

Reactive Power Support Capability of Flyback Micro-

inverter with Pseudo-dc Link

by

Edwin Fonkwe Fongang

MSc, Masdar Institute of Science and Technology (2013)

Submitted to the Department of Electrical Engineering and Computer

Science

in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2015

© Massachusetts Institute of Technology, MMXV. All rights reserved.

Author__

Department of Electrical Engineering and Computer Science

May 20, 2015

Certified by__

James L. Kirtley

Professor of Electrical Engineering

Thesis Supervisor

Accepted by__

Professor Leslie A. Kolodziejski

Chair of the Department Committee on Graduate Students

Reactive Power Support Capability of Flyback Micro-inverter with Pseudo-dc

Link

by

Edwin Fonkwe Fongang

Submitted to the Department of Electrical Engineering and Computer Science

On May 20, 2015, in partial fulfillment of the

requirements for the degree of

Master of Science

Abstract

The flyback micro-inverter with a pseudo-dc link has traditionally been used for injecting only

active power in to the power distribution network. In this thesis, a new approach will be proposed

to control the micro-inverter to supply reactive power to the grid which is important for grid

voltage support. Circuit models and mathematical analyses are developed to explain underlying

issues such as harmonic distortion, and power losses, which can limit the reactive power support

capability. A novel current decoupling circuit is proposed to effectively mitigate zero crossing

distortion. Simulations and experimental results are provided to support the theoretical

propositions.

Thesis Supervisor: James L. Kirtley

Title: Professor of Electrical Engineering

-5-

Acknowledgements

I would like to thank in a special way my research advisor Professor James L Kirtley for accepting

me in to his research group and for providing invaluable guidance in the course of this work. I also

appreciate his jovial countenance which has certainly helped make my MIT experience a great

one.

I am grateful to all the members of my research group for answering my questions and for their

friendship; also, the members of the Laboratory for Electromagnetic and Electronic Systems

(LEES) deserve appreciation for I have usually found a helping hand when I called out for help. I

must also thank the Skolkovo foundation for funding my research assistantship. Gratitude is

expressed to my former advisor Dr. Michael Weidong Xiao, whom I worked with two years ago.

Some of the ideas which I have explored in this work initially sparked up in my mind while I was

his student at Masdar Institute of Science and Technology, Abu Dhabi.

I am forever thankful to my family. Special thanks go to my dad, Papa Joe, my mum, Mama Joe,

and to my siblings Sandrine, Fritz, Horace, and their respective families. I also cannot forget the

love and warmth I have found here in the family of Mr. & Mrs. Cornelius Bella. Thanks for the

moral support, and for all the delicious food.

Finally, thank you LORD for the strength to accomplish this work.

-7-

List of figures

Fig. 1. Inverter system coupled to the grid ... 14

Fig. 2. Schema of FMICpseudo-dc ... 20

Fig. 3. Equivalent circuit for discussion on current distortion .. 21

Fig. 4. Resulting current source .. 22

Fig. 5. Resultant equivalent circuit for Is = 0 .. 23

Fig. 6. iLf during a full period .. 25

Fig. 7. iLf during the period when Is = 0 .. 26

Fig. 8. Experimental waveforms to illustrate distortion around grid zero-crossing 26

Fig. 9. Zoom-in to illustrate distortion around zero-crossing ... 27

Fig. 10. Photo of FMICpseudo-dc prototype .. 27

Fig. 11. Theoretical and experimental iLf with adjusted initial conditions around grid voltage zero-

crossing ... 28

Fig. 12. Modified FMICpseudo-dc with synchronous rectifier .. 28

Fig. 13. Waveforms from FMICpseudo-dc with synchronous rectifier .. 29

Fig. 14. Simulation waveforms for FMICpseudo-dc with synchronous rectifier at 80VAR leading

... 30

Fig. 15. FMICpseudo-dc with synchronous rectifier injecting 80VAR leading 30

Fig. 16. Plot of THD vs VAR (leading) for FMICpseudo-dc with synchronous rectifier 31

Fig. 17. Hypothetical waveforms with simply shifting iLm .. 32

Fig. 18. Hypothetical waveforms with shifting iLm and reflecting about time axis at grid zero-

crossings .. 33

Fig. 19. FMICpseudo-dc with current decoupling .. 34

Fig. 20. Details of block 1 ... 34

Fig. 21. Details of block 2 ... 34

Fig. 22. Implementation of bi-directional switch.. 35

-8-

Fig. 23. Simulation waveforms for FMICpseudo-dc with current decoupling circuit 36

Fig. 24. Simulation waveforms for FMICpseudo-dc without current decoupling circuit 37

Fig. 25. Schema of FMICpseudo-dc ... 42

Fig. 26. Primary winding current in CCM .. 45

Fig. 27. Equivalent circuit used to compute input rms currents ... 49

Fig. 28. Thermal model for estimating junction temperature. .. 54

Fig. 29. Experimental setup .. 55

Fig. 30. Plot of efficiency vs output power for theoretical and experimental models 56

Fig. 31. Bar chart showing distribution of the losses by category. ... 56

Fig. 32. Experimental waveforms showing Vin (yellow), ipv (cyan), Pin (red), vg (pink), iLf (green).

... 56

Fig. 33. Schema of FMICpseudo-dc for DCM analysis ... 60

Fig. 34. Equivalent circuit for power factor discussion .. 61

Fig. 35. Experimental waveforms for FMICpseudo-dc operating in DCM 63

Fig. 36. Comparison of theoretical and measured power factor for varying Cf 63

Fig. 37. Measured power factor as a function of changing filter inductor Lf 64

-9-

List of tables

Table I. List of symbols used in chapter 2 .. 18

Table II. FMICPseudo-dc parameters for current-distortion simulation 31

Table III. FMICPseudo-dc parameters for current distortion simulation 36

Table IV. Comments on additional components and controls .. 39

Table V. List of symbols used in chapter 3 .. 42

Table VI. FMICPseudo-dc parameters for loss modeling .. 55

Table VII. FMICPseudo-dc parameters for power factor evaluation in DCM 62

-11-

Table of Contents
Acknowledgements ... 5

List of figures .. 7

List of tables .. 9

1 Introduction ... 13

1.1 The growth of solar photovoltaic energy ... 13

1.2 Micro-inverters and reactive power ... 13

1.3 Thesis scope and organization.. 15

2 Current Distortion around Grid Zero-Volt Crossing in Flyback AC Module with a Pseudo-DC

Link ... 17

2.1 Introduction .. 17

2.2 Current distortion ... 20

2.2.1 FMICpseudo-dc without synchronous rectifier .. 20

2.2.2 FMICpseudo-dc with synchronous rectifier ... 28

2.3 Current decoupling circuit .. 33

2.3.1 Simulation of FMICpseudo-dc with current decoupling circuit 35

2.3.2 Practical design considerations: Vbuffer, circuit complexity, and impact on losses . 37

3 A Powertrain Loss Model for the Flyback AC Module with Pseudo-dc Link in Continuous

Conduction Mode.. 41

3.1 Introduction .. 41

3.2 Power loss modeling in CCM .. 45

3.2.1 Conduction losses ... 45

3.2.2 Switching losses .. 51

3.2.3 Transformer core loss ... 52

3.2.4 Leakage inductance ... 53

3.2.5 Thermal model .. 54

-12-

3.3 Experimental evaluation ... 54

3.4 Conclusion .. 57

4 An Analysis of Displacement Power Factor in the Flyback AC Module with Current-

Unfolding in DCM .. 59

4.1 Introduction .. 59

4.2 Design for open loop operation (DCM) ... 59

4.3 Equivalent circuit model and power factor prediction ... 61

4.4 Comparison with experimental results ... 62

4.4.1 Changing filter capacitance, Cf ... 62

4.4.2 Changing filter inductance, Lf... 64

4.5 Conclusion .. 64

5 Conclusion and Future Work .. 65

6 Appendix A ... 67

7 Appendix B ... 71

 Main file (main.c) .. 71

 Initialization functions ... 77

 Interrupt sub-routines ... 87

8 Bibliography ... 101

-13-

Chapter 1

1 Introduction

1.1 The growth of solar photovoltaic energy

Globally, new solar photovoltaic (PV) energy installations grew by 38.4 GW by the end of 2013

[1] to a cumulative 138.9GW of installed PV capacity. Other estimates put the additional installed

capacity in 2014 at 40.8GW [2] and predict 57GW of global solar PV demand in 2015 [3]. In fact,

solar PV is the fastest growing renewable energy source by installed capacity after hydro and wind

power [1]. The main reason for increased PV deployment, and indeed all forms of renewable

energy sources, lies in the established fact that the use of conventional carbon-based fuels by our

societies is driving up the atmospheric carbon dioxide levels and causing global climate change.

The IEA suggests that 27% of total global electricity generation capacity should come from solar

in the long term (by 2050) [4]. To put this ambition in to perspective, the Energy Information

Administration estimates that the global electricity installed capacity is greater than 5.54TW [5].

Thus global solar PV installed capacity stands at about 2.5%. A huge growth of this resource is

therefore expected in the future.

1.2 Micro-inverters and reactive power

AC modules, also known as micro-inverters (MIC), are grid-interactive converters with power

ratings generally less than 500W [6]. Compared to traditional centralized inverters, the module-

converter integration provides a parallel configuration and independent operation of each

photovoltaic (PV) panel. The individual maximum power point tracking (MPPT) algorithm allows

1.2 Micro-inverters and reactive power

-14-

local optimization and reduces power losses that result from PV module mismatch and partial

shading [7, 8]. Furthermore, the parallel structure of MIC helps prevent the single point failure

mechanism, and increases the generation stability [9]. Modeling and analytical studies have

predicted the energy yield improvement when the MIC topologies are widely applied to PV power

systems [10].

The IEEE Standard 1547 [11] prohibits the active regulation of the voltage at the point of common

coupling by any distributed resource (DR) rated at or less than 60MVA. However, as evidenced

by the Smart Grid Initiative [12], there is growing anticipation that this will change in the near

future and consumers will be allowed to provide ancillary utility grid services such as grid voltage

support. To understand the importance of reactive power for grid voltage support, consider the

diagram in Fig. 1.

Inverter

Grid Coupling impedance

Fig. 1. Inverter system coupled to the grid

To a first order approximation [13], the difference between the grid and inverter voltages depends

essentially on the reactive power when the power angle is small and the coupling impedance is

mostly inductive, as shown in equation (1.1).

Q E V

V X

−
≈ (1.1)

While it is well-known that traditional centralized inverters can be controlled for harmonics and

voltage support functions [14], the research on micro-inverters has generally not addressed these

possibilities. The number of micro-inverters is on the increase, with an estimated 3GW of installed

capacity in 2014 [15]. Therefore there is a significant and as yet untapped potential for these

devices to contribute to the grid ancillary services such as reactive power. The situation is even

more interesting if one considers microgrids which generally have limited actuators for

maintaining power quality that is acceptable by traditional grid standards.

1. Introduction

-15-

1.3 Thesis scope and organization

The flyback with a pseudo-dc link (FMICpseudo-dc) is a single phase MIC topology that has

received a lot of attention in the research community [6, 9, 16-20]. It is attractive because of its

relatively low component count which offers the possibilities of high power density, lower losses,

and reliability [6, 21]. This topology can operate in discontinuous conduction mode (DCM) [17,

18, 20] as well as in continuous conduction mode (CCM) [9, 16, 19]. It is suitable for use with (but

not limited to) low input voltages in the range 20V to 55V.

As it will be shown in the first half of chapter 2, there is a need for improved modeling of the

converter because of the observations of current distortion around the grid zero-volt crossing [19].

This can limit the amount of reactive power that can be injected in to the grid while maintaining

acceptable harmonic distortion levels. Addressing current distortion is important because the IEEE

Standard 1547 [11] sets an upper limit on the total demand distortion to 5% for distributed

resources supplying linear loads. Therefore circuit models and mathematical analysis will be

developed to explain the grid zero-volt crossing phenomenon and mitigation techniques will be

examined. Experimental results will also be shown.

In the second half of chapter 2, another contribution of this work will be to show how the device

can be controlled to inject reactive power which is important for future grid voltage support.

Simulation and experimental results are provided. A current decoupling circuit is proposed to help

mitigate the zero-crossing distortion problem when the converter is operated as a controlled

reactive power source.

Furthermore, it has been shown in previous work that the converter operation in CCM can have

efficiency improvements over the DCM operating region [19]. However, to the author’s

knowledge, a detailed and compact power loss model does not yet exist for this converter in CCM.

In chapter 3 of this thesis a power loss model for the FMICpseudo-dc operating in CCM is

developed. The theoretical model is compared with experimental results.

In addition, when the converter operates in DCM [17, 18, 20], in which the current injection is an

open loop system, it has been observed that the converter power factor will vary with the

parameters of the output CL filter [22]. This phenomenon will be explained with a circuit model

and relevant equations. Experimental verification will be used to support the theoretical analysis.

1.3 Thesis scope and organization

-16-

It should be noted that closed-loop controller design for the FMICpseudo-dc in CCM is necessary

to shape the output current appropriately. Since this has been accomplished in [9, 16, 19], it is not

addressed in this thesis.

-17-

Chapter 2

2 Current Distortion around Grid Zero-Volt

Crossing in Flyback AC Module with a

Pseudo-DC Link

2.1 Introduction

n the operation of the flyback micro-inverter with a pseudo-dc link (FMICpseudo-dc), some

observations have been made in the literature on the distortion of the grid-injected current

around the grid voltage zero-crossings. This phenomenon can be especially observed in [19]

for a an FMICpseudo-dc and in [23] for a buck converter. This chapter proposes a theoretical

explanation for this phenomenon based on Fourier analysis. It is argued that some distortion is

inevitable. An attempt is made to alleviate this distortion by including a synchronous rectifier in

to the converter topology.

With the addition of the synchronous rectifier, the converter can operate with bi-directional power

flow. Taking advantage of this possibility, it is attempted to control the inverter to inject reactive

power in to the grid by injecting a current which is out of phase with the grid-voltage. Notching

occurs in the injected current which negatively impacts the total harmonic distortion (THD) as it

will be seen from the experimental results which are provided to support the theoretical analysis,

and simulations. Unless otherwise stated, all symbols used in this chapter are defined in Table I.

I

2.1 Introduction

-18-

Table I. List of symbols used in chapter 2

Symbol Definition

Cf Output filter capacitor

Ciss,Q2 Q2 switch input capacitance

Cpv Input capacitor

D Duty cycle of primary-side flyback switch

d Instantaneous duty cycle in discontinuous conduction mode

D1 1 – D

dpk Peak duty cycle in discontinuous conduction mode

fg Grid frequency

fsw Switching frequency

h Subscript used to represent the harmonic order (harmonics of grid frequency)

I1,rms, I2,rms Primary and secondary winding rms current respectively.

iCf Cf filter capacitor current

id Diode current

id,avg Average diode current

iLf Grid-injected current

iLf,ac AC component of ‘folded’ iLf waveform

iLf,dc DC component of ‘folded’ iLf waveform

ILf,pk Peak grid-injected current

iLm Magnetizing inductance current

ILm,avg(t) Average magnetizing inductance current during a switching period.

iprim or i1 Transformer primary winding current

iprim,pk Transformer primary winding peak current

ipv PV current

Is Equivalent current source

Is,ac AC component of the equivalent current source

Is,dc DC component of current source

Is,rms RMS value of equivalent current source

isec Secondary winding current

isync Synchronous rectifier current

KI Controller integral term

KP Controller proportional term

2. Current Distortion around Grid Zero-Volt Crossing in Flyback AC Module with a Pseudo-

DC Link

-19-

Lf Output filter inductor

Llk Leakage inductance

Lm Magnetizing inductance

N Number of turns in primary winding

n or n2/n1 Secondary-to-primary transformer turns ratio

Pac(t) Instantaneous grid-injected power

Pavg Average grid-injected power

Ps(t) Instantaneous equivalent current source power

RCf Filter capacitor ESR

RLf Filter inductor ESR

Rprim Primary winding resistance

Rpv Dynamic PV resistance

RQ1, RQ2 On-resistance of Q1 and Q2 respectively

Rsec Secondary winding resistance

RT Resistance of output diode

Runfolder On-resistance of the unfolder switches

Thl Grid voltage half-period

tHL Fall time for switching loss computation

tLH Rise time for switching loss computation

Tsw Switching period

vCf Filter capacitor voltage

vCpv Voltage across input capacitor

VF Forward voltage drop of output diode

vg Instantaneous grid voltage

Vg,pk Peak grid voltage

Vg,rms RMS value of grid voltage

vinv Flyback pseudo-dc link voltage

VPV PV open circuit voltage

XCf Magnitude of impedance due to Cf

XLf Magnitude of impedance due to Lf

ωg Angular frequency of grid voltage

2.2 Current distortion

-20-

2.2 Current distortion

2.2.1 FMICpseudo-dc without synchronous rectifier

The issue of current distortion is important for distributed resources because the quality of the grid-

injected current will affect the quality of the grid voltage. As such, the IEEE standard. 1547 [11]

sets an upper limit of 5% on the total demand distortion for distributed resources supplying linear

loads.

In the FMICpseudo-dc, distortion in the grid-injected current can arise from two main sources:

switching harmonics that are not completely filtered out; and the inability of the injected current

to faithfully match a non-distorted sinusoidal reference as a result of component physical

limitations and/or controller limitations. From a design perspective, the combination of switching

frequency and output filter can be chosen appropriately. Therefore, it is the latter cause of

distortion (component/controller limitations) which is of interest in this section. A diagram of the

FMICpseudo-dc is shown in Fig. 2.

Q1
Cpv

Tx

Dout
Lf

vg

RLf

Lm

n1:n2

vCpv

iLm
iLf

vCf

ipv

iprim

U1 U3

U4 U2

iCf

RCpv

Rprim isec

Cf

RCf

ifld

Fig. 2. Schema of FMICpseudo-dc

At this point, it is worth mentioning briefly how the converter operates. The switches U1 – U4

constitute what is referred to as the ‘current-unfolding circuit’. The switch Q1 is the main actively

switched component. The flyback output diode is Dout. The traditional operation of the converter

is briefly explained as follows. Q1 is switched such that a full-wave rectified current with a

sinusoidal envelop is produced in the primary and secondary windings of the flyback transformer

Tx. These currents iprim and isec, respectively, are said to be ‘folded’ (meaning they are full-wave

rectified waveforms). The current-unfolding unit is synchronized with the grid voltage such that

during the positive grid voltage half cycle, switches U1 and U2 are turned on, while U3 and U4

2. Current Distortion around Grid Zero-Volt Crossing in Flyback AC Module with a Pseudo-

DC Link

-21-

are turned on during the negative half cycle. Thus, the current-unfolder circuit produces a

sinusoidal grid-injected current iLf that is in phase with the grid voltage in the unity power factor

case.

For the purpose of the discussion in this section, an equivalent circuit will be developed based on

the circuit in Fig. 2. In the equivalent circuit, shown in Fig. 3, the flyback is replaced with a current

source Is. Since, the role of the current-unfolding circuit (U1 – U4) is to always present a positive

voltage to the flyback’s output, it is now ignored in the equivalent circuit, and the grid is made to

appear as a full-wave rectified voltage source. The switching frequency of the FMICpseudo-dc is

generally orders of magnitude higher than the grid frequency. Therefore in the time-scale of

interest (grid period), the high frequency dynamics are ignored. Is is the moving average of isec.

The former must be unidirectional because of the presence of the flyback diode in the actual circuit.

Rcf

Cf

RLf Lf

Is

vcf

icf

iLf

Fig. 3. Equivalent circuit for discussion on current distortion

Since iLf is the quantity that is being controlled, we start by assuming that it is an ideal full-wave

rectified sinusoid. A reduction to absurdity will be used to show that distortion will occur in iLf

around the grid zero volt crossing.

If one assumes a unity power factor operation, then iLf is in phase with vg. Both quantities are full-

wave rectified sinusoids and can be written in their equivalent Fourier series forms as the system

of equations (2.1).

()

()

()
()

, ,

2
1

, ,

2

1

2 4 1
() cos 2

1 2

2 4 1
() cos 2

1 2

Lf pk Lf pk

Lf g

k

g pk g pk

g g

k

I I
i t k t

k

V V
v t k t

k

ω
π π

ω
π π

∞

=

∞

=

= + −

= + −

∑

∑
 (2.1)

2.2 Current distortion

-22-

To obtain the required Is, the principle of superposition is used. The ac response is obtained by

evaluating the circuit in Fig. 3 for each harmonic. Solving the circuit in the frequency domain

yields:

()
()

, , ,

, ,

,

g h Lf Lf h Lf h

h h
s ac Lf h

h Cf Cf h

v R jX i

I i
R jX

+ +
= +

−

∑ ∑
∑ (2.2)

The dc response is:

 ,

, ,

2
Lf pk

s dc Lf dc

I
I i

π
= = (2.3)

Combining equations (2.2) and (2.3), the current source Is can be expressed as:

 , ,s s dc s acI I I= + (2.4)

Equation (2.4) is computed for the first 20 harmonics and the resulting current source is plotted

against angle as shown in Fig. 4.

Fig. 4. Resulting current source

It can be seen that for a sinusoidal output current at unity power factor, the equivalent current

source Is becomes negative around the zero-crossings of the grid voltage. Furthermore, it can be

seen that Is is distorted (does not follow a sinusoidal envelope) around the zero-crossing. Indeed,

a very high time rate of change of current can be observed at the beginning of the rising edge of

Is. This rate of change tends to infinity as more harmonics are considered. Therefore, two

absurdities must be addressed here:

0 1 2 3 4 5 6 7
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
u
rr

en
t(

A
)

wt (rad)

I
s

i
Lf(t)

2. Current Distortion around Grid Zero-Volt Crossing in Flyback AC Module with a Pseudo-

DC Link

-23-

1. isec cannot be negative because of the diode Dout. Therefore, Is cannot be negative either.

2. isec is proportional to iLm during each switching cycle. Therefore the time rate of change of

Is must be finite.

From these observations, it follows that in a closed-loop system, the current controller will not be

able to force the output current to follow a sinusoidal reference (precisely around the grid zero volt

crossing) which will result in distortion of the grid-injected current. Therefore, for this topology,

distortion of the output current is inevitable.

In order to push further this argument, it is assumed that iLf follows a sinusoidal envelope until the

point at which Is is clipped to zero. The resultant equivalent circuit in this operating region is shown

in Fig. 5:

Rcf

Cf

RLf Lf

vcf

icf

iLf

Fig. 5. Resultant equivalent circuit for Is = 0

The second-order non-homogenous linear differential equation in iLf can be written as:

()2

,

2

cos1 g g pk gLf Lf Cf Lf

Lf

f f f f

V td i R R di
i

dt L dt C L L

ω ω +
+ + = −

 (2.5)

The characteristic equation of the homogenous equation is:

2 1

0
Lf Cf

f f f

R R

L C L
λ λ

 +
+ + =

 (2.6)

Solving for the λ parameter gives:

2

4

2

Lf Cf Lf Cf

f f f f

R R R R

L L C L
λ

 + +
− ± −
 = (2.7)

2.2 Current distortion

-24-

In realistic designs, the discriminant in equation (2.7) will be negative, whereupon the general

solution to the homogenous differential equation can be written as:

 () ()()
1

cos sin
t

Lf
i e A t B tτ α α

−
= + (2.8)

Where:

 () ()
2

2 2

2

1 2
4 and ,

2

1

f

Lf Cf

k

k

f f

L

R R

A B

C L

τ

α ω
τ

ω

= +

 = − ∈

=

R (2.9)

The particular solution can be represented by the equations in (2.10).

() ()

()

()

2

2

,

2
2 2

,

2 2

sin cos

2

Lf g g

g pk g

f k g

g pk g

f k g

i E t F t

V

E
L

V
F

L

ω ω

ω
τ

ω ω

ω

ω ω

= +

 = −
−

 = −
 −

 (2.10)

The general solution to the non-homogenous differential equation is therefore:

 () ()() () ()cos sin sin cos

t

Lf g gi e A t B t E t F tτ α α ω ω
 −
 = + + + (2.11)

The initial conditions at time t0 are considered to be the values of the grid-injected current, iLf, and

the capacitor voltage, vCf, at the moment when Is is zero for the first time. They are denoted ILf0

and VCx0 respectively. The coefficients A, and B are then determined and are shown by the system

of equations in (2.12):

2. Current Distortion around Grid Zero-Volt Crossing in Flyback AC Module with a Pseudo-

DC Link

-25-

() ()()
()()

()

() ()()
()

() ()

() ()

() ()

0

0

0

0 0 0 1 3

0 1 2

0

0 0 0

0

1 0 0

2 0 0

3 0 0

tan

tan

sin cos

cos

1
cos sin

1
sin cos

cos sin

Cx Lf Cf Lf g f

f

t

Lf g g

t

t

g g g g

V R R I v L k k
B

L t k k

A B t

e I E t F t

t

k e t t

k e t t

k E t F t

τ

τ

τ

γ

α

γ α

ω ω
γ

α

α α α
τ

α α α
τ

ω ω ω ω

 −

 −

 − + + + +
 =

− +

= −

− −
=

 = − −

 = − +

= −

 (2.12)

The general solution of equation (2.11) can now be plotted against angle. Fig. 6 shows the resulting

output current plotted over a full grid period. Again, it is assumed that iLf will follow a sinusoidal

envelope except where Is would have been negative. The solution calculated by equation (2.11)

only is highlighted in black and shown in more detail in Fig. 7.

Fig. 6. iLf during a full period

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
u
rr

e
n
t(

A
)

wt (rad)

I
s
 (clipped)

i
Lf

(t)

2.2 Current distortion

-26-

Fig. 7. iLf during the period when Is = 0

In order to better illustrate the zero-crossing distortion issue, experimental waveforms are shown

in Fig. 8 and Fig. 9. These waveforms are obtained with a prototype FMICpseudo-dc switching in

CCM. A photo of the digitally-controlled prototype is provided in Fig. 10. In both figures, the

orange waveform represents vCf; cyan is vg; green is iLf unfolded i.e. the actual grid-injected current;

the pink waveform is the turn-on signal for the unfolder switches U1/U2.

Fig. 8. Experimental waveforms to illustrate distortion around grid zero-crossing

3.04 3.06 3.08 3.1 3.12 3.14 3.16
0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

i L
f (

A
)

wt (rad)

2. Current Distortion around Grid Zero-Volt Crossing in Flyback AC Module with a Pseudo-

DC Link

-27-

Fig. 9. Zoom-in to illustrate distortion around zero-crossing

Fig. 10. Photo of FMICpseudo-dc prototype

In Fig. 9, the distortion in iLf can be seen as vg approaches zero. However, unlike the theoretical

model, the experimental observations show larger amplitude oscillations and a slightly lower

pseudo-frequency. A couple of possible reasons might explain the observed disparity:

1. There is a tracking error in the current controller such that iLm and iLf deviate from the

expected waveforms. Thus the initial conditions used in equation (2.11) are not accurate.

2. It can be observed that vg is distorted, whereas a perfectly sinusoidal vg was assumed in the

theoretical analysis. Furthermore, a higher impedance behind the ideal grid supply might

explain the slightly lower pseudo-frequency.

Fig. 11 shows the theoretical waveform of iLf around the grid zero-volt crossing when initial

conditions of equation (2.11) are modified to match the observed waveforms.

2.2 Current distortion

-28-

Fig. 11. Theoretical and experimental iLf with adjusted initial conditions around grid voltage zero-crossing

It can be observed in Fig. 9 that, in addition to the distortion on the falling edge of every half-cycle

(which has been predicted theoretically), distortion also occurs on the rising edge of every half-

cycle. The reason for this is that there is a physical limitation on the time rate of change of Is. Even

though this particular phenomenon has not been numerically computed, the model that has been

developed hitherto, together with the experimental waveforms, prove that it is not possible to avoid

some distortion around the grid zero-volt crossing in the classical FMICpseudo-dc.

2.2.2 FMICpseudo-dc with synchronous rectifier

It is hypothesized that a synchronous rectifier installed across Dout can mitigate the zero-crossing

issue by allowing Is to have a negative value at certain instants. The modified circuit is shown in

Fig. 12.

Q1
Cpv

Tx

Dout

Cf

Lf

vg

RCf
RLf

Lm

n1:n2

vCpv

iLm

iLf

vCf

ipv

iprim

Qsync

U1 U3

U4 U2

iCfRCpv

Rprim isec

Fig. 12. Modified FMICpseudo-dc with synchronous rectifier

8.05 8.1 8.15 8.2 8.25 8.3

x 10
-3

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

i L
f (

A
)

t (s)

i
Lf, theoretical

i
Lf,experimental

2. Current Distortion around Grid Zero-Volt Crossing in Flyback AC Module with a Pseudo-

DC Link

-29-

Waveforms are shown in Fig. 13 for an 80W output. Zero-crossing distortion is still seen. Careful

observation shows that the distortion occurs mainly on the rising edge of each half cycle. The

falling edge of a half cycle appears not to have any significant distortion. This is consistent with

the previous explanations because Is must have a finite time rate of change (which causes distortion

on the rising edge of a half-cycle), but is allowed to have negative values (leading to less distortion

on the falling edge of the half-cycle). However, the THD is not improved. In fact a THD of 7% is

observed in the FMICpseudo-dc with a synchronous rectifier compared to a THD of 5% for the

FMICpseudo-dc without the synchronous rectifier. Therefore, in the case of the FMICpseudo-dc

with a synchronous rectifier, the distortion around the grid zero volt crossing has a different origin.

Fig. 13. Waveforms from FMICpseudo-dc with synchronous rectifier

The synchronous rectifier allows for full bi-directionality of power. It is interesting to observe the

output current as its phase is modified. Simulation results in Fig. 14 show different waveforms for

an output reference power of 80VAR leading while Fig. 15 shows experimental waveforms for the

same output power. Severe notching can be observed in iLf around the grid-zero crossing.

This is to be expected because in Fig. 14(b), it can be seen that the magnetizing inductance current

(analogous to Is) has to reverse to an equal and opposite value instantaneously. The output current

becomes distorted during this transition.

2.2 Current distortion

-30-

Fig. 14. Simulation waveforms for FMICpseudo-dc with synchronous rectifier at 80VAR leading

Fig. 15. FMICpseudo-dc with synchronous rectifier injecting 80VAR leading

The THD of the grid-injected current is computed for different values of phase of iLf while

maintaining the apparent power at 80VA. A plot is made of THD vs VAR is shown in Fig. 16.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
20

25

30

35

v
C

p
v(V

)

(a)

v
Cpv Reference

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

-10

0

10

i L
m

(A
)

(a)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

-2

0

2

C
u

rr
en

t
(A

)

(b)

i
Lf

Reference

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
-200

0

200

v
g(V

)

Time (s)
(c)

(b)

(c)

(d)

2. Current Distortion around Grid Zero-Volt Crossing in Flyback AC Module with a Pseudo-

DC Link

-31-

Fig. 16. Plot of THD vs VAR (leading) for FMICpseudo-dc with synchronous rectifier

Circuit parameters for the numerical analysis, simulation, and experimental set-up are provided in

Table II.

Table II. FMICPseudo-dc parameters for current-distortion simulation

Cf 1uF

Cpv 3*1800 uF

fg 60 Hz

fsw 250 kHz

KI 201.5

KP 0.042

Lf 115 uH

Lm 28 uH

n 6

RCf 0.2 Ω

RLf 50 mΩ

Rprim 8 mΩ

Rpv 0.1 Ω

RQ1 25 mΩ

RQ2 0.35 mΩ

Rsec 0.106 Ω

Runfolder 0.24 Ω

Vg,pk 170 V

Vpv 30 V

Perhaps it is not clear enough why this notching occurs. Why is it not sufficient to phase shift the

primary winding current (or magnetizing inductance current) by the amount of output current

phase desired? In order to conceptually explain the phenomenon, consider the hypothetical

waveforms in Fig. 17. Here, the usual physical quantities are multiplied by constants (kx) to show

that they are proportional to real world quantities. (U1/U2) represents the gate turn-on signal to

the unfolder switches U1/U2 (complementary to U3/U4). It can be seen that iLm has been shifted

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50

VAR leading

T
H

D
 (

%
)

2.2 Current distortion

-32-

such that it leads vg by 45 degrees in an attempt to obtain a grid-injected current iLf which, it is

expected, will be equally phase-shifted with respect to vg. However, because the current-unfolder

(U1-U4) is inflexible and locked to the grid frequency, the wrong portions of iLm are unfolded,

resulting in an unacceptable output current.

Fig. 17. Hypothetical waveforms with simply shifting iLm

Now, consider the waveforms of Fig. 18. Here, iLm is reflected about the time axis at the grid zero-

volt crossings, such that when the unfolder switches U3/U4 are turned on during the grid negative

half cycle, the correct output current polarity is observed. Since it is not possible to instantaneously

reverse iLm, distortion in iLf will be inevitable. It should be noted that a similar explanation can be

deduced for the case where iLm lags vg. It is not attempted to compute this distortion analytically.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
-2

-1

0

1

2

ω t (rad/s)
(a)

k
vg

v
g
 (V)

k
iLm

iLm (A)

k
u
(U1/U2)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
-1

-0.5

0

0.5

1

k
iL

fi L
f (

A
)

ω t (rad/s)
(b)

2. Current Distortion around Grid Zero-Volt Crossing in Flyback AC Module with a Pseudo-

DC Link

-33-

Fig. 18. Hypothetical waveforms with shifting iLm and reflecting about time axis at grid zero-crossings

2.3 Current decoupling circuit

It has been shown previously that distortion in the grid injected current around the grid zero voltage

crossing is severe and unacceptable per the total demand distortion (TDD) standard. One way of

eliminating the notching is proposed in this section. The idea is to decouple the magnetizing

inductance current iLm from the grid-injected current iLf during a short period of time, ∆tc (which

we henceforth refer to as the commutation time, period or zone), around the grid zero voltage

crossing. Thus, iLm can be controlled independently of iLf. This means that the impossible

requirement for iLm to reverse instantaneously can be relaxed. A more gentle change in iLm will be

allowed. Meanwhile, an auxiliary circuit at the output supplies the required grid current iLf

independently of iLm. The modified FMICpseudo-dc circuit is shown in Fig. 19. Additional

components have been highlighted in blue.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
-2

-1

0

1

2

ωt (rad/s)
(a)

k
vg

v
g
 (V)

k
iLm

iLm (A)

k
u
(U1/U2)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
-1

-0.5

0

0.5

1

k
iL

fi L
f (

A
)

ωt (rad/s)
(b)

2.3 Current decoupling circuit

-34-

Q1

Tx

Cf

Lf

vg

RCf

RLf

Lm

n1:n2

iLm iLf

vCf

Qsync
U1 U3

U4 U2

iCf

isec xe

Vin

TA

TB

Vbuffer

RmTC

TD

iprim

T1

T2

T3

T4

1

2

Fig. 19. FMICpseudo-dc with current decoupling

Rm is the magnetizing resistance and has been included in order to obtain a more ‘physical’ design

which can be more easily simulated.

The details of block 1 are shown in Fig. 20, while those of block 2 are shown in Fig. 21. The

components x1 – x4, xa – xd, and xe are bi-directional switches and they can be implemented as

shown in Fig. 22.

x1

x3

x4

x2

TA

TB

TC

TD

x0

Fig. 20. Details of block 1

xa

xb

xc

xd

T1

T2

T3

T4

Fig. 21. Details of block 2

2. Current Distortion around Grid Zero-Volt Crossing in Flyback AC Module with a Pseudo-

DC Link

-35-

Fig. 22. Implementation of bi-directional switch

The current decoupling circuit’s operation can be explained as follows for the case where the

reference output current iLf,ref lags vg:

• Normal converter operation (with switches x0, and xe closed) until when the grid voltage

vg(t) is ‘close’ to the zero crossing. The term ‘close’ here is used to mean that the grid angle

falls inside the commutation zone, i.e.

2 2

c c
hl hl

t t
kT t kT

∆ ∆
− ≤ ≤ + (2.13)

Where k has values 1, 2, 3, …

• Open switches x0, and xe. Using hysteresis control, force iLm to reverse to its required value

by means of switches x3 and x4. Note that x1 and x2 are open during this time.

Concurrently, using hysteresis control, force iLf to follow the reference current by operating

switches xa, and xb. This process continues for the commutation time, i.e for a duration

∆tc.

• When the grid voltage is out of the commutation zone, return to normal converter

operation.

The same description above holds for the case when iLf,ref leads vg except that x1, and x2 are

operating (instead of x3 and x4), and xc & xd are operating (instead of xa & xb). It should be noted

that all the switches of the traditional FMICpseudo-dc including the current-unfolder are turned

off during the commutation period.

2.3.1 Simulation of FMICpseudo-dc with current decoupling circuit

To demonstrate the current decoupling concept, the circuit in Fig. 19 is simulated in SIMULINK.

In order to relax the simulation time constraints, the circuit parameters are modified so that a

switching frequency of 75kHz can be used. The updated circuit parameters are shown in

Table III.

2.3 Current decoupling circuit

-36-

Table III. FMICPseudo-dc parameters for current distortion simulation

Cf 1uF

fg 60 Hz

fsw 75 kHz

Lf 200 uH

Lm 100 uH

n 6

RCf 2 Ω

RLf 0.2 Ω

Vg,pk 170 V

Vin 50 V

Rm 1 MΩ

iLf,ref 1.4A peak, 90° lagging

Vbuffer 10V

∆tc 155.2 us

The simulation waveforms are shown in Fig. 23 where iLf has a THD of 4%. This is significantly

better than the traditional case. Indeed if no current decoupling circuit is used the resulting

distortion as shown in the simulation waveforms in Fig. 24 results in a THD of 49% for iLf.

Fig. 23. Simulation waveforms for FMICpseudo-dc with current decoupling circuit

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-10

-5

0

5

10

t (s)
(a)

i
Lm

 (A)

commutation interval

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-4

-2

0

2

4

t (s)
(b)

v
g
 (V/85)

i
Lf,ref

 (A)

i
Lf

 (A)

commutation interval

2. Current Distortion around Grid Zero-Volt Crossing in Flyback AC Module with a Pseudo-

DC Link

-37-

Fig. 24. Simulation waveforms for FMICpseudo-dc without current decoupling circuit

Significant improvements are also achieved in the case where iLf leads vg. From these simulation

results, it appears that the current decoupling circuit provides a viable solution which allows the

FMIC pseudo-dc to deliver desired amounts of reactive power with limited distortion. In the next

subsection section, some practical design considerations of the additional units are discussed.

2.3.2 Practical design considerations: Vbuffer, circuit complexity, and impact on losses

It is obvious that including the current decoupling circuit introduces additional complexity to the

system. In addition, it has not yet been discussed how Vbuffer can be obtained. Also, the additional

components will have an impact on converter efficiency. In this section, these issues are addressed,

for the most part, in a qualitative manner.

2.3.2.1 Vbuffer

Vbuffer provides the energy required to keep the output current close to its reference during the

commutation interval. Ignoring losses, as well as the current drawn by Cf,, the amount of energy

that must be provided by Vbuffer during ∆tc can be expressed as:

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-10

-5

0

5

10

i L
m

 (
A

)

t (s)
(a)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-4

-2

0

2

4

t (s)
(b)

v
g
 (V/85)

i
Lf,ref

 (A)

i
Lf

 (A)

2.3 Current decoupling circuit

-38-

2

2

() () () ()

c
hl

hl

c hl
hl

t
T

T

c g Lf g Lf

t T
T

E v t i t v t i t

∆
+

∆
−

∆ = +∫ ∫ (2.14)

Where it is assumed that the commutation time is equally attributed on either side of the grid

voltage zero crossing.

Assuming vg and iLf are expressed as:

()
()

,

,

sin

sin

g g pk g

Lf Lf pk g

v V t

i I t

ω

ω ϕ

 =

= +
 (2.15)

Then equation (2.14) can be further written as:

()

()

, ,

, ,

1
cos sin 2 sin 2

2 2 2 2

1
cos sin 2 sin 2

2 2 2 2

g pk Lf pk c c
c g hl g hl

g

g pk Lf pk c c
g hl g hl

g

V I t t
E T T

V I t t
T T

ϕ ω ϕ ω ϕ
ω

ϕ ω ϕ ω ϕ
ω

 ∆ ∆ ∆ = + − + − +

 ∆ ∆ + + + − + +

 (2.16)

For the parameters in Table III, ∆Ec = 540.142 µJ.

Vbuffer can be implemented with an appropriate capacitor, Cbuffer. For a desired average-to-peak

capacitor ripple ∆vbuffer, the required capacitance can be computed as:

,2

c
buffer

buffer buffer avg

E
C

v V

∆
=

∆
 (2.17)

Where Vbuffer,avg is the average (steady state) capacitor voltage (chosen in Table III as 10V).

For a 1% average-to-peak ripple, it can be shown that Cbuffer = 270.1µF.

Cbuffer can be charged by using an auxiliary converter. In order not to lose the galvanic isolation of

the FMICpseudo-dc, a ‘baby’-forward converter can be used. Its design power rating need not be

high because the duty ratio of the buffer capacitor is quite low. During a grid half-period, the buffer

capacitor will only be in use for ∆tc. Indeed, neglecting losses, a lower bound on the power rating

of the ‘baby’-converter, Paux can be computed as follows:

2. Current Distortion around Grid Zero-Volt Crossing in Flyback AC Module with a Pseudo-

DC Link

-39-

540.142

65
1

60 2

c
aux

hl

E J
P mW

T
s

µ∆
= = =

 ×

 (2.18)

2.3.2.2 Circuit complexity

It is clear from Fig. 19 to Fig. 22 that additional complexities are introduced in to the system in

order to reduce the current distortion. Table IV summarizes the additional components and controls

and provides some comments.

Table IV. Comments on additional components and controls

Component Quantity Comments

Bi-directional switches in block 1 (x1 –

x4; see Fig. 19)

4 Low duty ratio; operates only during ∆tc. During

operation, switches have fast-switching action. Each

switch should be able to block Vin.

Discrete mosfet in block 1 (x0; see Fig.

19)

1 Always on, except during ∆tc. During commutation, it is

completely off. This switch should be chosen for slow

action and low on-resistance. Bi-directional switch on pseudo-dc link

(xe; see Fig. 19)

1

Bi-directional switches in block 2 (xa –

xd; see Fig. 19)

4 Low duty ratio; operates only during ∆tc. During

operation, switches have fast-switching action. Each

switch must be able to block full grid voltage.

Hysteresis controllers 2 Hysteresis controllers must be implemented for

controlling iLm, and iLf during commutation interval. Since

iLm is not measureable, it must be estimated.

Cbuffer (Vbuffer) 1 Buffer capacitor can be implemented easily if a low buffer

voltage is selected.

‘Baby’ forward converter 1 Very low required power rating. Must be designed to

maintain Vbuffer.

2.3.2.3 Additional losses

The current decoupling elements will introduce additional losses in the system. However, given

that the duty ratio of the fast-acting switches is ∆tc/Thl (≈ 1.86% for the parameters in Table III)

which is quite low, one would not expect their impact on overall system efficiency to be significant.

Besides, apart from switches x0 and xe, all other current decoupling elements can be turned off

when the converter operates in unity power factor mode and only turned on when it is desired to

provide a certain amount of reactive power.

Since switches x0 and xe are always conducting except during commutation, they must be chosen

to have very low conduction losses. Low on-resistance switches tend to be slower acting, but this

is not an issue here because the switches require little switching action. However, x1 – x4 and xa

– xd must be fast-acting which is required to do accurate hysteresis control of iLm and iLf. Fast-

2.3 Current decoupling circuit

-40-

acting switches tend to have higher conduction losses, but no significant impact on efficiency is

expected because the fast switches are only operational for a fraction of the grid cycle (typically

less than 2% of the half grid period).

-41-

Chapter 3

3 A Powertrain Loss Model for the Flyback

AC Module with Pseudo-dc Link in

Continuous Conduction Mode

3.1 Introduction

t has been shown in previous work that the flyback micro-inverter with pseudo-dc link

(FMICpseudo-dc) can operate in discontinuous conduction mode (DCM) [17, 18, 20] and in

continuous conduction mode (CCM) [9, 16, 19]. In particular, in [19], it is shown that the

converter operation in CCM can have efficiency improvements over the DCM operating region.

From an engineering perspective, it is important to be able to accurately predict the converter

efficiency during the design stage. A DCM power loss model has been proposed in [20]. However,

to the author’s knowledge, a CCM power loss model has not been suggested. This chapter attempts

to fill that gap by developing a theoretical powertrain loss model for the FMICpseudo-dc in CCM.

The theoretical evaluation is compared with experimental results for a 110W digitally-controlled

prototype. The loss model shows a good match with the experimental results in the mid-to-nominal

power regions.

The rest of this chapter is divided in to three sections. In the second section, the theoretical loss

model is developed for the FMICpseudo-dc in CCM. The loss model includes conduction losses,

switching losses, transformer core loss, and leakage inductance loss. A note is made on taking in

I

3.1 Introduction

-42-

to account the measured heat sink temperatures of the switching elements, from which the internal

junction temperatures are estimated. In section 3, the loss model is compared with experimental

observations. The conclusion follows and summarizes the main points. It also provides indications

for improvements.

A schema of the FMICpseudo-dc used in the analysis is shown in Fig. 25.

Q1
Cpv

Tx

Dout

Cf

Lf

vg

RCf
RLf

Lm

n1:n2

vCpv

iLm

iLf

vCf

ipv

iprim

U1 U3

U4 U2

iCf
RCpv

Rprim isecRpv

iCpv

Vin

Fig. 25. Schema of FMICpseudo-dc

Unless otherwise stated, all symbols used in this chapter are defined in Table V.

Table V. List of symbols used in chapter 3

Symbol Definition

Ac Effective core area

Cf Output filter capacitor

Cpv Input capacitor

D Duty cycle of primary-side flyback switch

d Instantaneous duty cycle in discontinuous conduction mode

D1 1 – D

dpk Peak duty cycle in discontinuous conduction mode

fg Grid frequency

fsw Switching frequency

Gm,Q1, Gm,Q2 Switch Q1, Q2 transconductance resp.

h Subscript used to represent the harmonic order (harmonics of grid frequency)

I1,avg Average transformer primary winding current

I1,avg,pk Peak average (at switching frequency) current in primary winding

I1,pk,fund Amplitude of the fundamental of the primary winding current (at switching frequency)

3. A Powertrain Loss Model for the Flyback AC Module with Pseudo-dc Link in Continuous

Conduction Mode

-43-

I1,rms, I2,rms Primary and secondary winding rms current respectively.

iCf Cf filter capacitor current

id Diode current

id,avg Average diode current

iLf Grid-injected current

iLf,ac AC component of iLf

iLf,dc DC component of iLf

ILf,pk Peak grid-injected current

iLm Magnetizing inductance current

ILm,avg(t) Average magnetizing inductance current during a switching period.

iprim or i1 Transformer primary winding current

iprim,pk Transformer primary winding peak current (instantaneous)

ipv Input current

isec Secondary winding current

Lf Output filter inductor

Llk Leakage inductance

Lm Magnetizing inductance

N Number of turns in primary winding

n or n1/n2 Secondary-to-primary transformer turns ratio

Pac(t) Instantaneous grid-injected power

Pavg Average grid-injected power

Ps(t) Instantaneous equivalent current source power

Qg(sw) Mosfet gate charge

RCf Filter capacitor ESR

Rgate_HL,Q1 Turn off external gate resistance of Q1

Rgate_LH,Q1 Turn on external gate resistance of Q1

Rint,Q1 Internal gate resistance of switch Q1

RLf Filter inductor ESR

Rprim Primary winding resistance

Rprim,ac Equivalent primary winding ac resistance

Rpv Input resistance

RQ1 On-resistance of Q1

Rsec Secondary winding resistance

3.1 Introduction

-44-

Rsec,ac Equivalent secondary winding ac resistance

RT Resistance of output diode

Runfolder On-resistance of the unfolder switches

Thl Grid voltage half-period

tHL Fall time for switching loss computation

tLH Rise time for switching loss computation

Tsw Switching period

vCf Filter capacitor voltage

vCpv Voltage across input capacitor

Vdiode,HL Forward voltage of gate turn-off diode

Vdriver,HL Gate driver turn-off supply voltage

Vdriver,LH Gate driver turn-on supply voltage

VF Forward voltage drop of output diode

vg Instantaneous grid voltage

Vg,pk Peak grid voltage

Vg,rms RMS value of grid voltage

Vin Converter input voltage (constant)

vinv Flyback pseudo-dc link voltage

Vsp,Q1 Switching point voltage for Q1

Vth,Q1 Q1, gate threshold voltage

XCf Magnitude of impedance due to Cf

XLf Magnitude of impedance due to Lf

α, β, k Transformer core Steinmetz parameters

δ Skin depth

µCu Magnetic permeability of Copper

ρCu,T° Resistivity of Copper at temperature T°

ϕwire Diameter of wire

ωhl Double grid angular frequency

3. A Powertrain Loss Model for the Flyback AC Module with Pseudo-dc Link in Continuous

Conduction Mode

-45-

3.2 Power loss modeling in CCM

In this section, a power loss model for the CCM operation is proposed. The breakdown of the

losses considered is as follows: conduction losses, switching losses, transformer core loss, and

leakage inductance power loss.

3.2.1 Conduction losses

The conduction losses that are considered include: primary winding loss which includes the Tx

primary copper loss, the on-state conduction loss of Q1 and the loss in Rprim; secondary winding

losses including Tx secondary copper loss, Dout forward voltage and conduction losses; power loss

in Cf capacitor ESR; power loss in Lf inductor ESR; unfolder conduction loss. In order to compute

these losses, the rms currents must be calculated in the input, primary winding, secondary winding,

filter capacitor, and current unfolder. Losses due to the skin effect are considered in the primary

and secondary windings of the transformer Tx. In order to make the problem more tractable, it is

assumed that iLf is a pure sinusoid, and that the input voltage is constant, Vin.

3.2.1.1 Primary winding loss

The rms current in the primary winding of the flyback transformer is determined as follows.

Fig. 26 shows the primary winding current iprim for an arbitrary switching frequency (assumed to

be very high relative to grid frequency). The switching ripple in the magnetizing inductance current

(red dotted line) is neglected. Some quantities are also shown in the figure which will be useful

later in computing the losses.

DTsw D1Tsw

ωThl/20

I1,avg,pk

ILm,avg(t)

Fig. 26. Primary winding current in CCM

The primary winding rms current can be expressed as:

3.2 Power loss modeling in CCM

-46-

2

2 2 2 2
1, 1 1 1 1

0 0

1 1
() () () ... ()

hl sw sw hl

sw hl sw

T T T T

rms
hl hl T T T

I i t dt i t dt i t dt i t dt
T T

−

 = = + + +

∫ ∫ ∫ ∫
 (3.1)

Equation (3.1) can be further expressed as:

2

2 2 2
1, 1 1 1

0 (1)

1
() () ... ()

: lim 0

Whole part of

sw sw sw

sw sw

T T pT

rms
hl

T p T

p

hl

sw

I i t dt i t dt i t dt
T

T
p

T

ξ

ξ ξ

−

→∞

 = + + + +

 ∀ ∈ =

 =

∫ ∫ ∫

ℝ (3.2)

Whereupon the rms current will be expressed as:

 2 2
1, 1 1

1 1(1) (1)

1 1
() ()

sw sw

sw sw

qT qTp p

sw
rms

hl hl swq qq T q T

T
I i t dt i t dt

T T T
= =− −

 = =

∑ ∑∫ ∫ (3.3)

From the rms values of commonly observed waveforms [24], one can write that:

 2 2 2
1 ,

(1)

1
() () () ()

sw

sw

qT

T Lm avg
sw

q T

i t dt i t D t I t
T

−

= =∫ (3.4)

Under the assumption that the average input power at switching frequency is equal to the

instantaneous output power at line frequency [16], then during any switching period:

 ,

()
()

()

ac
Lm avg

in

P t
I t

V D t
= (3.5)

It follows that:

2

2

2

()
()

()

ac
T

in

P t
i t

V D t
= (3.6)

The instantaneous output power is:

 ()2
, ,() () () sinac g Lf g pk Lf pk gP t v t i t V I tω= = (3.7)

Assuming that:

3. A Powertrain Loss Model for the Flyback AC Module with Pseudo-dc Link in Continuous

Conduction Mode

-47-

()

() ; 0
()

g
g

g in

v t
D t t

v t nV
ω π= ≤ ≤

+
 (3.8)

Therefore,

2 2 4 2 3
, , , ,2

2

sin sin
()

g pk Lf pk g g pk Lf pk g
T

inin

V I t nV I t
i t

VV

ω ω
= + (3.9)

It is assumed that ωgt = θ can be discretized in to a large number of small angles such that:

 ; 1,2,...,
q

q p
p

π
θ ≅ = (3.10)

The assumption (3.10) is only as good as the switching frequency is high. The following equation

results:

2 2
, , , ,2 4 3

1 1 1

() sin sin

p p p
g pk Lf pk g pk Lf pk

T
in inq q q

V I nV Iq q
i t

V p V p

π π

= = =

 = +

∑ ∑ ∑ (3.11)

The power of sines can be expressed as:

4

3

1 4 1 2 3
sin cos cos

8 2 8

1 3
sin 3sin sin

4

q q q

p p p

q q q

p p p

π π π

π π π

= − +

 = −

 (3.12)

Then, applying Euler’s formula to equation (3.12) and solving the sums of the resultant geometric

series, it can be shown that:

2 2
, , , ,2

1

3
3sin sin

3 1
()

8 4 3
1 cos 1 cos

p
g pk Lf pk g pk Lf pk

T
in inq

V I nV I p p
i t p

V V

p p

π π

π π=

 = + − − −

∑ (3.13)

Whereupon it can be shown that:

 , ,
1,

,

3
3sin sin

3

2 2 3
1 cos 1 cos

g pk Lf pk sw in
rms

in hl g pk

V I p pT nV
I p

V T V

p p

π π

π π

 = + − − −

 (3.14)

3.2 Power loss modeling in CCM

-48-

The skin effect increases the effective resistance of the primary and secondary windings of the

transformer at the switching frequency. With this consideration, Rprim which is the effective dc-

resistance of the primary winding, is related to Rprim,ac, the ac-resistance, by the resistance

multiplier, Kskin. In other words:

 ,prim ac skin primR K R= (3.15)

Where Kskin has been obtained in [24] and defined as in equation (3.16).

() ()
() ()

sinh 2 sin 2

cosh 2 cos 2
skinK

∆ + ∆
= ∆

∆ − ∆
 (3.16)

Where the quantity ∆ is defined as in equation (3.17).

 wireφ
δ

∆ = (3.17)

The skin depth δ is expressed as (3.18):

,Cu T

Cu swf

ρ
δ

µ π
°= (3.18)

The same relationship as in (3.15) applies to Rsec, and Rsec,ac which are the secondary winding dc

and ac resistances respectively.

During a switching period, the amplitude of the fundamental current in the primary winding can

be expressed as:

() ()(),

1, ,fund

4
sin

2

Lm avg

pk

I t
I n D tπ

π

=

 (3.19)

Where ILm,avg(t) has been defined in (3.5) (refer to Fig. 26 and Table V for symbol definitions).

The average primary winding current is defined as:

 1,

avg

avg

in

P
I

V
= (3.20)

If the ac resistance of the primary winding is defined as:

3. A Powertrain Loss Model for the Flyback AC Module with Pseudo-dc Link in Continuous

Conduction Mode

-49-

 ,prim ac skin primR K R= (3.21)

Then the primary-side conduction loss can be expressed as in (3.22):

 2 2 2
, 1 1, 1, , 1, ,fund

1

1

2

p

loss prim Q rms prim avg prim ac pk

q

P R I R I R I
p

=

= + + ∑ (3.22)

3.2.1.2 Rpv and Cpv ESR losses

The equivalent circuit in Fig. 27 will be used to help obtain expressions for the source rms current

and the rms current through Cpv.

Cpv

ipv

vCpvVin

Lpv

i1(t)

iCpv

Fig. 27. Equivalent circuit used to compute input rms currents

Assuming that all the switching ripple is absorbed by Cpv, the rms input current can be shown to

be:

()

2
2

1, , 1, ,

, 2

2 4

3 2 1

avg pk avg pk

pv rms

pv pv hl

I I
i

L Cπ π ω

 = + −

 (3.23)

Consequently, the rms of the ripple current through Cpv can be written as:

 2 2

, 1, ,Cpv rms rms pv rmsi i i= − (3.24)

Finally, the losses associated with these currents can be expressed for Rpv and RCpv as equations

(3.25) and (3.26) respectively.

 2

,Rpv pv pv rmsP R i= (3.25)

 2

,Rcpv Cpv Cpv rmsP R i= (3.26)

3.2 Power loss modeling in CCM

-50-

3.2.1.3 Secondary winding losses

In a similar way used to obtain equation (3.14), the secondary winding rms current can be shown

to be:

, ,

2, ,

3
sin sin

3

4 4 23
1 cos 1 cos

g pk g pksw
rms Lf pk

hl in in

V Vp pT p
I I

T nV nV

p p

π π

π π

 = − +

− −

 (3.27)

During a switching period, the amplitude of the fundamental current in the secondary winding can

be expressed as:

() ()()(),

2, ,

4
sin 1

2

Lm avg

pk fund

I t
I n D t

n
π

π

= −

 (3.28)

The average current in the secondary winding can be written as:

,

2,

2 Lf pk

avg

I
I

π
= (3.29)

A similar relationship in equation (3.21) holds between the ac and dc resistances of the secondary

winding. The secondary-side conduction loss can therefore be written as:

 2 2 2
,sec 2, 2, sec 2, sec, 2, ,fund

1

1

2

p

loss f avg T rms avg ac pk

q

P V I R I R I R I
p

=

= + + + ∑ (3.30)

3.2.1.4 Cf ESR loss

The filter capacitor Cf rms current is deduced as:

 ()2 2

, sec, ,Cf rms rms Lf rmsI I I= − (3.31)

The capacitor ESR loss can therefore be calculated as:

 2

, ,Cf loss Cf Cf rmsP R I= (3.32)

3. A Powertrain Loss Model for the Flyback AC Module with Pseudo-dc Link in Continuous

Conduction Mode

-51-

3.2.1.5 Current-unfolder loss

The combined current-unfolder conduction loss for all four switches can be easily shown to be:

 2

, ,unfolder loss unfolder Lf pkP R I= (3.33)

3.2.1.6 Lf ESR loss

The filter inductor ESR power loss is directly calculated as:

 2

, ,Lf loss Lf Lf rmsP R I= (3.34)

3.2.2 Switching losses

Switching losses are estimated based on the approach in [25] where expressions are developed for

the switching loss in a buck converter. As it has been emphasized before, it is assumed that the

input voltage is a constant, switching ripple in the magnetizing inductance current is ignored, and

the average input power at switching frequency is equal to the instantaneous output power at line

frequency. Switching losses are incurred in Q1. The current-unfolder switching losses are

negligible because they switch only at the grid zero-volt crossings. It is assumed that Dout is a

Schottky diode and therefore has virtually no reverse recovery.

3.2.2.1 Main Switch (Q1)

The switching loss in Q1 during each switching period can be expressed as:

 (),

,

1
() sin ()

2

g pk

sw in Lm avg LH HL sw

V q
P q V I q t t f

n p

π
= + +

 (3.35)

From equation (3.5), the average magnetizing inductance current can be re-written as:

, , 2

, ,() sin sin
g pk Lf pk

Lm avg Lf pk

in

V I q q
I q nI

V p p

π π
= +

 (3.36)

The rise-time can be expressed as:

()() _ , 1 int, 1

,

, , 1

, 1

()

g sw gate LH Q Q

LH
Lm avg

driver LH Th Q

m Q

Q R R
t

I q
V V

G

+
=

− −
 (3.37)

Conversely, the fall-time can be written as:

3.2 Power loss modeling in CCM

-52-

()() _ , 1 int, 1

,

, 1 , ,

, 1

()

g sw gate HL Q Q

HL
Lm avg

Th Q driver HL diode HL

m Q

Q R R
t

I q
V V v

G

+
=

+ + −
 (3.38)

Combining equations (3.35) to (3.38), the total Q1 switching loss averaged during a grid half-

period is therefore:

, 1

1

1
()

p

sw Q sw

q

P P q
p =

= ∑ (3.39)

It is difficult to obtain an analytical expression that further simplifies equation (3.39). Therefore,

a numerical solver such as MATLAB must be used in evaluating the expression.

3.2.3 Transformer core loss

In [26], the improved Generalized Steinmetz Equation (iGSE) method is proposed to calculate

the transformer core loss for periodic arbitrary waveforms using only the Steinmetz parameters.

According to the Steinmetz Equation (SE) [27], the transformer core loss per unit volume can be

estimated as follows:

 ˆ
core swP kf Bα β= (3.40)

The parameters k, α, and β are the Steinmetz parameters and can usually be obtained directly from

the transformer datasheet, or through curve-fitting if provided with the transformer core loss plots.

The plots which give rise to equation (3.40) are usually developed with sinusoidal flux excitations

at different frequencies. Since switching waveforms are generally not sinusoidal, the iGSE, among

other techniques, was proposed to overcome this limitation in the computation of core loss.

Following the iGSE, the core loss per unit volume during a switching period can be expressed by

the system of equations in (3.41):

3. A Powertrain Loss Model for the Flyback AC Module with Pseudo-dc Link in Continuous

Conduction Mode

-53-

() ()

()

1 1

,

()

1.7061
2 0.2761

1.354

()

 for 0 ()

sin
 for ()

() for 0 ()

(1 ()) for ()

ji

core j

jsw c

i

in
sw

c

in sw

j g pk g

sw sw

sw sw

j

sw sw sw

Vk B
P t t

T NA

k
k

V
B D t T

NA

V t D t T

V V t
D t T t T

n

D t T t D t T
t

D t T D t T t T

αβ α

β απ
α

ω

−

+ −

∆
= ∆

=
 + +

∆ =

≤ ≤

=
− ≤ ≤

≤ ≤
∆ =

− ≤ ≤

∑

 (3.41)

Combining equations (3.8) and (3.10), the total core loss during a grid half-cycle can be shown to

be:

()

1

,

1 1

sinsin
p p

core avg

q qhl

qq

ppA
P B C

T

ββ α

β α

ππ
+ −

−
= =

 = + Γ Γ

∑ ∑ (3.42)

Where:

,1

,

,

* ;

 ; sin

g pkin in
i sw

c c c

g pk in

c g pk

VV V
A vol k T B

NA NA nNA

V q nV
C

nNA p V

β α α α

β α

α
π

−

+ −

= = −

= Γ = +

 (3.43)

Where vol is the effective core volume. Equations (3.42) and (3.43) are then evaluated numerically.

3.2.4 Leakage inductance

During each switching period, the transformer leakage inductance will store and release energy. If

an energy-recovery process is used, then the power loss due to the leakage inductance energy can

be neglected (some power loss will happen in the energy recovery process, but this would typically

be small, given a well-designed leakage inductance energy-recovery mechanism). In the case

3.3 Experimental evaluation

-54-

where a dissipative clamping process is used, then the power loss due to the leakage inductance

can be expressed as:

 lk
Llk out

m

L
P P

L
= (3.44)

3.2.5 Thermal model

In order to improve the theoretical model, an estimate of the junction temperatures of the switching

elements can be made using the one-dimensional equivalent thermal model in Fig. 28.

Assuming that the sink temperature and ambient temperature are known, the junction temperature

can be estimated as:

 () j c c s s a

j a s a

s a

R R R
T T T T

R

− − −

−

+ +
= + − (3.45)

Where Tj, Ts, Ta are the junction, sink, and ambient temperatures respectively; Rj-c, Rc-s, Rs-a are the

junction-to-case, case-to-sink, and sink-to-ambient thermal resistances respectively.

While taking measurements, some amount of time should be given to ensure that a steady state

sink temperature is achieved. The device datasheets can then be used to estimate the on-state

resistance and forward diode voltage drop.

Rj-c Rc-s Rs-aTj

Ta

Ploss

Ts

Fig. 28. Thermal model for estimating junction temperature.

3.3 Experimental evaluation

The equations developed in (3.22), (3.25), (3.26), (3.30), (3.32) - (3.34), (3.39), (3.42), and (3.44)

are combined to produce an estimate of the total losses of the converter for a 110W prototype

which is shown in Fig. 29. The prototype is controlled with a TMS28335 digital signal processor.

Table VI shows the circuit parameters and their values. A IXFK140N30P Mosfet is used for Q1

and a C2D05120 for the flyback diode Dout.

3. A Powertrain Loss Model for the Flyback AC Module with Pseudo-dc Link in Continuous

Conduction Mode

-55-

Table VI. FMICPseudo-dc parameters for loss modeling

Ac 188 mm2 Llk 716.8 nH

Cf 1 uF RT 0.293

Cpv 3*1800 uF Rsec 0.106 Ω

fg 60 Hz Runfolder 0.24 Ω

fsw 250 kHz Vg,pk 170V

Gm,Q1 90 S VTh,Q1 4 V

Lf 100 uH VF 0.8872 V

Lm 28 uH Vdriver 12 V

n 6 β 2.3

Qg(sw) 96 nC vol 13.9 cm3

RCf 0.2 Ω fhl 120 Hz

Rgate_LH,Q1 0 Ω Vdriver_HL 0 V

Rint,Q1 0.58 Ω Vdriver_LH 12 V

RLf 89.6 mΩ k 0.015746

Rprim 10 mΩ α 1.44

Rpv 18 mΩ N 6

RQ1 22.8 mΩ vdiode,HL 0 V

Fig. 29. Experimental setup

For the purposes of comparing the theoretical loss model with the experimental results Fig. 31

shows efficiency plots from the theoretical results (red, dotted) and experimental setup (blue,

solid). A close match can be observed in the mid-to-high power range while the match is not so

good in the low power region. One likely reason for this is the fact that in lower power regions,

the THD of the grid-injected current increases significantly. This defeats the assumption that iLf is

purely sinusoidal – a premise which was used in obtaining the loss equations.

Fig. 31 is a cumulative bar chart showing the loss composition by category. It can be seen that at

low power levels the switching and conduction losses are relatively low, but as the output power

increases, they constitute the majority of the total losses. On the other hand, the core loss is

essentially constant and dominates only in the low power range.

3.3 Experimental evaluation

-56-

Fig. 32 shows experimental waveforms for Vin (yellow), ipv (cyan), Pin (red), vg (pink), iLf (green).

Fig. 30. Plot of efficiency vs output power for theoretical and experimental models

Fig. 31. Bar chart showing distribution of the losses by category.

Fig. 32. Experimental waveforms showing Vin (yellow), ipv (cyan), Pin (red), vg (pink), iLf (green).

30 40 50 60 70 80 90 100 110 120
0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

E
ff

ic
ie

n
c
y

Output power (W)

Experimental

Theoretical

30 40 50 60 70 80 90 100 110 120
0

2

4

6

8

10

12

14

Output power (W)

P
o
w

er
 l

o
ss

 (
W

)

Conduction losses

Switching losses

Core losses

Llk leakage loss

3. A Powertrain Loss Model for the Flyback AC Module with Pseudo-dc Link in Continuous

Conduction Mode

-57-

3.4 Conclusion

This chapter has proposed a theoretical loss model for the powertrain of the FMICpseudo-dc

operating in CCM. With a goal of making the model compact, equations are developed that

consider conduction losses, switching losses, core losses and leakage inductance losses. The

theoretical model is compared with experimental results and a good match is observed in the mid-

to-nominal power range. Furthermore, it is seen that the switching and conduction losses dominate

at the high output power levels. A loss model taking in to account the harmonics which are

dominant at low power levels could improve the efficiency prediction.

-59-

Chapter 4

4 An Analysis of Displacement Power Factor

in the Flyback AC Module with Current-

Unfolding in DCM

4.1 Introduction

he flyback micro-inverter with a pseudo-dc link (FMICpseudo-dc) can operate in

discontinuous conduction mode (DCM) [18]. It has been observed in [22] that while in

this mode, the converter’s displacement power factor varies as the output capacitance is

changed. This chapter is an incremental contribution to that work. It develops a power factor

equation based on an equivalent circuit model. The predicted displacement power factor is then

compared with experimental results for variations in the CL filter parameters. It is shown that the

power factor depends mostly on the filter capacitor Cf.

4.2 Design for open loop operation (DCM)

For the discussion, a simplified schema of the FMICpseudo-dc is provided in Fig. 33.

T

4.2 Design for open loop operation (DCM)

-60-

Q1

Tx

Dout
Lf

vg

RLf

Lm

n1:n2

Vin

iLm
iLf

vCf

iprim

U1 U3

U4 U2

iCf

isec

Cf

RCf

Fig. 33. Schema of FMICpseudo-dc for DCM analysis

In [18], it was shown how the transformer primary winding current can be shaped such that it is

bounded in a full wave rectified (or ‘folded’) sinusoidal envelope. This is done in an open loop

manner, and the converter is modeled in DCM. A summary of the conditions that must be satisfied

for DCM are provided here below.

Let the duty cycle vary in a sinusoidal manner as expressed in equation (4.1).

 () sin()p gd t d tω= (4.1)

Where d(t) is the instantaneous duty ratio; dp is the peak duty ratio; and ωg is the grid angular

velocity.

In the primary winding, the peak current during a switching cycle, iprim,pk can be expressed as:

 , ()in
prim pk

m sw

V
i d t

L f
= (4.2)

Where fsw is the switching frequency.

It is shown that the inequality condition in (4.3) must be respected in order for the converter to

transfer power while remaining in DCM.

1

1
pd

nλ
≤

+
 (4.3)

Where λ is defined as:

4. An Analysis of Displacement Power Factor in the Flyback AC Module with Current-

Unfolding in DCM

-61-

,

in

g pk

V

V
λ = (4.4)

Where Vg,pk is the peak grid voltage.

Neglecting converter losses, the average power injected in to the grid in DCM can be expressed

as:

2 2 2

,

2

p g pk

sw m

d V
P

f L

λ
= (4.5)

4.3 Equivalent circuit model and power factor prediction

In order to compute the power factor, the equivalent circuit of Fig. 34 is used. The flyback is

considered a controlled current source supplying a CL-filter. The unfolder dynamics are ignored.

gv

Fig. 34. Equivalent circuit for power factor discussion

Assuming the expression of the current source can be written as (),() sins s pk gI t I tω= , phasor

notation can then be used henceforth. The grid-injected current can be written as:

 sLf Cfi I i= − (4.6)

Cfi can be obtained as:

()g LfLf Lf

Cf

Cf Cf

v jX R i
i

R jX

+ +
=

−
 (4.7)

Whereupon the output current after some computation can be written as the system of equations

in (4.8):

4.4 Comparison with experimental results

-62-

() ()
() () ()

()

,

2 2

, 2 2

, , ,

, , , ,

arctan

Lf Lf rms

Lf rms

Cf Lf Lf Cf

Cf Lf Cf s rms g rms Cf s rms Lf Cf

Cf Lf s rms Lf s rms Cf g rms Cf g rms

i I

A B
I

R R X X

A R R R I V X I X X

B X R I X I R V X V

B

A

ϕ

ϕ

= ∠

+
=

+ + −

= + − − −

= + − +

 = −

 (4.8)

Equation (4.8) specifies the magnitude and phase shift of the output current when the magnetizing

inductance current is in phase with the ‘folded’ grid voltage. [22] shows the effect of varying the

capacitor filter Cf parameters on the power factor, thus showing the importance of careful filter

design in open loop operation. It can be shown in a similar process used to obtain equation (4.8)

that merely varying only the phase of Is will not yield unity power factor.

4.4 Comparison with experimental results

4.4.1 Changing filter capacitance, Cf

Table VII shows the circuit parameters used for evaluating the displacement power factor as the

converter operates in DCM.

Table VII. FMICPseudo-dc parameters for power factor evaluation in DCM

Cf 1 uF to 5 uF

fg 60 Hz

fsw 25 kHz

Is,pk 1.43 A

Lf 2 mH

Lm 29 uH

n 2

RCf 0.2 Ω

RLf 0.274 mΩ

Vg,pk 171 V

The filter capacitor Cf is varied from 1uF to 5uF while the filter inductor Lf is kept constant at

2mH. Fig. 35 shows the experimental results for a FMICpseudo-dc prototype operating in DCM

with Cf =1.2uF. Green is the output current, iLf while cyan represents the grid voltage vg.

4. An Analysis of Displacement Power Factor in the Flyback AC Module with Current-

Unfolding in DCM

-63-

Fig. 35. Experimental waveforms for FMICpseudo-dc operating in DCM

The power factor is then computed for each operating condition of Cf and Lf and compared with

the result obtained from equation (4.8). The result of this comparison is shown in Fig. 36 where a

close match is seen.

Fig. 36. Comparison of theoretical and measured power factor for varying Cf

The root mean square error (rmse) between the experimental and theoretical results is defined as

in equation (4.9), where u is the number of experimental samples. The rmse is computed to be

0.59%. Therefore, the proposed circuit model is a good predictor of the displacement power factor

for the case of varying Cf.

()2

,experimental ,theoretical

1

u

i i

i

pf pf

rmse
u

=

−
=
∑

 (4.9)

1 1.5 2 2.5 3 3.5 4 4.5 5
0.975

0.98

0.985

0.99

0.995

1

1.005

C
f
 (uF)

p
o
w

er
 f

ac
to

r
(l

a
g
g

in
g

)

Experimental

Theoretical

4.5 Conclusion

-64-

4.4.2 Changing filter inductance, Lf

In this case, Cf is kept constant at 1uF and Lf changed from 1mH to 3mH. The plot of lagging

power factor as a function of Lf is shown in Fig. 37. An rmse of 0.07% is observed between the

predicted and experimental values. It is interesting to note that changing Lf does not have as much

of an effect on the power factor as changing Cf. However, increasing Lf could lead to more

converter losses due to higher inductor resistance.

Fig. 37. Measured power factor as a function of changing filter inductor Lf

4.5 Conclusion

This chapter developed a way to predict the power factor of the FMICpseudo-dc operating in

discontinuous conduction mode (DCM). It is shown that the power factor is more sensitive to

changes in the filter capacitor Cf than changes in the filter inductor Lf . The theoretical model and

experimental observations show a close match.

1 1.5 2 2.5 3
0.995

0.9955

0.996

0.9965

0.997

0.9975

0.998

0.9985

0.999

0.9995

1

L
f
 (mH)

p
o
w

er
 f

ac
to

r
(l

ag
g
in

g
)

experimental

theoretical

-65-

Chapter 5

5 Conclusion and Future Work

ne of the objectives of this thesis was to show how the flyback micro-inverter with a

pseudo-dc link (FMICpseudo-dc) can be controlled to inject desired amounts of

reactive power in to the distribution network. In order to lay the ground work for

accomplishing this, the distortion in the grid-injected current iLf was examined in chapter 2. It was

shown how and why iLf oscillates for brief periods around the grid zero voltage crossing which

causes the distortion. The THD increases slightly when a synchronous rectifier is included across

the flyback diode and becomes unacceptable as the phase of the output current with respect to the

grid voltage is increased (or decreased) from 0. To overcome the zero-crossing distortion, a current

decoupling circuit was proposed and simulated and shows good results. However, it introduces

additional components and increased complexity when compared to a traditional FMICpseudo-dc.

Chapter 3 proposed a powertrain loss model for the FMICpseudo-dc operating in continuous

conduction mode (CCM). The losses modeled included conduction, switching, and core losses.

The experimental efficiency shows a good match with the predicted efficiency in the mid-to-high

power regions but not in the low power regions. Future work should address the discrepancy

observed at low power.

In chapter 4, equations were developed to predict the open loop power factor of the FMICpseudo-

dc. The experimental results of a prototype operating in discontinuous conduction mode (DCM)

show a close match with the theoretical predictions. From the results, it appears that the power

factor is more sensitive to changes in the filter capacitor Cf than the filter inductor Lf.

O

4.5 Conclusion

-66-

In order to further cement the study of the possibility of using the FMICpseudo-dc as a controlled

source of reactive power, it will be indispensable to build a prototype that includes the current

decoupling circuit. Then, it can be possible to do a full comparison of the system with other micro-

inverters or systems that can function as controlled reactive power sources. The comparison should

include efficiency, as well as a cost analysis dimension.

Furthermore, it is important to build test photovoltaic power systems that use micro-inverters and

centralized inverters and compare the energy outputs of both systems. This will contribute to

supporting or not supporting the claim that systems based on micro-inverters can have energy gains

compared to those based on centralized inverters.

-67-

6 Appendix A

This appendix shows the MATLAB script used in computing the current waveforms of Fig. 6, Fig.

7, and Fig. 11which show the distortion in the output current around the grid zero volt crossing.

%In this script, we develop a numerical solution for explaining the
%zero-crossing problem in the output current of the flyback inverter using

%the results obtained from the theoretical analysis,

clear all;

clc;

close all;

linewidth = 3;

font = 'Times New Roman';
fontsize = 16;

%PART 1
%======

%In this part we develop the equivalent Fourier Series representation for

%the full-wave rectified current.

ILfmax = 0.7; %1.178; %0.7; %Peak output current

n = 1:1:20; %Harmonic orders (note that these are harmonics of 2*f. In US, this means 120Hz, 240Hz, 360Hz etc.)
f = 60; %grid frequency. Note that fundamental frequency is twice this value

w = 2*pi*f; %angular grid frequency

wt = [0:0.0001:2*pi]; %Angle for generating plot (in rad)

ILf_dc = 2*ILfmax/pi; %Average or dc component of full-wave rectified current
ILf_ac = zeros(length(n),length(wt)); %Matrix for the ac component

ILf_n_pk = (4*ILfmax/pi)*(1./(1 - (2*n).^2)); %Vector of peak value of each harmonic component

for k = 1:length(n)

 ILf_ac(k,:) = ILf_n_pk(k)*cos(2*n(k)*wt); %Here we generate the AC component at each point of wt

end

iLf = ILf_dc + sum(ILf_ac,1); %Equivalent Fourier representation

% figure(1);

% plot(wt,iLf); %Plot

% grid on;

%PART 2

%======
%In this part, we calculate the equivalent current-source and show that it

%must be distorted and will not be a full-wave rectified sinusoid as

%previously thought.

Lf = 170e-6;%115e-6; %Filter inductor

RLf = 24.8e-3*2;% + 0.16*2; %10e-3 + 0.16*2; %Inductor ESR + Unfolder Rdson
Cf = 1e-6; %Filter capacitor

Rcf = 0.2 + 1; %Capacitor ESR

Vgmax = 171; %342; %peak grid voltage

XLf = Lf*(2*n)*w; %Impedance of Lf at the different frequencies

Xcf = 1./(Cf*(2*n)*w); %Impedance of Cf at the different frequencies

4.5 Conclusion

-68-

iLf_n = (ILf_n_pk)/sqrt(2); %Complex values of current harmonics

vg_n = (4*Vgmax/(sqrt(2)*pi))*(1./(1 - (2*n).^2)); %Complex values of grid voltage harmonics
Vg_dc = 2*Vgmax/pi; %DC value of grid voltage

%DC response (Inductor Lf appears as a short circuit while capacitor Cf
%appears as an open circuit)

I_source_dc = ILf_dc;
Vcx_dc = RLf*ILf_dc + Vg_dc; %Vcx is the voltage across Cf and Rcf

%AC response
for k = 1:length(n) %Calculate the phasors for inverter voltage and current source

 vcx_n = vg_n + (RLf + 1i*XLf).*iLf_n;

 i_source_n = iLf_n + vcx_n./(Rcf - 1i*Xcf);
end

vcx_n_mag = abs(vcx_n); %Magnitude (rms) values of inverter voltage
vcx_n_angle = angle(vcx_n); %Angles (rad) of inverter voltage

i_source_n_mag = abs(i_source_n); %Idem for current source

i_source_n_angle = angle(i_source_n);

%Time-domain plots

%This section generates the equivalent Fourier series for i_source and vcx

%and plots them as functions of time

i_source_n = zeros(length(n),length(wt));

vcx_n = zeros(length(n),length(wt));

for k = 1:length(n)

 i_source_n(k,:) = i_source_n_mag(k)*sqrt(2)*cos(2*n(k)*wt + i_source_n_angle(k));
 vcx_n(k,:) = vcx_n_mag(k)*sqrt(2)*cos(2*n(k)*wt + vcx_n_angle(k));

end

i_source = I_source_dc + sum(i_source_n,1);

vcx = Vcx_dc + sum(vcx_n,1);

vg = Vgmax*abs(sin(wt));
Pgrid = iLf.*vg;

Psource = i_source.*vcx;

figure(2);

plot(wt,i_source,'b',wt,iLf,'--r','linewidth',linewidth);

ylabel('Current(A)','fontname','times','fontsize',fontsize);
xlabel('wt (rad)','fontname','times','fontsize',fontsize);

legend('I_{s}','i_{Lf(t)}','Location','NORTHEAST');

legend boxoff;
grid on;

figure(3);
plot(wt,Psource,'b',wt,Pgrid,'--r','linewidth',linewidth);

ylabel('Power (W)','fontname',font,'fontsize',fontsize);

xlabel('wt (rad)','fontname',font,'fontsize',fontsize);
legend('I_{s}','i_[6]','Location','NORTHEAST');

legend boxoff;

grid on;

figure(4);

plot(wt,vcx);
ylabel('Pseudo-dc link voltage (V)','fontname','times','fontsize',14);

xlabel('wt (rad)','fontname','times','fontsize',14);

%PART 3

%=======
%In this part, we calculate the output current if the source current is

%limited to positive values (such as in the case where only an output diode

%is used in the flyback. The goal is to observe the distortion in iLf when
%Is is less than 0. The shape of iLf is assumed unchanged when Is becomes

%greater than 0 again.

6. Appendix A

-69-

%Search for and obtain time at which source current is = 0 for the first

%time
counter1 = 1;

while (i_source(counter1) > 0)

 counter1 = counter1+1;
end

zero_position_1 = counter1;

counter2 = counter1 + 1;

while (i_source(counter2) < 0)

 counter2 = counter2+1;
end

end_zero_position_1 = counter2-1; %minus 1 because we do not want to include the moment when i_source becomes positive again.

t0 = wt(zero_position_1)/w;

wt0 = wt(zero_position_1);

Vcx0 = vcx(zero_position_1);
ILf0 = 0.45;% iLf(zero_position_1);

Vg0 = abs(Vgmax*sin(wt(zero_position_1)));

wt_end = wt(end_zero_position_1);

t_end = wt_end/w;

ILf_end = iLf(end_zero_position_1);

wk = 1/sqrt(Lf*Cf);

tau = 2*Lf/(RLf + Rcf);
alpha = (1/2)*sqrt(4*(wk^2) - ((RLf + Rcf)/Lf)^2);

if (alpha < 0)
 error('alpha is less than 0');

end

E = -Vgmax*w^2*(2/tau)/(Lf*(wk^2 - w^2)^2);

if (E > 0)

 error('E is greater than 0');
end

F = -Vgmax*w/(Lf*(wk^2 - w^2));
if (F > 0)

 error('F is greater than 0');

end

gamma = exp(t0/tau)*(ILf0 - E*sin(wt0) - F*cos(wt0))/sin(alpha*t0);

k1 = -exp(-t0/tau)*sin(alpha*t0)/tau + alpha*exp(-t0/tau)*cos(alpha*t0);

k2 = -exp(-t0/tau)*cos(alpha*t0)/tau - alpha*exp(-t0/tau)*sin(alpha*t0);

k3 = E*w*cos(wt0) - F*w*sin(wt0);

B = (1/(k2 - k1*cot(alpha*t0)))*(-k1*gamma - k3 + (Vcx0 - (RLf + Rcf)*ILf0 - Vg0)/Lf);

A = gamma - B*cot(alpha*t0);

wt_distorted = [wt0:0.0001:wt_end];

t_distorted = wt_distorted/w;
iLf_distorted = exp(-t_distorted/tau).*(A*sin(alpha*t_distorted) + B*cos(alpha*t_distorted)) + E*sin(wt_distorted) + F*cos(wt_distorted);

figure(5);
plot(wt_distorted,iLf_distorted,'b',wt_distorted,Vgmax*sin(wt_distorted)/50,'r','linewidth',linewidth);

ylabel('i_[6] (A)','fontname',font,'fontsize',fontsize);

xlabel('wt (rad)','fontname',font,'fontsize',fontsize);
grid on;

%Reconstitute new plot showing the distorted output current waveform

iLf_combined = iLf;

i_source_clipped = i_source;

k = 1;

while (i_source(k) > 0)
 i_source_clipped(k) = i_source(k);

 iLf_combined(k) = iLf(k);

 k = k+1;

4.5 Conclusion

-70-

end

m = 1;

while (i_source(k)<=0)

 i_source_clipped(k) = 0;
 iLf_combined(k) = iLf_distorted(m);

 k = k+1;

 m = m+1;
end

while (i_source(k) > 0)
 i_source_clipped(k) = i_source(k);

 iLf_combined(k) = iLf(k);

 k = k+1;
end

m = 1;
while (i_source(k)<=0)

 i_source_clipped(k) = 0;

 iLf_combined(k) = iLf_distorted(m);
 k = k+1;

 m = m+1;

 if (k>length(i_source))
 break; %Break the while loop

 end

end

figure(6);
plot(wt,i_source_clipped,'--b',wt,iLf_combined,'r','linewidth',linewidth);

ylabel('Current(A)','fontname',font,'fontsize',fontsize);

xlabel('wt (rad)','fontname','times','fontsize',fontsize);
legend('I_{s,clipped}','i_{Lf,new}','Location','NORTHEAST');

legend boxoff;

grid on;

%Here we re-calculate the same paramaters as above, but for this is for the

%original equation we used. We are trying to compare both. There is a small

%difference in the
alpha = 0.5*sqrt(4/(Cf*Lf) - ((RLf + Rcf)/Lf)^2);

beta = 1/(Cf*Lf*w) - w;

E2 = -(Vgmax/Lf)/((tau/2)*beta^2 + 2/tau);
F2 = tau*beta*E2/2;

gamma = exp(t0/tau)*(ILf0 - E2*sin(wt0) - F2*cos(wt0))/cos(alpha*t0);
k1 = -exp(-t0/tau)*cos(alpha*t0)/tau - alpha*exp(-t0/tau)*sin(alpha*t0);

k2 = -exp(-t0/tau)*sin(alpha*t0)/tau + alpha*exp(-t0/tau)*cos(alpha*t0);

k3 = E2*w*cos(wt0) - F2*w*sin(wt0);

B2 = (Vcx0 - ((RLf + Rcf)*ILf0 + Vg0 + Lf*(gamma*k1 + k3)))/(Lf*(-tan(alpha*t0)*k1 + k2));

A2 = gamma - B2*tan(alpha*t0);

iLf_distorted2 = exp(-t_distorted/tau).*(A2*cos(alpha*t_distorted) + B2*sin(alpha*t_distorted)) + E2*sin(wt_distorted) + F2*cos(wt_distorted);

load time_iLf;

load iLf_scope;

load time_vg;
load vg_scope;

figure(7);
plot(wt_distorted/w,iLf_distorted2,'r',time+(8.354e-3),iLf_scope,'--b','linewidth',linewidth);

ylabel('i_[6] (A)','fontname',font,'fontsize',fontsize);

xlabel('wt (rad)','fontname',font,'fontsize',fontsize);
grid on;

-71-

7 Appendix B

This appendix contains the salient C++ code that implements the digital control of the flyback

micro-inverter with a pseudo-dc link on a F28335 Texas Instruments DSP.

• Main file (main.c)

//**NB: Before running this code, check polarity of unfolder and sign of the measured current in the code

#include "DSP28x_Project.h" // Device Headerfile and Examples Include File
#include "IQmathLib.h"

#include "defines.h"

#include "DSP2833x_Device.h" // DSP2833x Headerfile Include File
#include "DSP2833x_Examples.h" // DSP2833x Examples Include File

#include "DSP2833x_SWPrioritizedIsrLevels.h"

#include "SFO_V5.h" // SFO V5 library headerfile - required to use SFO library functions

//Functions used in this program
extern void init_epwm1(void);

extern void init_epwm2(void);

extern void init_epwm5(void);
extern void init_epwm4(void);

extern void init_gpio(void);

extern void init_adc(void);
extern void init_tmr0(void);

extern void init_variables(void);

//Interrupt sub-routines used in this program

extern interrupt void xint1_isr(void);

extern interrupt void cpu_timer0_isr(void);
extern interrupt void epwm4_isr(void);

extern interrupt void adc_isr(void);

//All variables used in this program.

typedef struct ADC_structure{

 Uint16 mean0;
 Uint16 mean1;

 Uint16 mean2;

 Uint16 mean3;
 Uint16 mean4;

 Uint16 mean5;

 Uint16 mean6;
 Uint16 mean7;

 Uint16 mean8;

 Uint16 mean9;
 Uint16 buffer0[2], buffer1[2], buffer2[2], buffer3[2], buffer4[2],

 buffer5[2], buffer6[2], buffer7[2], buffer8[2], buffer9[2]; //Buffers for ADC, will be used to compute mean

 Uint16 timer;
} ADC_structure;

typedef struct current_controller_structure{
 _iq16 error_IQ16[2]; //Controller error and one history term

 _iq16 duty_KI_IQ16[2]; //Duty cycle from integral contribution and one history term

9 Main file (main.c)

-72-

 _iq16 duty_KP_IQ16; //Duty cycle from proportional contribution

 _iq16 duty_lag_IQ16[2]; //Duty cycle from the lag term and one history term
 _iq16 duty_PI_IQ16; //Duty cycle from the PI controller (sum of Kp and Ki duty cycle terms)

 _iq16 duty_decoupled_IQ16; //Decoupled duty cycle

 _iq16 duty_total_IQ16[2]; //Total duty cycle from the sum of de-coupled and controller terms with one history term
 _iq16 lag_a_IQ16; //Lag coefficients

 _iq16 lag_b_IQ16;

 _iq16 KP_IQ16; //Controller proportional gain
 _iq16 KI_z_IQ16;

 _iq16 I_grid_reference_folded_IQ16; //Controller reference current in "folded" form

 _iq16 I_grid_folded_IQ16; //Measured grid current in "folded" form
 int duty_DSP; //Duty cycle in DSP units to be fed to PWM Counters.

 long duty_frac; //Fractional duty cycle.

 char V_GRID_POLARITY; //This is used to determine the sign of the "folded" grid reference and measured currents
 char DEAD_TIME; //The current controller's own dead time shadow variable

 char CURRENT_CONTROLLER_ACTIVATED;

} current_controller_structure;

typedef struct error_structure{

 char I_GRID_OVR_CURRENT;
 char V_INV_OVR_VOLTAGE;

 char V_GRID_OVR_VOLTAGE;
 char V_GRID_OVR_VOLTAGE_SHDW;

 char V_GRID_UNDR_VOLTAGE;

 char V_GRID_UNDR_VOLTAGE_SHDW;

 char V_GRID_WRONG_POLARITY;

 char V_PV_OVR_VOLTAGE;

 char V_PV_OVR_VOLTAGE_SHDW;
 char V_PV_UNDR_VOLTAGE;

 char V_PV_UNDR_VOLTAGE_SHDW;

 char I_PV_OVR_CURRENT;

 char TEMP1_HIGH;

 char TEMP2_HIGH;
 int v_grid_ovr_voltage_timer, v_grid_undr_voltage_timer;

 int v_pv_ovr_voltage_timer, v_pv_undr_voltage_timer;

 char FATAL_ERROR;

 char STOP;

} error_structure;

typedef struct PLL_structure{

 _iq20 Kp; //PLL proportional
 _iq20 Ki; //PLL integral term (Ki*Ts/2)

 _iq20 Ki2; //(VCO) Integrator coefficient for computing the grid angle (Ts/2) in iq20 format

 _iq20 cos_theta; //cos_theta
 _iq20 sin_theta; //sin_theta

 _iq20 w[3]; //This is the angular velocity from the PLL alongside two history term

 _iq20 w_filtered[3]; //This is the filtered angular velocity along with two history terms
 _iq20 w_non_offset_P; //This is the proportional component of the unfiltered output of the PLL's PI controller.

 _iq20 w_non_offset_I[2]; //This is the integral component of the unfiltered output of the PLL's PI controller along with one history

term
 _iq20 w_offset; //This is the offset w that will be added (feedforward) to improve response of the PLL and reduce controller effort

 _iq20 theta[2]; //Angle in radians at output of VCO, with one history term

 _iq20 SOGI_Valpha[3]; //This is the alpha voltage from the second order generalized integrator
 _iq20 SOGI_Vbeta[3]; //This is the beta voltage from the second order generalized integrator

 _iq20 SOGI_k; //SOGI k coefficient

 _iq20 SOGI_wnTs;
 _iq20 SOGI_x;

 _iq20 SOGI_y;

 _iq20 SOGI_denominator;
 _iq20 SOGI_quotient;

 _iq20 SOGI_b0;

 _iq20 SOGI_a1;
 _iq20 SOGI_a2;

 _iq20 SOGI_ky;

 _iq20 SOGI_qb0;

7. Appendix B

-73-

 _iq20 V_grid_pu[3]; //Normalized (per-unitized) instantaneous grid voltage with two history terms;

 _iq20 V_grid_base; //Base grid voltage
 _iq20 error[3];//Present error term and two history terms

 _iq20 notch_a; //Notch filter coefficient a(0.979127)

 _iq20 notch_b; //Notch filter coefficient b(-1.957364)
 _iq20 notch_f; //Notch filter coefficient f(0.958254)

 _iq20 notch_out[3]; //Output of notch filter with two history terms.

 _iq20 Vd; //Direct-axis voltage
 _iq20 Vq; //Quadrature-axis voltage

 _iq20 V_grid_pk_pu[2]; //Normalized (per-unitized) unfiltered peak grid voltage

 _iq20 V_grid_pk_filtered_pu[2]; //Normalized filtered peak grid voltage
 _iq20 A,B,C,D,E; //Variables that will be used as coefficients for filtering the angular speed and the peak normalized grid voltage.

Can also be constants in IQ20 format

 char PERIOD_HAS_OCCURED; //Takes note of when one grid period has occurred
 char HAS_STARTED;

 char V_GRID_POLARITY; //Grid polarity as given by PLL module

 char DEAD_TIME; //Dead time as given by PLL module

/*

 char LOCKED; //This variable is set when it is determined that the PLL is 'locked' (when frequency varies within a narrowband)
 char FAILED; //This variable is set when it is determined that the PLL has failed to lock after several attempts.

 Uint16 lock_timer; //Timer used to keep track of PLL Locked status

*/
}PLL_structure;

typedef struct zcd_structure{
 Uint16 half_period[2]; //Grid half period

 Uint16 full_period; //Grid full period
 Uint16 half_period_counter; //Counter for determining the half_period

 Uint16 full_period_counter; //Counter for determining grid angle from 0 to 360 degrees

 Uint16 angle_pu_IQ16; //Grid angle measurement by using the hardware zcd method.
 char V_GRID_POLARITY; //Grid polarity as given by zcd circuit.

 char PERIOD_TOO_LOW; //High frequency limit as given by zcd module

 char PERIOD_TOO_HIGH; //Low frequency limit as given by zcd module
 char DEAD_TIME; //Dead time event indicator

} zcd_structure;

typedef struct power_control_structure{

 _iq16 P_ref_IQ16; //Reference active power in IQ16 format in IQ16 format.

 _iq16 Q_ref_IQ16; //Reference reactive power in IQ16 format in IQ16 format.
 _iq16 error_P_ref[2]; //Active power tracking error

 _iq16 error_Q_ref[2]; //Reactive power tracking error

 _iq16 P_dc_IQ16; //Active power computed by P-Q transform method in IQ16 format.
 _iq16 Q_dc_IQ16; //Reactive power computed by P-Q transform method in IQ16 format.

 _iq16 P_output_avg_IQ16; //Average output power. Computed by integration. IQ16 format

 _iq16 P_input_avg_IQ16; //Average input power. Computed by integration. IQ16 format
 _iq16 I_grid_reference_peak_IQ16; //Peak reference grid current from power loop. In IQ16 format.

 _iq16 Kp; //Proportional gain to be used for power control loop, in IQ16 format

 _iq16 Kiz; //(Integrator gain)*(Ts/2) integrator gain for power control loop in IQ16 format
 _iq16 inst_input_power_integrator; //Sums the instantaneous input power at regular sample intervals.

 _iq16 inst_output_power_integrator; //Sums the instantaneous output power at regular sample intervals.

 Uint16 timer; //Control loop timer (approximates the sampling period).
 Uint16 avg_power_counter; //Counter to be used in computing the average power by integration method

} power_control_structure;

extern _iq16 I_pv_IQ16; //PV current

extern _iq16 V_pv_IQ16; //PV voltage
extern _iq16 V_grid_IQ16; //Grid voltage

extern _iq16 V_inv_IQ16; //Inverter pseudo-dc link voltage

extern _iq16 I_grid_IQ16; //Grid-injected current
extern _iq16 I_grid_reference_IQ16; //amperes

extern _iq16 I_grid_angle_offset_IQ16; //amperes

extern _iq16 dummy1_IQ16, dummy2_IQ16, dummy3_IQ16; //dummy variables for computations
//extern char V_grid_polarity; //Grid voltage polarity

extern struct current_controller_structure cc; //Create an instance of a current controller

extern struct error_structure ERROR_STATUS; //Create an instance of an error structure
extern struct ADC_structure ADC; //Create an instance of an ADC structure

extern struct PLL_structure PLL; //Create an instance of a PLL structure

extern struct zcd_structure zcd; //Create an instance of a zcd structure

9 Main file (main.c)

-74-

extern struct power_control_structure power_loop; //Create an instance of a power control structure

//extern int debug1[200];
//extern int debug2[200];

extern int dummy_counter;

extern Uint16 start_timer;
extern char CONVERTER_STARTED;

extern char SOURCE_OF_UNFOLDING_SIGNAL;

extern int MEP_ScaleFactor[7]; // Global array used by the SFO library. Only HRPWM1A will be used to compute scale factor. So it's HRPWM

must be disabled

extern volatile struct EPWM_REGS *ePWM[7]; //
extern int SFO_status;

void main(void)
{

 // Step 1. Initialize System Control:
 // PLL, WatchDog, enable Peripheral Clocks

 // This example function is found in the DSP2833x_SysCtrl.c file.

 InitSysCtrl();

 // Step 2. Initialize GPIO:

 // This example function is found in the DSP2833x_Gpio.c file and
 // illustrates how to set the GPIO to it's default state.

 //InitEPwm1Gpio();

 //InitEPwm2Gpio();

 // Specific clock setting for this example:
 EALLOW;

 SysCtrlRegs.HISPCP.all = ADC_MODCLK; // HSPCLK = SYSCLKOUT/ADC_MODCLK

 EDIS;

 // Step 3. Clear all interrupts and initialize PIE vector table:

 // Disable CPU interrupts
 DINT;

 // Initialize the PIE control registers to their default state.

 // The default state is all PIE interrupts disabled and flags

 // are cleared.
 // This function is found in the DSP2833x_PieCtrl.c file.

 InitPieCtrl();

 // Disable CPU interrupts and clear all CPU interrupt flags:

 IER = 0x0000;

 IFR = 0x0000;

 // Initialize the PIE vector table with pointers to the shell Interrupt

 // Service Routines (ISR).
 // This will populate the entire table, even if the interrupt

 // is not used in this example. This is useful for debug purposes.

 // The shell ISR routines are found in DSP2833x_DefaultIsr.c.
 // This function is found in DSP2833x_PieVect.c.

 InitPieVectTable();

 // Interrupts that are used in this example are re-mapped to

 // ISR functions found within this file.

 EALLOW; // This is needed to write to EALLOW protected registers
 PieVectTable.XINT1 = &xint1_isr;

 PieVectTable.TINT0 = &cpu_timer0_isr;

 PieVectTable.EPWM4_INT = &epwm4_isr;
 PieVectTable.SEQ1INT = &adc_isr;

 //PieVectTable.ADCINT = &adc_isr;

 EDIS; // This is needed to disable write to EALLOW protected registers

 EALLOW;

 SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0; //Turns off EPWM modules
 EDIS;

 init_variables();

7. Appendix B

-75-

 init_epwm1();

 init_epwm2();
 init_epwm5();

 init_epwm4();

 init_adc(); //Initialize all ADC modules
 init_gpio(); //Initialize certain input/output pins

 init_tmr0();

 GpioDataRegs.GPACLEAR.bit.GPIO4 = 1; // Clear output latch. Turns off Q1/Q2

 GpioDataRegs.GPACLEAR.bit.GPIO5 = 1; // Clear output latch. Turns off Q3/Q4
 //GpioDataRegs.GPASET.bit.GPIO4 = 1; // Set outptut latch. Turns on Q1/Q2

 EALLOW;
 EPwm2Regs.TZFRC.bit.OST = 1; //Force one-shot trip condition

 EPwm5Regs.TZFRC.bit.OST = 1; //Force one-shot trip condition

 EDIS;

 EALLOW;

 SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 1; //Turns on EPWM
 EDIS;

 CpuTimer0Regs.TCR.all = 0x4001; // Start TMR0. Use write-only instruction to set TSS bit = 0

 //EPwm1Regs.CMPA.half.CMPA = 300; // Update compare A value (PWM Q0 and PWM Qx)

 //EPwm2Regs.CMPA.half.CMPA = 300; // Update compare A value (PWM Q0 and PWM Qx)

 XIntruptRegs.XINT1CR.bit.ENABLE = 1; // Enable Xint1. Uncomment when ready to turn on hardware zero-crossing detection

 PieCtrlRegs.PIECTRL.bit.ENPIE = 1; // Enable the PIE block

 PieCtrlRegs.PIEIER1.bit.INTx4 = 1; // Enable PIE XINT1
 //PieCtrlRegs.PIEIER1.bit.INTx6 = 1; //Enable ADCINT in PIE

 PieCtrlRegs.PIEIER1.bit.INTx1 = 1; //Enable SEQ1 interrupt in PIE

 PieCtrlRegs.PIEIER1.bit.INTx7 = 1; // Enable TINT0 in the PIE: Group 1 interrupt 7
 PieCtrlRegs.PIEIER3.bit.INTx4 = 1; // Enable EPWM INTn in the PIE: Group 3 interrupt 4

 PieCtrlRegs.PIEACK.all = 0xFFFF; // Acknowledge then enable PIE interrupts

 // PieCtrlRegs.PIEACK.all = (M_INT1|M_INT3); // Make sure PIEACK for group 1 is clear (default after reset)
 IER |= M_INT1; // Enable CPU INT1 which is connected to external interrupt 1 (i.e. XINT1), to CPU-Timer 0 (TMR0), and to the ADC

interrupt (ADCINT)

 IER |= M_INT3; // Enable CPU INT3 which is connected to EPWM4 INT:
 EINT; // Enable Global interrupt INTM

 ERTM; // Enable Global realtime interrupt DBGM

 DELAY_US(10000); // Delay 30ms to allow ADC to determine the peak grid voltage before we can enable the PLL module

 DELAY_US(10000);

 DELAY_US(10000);

 if (EPwm2Regs.CMPA.half.CMPA != 600) //Apart from the current control loop and PLL loop, all other control loops are designed to work

with
 //a PWM switching frequency of 250kHz. If the code stops you here, you will not be switching at 250kHz. Therefore, verify

 //that all control loops mentioned above will operate at their correct sample times.

 {
 asm(" ESTOP0");

 }

 EPwm4Regs.ETSEL.bit.INTEN = 1; // Enable INT. This also enables the PLL module (PLL runs at the frequency of PWM4's ISR)

 for(;;)
 {

 //Start converter (first start unfolding circuit and then start the current control loop)

 if ((CONVERTER_STARTED == 0) && (ERROR_STATUS.FATAL_ERROR == 0) && (ERROR_STATUS.STOP == 0))
 {

 if (start_timer > 50000) //Wait 2 seconds before checking PLL status.

 {
 if ((PLL.theta[0] <= PI_OVER_2_PLUS_IQ20) && (PLL.theta[0] >= PI_OVER_2_MINUS_IQ20))

 {

 //GpioDataRegs.GPASET.bit.GPIO13 = 1; // Debugging pin
 GpioDataRegs.GPACLEAR.bit.GPIO4 = 1; // Always clear unfolder command before setting

 GpioDataRegs.GPACLEAR.bit.GPIO5 = 1; //

 GpioDataRegs.GPASET.bit.GPIO4 = 1; // Turn on U1/U2

9 Main file (main.c)

-76-

 CONVERTER_STARTED = 1;

 start_timer = 0; //Reset start timer
 }

 PLL.HAS_STARTED = 1; //By this time, it is assumed that the PLL must have settled to a stable operating

point.
 }

 }

 //Activate current controller

 if ((CONVERTER_STARTED)&&(ERROR_STATUS.FATAL_ERROR == 0)&&(ERROR_STATUS.STOP == 0))

 {
 if (start_timer > 50000) //Wait another 2 seconds before starting the current controller

 {

 if ((PLL.theta[0] >= 0) && (PLL.theta[0] <= DEAD_TIME_ANGLE_ZERO_PLUS_IQ20))
 {

 //GpioDataRegs.GPASET.bit.GPIO11 = 1; //For debugging

 cc.CURRENT_CONTROLLER_ACTIVATED = 1;
 }

 }

 }

 if (CONVERTER_STARTED)

 {
 //Check if PLL and ZCD are not matched. Mismatch is only acknowledged if Vgrid is within +/-5V

 //If there is a mismatch, use hardware zcd, else use software zcd

 if ((PLL.V_GRID_POLARITY != zcd.V_GRID_POLARITY) && ((V_grid_IQ16 > 327680) || (V_grid_IQ16 < -
327680)))

 {
 SOURCE_OF_UNFOLDING_SIGNAL = HARDWARE_ZCD;//SOFTWARE_ZCD;//

 cc.V_GRID_POLARITY = zcd.V_GRID_POLARITY;//PLL.V_GRID_POLARITY; //

 }

 else
 {

 SOURCE_OF_UNFOLDING_SIGNAL = HARDWARE_ZCD; //SOFTWARE_ZCD;//
 cc.V_GRID_POLARITY = zcd.V_GRID_POLARITY; //PLL.V_GRID_POLARITY;//

 }

/* if ((zcd.DEAD_TIME == 0)&&(zcd.V_GRID_POLARITY == 1)&&(GpioDataRegs.GPADAT.bit.GPIO4 ==
0))

 {

 asm(" ESTOP0");
 }*/

 GpioDataRegs.GPBSET.bit.GPIO61 = 1; // Turn on GRN LED

 }

 if (ERROR_STATUS.FATAL_ERROR)
 {

 cc.CURRENT_CONTROLLER_ACTIVATED = 0;

 GpioDataRegs.GPACLEAR.bit.GPIO4 = 1; // Turn off unfolder U1/U2
 GpioDataRegs.GPACLEAR.bit.GPIO5 = 1; // Turn off unfolder U3/U4

 EALLOW;

 EPwm2Regs.TZFRC.bit.OST = 1; //Force one-shot trip condition
 EPwm5Regs.TZFRC.bit.OST = 1; //Force one-shot trip condition

 EDIS;

 GpioDataRegs.GPBCLEAR.bit.GPIO61 = 1; // Turn off GRN LED
 GpioDataRegs.GPBSET.bit.GPIO59 = 1; // Turn on RED LED

 CONVERTER_STARTED = 0; //Turn off converter

 }

 //SFO calibration to update MEP

 SFO_status = SFO_MepEn_V5(1);
 }

} //End of "main" function

7. Appendix B

-77-

• Initialization functions

#include "DSP28x_Project.h" // Device Headerfile and Examples Include File
#include "IQmathLib.h"

#include "defines.h"

#include "DSP2833x_Device.h" // DSP2833x Headerfile Include File
#include "DSP2833x_Examples.h" // DSP2833x Examples Include File

#include "SFO_V5.h" // SFO V5 library headerfile - required to use SFO library functions

//All variables used in this program.
typedef struct ADC_structure{

 Uint16 mean0;

 Uint16 mean1;
 Uint16 mean2;

 Uint16 mean3;

 Uint16 mean4;
 Uint16 mean5;

 Uint16 mean6;

 Uint16 mean7;
 Uint16 mean8;

 Uint16 mean9;

 Uint16 buffer0[2], buffer1[2], buffer2[2], buffer3[2], buffer4[2],
 buffer5[2], buffer6[2], buffer7[2], buffer8[2], buffer9[2]; //Buffers for ADC, will be used to compute mean

 Uint16 timer;

}ADC_structure;

typedef struct current_controller_structure{

 _iq16 error_IQ16[2]; //Controller error and one history term
 _iq16 duty_KI_IQ16[2]; //Duty cycle from integral contribution and one history term

 _iq16 duty_KP_IQ16; //Duty cycle from proportional contribution

 _iq16 duty_lag_IQ16[2]; //Duty cycle from the lag term and one history term
 _iq16 duty_PI_IQ16; //Duty cycle from the PI controller (sum of Kp and Ki duty cycle terms)

 _iq16 duty_decoupled_IQ16; //Decoupled duty cycle

 _iq16 duty_total_IQ16[2]; //Total duty cycle from the sum of de-coupled and controller terms with one history term
 _iq16 lag_a_IQ16; //Lag coefficients

 _iq16 lag_b_IQ16;

 _iq16 KP_IQ16; //Controller proportional gain
 _iq16 KI_z_IQ16;

 _iq16 I_grid_reference_folded_IQ16; //Controller reference current in "folded" form

 _iq16 I_grid_folded_IQ16; //Measured grid current in "folded" form
 int duty_DSP; //Duty cycle in DSP units to be fed to PWM Counters.

 long duty_frac; //Fractional duty cycle.

 char V_GRID_POLARITY; //This is used to determine the sign of the "folded" grid reference and measured currents
 char DEAD_TIME; //The current controller's own dead time shadow variable

 char CURRENT_CONTROLLER_ACTIVATED;

} current_controller_structure;

typedef struct error_structure{

 char I_GRID_OVR_CURRENT;
 char V_INV_OVR_VOLTAGE;

 char V_GRID_OVR_VOLTAGE;
 char V_GRID_OVR_VOLTAGE_SHDW;

 char V_GRID_UNDR_VOLTAGE;

 char V_GRID_UNDR_VOLTAGE_SHDW;

 char V_GRID_WRONG_POLARITY;

 char V_PV_OVR_VOLTAGE;

 char V_PV_OVR_VOLTAGE_SHDW;
 char V_PV_UNDR_VOLTAGE;

 char V_PV_UNDR_VOLTAGE_SHDW;

 char I_PV_OVR_CURRENT;

 char TEMP1_HIGH;

 char TEMP2_HIGH;

9 Initialization functions

-78-

 int v_grid_ovr_voltage_timer, v_grid_undr_voltage_timer;

 int v_pv_ovr_voltage_timer, v_pv_undr_voltage_timer;

 char FATAL_ERROR;

 char STOP;
// char SATURATION_HIT

// char SATURATION_

} error_structure;

typedef struct PLL_structure{

 _iq20 Kp; //PLL proportional
 _iq20 Ki; //PLL integral term (Ki*Ts/2)

 _iq20 Ki2; //(VCO) Integrator coefficient for computing the grid angle (Ts/2) in iq20 format

 _iq20 cos_theta; //cos_theta
 _iq20 sin_theta; //sin_theta

 _iq20 w[3]; //This is the angular velocity from the PLL alongside two history term

 _iq20 w_filtered[3]; //This is the filtered angular velocity along with two history terms
 _iq20 w_non_offset_P; //This is the proportional component of the unfiltered output of the PLL's PI controller.

 _iq20 w_non_offset_I[2]; //This is the integral component of the unfiltered output of the PLL's PI controller along with one history

term
 _iq20 w_offset; //This is the offset w that will be added (feedforward) to improve response of the PLL and reduce controller effort

 _iq20 theta[2]; //Angle in radians at output of VCO, with one history term

 _iq20 SOGI_Valpha[3]; //This is the alpha voltage from the second order generalized integrator
 _iq20 SOGI_Vbeta[3]; //This is the beta voltage from the second order generalized integrator

 _iq20 SOGI_k; //SOGI k coefficient

 _iq20 SOGI_wnTs;
 _iq20 SOGI_x;

 _iq20 SOGI_y;
 _iq20 SOGI_denominator;

 _iq20 SOGI_quotient;

 _iq20 SOGI_b0;
 _iq20 SOGI_a1;

 _iq20 SOGI_a2;

 _iq20 SOGI_ky;
 _iq20 SOGI_qb0;

 _iq20 V_grid_pu[3]; //Normalized (per-unitized) instantaneous grid voltage with two history terms;

 _iq20 V_grid_base; //Base grid voltage
 _iq20 error[3];//Present error term and two history terms

 _iq20 notch_a; //Notch filter coefficient a(0.979127)

 _iq20 notch_b; //Notch filter coefficient b(-1.957364)
 _iq20 notch_f; //Notch filter coefficient f(0.958254)

 _iq20 notch_out[3]; //Output of notch filter with two history terms.

 _iq20 Vd; //Direct-axis voltage
 _iq20 Vq; //Quadrature-axis voltage

 _iq20 V_grid_pk_pu[2]; //Normalized (per-unitized) unfiltered peak grid voltage

 _iq20 V_grid_pk_filtered_pu[2]; //Normalized filtered peak grid voltage
 _iq20 A,B,C,D,E; //Variables that will be used as coefficients for filtering the angular speed and the peak normalized grid voltage.

Can also be constants in IQ20 format

 char PERIOD_HAS_OCCURED; //Takes note of when one grid period has occurred
 char HAS_STARTED;

 char V_GRID_POLARITY; //Grid polarity as given by PLL module

 char DEAD_TIME; //Dead time as given by PLL module

/*

 char LOCKED; //This variable is set when it is determined that the PLL is 'locked' (when frequency varies within a narrowband)
 char FAILED; //This variable is set when it is determined that the PLL has failed to lock after several attempts.

 Uint16 lock_timer; //Timer used to keep track of PLL Locked status

*/
}PLL_structure;

typedef struct zcd_structure{
 Uint16 half_period[2]; //Grid half period

 Uint16 full_period; //Grid full period

 Uint16 half_period_counter; //Counter for determining the half_period
 Uint16 full_period_counter; //Counter for determining grid angle from 0 to 360 degrees

 Uint16 angle_pu_IQ16; //Grid angle measurement by using the hardware zcd method.

 char V_GRID_POLARITY; //Grid polarity as given by zcd circuit.
 char PERIOD_TOO_LOW; //High frequency limit as given by zcd module

 char PERIOD_TOO_HIGH; //Low frequency limit as given by zcd module

 char DEAD_TIME; //Dead time event indicator

7. Appendix B

-79-

} zcd_structure;

typedef struct power_control_structure{

 _iq16 P_ref_IQ16; //Reference active power in IQ16 format in IQ16 format.

 _iq16 Q_ref_IQ16; //Reference reactive power in IQ16 format in IQ16 format.
 _iq16 error_P_ref[2]; //Active power tracking error

 _iq16 error_Q_ref[2]; //Reactive power tracking error

 _iq16 P_dc_IQ16; //Active power computed by P-Q transform method in IQ16 format.
 _iq16 Q_dc_IQ16; //Reactive power computed by P-Q transform method in IQ16 format.

 long P_output_avg_IQ16; //Average output power. Computed by integration. IQ16 format

 long P_input_avg_IQ16; //Average input power. Computed by integration. IQ16 format
 _iq16 I_grid_reference_peak_IQ16; //Peak reference grid current from power loop. In IQ16 format.

 _iq16 Kp; //Proportional gain to be used for power control loop, in IQ16 format

 _iq16 Kiz; //(Integrator gain)*(Ts/2) integrator gain for power control loop in IQ16 format
 _iq16 inst_input_power_integrator; //Sums the instantaneous input power at regular sample intervals.

 _iq16 inst_output_power_integrator; //Sums the instantaneous output power at regular sample intervals.

 Uint16 timer; //Control loop timer (approximates the sampling period).
 Uint16 avg_power_counter; //Counter to be used in computing the average power by integration method

} power_control_structure;

//All variables used in this program.

volatile _iq16 V_pv_IQ16; //PV voltage

volatile _iq16 I_pv_IQ16; //PV current
volatile _iq16 V_grid_IQ16; //Grid voltage

volatile _iq16 V_inv_IQ16; //Inverter pseudo-dc link voltage

volatile _iq16 I_grid_IQ16; //Grid-injected current
volatile _iq16 I_grid_reference_IQ16; //amperes

volatile _iq16 I_grid_reference_peak_IQ16 = _IQ16(0.3);
volatile _iq16 I_grid_angle_offset_IQ16 = 0;

volatile _iq16 dummy1_IQ16;

volatile _iq16 dummy2_IQ16;
volatile _iq16 dummy3_IQ16; //dummy variables for computations

volatile _iq16 V_grid_pk_IQ16[2]; //Instantaneous peak grid voltage container and one history term

//volatile _iq16 angle_pu_IQ16;
volatile char V_grid_polarity; //Grid voltage polarity

volatile struct current_controller_structure cc; //Create an instance of a current controller

volatile struct error_structure ERROR_STATUS; //Create an instance of an error structure
volatile struct ADC_structure ADC; //Create an instance of an ADC structure

volatile struct PLL_structure PLL; //Create an instance of a PLL structure

volatile struct zcd_structure zcd; //Create an instance of a zcd structure
volatile struct power_control_structure power_loop; //Create an instance of a power control structure

volatile int debug1[200];

volatile int debug2[200];
volatile int dummy_counter;

int k = 0; //Counter

int j = 0; // counter
int m = 0; //counter

Uint16 start_timer = 0;

char CONVERTER_STARTED = 0;
char SOURCE_OF_UNFOLDING_SIGNAL = HARDWARE_ZCD;

volatile int MEP_ScaleFactor[7] = {0,0,0,0,0,0}; // Global array used by the SFO library. Only HRPWM1A will be used to compute scale factor.
So it's HRPWM must be disabled

volatile struct EPWM_REGS *ePWM[7] =

 { &EPwm1Regs, &EPwm1Regs, &EPwm2Regs, &EPwm3Regs,
 &EPwm4Regs, &EPwm5Regs, &EPwm6Regs};

volatile int SFO_status = 0;

void init_variables(void)

{

 V_pv_IQ16 = 0;
 I_pv_IQ16 = 0;

 V_grid_IQ16 = 0;

 V_inv_IQ16 = 0;
 I_grid_IQ16 = 0;

 I_grid_reference_IQ16 = 0;

 I_grid_reference_peak_IQ16 = _IQ16(0);
 I_grid_angle_offset_IQ16 = 0;

 //angle_pu_IQ16 = 0;

 dummy1_IQ16 = 0;

9 Initialization functions

-80-

 dummy2_IQ16 = 0;

 dummy3_IQ16 = 0;
 V_grid_pk_IQ16[0] = 0; V_grid_pk_IQ16[1] = 0; //Instantaneous peak grid voltage container and one history term

 V_grid_polarity = POSITIVE_POLARITY;

 dummy_counter = 0;

 //Initialize ADC

 /*Ipv = ADC_buff0 (or ADC_A0)
 * Vpv = ADC_buff1 (or ADC_B0)

 * Iac = ADC_buff2 (or ADC_A1)

 * Vg = ADC_buff3 (or ADC_B1)
 * TEMP1 = ADC_buff4 (or ADC_A2)

 * Vinv = ADC_buff5 (or ADC_B2)

 * POT1 = ADC_buff6 (or ADC_A3)
 * TEMP2 = ADC_buff7 (or ADC_B3)

 * POT2 = ADC_buff8 (or ADC_B4)

 *
 */

 ADC.mean0 = 0; ADC.mean1 = 0; ADC.mean2 = 0; ADC.mean3 = 0; ADC.mean4 = 0;

 ADC.mean5 = 0; ADC.mean6 = 0; ADC.mean7 = 0; ADC.mean8 = 0; ADC.mean9 = 0;
 ADC.buffer0[0] = 0; ADC.buffer0[1] = 0; ADC.buffer1[0] = 0; ADC.buffer1[1] = 0;

 ADC.buffer2[0] = 0; ADC.buffer2[1] = 0; ADC.buffer3[0] = 0; ADC.buffer3[1] = 0;

 ADC.buffer4[0] = 0; ADC.buffer4[1] = 0; ADC.buffer5[0] = 0; ADC.buffer5[1] = 0;
 ADC.buffer6[0] = 0; ADC.buffer6[1] = 0; ADC.buffer7[0] = 0; ADC.buffer7[1] = 0;

 ADC.buffer8[0] = 0; ADC.buffer8[1] = 0; ADC.buffer9[0] = 0; ADC.buffer9[1] = 0;

 //Initialize current_controller

 cc.error_IQ16[0] = 0; cc.error_IQ16[1] = 0;
 cc.duty_KI_IQ16[0] = 0; cc.duty_KI_IQ16[1] = 0;

 cc.duty_KP_IQ16 = 0;

 cc.duty_lag_IQ16[0] = 0; cc.duty_lag_IQ16[1] = 0;
 cc.duty_PI_IQ16 = 0;

 cc.duty_decoupled_IQ16 = 0;

 cc.duty_total_IQ16[0] = 0; cc.duty_total_IQ16[1] = 0;
 cc.KP_IQ16 = 2772;

 cc.KI_z_IQ16 = 94; //132;

 cc.lag_a_IQ16 = 21845;
 cc.lag_b_IQ16 = 21845;

 cc.I_grid_folded_IQ16 = 0;

 cc.I_grid_reference_folded_IQ16 = 0;
 cc.duty_DSP = 0;

 cc.duty_frac = 0; //Fractional duty cycle.

 cc.V_GRID_POLARITY = POSITIVE_POLARITY;
 cc.DEAD_TIME = 0; //The current controller's own dead time shadow variable

 cc.CURRENT_CONTROLLER_ACTIVATED = 0;

 //Initialize error status

 ERROR_STATUS.I_GRID_OVR_CURRENT = 0; ERROR_STATUS.V_INV_OVR_VOLTAGE = 0;

 ERROR_STATUS.V_GRID_OVR_VOLTAGE = 0; ERROR_STATUS.V_GRID_OVR_VOLTAGE_SHDW = 0;
 ERROR_STATUS.V_GRID_UNDR_VOLTAGE = 0; ERROR_STATUS.V_GRID_UNDR_VOLTAGE_SHDW = 0;

 ERROR_STATUS.V_GRID_WRONG_POLARITY = 0; ERROR_STATUS.V_PV_OVR_VOLTAGE = 0;

 ERROR_STATUS.V_PV_OVR_VOLTAGE_SHDW = 0; ERROR_STATUS.V_PV_UNDR_VOLTAGE = 0;
 ERROR_STATUS.V_PV_UNDR_VOLTAGE_SHDW = 0;

 ERROR_STATUS.I_PV_OVR_CURRENT = 0;
 ERROR_STATUS.TEMP1_HIGH = 0;

 ERROR_STATUS.TEMP2_HIGH = 0;

 ERROR_STATUS.v_grid_ovr_voltage_timer = 0; ERROR_STATUS.v_grid_undr_voltage_timer = 0;
 ERROR_STATUS.v_pv_ovr_voltage_timer = 0; ERROR_STATUS.v_pv_undr_voltage_timer = 0;

 ERROR_STATUS.FATAL_ERROR = 0;
 ERROR_STATUS.STOP = 0;

 //Initialize debugging variables
 for (k=0; k < 200; k = k+1)

 {

 debug1[k] = 0;
 debug2[k] = 0;

 }

7. Appendix B

-81-

 //Initialize PLL variables

 PLL.Kp = _IQ20(300); //PLL proportional
 PLL.Ki = _IQ20(1); //PLL integral term (K*Ts/2) where K = 50000 (that's a huge integrator!)

 PLL.Ki2 = 21; //Integrator coefficient to compute the grid angle from speed (this is otherwise known as a VCO) (= 1/(2*25000) *

2^20)
 PLL.cos_theta = _IQ20(1); //cos_theta

 PLL.sin_theta = 0; //sin_theta

 PLL.w[0] = W_NOMINAL_IQ20; PLL.w[1] = W_NOMINAL_IQ20; PLL.w[2] = W_NOMINAL_IQ20;//Angular velocity
 PLL.w_filtered[0] = W_NOMINAL_IQ20; PLL.w_filtered[1] = W_NOMINAL_IQ20; PLL.w_filtered[2] = W_NOMINAL_IQ20;

//Filtered angular velocity

 PLL.w_non_offset_P = 0; //Proportional result of PLL PI controller
 PLL.w_non_offset_I[0] = 0; PLL.w_non_offset_I[1] = 0; //Integral result of PLL PI controller

 PLL.w_offset = W_NOMINAL_IQ20; //Offset angular speed for faster response

 PLL.theta[0] = 0; PLL.theta[1] = 0; //Angle in radians from PLL
 PLL.SOGI_Valpha[0] = 0; PLL.SOGI_Valpha[1] = 0; PLL.SOGI_Valpha[2] = 0; //Alpha-axis voltage

 PLL.SOGI_Vbeta[0] = 0; PLL.SOGI_Vbeta[1] = 0; PLL.SOGI_Vbeta[2] = 0; //Beta-axis voltage

 PLL.SOGI_k = 838861; //SOGI k coefficient in IQ format (chosen as 0.8*2^20)
 PLL.SOGI_wnTs = 0;

 PLL.SOGI_x = 0;

 PLL.SOGI_y = 0;
 PLL.SOGI_denominator = 0;

 PLL.SOGI_quotient = 0;

 PLL.SOGI_b0 = 0;
 PLL.SOGI_a1 = 0;

 PLL.SOGI_a2 = 0;

 PLL.SOGI_ky = 0;
 PLL.SOGI_qb0 = 0;

 PLL.V_grid_pu[0] = _IQ20div(V_grid_IQ16<<4,(long)V_GRID_BASE_IQ20); //Since V_grid_IQ16 is an IQ16, it needs to be
multiplied by 16 (left shift of 4) to convert to IQ20

 PLL.V_grid_pu[1] = PLL.V_grid_pu[0];

 PLL.V_grid_pu[2] = PLL.V_grid_pu[0];
 PLL.V_grid_base = (long)V_GRID_BASE_IQ20; //Base grid voltage

 PLL.error[0] = 0; PLL.error[1] = 0; PLL.error[2] = 0; //PLL error

 PLL.notch_a = 1026689; //Notch filter coefficient a(0.979127*2^20)
 PLL.notch_b = -2052445; //Notch filter coefficient b(-1.957364*2^20)

 PLL.notch_f = 1004802; //Notch filter coefficient f(0.958254*2^20)

 PLL.notch_out[0] = 0; PLL.notch_out[1] = 0; PLL.notch_out[2] = 0; //Output of notch filter with two history terms.
 PLL.Vd = 0;

 PLL.Vq = 0;

 PLL.V_grid_pk_pu[0] = 0; PLL.V_grid_pk_pu[1] = 0; //Normalized (per-unitized) unfiltered peak grid voltage
 PLL.V_grid_pk_filtered_pu[0] = 0; PLL.V_grid_pk_filtered_pu[1] = 0; //Normalized filtered peak grid voltage

 PLL.A = 2;// (1.576333e-6 * 2^20)Variables that will be used as coefficients for filtering the angular speed and the peak normalized

grid voltage. Can also be constants in IQ20 format
 PLL.B = -2093426; // (-1.99644623 * 2^20)

 PLL.C = 1044856; // (0.99645253 * 2^20)

 PLL.D = 1316; //(1.255e-3 *2^20)
 PLL.E = 1045944;//(0.99748988 * 2^20)

 PLL.PERIOD_HAS_OCCURED = 0;

 PLL.HAS_STARTED = 0;
 PLL.DEAD_TIME = 0; //Dead time as given by PLL module

 //Initialize zcd variables
 zcd.half_period[0] = 1042; //if ADC frequency (125kHz) is used, then 1/120 seconds correspond to 1042 counts

 zcd.half_period[1] = 1042;

 zcd.full_period = 2083; //Similarly for 1/60 seconds
 zcd.angle_pu_IQ16 = 0; //Grid angle measurement by using the hardware zcd method.

 zcd.PERIOD_TOO_HIGH = 0;

 zcd.PERIOD_TOO_LOW = 0;
 zcd.half_period_counter = 0;

 zcd.full_period_counter = 0;

 zcd.DEAD_TIME = 0; //Dead time off

 power_loop.P_ref_IQ16 = 0; //Reference active power in IQ16 format in IQ16 format.

 power_loop.Q_ref_IQ16 = 0; //Reference reactive power in IQ16 format in IQ16 format.
 power_loop.error_P_ref[0] = 0; power_loop.error_P_ref[1] = 0;//Active power tracking error

 power_loop.error_Q_ref[0] = 0; power_loop.error_Q_ref[1] = 0;//Reactive power tracking error

 power_loop.P_dc_IQ16 = 0; //Active power computed by P-Q transform method in IQ16 format.
 power_loop.Q_dc_IQ16 = 0; //Reactive power computed by P-Q transform method in IQ16 format.

 power_loop.P_output_avg_IQ16 = 0; //Counter to be used in computing the average output power by integration method

 power_loop.P_input_avg_IQ16 = 0; //Counter to be used in computing the average input power by integration method

9 Initialization functions

-82-

 power_loop.Kp = _IQ16(1); //Proportional gain to be used for power control loop, in IQ16 format

 power_loop.Kiz = _IQ16(.008); //(Integrator gain)*(Ts/2) integrator gain for power control loop in IQ16 format
 power_loop.inst_input_power_integrator = 0; //Sums the instantaneous input power at regular sample intervals.

 power_loop.inst_output_power_integrator = 0; //Sums the instantaneous output power at regular sample intervals.

 power_loop.timer = 0; //Control loop timer (approximates the sampling period).
 power_loop.avg_power_counter = 0; //Counter to be used in computing the average power by integration method

 return;
}

void init_epwm1(void)

{
 EALLOW;

 GpioCtrlRegs.GPAPUD.bit.GPIO0 = 1; // Disable pull-up on GPIO0 (EPWM1A)

 GpioCtrlRegs.GPAPUD.bit.GPIO1 = 1; // Disable pull-up on GPIO1 (EPWM1B)

 /* Configure ePWM-1 pins using GPIO regs*/

 // This specifies which of the possible GPIO pins will be ePWM1 functional pins.
 GpioCtrlRegs.GPAMUX1.bit.GPIO0 = 1; // Configure GPIO0 as EPWM1A

 GpioCtrlRegs.GPAMUX1.bit.GPIO1 = 1; // Configure GPIO1 as EPWM1B

 EDIS;

 // Setup TBCLK

 EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; // Count up
 EPwm1Regs.TBPRD = 600;//EPWM1_TIMER_TBPRD; // Set timer period

 EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Disable phase loading

 EPwm1Regs.TBPHS.half.TBPHS = 0x0000; // Phase is 0
 EPwm1Regs.TBCTR = 0x0000; // Clear counter

 EPwm1Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1; // Clock ratio to SYSCLKOUT
 EPwm1Regs.TBCTL.bit.CLKDIV = TB_DIV1;

 // Setup shadow register load on ZERO
 EPwm1Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;

 EPwm1Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;

 EPwm1Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;
 EPwm1Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;

 // Set Compare values
 EPwm1Regs.CMPA.half.CMPA = 0;//EPWM1_MIN_CMPA; // Set compare A value

 EPwm1Regs.CMPB = 0;//EPWM1_MIN_CMPB; // Set Compare B value

 // Set actions

 EPwm1Regs.AQCTLA.bit.ZRO = AQ_SET; // Set PWM1A on Zero

 EPwm1Regs.AQCTLA.bit.CAU = AQ_CLEAR; // Clear PWM1A on event A, up count

 EPwm1Regs.AQCTLB.bit.ZRO = AQ_CLEAR;//AQ_SET; // Set PWM1B on Zero

 EPwm1Regs.AQCTLB.bit.CBU = AQ_SET;//AQ_CLEAR; // Clear PWM1B on event B, up count

 // Interrupt where we will change the Compare Values

 EPwm1Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO; // Select INT on Zero event
 EPwm1Regs.ETSEL.bit.INTEN = 0; // Disable interrupt INT

 EPwm1Regs.ETPS.bit.INTPRD = 0x00; // Disable the interrupt event counter. No interrupt will be generated and ETFRC[INT] is

ignored.

 // Active Low PWMs - Setup Deadband

 EPwm1Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE;
 EPwm1Regs.DBCTL.bit.POLSEL = DB_ACTV_HIC;//DB_ACTV_LO;

 EPwm1Regs.DBRED = 20;//5;//EPWM1_MIN_DB;

 EPwm1Regs.DBFED = 40;//5;//50;//EPWM1_MIN_DB; //Falling edge deadtime

 EALLOW;

 //Trip-zone configuration for fault conditions

 EPwm1Regs.TZSEL.bit.OSHT1 = 0x01; //Enable TZ1 as a one-shot trip source for this ePWM module

 EPwm1Regs.TZCTL.bit.TZA = 0x02; //Force EPWM1A to a low state
 EPwm1Regs.TZCTL.bit.TZB = 0x02; //Force EPWM1B to a low state

 EDIS;

 while (SFO_MepDis_V5(1) != 1); //Run HRPWM calibration routine while PWM1 is disabled and use the result to seed the

MEP_ScaleFactor[0].

7. Appendix B

-83-

 MEP_ScaleFactor[0] = MEP_ScaleFactor[1]; //Seeding initial MEP_ScaleFactor (Necessary step for SFO_MepEn_V5 to work well)

}

void init_epwm2(void)
{

 EALLOW;

 GpioCtrlRegs.GPAPUD.bit.GPIO2 = 1; // Disable pull-up on GPIO2 (EPWM2A)
 GpioCtrlRegs.GPAPUD.bit.GPIO3 = 1; // Disable pull-up on GPIO3 (EPWM3B)

 /* Configure ePWM-2 pins using GPIO regs*/
 // This specifies which of the possible GPIO pins will be ePWM2 functional pins.

 GpioCtrlRegs.GPAMUX1.bit.GPIO2 = 1; // Configure GPIO2 as EPWM2A
 GpioCtrlRegs.GPAMUX1.bit.GPIO3 = 1; // Configure GPIO3 as EPWM2B

 EDIS;

 // Setup TBCLK
 EPwm2Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; // Count up

 EPwm2Regs.TBPRD = SWITCHING_PERIOD;//EPWM2_TIMER_TBPRD; // Set timer period

 EPwm2Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Disable phase loading
 EPwm2Regs.TBPHS.half.TBPHS = 0x0000; // Phase is 0

 EPwm2Regs.TBCTR = 0x0000; // Clear counter

 EPwm2Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1; //TB_DIV2; // Clock ratio to SYSCLKOUT
 EPwm2Regs.TBCTL.bit.CLKDIV = TB_DIV1; //TB_DIV2;

 // Setup shadow register load on ZERO
 EPwm2Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;

 EPwm2Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
 EPwm2Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;

 EPwm2Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;

 // Set Compare values

 EPwm2Regs.CMPA.half.CMPA = SWITCHING_PERIOD; // Set compare A value. We want PWMB to be zero on start, so

make PWMA maximum on start.
 EPwm2Regs.CMPB = 0;//EPWM2_MAX_CMPB; // Set Compare B value

 EPwm2Regs.CMPA.half.CMPAHR = (1 << 8); //Set initial value for CMPAHR

 // Set actions

 EPwm2Regs.AQCTLA.bit.ZRO = AQ_SET;//AQ_CLEAR; // Clear PWM2A on Period

 EPwm2Regs.AQCTLA.bit.CAU = AQ_CLEAR;//AQ_SET; // Set PWM2A on event A, up count

 EPwm2Regs.AQCTLB.bit.ZRO = AQ_CLEAR; // Clear PWM2B on Period

 EPwm2Regs.AQCTLB.bit.CBU = AQ_SET; // Set PWM2B on event B, up count

 //Enable SOCA

 EPwm2Regs.ETSEL.bit.SOCAEN = 0x01; //Enable EPWM2 SOCA Pulse. This will trigger the ADC conversion sequence
 EPwm2Regs.ETSEL.bit.SOCASEL = 0x01; //Enable event time-base counter equal to period (TBCTR = TBPRD)

 EPwm2Regs.ETPS.bit.SOCAPRD = 0x02; // Generate pulse on 2nd event. This means that if PWM switching frequency is 250kHz, then

ADC frequency is 125kHz.

 // Configure Interrupt

 EPwm2Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO; // Select INT on Zero event
 EPwm2Regs.ETSEL.bit.INTEN = 0;//1; //Disable INT. Interrupt will be enable in main.c

 EPwm2Regs.ETPS.bit.INTPRD = 0x00; //Disable interrupt event counter //ET_3RD; // Generate INT on 3rd event

 // Active Low PWMs - Setup Deadband

 EPwm2Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE;

 EPwm2Regs.DBCTL.bit.POLSEL = DB_ACTV_HIC;//DB_ACTV_LO;
 EPwm2Regs.DBRED = 10;//5;//EPWM1_MIN_DB;

 EPwm2Regs.DBFED = 20;//5;//50;//EPWM1_MIN_DB;

 //Trip-zone configuration for fault conditions and High-resoultion configuration

 EALLOW;

 EPwm2Regs.TZSEL.bit.OSHT1 = 0x01; //Enable TZ1 as a one-shot trip source for this ePWM module
 EPwm2Regs.TZCTL.bit.TZA = 0x02; //Force EPWM1A to a low state

 EPwm2Regs.TZCTL.bit.TZB = 0x02; //Force EPWM1B to a low state

 EPwm2Regs.TZFRC.bit.OST = 1; //Force one-shot trip condition

 EPwm2Regs.HRCNFG.bit.HRLOAD = 0; //High resolution counter loaded at "counter equal zero"

 EPwm2Regs.HRCNFG.bit.CTLMODE = 0; //CMPAHR controls edge position

9 Initialization functions

-84-

 EPwm2Regs.HRCNFG.bit.EDGMODE = 0x02; //MEP control is done on falling edge. Any non-zero value for this configuration effectively

activates the HRPWM
 EDIS;

}

void init_epwm5(void)

{

 EALLOW;
 GpioCtrlRegs.GPAPUD.bit.GPIO8 = 1; // Disable pull-up on GPIO8 (EPWM5A)

 GpioCtrlRegs.GPAPUD.bit.GPIO9 = 1; // Disable pull-up on GPIO9 (EPWM5B)

 /* Configure ePWM-5 pins using GPIO regs*/

 // This specifies which of the possible GPIO pins will be ePWM5 functional pins.

 GpioCtrlRegs.GPAMUX1.bit.GPIO8 = 1; // Configure GPIO8 as EPWM5A

 GpioCtrlRegs.GPAMUX1.bit.GPIO9 = 1; // Configure GPIO9 as EPWM5B

 EDIS;
 // Setup TBCLK

 EPwm5Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; // Count up

 EPwm5Regs.TBPRD = SWITCHING_PERIOD; // Set timer period
 EPwm5Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Disable phase loading

 EPwm5Regs.TBPHS.half.TBPHS = 0x0000; // Phase is 0

 EPwm5Regs.TBCTR = 0x0000; // Clear counter
 EPwm5Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1; //TB_DIV2; // Clock ratio to SYSCLKOUT

 EPwm5Regs.TBCTL.bit.CLKDIV = TB_DIV1; //TB_DIV2;

 // Setup shadow register load on ZERO

 EPwm5Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;
 EPwm5Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;

 EPwm5Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;

 EPwm5Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;

 // Set Compare values

 EPwm5Regs.CMPA.half.CMPA = SWITCHING_PERIOD; // Set compare A value. We want PWMB to be zero on start, so
make PWMA maximum on start.

 EPwm5Regs.CMPB = 0;//EPWM2_MAX_CMPB; // Set Compare B value

 EPwm5Regs.CMPA.half.CMPAHR = (1 << 8); //Set initial value for CMPAHR

 // Set actions

 EPwm5Regs.AQCTLA.bit.ZRO = AQ_CLEAR; // Clear PWM5A on Period
 EPwm5Regs.AQCTLA.bit.CAU = AQ_SET; // Set PWM5A on event A, up count

 EPwm5Regs.AQCTLB.bit.ZRO = AQ_SET; // Clear PWM5B on Period
 EPwm5Regs.AQCTLB.bit.CBU = AQ_CLEAR; // Set PWM5B on event B, up count

 //Enable SOCA
 EPwm5Regs.ETSEL.bit.SOCAEN = 0x00; //Disable EPWM5 SOCA Pulse.

 EPwm5Regs.ETSEL.bit.SOCASEL = 0x01; //Enable event time-base counter equal to period (TBCTR = TBPRD)

 EPwm5Regs.ETPS.bit.SOCAPRD = 0x02; // Generate pulse on 2nd event. This means that if PWM switching frequency is 250kHz, then
ADC frequency is 125kHz.

 // Configure Interrupt
 EPwm5Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO; // Select INT on Zero event

 EPwm5Regs.ETSEL.bit.INTEN = 0; //Disable INT.

 EPwm5Regs.ETPS.bit.INTPRD = 0x00; //Disable interrupt event counter //ET_3RD; // Generate INT on 3rd event

 // Active Low PWMs - Setup Deadband

 EPwm5Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE;
 EPwm5Regs.DBCTL.bit.POLSEL = DB_ACTV_HIC;//DB_ACTV_LO;

 EPwm5Regs.DBRED = 10;//5;//EPWM1_MIN_DB;

 EPwm5Regs.DBFED = 20;//5;//50;//EPWM1_MIN_DB;

 //Trip-zone configuration for fault conditions and High-resoultion configuration

 EALLOW;
 EPwm5Regs.TZSEL.bit.OSHT1 = 0x01; //Enable TZ1 as a one-shot trip source for this ePWM module

 EPwm5Regs.TZCTL.bit.TZA = 0x02; //Force EPWM5A to a low state

 EPwm5Regs.TZCTL.bit.TZB = 0x02; //Force EPWM5B to a low state
 EPwm5Regs.TZFRC.bit.OST = 1; //Force one-shot trip condition

 EPwm5Regs.HRCNFG.bit.HRLOAD = 0; //High resolution counter loaded at "counter equal zero"

7. Appendix B

-85-

 EPwm5Regs.HRCNFG.bit.CTLMODE = 0; //CMPAHR controls edge position

 EPwm5Regs.HRCNFG.bit.EDGMODE = 0x01; //MEP control is done on rising edge
 EDIS;

}

void init_epwm4(void) //This EPWM4 is only used as to generate an ISR for low-priority control and as a clock source for some housekeeping

functions
{

 EALLOW;

 GpioCtrlRegs.GPAPUD.bit.GPIO6 = 1; // Disable pull-up on GPIO6 (EPWM4A)
 GpioCtrlRegs.GPAMUX1.bit.GPIO6 = 1; // Configure GPIO6 as EPWM4A

 EDIS;

 // Setup TBCLK

 EPwm4Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; // Count up

 EPwm4Regs.TBPRD = 1500;//EPWM3_TIMER_TBPRD; // Set timer period. Corresponds to about 25kHz
 EPwm4Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Disable phase loading

 EPwm4Regs.TBPHS.half.TBPHS = 0x0000; // Phase is 0

 EPwm4Regs.TBCTR = 0x0000; // Clear counter
 EPwm4Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1; // Clock ratio to SYSCLKOUT

 EPwm4Regs.TBCTL.bit.CLKDIV = 0x02; //Divide TBCLK by 4

 // Setup shadow register load on ZERO

 EPwm4Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;

 EPwm4Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
 EPwm4Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;

 EPwm4Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;

 // Set Compare values

 EPwm4Regs.CMPA.half.CMPA = 300;//10000;//EPWM3_MIN_CMPA; // Set compare A value
 EPwm4Regs.CMPB = 300;//10000;//EPWM3_MAX_CMPB; // Set Compare B value

 // Set Actions
 EPwm4Regs.AQCTLA.bit.ZRO = AQ_SET;//AQ_CLEAR; // Clear PWM2A on Period

 EPwm4Regs.AQCTLA.bit.CAU = AQ_CLEAR;//AQ_SET; // Set PWM2A on event A, up count

 EPwm4Regs.AQCTLB.bit.ZRO = AQ_SET; // Clear PWM2B on Period

 EPwm4Regs.AQCTLB.bit.CBU = AQ_CLEAR; // Set PWM2B on event B, up count

 // Interrupt where we will change the Compare Values

 EPwm4Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO; // Select INT on Zero event

 EPwm4Regs.ETSEL.bit.INTEN = 0; // Disble INT. INT will be enabled in main when conditions are right
 EPwm4Regs.ETPS.bit.INTPRD = 0x01; //interrupt on 1st event

}

//---

// InitAdc:

//---
// This function initializes ADC to a known state.

//

void init_adc(void)
{

 extern void DSP28x_usDelay(Uint32 Count);

 // *IMPORTANT*

 // The ADC_cal function, which copies the ADC calibration values from TI reserved
 // OTP into the ADCREFSEL and ADCOFFTRIM registers, occurs automatically in the

 // Boot ROM. If the boot ROM code is bypassed during the debug process, the

 // following function MUST be called for the ADC to function according
 // to specification. The clocks to the ADC MUST be enabled before calling this

 // function.

 // See the device data manual and/or the ADC Reference
 // Manual for more information.

 EALLOW;
 SysCtrlRegs.PCLKCR0.bit.ADCENCLK = 1;

 ADC_cal();

 EDIS;

9 Initialization functions

-86-

 // To powerup the ADC the ADCENCLK bit should be set first to enable

 // clocks, followed by powering up the bandgap, reference circuitry, and ADC core.

 // Before the first conversion is performed a 5ms delay must be observed
 // after power up to give all analog circuits time to power up and settle

 // Please note that for the delay function below to operate correctly the
 // CPU_RATE define statement in the DSP2833x_Examples.h file must

 // contain the correct CPU clock period in nanoseconds.

 AdcRegs.ADCTRL3.all = 0x00E0; // Power up bandgap/reference/ADC circuits

 DELAY_US(ADC_usDELAY); // Delay before converting ADC channels

 AdcRegs.ADCTRL1.bit.ACQ_PS = ADC_SHCLK; //S/H window

 AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 0x01; //SEQ1 Interrupt Enable (Works for cascaded sequencer as well)

 AdcRegs.ADCTRL2.bit.RST_SEQ1 = 0x01; //Reset Sequencer to state Conv00
 AdcRegs.ADCTRL2.bit.EPWM_SOCA_SEQ1 = 0x01; //Allow the cascaded sequencer to be triggered by EMPWx SOCA

 AdcRegs.ADCTRL3.bit.ADCCLKPS = ADC_CKPS; //ADC clock divider

 AdcRegs.ADCTRL3.bit.SMODE_SEL = 0x1; // Setup simultaneous sampling mode

 AdcRegs.ADCTRL1.bit.SEQ_CASC = 0x1; // Setup cascaded sequencer mode

 AdcRegs.ADCMAXCONV.all = 0x0004; // 5 double conv's (10 total)

 AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x0; // Setup conv from ADCINA0 & ADCINB0

 AdcRegs.ADCCHSELSEQ1.bit.CONV01 = 0x1; // Setup conv from ADCINA1 & ADCINB1
 AdcRegs.ADCCHSELSEQ1.bit.CONV02 = 0x2; // Setup conv from ADCINA2 & ADCINB2

 AdcRegs.ADCCHSELSEQ1.bit.CONV03 = 0x3; // Setup conv from ADCINA3 & ADCINB3
 AdcRegs.ADCCHSELSEQ2.bit.CONV04 = 0x4; // Setup conv from ADCINA4 & ADCINB4

 AdcRegs.ADCTRL1.bit.CONT_RUN = 0; //Disable continuous run. You must now manually re-start sampling and reset sequencer

}

void init_gpio(void)

{

 //GPIO8 is used for debugging while GPIO7 is used for external interrupt (zero-crossing)
 EALLOW;

 GpioCtrlRegs.GPAPUD.bit.GPIO10 = 0; // Enable pullup on GPIO10

 GpioCtrlRegs.GPAMUX1.bit.GPIO10 = 0; // GPIO10 = GPIO10
 GpioCtrlRegs.GPADIR.bit.GPIO10 = 1; // GPIO10 = output

 GpioDataRegs.GPACLEAR.bit.GPIO10 = 1; // Clear output latch of debug pin

 GpioCtrlRegs.GPAPUD.bit.GPIO11 = 0; // Enable pullup on GPIO11

 GpioCtrlRegs.GPAMUX1.bit.GPIO11 = 0; // GPIO11 = GPIO11

 GpioCtrlRegs.GPADIR.bit.GPIO11 = 1; // GPIO11 = output
 GpioDataRegs.GPACLEAR.bit.GPIO11 = 1; // Clear output latch of debug pin

 GpioCtrlRegs.GPAPUD.bit.GPIO12 = 0; // Enable pullup on GPIO12
 GpioCtrlRegs.GPAMUX1.bit.GPIO12 = 0; // GPIO12 = GPIO12

 GpioCtrlRegs.GPADIR.bit.GPIO12 = 1; // GPIO12 = output

 GpioDataRegs.GPACLEAR.bit.GPIO12 = 1; // Clear output latch of debug pin

 GpioCtrlRegs.GPAPUD.bit.GPIO13 = 1; // Disable pullup on GPIO13

 GpioCtrlRegs.GPAMUX1.bit.GPIO13 = 0; // GPIO13 = GPIO13
 GpioCtrlRegs.GPADIR.bit.GPIO13 = 1; // GPIO13 = output

 GpioDataRegs.GPACLEAR.bit.GPIO13 = 1; // Clear output latch of debug pin

 GpioCtrlRegs.GPAPUD.bit.GPIO14 = 1; // Disable pullup on GPIO14

 GpioCtrlRegs.GPAMUX1.bit.GPIO14 = 0; // GPIO14 = GPIO14

 GpioCtrlRegs.GPADIR.bit.GPIO14 = 1; // GPIO14 = output
 GpioDataRegs.GPACLEAR.bit.GPIO14 = 1; // Clear output latch of debug pin

 GpioCtrlRegs.GPAPUD.bit.GPIO15 = 1; // Disable pullup on GPIO15
 GpioCtrlRegs.GPAMUX1.bit.GPIO15 = 0; // GPIO15 = GPIO15

 GpioCtrlRegs.GPADIR.bit.GPIO15 = 1; // GPIO15 = output

 GpioDataRegs.GPACLEAR.bit.GPIO15 = 1; // Clear output latch of debug pin

 GpioCtrlRegs.GPBPUD.bit.GPIO61 = 1; // Disable pullup on GPIO61 (GRN)

 GpioCtrlRegs.GPBMUX2.bit.GPIO61 = 0; // GPIO61 = GPIO61

7. Appendix B

-87-

 GpioCtrlRegs.GPBDIR.bit.GPIO61 = 1; // GPIO61 = output

 GpioDataRegs.GPBCLEAR.bit.GPIO61 = 1; // Clear output latch of debug pin

 GpioCtrlRegs.GPBPUD.bit.GPIO59 = 1; // Disable pullup on GPIO59 (RED)

 GpioCtrlRegs.GPBMUX2.bit.GPIO59 = 0; // GPIO59 = GPIO59
 GpioCtrlRegs.GPBDIR.bit.GPIO59 = 1; // GPIO59 = output

 GpioDataRegs.GPBCLEAR.bit.GPIO59 = 1; // Clear output latch of debug pin

 //GPIO7 will be used as the zero crossing input

 GpioCtrlRegs.GPAMUX1.bit.GPIO7 = 0; // GPIO7 = GPIO7
 GpioCtrlRegs.GPADIR.bit.GPIO7 = 0; // input

 GpioCtrlRegs.GPAQSEL1.bit.GPIO7 = 0x02; //Qualification using 6 samples 0; // Xint1 Synch

to SYSCLKOUT only
 GpioCtrlRegs.GPACTRL.bit.QUALPRD0 = 75; //Sampling frequency is 1MHz

 GpioIntRegs.GPIOXINT1SEL.bit.GPIOSEL = 7; // Xint1 is GPIO7

 XIntruptRegs.XINT1CR.bit.POLARITY = 3; // Falling edge and rising edge interrupt

 //GPIO4 is used for Q1/Q2 while GPIO5 is used for Q3/Q4

 GpioDataRegs.GPACLEAR.bit.GPIO4 = 1; // Clear output latch
 GpioCtrlRegs.GPAPUD.bit.GPIO4 = 0; // Enable pullup on GPIO4

 GpioCtrlRegs.GPAMUX1.bit.GPIO4 = 0; // GPIO4 = GPIO4

 GpioCtrlRegs.GPADIR.bit.GPIO4 = 1; // GPIO4 = output

 GpioDataRegs.GPACLEAR.bit.GPIO5 = 1; // Clear output latch

 GpioCtrlRegs.GPAPUD.bit.GPIO5 = 0; // Enable pullup on GPIO5
 GpioCtrlRegs.GPAMUX1.bit.GPIO5 = 0; // GPIO5 = GPIO5

 GpioCtrlRegs.GPADIR.bit.GPIO5 = 1; // GPIO5 = output

 EDIS;

}

void init_tmr0(void)

{
 //Step 4. Initialize the Device Peripheral. This function can be

 // found in DSP2833x_CpuTimers.c

 InitCpuTimers(); // For this example, only initialize the Cpu Timers
 // Configure CPU-Timer 0, 1, and 2 to interrupt every second:

 // 150MHz CPU Freq, 1 second Period (in uSeconds)

 ConfigCpuTimer(&CpuTimer0, 150, 14.286); //70kHz timer

 //ConfigCpuTimer(&CpuTimer0, 150, 19.995); //50kHz timer

 //ConfigCpuTimer(&CpuTimer0, 150, 33.3333);
}

• Interrupt sub-routines

#include "DSP28x_Project.h" // Device Headerfile and Examples Include File
#include "IQmathLib.h"

#include "defines.h"

#include "DSP2833x_Device.h" // DSP2833x Headerfile Include File
#include "DSP2833x_Examples.h" // DSP2833x Examples Include File

#include "DSP2833x_SWPrioritizedIsrLevels.h"

#include "SFO_V5.h" // SFO V5 library headerfile - required to use SFO library functions

//All variables used in this program.

typedef struct ADC_structure{
 Uint16 mean0;

 Uint16 mean1;

 Uint16 mean2;
 Uint16 mean3;

 Uint16 mean4;

 Uint16 mean5;
 Uint16 mean6;

 Uint16 mean7;

9 Interrupt sub-routines

-88-

 Uint16 mean8;

 Uint16 mean9;
 Uint16 buffer0[2], buffer1[2], buffer2[2], buffer3[2], buffer4[2],

 buffer5[2], buffer6[2], buffer7[2], buffer8[2], buffer9[2]; //Buffers for ADC, will be used to compute mean

 Uint16 timer;
} ADC_structure;

typedef struct current_controller_structure{
 _iq16 error_IQ16[2]; //Controller error and one history term

 _iq16 duty_KI_IQ16[2]; //Duty cycle from integral contribution and one history term

 _iq16 duty_KP_IQ16; //Duty cycle from proportional contribution
 _iq16 duty_lag_IQ16[2]; //Duty cycle from the lag term and one history term

 _iq16 duty_PI_IQ16; //Duty cycle from the PI controller (sum of Kp and Ki duty cycle terms)

 _iq16 duty_decoupled_IQ16; //Decoupled duty cycle
 _iq16 duty_total_IQ16[2]; //Total duty cycle from the sum of de-coupled and controller terms with one history term

 _iq16 lag_a_IQ16; //Lag coefficients

 _iq16 lag_b_IQ16;
 _iq16 KP_IQ16; //Controller proportional gain

 _iq16 KI_z_IQ16; //Controller integral gain times Tsamp/2 * 2^16

 _iq16 I_grid_reference_folded_IQ16; //Controller reference current in "folded" form
 _iq16 I_grid_folded_IQ16; //Measured grid current in "folded" form

 int duty_DSP; //Duty cycle in DSP units to be fed to PWM Counters.

 long duty_frac; //Fractional duty cycle.
 char V_GRID_POLARITY; //This is used to determine the sign of the "folded" grid reference and measured currents

 char DEAD_TIME; //The current controller's own dead time shadow variable

 char CURRENT_CONTROLLER_ACTIVATED;
} current_controller_structure;

typedef struct error_structure{

 char I_GRID_OVR_CURRENT;

 char V_INV_OVR_VOLTAGE;

 char V_GRID_OVR_VOLTAGE;

 char V_GRID_OVR_VOLTAGE_SHDW;
 char V_GRID_UNDR_VOLTAGE;

 char V_GRID_UNDR_VOLTAGE_SHDW;

 char V_GRID_WRONG_POLARITY;

 char V_PV_OVR_VOLTAGE;
 char V_PV_OVR_VOLTAGE_SHDW;

 char V_PV_UNDR_VOLTAGE;

 char V_PV_UNDR_VOLTAGE_SHDW;

 char I_PV_OVR_CURRENT;

 char TEMP1_HIGH;
 char TEMP2_HIGH;

 int v_grid_ovr_voltage_timer, v_grid_undr_voltage_timer;

 int v_pv_ovr_voltage_timer, v_pv_undr_voltage_timer;

 char FATAL_ERROR;

 char STOP;
} error_structure;

typedef struct PLL_structure{
 _iq20 Kp; //PLL proportional

 _iq20 Ki; //PLL integral term (Ki*Ts/2)

 _iq20 Ki2; //(VCO) Integrator coefficient for computing the grid angle (Ts/2) in iq20 format
 _iq20 cos_theta; //cos_theta

 _iq20 sin_theta; //sin_theta

 _iq20 w[3]; //This is the angular velocity from the PLL alongside two history term
 _iq20 w_filtered[3]; //This is the filtered angular velocity along with two history terms

 _iq20 w_non_offset_P; //This is the proportional component of the unfiltered output of the PLL's PI controller.

 _iq20 w_non_offset_I[2]; //This is the integral component of the unfiltered output of the PLL's PI controller along with one history
term

 _iq20 w_offset; //This is the offset w that will be added (feedforward) to improve response of the PLL and reduce controller effort

 _iq20 theta[2]; //Angle in radians at output of VCO, with one history term
 _iq20 SOGI_Valpha[3]; //This is the alpha voltage from the second order generalized integrator

 _iq20 SOGI_Vbeta[3]; //This is the beta voltage from the second order generalized integrator

 _iq20 SOGI_k; //SOGI k coefficient

7. Appendix B

-89-

 _iq20 SOGI_wnTs;

 _iq20 SOGI_x;
 _iq20 SOGI_y;

 _iq20 SOGI_denominator;

 _iq20 SOGI_quotient;
 _iq20 SOGI_b0;

 _iq20 SOGI_a1;

 _iq20 SOGI_a2;
 _iq20 SOGI_ky;

 _iq20 SOGI_qb0;

 _iq20 V_grid_pu[3]; //Normalized (per-unitized) instantaneous grid voltage with two history terms;
 _iq20 V_grid_base; //Base grid voltage

 _iq20 error[3];//Present error term and two history terms

 _iq20 notch_a; //Notch filter coefficient a(0.979127)
 _iq20 notch_b; //Notch filter coefficient b(-1.957364)

 _iq20 notch_f; //Notch filter coefficient f(0.958254)

 _iq20 notch_out[3]; //Output of notch filter with two history terms.
 _iq20 Vd; //Direct-axis voltage

 _iq20 Vq; //Quadrature-axis voltage

 _iq20 V_grid_pk_pu[2]; //Normalized (per-unitized) unfiltered peak grid voltage
 _iq20 V_grid_pk_filtered_pu[2]; //Normalized filtered peak grid voltage

 _iq20 A,B,C,D,E; //Variables that will be used as coefficients for filtering the angular speed and the peak normalized grid voltage.

Can also be constants in IQ20 format
 char PERIOD_HAS_OCCURED; //Takes note of when one grid period has occurred

 char HAS_STARTED;

 char V_GRID_POLARITY; //Grid polarity as given by PLL module
 char DEAD_TIME; //Dead time as given by PLL module

/*
 char LOCKED; //This variable is set when it is determined that the PLL is 'locked' (when frequency varies within a narrowband)

 char FAILED; //This variable is set when it is determined that the PLL has failed to lock after several attempts.

 Uint16 lock_timer; //Timer used to keep track of PLL Locked status
*/

}PLL_structure;

typedef struct zcd_structure{

 Uint16 half_period[2]; //Grid half period

 Uint16 full_period; //Grid full period
 Uint16 half_period_counter; //Counter for determining the half_period

 Uint16 full_period_counter; //Counter for determining grid angle from 0 to 360 degrees

 Uint16 angle_pu_IQ16; //Grid angle measurement by using the hardware zcd method.
 char V_GRID_POLARITY; //Grid polarity as given by zcd circuit.

 char PERIOD_TOO_LOW; //High frequency limit as given by zcd module

 char PERIOD_TOO_HIGH; //Low frequency limit as given by zcd module
 char DEAD_TIME; //Dead time event indicator

} zcd_structure;

typedef struct power_control_structure{

 _iq16 P_ref_IQ16; //Reference active power in IQ16 format in IQ16 format.

 _iq16 Q_ref_IQ16; //Reference reactive power in IQ16 format in IQ16 format.
 _iq16 error_P_ref[2]; //Active power tracking error

 _iq16 error_Q_ref[2]; //Reactive power tracking error

 _iq16 P_dc_IQ16; //Active power computed by P-Q transform method in IQ16 format.
 _iq16 Q_dc_IQ16; //Reactive power computed by P-Q transform method in IQ16 format.

 _iq16 P_input_avg_IQ16; //Average input power. Computed by integration. IQ16 format

 _iq16 P_output_avg_IQ16; //Average output power. Computed by integration. IQ16 format
 _iq16 I_grid_reference_peak_IQ16; //Peak reference grid current from power loop. In IQ16 format.

 _iq16 Kp; //Proportional gain to be used for power control loop, in IQ16 format

 _iq16 Kiz; //(Integrator gain)*(Ts/2) integrator gain for power control loop in IQ16 format
 _iq16 inst_input_power_integrator; //Sums the instantaneous input power at regular sample intervals.

 _iq16 inst_output_power_integrator; //Sums the instantaneous output power at regular sample intervals.

 Uint16 timer; //Control loop timer (approximates the sampling period).
 Uint16 avg_power_counter; //Counter to be used in computing the average power by integration method

} power_control_structure;

//All variables used in this program.

extern _iq16 I_pv_IQ16; //PV current

extern _iq16 V_pv_IQ16; //PV voltage
extern _iq16 V_grid_IQ16; //Grid voltage

extern _iq16 V_inv_IQ16; //Inverter pseudo-dc link voltage

extern _iq16 I_grid_IQ16; //Grid-injected current

9 Interrupt sub-routines

-90-

extern _iq16 I_grid_reference_IQ16; //amperes

extern _iq16 I_grid_reference_peak_IQ16; //Peak reference current
extern _iq16 I_grid_angle_offset_IQ16; //Offset grid reference angle

//extern _iq16 angle_pu_IQ16;

extern _iq16 dummy1_IQ16;
extern _iq16 dummy2_IQ16;

extern _iq16 dummy3_IQ16; //dummy variables for computations

extern _iq16 V_grid_pk_IQ16[2]; //Instantaneous peak grid voltage container and one history term
extern char V_grid_polarity; //Grid voltage polarity

extern struct current_controller_structure cc; //Create an instance of a current controller

extern struct error_structure ERROR_STATUS; //Create an instance of an error structure
extern struct ADC_structure ADC; //Create an instance of an ADC structure

extern struct PLL_structure PLL; //Create an instance of a PLL structure

extern struct zcd_structure zcd; //Create an instance of a zcd structure
extern struct power_control_structure power_loop; //Create an instance of a power control structure

extern int debug1[200];

extern int debug2[200];
extern int dummy_counter;

extern int j;

extern int m;
extern Uint16 start_timer;

extern char CONVERTER_STARTED;

extern char SOURCE_OF_UNFOLDING_SIGNAL;

extern int MEP_ScaleFactor[7]; // Global array used by the SFO library. Only HRPWM1A will be used to compute scale factor. So it's HRPWM

must be disabled
extern volatile struct EPWM_REGS *ePWM[7]; //

extern int SFO_status;

_iq16 dummy_reference_IQ16 = 0; //For debugging the positive offset current in the output

interrupt void xint1_isr(void)

{

 // Set interrupt priority:
 volatile Uint16 TempPIEIER = PieCtrlRegs.PIEIER1.all;

 IER |= M_INT1;

 IER &= MINT1; // Set "global" priority
 PieCtrlRegs.PIEIER1.all &= MG14; // Set "group" priority

 PieCtrlRegs.PIEACK.all = 0xFFFF; // Enable PIE interrupts

 EINT;

 //Insert ISR code here

 if (zcd.half_period_counter > 208) //This is a 'small' filter to ignore false zero-crossings
 {

 //GpioDataRegs.GPASET.bit.GPIO11 = 1; // Turn on pin for debugging purposes

 if (GpioDataRegs.GPADAT.bit.GPIO7)

 {

 zcd.V_GRID_POLARITY = 1; //'1' for positive grid voltage; else '0'
 zcd.full_period_counter = 0; //Reset the zcd full period counter on every positive half cycle (grid angle starts

counting from positive grid voltage)

 }

 else
 {

 zcd.V_GRID_POLARITY = 0; //'1' for positive grid voltage; else '0'
 }

 if (SOURCE_OF_UNFOLDING_SIGNAL == HARDWARE_ZCD) //Only control switches if the source of the unfolding
signal is from the hardware zcd.

 {

 GpioDataRegs.GPACLEAR.bit.GPIO4 = 1; // First turn off all switches in unfolder at zero-crossing to prevent
shoot-through

 GpioDataRegs.GPACLEAR.bit.GPIO5 = 1;

 EALLOW;
 EPwm2Regs.TZFRC.bit.OST = 1; //Force one-shot trip condition

 EPwm5Regs.TZFRC.bit.OST = 1; //Force one-shot trip condition

 EDIS;

 cc.V_GRID_POLARITY = zcd.V_GRID_POLARITY; //Update current controller zero crossing info

7. Appendix B

-91-

 if ((zcd.V_GRID_POLARITY) && (CONVERTER_STARTED)) //If positive grid voltage and if converter has

started
 {

 GpioDataRegs.GPASET.bit.GPIO4 = 1; // Turn on U1/U2 for positive grid voltage

 }
 else if (CONVERTER_STARTED)//If grid voltage is negative and converter has started.

 {

 GpioDataRegs.GPASET.bit.GPIO5 = 1; // Turn on U3/U4 for negative grid voltage
 }

 //zcd.DEAD_TIME = 0; //Dead time period is de-activated. Must be activated by dead-time checker in fast

125kHz ADC routine
 }

 zcd.half_period[0] = zcd.half_period_counter; //Update half-period info.
 zcd.half_period_counter = 0; //Reset half_period_counter

 zcd.full_period = zcd.half_period[0] + zcd.half_period[1]; //Update zcd.full_period

 zcd.half_period[1] = zcd.half_period[0]; //update history term of half_period

 //Reset peak instantaneous grid voltage detector

 V_grid_pk_IQ16[0] = V_grid_pk_IQ16[1];
 V_grid_pk_IQ16[1] = 0;

 //Check for zcd.full_period error
 if ((zcd.full_period > ZCD_HIGH_PERIOD)&&(CONVERTER_STARTED)) //Corresponds to 45Hz //1111

 {

 zcd.PERIOD_TOO_HIGH = 1;
 ERROR_STATUS.FATAL_ERROR = 1; //This fatal error is only acknowledged when converter has started

 }

 if ((zcd.full_period < ZCD_LOW_PERIOD)&&(CONVERTER_STARTED)) //Corresponds to 65Hz //1923

 {
 zcd.PERIOD_TOO_LOW = 1;

 ERROR_STATUS.FATAL_ERROR = 1; //This fatal error is only acknowledged when converter has started

 }

 //Update reference active and reactive power inputs

 power_loop.P_ref_IQ16 = ((110*(long)ADC.mean6) << 4); //110watts*POTENTIOMETER/4096
 power_loop.Q_ref_IQ16 = ((110*(long)ADC.mean9) << 4); //110VAR*POTENTIOMETER/4096

 I_grid_reference_peak_IQ16 = ((2*(long)ADC.mean6) << 4);
 I_grid_angle_offset_IQ16 = ((_IQ10(0.25)*(long)ADC.mean9) >> 6);

 //Soft-turn off

 if (ERROR_STATUS.STOP) //(GpioDataRegs.GPADAT.bit.GPIO10 == 1)) //Stop converter on push of button
 {

 GpioDataRegs.GPACLEAR.bit.GPIO4 = 1; //Turn off all switches

 GpioDataRegs.GPACLEAR.bit.GPIO5 = 1;
 CONVERTER_STARTED = 0; //Turn off converter

 EALLOW;

 EPwm2Regs.TZFRC.bit.OST = 1; //Force one-shot trip condition
 EPwm5Regs.TZFRC.bit.OST = 1; //Force one-shot trip condition

 EDIS;

 cc.CURRENT_CONTROLLER_ACTIVATED = 0;
 GpioDataRegs.GPBCLEAR.bit.GPIO61 = 1; // Clear output latch of debug pin

 }

 }

 // Acknowledge this interrupt to get more from group 1

 //PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;
 // Restore registers saved:

 DINT;
 PieCtrlRegs.PIEIER1.all = TempPIEIER;

}

interrupt void cpu_timer0_isr(void)

{

 // Set interrupt priority:
 volatile Uint16 TempPIEIER = PieCtrlRegs.PIEIER1.all;

 IER |= M_INT1;

 IER &= MINT1; // Set "global" priority

9 Interrupt sub-routines

-92-

 PieCtrlRegs.PIEIER1.all &= MG17; // Set "group" priority

 PieCtrlRegs.PIEACK.all = 0xFFFF; // Enable PIE interrupts
 EINT;

 GpioDataRegs.GPASET.bit.GPIO10 = 1; // Set debugging pin high

 //Convert measured quantities to SI units by making use of calibration data
 I_pv_IQ16 = (long)k_I_pv*ADC.mean0 + c_I_pv; //Compute PV current

 V_pv_IQ16 = (long)k_V_pv*ADC.mean1 + c_V_pv; //Compute PV voltage

 I_grid_IQ16 = (long)k_I_grid*ADC.mean2 + c_I_grid; //Compute grid-injected current
 V_grid_IQ16 = (long)k_V_grid*ADC.mean3 + c_V_grid; //Compute grid voltage

 V_inv_IQ16 = (long)k_V_inv*ADC.mean5 + c_V_inv; //Compute inverter output voltage

 dummy3_IQ16 = _IQ16abs(V_grid_IQ16);

 //Increment zcd.half_period_counter and full period counter;

 zcd.half_period_counter = zcd.half_period_counter + 1;
 zcd.full_period_counter = zcd.full_period_counter + 1;

 //Implement a dead time period to prevent shoot through at unfolder
 if ((CONVERTER_STARTED) && (SOURCE_OF_UNFOLDING_SIGNAL == HARDWARE_ZCD))

 {

 if (zcd.half_period_counter >= (zcd.half_period[0] - 4)) //Gives a dead band of 32us before the end of the half period (if
half_period is correct, this will give a dead time just before the zero-crossing)

 {

/*
 GpioDataRegs.GPACLEAR.bit.GPIO4 = 1; // Turn off unfolder U1/U2

 GpioDataRegs.GPACLEAR.bit.GPIO5 = 1; // Turn off unfolder U3/U4

 zcd.DEAD_TIME = 1; //Dead time period is activated. Must be de-activated by zero-crossing event
 EALLOW;

 EPwm2Regs.TZFRC.bit.OST = 1; ////Force one-shot trip condition in order to turn off PWM during this period.

Must be cleared by current controller routine
 EDIS;*/

 }

 else //If dead time is not activated, then make sure unfolder is properly turned on
 {

/* zcd.DEAD_TIME = 0; //Dead time period is de-activated.

 if (zcd.V_GRID_POLARITY)
 {

 GpioDataRegs.GPACLEAR.bit.GPIO5 = 1; // Turn off unfolder U3/U4

 GpioDataRegs.GPASET.bit.GPIO4 = 1; // Turn on U1/U2
 }

 else

 {
 GpioDataRegs.GPACLEAR.bit.GPIO4 = 1; // Turn off U1/U2

 GpioDataRegs.GPASET.bit.GPIO5 = 1; // Turn on U3/U4

 }*/
 }

 cc.V_GRID_POLARITY = zcd.V_GRID_POLARITY; //Update current controller polarity and dead time shadow info

 cc.DEAD_TIME = zcd.DEAD_TIME;
 }

 //Implement software-emulated zcd by checking phase angle (will cause trouble if PLL is not locked).
 if ((CONVERTER_STARTED) && (SOURCE_OF_UNFOLDING_SIGNAL == SOFTWARE_ZCD))

 {

 //turn-off U3/U4
 if (PLL.theta[0] >= U3_U4_DEAD_TIME_ANGLE_360_MINUS_IQ20)

 {

 GpioDataRegs.GPACLEAR.bit.GPIO5 = 1; // Turn off U3/U4
 EALLOW;

 EPwm2Regs.TZFRC.bit.OST = 1; //Force one-shot trip condition

 EPwm5Regs.TZFRC.bit.OST = 1; //Force one-shot trip condition
 EDIS;

 PLL.DEAD_TIME = 1;

 }

 //turn-on U1/U2

7. Appendix B

-93-

 if ((PLL.theta[0] > U1_U2_DEAD_TIME_ANGLE_ZERO_MINUS_IQ20) || ((PLL.theta[0] >=

U1_U2_DEAD_TIME_ANGLE_ZERO_PLUS_IQ20) && (PLL.theta[0] < U1_U2_DEAD_TIME_ANGLE_180_MINUS_IQ20)))
 {

 GpioDataRegs.GPACLEAR.bit.GPIO5 = 1; // Turn off U3/U4

 GpioDataRegs.GPASET.bit.GPIO4 = 1; // Turn on U1/U2
 PLL.DEAD_TIME = 0;

 }

 //turn-off U1/U2

 if ((PLL.theta[0] >= U1_U2_DEAD_TIME_ANGLE_180_MINUS_IQ20)&&(PLL.theta[0] <=

U1_U2_DEAD_TIME_ANGLE_ZERO_MINUS_IQ20))
 {

 GpioDataRegs.GPACLEAR.bit.GPIO4 = 1; // Turn off U1/U2

 EALLOW;
 EPwm2Regs.TZFRC.bit.OST = 1; //Force one-shot trip condition

 EPwm5Regs.TZFRC.bit.OST = 1; //Force one-shot trip condition

 EDIS;
 PLL.DEAD_TIME = 1;

 }

 //turn-on U3/U4

 if ((PLL.theta[0] >= U3_U4_DEAD_TIME_ANGLE_180_MINUS_IQ20) && (PLL.theta[0] <

U3_U4_DEAD_TIME_ANGLE_360_MINUS_IQ20))
 {

 GpioDataRegs.GPACLEAR.bit.GPIO4 = 1; // Turn off U1/U2

 GpioDataRegs.GPASET.bit.GPIO5 = 1; // Turn on U3/U4
 PLL.DEAD_TIME = 0;

 }
 cc.V_GRID_POLARITY = PLL.V_GRID_POLARITY;

 cc.DEAD_TIME = PLL.DEAD_TIME;

 }

 zcd.angle_pu_IQ16 = _IQ16div(zcd.full_period_counter,zcd.full_period) - I_grid_angle_offset_IQ16;//This calculates the angle in

per_units as given by zcd
 if (zcd.angle_pu_IQ16 > 65535) //If per unit angle is greater than 1, then reset to zero.

 {

 zcd.angle_pu_IQ16 = 0;
 }

 //Implement Controller

 I_grid_reference_IQ16 = _IQ16mpy(I_grid_reference_peak_IQ16, _IQ16sinPU(zcd.angle_pu_IQ16)); //This computes instantaneous

reference current using half-cycle periodicity. Comment out if using PLL.
 //I_grid_reference_IQ16 = _IQ16mpy(I_grid_reference_peak_IQ16,(PLL.sin_theta>>4)); //Compute instantaneous reference current

 if (cc.V_GRID_POLARITY)

 {

 cc.I_grid_folded_IQ16 = I_grid_IQ16;
 cc.I_grid_reference_folded_IQ16 = I_grid_reference_IQ16;

 }

 else //Flip error signal when in negative half cycle if using the full period reference current method (e.g. PLL)
 {

 dummy_reference_IQ16 = _IQ16mpy(I_grid_reference_peak_IQ16,_IQ16(1.12)); //Offset at negative half cycle

 I_grid_reference_IQ16 = _IQ16mpy(dummy_reference_IQ16,(PLL.sin_theta>>4)); //Compute instantaneous reference
current

 cc.I_grid_folded_IQ16 = -I_grid_IQ16;
 cc.I_grid_reference_folded_IQ16 = -I_grid_reference_IQ16;

 }

 //cc.error_IQ16[0] = I_grid_reference_IQ16 - I_grid_IQ16;

 cc.error_IQ16[0] = cc.I_grid_reference_folded_IQ16 - cc.I_grid_folded_IQ16; //Compute the error in the grid

current
 if (_IQ16abs(I_grid_reference_IQ16) <= _IQ16(0.9))

 {

 cc.duty_KI_IQ16[0] = _IQ16mpy(cc.KI_z_IQ16,(cc.error_IQ16[0] + cc.error_IQ16[1])) + cc.duty_KI_IQ16[1];
 //Compute the result from the integrator term

 cc.duty_KP_IQ16 = _IQ16mpy(cc.KP_IQ16,(cc.error_IQ16[0])); //Compute the result from the proportional term

 cc.duty_PI_IQ16 = cc.duty_KI_IQ16[0] + cc.duty_KP_IQ16; //Total duty cycle for PI controller

9 Interrupt sub-routines

-94-

 }

 else
 {

 cc.duty_KI_IQ16[0] = _IQ16mpy((cc.KI_z_IQ16),(cc.error_IQ16[0] + cc.error_IQ16[1])) + cc.duty_KI_IQ16[1];

 //Compute the result from the integrator term
 cc.duty_KP_IQ16 = _IQ16mpy((cc.KP_IQ16),(cc.error_IQ16[0])); //Compute the result from the proportional term. Divide

proportional term by 2

 cc.duty_PI_IQ16 = cc.duty_KI_IQ16[0] + cc.duty_KP_IQ16; //Total duty cycle for PI controller
 }

 //Decoupled duty cycle implementation
 //dummy3_IQ16 = _IQ16abs(V_grid_IQ16);

 if (V_pv_IQ16 <= 65536) //This avoids division by zero

 {
 V_pv_IQ16 = 65536;

 ERROR_STATUS.FATAL_ERROR = 1;

 }
 cc.duty_decoupled_IQ16 = _IQ16div(dummy3_IQ16,(dummy3_IQ16 + (long)TRANSFORMER_TURNS_RATIO*V_pv_IQ16));

 //Sum of controller duty cycle and decoupled duty cycle
 cc.duty_total_IQ16[0] = cc.duty_PI_IQ16 + cc.duty_decoupled_IQ16; //This is the sum of controller duty cycle and decoupled

duty cycle

 //Implement lag term

 //cc.duty_lag_IQ16[0] = -_IQ16mpy(cc.lag_b_IQ16,cc.duty_lag_IQ16[1]) + _IQ16mpy(cc.lag_a_IQ16,(cc.duty_total_IQ16[0] +

cc.duty_total_IQ16[1]));
 //cc.duty_DSP = _IQ16int(cc.duty_lag_IQ16[0]*(long)SWITCHING_PERIOD); //Multiply by switching period (divide by frequency)

to get the duty cycle (in DSP units*2^16) then convert to integer format
 //cc.duty_DSP = _IQ16int(cc.duty_total_IQ16[0]*(long)SWITCHING_PERIOD);

 cc.duty_DSP = ((long)cc.duty_total_IQ16[0]*(long)SWITCHING_PERIOD) >> 16; //This gets the integral (whole) part of the duty

cycle in integer format
 cc.duty_frac = ((long)cc.duty_total_IQ16[0]*(long)SWITCHING_PERIOD) - ((long)cc.duty_DSP << 16); //This gets the fractional

part of the duty cycle in IQ16 format

 cc.duty_frac = (((long)cc.duty_frac*MEP_ScaleFactor[1]) >> 8) + 0x0180; //This gets the fractional duty cycle

 //Controller saturation and anti-wind up

 if (cc.duty_DSP > DUTY_CYCLE_MAX)
 {

 cc.duty_DSP = DUTY_CYCLE_MAX;

 }
 else if (cc.duty_DSP < DUTY_CYCLE_MIN)

 {

 cc.duty_DSP = DUTY_CYCLE_MIN;
 }

 else
 {
 cc.error_IQ16[1] = cc.error_IQ16[0];

 cc.duty_KI_IQ16[1] = cc.duty_KI_IQ16[0];

 cc.duty_total_IQ16[1] = cc.duty_total_IQ16[0];
 cc.duty_lag_IQ16[1] = cc.duty_lag_IQ16[0];

 }

 if (cc.duty_frac < 0)
 {

 cc.duty_frac = 0;

 }

 if ((cc.CURRENT_CONTROLLER_ACTIVATED))//&&(cc.DEAD_TIME == 0))

 {
 EPwm1Regs.CMPA.half.CMPA = cc.duty_DSP; // Update compare A value (PWM Q0 and PWM Qx)

 EPwm2Regs.CMPA.all = ((long)cc.duty_DSP)<<16 | cc.duty_frac; //Update compare A value (PWM Q_main)

 EPwm5Regs.CMPA.all = EPwm2Regs.CMPA.all; //Update compare A value (PWM Q5)

 EALLOW;

 EPwm2Regs.TZCLR.bit.OST = 1; //Clear one-shot trip
 EPwm5Regs.TZCLR.bit.OST = 1; //Clear one-shot trip

 EDIS;

 }

 //Compute the peak instantaneous grid voltage

 if (dummy3_IQ16 > V_grid_pk_IQ16[1])

7. Appendix B

-95-

 {

 V_grid_pk_IQ16[1] = dummy3_IQ16;
 }

 GpioDataRegs.GPACLEAR.bit.GPIO10 = 1; // Set debugging pin high

 // Restore registers saved:

 DINT;
 PieCtrlRegs.PIEIER1.all = TempPIEIER;

 //PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;
}

interrupt void epwm4_isr(void)
{

 // Set interrupt priority:

 volatile Uint16 TempPIEIER = PieCtrlRegs.PIEIER3.all;
 IER |= M_INT3;

 IER &= MINT3; // Set "global" priority

 PieCtrlRegs.PIEIER3.all &= MG34; // Set "group" priority
 PieCtrlRegs.PIEACK.all = 0xFFFF; // Enable PIE interrupts

 EINT;

 GpioDataRegs.GPASET.bit.GPIO11 = 1; // Set debugging pin high

 //This "if" section is only for logging some data for debugging purposes
 if (cc.CURRENT_CONTROLLER_ACTIVATED)

 {
 if (m<100)

 {

 if (j > 10)
 {

 debug1[dummy_counter] = (PLL.sin_theta>>10); //(PLL.w[0]>>14);//ADC.mean3;

 debug2[dummy_counter] = (V_grid_IQ16 >> 10);//(V_inv_IQ16>>14);
//(PLL.theta[0]>>15);//(PLL.w_filtered[0]>>14); //(PLL.sin_theta>>14); //ADC.mean9;

 dummy_counter = dummy_counter + 1;

 if (dummy_counter > 199)
 {

 dummy_counter = 0;

 m = m+1;
 }

 j = 0;

 }
 j = j + 1;

 }

 else
 {

 m = 150;

 }
 }

 //end "if"

 start_timer = start_timer + 1;

 //This part of the code should run with a frequency of 25kHz; for example, it can run in the 50kHz sub-routine with a divide-by-2-
counter

 if (PLL.HAS_STARTED)

 {
 PLL.w_offset = PLL.w_filtered[0]; //Attribute the correct offset to reduce controller effort when PLL is running

 //PLL.V_grid_base = _IQ20mpy(PLL.V_grid_pk_filtered_pu[0],PLL.V_grid_base); //Update the base grid voltage based

on measurement from
 //PLL.V_grid_pu[0] = _IQ20div((V_grid_IQ16<<4),PLL.V_grid_base); //Update per-unit voltage based on peak grid

voltage computed by dq method

 }
/* else

 {

 PLL.V_grid_pu[0] = _IQ20div((V_grid_IQ16<<4),(V_grid_pk_IQ16[0]<<4)); //Update per-unit voltage based on peak
grid voltage detected by ADC method

 }*/

9 Interrupt sub-routines

-96-

 PLL.V_grid_pu[0] = _IQ20div((V_grid_IQ16<<4),(V_grid_pk_IQ16[0]<<4)); //Update per-unit voltage based on peak grid voltage

detected by ADC method

 //PLL.V_grid_base = V_GRID_BASE_IQ20; //(V_grid_pk_IQ16[0] << 4); //Update base voltage with peak grid voltage detected
by 50kHz sub routine.

 //Right shifting by 4 bits because ADC.V_grid_pk is in IQ16 format and we need IQ20

 //Normalize input voltage measurement

 //PLL.V_grid_pu[0] = _IQ20div((V_grid_IQ16<<4),(long)V_GRID_BASE_IQ20); //Convert normalized value to an IQ20 format

 //PLL.V_grid_pu[0] = _IQ20div((V_grid_IQ16<<4),(V_grid_pk_IQ16[0]<<4)); //Convert normalized value to an IQ20 format

 //Implement phase detection and notch filter

 PLL.error[0] = _IQ20mpy(PLL.V_grid_pu[0],PLL.cos_theta); //Compute present error
 PLL.notch_out[0] = _IQ20mpy(PLL.notch_a, (PLL.error[0] + PLL.error[2])) + _IQ20mpy(PLL.notch_b, (PLL.error[1] -

PLL.notch_out[1])) - _IQ20mpy(PLL.notch_f,PLL.notch_out[2]);

 //Implement PI controller

 PLL.w_non_offset_P = _IQ20mpy(PLL.Kp,PLL.notch_out[0]);

 PLL.w_non_offset_I[0] = PLL.w_non_offset_I[1] + _IQ20mpy(PLL.Ki, (PLL.notch_out[1] + PLL.notch_out[0]));
 if (PLL.w_non_offset_I[0] < 0) //Cannot have negative speeds

 {

 PLL.w_non_offset_I[0] = 0;
 }

 PLL.w[0] = PLL.w_non_offset_P + PLL.w_non_offset_I[0] + PLL.w_offset; //This is the actual dynamic unfiltered angular velocity

from the PLL

 //Update history terms.
 PLL.error[2] = PLL.error[1];

 PLL.error[1] = PLL.error[0];

 PLL.notch_out[2] = PLL.notch_out[1];
 PLL.notch_out[1] = PLL.notch_out[0];

 PLL.w_non_offset_I[1] = PLL.w_non_offset_I[0];

 //Implement VCO (the integration to calculate the grid angle)

 PLL.theta[0] = PLL.theta[1] + _IQ20mpy(PLL.Ki2,(PLL.w[0] + PLL.w[1])); //This is the grid angle

 //Reset the integrator when angle reaches 2*pi or when angle is less than 0
 if (PLL.theta[0] >= TWO_PI_IQ20)

 {

 PLL.theta[0] = 0;
 PLL.PERIOD_HAS_OCCURED = 1;

 PLL.V_GRID_POLARITY = POSITIVE_POLARITY;

 }
 if (PLL.theta[0] >= PI_IQ20)

 {

 PLL.V_GRID_POLARITY = NEGATIVE_POLARITY;
 }

 if (PLL.theta[0] < 0)

 {
 PLL.theta[0] = 0;

 }

 //Update VCO history terms
 PLL.theta[1] = PLL.theta[0];

 //PLL.w[1] = PLL.w[0];

 //Compute sin_theta and cos_theta

 PLL.cos_theta = _IQ20cos(PLL.theta[0]);

 PLL.sin_theta = _IQ20sin(PLL.theta[0]);

 //Compute PLL.w_filtered

 //PLL.w_filtered[0] = _IQ20mpy(PLL.A,(PLL.w[0] + 2*PLL.w[1] + PLL.w[2])) - _IQ20mpy(PLL.B,PLL.w_filtered[1]) -
_IQ20mpy(PLL.C,PLL.w_filtered[2]); //Second order filter with 10Hz cut-off

 PLL.w_filtered[0] = _IQ20mpy(PLL.w_filtered[1],PLL.E) + _IQ20mpy(PLL.D,(PLL.w[0] + PLL.w[1])); //First order filter with

10Hz cut-off

 //Update history terms

 PLL.w[2] = PLL.w[1];
 PLL.w[1] = PLL.w[0];

 PLL.w_filtered[2] = PLL.w_filtered[1];

 PLL.w_filtered[1] = PLL.w_filtered[0];

7. Appendix B

-97-

 //Compute PLL.SOGI_Valpha and PLL.SOGI_Vbeta through the SOGI
 PLL.SOGI_wnTs = _IQ20mpy(42,PLL.w_offset); //Ts*wn in _iq20

 PLL.SOGI_x = 2*_IQ20mpy(PLL.SOGI_wnTs, PLL.SOGI_k);

 PLL.SOGI_y = _IQ20mpy(PLL.SOGI_wnTs, PLL.SOGI_wnTs);
 PLL.SOGI_denominator = PLL.SOGI_x + PLL.SOGI_y + _IQ20(4); //Calculate the denominator (x + y + 4) only once

 PLL.SOGI_quotient = _IQ20div(_IQ20(1),PLL.SOGI_denominator); //Compute the quotient 1/(x+y+4) only once because

multiplications are more efficient than divisions.
 PLL.SOGI_b0 = _IQ20mpy(PLL.SOGI_x,PLL.SOGI_quotient);

 PLL.SOGI_a1 = 2*_IQ20mpy((_IQ20(4) - PLL.SOGI_y),PLL.SOGI_quotient);

 PLL.SOGI_a2 = _IQ20mpy((PLL.SOGI_x - PLL.SOGI_y - _IQ20(4)),PLL.SOGI_quotient);
 PLL.SOGI_ky = _IQ20mpy(PLL.SOGI_k,PLL.SOGI_y);

 PLL.SOGI_qb0 = _IQ20mpy(PLL.SOGI_ky,PLL.SOGI_quotient);

 PLL.SOGI_Valpha[0] = _IQ20mpy(PLL.SOGI_a1,PLL.SOGI_Valpha[1]) + _IQ20mpy(PLL.SOGI_a2,PLL.SOGI_Valpha[2]) +
_IQ20mpy(PLL.SOGI_b0,(PLL.V_grid_pu[0] - PLL.V_grid_pu[2]));

 PLL.SOGI_Vbeta[0] = _IQ20mpy(PLL.SOGI_a1, PLL.SOGI_Vbeta[1]) + _IQ20mpy(PLL.SOGI_a2,PLL.SOGI_Vbeta[2]) +

_IQ20mpy(PLL.SOGI_qb0,(PLL.V_grid_pu[0] + 2*PLL.V_grid_pu[1] + PLL.V_grid_pu[2]));

 //Update history terms

 PLL.SOGI_Valpha[2] = PLL.SOGI_Valpha[1];
 PLL.SOGI_Valpha[1] = PLL.SOGI_Valpha[0];

 PLL.SOGI_Vbeta[2] = PLL.SOGI_Vbeta[1];

 PLL.SOGI_Vbeta[1] = PLL.SOGI_Vbeta[0];
 PLL.V_grid_pu[2] = PLL.V_grid_pu[1];

 PLL.V_grid_pu[1] = PLL.V_grid_pu[0];

 //Compute PLL.Vd and PLL.Vq through a Park Transform
 PLL.Vd = _IQ20mpy(PLL.cos_theta,PLL.SOGI_Valpha[0]) + _IQ20mpy(PLL.sin_theta,PLL.SOGI_Vbeta[0]);

 PLL.Vq = _IQ20mpy(-PLL.sin_theta,PLL.SOGI_Valpha[0]) + _IQ20mpy(PLL.cos_theta,PLL.SOGI_Vbeta[0]);

 //Compute the Peak grid voltage and filter it

 PLL.V_grid_pk_pu[0] = _IQ20mag(PLL.Vd,PLL.Vq); //Unfiltered peak pu voltage

 //Filter it
 PLL.V_grid_pk_filtered_pu[0] = _IQ20mpy(PLL.V_grid_pk_filtered_pu[1],PLL.E) + _IQ20mpy(PLL.D,(PLL.V_grid_pk_pu[0] +

PLL.V_grid_pk_pu[1])); //Filtered peak pu voltage

 //Update history terms
 PLL.V_grid_pk_pu[1] = PLL.V_grid_pk_pu[0];

 PLL.V_grid_pk_filtered_pu[1] = PLL.V_grid_pk_filtered_pu[0];

 //End of PLL functions.

 //Implement the power control loop algorithm. //Compute the average power (active power) by direct integration and

averaging

 power_loop.timer = power_loop.timer + 1;

 power_loop.inst_output_power_integrator = power_loop.inst_output_power_integrator + _IQ16mpy(V_grid_IQ16,I_grid_IQ16)>>8;

 power_loop.inst_input_power_integrator = power_loop.inst_input_power_integrator + _IQ16mpy(V_pv_IQ16,I_pv_IQ16)>>8;
 if (PLL.PERIOD_HAS_OCCURED)

 {

 power_loop.P_output_avg_IQ16 = _IQ16div(power_loop.inst_output_power_integrator,_IQ16(power_loop.timer));
//Average the output power integration

 power_loop.P_input_avg_IQ16 = _IQ16div(power_loop.inst_input_power_integrator,_IQ16(power_loop.timer));

//Average the input power integration

 PLL.PERIOD_HAS_OCCURED = 0; //Reset PLL period indicator.

 power_loop.inst_output_power_integrator = 0; //Reset power integrator and average power counter
 power_loop.inst_input_power_integrator = 0; //Reset power integrator and average power counter

 power_loop.timer = 0;

 }
 //End of average power computation

 GpioDataRegs.GPACLEAR.bit.GPIO11 = 1; // Clear debugging pin

 // Clear INT flag for this timer

 EPwm4Regs.ETCLR.bit.INT = 1;

 // Restore registers saved:

 DINT;

9 Interrupt sub-routines

-98-

 PieCtrlRegs.PIEIER3.all = TempPIEIER;

 // Acknowledge this interrupt to receive more interrupts from group 3

 //PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;

}

interrupt void adc_isr(void)
{

 // Set interrupt priority:

 volatile Uint16 TempPIEIER = PieCtrlRegs.PIEIER1.all;
 IER |= M_INT1;

 IER &= MINT1; // Set "global" priority

 //PieCtrlRegs.PIEIER1.all &= MG16; // Set "group" priority
 PieCtrlRegs.PIEIER1.all &= MG11; // Set "group" priority

 PieCtrlRegs.PIEACK.all = 0xFFFF; // Enable PIE interrupts

 EINT;

 GpioDataRegs.GPASET.bit.GPIO13 = 1; // Set debugging pin high

 ADC.buffer0[1] = (AdcRegs.ADCRESULT0>>4); //Ipv

 ADC.buffer1[1] = (AdcRegs.ADCRESULT1>>4); //Vpv

 ADC.buffer2[1] = (AdcRegs.ADCRESULT2>>4); //Igrid
 ADC.buffer3[1] = (AdcRegs.ADCRESULT3>>4); //Vgrid

 ADC.buffer4[1] = (AdcRegs.ADCRESULT4>>4); //TEMP1

 ADC.buffer5[1] = (AdcRegs.ADCRESULT5>>4); //Vinv
 ADC.buffer6[1] = (AdcRegs.ADCRESULT6>>4); //POT1

 ADC.buffer7[1] = (AdcRegs.ADCRESULT7>>4); //TEMP2
 ADC.buffer8[1] = (AdcRegs.ADCRESULT8>>4); //undefined

 ADC.buffer9[1] = (AdcRegs.ADCRESULT9>>4); //POT2

 //Check for fatal errors

 if ((ADC.buffer0[1] <= FATAL_ADC_I_PV_MAX_POSITIVE) || (ADC.buffer0[1] >= FATAL_ADC_I_PV_MAX_NEGATIVE))

 {
 GpioDataRegs.GPACLEAR.bit.GPIO4 = 1; // Turn off unfolder U1/U2

 GpioDataRegs.GPACLEAR.bit.GPIO5 = 1; // Turn off unfolder U3/U4

 EALLOW;
 EPwm2Regs.TZFRC.bit.OST = 1; //Force one-shot trip condition

 EPwm5Regs.TZFRC.bit.OST = 1; //Force one-shot trip condition

 EDIS;
 ERROR_STATUS.I_PV_OVR_CURRENT = 1;

 ERROR_STATUS.FATAL_ERROR = 1;

 CONVERTER_STARTED = 0;
 cc.CURRENT_CONTROLLER_ACTIVATED = 0;

 }

 if ((ADC.buffer1[1] <= FATAL_ADC_V_PV_MAX))

 {

 GpioDataRegs.GPACLEAR.bit.GPIO4 = 1; // Turn off unfolder U1/U2
 GpioDataRegs.GPACLEAR.bit.GPIO5 = 1; // Turn off unfolder U3/U4

 EALLOW;

 EPwm2Regs.TZFRC.bit.OST = 1; //Force one-shot trip condition
 EPwm5Regs.TZFRC.bit.OST = 1; //Force one-shot trip condition

 EDIS;

 ERROR_STATUS.V_PV_OVR_VOLTAGE = 1;
 ERROR_STATUS.FATAL_ERROR = 1;

 CONVERTER_STARTED = 0;

 cc.CURRENT_CONTROLLER_ACTIVATED = 0;
 }

 if ((ADC.buffer2[1] >= FATAL_ADC_I_GRID_MAX_POSITIVE) || (ADC.buffer2[1] <=
FATAL_ADC_I_GRID_MAX_NEGATIVE))

 {

 GpioDataRegs.GPACLEAR.bit.GPIO4 = 1; // Turn off unfolder U1/U2
 GpioDataRegs.GPACLEAR.bit.GPIO5 = 1; // Turn off unfolder U3/U4

 EALLOW;

 EPwm2Regs.TZFRC.bit.OST = 1; //Force one-shot trip condition
 EPwm5Regs.TZFRC.bit.OST = 1; //Force one-shot trip condition

 EDIS;

 ERROR_STATUS.I_GRID_OVR_CURRENT = 1;

7. Appendix B

-99-

 ERROR_STATUS.FATAL_ERROR = 1;

 CONVERTER_STARTED = 0;
 cc.CURRENT_CONTROLLER_ACTIVATED = 0;

 }

 if ((ADC.buffer3[1] >= FATAL_ADC_V_GRID_MAX_POSITIVE) || (ADC.buffer3[1] <=

FATAL_ADC_V_GRID_MAX_NEGATIVE))

 {
 GpioDataRegs.GPACLEAR.bit.GPIO4 = 1; // Turn off unfolder U1/U2

 GpioDataRegs.GPACLEAR.bit.GPIO5 = 1; // Turn off unfolder U3/U4

 EALLOW;
 EPwm2Regs.TZFRC.bit.OST = 1; //Force one-shot trip condition

 EPwm5Regs.TZFRC.bit.OST = 1; //Force one-shot trip condition

 EDIS;
 ERROR_STATUS.V_GRID_OVR_VOLTAGE = 1;

 ERROR_STATUS.FATAL_ERROR = 1;

 CONVERTER_STARTED = 0;
 cc.CURRENT_CONTROLLER_ACTIVATED = 0;

 }

 //Compute the mean of selected ADC inputs

 ADC.mean0 = ADC.buffer0[1];

 ADC.mean1 = ADC.buffer1[1];
 ADC.mean2 = ADC.buffer2[1];

 ADC.mean3 = ADC.buffer3[1];

 ADC.mean4 = ADC.buffer4[1];
 ADC.mean5 = ADC.buffer5[1];

 ADC.mean6 = ADC.buffer6[1];
 ADC.mean7 = ADC.buffer7[1];

 ADC.mean8 = ADC.buffer8[1];

 ADC.mean9 = ADC.buffer9[1];

 GpioDataRegs.GPACLEAR.bit.GPIO13 = 1; // Set debugging pin low

 // Reinitialize for next ADC sequence
 AdcRegs.ADCTRL2.bit.RST_SEQ1 = 1; // Reset SEQ1

 AdcRegs.ADCST.bit.INT_SEQ1_CLR = 1; // Clear INT SEQ1 bit

 // Restore registers saved:

 DINT;

 PieCtrlRegs.PIEIER1.all = TempPIEIER;

 //PieCtrlRegs.PIEACK.all = PIEACK_GROUP1; // Acknowledge interrupt to PIE

}

-101-

8 Bibliography

[1] G. Masson, S. Orlandi, and M. Rekinger, "GLOBAL MARKET OUTLOOK For

Photovoltaics 2014-2018," European Photovoltaic Industry Association2014.

[2] P. Mints. (2014, May 15th 2015). Despite Everything, 2014 Is Another Growth Year for

Solar PV. Available:

http://www.renewableenergyworld.com/rea/news/article/2014/11/despite-everything-

2014-is-another-growth-year-for-solar-pv

[3] M. Osborne. (2015, May 15th 2015). Global solar demand in 2015 to hit 57GW on strong

30% growth rate – IHS. Available: http://www.pv-

tech.org/news/global_solar_demand_in_2015_to_hit_57gw_on_strong_30_growth_rate_i

hs

[4] "Technology Roadmap Solar Photovoltaic Energy," International Energy Agency2014.

[5] U. E. I. Administration. (May 17th, 2015). International Energy Statistics. Available:

http://www.eia.gov/cfapps/ipdbproject/iedindex3.cfm?tid=2&pid=2&aid=7&cid=regions

&syid=2011&eyid=2012&unit=MK

[6] Q. Li and P. Wolfs, "A Review of the Single Phase Photovoltaic Module Integrated

Converter Topologies With Three Different DC Link Configurations," IEEE Transactions

on Power Electronics, vol. 23, pp. 1320 - 1333, May 2008.

[7] S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg, "A Review of Single-Phase Grid-Connected

Inverters for Photovoltaic Modules," IEEE Transactions on Industry Applications, vol. 41,

pp. 1292 - 1306, Oct. 2005.

[8] W. Xiao, N. Ozog, and W. G. Dunford, "Topology Study of Photovoltaic Interface for

Maximum Power Point Tracking," IEEE Transactions on Industrial Electronics, vol. 54,

pp. 1696 - 1704, 2007.

[9] M. Kamil, "Grid-Connected Solar Microinverter Reference Design Using a dsPIC® Digital

Signal Controller," Microchip Application Note, vol. AN1338, pp. 1 - 56, 2011.

[10] G. Petrone and C. A. Ramos-Paja, "Modeling of photovoltaic fields in mismatched

conditions for energy yield evaluations," Electric Power Systems Research, pp. 1003 –

1013, Jan. 2011.

[11] "IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems,"

IEEE Std 1547-2003, pp. 1-28, 2003.

[12] R. Carnieletto, Branda, x, D. I. o, F. A. Farret, Simo, et al., "Smart Grid Initiative," Industry

Applications Magazine, IEEE, vol. 17, pp. 27-35, 2011.

[13] J. C. Vasquez, R. A. Mastromauro, J. M. Guerrero, and M. Liserre, "Voltage Support

Provided by a Droop-Controlled Multifunctional Inverter," IEEE Transactions on

Industrial Electronics, vol. 56, pp. 4510 - 4519, Nov 2009 2009.

[14] V. Khadkikar, R. K. Varma, R. Seethapathy, A. Chandra, and H. Zeineldin, "Impact of

distributed generation penetration on grid current harmonics considering non-linear loads,"

9 Interrupt sub-routines

-102-

in Power Electronics for Distributed Generation Systems (PEDG), 2012 3rd IEEE

International Symposium on, 2012, pp. 608-614.

[15] U. WANG. (2011) Small is better. PV Magazine. Available: http://www.pv-

magazine.com/archive/articles/beitrag/small-is-better-_100003032/329/#axzz3U0aZ0ffD

[16] E. F. Fongang, W. Xiao, and V. Khadkikar, "Dynamic Modeling and Control of Interleaved

Flyback Module Integrated Converter for PV Power Applications," IEEE Transactions on

Industrial Electronics, vol. 61, pp. 1377 - 1388, March 2013.

[17] N. Kasa, T. Iida, and L. Chen, "Flyback Inverter Controlled by Sensorless Current MPPT

for Photovoltaic Power System," IEEE Transactions on Industrial Electronics, vol. 52, pp.

1145 - 1152, August 2005.

[18] A. C. Kyritsis, E. C. Tatakis, and N. P. Papanikolaou, "Optimum Design of the Current-

Source Flyback Inverter for Decentralized Grid-Connected Photovoltaic Systems," IEEE

Transactions on Energy Conversion, vol. 23, pp. 281 - 293, March 2008.

[19] Y. Li and R. Oruganti, "A Low Cost Flyback CCM Inverter for AC Module Application,"

IEEE Transactions on Industrial Electronics, vol. 27, pp. 1295 - 1303, March 2012.

[20] A. C. Nanakos, E. C. Tatakis, and N. P. Papanikolaou, "A Weighted-Efficiency-Oriented

Design Methodology of Flyback Inverter for AC Photovoltaic Modules," IEEE

Transactions on Power Electronics, vol. 27, pp. 3221 - 3233, July 2012.

[21] F. F. Edwin, W. Xiao, and V. Khadkikar, "Topology Review of Single Phase Grid-

Connected Module Integrated Converters for PV Applications," Proc. Annual Conference

of IEEE Industrial Electronics Society, pp. 821 - 827, 2012.

[22] J. B. Wang, J. H. Wu, D. Kao, and T. Jung-Li, "Injection Current Phase Lag Effect of the

Flyback Inverter," IEEE Conference on Industrial Electronics and Applications, pp. 1803

- 1808, 2011.

[23] J. G. Kassakian, M. F. Schlecht, and G. C. Verghese, Principles of Power Electronics:

PEARSON.

[24] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, Second Ed. ed.:

Kluver Academic Publishers, 2004.

[25] J. Klein, "AN-6005: Synchronous Buck MOSFET Loss Calculations," Fairchild

Semiconductor Application Notes, pp. 1 - 7, 2006.

[26] K. Venkatachalam, C. R. Sullivan, T. Abdallah, and H. Tacca, "Accurate prediction of

ferrite core loss with nonsinusoidal waveforms using only Steinmetz parameters," 8th IEEE

Workshop on Computers in Power Electronics, pp. 36 - 41, 2002.

[27] C. P. Steinmetz, "On the law of hysteresis," Proceedings of the IEEE, vol. 72, pp. 197-221,

1984.

