattern of the far field. A three-dimensional hologram can then be

generated by breaking it up into planes and having the phased array recreate them by emitting the

patterns that come into focus at different distances from the array. The method to do this involves back

propagating desired output planes using Fresnel Diffraction and superimposing the back propagated

electric fields to generate the required phased array parameters to emit such a field.

This work will then explore simulation results required to design the system and various

techniques to improve the process and output quality. The proposed design increases the size of the array

by four times our previous designs, requiring three-dimensional Finite-Difference Time-Domain (FDTD)

simulations to provide a wider range of coupling. These additional coupler simulations also prove to be

critical as this proposed design alters both the amplitude and phase of each antenna in the array, which

can be controlled by these couplers. We demonstrate the flexibility of the design by designing and

simulating multiple output patterns as well as at varying wavelengths.

Thesis Supervisor: Michael R. Watts
Title: Associate Professor

4

5

Acknowledgments

None of this work could be possible without the support and guidance of the great people around me. These

are people that I could always count on for advice in research related topics, as well as for things outside

that realm.

 First, and most importantly, I’d like to thank my advisor Professor Michael R. Watts for everything

that he has done for me. From the beginning, he believed in me and brought me into his group to work on

exciting and ground breaking technologies. He put me in a position to make an impact in this growing field.

Just the opportunity to work on these projects has meant so much to me and opened my eyes to the

tremendous work being done in this field. His organized and passionate approach has kept me motivated

and moving forward in the work that I do. He gave me research and career advice that I will carry with me

wherever I go.

 JP Laine and Draper Laboratory has supported me in a multitude of ways. Not only have they

funded my research and academic progress, but JP has provided me with a lot of useful insight. He helped

me understand the application space for our field in order to give context and meaning to our work. He

made sure I always felt welcome at Draper and gave me useful advice on how to approach my career.

 I’d like to thank Jie Sun for believing in me to carry on part of his work in phased arrays that this

thesis is based on. He was there to guide me along the way and answer my many questions. His success

really inspired me to try to make something that could live up to the great work that he accomplished.

 I would also like to thank Ami Yaacobi for all of the help that he has provided. In this thesis alone,

he was critical to some of the techniques that we implemented and in general, he had many great ideas on

how to approach various problems. Along similar lines, I’d like to thank Erman Timurdogan and Zhan Su

for their insightfulness into how to approach my work. They always had new ideas on things to try and

ways to improve that were essential to this work. Their consistent passion and hard work also motivated

me every day to try to match their enthusiasm.

6

 I’d like to thank Chris Poulton for his help in this project. Not only did he provide technical

direction, but he was instrumental in coming up with effective ways to strengthen the work overall. He

helped me figure out what types of simulations I should show and what kinds of calculations I should make

to bolster the presentation of the work. My officemates Purnawirman and Manan Raval have kept me going

in both a research sense and outside of it. Our constant conversations about everything have kept me sane

and moving forward in my life. In general, the entire Photonics Microsystems Group has been extremely

supportive and helpful. They have been very welcoming and each is a wealth of knowledge. The people in

this group really helped make my time at MIT enjoyable.

 Finally, I can’t stress how appreciative I am of my parents Stanley Zhou and Lan Hu. Their story

and what they have accomplished through hardship has always inspired me to be the best that I can be.

They have been supportive throughout my journey and have always found ways to push me in the right

direction. I can’t imagine being where or who I am today without them.

7

8

Contents

1 Introduction .. 13

1.1 Silicon Photonics ... 13

1.2 Optical Phased Arrays .. 17

1.3 3D Holography .. 25

2 Concept of Technique... 31

3 Diffraction/Fresnel Equation ... 36

4 Simulations ... 50

4.1 Finding an Accurate Output Distance ... 50

4.2 Initial Simulation Results ... 52

4.3 Improvements to Method ... 55

4.3.1 Randomized Phase .. 55

4.3.2 Curved Phase .. 60

4.4 Refined Simulation Results .. 67

4.5 Noise Analysis ... 68

4.6 Amplitude and Phase Control via Couplers .. 73

4.7 Layout ... 77

4.8 Additional Simulations... 79

5 Conclusion .. 85

A MATLAB Code ... 92

9

10

List of Figures

1.1-1 Examples of some silicon photonic components and devices ... 17

1.2-1 1-D phased array schematic .. 19

1.2-2 Gerchberg-Saxton algorithm flow ... 21

1.2-3 Schematic of 64x64 phased array .. 22

1.2-4 (a) Simulated “MIT” logo far field pattern. (b) Experimental results of fabricated device 23

1.2-5 Tunable phased array antenna design .. 24

1.2-6 Simulated and experimental results of tunable phased array .. 25

1.3-1 Hologram recording .. 26

2-1 Comparison of Far Field and Near Field patterns .. 32

2-2 Overview of back propagation and summation of electric fields .. 33

3-1 Total surface of integration with small sphere of radius ε around P0 to avoid discontinuity 39

3-2 Depiction of diffraction using aperture to solve Kirchhoff formulation 41

3-3 Formulating G_ using opposing point sources to simplify electric field at P0 44

3-4 Diffraction from P1 to P0 in rectangular coordinates .. 46

4.2-1 Phased array design to emit MIT logo with letters focused at different distances 52

4.2-2 Phase profile of summed field that emits the MIT logo .. 54

4.2-3 Initial simulation results of MIT logo .. 55

4.3.1-1 Comparing collimated light and de-collimated light .. 56

4.3.1-2 Simulation setup to test randomized phase ... 57

4.3.1-3 Effects of randomized phase ... 57

4.3.1-4 Spread due to randomized phase at varying distances from phased array 58

4.3.1-5 Relationship between distance and required randomization ... 59

4.3.2-1 Reducing information loss by adding curved phase front ... 61

4.3.2-2 Curved phase front facing phased array ... 62

11

4.3.2-3 (a) Desired circular output. (b) Result of back propagating (a) to theoretical phased array with flat

phase. (c) Result of back propagating (a) with added circular phase front. 63

4.3.2-4 (a) Calculated percent power lost outside of desired phased array area with varying back

propagation distances with unaltered phase (phased array location marked with dotted line). (b)

Calculated percent power lost with curved phase front. ... 64

4.3.2-5 (a) Desired larger circular output. (b) Result of back propagating (a) to theoretical phased array

with flat phase. (c) Result of back propagating (a) with added circular phase front..................... 65

4.3.2-6 (a) Calculated percent power loss of larger output with unaltered phase (phased array location

marked with dotted line). (b) Calculated percent power loss with curved phase front 66

4.3.2-7 (a) Desired circular output. (b) Output due to phased array designed with back propagated flat

phase. (c) Output due to phased array designed with back propagated curved phase front 67

4.4-1 (a) Initial simulation results. (b) Simulation results using proposed improvements. 68

4.5-1 Plot comparing overlap calculations of MIT outputs due to phase noise 70

4.5-2 (a) M output with no phase noise. (b) M output with Gaussian random noise of σ = π/16. (c) M

output with Gaussian random noise of σ = π/8. (d) M output with Gaussian random noise of σ =

π/4.. 71

4.5-3 Plot comparing overlap calculations of MIT outputs due to amplitude noise 71

4.5-4 (a) M output with no amplitude noise. (b) M output with Gaussian random noise of σ = 0.1. (c) M

output with Gaussian random noise of σ = 0.25. (d) M output with Gaussian random noise of σ =

0.5 .. 72

4.6-1 Coupler and unit cell parameters .. 74

4.6-2 Location of power and phase monitors ... 74

4.6-3 Plots of power coupling coefficients and phase shift due to coupler gaps and lengths 75

4.6-4 System of row and unit couplers .. 76

4.7-1 Layout of phased array that emits MIT in near field ... 79

4.8-1 Phased array emitted 3D pyramid ... 80

4.8-2 Pyramid output slices ... 81

4.8-3 Output planes moving away from phased array with focused empty spaces circled 82

4.8-4 MIT logo output using 750 nm wavelength .. 83

12

13

Chapter 1

Introduction

1.1. Silicon Photonics

The field of silicon photonics is a combination of two technologies that have seen a lot of success through

their technological advancements. It builds upon the huge success of silicon and the semiconductor industry

that has proven to have the ability to create smaller and smaller chips and feature sizes while also having a

cost efficient method to mass produce these devices. Photonics, on the other hand, has shown the ability to

harness the power of light and apply it to various laser, communication, and imaging applications. The

combination of these two fields takes advantage of these technologies and allows for the fabrication of

various photonic devices within a small chip sized form factor while utilizing the already well researched

silicon fabrication technologies. One key application that silicon photonics is designed to address is within

the field of optical communication. There is an increasing demand for faster and faster data communication

within computer technology and utilizing light and photonics would be a viable solution for this need [1,

2].

 As this is still a relatively new field, there have been great strides recently to demonstrate various

silicon photonic components. These are the building blocks for the structures that can then be used to

address the various applications for silicon photonics. By building up a set of verified components, a variety

of structures can be created by using this library of interchangeable pieces. We will go through a few key

components shown in Fig. 1.1-1 to give context to the field and this work.

14

 Due to its ability to properly route different channels of light within a fiber, the optical add drop

multiplexer (OADM) is a key component to optical networks. One of the key elements within this structure

is the add-drop filter, which allows a signal to have different wavelength components added and dropped.

A microring resonator filter designed using metal and silicon heaters to deal with temperature fluctuations

has been proven to operate with a low insertion loss (0.05 dB) and a wide free-spectral range (35 nm) [3],

two key parameters to ensure reliable operation. Insertion loss is how much of the signal power is lost when

inserting, in this case, the filter into a transmission line, and obviously this must be minimized to prevent

degradation of the signal as it is transmitted. This loss is predominately determined by the quality factor of

the resonator, which is a measure of total energy stored over the energy lost in a cycle. Thus to achieve a

lower loss, a larger quality factor is required and is realized in that work by minimizing loss to silicon

heaters by doping the heaters in patches rather than a full coverage. The free-spectral range (FSR), on the

other hand, is the measure of the distance between resonance peaks and a large FSR is desirable because it

broadens the optical frequency range in which the device operates. Here, a larger FSR is primarily

achievable by having a smaller ring resonator radius, and that work shows a small enough device that

minimizes losses and is capable of operation over a 35 nm (4 THz) FSR.

 When using high index contrast materials for light confinement as is done in silicon photonics,

there is a need to control the polarization of the light since it affects propagation rate and coupling strength.

This is due to the fact that boundary conditions for TE and TM modes become more critical to device

operation as index contrast increases. Here, the TE mode equates to having no electric field in the direction

of propagation and is useful because it is isolated entirely into magnetic fields in the direction of propagation

(TM is the exact opposite). Polarization control is important since the light signal is often randomly

polarized, but control can be accomplished by using a system of polarization rotators and splitters.

Polarization splitters are important because they have the ability to split a signal into separate TE and TM

modes. Once split, polarization rotators can rotate a wave’s polarization from TM to TE, and vice versa,

providing for the ability to achieve a single polarization state within a photonic circuit. A successful

15

demonstration of a polarization rotator designed using an approximated twist with two waveguide cores

has been demonstrated with no significant wavelength sensitivity over the 1.45-1.75 µm band [4]. By

introducing a twist in a waveguide, the axis and, consequently, the polarization states of the modes are

rotated. Similarly, a polarization splitter designed utilizing two waveguides has been demonstrated to

successfully split a signal into separate TE and TM outputs [5]. This is accomplished by utilizing separated

vertical and horizontal waveguides designed so that boundary conditions of Gauss’s law cause maximum

modal confinement for each polarization state to one of the two waveguides. These two works were then

combined to demonstrate the first add-drop filter from polarization-sensitive microring resonators [6].

 In order to take advantage of the improved data rates of optical communication, a method to convert

electrical signals to optical signals is required. The device that accomplishes this conversion is called an

optical modulator, and allows electronic control of amplitude or phase of a signal. One way to design these

modulators is the Mach-Zehnder modulator, which utilizes a Mach-Zehnder interferometer to control phase

through changing refractive index with an electric field and amplitude control through changing applied

voltage on a coupler. A design for a Mach-Zehnder modulator has demonstrated a VπL of 1 V∙cm and wide

open eye diagrams [7]. This VπL value tells us that the device only requires 5V applied to achieve a π phase

shift in a 2 mm structure. An alternate design is the microdisk modulator, which has shown low power

consumption (3 fJ/bit) and high speed (12.5 Gb/s) in a small form factor (3.5 µm diameter) [8]. These

benefits are accomplished because this design maximizes overlap of the depletion region and optical mode,

which minimizes the power required to shift phase. By minimizing contact resistance and therefore loss, as

well as further optimizing optical mode overlap, an even lower power modulator (0.9fJ/bit) with high speed

(25 Gb/s) has shown promise for future expansion of communications [9].

 These examples of components can eventually be combined to create much larger systems to tackle

the many aspects of optical communication. One such system is the optical broadcast network, which

outlines how optical signals are distributed among various ports. Commonly, a system that provides links

that allow all ports to communicate with each other is implemented, however this isn’t ideal for larger sized

16

system as the power requirements scale with N2, where N represents the number of ports. An alternative

solution is a system that groups certain “users” together and provides the same all-to-all information links

within each group. A topology using a wavelength-selective optical drop filter network with tunable

resonant filters [10] has proven to be a successful implementation of this type of network as it has shown

low power variation (0.11dB), low loss (1.1 dB), and error-free operation for 10Gbit/s data rates [11]. Here,

the microring resonators act as filters by tapping off transmission power for a specific wavelength while

not picking up power from the other wavelengths. The filters have the flexibility to be thermally tuned to

ensure an equal power distribution among all of the ports and are also designed with the small radius design

to provide a large FSR and wide optical bandwidth.

 These small form factor components have also created the possibility to design systems that were

previously large and bulky and instead create them on-chip. For example, the first on-chip interferometer

developed in silicon has been successfully demonstrated and brings with it a smaller size and associated

cost compared to its table-top counterpart [12]. Interferometers operate by measuring an interference pattern

generated by two beams to calculate phase difference, which can then be used to calculate properties such

as path length change or change in refractive index. That work realized that it was possible to recreate this

measurement system, commonly set up using expensive table-top optics and equipment, on a smaller and

cheaper scale using silicon chips. Size and cost were reduced by replacing many of the bulky optics with

silicon photonic components on chips, such as utilizing silicon waveguides to maintain spatial separation,

and utilizing the CMOS process technology for large-scale manufacturing. This is a big step as

interferometers have been essential in measuring displacement, LIDAR, and semiconductor processes and

the ability to bring it on-chip allows for more portable and versatile measurement applications.

17

Fig. 1.1-1 Examples of some silicon photonic components and devices

1.2. Optical Phased Arrays

The optical phased array is yet another example showcasing the potential of combining silicon technology

and photonics to generate densely integrated systems on small and cheap to produce chips. It consists of an

array of antennas with individual phase control in order to emit a controlled radiation pattern. This emission

control is useful as it allows for the generation of varying patterns as well as steerable beams. These devices

have received a great deal of research attention due to their potential in fields such as communications,

imaging, and detection.

 Fig. 1.2-1 shows a schematic of the operation of a 1-D phased array. At the very bottom we see the

electromagnetic power source, which is traditionally a laser for optical phased arrays. This power is then

distributed in a way to achieve the desired amplitudes for each antenna. Each antenna is spaced an equal

distance d apart and is connected to a phase shifter so that it emits a wave

18

 A𝑖𝑒
𝑗𝜙𝑖 (1.2.1)

Where A𝑖 is the previously mentioned amplitude of the antenna and 𝜙𝑖 is the phase relative to the 0th

antenna. The figure shows that the emissions of the antennas will form a beam with an angle θ to the normal

of the plane of the antennas that is dependent on the phase delays of the antennas. By adding a delay, we

see that when the emitted waves are in phase, they form the aforementioned beam plane. Basically, we can

imagine adding a phase delay to being similar to adding a delay in when the equiphase front is emitted so

a delay would allow the previous antenna’s wave to be further ahead as seen in Fig. 1.2-1. No phase delay

would allow the equiphase front of each emitted field to be identical in shape and size and thus generate a

flat beam plane that is parallel to the plane of the antennas. If we add an equal amount of phase delay ∆𝜙

to each subsequent antenna, we have the relation

∆𝜙 =

2𝜋

𝜆
𝑑 sin 𝜃0

(1.2.2)

to achieve a beam with angle 𝜃0 to the normal of the antenna plane. Tuning amplitude allows for control of

the beam shape and also suppression of side lobes. Traditionally, the amplitude is tapered similarly to

aperture antennas in order to reduce side lobes. The constructive and destructive interference caused by the

emission of multiple antennas also provides the capability to generate bright and dark spots. For a 1-D array

this will be limited in terms of where the bright spots will be located, but if we expand the array to 2-D,

then there is much more freedom in where the bright spots are located, as we will see later.

19

Fig. 1.2-1 1-D phased array schematic

 Phased arrays on their own are not a relatively new concept as radio wave phased arrays have been

well studied and used in broadcasting, radar, and various communication aspects [13]. The first published

demonstration of multiple antennas transmitting in a common direction goes as far back as 1909 and was

shown by Nobel laureate Karl Ferdinand Braun in a Nobel lecture [14]. He demonstrated the ability to

generate an emitted field with a common direction by adding phase delays to antennas. As this idea evolved,

it became known as a phased array due to the control of the emitted field through the relative phases of the

antennas.

 By utilizing the flexibility of emitted beams, phased arrays have been found to be useful in

broadcast systems. They have commonly been employed at communication broadcast stations to boost

transmission distances by taking advantage of having high gain directional antennas along with

multidirectional emission through antenna phase modification [15]. Furthermore, antennas with scanning

capabilities can be packed more tightly than inherently omnidirectional antennas with the same interference,

which is crucial towards supporting a larger density of mobile users. It has also been shown that phased

20

arrays can be used to overcome the attenuation due to rain on broadcast systems in the 21 GHz bands by

utilizing various combinations of beam concentrations [16]. Here, it is shown that the flexibility of beam

shapes allows for emission of concentrated beams to cover areas of heavy rain and a broader beam for less

weather intensive regions to compensate for rain-attenuation without much additional satellite power.

 Phased arrays have most commonly been used for radar applications due to its ability to quickly

and accurately steer beams through the aforementioned phase control [17]. In the military realm, phased

arrays have been employed in order to provide a single system to simultaneously track and detect objects

in both air and surface [18] as well as targeting systems [19] and sonar [20]. Beyond military applications,

this beam scanning that phased arrays allow also provides solutions to improving weather and aircraft traffic

monitoring since it has the ability to provide updated scans at intervals of at most one minute [21]. This is

critical to providing immediate alerts to incoming storms or managing air traffic safety.

 Radar phased arrays, however, usually suffer from the fact that the systems require complex

mechanical systems to steer beams, which generally leads to large, expensive overall systems. This severely

limits the application space as these systems require high-cost and highly precise machinery in order to

operate. In order to remove these limiting factors, optical phased arrays have been proposed in order to

achieve high performance devices that come at a much smaller cost and complexity due to the elimination

of required mechanical devices and smaller optical wavelength [22]. Here, the distinction is that optical

phased arrays operate at optical wavelengths, including infrared, visible, and near ultraviolet, while the

previously discussed phased arrays operate at much longer wavelengths. The shorter wavelength

requirement allows optical phased arrays to potentially have significantly more elements in devices

compared to the previously discussed radiofrequency phased arrays. These optical phased arrays are

optimal for steering monochromatic laser beams and provide the same beam steering ability and signal

amplification shown in radar phased arrays [23]. It proves useful as it opens up applications in laser

communication and imaging and can be produced at a much larger scale due to the significant cost reduction

and more compact size.

21

 There have been many demonstrations of optical phased arrays utilizing liquid-crystal [24], 1-D

arrays for beam steering [25], and 2-D arrays for beam steering [26]. These have been limited, however, to

smaller scale works, which doesn’t take advantage of the small form factor to produce larger integrated

devices. This changed with the demonstration of a large-scale optical phased array that emits arbitrary far

field patterns [27]. The work showcases the ability to design a 64x64 antenna phased array that is able to

emit an arbitrary pattern by designing it to output the “MIT” logo in the far field. The Gerchberg-Saxton

algorithm shown in Fig. 1.2-2 is an iterative algorithm used to generate the required antenna phases while

keeping all 4096 antennas equally balanced in power. |𝐴𝐹𝑘(𝜃, 𝜙)| represents the amplitude of the desired

far field output and 𝛷𝑘(𝜃, 𝜙) is the test phase at the kth iteration. These are combined to give us 𝐴𝐹𝑘(𝜃, 𝜙),

which can be inverse Fourier transformed to give us 𝑤𝑘
𝑚𝑛, which represents the antenna response that

generates 𝐴𝐹𝑘(𝜃, 𝜙) in the far field. In order to simulate an even distribution of power, the amplitudes of

𝑤𝑘
𝑚𝑛 are set to 1 and the new field is propagated into the far field using another Fourier transform to

generate 𝐴𝐹∗𝑘(𝜃, 𝜙). The phase 𝛷∗𝑘(𝜃, 𝜙) is then set to be the new test phase at the next iteration.

Sufficient iterations will cause the final far field pattern 𝐴𝐹∗𝑘(𝜃, 𝜙) to match the desired output |𝐴𝐹𝑘(𝜃, 𝜙)|

and the phases are used to tune the phased array antennas.

Fig. 1.2-2 Gerchberg-Saxton algorithm flow

22

Fig. 1.2-3 shows the 64x64 phased array and the inset shows an individual antenna and coupler. A

laser is coupled into a waveguide that runs along the left side of the array. Row waveguides then couple

power from this waveguide, and that power is then coupled to the individual antennas within the rows. The

amount of power coupled both into the rows and the antennas is designed to provide equal power to all

antennas to utilize the calculated phases from the Gerchberg-Saxton algorithm. Evanescent couplers control

how much power is distributed and a more detailed explanation of how this and phase control works will

be explained in a later chapter.

Fig. 1.2-3 Schematic of 64x64 phased array

 Antennas are important to this design in order to achieve highly accurate output patterns. First, the

size of the antennas should be as small as possible, otherwise higher order effects will have a greater effect

on the output [28]. The antenna grating measures 3.0 µm by 2.8 µm with a 0.22 µm with five gratings and

is simulated to achieve 51% upwards emission compared to only 30% downwards emission.

23

 By using the Gerchberg-Saxton algorithm, the required antenna phases are calculated to generate

the “MIT” logo in the far field, and a Fourier transform is used to simulate the far field output as seen in

Fig. 1.2-4a. It is evident that the pattern emitted by antennas tuned to the calculated phases closely resembles

the desired output as seen in the bottom right corner of Fig. 1.2-4a, showing that this method can truly

generate arbitrary patterns.

 This phased array design with the calculated phase profile and required couplers to evenly distribute

power was then fabricated in a CMOS foundry and then tested using a 1550 nm laser as the input. Using

an infrared camera, the emitted output is captured as seen in Fig. 1.2-4b, which again closely matches both

the simulated output and the desired “MIT” logo. Furthermore, it was also shown that having less antenna

elements (32x32) reduced the resolution of the output, further supporting the need for larger scale devices.

Fig. 1.2-4 (a) Simulated “MIT” logo far field pattern. (b) Experimental results of fabricated device

 The paper continues by showing the ability for a larger array to effectively steer beams by designing

a phased array comprised of antennas with tunable phase. Not only does this freedom of varying phase

allow for beam steering with high resolution on small form factor devices, it also opens up the possibility

for having dynamic output patterns. To design a tunable phased array, a resistive heater is implemented into

24

the unit cell as seen in Fig. 1.2-5 so that electrical signals can thermo-optically tune the phase of the

antennas.

Fig. 1.2-5 Tunable phased array antenna design

 The device was reduced to an 8x8 antenna phased array to test the phase tuning capabilities and

once again fabricated in a CMOS foundry. The phased array was designed to emit a single dot in the far

field with no electrical excitation as seen in the left-most pair of outputs in Fig. 1.2-6. Then, as the rest of

Fig. 1.2-6 shows, voltages are applied in simulations and experimentally to show the output shifting

vertically and horizontally, as well as splitting both vertically and horizontally. By showing that it is

possible to design phased arrays that have changeable outputs, this work significantly opens up the potential

applications for optical phased arrays as it is now proven that it has beam steering and dynamic pattern

generation with high resolution. Again, it is evident that the experimental results closely resemble the

simulated results, which further proves that this is a robust method to design phased arrays to emit arbitrary

far field outputs.

25

Fig. 1.2-6 Simulated and experimental results of tunable phased array

1.3. 3D Holography

Holography is closely tied to phased arrays since phase and amplitude information is critical to the

generation of holograms and the preservation of phase information is the defining characteristic that

distinguishes it from photography [29]. Generating a hologram is a two-step process that involves first

recording the desired output and reconstructing an image of the original object. To record a hologram, the

desired object is illuminated with a coherent light and the diffracted waves are interfered with a phase-

related reference wave. This is then shone onto a recording medium, imprinting the phase and amplitude of

the diffracted waves as seen in Fig. 1.3-1. The combination of light reflected and scattered by the object

combines with the reference beam to form an interference fringe field, which is recorded by the recording

media. Then, to reconstruct a 3D image of the object, the recorded hologram just needs to be illuminated

by a wave identical to the reference wave. The reconstruction occurs when the reference wave is diffracted

by the grating in the recording medium that is formed during the recording of the hologram.

26

Fig. 1.3-1 Hologram recording

 The process can be described mathematically by first beginning with a spherical wave solution to

the Helmzholtz equation

�⃗� = 𝐴𝑒𝑗𝑘𝑟𝑒𝑗2𝜋𝑓𝑡 �̂�

(1.3.1)

where A is the amplitude of the wave, f is the frequency, and �̂� is the polarization unit vector. By defining

the complex field amplitude to be

𝜓 = 𝐴𝑒𝑗𝜙

(1.3.2)

where 𝜙 = 𝑘𝑟, the irradiance of the field can be written

𝐼 = �⃗� ∙ �⃗� ∗ = 𝜓𝜓∗�̂� ∙ �̂� = 𝜓𝜓∗ = |𝜓|2

(1.3.3)

 The field of the recording 𝜓𝐻 is then just the interference between the object 𝜓𝑂 and the reference

wave 𝜓𝑅 and can be written as a superposition of the two waves

𝜓𝐻 = 𝜓𝑂 + 𝜓𝑅

(1.3.4)

Using (1.3.3), the irradiance of this field is then

27

𝐼𝐻 = (𝜓𝑂 + 𝜓𝑅)(𝜓𝑂 + 𝜓𝑅)∗ = |𝜓𝑂|2 + |𝜓𝑅|2 + 𝜓𝑂𝜓𝑅

∗ + 𝜓𝑅𝜓𝑂
∗

(1.3.5)

The transmittance T of the recorded hologram field can then be written as directly proportional to the

irradiance of the field

𝑇 = 𝐾[|𝜓𝑂|2 + |𝜓𝑅|2 + 𝜓𝑂𝜓𝑅

∗ + 𝜓𝑅𝜓𝑂
∗]

(1.3.6)

 The equation that describes the recreation of the hologram, or equivalently illumination by the

reference wave, can be expressed as a multiplication of the recorded hologram transmittance by the

reference wave field

𝜓𝑇 = 𝐾[𝜓𝑅(|𝜓𝑂|2 + |𝜓𝑅|2) + 𝜓𝑂|𝜓𝑅|2 + |𝜓𝑅|2𝜓𝑂

∗]
(1.3.7)

 From this equation, we see that the first term is the transmitted wave with an attenuation factor.

The second term is the original object wave with an amplitude factor and thus is the virtual holographic

image of the object. Finally, we can see that the third term is the conjugate object wave also multiplied by

an amplitude factor.

 Holography has been around since Dennis Gabor’s work in its invention in the 1940s, which

eventually lead to being awarded the Nobel Prize in 1971 for the discovery [30, 31, 32]. It started getting

wide-spread attention with the invention of the laser, which brought about the discovery of optical

holograms and the first high-quality 3D images by Leah and Upatnieks [33]. Since then, holography has

been successfully utilized for many applications.

 One of the major application spaces for holography is in interferometry. Interferometry traditionally

uses two optical wavefronts and measures optical path differences by measuring the interference of the

wavefronts. A common example is the Mach-Zehnder interferometers, which can be used to map out device

surfaces, measure variation in refractive indices, and describe the flow of gasses. However, usually two

separate but identical optical beams are required for these applications, which is difficult to accomplish

without complex and expensive systems. Holography addresses this issue because it can record desired

wavefronts and consistently recreate them for use without the expensive equipment. Holographic

28

interferometry is done by examining fringes due to phase difference in wavefronts stored in holograms to

achieve quantitative and qualitative information [34]. This technology has proven effective in applications

such as vibration measurement [35] and in providing nanometer resolution characterization of integral

features of current and future electronic devices [36]. It has also been critical in detecting defects in

manufacturing that helps to maintain a high device yield [37] and 3D digital holography has shown the

ability to detect critical details that radiographs and CT scans are not able to pick up on in the biomedical

field [38].

 Holography has also been found to be useful in lithography techniques. Lithography is the

transferring of a mask onto a resist covered wafer in order to outline structures during integrated circuit

fabrication. Traditionally this has been accomplished using techniques such as contact printing, proximity

printing, and step-and-repeat, however, each has its own issues. Contact printing can cause contamination

and damage to the wafer, proximity printing has a limited resolution, and step-and-repeat methods are

usually very complex and expensive. A holographic system provides a non-intrusive, full-field, and cost

effective solution to lithography while maintaining the required high resolution [39]. Basically, the

holographic solution can use real-image projection to overlay the mask image onto the wafer and eliminate

the need for lenses. This eliminates the complexities of a lens system and also utilizes the high resolution

achievable by holography.

 Holography can also be used to make optical elements with the power to direct a light wave, similar

to the previously discussed phased arrays. These elements can be made by recording a fringe pattern

generated by interfering two light beams. Holography can be used to make gratings for spectrographic

instruments and this is advantageous because they can be made without random and periodic groove

variation and they have low light scatter [40]. It has also proven to be useful in optical beam scanning as it

has the ability to combine both beam deflection and focusing into a single element, which traditional

scanning methods cannot. Basically, the beam can be flexible and can easily change and focus based on the

surface being scanned. A common example of where these are used can be found in supermarket scanners

29

[41]. Obviously this flexibility is important as items bought at the supermarket can easily vary in shape and

size and the scanners must be able to account for this.

 Finally, holography provides a promising tool in the field of 3D displays as it inherently generates

3D images. Advances in 3D display technology allow the generation of images without specialized

eyewear, which opens up many possibilities in medical, industrial, and military imaging. Research in the

field has shown the capability to generate updatable 3D displays which can record and display images

within minutes and provide hours of viewing without refreshing the display system [42]. In a more

commercial setting, this technology also opens up the possibility for 3D TVs [43]. Systems have already

been designed showcasing the capabilities of real-time acquisition, transmission, and 3D display of dynamic

scenes that don’t require specialized glasses to view [44].

30

31

Chapter 2

Concept of Technique

The discovery of a method to generate arbitrary far field patterns using phased arrays has opened up many

windows of opportunities within the field of photonics and communication [27]. That work highlighted the

versatility and robustness of optical phased arrays due to the ability to project complex patterns in a small

chip-sized form factor while utilizing the CMOS fabrication processes. This work attempts to expand on

that previous discovery by proposing a method to design phased arrays with the capability to project 3D

images. By projecting an image designed for viewing in the far field, the previous work was limited to only

a single pattern with varying viewing distances. However, in order to generate arbitrary 3D projections,

there is a need for the patterns to change with distance to give the image both space and depth. The proposed

method will utilize near field diffraction in order to achieve output planes that are able to change with

viewing distance as illustrated in Fig. 2-1. This property of near field diffraction provides for the ability to

generate slices of a 3D object in space, creating the basis for generating 3D holograms. Our algorithm will

calculate the required phased array parameters analogous to how the Gershberg-Saxton algorithm was used

in previous phased array work to calculate the antenna phases for designing phased arrays that emit patterns

in the far field.

32

Fig. 2-1 Comparison of Far Field and Near Field patterns

Our 3D hologram design technique proposes that we can calculate the needed individual phased

array antenna phase and amplitude for an arbitrary 3D pattern by back-propagation. The idea behind this is

that diffraction propagation is reversible in the sense that an electric field that is propagated forward a

certain distance will be recreated by propagating it backwards the same distance, and vice versa. The

method to design these phased arrays entails slicing the desired 3D image into flat planes at varying

distances from the desired phased array location. These planes then must be converted to electric field

distributions that mimic the slices of the desired 3D image. Each desired electric field plane is then at a

different vertical distance from the phased array and is back propagated individually to the common plane

at the phased array’s theoretical location. Then, the results of the back propagations are superimposed into

a single electric field similar to how Brown and Lohmann have achieved the generation of digital binary

holograms through superimposing Fourier transforms [45]. An example depicting this back-propagation of

output planes and summation at the phased array location is shown in Fig. 2-2 using the MIT logo as an

33

example output. The resultant electric field is discretized into a 128x128 point matrix, with each point

corresponding to an aperture of emission from each antenna, and the phase and amplitude is extracted from

each point to synthesize the needed parameters for the phased array antennas.

Fig. 2-2 Overview of back propagation and summation of electric fields

Here, we approximate the phased array emission to be an aperture rather than a point source due to

the primarily z-oriented emission direction of our previously designed antennas [27, 46]. A point source,

on the other hand, would have emission in the x and y directions in addition to the z direction. This x and

y directional emission would be a problematic design for an antenna because it would cause each phased

array antenna to have an effect on all of the other antennas within the plane of the array. This greatly

complicates the calculation of the required phase and amplitude of each antenna because the effects of the

34

surrounding antennas must also be taken into consideration. This approximation allows us to not take into

account the antenna emission pattern.

Once the required parameters are ensured for each antenna, the phased array will then be able to

emit the total summed electric field. If the emitted electric field is now forward propagated in the z direction,

each of the original desired planes in the 3D space will be approximately recreated. Each plane, however,

will not be an exact match to the desired output due to the discretization of the field and the contributions

from the other output planes. This back propagation technique approximately models the capture of a

hologram using light propagation as done in digital holography.

35

36

Chapter 3

Diffraction/Fresnel Equation

This design technique relies critically on a proper equation to accurately calculate electric fields being

propagated both forwards and backwards. It is important to derive a proper expression for this propagation

since it is utilized at various stages of the algorithm. The equation must fit into the stringent requirements

of this method, but most importantly, the final expression must ensure that the propagation is accurate

within the near field. This chapter will focus on deriving an accurate representation of the Fresnel

propagation of electric fields to be used in the rest of this work. It closely follows the derivation of the

Fresnel equation as done by Goodman [47].

We begin our derivation of the required diffraction equations by first examining the Helmholtz

Equation. Since we are trying to determine the equation of a light pattern at an arbitrary distance P and time

t, we can express the function as u(P,t). This scalar field can be expressed as

 𝑢(𝑃, 𝑡) = 𝑅𝑒{𝑈(𝑃)𝑒−𝑗2𝜋𝑣𝑡} (3.1)

for a monochromatic wave, where v is the optical frequency. In order to represent an optical wave, it must

also satisfy the scalar wave equation

∇2𝑢 −

𝑛2

𝑐2

𝜕2𝑢

𝜕𝑡2
= 0

(3.2)

Here, ∇2 is the Laplacian operator, n is the refractive index of the medium of light propagation, and c is the

speed of light. By plugging in (3.1) into (3.2) we get

37

∇2𝑈 − [

𝑛

𝑐
(−𝑗2𝜋𝑣)]

2

𝑈 = 0
(3.3)

which simplifies to

 (∇2 + k2)𝑈 = 0 (3.4)

where

 𝑘 = 2𝜋𝑛
𝑣

𝑐

We begin to formulate our diffraction equation for a complex field at a point in space using Green’s

theorem, which is often regarded as the primary foundation for scalar diffraction theory. It says:

For two complex valued functions of position, U and G, we have a closed surface S surrounding a volume

V such that if U, G, and their first and second partial derivatives are single valued and continuous within

and over S, then the following is true,

∭(𝑈∇2𝐺 − 𝐺∇2𝑈)𝑑𝑣 = ∬(𝑈

𝜕𝐺

𝜕𝑛

𝑆

− 𝐺
𝜕𝑈

𝜕𝑛
)𝑑𝑠

𝑉

(3.5)

where the
𝜕

𝜕𝑛
 is a partial derivative with respect to n, the outward normal direction at each point on S.

In order to apply this to diffraction, we must ensure that a proper G is selected, which we can solve

for using the Helmholtz and Kirchhoff integral theorem. This theorem provides a solution for the

homogenous wave equation at any arbitrary point in terms of the solution itself and its first derivative on a

closed surface around the point. We can follow Kirchhoff and express the optical disturbance at the point

of observation P0 in terms of its values on S, an arbitrary closed surface around P0. We can select a spherical

wave expanding around P0 with unit amplitude such that Kirchhoff’s G at any arbitrary point P1 can be

expressed as

𝐺(𝑃1) =

𝑒𝑗𝑘𝑟01

𝑟01

(3.6)

38

Where r01 is the length of the vector that points from P0 to P1.

 In order to use this G in Green’s theorem, we must ensure it is continuous within the volume V. A

small spherical surface with radius ε is inserted to avoid the discontinuity at P0 as shown in Fig. 3-1, making

the surface of integration a composition of the original S and this new sphere

 𝑆′ = 𝑆 + 𝑆𝜖 (3.7)

This G within the new volume of integration V’ between S and 𝑆𝜖 satisfies the Helmholtz equation as it is

simply an expanding spherical wave

 (∇2 + k2)𝐺 = 0 (3.8)

By plugging in (3.4) and (3.8) into the left side of Green’s theorem, we get

∭(𝑈∇2𝐺 − 𝐺∇2𝑈)𝑑𝑣

𝑉′

= −∭(𝑈𝐺𝑘2 − 𝐺𝑈𝑘2)𝑑𝑣 = 0

𝑉′

(3.9)

This result allows us to set the right side to zero

∬(𝑈

𝜕𝐺

𝜕𝑛

𝑆′

− 𝐺
𝜕𝑈

𝜕𝑛
)𝑑𝑠 = 0

(3.10)

which we can expand by breaking up S’ using (3.7)

−∬(𝑈

𝜕𝐺

𝜕𝑛

𝑆𝜖

− 𝐺
𝜕𝑈

𝜕𝑛
)𝑑𝑠 = ∬(𝑈

𝜕𝐺

𝜕𝑛

𝑆

− 𝐺
𝜕𝑈

𝜕𝑛
)𝑑𝑠

(3.11)

39

Fig. 3-1 Total surface of integration with small sphere of radius ε around P0 to avoid discontinuity

As previously proven, we have

𝐺(𝑃1) =
𝑒𝑗𝑘𝑟01

𝑟01

and thus we also have,

 𝜕𝐺(𝑃1)

𝜕𝑛
= cos (�⃗� , 𝑟 01)(𝑗𝑘 −

1

𝑟01
)
𝑒𝑗𝑘𝑟01

𝑟01

(3.12)

where cos (�⃗� , 𝑟 01) is the cosine of the angle between the outward normal �⃗� and the vector 𝑟 01 connecting

P0 and P1. When we look at the specific P1 on 𝑆𝜖, we have cos(�⃗� , 𝑟 01) = −1 and if we let 𝜖 approach 0 we

get

40

lim
𝜖→0

∬(𝑈
𝜕𝐺

𝜕𝑛

𝑆𝜖

− 𝐺
𝜕𝑈

𝜕𝑛
)𝑑𝑠

(3.13)

= lim

𝜖→0
4𝜋𝜖2 [𝑈(𝑃0)

𝑒𝑗𝑘𝜖

𝜖
(
1

𝜖
− 𝑗𝑘) −

𝜕𝑈(𝑃0)

𝜕𝑛

𝑒𝑗𝑘𝜖

𝜖
]

(3.14)

which simplifies to

 4𝜋𝑈(𝑃0) (3.15)

because the rest of the terms go to zero as 𝜖 approaches 0. If we then plug this into the previously expanded

Green’s Theorem (3.11), we get

𝑈(𝑃0) =

−1

4𝜋
∬(𝑈

𝜕𝐺

𝜕𝑛

𝑆

− 𝐺
𝜕𝑈

𝜕𝑛
)𝑑𝑠

(3.16)

𝑈(𝑃0) =

1

4𝜋
∬[(

𝑒𝑗𝑘𝑟01

𝑟01
)
𝜕𝑈

𝜕𝑛
− 𝑈

𝜕

𝜕𝑛

𝑆

(
𝑒𝑗𝑘𝑟01

𝑟01
)]𝑑𝑠

(3.17)

This is known as the Helmholtz and Kirchhoff integral theorem, and it is important to the scalar theory of

diffraction because of its ability to express the field at any point P0 in terms of the boundary values of the

wave on a closed surface around it.

In order to move forward, we will examine the diffraction of light by an aperture. This will help us

more accurately approximate the electric field due to our phased array. We select a surface of integration

consisting of a plane surface, S1, and a circle of radius R around P0 cut off by S1, which we will call S2 as

shown in Fig. 3-2.

41

Fig. 3-2 Depiction of diffraction using aperture to solve Kirchhoff formulation

(3.17) then becomes

𝑈(𝑃0) =

1

4𝜋
∬ (𝐺

𝜕𝑈

𝜕𝑛

𝑆1+𝑆2

− 𝑈
𝜕𝐺

𝜕𝑛
)𝑑𝑠

(3.18)

Using G from (3.6) that we calculated previously, we have

𝐺 =

𝑒𝑗𝑘𝑟01

𝑟01
=

𝑒𝑗𝑘𝑅

𝑅

(3.19)

on S2. We similarly get

42

 𝜕𝐺

𝜕𝑛
= (𝑗𝑘 −

1

𝑅
)
𝑒𝑗𝑘𝑅

𝑅
≈ 𝑗𝑘𝐺

(3.20)

for large R. This part of the integral then simplifies to

∬[𝐺

𝜕𝑈

𝜕𝑛

𝑆2

− 𝑈(𝑗𝑘𝐺)]𝑑𝑠 = ∫𝐺(

𝛺

𝜕𝑈

𝜕𝑛
− 𝑗𝑘𝑈)𝑅2𝑑𝜔

(3.21)

where 𝛺 represents the angle that subtends the closed surface S2 from our point of observation P0. This

result proves that |RG| is bounded on S2 and the entire integral approaches 0 on S2 as R becomes large, so

long as the Sommerfeld radiation condition is met

lim
𝑅→∞

𝑅(
𝜕𝑈

𝜕𝑛
− 𝑗𝑘𝑈) = 0

(3.22)

However, we know this to be true as the disturbance U vanishes at least as fast as a diverging spherical

wave. With the S2 integration now eliminated, we can express the electric field at P0 in terms of the

integration over S1,

𝑈(𝑃0) =

1

4𝜋
∬(𝐺

𝜕𝑈

𝜕𝑛

𝑆1

− 𝑈
𝜕𝐺

𝜕𝑛
)𝑑𝑠

(3.23)

Now, to isolate the portion of S1 that would correspond to our phased array, we use Kirchhoff boundary

conditions to write the integration over Σ, the aperture in Fig. 3.2. The boundary conditions say:

1. Across the surface Σ, the field distribution U and its derivative
𝜕𝑈

𝜕𝑛
 are exactly the same as they would

be in the absence of the screen.

2. Over the portion of S1 that lies in the geometrical shadow of the screen, the field distribution U and its

derivative
𝜕𝑈

𝜕𝑛
 are identically zero.

The first point guarantees that the integration over the aperture is valid without the screen, while the second

point ensures that we can eliminate the surface of integration except the part within the aperture. This shape

43

at P1 now resembles the desired emission of a phased array to a point P0. Our electric field at P0 can therefore

be further simplified to

𝑈(𝑃0) =

1

4𝜋
∬(𝐺

𝜕𝑈

𝜕𝑛

Σ

− 𝑈
𝜕𝐺

𝜕𝑛
)𝑑𝑠

(3.24)

We can attempt to simplify the Green’s function G such that either G or
𝜕𝐺

𝜕𝑛
 disappears over the

surface S1. Sommerfeld showed that a Green’s function can be generated by having two point sources P0

and �̃�0 equally spaced from and on opposite sides of S1 as shown in Fig. 3-3. If both have the same

wavelength and oscillate with a 180° phase difference, then our G becomes

𝐺_(𝑃1) =

𝑒𝑗𝑘𝑟01

𝑟01
−

𝑒𝑗𝑘�̃�01

�̃�01

(3.25)

which will disappear on our aperture Σ, leaving us with only the
𝜕𝐺

𝜕𝑛
 term

𝑈𝐼(𝑃0) =

−1

4𝜋
∬(

Σ

𝑈
𝜕𝐺_

𝜕𝑛
)𝑑𝑠

(3.26)

Now to solve for the
𝜕𝐺_

𝜕𝑛
 term, we can take the derivative of G_(P1) to get

 𝜕𝐺_

𝜕𝑛
(𝑃1) = cos(�⃗� , 𝑟 01) (𝑗𝑘 −

1

𝑟01
)
𝑒𝑗𝑘𝑟01

𝑟01
− cos (�⃗� , �̃� 01)(𝑗𝑘 −

1

�̃�01
)
𝑒𝑗𝑘�̃�01

�̃�01

(3.27)

With our surface our P1 on S1, we can state

𝑟01 = �̃�01

cos(�⃗� , 𝑟 01) = −cos (�⃗� , �̃� 01)

This allows us to write,

 𝜕𝐺_

𝜕𝑛
(𝑃1) = 2cos(�⃗� , 𝑟 01) (𝑗𝑘 −

1

𝑟01
)
𝑒𝑗𝑘𝑟01

𝑟01

(3.28)

and as long as 𝑟01 ≫ 𝜆, we can reduce this to become

44

 𝜕𝐺_

𝜕𝑛
(𝑃1) = 2𝑗𝑘cos(�⃗� , 𝑟 01)

𝑒𝑗𝑘𝑟01

𝑟01

(3.29)

since the
1

𝑟01
 will be small relative to the jk term.

Fig. 3-3 Formulating G_ using opposing point sources to simplify electric field at P0

If we use this G_ in (3.24) and utilize the fact that G_ approaches 0, our equation becomes,

45

𝑈𝐼(𝑃0) =

1

𝑗𝜆
∬(

S1

𝑈(𝑃1) cos(�⃗� , 𝑟 01)
𝑒𝑗𝑘𝑟01

𝑟01
)𝑑𝑠

(3.30)

and using the Kirchhoff boundary conditions it becomes

𝑈𝐼(𝑃0) =

1

𝑗𝜆
∬(

Σ

𝑈(𝑃1) cos(�⃗� , 𝑟 01)
𝑒𝑗𝑘𝑟01

𝑟01
)𝑑𝑠

(3.31)

where the Σ area can emulate the area of emission from our phased array. We can thus transform this

equation into its rectangular components by substituting a θ, the angle between the outward normal �⃗� and

the vector 𝑟 01 from P0 to P1, into the cosine, giving us

𝑈𝐼(𝑃0) =

1

𝑗𝜆
∬(

Σ

𝑈(𝑃1) cos(θ)
𝑒𝑗𝑘𝑟01

𝑟01
)𝑑𝑠

(3.32)

We can readily see from Fig. 3-4 that

cos(θ) =
𝑧

𝑟01

which can be substituted to give us

𝑈(𝑥, 𝑦) =

𝑧

𝑗𝜆
∬(

Σ

𝑈(𝜉, 𝜂)
𝑒𝑗𝑘𝑟01

𝑟01
2

)𝑑𝑠
(3.33)

where 𝜉 and 𝜂 correspond to the coordinate system of the input plane and x and y correspond to the

coordinate system of the output plane, and we define 𝑟01 to be

 𝑟01 = √𝑧2 + (𝑥 − 𝜉)2 + (𝑦 − 𝜂)2 (3.34)

46

Fig. 3-4 Diffraction from P1 to P0 in rectangular coordinates

This 𝑟01 term can be expanded into its Taylor expansion by using

√1 + 𝑎 = 1 +

𝑎

2
−

𝑎2

8
+ ⋯

(3.35)

to give

𝑟01 = 𝑧√1 +
(𝑥 − 𝜉)2 + (𝑦 − 𝜂)2

𝑧2

(3.36)

= 𝑧 [1 +

(𝑥 − 𝜉)2 + (𝑦 − 𝜂)2

2𝑧2
−

((𝑥 − 𝜉)2 + (𝑦 − 𝜂)2)2

8𝑧4
+ ⋯]

(3.37)

47

= 𝑧 +
(𝑥 − 𝜉)2 + (𝑦 − 𝜂)2

2𝑧
−

((𝑥 − 𝜉)2 + (𝑦 − 𝜂)2)2

8𝑧3
+ ⋯

(3.38)

From this point, if we can prove that the 3rd term is negligible, and thus all subsequent terms are

negligible, then we can reduce this to only the first two terms. This is traditionally proven by showing that

dropping the third term causes a maximum phase change of less than one radian

 8𝑧3 ≫
𝜋

4𝜆
(max ((𝑥 − 𝜉)2 + (𝑦 − 𝜂)2))2 (3.39)

However, this requirement is overly stringent and the approximation can still yield accurate results

as long as it doesn’t have a large effect on the Fresnel diffraction integral. This can be ensured by making

sure that the integral is primarily coming from points such that 𝑥 ≈ 𝜉 and 𝑦 ≈ 𝜂.

Alternatively, when dealing with optical wavelengths, the wavelength is many orders smaller than

the physical dimensions

𝜆 ≪ 𝑧, 𝜆 ≪ √(𝑥 − 𝜉)2 + (𝑦 − 𝜂)2

Then, practically, we can reduce the 𝑟01 term as long as

 √(𝑥 − 𝜉)2 + (𝑦 − 𝜂)2 ≪ 𝑧 (3.40)

It is possible to further reduce our 𝑟01 term to only the z term, but it is important to be careful where

this is done. It is possible to reduce the 𝑟01 to only a z in the denominator of (3.33) because the error is

generally recognized to be small, however, since the 𝑟01 in the exponent is multiplied by a k term, which is

relatively large, we cannot further reduce this term.

Using these reductions, we arrive at the Fresnel Approximation of the Huygens-Fresnel principle.

𝑈(𝑥, 𝑦) =
𝑒𝑗𝑘𝑧

𝑗𝜆𝑧
∬(

∞

−∞

𝑈(𝜉, 𝜂)𝑒𝑗𝑘
(𝑥−𝜉)2+(𝑦−𝜂)2

2𝑧)𝑑𝜉𝑑𝜂

(3.41)

This can quickly be converted to a convolution equation

48

𝑈(𝑥, 𝑦) = ∬(

∞

−∞

𝑈(𝜉, 𝜂)ℎ(𝑥 − 𝜉, 𝑦 − 𝜂)𝑑𝜉𝑑𝜂

(3.42)

where

ℎ(𝑥, 𝑦) =

𝑒𝑗𝑘𝑧

𝑗𝜆𝑧
𝑒𝑗𝑘

(𝑥)2+(𝑦)2

2𝑧
(3.43)

and its Fourier transform can be written

 𝐻(𝑓𝑥 , 𝑓𝑦) = 𝑒𝑗𝑘𝑧𝑒−𝑗𝜋𝜆𝑧(𝑓𝑥
2+𝑓𝑦

2) (3.44)

Here, reaching the Fresnel equations further connects our work with holography as hologram

propagation is usually described with these same equations [29]. Furthermore, finding a Fourier transform

equation of the integral also lines up with holography as it is often used to calculate hologram projection.

These expressions emulating near field diffraction by utilizing the Fresnel approximation are heavily relied

upon to calculate our propagation of electric fields.

49

50

Chapter 4

Simulations

With the concept of the method set and the proper diffraction equations derived, the next logical step is to

put the process to the test and see how it works. The simulations in this section will continue using the

example of designing a phased array to emit the MIT logo with the individual letters spaced at different

distances from the phased array. First, we must ensure that we are operating within the proper distances so

that we are in the near field. Then, we are ready to simulate the results of our design algorithm to see how

well they match up with the desired outputs. After evaluating the initial results, we are able to introduce

some improvements in order to enhance the output picture as well as show additional simulations to

demonstrate the flexibility of the algorithm.

4.1. Finding an Accurate Output Distance

This method utilizes near field diffraction in order to generate output planes that can vary with distance

from the phased array to generate a 3D hologram. In order to operate in the near field, a proper range of

distances must be determined to ensure that these benefits can be utilized. The space of emission of the

phased array is commonly separated into the reactive near-field, radiating near-field, and the far field [48].

First, we differentiate the far field and near field by Fraunhofer distance. This is defined to be the emission

distance that separates these two regions when the antennas are larger than half of the wavelength that is

51

being emitted, which is true for our design since we are operating at 1550 nm wavelength and have antennas

that are approximately 3 µm by 3 µm. The Fraunhofer distance is defined to be

𝑑𝑓 =

2𝐷2

𝜆

(4.1.1)

where D is the aperture size. This tells us that if we want to operate in the near field, we must select distances

less than this Fraunhofer distance. Assuming a phased array aperture of 1.63 mm (128 𝑎𝑛𝑡𝑒𝑛𝑛𝑎𝑠 ×

9𝜇𝑚 𝑝𝑖𝑡𝑐ℎ × √2) and wavelength of 1550 nm we calculate this value to be approximately 3.42478m.

 We also need to ensure that we avoid operating in the reactive near-field region because it is

difficult to predict electric field behavior in this region. While the electromagnetic fields are being radiated,

there is an additional reactive component accompanying it. This leads to a sensitivity to electromagnetic

absorption in this region (reactive near-field) and back-coupling of the fields. What is commonly seen in

this region is generally undeterminable results, which would be detrimental to the algorithm. The distance

where this field transitions to the radiating near-field is approximately

 𝜆

2𝜋

(4.1.2)

 This often competes with the previously calculated requirement (3.40) to give us a lower bound on

the proper distance from the phased array. We calculate this value to be approximately 0.246 µm for the

reactive to radiating near field transition and approximately 1.629 mm for the Fresnel approximation using

the same 1550 nm wavelength and 1.63 mm aperture to correspond to greatest difference in x or y.

 Simulated results have also shown that near field diffraction has the most stable intensity profiles

between approximately 10 times and 100 times the aperture radii [49]. Calculating these values gives us

5.76 mm and 57.6 mm as a range which provides stable intensity profiles and matches with the previously

calculated range to ensure operation in the near field.

52

4.2. Initial Simulation Results

Now we can utilize this knowledge of a valid range of distances from the phased array to operate in the

near field and test the validity of our method. This will be done by utilizing MATLAB to simulate the

various steps of the algorithm. We will design a 128x128 antenna phased array that will emit the MIT logo

where each letter is in focus at a different distance from the phased array as seen in Fig. 4.2-1. Although

our algorithm can design phased arrays for arbitrary wavelengths, we will design everything described in

this thesis to operate at 1550 nm. This wavelength is commonly employed in silicon photonic devices as it

is the wavelength of choice for many fiber optic telecommunication systems. Also, the antennas will be

spaced 9 µm from each other in both the x and y directions to match the spacing that will be used in

fabrication. This pitch corresponds to a multiple of half of the free-space wavelength, which limits the

effects of higher-order interference patterns [48].

Fig. 4.2-1 Phased array design to emit MIT logo with letters focused at different distances

We take each output plane and convert it into an electric field that closely resembles the letters. For

this initial simulation, we accomplish this by generating a binary mask where pixels that make up the letters

53

are fully illuminated, meaning they have equal non-zero amplitude, and the rest of the pixels are given zero

amplitude, effectively shutting them off. We design the M to focus at 7 mm from the phased array, the I to

focus at 14 mm from the phased array, and the T to the focus at 28 mm from the phased array. Using the

previously calculated diffraction equations, we back propagate the output planes to the theoretical location

of the phased array (the M is back propagated 7 mm, the I is back propagated 14 mm, and the T is back

propagated 28 mm). This back propagation, and future near field propagation, is accomplished by

convolving our output with (3.43), or equivalently, we Fourier transform our output, multiply by (3.44),

and then inverse Fourier transform the product to generate the propagated field.

 𝐸𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒𝑑 = ℱ−1[ℱ(𝐸0) × 𝐻(𝑓𝑥 , 𝑓𝑦)] (4.2.1)

After summing the back propagated electric fields, we can extract the amplitude and phase profile,

the latter which is shown in Fig. 4.2-2. Here, we quickly get an idea of how complex the phase profiles can

be and how important it is to have an accurate and reliable method to calculate these fields to tune our

phased array antennas.

54

Fig. 4.2-2 Phase profile of summed field that emits the MIT logo

 By approximating the phased array antenna emission to an aperture, we can forward propagate the

summed field and see how well it recreates our desired output. Fig. 4.2-3 presents the simulation results

when focusing at the desired output plane locations. It is evident that the correct letters are in focus at the

desired output distances, however, we notice that we can see the effects of the other output letters. This

actually makes sense in terms of how human vision interprets viewing things at varying depths. When we

see objects at varying distances and focus on one, the objects around the focused object don’t disappear.

Instead, they will simply become out of focus, similar to what we see in these initial simulation results.

However, in order to appeal to a wider range of applications, there is good reason to try to isolate each

55

output. We realize that, since the intensity is the main focus of our output, we have the potential to modify

the phase of the outputs in order to improve our results.

Fig. 4.2-3 Initial simulation results of MIT logo

4.3. Improvements to Method

With the ability to control phase we have the potential to isolate our outputs and look into other ways to

utilize this degree of freedom. One issue that comes to mind is the fact that we have collimated light being

output from the phased array. This is the main reason we see the effects from the other output planes. Also,

there is the potential for loss of information during back propagation when the output plane is the same size

as the area of the phased array. The cause of this is primarily due to the conical shape of diffraction. This

section will investigate these issues and methods to improve the simulation results.

4.3.1. Randomized Phase

When we initially tested our method using the MIT letters, we did not modify the phase since we used a

binary intensity profile as the electric fields, leading to each letter having a flat phase front. This meant that

the phased arrays were designed to emit these outputs with all of the pixels having identical phases that are

parallel to each other. The issue with this is that the beams are collimated due to the parallel phases and

56

will not disperse greatly with distance, which explains why we can still basically make out the shape of the

other letters when they aren’t meant to be in focus.

 In order to de-collimate the pixels, we add a random phase to all of the output planes. This points

the pixels at random directions so that they would come together and be in focus at the desired location and

then quickly spread out and disappear when we reached other output distances. A depiction of the two

modes of light propagation is shown in Fig. 4.3.1-1 to show how randomized phase can work to improve

isolation of outputs.

Fig. 4.3.1-1 Comparing collimated light and de-collimated light

We put this hypothesis to the test by simulating two circles each spaced at different distances from

the phased array as shown in Fig. 4.3.1-2. Then we add a random phase front with variable randomization

to the circle on the right such that

 𝐸′
𝑐𝑖𝑟𝑐𝑙𝑒(𝑥, 𝑦) = 𝐸𝑐𝑖𝑟𝑐𝑙𝑒(𝑥, 𝑦)(𝑒𝑗𝑘(𝐶𝑜𝑒𝑓)(𝑅𝑎𝑛𝑑(𝑥,𝑦))) (4.3.1.1)

where 𝐸𝑐𝑖𝑟𝑐𝑙𝑒(𝑥, 𝑦) is the electric field distribution of the original circle, 𝐸′
𝑐𝑖𝑟𝑐𝑙𝑒(𝑥, 𝑦) is the new electric

field distribution for the circle on the right, Rand(x,y) is a pseudorandom distribution with values in the

interval (0,1), and Coef is the coefficient to our random distribution.

57

Fig. 4.3.1-2 Simulation setup to test randomized phase

Then, we take our two output electric fields and use our back propagation method to get our

summed electric field. We then forward propagate our summed electric field and examine the output at the

distance corresponding to the circle without added random phase being in focus. This allows us to see how

randomized phase affects the dispersion of the other circle. Fig. 4.3.1-3 shows the simulated results as we

increase the coefficient to the pseudorandom distribution from left to right.

Fig. 4.3.1-3 Effects of randomized phase

At the far left we see the effects with the pseudorandom distribution zeroed out. The circle on the

left is in focus and we can clearly see the out of focus circle on the right, similar to what we saw in our

58

initial MIT simulation results. As we look from left to right, we see the effects of increasing the

randomization. The circle on the right disperses more and more relative to the circle on the left until we can

barely tell there was anything else there.

To get a calculation on the effectiveness of the randomized phase, we decided to calculate a

weighted mean standard deviation of the error with the weights corresponding to the location of the pixels.

This value gives us a number to describe the spread of the pixels of the circle with randomized phase. The

weighted mean standard deviation is defined to be

𝜎𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = √
∑ 𝑤𝑖(𝑥𝑖 − 𝜇∗)2𝑁

𝑖=1

∑ 𝑤𝑖
𝑁
𝑖=1

(4.3.1.2)

Where 𝑤𝑖 represents the weight and 𝜇∗ is the weighted mean. For our case, we have a 2D weight and 𝑥𝑖 so

we modify this equation so that we sum the values within the matrix and then sum the results for x and y

weightings. Here, the weightings are a normalized error between the optimal single circle output and the

simulated result. The 𝑥𝑖 values simply represent positional values in either the x or y direction. Fig. 4.3.1-

4 shows the plot of this calculated value with respect to the randomization coefficient.

Fig. 4.3.1-4 Spread due to randomized phase at varying distances from phased array

59

 In order to investigate the effects of the distance of the second circle, this plot also shows the

calculation with the randomized circle at varying distances from the phased array. The plot shows that as

we increase the distance of the circle with random phase from the phased array, the spread of the error also

increases. This tells us that we actually need less randomization as we increase distance in order to achieve

the same amount of dispersion of the unwanted components of the output. We visually see that when the

standard deviation is about 2 × 10−4, the unwanted circle disperses enough to not be noticeable anymore.

Fitting the required randomization coefficient needed to achieve this threshold value can be seen in Fig.

4.3.1-5. This fitting shows that we have an approximately inverse relationship between the distance from

the phased array and the required randomization coefficient to allow for a good dispersion of the output,

𝐶𝑜𝑒𝑓 ∝

1

𝑧

(4.3.1.3)

Fig. 4.3.1-5 Relationship between distance and required randomization

This tells us that our final randomized phase profile should have the form

60

𝜑𝑟𝑎𝑛𝑑𝑜𝑚(𝑥, 𝑦) =

𝐴

𝑧
(𝑅𝑎𝑛𝑑(𝑥, 𝑦))

(4.3.1.4)

where A is some constant and Rand(x,y) is the same random distribution of values in the interval (0,1).

These simulations help to prove that our decision to add random phase to the output planes allow

us to better isolate our outputs by de-collimating the light.

4.3.2. Curved Phase

During back propagation, some of the power can potentially be lost outside of the area of the phased array.

This is due to the fact that the diffraction can cause the beam to diverge slightly. Losing power outside the

area of our phased array equates to losing critical information that would be used to generate our desired

outputs. Obviously we could just increase the size of our phased array, but this means putting a limit on the

size of the output relative to the phased array. This is a huge limitation because our output would always

have to be smaller than the size of our phased array to ensure optimal recreation of the desired output.

 We propose that we can add a curved phase front to the output image in order to better focus the

back propagated power into the desired area of the phased array. In order to test this hypothesis, we

simulated the back propagation of a circle to see the effects with and without curved phase. Fig. 4.3.2-1

shows this concept of having a curved phase front. We see theoretically how some of the power can be lost

during back propagation if the phased array is the same size as the output and how adding a curved phase

front can fix this.

61

Fig. 4.3.2-1 Reducing information loss by adding curved phase front

First, we will derive a curved phase front to be added to our output planes. Fig. 4.3.2-2 shows what

this theoretical curved phase front would look like facing downwards in order to focus the back propagation

towards the center of the phased array. We determine that the required phase front at the output plane must

be equivalent to a spherical phase front. This can be calculated by starting with the equation for a sphere

 √(𝑥 − 𝑥0)
2 + (𝑦 − 𝑦0)

2 + (𝑧 − 𝑧0)
2 = 𝑟2 (4.3.2.1)

Since we want to have the power concentrated towards the center of our phased array, we center the sphere

at 𝑥0 = 𝑦0 = 𝑧0 = 0 and set the radius equal to the distance between the output plane and the phased array

(𝑟 = 𝑧𝑖)

 √𝑥2 + 𝑦2 + 𝑧2 = 𝑧𝑖
(4.3.2.2)

We can now rearrange this equation to resemble a mapping of a phase front

 𝜑𝑑𝑒𝑠𝑖𝑟𝑒𝑑(𝑥, 𝑦) = √𝑥2 + 𝑦2 + 𝑧𝑖
2 − 𝑧𝑖

(4.3.2.3)

Note that we replaced the z term with 𝑧𝑖 since the output pixels are all on a plane that is a fixed distance 𝑧𝑖

from the phased array. (4.3.2.3) allows us to simplify our desired phase to

62

𝜑𝑑𝑒𝑠𝑖𝑟𝑒𝑑(𝑥, 𝑦) = 𝑧𝑖 × (√
𝑥2 + 𝑦2

𝑧𝑖
2

+ 1 − 1)

(4.3.2.4)

A quick check at the center of our output plane (𝑥 = 𝑦 = 0, 𝑧 = 𝑧𝑖) outputs a 0, which fits our desired

curved phased front as the phase should be flat over the center.

Fig. 4.3.2-2 Curved phase front facing phased array

The simulation to test our theory designs a phased array to emit a circle with diameter equal to the

side of the phased array as seen in Fig. 4.3.2-3a where the blue square represents the area of the phased

array. The circle is designed to focus in at 28 mm from the phased array so we can use our near field

diffraction equations to back propagate it to the theoretical phased array location. The area of operation was

expanded to see how power spreads outside of the desired phased array area.

63

Fig. 4.3.2-3 (a) Desired circular output. (b) Result of back propagating (a) to theoretical phased array

with flat phase. (c) Result of back propagating (a) with added circular phase front.

Fig. 4.3.2-3b shows how the power is spread when back propagated the 28 mm to the theoretical

location of the phased array using the original unaltered flat phase. We see power is lost outside the desired

phased array area, which could be detrimental to an accurate reproduction of our desired output. The back

propagation when adding our derived curved phase is shown in Fig. 4.3.2-3c. We see that when we add the

curved phase front, the power is concentrated much more finely into the area of the phased array.

In order to better compare the improvement due to the curved phase front, we calculated the

percentage of power lost outside of the phased array when back propagated. Fig. 4.3.2-4a shows the plot of

power loss at varying distances of back propagation when we use our original flat phase. It shows that when

we reach the 28 mm of back propagation, corresponding to the location of the phased array, that there is

approximately 5% of the original power lost outside of the phased array area. This equates to losing 5% of

the information that is required to accurate regenerate our output. Similarly, Fig. 4.3.2-4b shows the same

plot when we add the curved phase front to the output. Here, there is only approximately 1% power loss

when we reach the phased array.

64

Fig. 4.3.2-4 (a) Calculated percent power lost outside of desired phased array area with varying back

propagation distances with unaltered phase (phased array location marked with dotted line). (b)

Calculated percent power lost with curved phase front.

In order to further investigate the potential of the curved phase front, we also simulated the effects

when the output is larger than our phased array area. Fig. 4.3.2-5a shows the desired circular output with

diameter equal to double the length of the side of the phased array, double the size of the circle used in the

previous simulation. The loss of power is much more pronounced when back propagating with unaltered

phase as shown in Fig. 4.3.2-5b. There is a significant amount of power that is clearly outside the area of

the phased array. On the other hand, Fig. 4.3.2-5c shows that back propagating using the curved phase front

continues to give us concentrated power within the boundaries of the phased array.

65

Fig. 4.3.2-5 (a) Desired larger circular output. (b) Result of back propagating (a) to theoretical phased

array with flat phase. (c) Result of back propagating (a) with added circular phase front.

Calculating the same percentage of power lost provides more concrete numbers to these simulation

results. Fig. 4.3.2-6a shows that back propagating the larger circular output with unaltered phase to the

phased array results in approximately 67.4% of the power being lost outside of the phased array. This

amounts to only having 32.6% of the required information to attempt to recreate the desired output. Fig.

4.3.2-6b shows that adding the curved phase front only leads to approximately a 2.5% power loss when

back propagated, a much smaller loss compared to that of the flat phase back propagation.

66

Fig. 4.3.2-6 (a) Calculated percent power loss of larger output with unaltered phase (phased array location

marked with dotted line). (b) Calculated percent power loss with curved phase front

Finally, we investigate how detrimental this loss of information can be by reusing the simulations

of the larger circle output and seeing what the phased arrays would emit using our method. We take the

back propagated fields from Fig. 4.3.2-5 and use the 128x128 pixels in the center to tune our phased array

parameters. Fig. 4.3.2-7b shows that when we try to forward propagate the field generated using a flat phase

front, the output is severely degraded compared to the desired output in Fig. 4.3.2-7a. When we use a phased

array designed from the back propagated output with curved phase front, the output much more closely

resembles our desired output as shown in Fig. 4.3.2-7c.

67

Fig. 4.3.2-7 (a) Desired circular output. (b) Output due to phased array designed with back propagated

flat phase. (c) Output due to phased array designed with back propagated curved phase front

These simulations show us that we can utilize a curved phase front on our outputs prior to back

propagation to improve the output images. The curved phase front works to both reduce power lost during

back propagation and, more importantly, it allows us to generate outputs larger than the dimensions of our

phased array.

4.4. Refined Simulation Results

In this section we combine the proposed improvements to our method in an attempt to better isolate our

output images. We add the randomized phase front and the curved phase front to our output planes in order

to reduce the effects due to collimated light and back propagation loss. Our output electric fields then look

like

 𝐸𝑜𝑢𝑡𝑝𝑢𝑡(𝑥, 𝑦) = 𝐼𝑜𝑢𝑡𝑝𝑢𝑡(𝑥, 𝑦) × 𝑒𝑗𝑘(𝜑𝑐𝑢𝑟𝑣𝑒𝑑(𝑥,𝑦)+𝜑𝑟𝑎𝑛𝑑𝑜𝑚(𝑥,𝑦)) (4.4.1)

Where 𝐼𝑜𝑢𝑡𝑝𝑢𝑡 represents the intensity profile of the output, k is our k-vector of propagation, and our two

phase terms are 𝜑𝑐𝑢𝑟𝑣𝑒𝑑 and 𝜑𝑟𝑎𝑛𝑑𝑜𝑚 from (4.3.2.4) and (4.3.1.4), respectively. If we write out the full

equations, we can pull out a z term from the exponential

68

𝐸𝑜𝑢𝑡𝑝𝑢𝑡(𝑥, 𝑦) = 𝐼𝑜𝑢𝑡𝑝𝑢𝑡(𝑥, 𝑦) × 𝑒

𝑗𝑘𝑧[(√
𝑥2+𝑦2

𝑧2 +1−1)+
𝐴
𝑧2(𝑅𝑎𝑛𝑑(𝑥,𝑦))]

(4.4.2)

 We then implement this phase term into our initial MIT logo simulation and see the comparison of

the outputs in Fig. 4.4-1. We see that the effects of the other letters are not as clearly visible in the output

planes compared to how they previously were. The letters seem to be better isolated in the sense that it is

hard to make out what exists in the other outputs, whereas it is much clearer in the original simulation.

Fig. 4.4-1 (a) Initial simulation results. (b) Simulation results using proposed improvements.

4.5. Noise Analysis

So far we have shown a method that has the capability to design phased arrays with the required parameters

to emit arbitrary 3D outputs. Our simulation examples have calculated these parameters for a 128x128 array

equating to over 16,000 antennas that must each be tuned in both amplitude and phase. Due to complications

like fabrication imperfections, the chances that the amplitude and phase profiles exactly match what was

69

designed is small. That is why it is important for us to examine how resilient our method is to noise. As the

noise will predominantly come from fabrication issues, we can model our noise as random Gaussian noise.

 We first begin by examining the effects of phase noise on our method. In order to simulate the

effects, we add a random Gaussian phase noise centered at zero to the MIT simulations and vary the

standard deviation σ. Similar to how phase was added to our outputs, this random phase noise was added

to the electric field representing the summation of the back propagated outputs

 𝐸𝑃𝐴(𝑥, 𝑦) = 𝐸𝑠𝑢𝑚𝑚𝑒𝑑(𝑥, 𝑦) × 𝑒σ×rand(x,y) (4.5.1)

where 𝐸𝑃𝐴(𝑥, 𝑦) is the electric field that the phased array will emit, 𝐸𝑠𝑢𝑚𝑚𝑒𝑑(𝑥, 𝑦) is the summation of the

back propagated outputs, and (σ × rand(x, y)) generates our Gaussian random noise distribution centered

at zero with variable standard deviation σ.

 In order to find a more quantitative comparison of the noise effects, we decided to calculate a

Hermitian inner product between the outputs with noise and the original output without any noise. This

calculates a percentage of projection, or overlap, compared to the original, no noise output. The value is

calculated by evaluating

 < 𝐸σ=σ𝑖
, 𝐸σ=0 >

√< 𝐸σ=σ𝑖
, 𝐸σ=σ𝑖

>∗< 𝐸σ=0, 𝐸σ=0 >

(4.5.2)

Where 𝐸σ=0 is our output when designed with no noise and 𝐸σ=σ𝑖
 is the output when designed with Gaussian

noise at varying standard deviations. Fig. 4.5-1 shows the plot of the overlap as the standard deviation of

the noise is increased for the M output, the I output, and the T output. The range of standard deviations is

chosen to be from 0 to π/2 to give us a range of additional phase offsets predominantly between – π and +

π the desired phase difference between antennas. We recognize that the M output seems to degrade the

fastest, so we decide to focus our analysis on that output in particular.

70

Fig. 4.5-1 Plot comparing overlap calculations of MIT outputs due to phase noise

By examining the percent overlap plot for the M output, we see that even at σ = π/4 the percentage

of overlap compared to the original output is still approximately 85%. This is a strong indicator of the

resiliency of the method because this σ = π/4 means there can be pairs of antennas that have a phase

difference of π/2 more than desired, yet still produce an output that is very close to the output without noise.

To get a more quantitative view, Fig. 4.5-2 shows how the M output changes with noise at a) σ = 0

(no noise) b) σ = π/16 c) σ = π/8 and d) σ = π/4. In all of these outputs it is still clear that the output is

supposed to resemble the “M” from the MIT logo, but obviously the output noise begins to rise as the

standard deviation of the added noise increases.

71

Fig. 4.5-2 (a) M output with no phase noise. (b) M output with Gaussian random noise of σ = π/16. (c) M

output with Gaussian random noise of σ = π/8. (d) M output with Gaussian random noise of σ = π/4.

 We will perform a similar set of simulations to evaluate the effects of noise on the amplitude. For

the amplitude we decided to use a random Gaussian noise distribution centered around 1 so that the standard

deviation represents a percentage change of the amplitude

 𝐸𝑃𝐴(𝑥, 𝑦) = 𝐸𝑠𝑢𝑚𝑚𝑒𝑑(𝑥, 𝑦) × (1 + σ*rand(𝑥, 𝑦)) (4.5.3)

Where (1 + σ*rand(𝑥, 𝑦)) represents our Gaussian random noise distribution centered at 1 with standard

deviation σ. We calculate the same Hermitian inner product as 4.5.2 to see quantitatively how our outputs

are affected by phase noise.

Fig. 4.5-3 Plot comparing overlap calculations of MIT outputs due to amplitude noise

72

 Fig. 4.5-3 shows that the M output again degrades faster than the others due to amplitude noise and

we will again turn our attention to that output. The range of standard deviations is chosen to be 0 to 1 to

give us amplitude modifications predominantly between -100% and +100%, analogous to the full additional

π phase shift used in the phase noise simulations. When we examine the percent overlap calculations of the

M output for σ = 0.5, which corresponds to having antenna amplitudes predominantly modified within -

50% to +50% of their intended amplitude, we see that there is still approximately 97.5% of an overlap with

the original output. It is also important to note that the outputs maintain a higher level of overlap over this

range of standard deviations than the phase noise simulations.

Fig. 4.5-4 (a) M output with no amplitude noise. (b) M output with Gaussian random noise of σ = 0.1. (c)
M output with Gaussian random noise of σ = 0.25. (d) M output with Gaussian random noise of σ = 0.5.

 The M outputs with varying standard deviation of the added Gaussian random amplitude noise is

shown in Fig. 4.5-4 where a) σ = 0 (no noise) b) σ = 0.1 c) σ = 0.25 and d) σ = 0.5. These results strongly

resemble the desired M output over these σ and look to be even more resilient to noise compared to the

phase noise simulations, which agrees with the overall higher level of overlap we see in Fig. 4.5-3 for the

amplitude noise simulations compared to the levels of overlap for the phase noise analysis in Fig. 4.5-1.

73

4.6. Amplitude and Phase Control via Couplers

Now that we have determined a method to generate phase and amplitude profiles that is resilient to noise

and improves the output in comparison to the initial attempt, we will cover a method to allow our phased

array to emit this electric field. There are two primary methods for our antennas to emit our desired

amplitude and phase profiles. One way to accomplish this is an active method that uses heaters within the

path of the unit cell to tune these parameters. The technique that will be described in this section is a passive

method that uses a system of directional couplers to achieve the desired parameters.

 Directional couplers are devices that redirect a portion of electromagnetic power from a waveguide

to another output. Here, we design our couplers by having two waveguides set close enough to allow for

the passage of energy from one to the other. The directionality comes from the fact that power is only

coupled from the main waveguide to the secondary waveguide and none is coupled the other way around.

The amount of power that is coupled into the secondary waveguide is controlled by the gap between the

two waveguides and the length Lc of the secondary waveguide as seen in Fig. 4.6-1. This figure shows the

coupler attached to the unit cell with our antenna. Along with controlling how much power is transferred,

a combination of coupler gap and length also provides a corresponding phase shift. In order to achieve the

desired phase on each antenna, then, we have to modify the straight waveguides within our unit cell to make

up the difference between the desired antenna phase and the phase shift due to the coupler. We modify the

two straight waveguides in the unit cell together so that each component is modified to achieve half of the

required offset phase shift or equivalently
𝜃𝑜𝑓𝑓𝑠𝑒𝑡

2
.

74

Fig. 4.6-1 Coupler and unit cell parameters

In order to determine a wide dynamic range of coupling coefficients, the proportion of power

coupled by the coupler, we used 3D Finite Difference Time Domain (FDTD) simulations of our coupler

with varying combinations of coupler gap and length. By placing power and phase monitors at the locations

seen in Fig. 4.6-2, we measure power and phase entering the main waveguide and the same values exiting

the coupler and entering the unit cell.

Fig. 4.6-2 Location of power and phase monitors

75

We calculate power coupling coefficients by taking the proportion of power exiting the coupler

over the power entering the main waveguide

𝐶 =

𝑃3

𝑃1

(4.6.1)

Similarly, we also calculate the corresponding phase shift due to the coupler by calculating how

much the input wave phase changes from the entrance of the main waveguide to the exit of the coupler. We

determined that we can achieve our desired power coupling coefficients by utilizing 3 varying gap distances

and a range of coupling lengths between 0.5 µm and 5 µm, ultimately giving us a range of 0.011% to 82.5%

of power coupled from one waveguide to the other with no gaps in the range. The increase of elements in

our phased array requires this much larger dynamic range of coupling coefficients compared to what was

previously used. Fig. 4.6-3 shows the two plots of power coupling coefficients and corresponding phase

changes due to these combinations of coupler gaps and lengths. The power coupling coefficients match up

with what we expect as a larger gap, or distance between coupler and waveguide, equates to less power

being able to be transferred between the two. Similarly, a longer coupler length allows for more power to

be coupled as there is more area for the signal to be coupled into the coupler.

Fig. 4.6-3 Plots of power coupling coefficients and phase shift due to coupler gaps and lengths

76

 The power will be distributed by a system of row couplers and unit couplers as shown in Fig. 4.6-

4 in order to achieve the desired antenna amplitudes. The main source of power will come from a laser

coupled into our main waveguide on the far left of Fig. 4.6-4 and will be distributed into each row

waveguide with the row couplers. Then, the power will finally reach the unit cells through the unit couplers.

Fig. 4.6-4 System of row and unit couplers

 We calculate the required coupling coefficient of each coupler by solving a linear system of

equations using our amplitude profile. First, we square the amplitude profile to give us a power distribution.

To calculate the required coefficients for the row couplers 𝐶𝑖, we find the total power in each row 𝑃𝑖 and

total power in the entire system 𝑃𝑡𝑜𝑡𝑎𝑙 and then the required row coupling coefficients are a proportion of

the total row power over the remaining power

𝐶𝑖 =

𝑃𝑖

∏ (1 − 𝐶𝑛)𝑃𝑡𝑜𝑡𝑎𝑙
𝑖−1
𝑛=1

(4.6.2)

The required coefficients for the unit couplers 𝐶𝑖,𝑘 can then be calculated by using the total power for each

unit cell 𝑃𝑖,𝑘 and is the required unit cell power over the remaining power in the row

77

𝐶𝑖,𝑘 =

𝑃𝑖,𝑘

∏ (1 − 𝐶𝑖,𝑛)𝑃𝑖
𝑘−1
𝑛=1

(4.6.3)

Once the required coefficient for the row and unit couplers is calculated, we determine the combination of

coupler gap and length using the coefficient values for all of the couplers by using our 3D FDTD simulation

results.

 We then reference these same simulation results and use the selected coupler gaps and lengths to

find the corresponding phase shift due to the coupler. We change the length of the straight waveguides in

the unit cell to make up the difference between the desired emitted phase and the phase shift due to the

coupler

 𝜃𝑑𝑒𝑠𝑖𝑟𝑒𝑑 = 𝜃𝑐𝑜𝑢𝑝𝑙𝑒𝑟 + 𝜃𝑜𝑓𝑓𝑠𝑒𝑡 (4.6.4)

 This method utilizing couplers highlights a passive way to cause our antennas to emit the desired

amplitude and phase profile that our method calculates.

4.7. Layout

In order to design and fabricate our devices, we must first layout a mask that can be used during lithographic

processes to generate the desired structures on a silicon wafer. The layout outlines how the device will look

when fabricated on a chip and contains the information of the locations and dimensions of the various

components of the system. Layout for electronic components is traditionally done using Cadence, and since

we are utilizing a CMOS fabrication process, it can also be used to layout silicon photonic devices.

 Smaller devices can be manually laid out by drawing and carefully designing structures with the

proper dimensions. However, with a device that contains over 16,000 individual antennas and couplers with

their own required dimensions (such as a 128x128 antenna phased array), this process can become very

tedious and error-prone to do manually. Fortunately, there is a way to automate the process of drawing and

78

placing the various shapes through scripts written using SKILL code, the Cadence scripting language.

Additionally, the drawing of individual components like an antenna can be scripted in SKILL with variable

parameters so that they can be called by a larger wrapper script to automate the placement and sizing of a

large number of structures.

 We wrote a SKILL script that reads in the required coupler and antenna parameters calculated using

our algorithm. The code then places waveguides to set up the grid structure of the phased array. It will read

in the coupler length and gap requirements for both row and unit couplers and call up our code that outlines

a coupler with variable gap and length to place and appropriately size the couplers. Then it will place the

antennas and tune the straight waveguide section to account for the coupler phase shift, as previously

calculated. The resulting layout when using the calculated parameters to generate a phased array of 128x128

antennas that emits the MIT logo in the near field at 1550 nm wavelength is partially shown in Fig. 4.7-1.

The inset shows the parameters that must be properly sized for each antenna and coupler pair.

79

Fig. 4.7-1 Layout of phased array that emits MIT in near field

4.8. Additional Simulations

To test the flexibility of our method to produce arbitrary outputs, we used the algorithm to design a phased

array to emit a 3D pyramid as shown in Fig. 4.8-1. The output planes consist of a square of single pixel

wide lines that grows smaller and smaller in side length as the planes move further from the phased array

until reaching a 2x2 square of pixels at the furthest point, emulating the steps of a pyramid.

80

Fig. 4.8-1 Phased array emitted 3D pyramid

This test uses 28 planes equally spaced at 5 times the pitch of the array (5 × 9 µ𝑚) to make the

pyramid. We follow the algorithm and back propagate all 28 planes and sum them to generate the electric

field for the phased array to emit. Then, by forward propagating and viewing the individual output planes,

we see how well the algorithm recreates our desired pyramid. We realize that because of the close proximity

and large number of the output planes, it is challenging to isolate each output plane and therefore distinguish

which part is in focus. To try to better determine the results of this test, we added randomized phase to the

pyramid and removed the corners of the squares when building the output to give us the triangular faces of

the pyramid with an empty line along the diagonals. Then, to read the outputs, we focus in at the various

levels of the pyramid to see which portions are in focus as depicted in Fig. 4.8-2.

81

Fig. 4.8-2 Pyramid output slices

 The randomized phase here allows the planes to disperse, but because of the close proximity of the

outputs, the light will not have much room to fully disperse and their effects will still be visible in the other

output planes. The empty pixels between the triangular faces allow us to determine which portion of the

pyramid are in focus at any distance as the sharpness of these empty regions will tell us if the section is in

focus or not. Fig. 4.8-3 provides a few slices of the output pyramid with the in-focus empty regions circled.

We can clearly see in each image that there is a section of the empty spaces in focus, while the other parts

are blurred. The top left image corresponds to the base of the pyramid and we can clearly see that the corners

are where the empty spaces are in focus. Furthermore, the edges of the base of the pyramid are sharp, which

also tells us that the base is in focus. As we move farther from the phased array, we can see that the areas

of focus begin shifting towards the center, or equivalently towards the top of the pyramid, as we would

expect based on how the pyramid was designed. The edge of the base also becomes less and less sharp

corresponding to it becoming more and more out of focus as we move up the pyramid. Again, as this is an

output that we are looking at with multiple planes at different depths, what these outputs show makes sense

82

because the other outputs should be blurred and out of focus rather than completely disappearing. These

results show that this algorithm is capable of generating phased arrays that can emit varying output

projections. This capability not only shows the flexibility of this method, but also proves useful in creating

dynamic displays.

Fig. 4.8-3 Output planes moving away from phased array with focused empty spaces circled

 Additionally, we wanted to prove that this algorithm is capable of designing phased arrays for

arbitrary wavelengths. To show this, we tested the algorithm to see how the MIT logo example would look

when we used 750 nm, a wavelength in the visible spectrum corresponding to the color red. We simply

changed our MATLAB code to generate the phase and amplitude profiles using the 750 nm wavelength

and the pitch to be a multiple of half of this wavelength. The results we get when we forward propagate

these calculated fields is shown in Fig. 4.8-4.

83

Fig. 4.8-4 MIT logo output using 750 nm wavelength

 We see that this output resembles the output generated using a wavelength of 1550 nm. We can

clearly see the M, the I, and the T at the individual designed distances from the phased array. This is a

simple test without any significant optimization done at this wavelength and we can see that it can emit a

desired 3D pattern at varying wavelengths. This flexibility is extremely useful, especially when we consider

visible applications that can utilize 3D holograms, such as the 3D TVs previously mentioned.

84

85

Chapter 5

Conclusion

In conclusion, this thesis examined the possibility of combining silicon photonics and holographic

technologies to open up exciting applications. To do this, we proposed that we could design phased arrays

with the capability to emit 3D holograms by working in the near field. To properly design a phased array

with this emission, we devised a method that required superimposing back propagated output planes to

generate the required phase and amplitude profiles for the antennas to emit. These profiles can then be

extracted and discretized to tune the parameters used to design the individual antennas and couplers. A

forward emission of the field emitted by the antennas would then recreate the desired output.

 We tested our methods and found it to work well in terms of how humans perceive 3D objects.

However, to open up our design to more applications, we designed a few improvements to try to isolate our

output images and remove output size limitations. This was accomplished by realizing that the outputs were

primarily focused on the intensity, meaning that we could modify the phases. By adding randomized phase

to the output planes, we were able to decollimate the output beams and allow pixels to disperse faster as we

varied distance. Adding circular phase to the output planes allowed us to better focus the information during

back propagation to eliminate losses. It also proved to be useful as it allowed us the freedom to generate

outputs larger than the size of the phase array itself. These methods were individually tested and proven to

accomplish the desired improvements to our algorithm. Comparing it to our original results, it is clear that

these improvements work to better isolate our outputs.

86

 The next part of the work details how exactly the phase and amplitude is controlled in our phased

array design. By using a system of couplers, we can control how much power each antenna receives and

thus control the amplitude. Each coupler, however, also brings about a phase delay to the signal. This can

be accounted for by modifying the length in the unit cell waveguide to add or remove the required phase

delays to the antennas to achieve the desired phase profile.

 Finally, we show the final design that combines all of the work to construct a phased array that

emits our MIT output using Cadence. It consists of a 128x128 antenna phased array with 9 µm antenna

spacing that is designed to emit the near field pattern when a 1550 nm wavelength laser is used as an input.

We also further prove the flexibility of our algorithm by showing that it is capable of not only generating

arbitrary outputs, but is also capable of designing phased arrays that operate at arbitrary wavelength, such

as within the visible spectrum.

 Once the devices have been successfully fabricated, we still have to test the devices to ensure that

they function desirably. Assuming this part is successful, the next steps would be to first test the capability

to generate varying outputs along with outputs at differing wavelengths. This part shouldn’t be too tricky

as we have already shown that the algorithm has the capability to design phased arrays with these

capabilities. The more interesting step would be to test the possibilities of incorporating phase shifters into

a phased array designed to emit 3D holograms. By varying the phase, we can test to see the potential of

having a phased array emitting a dynamic output. With electronic signaling, this could be controlled and

changed quickly and could possibly lead to moving 3D holograms. This capability is critical to 3D display

technology as well as a multitude of other applications.

87

88

Bibliography

[1] M. Lipson, "Guiding, Modulating, and Emitting Light on Silicon – Challenges and

Opportunities,".Journal of Lightwave Technology 23 (12) 4222–4238 (2005).

[2] T. Barwicz, et al., "Silicon photonics for compact, energy-efficient interconnects," Journal of Optical

Networking 6 (1) 63–73 (2006).

[3] E. Timurdogan, et al., "A High-Q Tunable Interior-Ridge Microring Filter," in CLEO: 2014, OSA

Technical Digest (online) (Optical Society of America, 2014), paper SF2O.3 (2014).

[4] M. R. Watts, and H. A. Haus, “Integrated Mode-Evolution-Based Polarization Rotators,” Optics

Letters, 30, 138 (2005).

[5] M. R. Watts, H. A. Haus, and E. P. Ippen, “Integrated Mode-Evolution-Based Polarization Splitter,”
Optics Letters, 30, 967 (2005).

[6] T. Barwicz, et al., “Polarization Transparent Microphotonic Devices in the Strong Confinement
Limit,” Nature Photonics, 1, 57 (2006).

[7] M. R. Watts, et al., “Low Voltage, Compact, Depletion-Mode, Silicon Mach-Zehnder Modulator,”

Journal of Special Topics in Quantum Electronics, IEEE J. Sel. Top. Quantum Electron., 16, 159
(2010).

[8] M. R. Watts, et al., “Vertical Junction Silicon Microdisk Modulators and Switches,” Optics
Express, 19, 21989 (2011).

[9] E. Timurdogan, et al., “An ultralow power athermal silicon modulator,” Nature Communications, 5, 1
(2014).

[10] M. R. Watts, “Adiabatic Microring-Resonators,” Optics Letters, 25, 3231 (2010).

[11] Z. Su, et al., “A silicon wavelength selective partial-drop broadcast filter bank,” Opt. Lett. 39, 5459

(2014).

[12] D. Cole, et al., “Integrated Heterodyne Interferometer with On-Chip Modulators and Detectors”, Opt.

Lett. 40, 3097 (2015).

[13] R. C. Hansen, Phased array antennas, 213, John Wiley & Sons, 2009.

[14] K. F. Braun, "Electrical oscillations and wireless telegraphy," Nobel Lecture (1909).

[15] C. Alakija, and S. P. Stapleton, "A mobile base station phased array antenna," 1992 IEEE

International Conference on Selected Topics in Wireless Communications, 118-121 (1992).

[16] Y. Kawaguchi, et al., "Application of phased-array antenna technology to the 21 GHz broadcasting

satellite for rain-attenuation compensation," 2002 IEEE International Conference on

Communications, 5, 2962-2966 (2002).

https://en.wikipedia.org/wiki/Journal_of_Lightwave_Technology

89

[17] E. Brookner, "Phased-array radars," Scientific American 252 (2), 94-102 (1985).

[18] G. van Keuk, and S. S. Blackman, "On phased-array radar tracking and parameter control," IEEE

Transactions on Aerospace Electronic Systems 29, 186-194 (1993).

[19] A. J. Fenn, et al., "The development of phased-array radar technology." Lincoln Laboratory

Journal 12 (2), 321-340 (2000).

[20] R. Klemm, "Adaptive clutter suppression for airborne phased array radars," IEE Proceedings F

(Communications, Radar and Signal Processing), 130 (1), 125-132 (1983).

[21] D. S. Zrnic, et al., "Agile-beam phased array radar for weather observations,"Bulletin of the

American Meteorological Society 88 (11), 1753-1766 (2007).

[22] P. F. McManamon, et al., "Optical phased array technology," Proceedings of the IEEE 84 (2), 268-
298 (1996).

[23] R. J. Crowley, "Optical antenna array for harmonic generation, mixing and signal amplification,"
U.S. Patent No. 6,038,060, (14 Mar. 2000).

[24] D. P. Resler, et al., "High-efficiency liquid-crystal optical phased-array beam steering," Optics
letters 21 (9), 689-691 (1996).

[25] K. Van Acoleyen, et al., "Off-chip beam steering with a one-dimensional optical phased array on

silicon-on-insulator," Optics letters 34 (9), 1477-1479 (2009).

[26] K. Van Acoleyen, H. Rogier, and R. Baets, "Two-dimensional optical phased array antenna on

silicon-on-insulator," Optics express 18 (13), 13655-13660 (2010).

[27] J. Sun, et al., "Large-scale nanophotonic phased array," Nature 493 (7431), 195-199 (2013).

[28] A. Yaacobi, E. Timurdogan, and M. R. Watts, "Vertical emitting aperture nanoantennas," Optics
letters 37 (9), 1454-1456 (2012).

[29] R. Collier, Optical holography, Elsevier, 2013.

[30] D. Gabor, "A new microscopic principle," Nature 161 (4098), 777-778 (1948).

[31] D. Gabor, "Microscopy by reconstructed wave-fronts," Proceedings of the Royal Society of London

A: Mathematical, Physical and Engineering Sciences, 197 (1051), 454-487 (1949).

[32] "The Nobel Prize in Physics 1971". Nobelprize.org. Nobel Media AB 2014. Web. 14 Jul 2015.
http://www.nobelprize.org/nobel_prizes/physics/laureates/1971/

[33] E. N. Leith and J. Upatnieks, "Reconstructed wavefronts and communication theory," JOSA 52 (10),
1123-1128 (1962).

[34] T. Kreis, Handbook of holographic interferometry: optical and digital methods, John Wiley & Sons,
2006.

http://www.nobelprize.org/nobel_prizes/physics/laureates/1971/

90

[35] P. Giancarlo, W. Osten, and M. E. Gusev, "High-speed digital holographic interferometry for

vibration measurement," Appl. Opt. 45, 3456-3462 (2006).

[36] M. Hÿtch, et al., "Nanoscale holographic interferometry for strain measurements in electronic

devices," Nature 453 (7198), 1086-1089 (2008).

[37] C. P. Wood and J. D. Trolinger, "Application of real-time holographic interferometry in the

nondestructive inspection of electronic parts and assemblies," Proc. SPIE 1332, 122-131 (1991).

[38] D. D. Robertson, et al., "Depiction of pelvic fractures using 3D volumetric holography: comparison

of plain X-ray and CT," Journal of computer assisted tomography 19 (6), 967-974 (1995).

[39] J. Brook and R. Dandliker, ‘‘Submicrometer Holographic Photolithography,’’ Solid State

Technology 33, 91-94 (November 1989).

[40] J. M. Lerner, et al., "Diffraction gratings ruled and holographic-a review," Proc. SPIE 0240, 82-88
(1981).

[41] G. T. Sincerbox, "Holographic scanners: applications, performance and design," Laser Beam
Scanning 8, 1-62 (1985).

[42] S. Tay, et al., "An updatable holographic three-dimensional display," Nature 451 (7179), 694-698
(2008).

[43] T. Kreis, "Applications of digital holography: from microscopy to 3D-television," Journal of the

European Optical Society-Rapid publications 7, (2012).

[44] W. Matusik and P. Hanspeter, "3D TV: a scalable system for real-time acquisition, transmission, and

autostereoscopic display of dynamic scenes," ACM Transactions on Graphics (TOG) 23 (3), 814-824
(2004).

[45] B. R. Brown and A. W. Lohmann, "Computer-generated binary holograms,"IBM Journal of research

and Development 13 (2), 160-168 (1969).

[46] G. Roelkens, D. Van Thourhout, and R. Baets, "High efficiency Silicon-on-Insulator grating coupler

based on a poly-Silicon overlay," Optics Express 14 (24), 11622-11630 (2006).

[47] J. W. Goodman, Introduction to Fourier optics, Roberts and Company Publishers, 2005.

[48] C. A. Balanis, Antenna theory: analysis and design, 1, John Wiley & Sons, 2005.

[49] G. D. Gillen and S. Guha, "Modeling and propagation of near-field diffraction patterns: a more

complete approach," American journal of physics 72 (9), 1195-1201 (2004).

91

92

Appendix A

MATLAB Code

fresnel_advance.m

This function performs the Fresnel diffraction propagation using Fast Fourier Transform

U = ifft2(ifftshift(O.*H));

1 function U = fresnel_advance(U0, dx, dy, z, lambda)

2 % This function receives a field U0 at wavelength lambda

3 % and returns the field U after distance z, using the Fresnel

4 % approximation. dx, dy, are spatial resolution.

5

6 % Calculate k-vector and input dimensions

7 k=2*pi/lambda;

8 [ny, nx] = size(U0);

9

10 % Generate spatial dimensions u,v

11 Lx = dx * nx;

12 Ly = dy * ny;

13

14 dfx = 1./Lx;

15 dfy = 1./Ly;

16

17 u = ones(nx,1)*((1:nx)-nx/2)*dfx;

18 v = ((1:ny)-ny/2)'*ones(1,ny)*dfy;

19

20 % Calculate FFT of input

21 O = fftshift(fft2(U0));

22

93

23 % Generate FFT of Fresnel Diffraction impulse response H

24 H = exp(1i*k*z).*exp(-1i*pi*lambda*z*(u.^2+v.^2));

25

26 % Propagated field is inverse FFT of the multiplication of the

FFT of the input and the Fresnel Diffraction H

27 U = ifft2(ifftshift(O.*H));

94

Fresnel128PA_MIT.m

This is the wrapper code used to generate the antenna phase and amplitude profiles to emit the

MIT logo, as well as simulating and examining the output

1 % Variable that adds circular and random phase when set to 1

2 nonflat = 1;

3

4 % Wavelength and Antenna spacing variables

5 lambda = 1.55e-6;

6 pitch = 9e-6/factor;

7

8 % Number of antennas in the x and y direction

9 N=128;

10 M=128;

11

12 % Output distances

13 z1 = 0.007;

14 z2 = 0.014

15 z3 = 0.028;

16

17 % Generate grid matrices of x and y positions

18 x1 = (-M/2+1)*pitch:pitch:pitch*M/2;

19 y1 = (-N/2+1)*pitch:pitch:pitch*N/2;

20 [x1, y1] = meshgrid(x1,y1);

21

22 % Generate desired MIT logo for output

23 I = imread('MIT_logo', 'jpeg');

24 I = imresize(I,[N M]);

25 I = double(256*im2bw(I,0.8));

26 I(36,89)=256;

27

28 % Segmenting logo to separate letters

29 % Isolate M

95

30 I1 = imcrop(I, [0 0 65 128]);

31 I1 = padarray(I1, [0 128-65], 'post');

32 I1 = imresize(I1, [N M],'box');

33

34 % Add a curved and random phase if nonflat variable is set to 1

35 if nonflat == 1

36 I1 = 1.25*I1.*exp(j*(2*pi*z1/lambda)*(-(-

sqrt((x1.^2+y1.^2)/z1^2+1)+1)+N^(0.9)*pitch^2/z1^2*rand

(N,M)));

37 end

38

39 % Isolate I

40 I2 = imcrop(I, [65 0 20 128]);

41 I2 = padarray(I2, [0 64],'pre');

42 I2 = padarray(I2, [0 128-85],'post');

43 I2 = imresize(I2, [N M],'box');

44

45 % Add a curved and random phase if nonflat variable is set to 1

46 if nonflat == 1

47 I2 = 1.85*I2.*exp(j*(2*pi*z2/lambda)*(-(-

sqrt((x1.^2+y1.^2)/z2^2+1)+1)+1.2*N^(0.9)*pitch^2/z2^2*

rand(N,M)));

48 end

49

50 % Isolate T

51 I3 = imcrop(I, [85 0 128-85 128]);

52 I3 = padarray(I3, [0 84],'pre');

53 I3 = imresize(I3, [N M],'box');

54

55 % Add a curved and random phase if nonflat variable is set to 1

56 if nonflat == 1

57 I3 = I3.*exp(j*(2*pi*z3/lambda)*(-(-

sqrt((x1.^2+y1.^2)/z3^2+1)+1)+1.6*N^(0.9)*pitch^2/z3^2*

rand(N,M)));

58 end

96

59

60 % Pad outputs

61 paddingFactor = 5; % Increase this to add more padding

62 I1 = padarray(I1,[(M*paddingFactor-M)/2 (N*paddingFactor-N)/2]);

63 I2 = padarray(I2,[(M*paddingFactor-M)/2 (N*paddingFactor-N)/2]);

64 I3 = padarray(I3,[(M*paddingFactor-M)/2 (N*paddingFactor-N)/2]);

65

66 % Back Propagation of M

67 temp1 = fresnel_advance(I1,pitch,pitch,-z1,lambda);

68 temp1 = padarray(temp1(((M*paddingFactor-

M)/2+1):((M*paddingFactor-M)/2+M),((N*paddingFactor-

N)/2+1):((N*paddingFactor-N)/2+N)), [(M*paddingFactor-

M)/2 (N*paddingFactor-N)/2]);

69 % Sanity check, view forward propagated field

70 Out1 = fresnel_advance(temp1,pitch,pitch,z1,lambda);

71 Out1 = Out1/max(abs(Out1(:)));

72 figure

73 imshow(abs(Out1(((M*paddingFactor-M)/2+1):((M*paddingFactor-

M)/2+M),((N*paddingFactor-N)/2+1):((N*paddingFactor-

N)/2+N))));

74

75 % Back Propagation of I

76 temp2 = fresnel_advance(I2,pitch,pitch,-z2,lambda);

77 temp2 = padarray(temp2(((M*paddingFactor-

M)/2+1):((M*paddingFactor-M)/2+M),((N*paddingFactor-

N)/2+1):((N*paddingFactor-N)/2+N)), [(M*paddingFactor-

M)/2 (N*paddingFactor-N)/2]);

78 % Sanity check, view forward propagated field

79 Out2 = fresnel_advance(temp2,pitch,pitch,z2,lambda);

80 Out2 = Out2/max(abs(Out2(:)));

81 figure

82 imshow(abs(Out2(((M*paddingFactor-M)/2+1):((M*paddingFactor-

M)/2+M),((N*paddingFactor-N)/2+1):((N*paddingFactor-

N)/2+N))));

83

97

84 % Back Propagation of T

85 temp3 = fresnel_advance(I3,pitch,pitch,-z3,lambda);

86 temp3 = padarray(temp3(((M*paddingFactor-

M)/2+1):((M*paddingFactor-M)/2+M),((N*paddingFactor-

N)/2+1):((N*paddingFactor-N)/2+N)), [(M*paddingFactor-

M)/2 (N*paddingFactor-N)/2]);

87 % Sanity check, view forward propagated field

88 Out3 = fresnel_advance(temp3,pitch,pitch,z3,lambda);

89 Out3 = Out3/max(abs(Out3(:)));

90 figure

91 imshow(abs(Out3(((M*paddingFactor-M)/2+1):((M*paddingFactor-

M)/2+M),((N*paddingFactor-N)/2+1):((N*paddingFactor-

N)/2+N))));

92

93 % Superimpose backpropagated fields

94 tempFinal = temp1+temp2+temp3;

95

96 % Forward propagate summed field to first distance to see

emitted output

97 OutF1 = fresnel_advance(tempFinal,pitch,pitch,z1,lambda);

98 OutF1 = OutF1/max(abs(OutF1(:)));

99 figure

100 imshow(abs(OutF1(((M*paddingFactor-M)/2+1):((M*paddingFactor-

M)/2+M),((N*paddingFactor-N)/2+1):((N*paddingFactor-

N)/2+N))));

101 title(['Distance of ',num2str(z1),'m'],'FontSize',16)

102

103 % Forward propagate summed field to second distance to see

emitted output

104 OutF2 = fresnel_advance(tempFinal,pitch,pitch,z2,lambda);

105 OutF2 = OutF2/max(abs(OutF2(:)));

106 figure

107 imshow(abs(OutF2(((M*paddingFactor-M)/2+1):((M*paddingFactor-

M)/2+M),((N*paddingFactor-N)/2+1):((N*paddingFactor-

N)/2+N))));

98

108 title(['Distance of ',num2str(z2),'m'],'FontSize',16)

109

110 % Forward propagate summed field to third distance to see

emitted output

111 OutF3 = fresnel_advance(tempFinal,pitch,pitch,z3,lambda);

112 OutF3 = OutF3/max(abs(OutF3(:)));

113 figure

114 imshow(abs(OutF3(((M*paddingFactor-M)/2+1):((M*paddingFactor-

M)/2+M),((N*paddingFactor-N)/2+1):((N*paddingFactor-

N)/2+N))));

115 title(['Distance of ',num2str(z3),'m'],'FontSize',16)

116

117

118 % Save summed electric field to extract amplitude and phase

profiles

119 save('PA128_MITc_hires.mat','tempFinal');

99

RandPhase.m

This is the wrapper code used to test the effects of randomized phase. Two circles are generated at

different distances and one is given randomized phase. They are backpropagated and summed to

follow our algorithm. Then we examine the output at the circle with flat phase to see how

randomized phase affects the second circle.

1 % This code tests the effects of randomized phase added to

outputs

2

3 % Variable to show subplots

4 showsub = 1; %set to 1 to show spreading of circles

5 % Variable to test if we are varying pitch

6 varypitch = 0; %set to 1 to test pitch

7

8 % Wavelength and antenna spacing

9 lambda = 1.55e-6;

10 pitch = 9e-6;

11

12 % Changing pitch/phased array size

13 if varypitch == 1

14 % pitch = 5e-6:1e-6:15e-6;

15 % pitch = 5e-6;

16 Nsize=96:16:224;

17 end

18

19 % Output distances

20 z1 = .007;

21 z2 = 0.014:0.002:0.02;

22

23 % Randomization levels

24 sigtest=0:0.000005:0.0001;

25 sigtest=sigtest/50;

26

27 % Change randomization level if we are varying pitch

28 if varypitch == 1

100

29 sigtest = 0.00005;

30 end

31 % Holds values of our spread calculation

32 spreadCalc=zeros(length(sigtest),length(z2));

33 if varypitch == 1

34 spreadCalc = zeros(length(z2),length(pitch));

35 end

36

37

38 % Vary over pitch values if we are varying it

39 for p = 1:length(pitch)

40 index = 100;

41

42 % array dimensions

43 N=128;

44 M=128;

45

46 % Generate grid matrices of x and y positions

47 x1 = (-M/2+1)*pitch(p):pitch(p):pitch(p)*M/2;

48 y1 = (-N/2+1)*pitch(p):pitch(p):pitch(p)*N/2;

49 [x1 y1] = meshgrid(x1,y1);

50

51 % Testing with circles

52 [columnsInImage rowsInImage] = meshgrid(1:N, 1:M);

53 centerX1 = M/4;

54 centerX2 = 3*M/4;

55 centerY = N/2;

56

57 radius = M/8;

58 % First circle

59 circlePixels1 = (rowsInImage - centerY).^2 ...

60 + (columnsInImage - centerX1).^2 <= radius.^2;

61

62 I1 = double(circlePixels1);

63

101

64 % Second circle

65 circlePixels2 = (rowsInImage - centerY).^2 ...

66 + (columnsInImage - centerX2).^2 <= radius.^2;

67

68 cPixels2 = double(circlePixels2);

69

70 % Padding

71 paddingFactor = 5; % Increase this to add more padding

72 I1 = padarray(I1,[(M*paddingFactor-M)/2 (N*paddingFactor-

N)/2]);

73 % Generate grid matrices of x and y positions

74 x2 = [-

(M*paddingFactor)/2+1:1:(M*paddingFactor)/2]*pitch(p);

75 y2 = [-

(N*paddingFactor)/2+1:1:(N*paddingFactor)/2]*pitch(p);

76 [x2, y2] = meshgrid(x2,y2);

77

78 % Vary over our range of output distances

79 for l=1:length(z2)

80 disp(['Propagating ' num2str(l) ' of '

num2str(length(z2)) ' values'])

81

82 % if we want to show subplots

83 if showsub == 1

84 figure;

85 end

86 % Vary over phase randomizations

87 for k=1:length(sigtest)

88 % Add randomized phase to second circle

89 I2 =

cPixels2.*exp(j*(2*pi/lambda)*(sigtest(k)*rand(N,M)));

90 I2 = padarray(I2,[(M*paddingFactor-M)/2

(N*paddingFactor-N)/2]);

91

92 % Back propagate circles

102

93 temp1 = fresnel_advance(I1,pitch(p),pitch(p),-

z1,lambda);

94 temp2 = fresnel_advance(I2,pitch(p),pitch(p),-

z2(l),lambda);

95

96 % Superimpose back propagated fields

97 tempFinal = temp1+temp2;

98 tempFinal = padarray(tempFinal(((M*paddingFactor-

M)/2+1):((M*paddingFactor-M)/2+M),((N*paddingFactor-

N)/2+1):((N*paddingFactor-N)/2+N)), [(M*paddingFactor-

M)/2 (N*paddingFactor-N)/2]);

99

100 % Forward propagate to first circle

101 OutF1 =

fresnel_advance(tempFinal,pitch(p),pitch(p),z1,lambda);

102

103 %%%%% Get power error %%%%%

104 error = abs(OutF1).^2-abs(I1).^2;

105 if varypitch == 1

106 error = abs(error);

107 end

108

109 % Normalize Output

110 OutF1 = OutF1/max(abs(OutF1(:)));

111 OutF1=OutF1(((M*paddingFactor-

M)/2+1):((M*paddingFactor-M)/2+M),((N*paddingFactor-

N)/2+1):((N*paddingFactor-N)/2+N));

112 % Show subplot if desired

113 if showsub == 1

114 subplot(2,length(sigtest),k)

115 imshow(abs(OutF1).^2);

116 title(['Coefficient =

',num2str(sigtest(k))],'FontSize',16)

117 end

118

103

119 % Output at second circle

120 OutF2 =

fresnel_advance(tempFinal,pitch(p),pitch(p),z2(l),lambd

a);

121 OutF2 = OutF2/max(abs(OutF2(:)));

122

123 if showsub == 1

124 subplot(2,length(sigtest),k+length(sigtest))

125 imshow(error); % power error is already in power

126 title(['Error when Coefficient='

num2str(sigtest(k))],'FontSize',16)

127 end

128

129 % Calculate weighted mean std. dev. for measure of

spread

130 errorNormalized = error/sum(sum(error)); % Need the

error to be like a probabilitiy (sumsum=1) to be a

weight

131 x_center(k) = sum(sum(errorNormalized.*x2));

132 y_center(k) = sum(sum(errorNormalized.*y2));

133

134 if varypitch == 1

135 spreadCalc(l,g) = sqrt(sum(sum(((x2-

x_center(k)).^2+(y2-

y_center(k)).^2).*errorNormalized))); %Weighted Mean

Std. Deviation,

http://en.wikipedia.org/wiki/Weighted_arithmetic_mean

136 else

137 spreadCalc(k,l) = sqrt(sum(sum(((x2-

x_center(k)).^2+(y2-

y_center(k)).^2).*errorNormalized))); %Weighted Mean

Std. Deviation,

http://en.wikipedia.org/wiki/Weighted_arithmetic_mean

138 end

139 end

104

140 end

141 % Plot

142 if varypitch ~= 1

143 figure;

144 plot(sigtest,spreadCalc)

145 xlabel('Randomness')

146 ylabel('Weighted Mean Standard Deviation')

147 end

148 end

149 % Plot

150 if varypitch == 1

151 figure;

152 plot(Nsize,spreadCalc);

153 xlabel('Pitch')

154 ylabel('Weighted Mean Standard Deviation')

155 end

105

CircularPhase.m

This is the wrapper code used to test the effects of circular phase. A output shape is chosen and

circular phase can be added to the shape if desired. Then this output is propagated a range of

distances both forward and backwards. The percentage of the power that is outside the desired

phase array area (128x128) is calculated to compare the flat phase and the circular phase.

1 % This code tests the effects of circular phase added to outputs

2

3 % Variable to control output shape

4 shape = 2; %1 = M from MIT logo, 2 = circle, 3 = Gaussian,

default = 128x128 box

5 % Variable to switch between flat and circular phase

6 circular = 1; %1 to turn on circular phase front

7

8 % Wavelength and antenna spacing

9 lambda = 1.55e-6;

10 pitch = 9e-6;

11

12 % array dimensions

13 N=128;

14 M=128;

15

16 % Output distance

17 z1 = 0.028;

18 % Generate grid matrices of x and y positions

19 x1 = (-M/2+1)*pitch:pitch:pitch*M/2;

20 y1 = (-N/2+1)*pitch:pitch:pitch*N/2;

21 [x1, y1] = meshgrid(x1,y1);

22

23 % Choose output shape

24 switch shape

25 case 1

26 % Original MIT Logo (testing with just the M)

27 I = imread('MIT_logo', 'jpeg');

28 I = imresize(I,[128 128]);

106

29 I = double(256*im2bw(I,0.8));

30 I(36,89)=256;

31 I1 = imcrop(I, [0 0 65 128]);

32 I1 = padarray(I1, [0 128-65], 'post');

33 I1 = imresize(I1, [N M],'box');

34 case 2

35 % Testing with a circle

36 [columnsInImage rowsInImage] = meshgrid(1:N, 1:M);

37 centerX = 64;

38 centerY = 64;

39

40 radius = 64;

41 circlePixels = (rowsInImage - centerY).^2 ...

42 + (columnsInImage - centerX).^2 <= radius.^2;

43 I1 = double(circlePixels);

44 case 3

45 % Testing with Gaussian

46 wid = 0.2E-3; % This is the 1/e width

47 I1 = exp(-(x1.^2+y1.^2)/(wid^2));

48 otherwise

49 % Testing with box

50 I1 = zeros(N,M)+256;

51 end

52

53 % Circular phase front with radius of z1 if user wants it

54 if circular == 1

55 I1 = I1.*exp(j*(2*pi*z1/lambda)*(-(-

sqrt((x1.^2+y1.^2)/z1^2+1)+1)));

56 end

57

58 % Padding

59 paddingFactor = 5; % Increase this to add more padding

60 I1 = padarray(I1,[(M*paddingFactor-M)/2 (N*paddingFactor-N)/2]);

61

62 % Plot our distrubution with no propagation

107

63 figure

64 subplot(2,1,1)

65 imagesc(abs(I1))

66 title('No prop - Abs()')

67 colorbar

68 subplot(2,1,2)

69 imagesc(angle(I1))

70 title('No prop - Phase()')

71 colorbar

72

73 % Back and forward propagate distances

74 z = [-(2*z1):0.0035:(2*z1)]*1;

75 disp(['Propagating ' num2str(length(z)) ' values'])

76 % Values of percentage power lost outside desired area

77 PowerLoss = zeros(length(z),1);

78

79 % Vary over our distances

80 for k=1:length(z)

81 % Propagate by z(k)

82 temp = fresnel_advance(I1,pitch,pitch,z(k),lambda);

83 % Normalize

84 temp = temp/max(abs(temp(:)));

85 % Show propagated field

86 figure;

87 imshow(abs(temp));

88 % Calculate percentage of power lost outside desired PA area

89 PowerLoss(k)=(sum(sum(abs(temp).^2)))-

sum(sum(abs(temp(((M*paddingFactor-

M)/2+1):((M*paddingFactor-M)/2+M),((N*paddingFactor-

N)/2+1):((N*paddingFactor-N)/2+N))).^2));

90 PowerLoss(k)=PowerLoss(k)/(sum(sum(abs(temp).^2)));

91 PowerLoss(k)=100*PowerLoss(k);

92 title(['Propagation of ' num2str(z(k)) ' m '],'FontSize',26)

93 end

94

108

95 % Plot

96 figure;

97 plot(z,PowerLoss);

98 title('Percent Power Loss at Various Propagation

Distances','FontSize',24);

99 xlabel('Propagation Distance','FontSize',24);

100 ylabel('Percent Power Loss','FontSize',24);

109

NoiseAnalysis.m

This code adds a random Gaussian noise to the phase or amplitude profiles of the summed

backpropagated outputs. Then it forward propagates this field and stores the outputs. An inner

product is calculated between these stored fields and the resultant field when no noise is added to

calculate an overlap between the results.

1 % This code tests the effects of amplitude or phase noise on

forward

2 % propagation

3

4 % Wavelength & antenna spacing

5 lambda = 1.55e-6;

6 pitch = 9e-6;

7

8 % Array dimensions

9 N=128;

10 M=128;

11

12 % Output distances

13 z1 = 0.007;

14 z2 = 0.014;

15 z3 = 0.028;

16

17 % Generate grid matrices of x and y positions

18 x1 = (-M/2+1)*pitch:pitch:pitch*M/2;

19 y1 = (-N/2+1)*pitch:pitch:pitch*N/2;

20 [x1 y1] = meshgrid(x1,y1);

21

22 % MIT logo

23 I = imread('MIT_logo', 'jpeg');

24 I = imresize(I,[128 128]);

25 I = double(256*im2bw(I,0.8));

26 I(36,89)=256;

27

110

28 % Segmenting Logo

29 % M output

30 I1 = imcrop(I, [0 0 65 128]);

31 I1 = padarray(I1, [0 128-65], 'post');

32 I1 = imresize(I1, [N M],'box');

33 I1 = 1.25*I1.*exp(j*(2*pi*z1/lambda)*(-(-

sqrt((x1.^2+y1.^2)/z1^2+1)+1)+N*pitch^2/z1^2*rand(N,M)))

;

34

35 % I output

36 I2 = imcrop(I, [65 0 20 128]);

37 I2 = padarray(I2, [0 64],'pre');

38 I2 = padarray(I2, [0 128-85],'post');

39 I2 = imresize(I2, [N M],'box');

40 I2 = 1.85*I2.*exp(j*(2*pi*z2/lambda)*(-(-

sqrt((x1.^2+y1.^2)/z2^2+1)+1)+1.2*N*pitch^2/z2^2*rand(N,

M)));

41

42 % T output

43 I3 = imcrop(I, [85 0 128-85 128]);

44 I3 = padarray(I3, [0 84],'pre');

45 I3 = imresize(I3, [N M],'box');

46 I3 = I3.*exp(j*(2*pi*z3/lambda)*(-(-

sqrt((x1.^2+y1.^2)/z3^2+1)+1)+1.6*N*pitch^2/z3^2*rand(N,

M)));

47

48 % Padding

49 paddingFactor = 5; % Increase this to add more padding

50 I1 = padarray(I1,[(M*paddingFactor-M)/2 (N*paddingFactor-N)/2]);

51 I2 = padarray(I2,[(M*paddingFactor-M)/2 (N*paddingFactor-N)/2]);

52 I3 = padarray(I3,[(M*paddingFactor-M)/2 (N*paddingFactor-N)/2]);

53

54 % Back propagation of M

55 temp1 = fresnel_advance_FoundOnline(I1,pitch,pitch,-z1,lambda);

111

56 temp1 = padarray(temp1(((M*paddingFactor-

M)/2+1):((M*paddingFactor-M)/2+M),((N*paddingFactor-

N)/2+1):((N*paddingFactor-N)/2+N)), [(M*paddingFactor-

M)/2 (N*paddingFactor-N)/2]);

57 Out1 = fresnel_advance_FoundOnline(temp1,pitch,pitch,z1,lambda);

58 Out1 = Out1/max(abs(Out1(:)));

59 figure

60 imshow(abs(Out1(((M*paddingFactor-M)/2+1):((M*paddingFactor-

M)/2+M),((N*paddingFactor-N)/2+1):((N*paddingFactor-

N)/2+N))));

61

62 % Back propgation of I

63 temp2 = fresnel_advance_FoundOnline(I2,pitch,pitch,-z2,lambda);

64 temp2 = padarray(temp2(((M*paddingFactor-

M)/2+1):((M*paddingFactor-M)/2+M),((N*paddingFactor-

N)/2+1):((N*paddingFactor-N)/2+N)), [(M*paddingFactor-

M)/2 (N*paddingFactor-N)/2]);

65 Out2 = fresnel_advance_FoundOnline(temp2,pitch,pitch,z2,lambda);

66 Out2 = Out2/max(abs(Out2(:)));

67 figure

68 imshow(abs(Out2(((M*paddingFactor-M)/2+1):((M*paddingFactor-

M)/2+M),((N*paddingFactor-N)/2+1):((N*paddingFactor-

N)/2+N))));

69

70 % Back propagation of T

71 temp3 = fresnel_advance_FoundOnline(I3,pitch,pitch,-z3,lambda);

72 temp3 = padarray(temp3(((M*paddingFactor-

M)/2+1):((M*paddingFactor-M)/2+M),((N*paddingFactor-

N)/2+1):((N*paddingFactor-N)/2+N)), [(M*paddingFactor-

M)/2 (N*paddingFactor-N)/2]);

73 Out3 = fresnel_advance_FoundOnline(temp3,pitch,pitch,z3,lambda);

74 Out3 = Out3/max(abs(Out3(:)));

75 figure

112

76 imshow(abs(Out3(((M*paddingFactor-M)/2+1):((M*paddingFactor-

M)/2+M),((N*paddingFactor-N)/2+1):((N*paddingFactor-

N)/2+N))));

77

78 % Variation of phase and amplitude noise

79 phasenoise = 0:pi/32:pi/2;%[0,pi/16,pi/8,pi/4];

80 ampnoise = 0:0.05:1;%[0,0.05,0.1,0.5];

81 % Holds calculations

82 OutM_phase = zeros(M,N,length(phasenoise));

83 OutI_phase = zeros(M,N,length(phasenoise));

84 OutT_phase = zeros(M,N,length(phasenoise));

85 OutM_amp = zeros(M,N,length(ampnoise));

86 OutI_amp = zeros(M,N,length(ampnoise));

87 OutT_amp = zeros(M,N,length(ampnoise));

88

89 % Superimposing back propagations

90 tempF = temp1+temp2+temp3;

91 tempF = tempF(((M*paddingFactor-M)/2+1):((M*paddingFactor-

M)/2+M),((N*paddingFactor-N)/2+1):((N*paddingFactor-

N)/2+N));

92 % Test over Phase noise variations

93 for k=1:length(phasenoise)

94 % Add noise to phases of original summed field

95 tempFinal = tempF.*exp(phasenoise(k)*randn(M,N)); %Gaussian

Phase Noise Analysis

96 tempFinal = padarray(tempFinal,[(M*paddingFactor-M)/2

(N*paddingFactor-N)/2]);

97

98 % Forward propagate to M

99 OutF1 =

fresnel_advance_FoundOnline(tempFinal,pitch,pitch,z1,lam

bda);

100 OutF1 = OutF1/max(abs(OutF1(:)));

101 % Forward propagate to I

113

102 OutF2 =

fresnel_advance_FoundOnline(tempFinal,pitch,pitch,z2,lam

bda);

103 OutF2 = OutF2/max(abs(OutF2(:)));

104 % Forward propagate to T

105 OutF3 =

fresnel_advance_FoundOnline(tempFinal,pitch,pitch,z3,lam

bda);

106 OutF3 = OutF3/max(abs(OutF3(:)));

107

108 % Hold forward propagated fields

109 OutM_phase(:,:,k)=OutF1(((M*paddingFactor-

M)/2+1):((M*paddingFactor-M)/2+M),((N*paddingFactor-

N)/2+1):((N*paddingFactor-N)/2+N));

110 OutI_phase(:,:,k)=OutF2(((M*paddingFactor-

M)/2+1):((M*paddingFactor-M)/2+M),((N*paddingFactor-

N)/2+1):((N*paddingFactor-N)/2+N));

111 OutT_phase(:,:,k)=OutF3(((M*paddingFactor-

M)/2+1):((M*paddingFactor-M)/2+M),((N*paddingFactor-

N)/2+1):((N*paddingFactor-N)/2+N));

112 end

113

114 for k=1:length(ampnoise)

115 % Add noise to amplitude of original summed field

116 tempFinal = tempF.*(1+ampnoise(k)*randn(M,N)); %Gaussian Amp

Noise Analysis

117 tempFinal = padarray(tempFinal,[(M*paddingFactor-M)/2

(N*paddingFactor-N)/2]);

118

119 % Forward propagate to M

120 OutF1 =

fresnel_advance_FoundOnline(tempFinal,pitch,pitch,z1,lam

bda);

121 OutF1 = OutF1/max(abs(OutF1(:)));

122

114

123 % Forward propagate to I

124 OutF2 =

fresnel_advance_FoundOnline(tempFinal,pitch,pitch,z2,lam

bda);

125 OutF2 = OutF2/max(abs(OutF2(:)));

126

127 % Forward propagate to T

128 OutF3 =

fresnel_advance_FoundOnline(tempFinal,pitch,pitch,z3,lam

bda);

129 OutF3 = OutF3/max(abs(OutF3(:)));

130

131 % Hold forward propagated fields

132 OutM_amp(:,:,k)=OutF1(((M*paddingFactor-

M)/2+1):((M*paddingFactor-M)/2+M),((N*paddingFactor-

N)/2+1):((N*paddingFactor-N)/2+N));

133 OutI_amp(:,:,k)=OutF2(((M*paddingFactor-

M)/2+1):((M*paddingFactor-M)/2+M),((N*paddingFactor-

N)/2+1):((N*paddingFactor-N)/2+N));

134 OutT_amp(:,:,k)=OutF3(((M*paddingFactor-

M)/2+1):((M*paddingFactor-M)/2+M),((N*paddingFactor-

N)/2+1):((N*paddingFactor-N)/2+N));

135 end

136

137

138 % Inner Product

139 innerproductM_phase=zeros(length(phasenoise),1);

140 innerproductI_phase=zeros(length(phasenoise),1);

141 innerproductT_phase=zeros(length(phasenoise),1);

142 innerproductM_amp=zeros(length(ampnoise),1);

143 innerproductI_amp=zeros(length(ampnoise),1);

144 innerproductT_amp=zeros(length(ampnoise),1);

145 for k=1:length(phasenoise)

146 % Calculate inner product for fields altered by phase noise

115

147

innerproductM_phase(k)=sum(sum(OutM_phase(:,:,k).*conj(O

utM_phase(:,:,1))))/sqrt(sum(sum(OutM_phase(:,:,k).*conj

(OutM_phase(:,:,k))))*sum(sum(OutM_phase(:,:,1).*conj(Ou

tM_phase(:,:,1)))));

148

innerproductI_phase(k)=sum(sum(OutI_phase(:,:,k).*conj(O

utI_phase(:,:,1))))/sqrt(sum(sum(OutI_phase(:,:,k).*conj

(OutI_phase(:,:,k))))*sum(sum(OutI_phase(:,:,1).*conj(Ou

tI_phase(:,:,1)))));

149

innerproductT_phase(k)=sum(sum(OutT_phase(:,:,k).*conj(O

utT_phase(:,:,1))))/sqrt(sum(sum(OutT_phase(:,:,k).*conj

(OutT_phase(:,:,k))))*sum(sum(OutT_phase(:,:,1).*conj(Ou

tT_phase(:,:,1)))));

150 end

151 for k=1:length(ampnoise)

152 % Calculate inner product for fields altered by amplitude

noise

153

innerproductM_amp(k)=sum(sum(OutM_amp(:,:,k).*conj(OutM_

amp(:,:,1))))/sqrt(sum(sum(OutM_amp(:,:,k).*conj(OutM_am

p(:,:,k))))*sum(sum(OutM_amp(:,:,1).*conj(OutM_amp(:,:,1

)))));

154

innerproductI_amp(k)=sum(sum(OutI_amp(:,:,k).*conj(OutI_

amp(:,:,1))))/sqrt(sum(sum(OutI_amp(:,:,k).*conj(OutI_am

p(:,:,k))))*sum(sum(OutI_amp(:,:,1).*conj(OutI_amp(:,:,1

)))));

155

innerproductT_amp(k)=sum(sum(OutT_amp(:,:,k).*conj(OutT_

amp(:,:,1))))/sqrt(sum(sum(OutT_amp(:,:,k).*conj(OutT_am

p(:,:,k))))*sum(sum(OutT_amp(:,:,1).*conj(OutT_amp(:,:,1

)))));

156 end

116

157

158 % Plot inner products due to amplitude/phase noise

159 figure;

160 plot(phasenoise,abs(innerproductM_phase));

161 title(['Inner Product of M due to Phase Noise'],'FontSize',16);

162 figure;

163 plot(phasenoise,abs(innerproductI_phase));

164 title(['Inner Product of I due to Phase Noise'],'FontSize',16);

165 figure;

166 plot(phasenoise,abs(innerproductT_phase));

167 title(['Inner Product of T due to Phase Noise'],'FontSize',16);

168 figure;

169 plot(ampnoise,abs(innerproductM_amp));

170 title(['Inner Product of M due to Amplitude

Noise'],'FontSize',16);

171 figure;

172 plot(ampnoise,abs(innerproductI_amp));

173 title(['Inner Product of I due to Amplitude

Noise'],'FontSize',16);

174 figure;

175 plot(ampnoise,abs(innerproductT_amp));

176 title(['Inner Product of T due to Amplitude

Noise'],'FontSize',16);

177

178 % Plots

179 figure;

180 set(gca,'FontSize', 16);

181 plot(phasenoise,abs(innerproductM_phase),'r');

182 hold on

183 plot(phasenoise,abs(innerproductI_phase),'g');

184 hold on

185 plot(phasenoise,abs(innerproductT_phase),'b');

186 xlabel('Standard Deviation of Noise');

187 ylabel('Percentage Overlap');

188 leg1 = legend('M Output', 'I Output', 'T Output');

117

189 hold off

190 % Plots

191 figure;

192 set(gca,'FontSize', 16);

193 plot(ampnoise,abs(innerproductM_amp),'r');

194 hold on

195 plot(ampnoise,abs(innerproductI_amp),'g');

196 hold on

197 plot(ampnoise,abs(innerproductT_amp),'b');

198 xlabel('Standard Deviation of Noise');

199 ylabel('Percentage Overlap');

200 leg2 = legend('M Output', 'I Output', 'T Output');

201 hold off

118

CouplerRatioCalc.m

This code calculates the required coupling coefficients for the row and unit couplers. It follows

the algorithm explained earlier that uses a system of equations to calculate the coefficients that

are dependent on previous coefficients within the row or column.

1 % This code calculates the required coupling coefficients needed

to achieve

2 % the desired amplitudes

3

4 % Get phased array electric field

5 load('FinalPhasedArray128.mat');

6 [r c]=size(tempF);

7 M = 128;

8 N = 128;

9 tempF=tempFinal(((r-M)/2+1):((r-M)/2+M),((c-N)/2+1):((c-

N)/2+N));

10 % Calculate distribution of required power for each antenna

11 PowerDist=abs(tempF).^2;

12

13 [rows,cols]=size(tempF);

14 % Calculate column vector of required power per row

15 TotalProws=sum(PowerDist,2);

16 % Calculate total power required for entire system

17 TotalP=sum(TotalProws);

18

19 % First row ratio will just be the required power for that row

divided by the

20 % total power of the system

21 Rowratios=zeros(rows,1);

22 Rowratios(1)=TotalProws(1)/TotalP;

23

24 % For loop to calculate rest of row ratios

25 for iter=2:rows

26 % TotalP(1-r(1))(1-r(2))...(1-r(i-1))r(i) = P(i), calculate

r(i)

119

27 Rowratios(iter)=TotalProws(iter)/TotalP;

28 for k=1:iter-1

29 Rowratios(iter)=Rowratios(iter)/(1-Rowratios(k));

30 end

31 end

32

33 Colratios=zeros(rows,cols);

34 % For loop to calculate individual antenna coupling ratios

35 for rowiter=1:rows

36 % TotalP(1-r(1))(1-r(2))...(1-r(i-1))r(i) = P(i), calculate

r(i)

37

Colratios(rowiter,1)=PowerDist(rowiter,1)/TotalProws(rowit

er);

38 for coliter=2:rows

39

Colratios(rowiter,coliter)=PowerDist(rowiter,coliter)/Tota

lProws(rowiter);

40 for k=1:coliter-1

41

Colratios(rowiter,coliter)=Colratios(rowiter,coliter)/(1-

Colratios(rowiter,k));

42 end

43 end

44 end

