Analytical Study of Steady State Plasma
Ablation from Soft X-Ray Laser Target
by
Susan Sujono

Submitted to the Department of Electrical Engineering and
Computer Science
in partial fulfillment of the requirements for the degrees of

Master of Engineering in Electrical Engineering

and
Bachelor of Science in Electrical Engineering |
GCT 2461997
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

(RIS

August 1997
(© Susan Sujono, MCMXCVII. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis
document in whole or in part, and to grant others the right to do so.

Author R I
Department—af Electrical Engineering and Computer Science
September 2, 1997

Certified by ... e cvveiii i v ae e e

Peter L. Hagelstein
Assoeiate Professor of Electrical Engineering

“FhesigAupervisor .

Arthur C. Smith
Chairman, Departmental Committee on Graduate Theses

Accepted by

Analytical Study of Steady State Plasma Ablation from
Soft X-Ray Laser Target
by
Susan Sujono

Submitted to the Department of Electrical Engineering and Computer Science
on September 2, 1997, in partial fulfillment of the
+uirements for the degrees of
Master o. nngineering in Electrical Enginecring
and
Bachelor of Science in Electrical Engineering

Abstract

This thesis project is based on the experimental setup of the MIT table-top EUV laser
system. We model the behavior of plasma ablated from soft x-ray laser target in the
steady state. The simulation involves solving the relevant hydrodynamics equations
for the density, temperature, and velocity of the plasma. First, we solve the problem
in one dimension by assuming radial symmetry, using both numerical and analytical
minimum-residue methods. In two dimension, we only use analytical method and
obtain the desired solution in a closed form. From this solution, we learn more about
the plasma profile. This will help us better understand the lack of gain observed in
the experiment.

Thesis Supervisor: Peter L. Hagelstein
Title: Associate Professor of Electrical Engineering

Acknowledgments

I would like to thank my advisor, Prof. Peter Hagelstein, for his patience and guid-
ance from the beginning to the completion of this thesis project. I also would like to
thank both my parents for their continual support.

Contents

1 Introduction 6
1.1 Background 6
1.2 Gain Calculation 6
1.3 Overviewof Thesis 8

2 Hydrodynamics Model 9
2.1 Thermal Energy of Plasma 9
2.2 Simplifying Assumptions 10

2.2.1 Steady State Approximation 10
2.2.2 Constant Z.;f and Ideal Gas Model 11
2.2.3 Absorption of Laser Energy 11
2.2.4 Speed of Ablation on the Critical Surface 12
2.3 Simplified Conservation Equations 12

3 One-Dimensional Problem 14
3.1 Conservation Equations in Scaled Coordinate 15
3.2 Numerical and Analytical Approaches 15

4 Numerical Solution in One Dimension by Newton’s Method 16

5 Analytical Solution in One Dimension by Minimizing Residues 20
5.1 Fitting to Numerical Solutions - Checking the Minimization Algorithm 21
9.2 Minimum Residues 26

6 Adding More Parameters 29

7 Physical Results in One Dimension 32

8 Two-Dimensional Problem 37
8.1 Hydrodynamics Description in Two Dimensions 37
8.2 Boundary Conditions, .. 39
8.3 Symmetries 39
8.4 Expected Qualitative Behavior of the Solution in Two Dimensions . . 40

9 Potential Function 43

10 Parameterize Velocity Field by Its Magnitude and Direction
10.1 Trial Functions in Two Dimensions
10.2 Spherical Case, =2
10.3 Cylindrical Case, a =1.
10.4 Comparison of Result to ID Case

11 Physical Result in Two Dimensions
11.1 Spherical Case, a =2
11.2 Cylindrical Case, o =1.

12 Conclusion
12.1 Summaryof Results
12.2 Discussion e

Gaussian Elimination for a Banded Matrix

Codes for 1D Newton’s Method

Code for Fitting Numerical Results to Analytical Functions
Code to Map the Parameter Space

Minimizing Residue by Newton’s Method

| B 0O Q w »

Minimum Residue in Two Dimensions

48
49
50
o4
o6
58
58

o8

63
63
64

66

68

73

78

80

86

Chapter 1

Introduction

1.1 Background

This thesis project is based on the experiments done with the MIT table-top extreme
ultraviolet (EUV) laser system. The goal of these experiments was to demonstrate
a gain-length product greater than 4 at a wavelength below 40 nm. However, exper-
iments on several lasant plasmas have detected gain-length products no larger than
1.6 [1].

In this thesis, we attempt to investigate the discrepancy between the observed and
the predicted gain-length products. In order to do so, we first need to understand
how those values were calculated. We will give an overview of the gain calculation in
the next section. For reference, the details of the experimental set up can be found
in [1, chapter 4].

1.2 Gain Calculation

The small signal gain can be expressed as [2]

9u Ni
a=0oN,(1 o N, (1.1)
where o is the stimulated emission cross section, IV, and N; are the upper and lower
state populations, g, and g, are the degeneracies of the upper and lower states. Note
that we are dealing with a three-level laser. We will refer the states as ground (o),
lower (1), and upper (u) levels.
For the stimulated emission cross section, we can take the Doppler limit. This is
the high temperature limit, where 4w >> T'. The variable I is the inverse lifetime
of the upper state. Therefore, at resonance, the cross section is [3]

X Ay

g = Elr—ﬁ, (12)

where A, is the upper level spontaneous decay rate. Also, I'p and vy, are defined as

PD = — Wy, (13)

/8kTi
Vih = M) (14)

where w, is the resonant frequency, 7T; is the ion temperature, and M is the atomic
mass.

For lasing to occur, population inversion must be reached. It turns out that some
optimum electron density, IV, ., has to be satisfied. The values of N, and N, greatly
depend on this optimum value.

This optimum value describes the balance between the different mechanisms that
populate the upper and lower states. This is the density when the collisional de-
excitation rate from the upper state approaches the radiative decay rate of the lower
state. Then, the collisional equilibrium between the two states is approached. The
optimum density can be expressed in cm™ as [4]

5.7 X 1026 A[o \/TcAEu[
A3S Aul < Gu > ,

Ne,opt = C; (15)
where ¢, is an adjustable parameter to match analytic values with experimental re-
sults, which is set to 0.1 for the lasants used in the experiment [1]. Meanwhile, AE,,
is the energy difference between the upper and lower states, < g,;, > is Gaunt factor,
and A is the wavelength of the upper to lower level transition. The Gaunt factor
depends on whether we consider collisional or recombination schemes.

From [1], for collisional amplifier in the steady state limit, we get

Ny _ Necul + Aw + fNeCol

— 1.
Nu]VeClu + €Alo ’ (6)

where ¢ is %ﬁ-, & < 1 is escape factor for the lower level radiation, and C’s are the
collisional excitation rates with the subscripts denoting the 2 states involved.
For the recombination case [1],

Ne Prec
Nu ~ K;Z Auo y (17)
Nu Aul
—_— = , 1.8
Nl fAlo ()

where P, is the pumping rate for the n-th level in a recombining ion [4].

With 8mm plasma in the experiment, the above equations predict a gain length
product of at least 3 should be observed. However, the values detected were no larger
than 1.6. This discrepancy is what we would like to investigate in this thesis project.

1.3 Overview of Thesis

There are several possible explanations for the lack of gain in the experiments:

e the electron temperature in the plasma is significantly lower than 150 eV for
the collisional scheme at 109 cm™3

e the plasma has a steep density gradient

The two issues above can be better understood if we compute the plasma tempera-
ture, density, and velocity. We shall do so in this thesis by solving the hydrodynamical
equations that govern the plasma behavior. We will consider the steady state prob-
lem only. We solve these equations using both numerical and analytical procedures.
The analytical method gives us the solution in a closed form, although we do use
computer codes to implement both methods. In fact, we obtain numerical values as
results from both methods.

For a reason that will be explained later, we are interested in the two-dimensional
(2D) description of the hydrodynamics model. However, before tackling the 2D case,
we discuss and solve the one-dimensional (1D) problem, which is simpler. From the
1D solution, we hopefully will gain some intuition on how to solve the 2D case.

Chapter 2

Hydrodynamics Model

When a solid target is irradiated by a high-powered laser beam, plasma is formed
on the solid surface. To accurately describe this ablated plasma, let us estimate the
Debye length [10], which is Ap = 7.43 x 102\/% cm. Here, T is temperature in units
of eV and N is number density in cm™3. In the range of interest, we can take T=100
eV and N=10?! /cm®. Thereby, the Debye length is of the order of nanometers.

Since the size of our system - which is in the millimeters - is much larger than
the Debye length, the system as a whole will exhibit electrically neutral behavior. It
is therefore natural to ignore the microscopic scale behavior of the plasma and only
consider the collective dynamics. In other words, we treat the plasma as fluid instead
of point-Like electrons and ions. We can then use equations from kinetic theory and
hydrodynamics to describe the plasma.

In the Eulerian description, the compressible hydrodynamic equations are

Op

E +V- (/m) = 0, (2'1)

o . .. 1

N +(@-V)i = pVP, (2.2)
91, ., 1

where p is mass density, @ is velocity, P is pressure, ¢ is internal energy, and s
is thermal conductivity of the plasma. These equations respectively describe the
conservations of mass, momentum, and energy of the plasma. Before going further,
we need to elaborate on the internal energy of the plasma which we discuss in the
next section.

2.1 Thermal Energy of Plasma

The plasma thermal energy is characterized by both the temperatures of the electrons,
Te, and that of the ions, T;. This internal energy is primarily acquired through heating
by the laser beam. Ions have much lower thermal speed than electrons - even at equal
temperatures. The ion thermal conductivity is also much smaller than that of the

9

electrons. Consequently, the beam will mostly heat the electrons. Ion temperature
changes primarily during plasma expansion due to ion-electron coupling. Because of
the weak coupling, typically T; < T..

Also note that there are Z electrons per ion in the plasma. Thus, in general, the
dynamics of our plasma will be governed by the electrons.

For convenience, let us express the energy equation in terms of the electron tem-
perature. Substituting € = %NekTe and using the mass-momentum conservations, the
energy equation can bhe written as

or, . 2 . 21 5 T,
o + (€ - V)T, = —gTe(V) + 3MV (koTe2VT,) + (o Jext, (2.4)

where N, is the number density. We have used the form given by Spitzer 7] for the
thermal conductivity. We have also added (%’;‘l)m to take into account any heating
by external sources. Since we know that electrons dominate the plasma behavior, let

us drop the subscript e in subsequent discussions.

2.2 Simplifying Assumptions

So far, we have obtained nonlinear and coupled differential equations. From Equa-
tions 2.1, 2.2, and 2.4, we would like to solve for five physical variables, which are mass
density, velocity, temperature, pressure, and number density. We use the following
assumptions to simplify those equations:

e steady state approximation

e constant average degree of ionization, Z.sy

e plasma obeys the equation of state of an ideal gas

e most of the laser energy is absorbed on the critical surface

e plasma ablates with local sound speed on the critical surface

We discuss each of the above assumptions separately in the next sections.

2.2.1 Steady State Approximation

From our experimental setup, the plasma is in fact not in the steady state. However,
it is indeed a relevant limit to look at. Also, dropping the time derivatives in the
hydrodynamics equations lead to a simpler problem.

On the other hand, if we only have space derivatives, the task generally translates
to solving a boundary-value type problem. This boils down to satisfying all boundary
conditions simultaneously. We will then obtain a large set of linear equations. Of
course if the problem is nonlinear, as in our case, we need to linearize it first.

10

2.2.2 Constant Z.s; and Ideal Gas Model

If we assume that the degree of icnization, Z.ss, is constant, we have

1

NM, (2.5)
Zefy

p:

where M is the electron mass. Using the equation of state of an ideal gas,
P = NkT, (2.6)

the momentum equation in steady state becomes

Zosrk T
(@- V)i = ———Hf——(VT +5-YN), (2.7)

we can dot the above equation with # and use the following identity
V(A-B)y=Ax (VxB)+Bx(VxA) +(A-V)B+(B-V)A, (28)
to eliminate N in the momentum equation and obtain

- ol Zesrk - .
i V(5laf) = -~ VT i - T(V - 0)) (2.9)

2.2.3 Absorption of Laser Energy

Let us consider how electrons in the plasma affect the propagation of the laser beam.
The dispersion relation for the beam is [5]
keya _ “ry2
(S =1- (22, (2.10)

where k is the beam wavenumber, w is the beam frequency, and w,® = 47r62% is
the plasma oscillation frequency. At the critical density, N, = 4;82 Muw?, the plasma
frequency matches that of the laser beam and the beam is reflected. This critical
density defines the critical surface. In the region between the target and the critical
surface, N > N,. The beam cannot propagate in this region. Meanwhile, outside the
critical surface, the beam absorption strongly depends on the density [5]. Therefore,
we may assume that most of the energy absorption occurs on the critical surface.

We will incorporate this assumption through boundary conditions on some dis-
tance, r,, where the critical surface is located. We will further assume that this
surface is fixed, although in reality it moves as the plasma expands [6].

We can conveniently use the boundary conditions on the critical surface as scaling
factors and normalize our variables as follows

N
N,’

T i~ 1
||

T
= = — 2.1
n T To, (1)

11

where the naught subscript denotes the value at the critical surface. We will assume
the following values at the surface:

N, = 10*'/cm?, (2.12)
T, = 100 eV, (2.13)
T, = 20 um. (2.14)

2.2.4 Speed of Ablation on the Critical Surface

From both numerical and theoretical analyses [9], it is known that plasma ablates
with the local sound speed at the critical surface. This speed is related to the local
temperature by [5)

Zesrk
M;

T, ~ 3z107 (@) i) cm/s (2.15)
A keV

lﬁ0| =

where M; = Am, is the ionic mass. Take the case of Ni-like molybdenum for an
example. Here, Z.;; = 14 and A = 42 [6], then

[ty = 5.5210° cm/s (2.16)

2.3 Simplified Conservation Equations

Using all the assumptions above, our conservation equations can then be expressed
as

V-(nt) = 0, (2.17)
7. V(-;-wﬁ) = [F(V-7)-Vr-d], (2.18)
2 2 T, 1 5
g - = = . Z(=° = Ak T2 2.
v-VT 37'(V U) + 3(Novo) (n) V - (ko72VT). (2.19)

Note that the we have not defined what k, is. We discuss this in the next chapter.

The momentum conservation is a vector equaiion; it can be decomposed into as
many scalar components as the problem dimensionality requires. As will be explained
soon, we are interested in the two-dimensional description.

We have mentioned that the laser pulses are short; accordingly, the plasma expan-
sion is as in Fig. 2-1. This figure is taken from reference [5]. Near the critical surface,
the expansion is planar. Going farther, it becomes cylindrical as pictured. We can
also imagine if the laser beam is much smaller than the target, we have the planar
case. In the other limit, if the beam is much larger, we have the spherical case.

The target in the picture extends in the direction into or out of the paper. We
have a symmetry in that direction. Hence, we concern ourselves with two dimensions

12

Planar Spherical

(a) / Q
13- o
7

Figure 2-1: Two-dimensional plasma expansion - typical isodensity contours.

only.

We are interested in solving the 2D problem for all the planar, cylindrical, and
spherical cases. As we have mentioned, we are interested to solve the simpler 1D
problem first. We do this in the next chapter. The 1D case is obtained if we assume
radial symmetry. From this easier problem, we learn what procedure(s) to use for
solving the 2D problem.

13

Chapter 3

One-Dimensional Problem

Assuming radial symmetry, the differential operators are reduced to the following
form:

df .
1 d(r°F,)
V-F = e (3.2)

for arbitrary scalar f and vector F. a=0,1, or 2 corresponds to the planar, cylindri-
cal, or spherical cases respectively. The coordinate r is perpendicular to the critical
surface.

This radial symmetry gives us 1D equations, which are simpler than 2D partial
differential equations that otherwise describe the plasma. The computer subroutine
is then less complex in one dimension, hence easier to debug.

First, rewrite the hydrodynamics equations as:

1 d(r*nv)

re dr =0 (3.3)
1 d(v?) _ T | d(r*v) dr
3 e - Ged) Tar T a (3.4)
dr 2 7 drw) 2 kT2 1 d sdr
e e 2] d, sdr {
dT 3 (Ta,v) d,r 3 (Novo) (T“n’v) dT (T dr)- \3.5)

We have assumed that «, is constant. Later, we will substitute a more proper de-
scription.
Note that a solution of Eq. 3.3 is

v = 1,%1,U,. (3.6)

Recali that r, is the location of the critical surface and n, = v, = 1. We have just
eliminated one equation and are left with only two equations.

14

3.1 Conservation Equations in Scaled Coordinate

For later convenience, let us define a new coordinate

r
We then obtain,

df _dfet

pr E—ro—, (3.8)

This choice of coordinate intuitively makes sense. The new origin now coincides with
the critical surface. Also, we expect the functions to vary most rapidly close to the
critical surface.

In terms of the scaled coordinate, Equations 3.3-3.5 are

dv Tdv dr

’UEE- = ;EE - d—f + arT, (39)
dr 2 1dv 2 d, sdr
- .z -2z A (5 pla—1)E
i 37'(a+ vd§)+ 3Ad§(T2 dfe)s (3.10)
where we have defined X
Kolp?
A= Noroon (3.11)

For simplicity, let us set the value of A to unity for now. As we will see later, this
value is in fact quite reasonable.
Lastly, the boundary conditions become

v(€=0)=7(€=0)=1. (3.12)
We also know that
£lim T—0 (3.13)

3.2 Numerical and Analytical Approaches

As discussed earlier, we propose to solve the hydrodynamics equations both numeri-
cally and analytically. Analytical here means that the solution is in closed form. In
both cases, we will compute numerical values as results.

In the numerical method, we first linearize the equations and then use Newton's
method. As the solution, we obtain the velocity and temperature values at each grid
point that best agree with our differential equations.

For the analytical approach, we guess analytical forms of the velocity and tem-
perature functions. Unlike in the numerical method, where we specify the values at
each grid, we describe the functions with a set of parameters. In principle, we can
also use Newton’s method at this point.

We elaborate more on these methods in the next two chapters.

15

Chapter 4

Numerical Solution in One
Dimension by Newton’s Method

We propose to use Newton’s method to solve the conservation equations as expressed
in Equations 3.9-3.10. First, we define the following functions:

d
D(v,7) = (v— T —Z d—g - ar, (4.1)
dr 2 1 dv 2 d, sdr
- 4= — Z A= (72 ==ela—1)¢
E(v,7) T + T(34 T? §e) (4.2)
Then, we discretize them {8]:
1 Tit+1 T; v o
Dy = 35 [(vig1 + i) — ('Ui+1 + ;)] (Vi1 = v) = 5 (T +73),
1 1,1 1
By = 3mn—-m)+ (Tz+1 +7) e+ o — v_i)(vi“ - i)

5 , 3 3
"—(‘”(a et 4 elemV8) [(@ 1) + — (T4 + 77) (Tigr — 70)?

4h?

4h2 (’Q+1 + 7)(Ti+2 — Tip1 — Ti + Tic1)]
where h is the grid size, & = 1 * h, v;=v(¢;), and 7(3) = 7(£;). We have used centered
differencing at half step to avoid spurious solution.

The solution of our differential equations is nothing but the simultaneous roots of
D and E at each grid. Since the equations are nonlinear, we need to linearize them.
Expanding D up to the first order, we have

aDi‘l-l 0D, i+l DH‘
Di_,_% = sz‘; (_8Ti2)(m)5ul(m)+ (uH_:)(m)5 (m)+ (le)(m)(s,r(m)
oD,
3 (m)(s (m)
" (O0Tiq1) T ¥

where 6u{™ = u; — u{™, similarly for 67. The superscript m denotes the value at the

16

m-th iteration.
If we set the left hand side of the above equation to zero and do the same operations
to E, we obtain a system of linear equations which can be written as

(3DT|’ oD, \
vy any
dE, OE, 3E,
- -
U1 T T2
(ow D4)
8Dy 8Dy 9Dy 9Dy 67, Ey
vy an Ovua a7a 5,02 _ D%
8E; OE; OE; OE FYo ¥ E;
3 b 3 3 0 5 2
vy an Bus a0 or3 \ U3 D%
5T3 J
8Ds @8Ds 8Ds aDs \ Eé)
2 2 2 3
duy kg dua oma
OFE 5 OFE 5 OE g aE% OEs
b b bl 5

\ an dva ar dus aT3 /

The set of equations we just acquired is of order N, where N is the number of
gridpoints. In our case, N is in the order of hundreds. Although the matrix - or the
Jacobian - is large in size, it is fortunately banded. Hence, we can conveniently use
Gaussian elimination. The computer subroutine for the procedure can be found in
Appendix A.

To start the iteration, we need to specify the initial guessed values of v and 7
at all grid points. To incorporate the specified boundary conditions at £=0 or =0,
we fix v, and 7, to be unity during all iterations. However, they will still affect the
solution - this is because D1 En and E3 depend on v, and 7, during all iterations.

Once we have found v and 'r, we can express Eq. 3.6 in the scaled coordinate and
obtain

e~

The thin plasma column in the experiment is 100pm x 1-4 cm [1]. Taking 1 cm
for r and using 20um for r,, then we have 0 < £ < 6. Setting h = 0.01, or using
600 gridpoints, we obtain results as presented in Figures 4-1 to 4-3. In all plots, the
horizontal axes represent £. The vertical axes correspond to 7(€), v(€), and n(£),
respectively. The computer routines used to implement this calculation can be found
in Appendix B.

From Fig. 4-1, we observe that the plasma expectedly cools down as it expands.
This cooling is due to the PdV work. From conservation of energy, the velocity should
increase meanwhile. Indeed, this can be seen in Fig. 4-2. Also, we observe from the
plots that the higher the values of « is, the faster the temperature drops.

In the next chapter, we solve the 1D problem using analytical method. We then
will be able to compare the two solutions.

(4.3)

17

‘== o=0

- - a=1 .

— a=2
1-__..________....._.....—________.____.__-
0 1 2 3 4 5 6

Figure 4-2: Numerical solution of v(£) obtained from Newton’s method

18

1
= - a=0
- = a=1
— =2]
3 4 5 6

Figure 4-3: Numerical solution of n(£) obtained from Newton’s method

19

Chapter 5

Analytical Solution in One
Dimension by Minimizing
Residues

In this chapter, we strive to calculate temperature and velocity in closed forms with-
out necessarily having any knowledge of the numerical solution. We can do so by
minimizing the residues as defined:

Ryja,b] = 3 [Dyy(r(a),v(®) I, (5.1)
R;[a,b] = Z [Ei+§(7'(a),'u(b))]2s (5.2)

where D and E were written in Equations 4.1-4.2 and 7 denotes the i-th gridpoint.
The sets of parameters a and b respectively describe 7 and v.

We would like to minimize R, and R, with respect to their parameters. The min-
imum corresponds to the roots of D and E, which are the solution to our differential

equations.
In other words, we would like to solve
OR,
e = 5.3
OR, -
a—bk' = 0, (04)

for all j’s and k’s. This is nothing but solving for the roots of the first partial
derivatives. In the previous chapter, we successfully use Newton’s method to compute
simultaneous roots of D and E. There are as many roots as there are gridpoints, which
is of the order of hundreds. In the present case, the total number of parameters a;’s
and by’s will be certainly be much less than 100. We expect to be able to use Newton'’s
method as well.

However, using the computer program as written in Appendix E, it turns out that
Newton’s method is not very useful. The success of this method depends very much

20

on the initial point we choose. If the gradient at this location happens to point in the
wrong direction, we may never converge to the desired minimum. We will instead use
the conjugate gradient algorithm taken from [11]. Before using this algorithm, let us
first make sure it works properly, which we discuss in the next section. Once, we are
confident, we shall use it to minimize the residues.

5.1 Fitting to Numerical Solutions - Checking the
Minimization Algorithm

In this section, we check whether the minimization routine we would like to use is
working properly. We do so by fitting analytical functions to the numerical solution
we previously obtained.

Define the following quantity:

X = Z [fp,&) — fo(&) 1%, (5.5)

where f is some analytical trial function, p is the set of parameters describing f,
fo(&) is the numerical data on the i-th gridpoint, and & = i * h, where h is the grid
size. This function, x, measures the deviation of our analytical function compared to
the numerical data points.

Analogous to the reasoning in minimizing residues, y is smallest when each con-
tributing term is zero, which means that f = f, or that the analytical function ’fits’
the numerical data. Thence, we need to solve

dx
~= =0 5.6
Py (5.6)

for all j’s.

Similar to the Newton’s method, the conjugate gradient algorithm also requires
us to input an initial guess. Instead of specifying the values at all gridpoints, we
pick some functional form and initialize the values of its parameters. The boundary
conditions are included by choosing the appropriate form of trial function.

Before writing down cur set of trial functions, let us look at Eq. 3.10 more closely.
The last term in this equation vanishes as £ — oo. Therefore, in this region, we are
left with

dr 2 1dv .
Zl—é; + gT(CI + {J.If_) ~ 0, (07)
which implies that
3 e~
T? R (5.8)

v

Since v goes to constant at this regime, we can conclude that 7 will decay expo-

nentially at points far from the origin. Given that, let us include an exponential
dependence in our trial function for 7.

For v, we do not have any extra information beside the numerical data. Let us

21

lo 0 1 2

a; | 0.000000 | 0.607442 | 0.997560
as | 0.412896 | 1.046977 | 1.087227
x | 0.000000 | 0.006149 | 0.018985

Table 5.1: Parameters of 7 = e~®¢"* from fitting the numerical results

o 0 1 2

by | 0.843699 | 1.076936 | 1.598165
by | 0.902746 | 0.667898 | 0.714015
b3 | 0.000000 | 1.816120 | 1.922853
x | 0.000000 | 0.072901 | 0.137610

Table 5.2: Parameters of v =1 + b3(1 — e“‘"‘sz) from fitting the numerical results

choose the simplest functional forms possible, such as

() = e M7, (5.9)
v(€) = 1+ by(1— e 0€?), (5.10)

where all parameters are zero or greater. The parameters a, and by allow the functions
to have non-linear behavior for £ around zero.

Meanwhile, n can be obtained directly from v via Eq. 4.3.

We obtain the parameters as in Tables 5.1-5.2 and as plotted in Figures 5-1 and 5-
2. We have ignored the trivial case of & = 0 in the plots- and we will continue to do
so from now on.

From the plots, it seems that we have acquired a reasonably good fit. One would
tend to think that the best fit will have y to be very close to zero - it may be non-zero
due to round-off error. However, our x’s are non-zero.

For any form of trial function, we are always able to obtain a best fit solution,
given that our minimization routine works. In this set of best fit solutions, the values
of x will differ. The value is closer to zero as our trial function better approximates
the true solution. Hence, we may want to try different trial functions and compare
their x values.

From Tables 5.1, the values of a; are around 1 for any a. If a, is exactly 1, then
7 has a linear dependence at small £. For simplicity, let us assume that our new trial
function for 7 is indeed linear in this region.

Meanwhile, for v, we do not have any extra conditions that will limit our choice.
We will simply guess and use fraction of polynomials in &, since such form will allow
us to add extra parameters in a systematic way, if needed.

22

- — fitted

071 —— numerical T

0.6 1
+ 05} :

0.4 :

0.3 J
/ a=1

0.1 1

—aj 5“2

Figure 5-1: Comparison of fitted 7 = e and numerical values

2.4r

22r

1.8+ - — fitted]

— numerical

1.6 §

Figure 5-2: Comparison of fitted v = 1 + b3(1 — e~*€"?) and numerical values

23

1

2

a, | 0.696557 | 1.221817
a, | 4.725678 | 2.414493
x | 0.002824 | 0.002454

Table 5.3: Parameters of 7 = —1faL
14+a;e20f

from fitting the numerical results

o 1 2

b, | 0.486862 | 0.472110
by | 1.653894 | 2.952702
by | 0.284879 | 1.142508
c; | 0.265511 | 0.344391
c2 | 0.105610 | 0.335146
x | 0.000141 | 0.000235

Table 5.4: Parameters of v = 1 + (l—ff‘f;—ffé—i—g)b" from fitting the numerical results

For now, let us try the following trial functions

1

O = ea (5.11)
2

v(€) +(018 + a8)b, (5.12)

1+ le + CQ€2

The results are in Tables 5.3-5.4 and illustrated in Figures 5-3 and 5-4.

Comparing the x values, the new set of trial functions are better. For both 7 and
v, we have changed the functional forms. Although, for 7, we have che same nurber
of parameters. While for v, we have added two more parameters.

Note that for small £, 7 behaves linearly, while v has a square root dependence.
Also, at large &, the exponent in 7 seems to depend on « in the following manner:
T &~ e, where c is some constant greater than zero. This makes sense in light of

Eq. 5.8. For large £, v is constant, then

T e 5% (5.13)
From Tabies 5.3 and 5.4, the results are certainly in the right vicinity.

At this point, we can continue finding new sets of trial functions such that the
values of x are as close to zero as possible. However, let us not stray from the goal
of this section, which is to check whether or not the minimization algorithm works.

From the results, it certainly seems that we do have a working minimization routine.

24

0.9t b

0.8t b

0.7} ~ ~ fitted |
— numerical

=05 b

0.4} 1

03l 1
/ asl
0.2} a=2 / 1

0.1F 4

Figure 5-3: Comparison of fitted 7 = ﬁ%ﬁz and numerical values

-~ fitted
14 — numerical i
1.2 y
1 1 LA .y i L
0 1 2 3 4 5 6

3

Figure 5-4: Comparisnn of fitted v =1 + (I%Z—iﬁ%)b" and numerical values

« 1 2
a, 0.716265 | 1.189054
a, 4.787242 | 3.221097
be 0.486220 | 0.482529
b, 1.658895 | 3.177194
b 0.283187 | 1.113252
c 0.259938 | 0.442663
C2 0.109458 | 0.330154
R, 0.002545 | 0.000958
R, 0.007238 | 0.011886

iteration 4 4

2 2
Table 5.5: Parameters of 7 = 1—;‘;’;—‘;5—5 andv =1+ (%‘fg—iﬁ&—z)b" from minimizing the
residues

5.2 Minimum Residues

Now, we are finally ready to solve our differential equations by minimizing the
residues. Notice that we are dealing with two coupled differential equations. Previ-
ously, we took care of this coupling by expressing the system of equations as written
in Chapter 4. In analogue to that approach, we would need to simultaneously solve
for all a’s and b’s. This may prove to be imprudent since the minimization routine
grows as N2 where N is the number of parameters [11].

What we will do instead is to iterate the minimization procedure between R, and
R,. For example, given a set of initial guesses, we minimize R, with respect to a’s
while fixing all b’s. Then, we fix this new set of a’s, minimize R,, and obtain an
updated set of b’s. We then go back and minimize R,, etc. This approach is more
efficient than simultaneously minimizing for a and b, especially when there are plenty
of parameters.

Let us use the same forms of trial functions, as written in Equations 5.11-5.12. We
obtain the parameters as listed in Table 5.5. From the plots, it seems that fitting and
minimizing residues give comparably good results. Direct comparison of the previous
x's to R, and R, is inappropriate since they measure different types of ’error’ or
deviation: x with respect to the numerical solution, while R’s with respect to the
residual functions.

However, for x and R’s - the better the trial function approximates the true
solution, the smaller their values are. We have observed this in case of x values, as
evident from Tables 5.1-5.4.

At any rate, the minimum residue method has succeeded in producing a reasonable
1D solution in closed form. However, we have so far judged this by comparing our
results to the numerical solution. Recall that the goal of the analytical method is to
get good results - without - any knowledge of the numerical solution. To be more
precise, at this point we can only conclude that the minimum residue method works,

26

09} J

0.7+ - — minimum residue {
— numerical

0.6

+ 0.5}

0.4

0.3

. - . - — l+a .
Flgulre 5-5: Comparison of minimum residue solution of 7 = Tha onof and numerical
results

281

26

1.8f

~ — minimum residue

1.6 — numerical 7

1.4 b

-

. - 2
Figure 5-6: Comparison of minimum residue solution of v = 1 + (l—f_’fl“g—ﬁi?)b" and
numerical results

27

as long as we have some intuition on what the solution look " like.

Physically, based on the 1D solution, we have a very good idea how the 2D solution
ought to behave. However, since we will have no 2D numerical data to compare our
analytical solution to, how will we judge how good that solution is? Recall that we
expect the 2D numerical data will be difficult to obtain, hence the motivation of this
chapter.

In the next chapter, we explain a procedure that helps us decide how good our
analytical solution is.

One last point before we close this chapter: one might wonder why we do not
simply compute the roots of the residuals instead of minimizing them. After all,
minimization gives us results that are the roots anyway. This is because multidimen-
sional minimization is generally easier to solve than multidimensional root finding.
Intuitively, if we pick a surface in our N-dimensional space, we can find the direction
where the gradient changes the most. Following this direction, we wili eventually hit
a minimum. This procedure of 'sliding downhill’ is effectively one dimensional. No
analogous procedure is known in root finding [11].

28

Chapter 6

Adding More Parameters

In this chapter, we discuss a procedure that lets us judge the merit of our minimum
residue solution independent of the numerical solution. This will be particularly useful
in two dimensions, where the numerical results may be difficult to compute.

We have mentioned that the better a trial function approximates the true solution,
the less its residue is. We propose to construct better trial functions by systemati-
cally adding more parameters to the existing function. Intuitively, these parameters
describe the ability of our trial function to accommodate the behavior of the true
solution. Thus, adding more degrees of freedom can only decrease the residuals. If
adding more parameters changes the residuals insignificantly, then our trial function
is a good description of the true solution. This function constitutes the best answer
we have.

Then, how big a change should be considered as significant? One approach is to
compare this change to the machine precision - but this may be too fine a measurement
than we really need. Another approach is to compare this change to the error inherent
in the computational algorithm being used. Yet another possibility, perhaps the
simplest one, is to take advantage of the results in one dimension.

Based on the comparison with the 1D numerical results, we indeed have acquired
a very good 1D analytical solution. Given this, let us see how much the residues vary
if we add more parameters. Then, we will have some idea how big a change to expect
when we have a good solution.

Let us now discuss how we can add the parameters in a systematic manner. For the
temperature, we would like to keep the exponential dependence - see the discussion
around Eq. 5.8. Therefore, in the most general form,

_ 1+¥iEa
1+ 30, azetei’

7(£) (6.1)

This way, we can add one parameter at a time.
For the velocity, we know that it approaches some constant value at large £. Let
us take this form n p g
i1 if

w(E) =1+ (m g (6.2)

29

(nr,"v) (215) (375) (415) (2»7) (2,9)
o 0.716265 | 0.722262 | 0.722584 0.721398 | 0.721542
a) 4.787242 | 4.572960 | 4.572998 4.576465 | 4.576841
a; 0.000000 | -0.010038 | -0.010267 0.000000 | 0.000000
as 0.000000 | 0.000000 | 0.000040 0.000000 | 0.000000
b, 0.486220 | 0.482759 | 0.482710 0.488448 | 0.488448
b, 1.658895 | 1.655705 | 1.657530 1.656681 | 1.656681
b 0.283187 | 0.282396 | 0.282701 0.253153 | 0.253153
by 0.000000 | 0.000000 | 0.000000 -0.029030 | -0.029030
by 0.000000 | 0.000000 | 0.000000 0.000000 | -0.000000
(o 0.259938 | 0.252012 | 0.253187 0.213911 | 0.213911
Cy 0.109458 | 0.108455 | 0.108298 0.113928 | 0.113928
3 0.000000 | 0.000000 | 0.000000 -0.010439 | -0.010439
Cy 0.000000 | 0.000000 | 0.000000 0.000000 | -0.000000
R, 0.002545 | 0.001824 | 0.001745 0.001219 | 0.000723
R, 0.007238 | 0.005581 | 0.005589 0.006740 | 0.005739

Table 6.1: Parameters of 7 and v from minimizing the residues with a=1

Due to the form we picked above, we will have to add two parameters every time.

First, let us modify 7 while keeping v fixed. For the initial guesses, we use the
minimum-residue values and set the extra parameter, as, to be zero. Then, we use
this set of newly obtained parameters, a,,a,, as, as the initial guesses when we add
the next parameter, asz; which will be initialized to zero. We continue doing so until
extra parameter affects our solution negligibly.

From the tables, indeed the sum of R’s decreases as more parameters are added.
The variations are in the order of 1%-10%. Later, we shall gauge our success based
on these values.

Before solving the 2D problem, there is one thing left to do in one dimension.
So far, we have assumed the thermal conductivity, x, is constant, as mentioned in
Chapter 3. We would like to use a more physical description in the next chapter.

30

(nr,nv) (2,5) (3,5) (4,5) (2,7) (2,9)
a, 1.189054 | 1.189639 | 1.189762 1.191425 | 1.151856
ay 3.221097 | 3.221086 | 3.2210-'1 3.221053 | 3.295502
ap (0.000000 | 0.000164 | 0.000084 0.000000 | 0.000000
as 0.000000 | 0.000000 { 0.000133 0.000000 | 0.000000
bo 0.482529 | 0.482023 | 0.483060 0.481802 | 0.481804
b 3.177194 | 3.178394 | 3.180845 3.177142 | 3.177143
be 1.113252 | 1.113486 | 1.115108 1.113047 | 1.113049
b3 0.000000 | 0.000000 | 0.000000 -0.000226 | -0.000221
by 0.000000 | 0.000000 | 0.000000 0.000000 | 0.000025
c 0.442663 | 0.442757 | 0.443556 0.442350 | 0.442351
() 0.330154 | 0.329153 | 0.332451 0.330064 | 0.330063
c3 0.000000 | 0.000000 | 0.000000 -0.000402 | -0.000416
C4 0.000000 | 0.000090 | -0.000090 0.000000 | 0.000000
R, 0.000958 | 0.000935 | 0.000615 0.000840 | 0.C00614
R, 0.011886 | 0.011845 | 0.011863 0.011852 | 0.009802

Table 6.2: Parameters of 7 and v from minimizing the residues with a=2

31

Chapter 7

Physical Results in One
Dimension

So far, we have assumed & to be constant and set A as in Eq. 3.11 to be unity. In this
section, we shall consider the fact that k is 7-dependent. In its most general form [5],

2.3 kT,
kK = 20 (;)25[64Z(m A)\/ﬁe]’ (7.1)
Z+0.24
6~ 0095 o (7.2)

where k is the Boltzmann constant, T, is electron temperature, e is electron charge,
Z is the effective ionic charge state, (In A) is Coulomb logarithm, and m, is electron
mass. The Coulomb logarithm can be computed using [10]

A =24 - In(- Ne), (7.3)
T,
where N, is the electron density in cm™3 and T, is in eV.
Because of the r-dependence, Eq. 3.10 becomes
dr 2 ldv, 2, T} . d s dr
— == 220V Sy 3 _ele=1&y 1 4
dé ST(a+vd§)+3(Norovo)df[no(ﬂd§e)] (7.4)

We will assume that r,=20 um and v, can be obtained from Eq. 2.15.
Incorporating the above changes, and taking Ni-like Mo, we obtain results written
in Table 7.1. We compare these values to the case when A was set to unity as in
Figures 7-1 to 7-3.
Recall that the dimensionless variables are scaled as follows:

N | T

N:, |’U| = |ﬁo|, T = To, (75)

n=

where N,=10%!/cm3, T,=100 eV, and u, is computed from Eq. 2.15. For Ni-like Mo,

32

Table 7.1: Parameters of 7 =

« 1 2
@ 10.738448 | 1.245027
a, | 4.796987 | 2.937139
b, 10.485049 | 0.479091 |
b, 1.668513 | 3.176505
b, | 0.285861 | 1.113113
e | 0262218 | 0.434441
e | 0.113900 | 0.340701
R, |0.005463 | 0.013142
R, |0.001988 | 0.001069
iteration 3 6

L+ay br€-+by€?
ety and v = 14 (vy

1+c1€+4c262

)% from minimizing

residues for Ni-like molybdenum - using the physical form of thermal condictivity

0.9

0.8

0.7}

0.6

= 0.5

0.4

0.3}

0.2

0.1}

— A=1
= - Ni-like Mo

Figure 7-1: Comparison of setting A=1 and physical result in temperature for Ni-like

Mo

33

— A=1
-= - Ni-like Mo

Figure 7-2: Comparisou of setting A=1 and physical result in velocity for Ni-like Mo

0.9}

0.8

0.7

0.6

€05 A

== Ni~like Mo

0.4

0.3

0.2

0.1

Figure 7-3: Comparison of setting A=1 and physical result in density for Ni-like Mo

34

0.9}

0.8 -

0.7f

0.6 b

— a=1} -
—-a=2

0 il S - I

. L 'y 1 I
0 50 100 150 200 250 300 350 400 450 500

rir
o

Figure 7-4: Temperature in one dimension for Ni-like Mo

Z=14, then A=.6. The value of A is in fact of the order of unity.

Now, let us plot the result in terms of the unscaled physical variables. Hence, the
horizontal axis now denotes r, instead of £. The results are in Figures 7-4 to 7-6.

Finally, we are ready to face the 2D challenge. Based on the success of minimum-
residue method in one dimension, we will also use it in two dimensions. We discuss
the 2D problem in the next chapter.

In two dimensions, the hydrodynamics equations become a set of partial differen-
tial equations. We expect the solution to be more complicated, hence greater number
of parameters will be needed to describe temp=rature, velocity, and density functions.
The velocity is a vector function now. However, we can still use the same minimiza-
tion routine. As in one dimension, we will first set x« to be constant. Once we obtain
reasonable result, we shall modify it.

»

35

viv,

N/N,

28

2.6

24

22

1.8

1.6

1.4F

1.2

0 50

0.9

0.8

0.7

0.6

0.5

0.4F

0.3}

0.2

0.1

0 50

== + = =T

- a=1

250 350 400
r/r°

100 150 200 300

450

500

Figure 7-5: Velocity in one dimension for Ni-like Mo

— a=l
s a=2

250 300 350 400

rie,

100 150 200

450

500

Figure 7-6: Density in one dimension for Ni-like Mo

Chapter 8

Two-Dimensional Problem

In this chapter, we extend the 1D problem to two dimensions by lifting the radial
symmetry assumption. First, we write down the hydrodynamics equations using the
proper 2D operators. Then, we explain how the boundary conditions in one dimension
are modified. Afterwards, we discuss what symmetries are present in two dimensions.

In two dimensions, we intend to use the minimum residue method. This is because
we do not presently have a 2D numerical solution.

To use the analytical method, we are required to define trial functions for the
desired physical variables. This is more difficult in two dimensions since we do not
have any numerical solution. However, even without these numerical data, we do
have some intuition on the 2D solution. We can gain some understandings on the
behavior of 2D plasma by making observations on the 1D solution. We do this in
Section 8.4. Once we have an intuitive picture of the solution, only then can we write
down appropriate trial functions.

8.1 Hydrodynamics Description in Two Dimen-
sions

In two dimensions, the differential operators can be written as

o, o,
Vf = Ep Z+ o (8.1)
_OF, | 10(r°F,)
V-F = 0z +r° or '’ (82)

for any scalar function f and vector function F. Meanwhile, a=0,1,2 corresponds to
the planar, cylindrical, or spherical cases, respectively. As before, 7 is the direction
perpendicular to the critical surface. If we refer to Fig. 2-1, Z is the vertical direction.
For the 1D problem, we have used the form in Eq. 2.9 for the momentum equation,

which is]
U - V(-2~) —7(V-9)+Vr-7=0. (8.3)

There is another form which is more useful in two dimensions. Let us rewrite Eq. 2.7

37

where the density has not been eliminated vet. This equation can also be expressed

as
(U-V)’U+VT+£VTL=O.

Then, the governing equations in two dimensions are

d(nv;) 1 9(rnv,)
0z e ar -
ov: Ov, Or TOn _
vz 0z Ur or az ndz
Qur Qo O TOm
v 0z U or or 87‘ nBr -
or or , 2 [@; 1 9(r%vy)]
Yoz Tar T3 e T Ty
2 Kol, 0 561' 10 5 0T _
3 Nuo) 62(Bz)+r°8r(r T _B_r-)] h

(8.4)
0, (8.5)
0, (8.6)
0, (8.7)
0. (8.8)

Equations 8.6 and 8.7 are the z and r components of Eq. 8.3, respectively. As in one

dimension, we have again assumed k, to be constant.
Now, for convenience, let us define a new coordinate system:

z = In (TL)
y = (:—o)-

Similar to the 1D case, the line z = 0 coincides with the critical surface.

The partial derivatives become

of of 1
9z Oy,
of Of e*
or 0z 1,

In the new coordinate, Equations 8.5-8.8 are transformed to

d(nvy)

3y +e7% [anv, + (g;)m)] 0,
Ouy 67’ Ton _, . Ov
Uy a ;8— [Ura_;] 0,
'u%+e"[vavz+—a—r Ton,y 0
Y oy *0r Or noz '
WO 20 240 0
Y9y '3 8y 3ndy. Oy
+ 'z{véz+2r(av +0vz)
“or 3 T ox

38

(8.11)

(8.12)

——% [ae™ 12—+ — (et =)]} = 0, (8.16)

where A was defined in Eq. 3.11. Unlike in the 1D case, we are unable to solve
Eq. 8.13 here - compare this to Eq. 3.3 and its solution, Eq. 3.6. Instead of having
two coupled equations as in one dimension, we now have four of them. Also, these
equations are now partial instead of ordinary differential ecuations.

The solution of the equations above have to satisfy certain boundary conditions.
These conditions are slightly more complex than in one dimension. Let us discuss
them in the next section.

8.2 Boundary Conditions
At the origin, we have the following condition:
n(r=0,y=0=7(z=0,y=0)=v(zr =0,y =0) = 1. (8.17)
From the 1D solution, it is reasonable to expect that

z_}gé?_)oo{n, 7} — 0. (8.18)

The next boundary condition has been consistently shown by both numerical and

theoretical analyses [9]. Both analyses agree that plasma ablates with the local sound

speed at the critical surface, as expressed in Eq. 2.15. At the critical surface, we also

assume the plasma ablates perpendicularly to the surface. Thence, we acquire these
conditions:

v(z=0,9) = J1(z=0,y), (8.19)
v(z=0,9) = 0. (8.20)

Except the last one, the boundary conditions in two dimensions are direct exten-
sion of the 1D case. Next, we explain the symmetries present in two dimension.

8.3 Symmetries

Referring to Fig. 2-1, we can see that y and —y axes are indistinguishable. It is
therefore sufficient to solve the 2D problem in the upper half, or y > 0, region only.
This implies that the solution functions are even with respect to y.

Meanwhile, with respect to z, no symmetry exists. We have a problem where
the energy source is on the positive z side, by definition. We obtain plasma ablation
because of the laser energy absorption. This fact breaks any symmetry, since no
source exists in the —z axis. More precisely, we cannot allow any source to exist,
since we will have an entirely different problem otherwise. In other words, there is
plasma on positive z side and none on the negative side - hence, symmetry between
the two sides would be unphysical.

39

Figure 8-1: Qualitative behavior of the 2D density and temperature functions

8.4 Expected Qualitative Behavior of the Solu-
tion in Two Dimensions

Beside the y — —y symmetry, which has no direct analog in one dimension, everything
in two dimensions so far has been a simple generalization of its 1D counterpart. We
expect the 2D solution to be similar to the 1D result as well. Recall that we intend
to solve the 2D problem by the minimum-residue method. Knowing the qualitative
behavior of the 2D solution will aid us in defining trial functions for the density,
temperature, and velocity functions.

For the density and temperature functions, we expect them to to decay away
from the origin, just as in one dimension. We imagine these functions to have ellip-
soidal contours. Qualitatively, the solution for temperature and density functions will
probably look like Figures 8-1 and 8-2.

The velocity function is quite different in two dimensions; it is now a vector
instead of a scalar function. Certainly, we would think the magnitude will have some
semblance to the 1D velocity.

To have a better intuition, let us imagine connecting the velocity vectors to form
velocity lines - similar to the electric field lines obtained from an arbitrary electric
field. Along these lines, it is reasonable that the velocity behaves similarly to the
1D case - the magnitude increases and approaches some constant value for points far
away frcm the origin. Of course, this constant may differ for each velocity line.

In the same time, the direction of the field will appear to fan out of the critical sur-
face. We also expect the field to be radial for points far from the origin. Qualitatively,
the velocity field will behave as in Fig. 8-3

Now, let us see how these pictures wil help us to define trial functions for the

40

NN N N N NN
SN NN
NN NN NN XN
AN AN N RN
CNN N NN
NN N NNYN NN
./4/4/4////
LN SNNYN NN

-
1
.5

3

41

15

S S o

N N N

— —_— —_— —_— —_— — —_— — —
2
25

/
VR A A A A A A I N

VA AR A A A A A

N N N N S

e — S S R SN

0.5

//////////’/’,{
AT e e e e e e e e

. L L L S S &

Figure 8-3: Qualitative behavior of the velocity field

f
/7
/
0

- € € . L . L L &

1F

i i A
© ~ [
-

05

0 0
(] N

Figure 8-2: Expected contour lines of 2D density and temperature

density, temperature, and velocity. As mentioned, the density and temperature will
probably have ellipsoidal contours. It is then natural to write them as a function of
these contour lines.

For the velocity field, there are different ways to describe it. For each description,
the hydrodynamics equations in 8.15-8.14 may be expressed differently for conve-
nience.

From the differential equations, an obvious choice is to describe the field by its
z and y components. However, we do not have any intuition how each component
behaves separately.

A better approach i< to derive the field from some potential function - analogous
to the potential used to describe an electromagnetic field. We will elaborate more on
this in the next chapter, Chapter 9.

Yet another possibility is to parameterize the velocity field by its magnitude and
direction. We shall do so in Chapter 10. This approach is probably the most conve-
nient since we have a good intuition on how the magnitude and direction of the field
behave. .

For all cases, we will parameterize the density and temperature using th. ~ontour
lines as aforementioned.

42

Chapter 9

Potential Function

The velocity field can be obtained in the following manner:
v=V¢+V xA, (9.1)

where ¢ is scalar and A is vector functions.

Ideallv, we would like to solve for both ¢ and A separately. From both, we obtain
a different sets of solution for n, 7, and v. We will then sum the two solutions and
use that as our trial functions. It is not obvious that we can simply take the sum of
the two solutions, since the governing differential equations are not linear.

We can pick out the scalar potential contribution if we assume irrotational fluid

flow. This means
Vxv = 0. (9.2)

Hence,
v=Vdo. (9.3)

This potential function is unique up to a constant.

From the plot of the desired velocity field in Figure 8-3, the potential function
will probably have ellipsoidal contours. Let us parameterize these lines as ¢, where ¢
is some form of ellipsoid, such as

¢ = ao + a12% + azy? + asz. (9.4)

A simple trial function to try out is

b=/C- % e [7(0,1). (9.5)

The first term ensures the boundary condition infinity is satisfied. As we know,
the velocity magnitude approaches constant along all velocity lines at points far away
from the origin. Thus, we expect that the potential to be roughly linear in this region
A caveat is due here. Depending on the form of the potential function, imposing this
linearity may cause the constant to be the same regardless of . We do not have any
prior knowledge whether or not this is the case.

43

1.24

()
0
;
%
":,/

s
0

i
W
0%
KK
s
I,' %
)

1.14

(/

Y
!
(/
0
{/
0

7
%
/
//
%
%
0
7
(/
()
‘%
()
()

!
Y

7
o
M
7
/
i
(/
5
/
5
5
5
)

¢
/
7
5

4
l,'
(
i
{/
i
0

7
4
7
7
’
W
%
(/
(/
h
(/
3
(/
/
3
X
I,'

7
%
9
’/,/4
QK
///
,/
0
|
Y
Y

(
Y

0
)
v
W,
i
i
I
)
)
o

)

/
0

%,
DY
X
‘l
)

%

/"

=
S

\
]
J

-~

[/

[T11]

0.5

1.5

Figure 9-1: The velocity magnitude obtained from ¢

The second term guarantess the boundary conditions at =0 is satisfied. Refer to
Eq. 8.19 for this condition. This term will decay such that the linearity condition at
infinity is still satisfied. In regards to the boundary conditions, the potential function
is incipiently well-behaved.

However, the potential function above has an artificial flavor to it. We construct
two independent functions that satisfy the the boundary conditions close to the origin
and another one for infinity separately, then ’glue’ them together. For certain set of
parameters, the function may not be as smooth as we expect in some region, as
illustrated in Figure 9-1.

In the figure, we plot the velocity magnitude. Notice the local maximum. This is
unphysical since there is no source or sink in our system. Let us plot the two velocity
components separately to understand what may have produced this maximum.

From Fig. 9-3, the y-component is certainly well-behaved. The problem comes
from the z-part as plotted in Fig. 9-2. This becomes more transparent if we separately
plot the contributions from the first and second terms of Eq. 9.5. Each contributes a
smooth function as shown in Figures 9-4 and 9-5. It is the difference in the amount
of their contributions that causes the local maximum.

Nevertheless, it is plausible that there are sets of parameters where this problem
may not occur. Before we explore and use this trial function any further, let us
attempt to form another trial function - one that will hopefully include the boundary
conditions more naturally.

Now, we shall attempt to include the /7 term inside ¢ instead. For example, we

44

i
0:'

)
3
i

)
)

N
,‘c
D
c:'
)

)

/)
)

/)
[/
I
(N
l,'N

\
\
)
)

)
)
0
()

%%

'l,"l

:
|
|
il
(
":'0

\
\
j
)
)
)
';:
Y

)
)
l':
I

o

)
0"
)

G
¢

)
:,::zt
i
’l,,’l

|

‘.
N
i
(

Figure 9-2: The z-component of the trial velocity

Figure 9-3: The y-component of the trial velocity

45

o »
ss B)
M £)

XX g XX
AN~ = i
IKAXNA 2 XWEAR)
0% = XXNKAR)
%% . & W
W 2 IXNWKAED
AR g XXX
XXM, 2 XXX
o IXNNRXONED
WK 5 OWXXNKKTAD
RO\ & UNAXINXINKATD
KRN 2 AN
K = UK
W09, o RO AROMAD
XXX 3 ODRNOORORN
%0007 . = OO
D% g CROAOCASOMNAR
) = RO
G Js 3 RN

W74) S
W . 3
2 <
Fxy

Figure 9-5: Contribution of the ¢ term in v
46

can define the following:

T(z =0,y)
_— . 9.6
axy? + az £+ a (9:6)

(= Jalmz + asy? + 2
Then, if we set ¢ = (, all the boundary conditions are still satisfied indeed.
However, recall that for the one-dimensional case, the velocity increases in a
square-root manner for points close to the origin. We expect that the speed may
not increase in a linear manner for the two-dimensional case as well. To allow for
such possibility, we would need a term proportional to (* in the potential function,
where a < 1. We will do so as follows

¢ =C%"C+ (. (9.7)

We put the exponential term such that at far away, ¢ still behave linearly.

This form of ¢ also allows us to add more parameters and accomodate more
complex behaviors in a systematic manner. We can attempt to express ¢ in terms of
power series in (. In its most general form, our potential function is of the form

XibiGi

¢ = C"e“ + —ZT, 1= 1,2, (98)

where b;'s are constant parameters and (; is defined as

2x _i 1
G = (a12* + agy® + T\/T(IIJ =0,y)(a2y® + a;»,)l 2+az) . (9.9)

The ¢ in Eq. 9.6 is the special case when 7 = 1. Note that we cannot simply use the
powers of ¢ due to the boundary condition at z = 0. Of course, for each new form of
¢, we may have to redefine (.

As we have mentioned earlier, adding two forms of independent functions like
above easily gives rise to local maximum in ¢. There probably exist sets of parameters
with do not cause such problem. Nevertheless, finding them is not all that obvious.
This is problematic especially that we need to have a reasonable initial guess to start.
off the minimization procedure.

As we have discussed previously, the success of any minimization procedure relies
heavily on how close the initial guess is to the solution. Currently, we have a case
where good initial guesses are difficult to come up with. We cannot expect to have a
good solution when we have pathological values to start with.

Unless we can construct a better scalar potential, it is futile to continue and
elaborate on the vector potential contribution. Instead of delving further into this
probleni, let us instead explore the next possible description of the velocity field,
parameterization by its magnitude and direction. We do so in the next chapter.

(S22

47

Chapter 10

Parameterize Velocity Field by Its
Magnitude and Direction

In this chapter, we specify the velocity field by its magnitude and direction. The den-
sity and temperature functions are assumed to have ellipsoidal contours as explained.
Hence, we will parameterize them as functions of the contour lines.

The direction of the field is measured using the angle between the velocity vector

and the y-axis. The field is then specified as

vi(z,y) = v(z,y)cosb(z,y), (10.1)
vy(z,y) = wv(z,y)sinb(z,y), (10.2)

where v is the magnitude and 0 the angle of the velocity vector, respectively.
At this point, it is more convenient to rewrite the hydrodynamics equations in 8.13-
8.16 and define the following residue functions:

R, = sino(%g—z+%)+vcosﬁg—g

+ 7% [cosO(av + %g—: + %) - vsinez—i 1, (10.3)
R, = sin0(v%§+g—;+£g—3)

+ e *cosf (vg—: + g—;—c + %g—z)s (10.4)
Ry = v’sind %+c030(%+£g—z)

+ e7* [v?cosd g—g —sinf (g—; + %g—:), (10.5)
R, = sinf(vg—; + %Tg—:;)+ §T’UC089 g—z - —3%[57'%(2—;)2 + 27'%26)%

+ e *{ [cosf (va—T + g'r?ﬁ + gOzrv) — l'rvsinf) 96

dor 3 O0r 3 3n Oz

48

A — 3 ar 2 §627‘
——e 7 [57 (5;) +27233:2

3n
Equations 10.3 and 10.6 are obtained by direct substitution. Equations 10.4
and 10.5 can be computed from

+2(a - 1)7%%]} (10.6)

(Eq. 10.4) = sinf(Eq. 8.14) + cos0(Eq. 8.15), (10.7)
(Eq. 10.5) = cosf(Fq. 8.14) —sinf(FEq. 8.15). (10.8)

In effect, we have separated the differential equations for the magnitude and direction
of the field.
10.1 Trial Functions in Two Dimensions
Let us first define the following for convenience:
n(a) = 2% + a1y + az, (10.9)

where 7 describes an ellipsoid.
Using the above, the density trial function can be written as

n(:z;, y) = e~b1(')(a)+bzﬂ(a)2+...)b°' (10.10)

The ellipsis in Eq. 10.10 stands for higher order term. The next term would be
bsn(a)®, and after that byn(a)?, etc.
We use the same functional form for temperature

(g, y) = e~ e (10.11)
For the velocity magnitude, we use the following:

v = /7(0,y) + 1 — e~ N1 (@ +falen(@)*+.)" (10.12)

Meanwhile, for the angle, we use

0 = tan' k(v + ko7® +...)" tanh g, (n(p) + gen(p)® + ..)" (10.13)

where 7 is zy
= 10.14
v(z,y) = —— (10.14)

The tan~! term ensures the field to appear radial at points far from the origin. The
second term roughly describes how the angle varies along the velocity lines.

So far, it may seem these choices of trial functions are rather arbitrary. Indeed,
to a certain extent, they are. All we desire is to have functions that qualitatively
describe the behaviors in Figures 8-1 to 8-3. As we have learned in one dimension,
there are plenty of trial functions that can describe an arbitrary behavior as such.

49

However, we have also learned that for a given set, our minimization algorithm is able
to give us the best approximation to the true solution.

Also recall that the success of the minimization routine depends heavily on how
close the initial guess is to the true minimum. We were fortunate in the 1D case to
have the numerical data. We first fitted some trial function to the numerical solution
to check whether the minimization program works or not. Then, we used these fitted
parameters for our initial guesses in using the minimum-residue method. This way,
we were able to 'lock in’ on very good initia: guesses. The success of the residue
method relies heavily on these astute choices of initial values.

In two dimensions, the most difficult step in fact is to find good initial guess.
There is no way to circumvent this but to try out different starting points. The only
guideline we have, again, is our intuition, mostly as depicted in those qualitative
figures.

There is another observation that proves useful as well. Based on our experience
in one dimension, the higher the value of « is, the faster the solution reaches its
asymptotic value. Given this, we try to solve the 2D problem with a=2 first. We do
this in Section 10.2. We will add parameters to our trial function until the residue
does not change significantly, just like what we did in Chapter 6. This way, we
are reasonably confident that our trial function is good enough to approximate the
behavior of the true solution. In Section 10.3, we use the solution of a=2 for the
initial starting point for a=1.

For oo = 0, just as in one dimension, the solution is quite trivial. Any constant
value of n, 7, v, and # would do. Incorporating the boundary conditions, the solution
is therefore

n(zr,y) =1=17(z,y) =v(z,y) =1, (10.15)
0(z,y) =0. (10.16)

10.2 Spherical Case, a =2

As previously explained, finding a good initial value is difficult. For each starting
value, our minimization routine produces a result. By plotting this result, we can
immediately see whether it agrees with the expected behavior or not. If it does, we
then check whether it is indeed a true minimum by using the routine in Appendix D.
If so, we then add more parameters until the residue does not change significantly.
What we mean by residue here is the sum of R, + R, + R, + Ry.

As in the 1D case, we iterate the minimization procedure among the differential
equations. For example, we minimize for the parameters describing 7, while keeping
the other parameters fixed. Then, with this new set of 7 parameters, we minimize
for v parameters. Afterwards, we minimize for n, etc.

Solving the equations simultaneously is more natural, since these equations are
coupled. However, the previous approach is more efficient. Iterating lets us keep the
number of parameters minimized at any time to be as few as possible. This is more
an issue in the 2D case, since we are dealing with more complicated functions; more

o0

0-8\

0.6

044

SS<TS
J LSOO
0.2 o P oSS
<<J TSSO oS
<] rS ey SO
<SS SISO
0 .‘.’ “‘ STIOTITD
“I:I S/ :"l ?
v
4 ““‘3 S e
3 SO “" “ oS 6
2 TS

6

<

Figure 10-1: Initial trial function for density and temperature for a=2 with n(z,y) =
r(z,y) = e+ +)

4.5 T T T T T T
AR R A S Y Y A A S A A S A A A S A
ar VAR A Y B B Y A RV Y AV R A AV
VAR AR SR AN A A B B A B S A S S S A
35y VIV RV R A N N R
3} VAR A A AR S N B A B B B A A A S A A
VIV ARV AR A A B B B B S S B B B R R
25r PRV R R A R N B A R A N NP A AP
> - S S S S S S S S AR s s e o,
2r z//////////////,-,-,-,--
15F - = & ST SIS v
e e AT v v -
Ll SR 2 PP I
J i i i g B e s e e i e B e i e
o5t ——o—o-—v——v-—v——v——v——v——»—»—»—»-—a—’—»—»—»——»-—;
OF — —= — —» —> > —> — > —> —> —> P — > — P
1 2) \ . L
0 1 2 3 4 5 6

X

Figure 10-2: Initial trial function for the velocity field for a=2 where v(z,y) =
\/T(O, y) +1- e—(z2+y2+x)z and 9(:1:, y) — tan“l(ff;) tanh(x2 + yz + :B)

51

Nn N-r Nv Ne R
4 | 4] 4| 6 |0.036935
4 |1 4|5 | 6]0.021333
4 1 4|6 | 6 |0.021996
4 | 4 7 | 6 [0.016205
4 | 41 8 6 |0.015750
5 (4| 8 | 6 [0.015634
6 | 4 | 8 | 6 |0.015240
6 | 5 | 8 | 6 |0.013446
6 | 6 [8 | 6 |0.013445

Table 10.1: Change in residual, R = R, + R, + R, + Ry, as more parameters are
added for a=2. N, is the number of parameters describing n, similarly for N,, N,,
and Ng.

parameters are needed to describe them. For illustration: If we use the simplest set
of trial functions, we have 4 parameters each for n, 7, and v. For 8, we have 6. The
total number is 18 parameters. Compare this to the simplest set in one dimension:
we had 2 for 7 and 3 for v, for a total of only 5!

For the initial guess, let us use the simplest set of trial functions and assign all the
parameters to be 1. We use the same form for both n and 7 as plotted in Fig. 10-1.
Explicitly, the trial function we use for both density and temperature is

n(z,y) = 7(z,y) = e =+, (10.17)

For the velocity field, we use the followings for our initial guess:

u(z,y) = v=4/7(0,y) +1— e @+t (10.18)
O(z,y) = tan™! (1—‘1%) tanh(z? + ¢? + 2). (10.19)

The field is plotted in Fig. 10-2, where the horizontal and vertical directions are x
and y axes, respectively.

Next, we add one extra parameter at a time to the trial functions until the residual
does not change by much. Based on our observation in Chapter 6, anything less than
10% change can be deemed insignificant. We only list the resulting residue values as
more parameters are added. These residuals are written presented in Table 10.1. N,
denotes the number of parameters describing n, similarly for N, N,, and N,.

From the table, notice that we add parameters to one particular function at a
time until the residual hardly changes. Only then do we add parameter to a different
function. In our specific case, we started by making v more complicated. When the
residual changes from 0.158 to 0.157, we stop modifying v and add new parameter to
n instead. Then, we apply the same procedure for modifying n.

The final result is plotted in Figures 10-3 and 10-4. We will use these parameters

52

1.5 2

1.5 2

Figure 10-3: Density and temperature functions and their contours for =2

T T T T

281 VAR AN AN AN AN B B A B A A A A A A
VAV A N A B B A A A A A A A 4
VAV AV A A A A A A A A A A A A

A A A A A RV A A AV AV AV AV AV AV
A A A A A N
W A AP AN 7]
e AT AAAAA AT T 7 7

- =P T2 7T T 7T T T T T T T T T

Of = —>—>—>—>—>—>—>—>—>—>—>—>—>—>—>—>—>—>

X

Figure 10-4: Velocity field for a=2

53

a, | 2.198380 | d, | 0.387033 g1 | 1.967589 m | 0.921061
ap | 1.230637 d> | 0.381912 g2 | 2.593603 p2 | 1.024161
b, | 1.165142 ¢, | 1.493538 fo | 1.646485 go | 0.838017
b, | 2.293723 ¢ | 0.026898 fi] 2.338281 ¢ | 1.055256
by | 0.038231 co | -0.000486 f2 1 0.513358 m | 7.290804
b3 | 0.254458 c3 | 0.000000 f3 | 0.140093 ky | 1.159926
b4 - C4 - f4 0.140093 q2 -

bs - cs - f5 1 0.056809 | | ks -

Table 10.2: Parameter values for a=2

0.1

Figure 10-5: Density and temperature and their contours for a=1

for the initial guess for the =1 case. The parameter values are listed in Table 10.2.

10.3 Cylindrical Case, a =1

We use the result in =2 as the initial starting point and add more parameters
as needed. The change in the residuai as the functions are modified is shown in
Table 10.3.

The final result is plotted in Figure 10-5 and 10-6. The parameters are tabulated
in Table 10.3.

Compared to the a=2 case, the results for =1 do reach their asymptotic values
more slowly. The density and temperature do not decay as fast, the angle of the field
does not increase as rapidly.

54

25¢ L s s A A AT A AT T 7T

0.5

e e A AT

_.a»///"/’/’/'/’//’/'/’//’/’j
e > T T T T T T T T T T T T A
> T T T T T T AT T T T T T A
e > PP T T T T T T T T _T T _T
. > P T _F PP > >
J T e i A e e e e G g e G e
e O

oOf=> —» —>—>—3>—3>—3>—3—3—3>—>—>—>—>--3—>—
1 1 I 1 1 1 1 1 1 L

0 05

1 1.5 2 25 3 3.5 4 4.5 5
X

Figure 10-6: Velocity field for a=1

R
0.015395
0.015204
0.015098
0.014138
0.014075
0.014044

NNNNo o
coooon

gcocococoooc?
N R = R

Table 10.3: Change in residual as more parameters are added for a=1

2.478317
0.541381
1.192008
2.866678
0.115909
0.657744
0.657744

d, | 0.384245 g1 | 2.160431 p | 1.014051
dy | 0.381133 g2 | 2.901048 p2 | 1.165943
c, | 1.491894 fo | 3.306387 g, | 0.318337
¢ | -0.002313 fi| 2.727347 q | 1.430346
¢z | -0.000500 f2 | 0.329353 m | 7.198535
c3 | -0.000564 f3 | 0.018273 ky | 1.646210
Cs - fa | 0.018273 g2 | 0.011623
cs - fs | -0.016139 ko | 0.000995
Co - fs | 0.008345 | | g -

Cy - f-/ 0.051116 k3 -

Table 10.4: Parameter values for a=1

Figure 10-7: Comparison of density 1D solution to 2D solution on y=0 line

10.4 Comparison of Result to 1D Case

It seems that we have succeeded in obtaining the expected results in two dimensions.
The solution agrees with the physical intuitions we discussed in Section 8.4. The
residue is also of the same order of the one in 1D case, which is around one percent.

It is interesting to directly compare the two solutions. The 2D solution on the
y=0 line is expected to behave very similarly to the 1D solution. We present this in
the Figures 10-7 to 10-9.

As our intuition dictates, the density in two dimensions decay to lower value,
similarly for temperature. This makes sense, since in two dimensions, the plasma
has more room to expand to. More work is done for the same distance, hence more
energy is lost as well.

As we did in one dimension, we will now modify the value of the thermal conduc-
tivity. We present the result in the next chapter.

56

0.9

0.8

0.7

0.6

*0.5

0.4

0.3

0.2

0.1

Figure 10-8: Comparison of temperature 1D solution to 2D solution on y=0 line

Figure 10-9: Comparison of velocity 1D solution to 2D solution on y=0 line

57

Chapter 11

Physical Result in Two
Dimensions

As we did in one dimension, we now include a more accurate description of . Refer
to Chapter 7 for more details. As before, we take the case of Ni-like Mo, where Z=14.
With the new form of k, the only modification will be in Eq. 10.6. Now, A will

be a function of £ and y. Hence, we have

. or 2 ov 2 s %7
R, = n[sinf(va—y-+-§'r—)+ =TUcosf -—] ——[5 (—) + 27 26y
_2,40r04
3 0Oyody
2 or 2 0v 2 2 00
+e {n[cos@(vb;-i—-g.a—x-rgarv) ——E‘rvsmﬂ B
—r gag'r gaT
—3€ [5T2(—) +27'26$2+2(a—1)7'255]
2 . 531'3.4
3% a0z (11.1)

We use the results from the previous chapter for our initial guesses. Again, we
discuss the case for =2 and a=1 separately.

11.1 Spherical Case, a =2

We present the change of the residual value as we modify the functions in Ta-
ble 11.1. Refer to Equations 10.9-10.14 for notations. The resulting functions are
plotted in Figures 11-1 and 11-2.

11.2 Cylindrical Case, a =1

In Table 11.2, we write down the change of the residual value as more parameters
are added. We present the solution functions in Figures 11-3 and 11-4. These figures

58

Figure 11-1: 2D density and temperature and their contours for =2, using physical

! ! "rf/r, 2

25

k. We use 7,=2,=20um, N,=10%!/cm3, T,=100eV.

25

1.5

0.5¢

w

T T ¥

NN
NN
NN
NN
AFPPLL IS

/

Vol

Pad

Fed

P

e AT
A I IAIAIAIIAIAAIAAAA T AT T 7

1

— > 27T T T 7T T T T T T T T T

S>> DD DD D> D> > D> > —> >

rrrr ot

rrrr oty
///'///'//'~
VA A VAV AV
LSS

1

0 1 2 3
X

Figure 11-2: Velocity field for a=2, using physical

59

N, | N: | Ny | Ny R
6 | 6 | 8 | 6 |0.118087
6 | 7| 8| 6 |0.116611
6 | 719 | 6 |0.115241
6 | 719 | 7 |0113752
6 [719 | 8 |0.113305
6 | 7 {919 |0.033118
6 [7 | 10| 9 |0.029254
6 | 7 | 11| 9 |0.027106
6 { 7 |11 9 {0.027038
6 | 7 |12 9 |0.026651
717 |12 9 |0.026266

Table 11.1: Change in residual as more parameters are added for =2, using physical
K

1\

0.5 0.3

. k\\o. \

1 1.§/ro 2 25 3

N

1 1.&'},._o 2

-

[,

(=]

Figure 11-3: 2D density and temperature and their contours for a=1, using physical
k. We use 1,=2,=20um, N,=10%!/cm?®, T,=100eV.

60

25F

1.5

0.5

. e > D P > > P —> —> —F —]

F_. —_ S>> D> D> —>—>—>—>—> —> —> —]
L 1 1 1 1 A '} 1 1

- A TAAAAFAATA”
> AT AAAAAAA AT T T
> A AT AT T T
—9/7/7////7/7/7/7/7/7/7/7/7/;
— T T T T T T T T T T T T A
> > T T T T T T T T T T T T T A
> T T T T P T P> > >

SSRGS T L P

0

25 3
X

0.5 1 15 2 35 4 45 5

Figure 11-4: Velocity field for a=1, using physical &

Np | N; | Ny | N R
7] 6 | 10| 8 [0.083442
716 |10 9 |0.075441
717110 9 |0.070002
717 (11] 9 [0.025024
717|121 9 |0.022024

Table 11.2: Change in residual as more parameters are added for a=1, using physical

K

61

are in terms of the physical coordinates, r and z.
Similar to the case in one dimension, modifying the value of x does not significantly
change the result obtained previously with A=1; as we can see from comparing the

figures.

62

Chapter 12

Conclusion

12.1 Summary of Results

In this thesis, we computed the density, temperature, and velocity for the placma ab-
lated from the target in a soft X-ray laser system. We consider the planar, cylindrical,
and spherical cases.

We first calculated the functions in one dimension, using both numerical and
analytical methods. Both simulations produce results that agree with each other.
From the numerical methods, we obtain values at each gridpoint. Meanwhile, the
analytical minimum-residue method produces solution in a closed form.

The comparison between the two sets of results can be seen in Figures 5-5 and 5-6.
The final results in one dimension are presented in Figures 7-4 and 7-6.

The success of the minimum-residue method in one dimension is especially im-
portant. It gave us enough confidence that the same method might work in two
dimensions. This is crucial because it is challenging to solve the 2D problem by any
numerical procedures.

In two dimensions, we obtained results as depicted in Figures 11-1 to 11-4. From
the plots, the results behave as expected. The density function decays faster than the
temperature function, similar to the 1D case. Also, the velocity magnitude increases
as the temperature decreases, as energy conservation dictates.

As expected, we also observe the solution for the spherical case approaches its
asymptotic value sooner than the cylindrical one.

We also need to check whether our results agree with the requirement due to heat
flux limiter. The amount of heat that can flow in the system is constrained to be [5]

Maz{Q.} = NevukT,, (12.1)
where %mvuf = kT,. We need to compare whether the heat flow

Qe = —kVT, (12.2)

63

20 T 1 T T T

151

10

0 0.5 1 1.5 2 25 3

Figure 12-1: comparison of @, and Maz{Q.}. The dotted lines represent . while
the solid ones correspond to Muaz{Q.}.

indeed is less than the maximum allowed. In fact, the condition is
Q. < 0.1Maz{Q.}, (12.3)
where 0.1 is a phenomenological factor. If our solution does not satisfy Eq. 12.3, then
we have to modify the thermal conductivity to be
K
!

K = 12.4
1+ 5irrezom 124

From our solution, we compare the quantities in Eq. 12.3 as presented in Fig. 12-1.
The dotted lines represent, Q. while the solid ones correspond to Maz{Q.}.

12.2 Discussion

The motivation of this thesis project is to understand better the lack of gain observed
in the experiment using the MIT table top EUV X-ray laser system. We do so by
studying the behavior of plasma ablated from the laser target.

As we have discussed, there are two possible reasons for this lack of gain: a steep
density gradient and electron temperature much lower than the estimated 150eV.

From our simulation, the density varies rapidly indeed. Taking N, = 10?! /cm?®, the
density gradient is computed to be between 2.0 - 5 4 x 102*/cm?®. This is higher than
the estimated value of 6.1 x 10?>/cm? in Ref. [1]. The steeper the density gradient
is, the more significant the beam refraction is. This refraction reduces the effective

64

21 T T T T T T T T Li——>

i8fF

-
~
T

&]
£ [
s " ' — 1D <olution
z 9 - ; 1
S) 2D solution
[=}
= !
[
151 b
!
i
14 1 I} 1 2 1 1 1 L L
0 10 20 30 40 50 60 70 80 90 100

T (eV)

Figure 12-2: Comparison of temperature to density for the 1D and 2D solutions. The
shorter curves represent the cylindrical cases, while the long ones are for the spherical
cases. We take the solution on y=0 for the 2D case.

length of the plasma column, which in turn decreases the gain-length product.

The large density gradient also decreases the width of the gain region. If this
region is too narrow compared to the region observed in the measurement, small gain
may be undetected.

In the experiment, we have assumed that the electron temperature does not change
much as the density decreases; due to low thermal conductivity. Particularly for
density as small as 10'° /cm®. We assumed that the temperature is close to the initial
100eV. However, as the Fig. 12-2 shows, the temperature is considerably lower. Hence,
the lack of gain observed.

From the simulation results, we confirm both the steep density gradient and over-
estimation of electron temperature in the plasma. Thus, these factors contribute to
the lack of gain observed in the experiment.

65

Appendix A

Gaussian Elimination for a
Banded Matrix

/* gaussBand.c
solve az=b
where a is banded matriz with "width’ non—zero rows/column below/above diagonal
and b is vector of 'num’ size
gauss—eliminate the matriz and then back substitute */

void gaussBand(double **a, double b[], double x[], int width, int num)

int i, j, k, mid;
double tmp; 10
int n,m;

mid=width+1;
for(i=1; i<=num-—1; ++i){
=1
while(j<mid && (i+j)<=num){
tmp=ali]{mid+j)/ali}[mid];
bli-+]—=tmp*b{i);

k=1;

while(k<mid && (i+k)<=num){ 20
ali+k][mid+j—k]—=tmp*afi+k][mid—k];
++k;

}
afi][mid+;j]=0.0;
++j;
}
}

/* back substitution */
x[num]=b[num]/a[num][mid]; 30
for(i=num-1; i>=1; ——i){
tmp=0.0;
=1
while(j<mid && i+j<=num){
tmp+=ali+j}[mid—j}*x[i+j);

66

++5;

}
x[i)=(b[i]—tmp)/ali][mid];

40

67

Appendix B
Codes for 1D Newton’s Method

/* hydrol.c
simultaneously solve both velocity and temperature in 1D by Newton’s method
solve for cylindrical, slab, and spherical configurations

needs: gaussBand.c

Y/

#include <stdio.h>
#include <math.h>
#include "gaussBand.c" 10

#define num 600
#define tolerance 1.0e—7
#define h .01

#define width 4
F#define du .000001
F#define dt .000001

#define pi 3.14159

#tdefine t 0 100.0 /* eV */ 20
#tdefine n_o 1.0e21 /* cm—3 ¥/

#tdefine r o 2.0e-3 /*cm */

#define z 6.0

#define ap 12.0

#define k 1.3807e—16 /* erg per deg K */
##define mp 1.6726e—24 /* g */

#+define me 9.1094e—-28 /* g */

#tdefine eCharge 4.8032e—10 /* statcoul */

#define evToK 8.6174e—5

/* FUNCTIONS */

int check(double*);

double e(double,double,double,double,double,double,double);

double d(double,double,double,double);

double partialE(int,double,double,double,double,double,double,double);
double partialD(int, double, double, double, double);

68

void readFile(double* double*);
double a(double,double,double);

static duuble alpha=1.0;
static double v o, a_o;

int main(void)

int i,j, even, odd, count, numRow, mid;

double tau[num],u[num), minF{2*num], deltal2*num};
double **A;

double xi, tmp,tmp2;

FILE *look;

A=(double**)malloc(2*num*sizeof(double*));
for(i=0; i<2*num; ++i)
(A+i)=(double)malloc(2*(width+1)*sizeof(double));

/* USEFUL CONSTANTS */

v_o = sqrt(z*k*t_o/(ap*mp*evToK));

tmp=2.0/pi;

tmp2=k*t_o/evToK;

a_o = 20.0*tmp*sqrt(tmp)*0.095* (z+.24)*tmp2*tmp2*
sqrt(tmp2)/(z*eCharge*eCharge*eCharge*eCharge*sqrt(me)*(1+.24*z));

a_o/=(n_o*r_o*v_o);

/* INITIALIZE MATRIX OF GRAD F TO ZERO */
for(i=0; i<2*num; ++i)
for(j=0; j<2*(width+1); ++j)
Ali}(j]=0.0;

| * DEFINE INITIAL GUESSES OR READ FROM FILE FOR PHYSICAL VALUES */
/ *readFile(u,tau); */

for(i=0; i<num; ++i){
xi=i*h;
taufij=pow((1+xi)/(1+xi+.07*tmp+.03*tmp2),14.0);
ufij=pow((1+47*xi + 81*tmp + 51*tmp2)/(1 + 45*xi + 71*tmp + 31*tmp2),9.0);

for(i=0; i<2*num; ++i)
deltali}=1.0;

numRow=2*num-3;
mid=width+1;

/* BEGIN ITERATION */

count=0;

while(check(delta)){
+-+count;

for(i=1; i<num; ++i){

if(i==1) tmp=exp(h);
else tmp=taufi—2];

69

40

50

60

70

80

90

even=2%j;
odd=2%i—1;
xi=(i—1)*h;

Alodd|[mid]=partialD(2, u[i--1], ui], tau[i—1], taufi]);
Afodd+1)[mid—1]=partialD(4, ufi—1}, ufi], taufi—1}, taufi));
if(i>1){
Alodd—1][mid+1}=partialD(3, u[i—1], ufi}, tau[i—1], tauli});
Alodd—2]{mid+2]=partialD(1, u[i—1}, ui], tau[i—1], tauli]);

r}ninF[odd]-—‘—d(u[i—l], ufi],taufi—1], tau(i]);

if{fodd<numRow){
Aleven][mid]=partialE(5,ufi—1], ufi],tmp,tau(i—1},taui},
taufi+1],xi);
Afeven+2][mid—2]=partial E(6,ufi—1], u[i],tmp,taufi—1],tauli],
taufi+1},xi);
Aleven—1][mid+1]=partialE(2,u[i—1], ufi],tmp,taufi—1],tauli],
taufi+1],xi);
if(i>1){
Aleven—2][mid+2])=partialE(4,u[i—1], ufi],tmp,taufi—1],taufi],
taufi+1],xi);
Aleven—3][mid+3]=partial E(1,ufi—1], u[i],tmp,tau[i—1],tau(i],
taufi+1],xi);
if(i>2)
Aleven—4][mid+4]=partialE(3,u(i—1], u[i],tmp,taufi—1]},tauli],
tau(i+1],xi);

\ minF[even]=—e(ufi—1], u[i],tmp,taufi—1]},tauli),taufi+1],xi);
}

gauvssBand(A,minF,delta,width,numRow);

for(i=1; i<num; ++i){
ufi]+=delta[2*i—1];
if(i<num-1) tau(i]+=delta[2*i];

/* PRINT OUT RESULTS */
look=fopen("cylTry", "w+");
for(i=0; i<num: ++i){
if(i==1) tmp=exp(h);
else tmp=tau{i—2J;
if(i==0) tmp2=-100;
else tmp2=d(ufi—1], ui], taufi—1], tauli]);
fprintf(look, "AE\tAE\tAL\t/E\t)f\n",
i*h, ui], tmp2, tauli},
e(u[i—1], ufi], tmp, tau[i—1}, tau(i}, taufi+1],(i—1)*h));
}

fclose(look);

100

110

130

140

printf("iteration=Y%d\n", count);

}

/* CHECK CONVERGENCE */
int check(double delta[})

{

int i;

150

i=1;
while(i<=2*num-3){
if(fabs(delta[i]) >tolerance) return 1;
++i;
} 160
return 0;

}

double d(double ul, double u2, double t1, double t2)
{
return ((u2*u2—ul*ul)/h — alpha*(t2+t1) + 2*(t2—tl1)/h —
(t2/u2 + t1/ul)*(u2—ul)/h);

}

double e(double ul, double u2, double t0, double t1, double t2, 170
double t3,double xi)

{

double tmp, tmp2, tmp3, tmp4, tmps,tmp6,tmp7;

tmp=t1*sqrt(fabs(t1));

tmp2=t2*sqrt(fabs(t2));

tmp3=t2—tl;

tmp4=exp((alpha—1)*xi);

tmpS=tmp*t1+tmp2*t2;

tmp6=tmp4*(1.0 + exp(—(alpha—1)*h)); 130
tmp7=a(ul,tl,xi);

return (tmp3/h

+ (t2/u2+tl/ul)*(u2—ul)/(3*h)
+ alpha*(t2+t1)/3
— tmp7*tmp6*(alpha—1)*tmp5*tmp3/(6*h)
— 5*tmp7*tmp6* (tmp+tmp2)*tmp3*tmp3/(12*¥h*h)
~ tmp7*tmp6* tmp5*(t3—t2—t1+t0)/(12*¥h*h)
— (a(ul,tl,xi+h)—tmp7)*tmp6*tmp5*tmp3/(6*h*h));

} ' 190

double partialD(int j, double ul, double u2, double t1, double t2)

switch(j){

case 1: return (d(ul+du, u2, t1, t2)—d(ul—du, u2, t1, t2))/(2*du);
case 2: return (d(ul, u2+du, t1, t2)—d(ul, u2—du, tl1, t2))/(2*du);
case 3: return (d(ul, u2, t1+dt, t2)—d(ul, u2, t1—dt, t2))/(2*dt);
default: return (d(ul, u2, t1, t2+dt)—d(ul, u2, t1, t2—dt))/(2*dt);
}

71

double partialE(int i, double ul, double u2, double t0, double t1,
double t2, double t3,double xi)

switch(i){
case 1: return(e(ul+du,u2,t0,t1,t2,t3,xi)—e(ul —du,u2,t0,t1,t2,t3,xi)) /(2*du);
case 2: return(e(ul,u2+du,t0,t1,t2,t3,xi)—e(ul,u2~du,t0,t1,t2,t3,xi)) /(2*du);
case 3: return(e(ul,u2,t0+dt,t1,t2,t3 xi)—e(ul,u2,t0—-dt,t1,t2,t3,xi)) /(2*dt);
case 4: return(e(ul,u2,t0,t1+dt,t2,t3,xi)—e(ul,u2,t0,t1—-dt,t2,t3,xi)) /(2*dt);
case 5: return(e(ul,u2,td,t1,t2+dt,t3,xi)—e(ul,u2,t0,t1,t2—dt,t3,xi)) /(2*dt);
default:return(e(ul,u2,t0,t1,t2,t3+dt,xi)—e(ul,u2,t0,t1,t2,t3—dt,xi))/(2*dt);
}
}

void readFile(double uf],double taul])

FILE *look;
int i;
double tmpl,tmp2,tmp3;

look=fopen("try.dat", "r");
for(i=0; i<num; ++i)

fscanf(look,"%1£%1£%1£%1£%1£" &tmpl,&ufi],&tmp2,&tau(i),&tmp3);
fclose(look);

double a(double u, double t, double xi)
double n;

[* return 1.0 */

n=exp(—alpha*xi)/u;

return a_0/(24.0 — log(sqrt(n*n_o)/(t*t_o))/log(exp(1.0)));
}

o

72

Appendix C

Code for Fitting Numerical
Results to Analytical Functions

/ * minNum.c
compute chi given the results from hydrol.c */

#include<stdio.h>
#include<math.h>
#include "nr.h"
F#include "nrutil.h"

#define NRANSI

#define FTOL 1.0e—6 10
#define da .00001

#define tol 1.0e—6

#define dxi 0.01

F#define num 599

#define h 1.0e—4

#define a 1.0

#define NDIMTau 2
#define NDIM 5
20
static float resTau(float*);
static void diffResTau(float* float*);
static float res(float*);
static void diffRes(float* float*);

static float uTrial(float,float*);
static float tauTrial(float,float*);
static float e(float,float*);
static float d(float,float*);
30
static float n=1.0;
static float *fix,*fixTau;
/* n=0 for 1D, n=1 for cylindrical, n=2 for spherical */

int main()

73

int iiter,iterTau,count,j;

float *p,*pTau;

float new,newTau,old,oldTau;

float min; 40

fleat *loc,*locTau;
float *vary,*varyTau;
float *lo,*loTau;
float *hi,*hiTau;
float (*ptr)(float*);

p=vector(1,NDIM);

pTau=vector(1,NDIMTau);

fix=vector(1,NDIM); 50
fixTau=vector(1,NDIMTau);

for(i=1; i<=NDIMTau; ++i)
pTau[i]=fixTau[i]=1.0;

for(i=1; i<=NDIM; ++i)
p[i|=fix[i]=1.0;

/* PRINT OUT INITIAL VALUES */
printf("ndim=Y%d ndimTau=%d n=%f\n", NDIM, NDIMTau, n);
printf("initial guesses\np=["); 60
for(i=1; i<=NDIM; ++i)
printf("%f ", p[i]);
printf("J\npTau=[");
for(i=1; i<=NDIMTau; ++1i)
printf("%f ", pTauli]);
printf("]\nres=Yf resTau=/,f\n" res(p),resTau(pTau));

/* START ITERATION */
old=0ldTau=10.0;
new=newTau=0.0; 70
count=0;
printf("\n");
while(fabs(new—old)>tol || fabs(newTau—oldTau)>tol){
old=new;
oldTau=newTau;

for(i=1; i<=NDIM; +-i)
fix[i)=pli);
frprmn(pTau,NDIMTau,FTOL,&iterTau,&newTau,resTau,diffResTau);
printf("%d ",count); 80

for(i=1; i<=NDIMTau; ++i)
fixTau[i]=pTauli);

frprmn(p,NDIM,FTOL &iter,&new,res,diffRes);

++count;

}

/* PRINT OUT RESULTS */
printf("\nn=Y%£\n", n);

74

printf("count=%d newTau=%f new=Y%f\n",count,newTau,new);
printf(" pTau=[");
for(i=1; i<=NDIMTau; ++i)
printf(" %£", pTau[i]);
printf("1;\n p=[");
for(:=1; i<=NDIM; ++i)
printf(" %f", pfi]);
printf("1;\n");

}
#undef NRANSI

/* CALCULATE R_TAU */
float resTau(float pTau])
{
int i;
float I,sum,t[num),tmpl;
FILE *tmp;

tmp=fopen("cylindrical.dat", "r"),
for(i=0; i<num; ++i)

fscanf(tmp,"%E%E%E%UE%E", &tmpl,&tmpl,&tmpl,&t[i], &tmpl);
fclose(tmp);

sum=0.0;

for(i=0; i<num; ++i){
t[i]=1.0;
I=(tauTrial(i*dxi,pTau)—t[i]);
sum+=I*[;

}

return sum,;

}

/* COMPUTE FIRST DERIVATIVE OF R_TAU */
void diffResTau(float pTau[],float dff])
{

int j;

float 1J,IJMod;

IJ=resTau(pTau);

for(j=1; j<=NDIMTau; ++j){
pTau(j]+=da;
IJMod=resTau(pTau);
pTau(j)—=da;
dffj]=(1JMod-1J)/da;

}

}

/* COMPUTE R_U ¥/
float res(float p[])
{
int i;
float I,sum,u{num],tmpl;
FILE *tmp;

(0]

90

100

110

120

130

140

tmp=fopen("cylindrical.dat", "r");
for(i=0; i<num; ++i)

fscanf(tmp,"%E%E%E%E%E", &tmpl,&uli},&tmpl,&tmpl,&tmpl,&tmpl);
fclose(tmp);

sum=0.0;

for(i=0; i<num; ++i){ 150
ufi]=1.0;
I=(uTrial(i*dxi,p)—uli]);
sum+=I*I;

}

return sum;

}

/* CALCULATE FIRST DERIVATIVE OF R_U */

void diffRes(float p[],float dff})
{ 160

int j;
float 1J,1JMod;

IJ=res(p);
for(j=1; j<=NDIM; ++j){
p[j]+=da;
IJMod=res(p);
plj]—=da;
dffj]l=(1JMod—1J)/da;
} 170

}

/* TRIAL FUNCTION FOR VELOCITY */
float uTrial(float x, float p[])

{
/* z=pow(x,fabs(p[2]));
return 1.0 + p[3]*(1.0 — ezp(—fabs(p[1])*z));*/

float numer,denom;
180

numer=p[2]*x + p[4]*x*x;
denom=1.0 + p[3]*x + p[5]*x*x;

return 1.0 + pow(fabs(numer/denom),fabs(p[1]));

}

/* TRIAL FUNCTION FOR TEMPERATURE */
float tauTrial(float x, float pTau[])

/* z=pow(z,fabs(pTau[2])); 150
return ezp(—fabs(pTau[1])*c);*/

return (1.0+pTau(2])/(1.0 + pTau(2]*exp(fabs(pTau(1])*x));
}

76

7

Appendix D

Code to Map the Parameter Space

/* map.c
— recursively compute the value of f(vary) in the 2D region
of ’lo< =vary< =hi’ for each element in the array
— ’vary’ increases each time by the amount of 'del’
— return the minimum value of f(vary)

*/

float map(int dim, int which, float vect[], float (*f)(float*),
float min, float tmp[], float vary([], float lo[}, float hil])
{ 10
int j;
float residue,del,answer;

vary[which]=lo[which];
del=(hi{which]—lo[which])/pt; /* pt is #defined */

if(which==dim){
while(lo[which]<=vary[which] && vary[which]<=hi[which]){
residue=f(vary);
if(residue<min){ 20
min=residue;
for(j=1; j<=dim; ++j)
tmplj]=vary(j];

vary[which]+=del;
}
return min;
}
else if(which==1){
while(lo{which]<=vary[which] && vary[which]<=hi[which]){ 30
min=map(dim,which+1,vect,f,min,tmp,vary,lo,hi);
vary[which]+=del;

}

else{
while(lo[which]<=vary[which] && vary[which]<=hi[which]){
min=map(dim,which+1,vect,f,min,tmp,vary,lo,hi);

}

vary[which]+=del;
}
}

return min;

40

79

Appendix E

Minimizing Residue by Newton’s
Method

/* min.c */

#include<stdio.h>
#include<math.h>
#include "nr.h"
#include "nrutil.h"

#define NRANSI

#tdefine FTOL 1.0e—6

#define da .001 10
#define tol 1.0e—6

F#define dxi 0.03

#define num 100

#define h .01

#define NDIMTau 2
#define NDIM 5

#define pi 3.14159

#define t 0 100.0 /*eV */ 20
#define n o 1.0e21 /* em—-3 */

#tdefine r 0 2.0e-3 /* cm */

#define z 6.0

#define ap 12.0

#define k 1.3807e—16 /* erg per deg K */
#£define mp 1.6726e—24 /* g */

##define me 9.1094e—28 /* g */

#define eCharge 4.8032e—10 /* statcoul */

30

#define evIoK 8.6174e—5
static float resTau(float*);

static void diffResTau(int,float* float*);
static float res(float*);

80

static void diffRes(int,float* float*);

static float uTrial(float,float*);

static float tauTrial(float,float*);

static float e(float,float*); 40
static float d(float,float*);

static float a(float,float,float);

static void show(float* float*);
static void guess(float* float*);

static float *fix,*fixTau;

static float n; 50
/* n=0 for 1D, n=0 for cylindrical, n=2 for spherical, etc */

static float v_o, a_o;

int main()
{
int i,count,j,check;
float *p,*pTau, *df;
float new,newTau,old,oldTau;
float min,tmp,tmp2,xi; 60

p=vector(1,NDIM);
pTau=vector(1,NDIMTau);
fix=vector(1,NDIM);
fixTau=vector(1,NDIMTau);

/* USEFUL CONSTANTS */

v_o = sqrt(z*k*t_o/(ap*mp*evToK));

tmp=2.0/pi; 70
tmp2=k*t_o/evToK;

a_o = 20.0*tmp*sqrt(tmp)*0.095*(z+.24)*tmp2*tmp2*sqrt(tmp2)/(z*eCharge*eCharge*eCharge*eCharge*sqrt(me
a_o/=(n_o*r_o*v_o);

for(i=1; i<=NDIMTau; +-+i)
pTau[i]=fixTau[i]=1.0;
for(i=1; i<=NDIM; ++i)
p(i]=fix[i]=1.0;
n=2.0; 86

guess(pTau,p);

for(i=1; i<=NDIMTau; ++i)
fixTau[i]=pTauli};

for(i=1; i<=NDIM; ++i)
fixfi]=pli];

printf("initial guesses");

81

show(pTau,p);

old=0ldTau=10.0;

new=newTau=0.0;

count=0;

while(fabs(new—old)>tol || fabs(newTau—oldTau)>tol){
old=new;
oldTau=newTau;

newt(pTau,NDIMTau,&check,diffResTau);

for(i=1; i<=NDIMTau; +-+i)
fixTau[i}=pTauli);

newTau=resTau(pTau);

newt (p,NDIM,&check,diffRes);

for(i=1; i<=NDIM; ++i)
fix[i]=pli;

new=res(p);

++count;

printf("\ncount=%d newTau=%f new=%f" count,newTau,new);
show(pTau,p);

}

printf("\nfinal result\n");
show(pTau,p);

}
#undef NRANSI

void guess(float pTaul], float p[])
{

int i;

FILE *init_p;

init_p=fopen("init_p.dat", "r");
for(i=1; i<=NDIMTau; ++i)
fscanf(init_p, "%£", &pTauli]);
for(i=1; i<=NDIM; ++i)
fscanf(init_p, "%£", &pli]);
fclose(init_p);

}

void show(float pTau[], float pf])

{

int i;
float *df;

printf("\npTau=[");

for(i=1; i<=NDIMTau; ++i)
printf("%f ", pTauli]);

-

82

90

100

110

120

130

140

printf("1\np={");

for(i=1; i<=NDIM; ++i)
printf("%f ", p(i]);

printf("J\n");

df=vector(1,NDIMTau);

diffResTau(NDIMTau,pTau,df); 150

printf("dfTau=("); o

for(i=1; i<=NDIMTau; ++i) e
printf("%f ", dffi]); :

printf("]1\n");

free_vector(df,1,NDIMTau);

df=vector(1,NDIM); !
diffRes(NDIM,p,df); 3
printf("df=["); ;
for(i=1; i<=NDIM; ++i) 160

printf("%f *, dffi]);
printf("1\n");
free_vector(df,1,NDIM);

printf("restau=%f res=%f\n", resTau(pTau), res(p));

float resTau(float pTaul]) 170
int i;
float I,sum;

sum=0.0;

for(i=1; i<num; ++i){
I = e((i+1)*dxi,pTau);
sum+=I*[;

}

return dxi*sum; 180

}

float res(float p(])
{

int i;
float I,sum;

sum=0.0;

for(i=1; i<num; ++i){
I=d((i+1)*dxi,p); 190
sum+=I*I;

}

return dxi*sum;

}

void diffResTau(int dim,float pTauf],float dff]) i
{ x

83

int j;
float 1J,I1JMod;
200

IJ=resTau(pTau);

for(j=1; j<=dim; ++j){
pTau[j]+=da;
IJMod=resTau(pTau);
pTau[j]—=da;
dffj]=(1IMod-1J) /da;
 SiH(dffyf>=2.0) dffij*=.2;*/

}

}

void diffRes(int dim, float p[],float dff])
{

int j;

float 1J,I1JMod;

IJ=res(p);

for(j=1; j<=dim; ++j){
pli]+=da;
IIMod=res(p);
pli]—=da;
dtfj]=(IJMod-1J)/da;

} [*if(dffi]>=2.0) dffj]*=.2;%/

}

float e(float x, float pTauf])

{
float t0,t1,t2,t3,ul,u2;
float tmp,tmp2,tmp3,tmp4,tmp5,tmp6,tmp7;

[
>
(=]

t0=tauTrial(x—2*h,pTau);
t1=tauTrial(x—h,pTau);
t2=tauTrial(x,pTau);
t3=tauTrial(x-+h,pTau);

ul=uTrial(x—h,fix);
u2=uTrial(x,ﬁX);

tmp=t1*sqrt(fabs(t1));

tmp2=t2*sqrt(fabs(t2)); 240
tmp3=t2-tl;

tmpd=exp((n—1)*(x—.5*h));

tmpS=tmp*t1l+tmp2¥t2;

tmp6=tmpd*(1.0 + exp(—(n—1)*h));

tmp7=a(ul,tl,x);

return (tmp3/h
+ (t2/u2+t1/ul)*(u2—ut)/(3.0*h)
+ n*(t2+t1)/3
— tmp7*tmp6*(n—1)*tmp5*tmp3/(6.0*h) 250
— 5.0%tmp7*tmp6*(tmp+tmp2)*tmp3*tmp3/(12.0*h*h)

84

— tmp7*tmp6* tmp5*(t3—t2—t1+t0)/(12.0*h*h)
— (a(ul,tl,x+h)—tmp7)*tmp6*tmp5*tmp3/(6*h*h));

}

float d(float x, float p[])
{

float ul,u2,t1,t2;

ul=uTrial(x—h,p); 260
u2=uTrial(x,p);

tl=tauTrial(x—h,fixTau);

t2=tauTrial(x,fixTau);

return ((u2*u2—ul*ul)/h — n*(t24+t1) + 2*(t2—-t1)/h — (t2/u2 -+ t1/ul)*(u2-ul)/h);
}

float a(float u, float t, float xi)

{

float den; 270

/* den=exp(—n*ri)/u;
return a_of (24.0 — log(sqrt(den*n_o)/(t*t_0))/log(ezp(1.0))); */

return 1.0;

}

float uTrial(float x, float p[])
{

float numer,denom; 280
numer=p(2]*v + p[4]*x*x;
denom=1.0 + p[3]*x + p[5]*x*x;

return 1.0 + pow(fabs(numer/denom),fabs(p[1]));

}

float tauTrial(float x, float pTaul])

{

float tmp;
tmp=exp(fabs(pTau[1])*x); 290

return (1.0+pTau[2])/(1.0 + pTau[2]*tmp);
}

85

Appendix F

Minimum Residue in Two
Dimensions

/* theta.c */

/* #include’S */
#include <stdio.h>
#include <math.h>
#include "nr.h"
#include "nrutil.h"

[* #define’S */

#define NRANSI 10
#tdefine pi 3.14159

F#define ftol 1.0e—3

F#tdefine tol 0.2

#define dx .3

#define dy .3

#define h .1

F#define da 1.0e—3

#£define a 1.0

F#define numx 15 20
#define numy 15

##define seenumx 20
#define seenumy 15

#define dim_n 4
#define dim_tau 5
#define dim_u 4

#define dim_theta 6
30

/* GLOBALS */
static float v_o, a_o;

static float alpha=2.0; .
static float *p_n,*p_u,*p_tau,*p_theta;

86

/¥ alpha=0 —> slab, alpha=1 —> cylindrical */

/* PROTOTYPES */

static float sum_res2_n(float*);

static void diff_sum_res2 n(float* float*);
static float n_trial(float,float,float*);

static float sum_res2_u(float*);
static void diff sum_res2_u(float* float*);
static float ul(float,float,float*);

static float sun_res2_theta(float*);
static void diff sum_res2_theta(float* float*);
static float theta_trial(float,float,float*);

static float sum_res2_tau(float*);
static void diff_sum_res2_tau(float* float*);
static float tau_trial(float,float,float*);

static float res(float,float,int);
static void sce(float* float* float* float*);

static void printfile(float* FILE*);
static void guess(float* float* float* float*);

static void showParameters(float*, float*, float* float* float* float* float* float*);

static float brute(float* float(float*),int);
static int check(float* float*,int);
static float minimize(float* float(),int);

/* MAIN */
int main()

{

int count,iter_tau,iter_n,iter_u,iter_theta;

float new_n,new_u,new_tau,new_theta,old_n,old_u,old_tau,old_theta;

float *min_p,min,tmp;

float *p_old_n,*p_old_tau,*p_old_u,*p_old_theta;

int i,j,k;
min_p=vector(1,dim_tau);

p_n=vector(1l,dim_n);
p_u=vector(1,dim_u);
p_tau=vector(1,dim_tau);
p_theta=vector(1,dim_theta);

p_old_n=vector(1l,dim_n);
p_old_tau=vector(1,dim_tau);
p_old_u=vector(1,dim_u);

87

40

50

60

70

80

p_old_theta=vector(1,dim_theta); 90

/* USEFUL CONSTANTS ¥/

v_o = sqrt(z*k*t_o/(ap*mp*evToK));

tmp=2.0/pi;

tmp2=k*t_o/evToK;

a_o = 20.0*tmp*sqrt(tmp)*0.095*(z+.24) *tmp2*tmp2*sqrt(tmp2) /(z*eCharge*eCharge*eCharge*eCharge*sqrt (ine
a_o/=(n_o*r_o*v_o);

100
/ * read initial guesses from a file */
guess(p_n,p_tau p_u,p_theta);

/ * print out initial guesses and related residues to check */
printf("from initial guesses alpha=Jf\n", alpha);
showParameters(p_n,p_tau,p_u,p_theta,&new_n,&new_tau,&new_u,&new_theta);

/ * plot from initial guesses */
see(p_n,p_tau,p_u,p_theta);
110

for(i=1; i<=dim_n; ++i)
p_old_n[i}=0.0;

for(i=1; i<=dim_tau; ++i)
p_old_tau[i]=0.0;

for(i=1; i<=dim_u; ++i)
p_old_u[i]=0.0;

for(i=1; i<=dim_theta; ++i)
p_old_theta[i]=0.0;

count=1; 120
old_u=old_tau=old_n=old_theta=0.0;

while(check(p_n,p_old_n,dim_n) || check(p_tau,p_old_tau,dim_tau) || check(p_u,p_old_u,dim_u) ||
check(p_theta,p_old_theta,dim_theta)){

for(i=1; i<=dim_n; ++1i)
p_old_n[i]=p_nl[i];
for(i=1; i<=dim_tau; ++i)
p_old_tau(i]=p_tauli};
for(i=1; i<=dim_u; ++i) 130
p_old_u[ij=p_uli};
for(i=1; i<=dim_theta; ++i)
p_old_theta[i]=p_thetali];

frprmn(p_tau,dim_tau,ftol, &iter_tau,&new_tau,sum _res2 tau,

diff_sum_res2_tau);
printf("-tau-", new_tau);
frprmn(p_theta,dim_theta,ftol,&iter_theta,&new_theta,sum_res2_theta,

diff sum_res2_theta);
printf("-theta-"); 140
frprmn(p_n,dim_n,ftol &iter_n,&new_n,sum_res2_n,

diff sum_res2_n);
printf("-n-", new_n);

88

frprmn(p_u,dim_u,ftol &iter_u,&new_u,sum_res2_u,
diff_sum_res2_u);
printf("-u-", new_u);

printf("\n");

showParameters(p_n,p_tawu,p_u,p_theta,&new_n,&new_tau,&new_u,&new_theta);
see{p_n,p_tau,p_u,p_theta); 150
printf("%d done for matlab\n\n", count, old_u, new_u);

++count;

}
}
#undef NRANSI

/* FUNCTION DEFINITIONS */ 1£0

int check(float *p, float *old, int dim)

{
int i;
float tmp;

i=1;
while(i<=dim){
if(fabs(old[i]) <1.0e—6) old[i]=0.0;
if(fabs(p[i]) <1.0e—6) p[i]=0.0; 170
if(old[i}==0.0 && p[i]==0.0) tmp=0.0;
else tmp=fabs(p[i]—old([i}) /fabs(old[i]);
if(tmp > 0.2) return 1;
++i;
}

return 0;

}

float brute(float p[], float func(float*), int dim) 180

int ijk;
float *tmp,min,chk;

tmp=vector(1,dim);

for(i=1; i<=dim; ++i)
tmp(ij=p(i];

for(i=1; i<=dim; ++i){ 190
min=func(tmp);
for(j=1; j<=10; ++j){
tmpli]+=0.5;
chk=func(tmp);
if(chk<min){
min=chk;
plij=tmpli];

89

}
}

} 200

return min;

/* T T T T T T I I T T I S S S S S S S S L T S S S I T S S S S T s e s s s s s s T s s e s e s s

float sum_res2 n(float p_n[])
{

int ij;

float sum,l,norm,x,y;

sum=0.0;
for(i=0; i<numx; ++i){
x=i*dx;
for(j=0; j<numy; ++j){
y=j*dy;
I=res(x,y,1);
sum+=I;
}
}

return sum;

}

float sum_res2_u(float p_u(])

{
int ij;
float sum,l,x,y;

v
o
o

sum=0.0;
for(i=0; i<numx; ++i){
x=i*dx;
for(j=0; j<numy; ++j){
y=j*dy;
I=res(x,y,3);
sum+=I[;

}

} 240

return sum;

float sum _res2_tau(float p_tau(])

{
int ij;
float sum,l,x,y;
sum=0.0;

for(i=0; i<numx; ++i){ 250
x=i*dx;

90

for(j=0; j<numy; ++j){
y=j*dy;
I=res(x,y,2);
sum+=I;
}
}

return sum;

}

float sum _res2_theta(float p_theta(])
{

int ij;

float sum,l,norm,x,y;

sum=0.0;
for(i=0; i<numx; ++i){
x=i*dx;
for(j=0; j<numy; ++j){
y=j*dy; 270
I=res(x,y,4);
sum+=I;
}
}

return sum;

/* e gimegeemeafiecen segieoe et et it e e g g e e e e e e e geaen s ey

void diff_sum_res2 n(float p_n[],float dff])
{

int i;

float 12,12mod;

I2=sum _res2 n(p_n);
for(i=1; i<=dim_n; ++i){
p_nfi]+=da;
I2mod=sum _res2_n(p_n); 290
p_n[i]—=da;
dffi]=(I2mod-12)/da;

}

void diff sum_res2_u(float p_uf],float dff])
{ .
int i;
float 12,I12mod;
300
12=sum _res2_u(p_u);
for(i=1; i<=dim_u; ++i){
p_uli]+=da;
I2mod=sum_res2_u(p_u);
_ufi]—=da;

91

dffi]=(12mod —12) /da;

}

void diff_sum_res2_tau(float p_tau[],float dff]) 310
{

int i;

float 12,I2mod;

I12=sum_res2_tau(p_tau);
for(i=1; i<=dim_tau; ++i){
p_taulij+=da;
I2mod=sum_res2_tau(p_tau);
p_taufi}-=da;
dffi]=(12mod-12)/da; 320
}
}

void diff sura_res2_theta(float p_thetaf],float dff])
{

int i;

float 12,12mod;

12=sum _res2_theta(p_theta);
for(i=1; i<=dim_theta; ++i){ 330
p_thetali]+=da;
I2mod=sum_res2_theta(p_treta);
p_theta[i]—=da;
dffi]=(I2mod—12)/da;

/* s T T T T S S T T T S S S S S S T T T T S S S T S S S S S S S S S S S o o S S S S s =A==
print data to files for plotting in matlab
concatenate these files and plot.m before use

void printfile(float f[], FILE *result)
{

int i,j,k;

float f2d[seenumx][seenumy];

k=0;
for(i=0; i<seenumx; ++i) 350
for(j=0; j<seenumy; ++j){
£2d(i}(j]=flk};
++k;

}

for(j=0; j<seenumy; ++j){
for(i=0; i<seenumx; ++i)
fprintf(result,"%f ", f2d[i](j]);
if(j<seenumy—1) fprintf(result, ";\n");

92

360
fprintf(result,”] ; \n\n");

void see(float p_n{], float p_tauf], foat p_u[], float p_thetaf])

int i,j.k;

float x,y;

float nfseenumx*seenumy], tau[scenumx*seenumy], u[seenumx*seenumy), theta[seenumx*seenusny];
FILE *result, *try;

float rnfseenumx*seenumy], rt[seenuinx*seenumy], rufseenumx*seenumy], rth{seenumx*seenumy);
k=0;

for(i=0; i<scenumx; ++i)
for(j=0; j<seenumy; ++j){

x=i*dx;
y=j*dy;
n[k}=n_trial(x,y,p_n);
taulk]=tau_trial(x,y,p_tau); 380
u(k]=ul(x,y,p_u);
theta[k]=theta_trial(x,y,p_theta);
rufk]=res(x,y,1);
rulkj=res(x.y,3);
refl=res(x,y,2);
rthk]=res(x,y,4);

++k;
390
result=fopen("try2.m", "w+");

fprintf(result, "n=[");
printfile(n,result);

fprintf(result, "tau=[");
printfile(tau,result);

fprintf(result, "u=["); 400
printfile(u,result);

fprintf(result, "theta=[");
orintfile(theta,result);
fprintf(result, "rn=[");
printfile(rn,result);

fprintf(result, "rt=["); 410
printfile(rt,result);

fprintf(result, "ru=[");

93

printfile(ru,resuit);

fprintf(result, "rth=[");
printfile(rth,result);

/ * matlab commands */ 420

fprintf(result, " [x,y)=meshgrid(0.0:%f:%f, 0:%f:%f);\n", dx, / *1.0+*/(seenumx—1.0)*dx, dy, (seenumy—1)*dy
fprintf(result, "figure(1)\n");

fprintf(result, "subplot(2,2,1), mesh(x,y,n), xlabel ’x’, ylabel ’y’, zlabel ’n’;\n");

fprintf(result, "axis([0.0 %f 0.0 %f 0.0 1.0])\n;", (seenumx—i)*dx, (seenumy—1)*dy);

fprintf(result, "subplot(2,2,2), contour(x,y,n), xlabel ’x’, ylabel ’y’;\n");

fprintf(result, "axis([0.0 %f 0.0 %£])\n;", (seenumx—1)*dx, (seenumy—1)*dy);

fprintf(result, "subplot(2,2,3), mesh(x,y,tau), xlabel ’x’, ylabel ’y’;\n");

fprintf(result, "set (gca,’FontName’,’Symbol’),zlabel ’t’;\n"); |
fprintf(result, "set (gca,’FontName’, ’Helvetica’);\n"); 130

fprintf(result, "axis([0.0 %f 0.0 %f 0.0 1.0])\n;", (seenumx-1)*dx, (seenumy—1)*dy);

fprintf(result, "subplot(2,2,4), contour(x,y,tau), xlabel ’x’, ylabel ’y’;\n");

fprintf(result, "axis([0.0 %f 0.0 %£f])\n;", (seenumx—1)*dx, (seenumy—1)*dy);

fprintf(result, "figure(2)\n quiver(x,y,u.*cos(theta), u.*sin(theta));\n");
fprintf(result, "xlabel ’x’, ylabel ’y’;\n");

fprintf(result, "axis ([4f %f %f %£])\n;", —dx, (seenumx—1)*dx, —dy, (seenumy—1)*dy);
fclose(result);

/* ====::::::::::::::::::::::::::::::‘:::::___:::::::::::::::::::::::

void guess(float p_n[], float p_tau(], float p_uf], float p_theta[])
{

int i;

FILE *init_p;

init_p=fopen("init_p.dat", "r"); 450
for(i=1; i<=dim_n; ++i)
fscanf(init_p, "%£", &p_n[i]);
for(i=1; i<=dim_tau; ++i)
fscanf(init_p, "%f", &p_tauli]);
for(i=1; i<=dim_u; ++i)
fscanf(init_p, "%£", &p_uli]);
for(i=1; i<=dim_theta; +-+i)
fscanf(init_p, "%f", &p_thc.a[i));
fclose(init_p);
} 160

/ * T T S T S T S I I S S S S S T S S S T T T T T T T T T T T T T T T S I I I T I e o s

void showParameters(float p_n[], float p_tau[], float p_uf], float p_theta[], float *old_n,
float *old_tau, float *old_u, float *old_theta)

94

int i;
float *df; 470
float rn,rtau,ru,rth;

for(l:l, |<=d!m_n. ++l)
printf(" %", p_nfi]);

printf("\n");

for(. -1; i<=dim_tau; ++i)
printf(" %", p_tau(i]);

printf("\n");

for(i=1; i<=dim_u; +-i)
printf(" %f", p_uli]); b

printf("\n");

for(i=1; i<=dim_theta; ++i)
printf(" %£", p_thetali]);

printf("\n"):

*old_n=rn=sum_res2_n(p_n);
*old_tau=rtau=sum_res2_tau(p_tau);
*old_u=ru=sum_res2_u(p_u);
*old_theta=rth=sum_res2_theta(p_theta);
490
printf("total=Yf sum_res2_n=Yf tau=jf u=Yf theta=Y,f\n" ,rn-+rtau+ru+rth,rn,rtau,ru,rth);

/ * T R S s s s s s T T S T S S T T T S T T T T T T T I I I I L I I T R R s e e e e e e e, e e e e e e s

float res{float x,float y, int which)
{ 500
float n,ndel_x,ndel_y,tau,taudel_x,taudel_y,u,udel_x.udel_y,theta,thetadel_x,thetadel_y;
float ex,c,s,nx,ny,t32,t52,taux,tauy,d2t_x,d2t_y,u2,ux,uy,thetax,thetay;
float from x,from_y,from_n,from_tau,from_u,from_theta;
float taudel 2x, taudel_2y;

n = n_trial(x,y,p_n);
ndel_x = n_trial(x+h,y,p_n);
ndel_y = n_trial(x,y+h,p_n);

tau = tau_trial(x,y,p_tau); 510
taudel_x = tau_trial(x+h,y,p_tau);

taudel_y = tau_trial(x,y+h,p_tau);

taudel_2x = tau_trial(x+2*h,y,p_tau);

taudel 2y = tau_trial(x,y+2*h,p_tau);

u = ul(x,y,p_u);
udel_x = ul(x+h,y,p_u);
udel y = ul(x,y+h,p_u);

theta=theta_trial(x,y,p_theta); 520
thetadel_x=theta_trial(x+h,y,p_theta);

95

thetadel_y=theta_trial(x,y+h,p_theta);

ex=exp(—x);
c=cos(theta);
s=sin(theta);

nx=(ndel_x—n)/h;
ny=(ndel_y—n)/h;
530
t32=tau*sqrt(fabs(tau));
t52=tau*t32;
taux=(taudel_x—tau)/h;
tauy=(taudel_y—tau)/h;
d2t_x=(taudel_2x—2.0*taudel x+tau)/(h*h);
d2t_y=(taudel_2y—2.0*taudel_y+tau)/(h*h);

u2=u*u;
ux={(udel_x—u)/h;
uy=(udel_y—u)/h; 540

thetax=(thetadel_x—theta)/h;
thetay=(thetadel_y—theta)/h;

switch(which){
case 1:
{
from_x = ex*(c*(ux + u*nx/n + alpha*u) — s*u*thetax);
from_y = s*(uy + u*ny/n) + c*u*thetay;
from_n = (from_x + from_y); 550
return (from_n*from_n);

case 2:

{
from_x =ex*(c*u*taux + (2.0/3.0)*tau*(alpha*u*c + c*ux — s*u*thetax)
— (2.0/3.0)*a*ex*((alpha—1.0)*t52*taux + 2.5*t32*taux*taux + t52*d2t x));
from_y = u*s*tauy + (2.0/3.0)*tau*(s*uy + u*c*thetay)
— (2.0/3)*a*(2.5*t32*tauy*tauy + t52*d2t y);

from_tau = (from_x + from_y); 560
return from_tau*from_tau;
}
case 3:

from_x = ex*c*(u*ux + taux + tau*nx/n);
from_y = s*(u*uy + tauy + tau*ny/n);
from_u = (from_x + from_y);

return from_u*from_u;

default: 570
{
from x = ex*(c*u2*thetax — s*(taux + tau*nx/n));
from_y = s*u2*thetay + c*(tauy + tau*ny/n);
from_theta = (from_x + from_y);
return from_theta*from_theta;

96

580

float n_trial(float x, float y, float p_n[})

{

float z;

z=x*x + fabs(p_n[2])*y*y + fabs(p_n{3])*x;
return exp(—fabs(p_n[1])*pow(z, fabs(p_n[4]))); 590

}

float tau_trial(float x, float y, float p_taul])

{

float z;

z=x*x + fabs(p_tau[2])*y*y + fabs(p_tau[3])*x;
return exp(—fabs(p_tau[l])*pow(z + fabs(p_tau[5])*z*z, fabs(p_tau[4]))); 600

}

float ul(float x, float y, float p_u[])

{

float z;

z=(x*x + fabs(p_u[2])*y*y + fabs(p_u[3])*x)*x;
return sqrt(fabs(tau_trial(0,y,p_tau))) + 610
1.0 — exp(—fabs(p_u[1])*pow(z,fabs(p_u[4])));
}

float theta_triai(float x, float y, float p_theta[])

{

float z1,22,b,thetal;

zl=fabs(y*x/(fabs(p_theta[3]) + x*x));

b=atan(fabs(p_theta[6])*z1);

z2 = x*x + fabs(p_theta[2])*y*y + fabs(p_theta[3])*x; 620
thetal=tanh(fabs(p_theta[l])*pow(z2, fabs(p_theta[4]}));

return b*thetal;

}

float u_x_trial(float x, float y, float p_u{], float p_theta[])

{

return ul(x,y,p_u)*cos(theta_trial(x,y,p_theta));

}

97

630
float u_y_trial(float x, float y, float p_u[], float p_theta(])

{

return ul(x,y,p_u)*sin(theta_trial(x,y,p_theta));

}

98

Biblicgraphy

[1] J.D. Goodberlet, An Ezperimenial Investigation of a Table-top, Laser-Driven
Ertreme Ultraviolet Laser, Ph.D Thesis, MIT, Cambridge, Mass (1996).

[2] O. Svelto, Principles of Laser, Plenum Press, New York (1989).

[3] P.L. Hagelstein, Development of the MIT Table-top Soft X-Ray Laser, SPIE. Vol.
1551 Ultrashort-Wavelength Lasers (1991), p. 254-274.

[4] R.C. Elton, X-Ray Lasers, Academic Press, Inc., New York (1990).

[5] C.E. Max, Physics of Laser Fusion, Volume I, Theory of the Coronal Plasma in
Laser Fusion Targets, National Technical Information Service, Springfield, VA
(1982).

(6] M.H. Muendel, Short Wavelength Laser Gain Studies in Plasma Produced by A
Small ND:Glass Slab Laser, MIT Physics Ph.D. Thesis (1994).

[7] L. Spitzer, Physics of Fully Ionized Gases, Interscience Publishers, New York
(1962).

(8] P.L. Hagelstein, 6.673 Class Notes Chapter 11, Spring 1996, MIT.
[9] R. Fabbro, C. Max, and E. Fabre, Physics of Fluid 28, 1463 (1985).
[10] J.D. Huba, 1994 Revised NRL Plasma Formulary.

[11] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes
in C: The Art of Scientific Computing, 2nd Edition, Cambridge University Press
(1995).

[12] F.B. Hildebrand, Advanced Calculus for Applications, 2nd Edition, Prentice-Hall
(1976).

[13] L.D. Landau, Fluid Mechanics, Pergamon Press, London (1959).
[14] C. Yih, Fluid Mechanics, McGraw-Hill, New York (1969).
[15] F.S. Acton, Numerical Methods That Work, Harper & Row, New York (1970).

[16] G. Strang, Introduction to Applied Mathematics, Wellesley-Cambridge Press,
Wellesley (1986).

99

(17] D. Mihalas and B.W. Mihalas, Foundations of Radiation Hydrodynamics, Oxford
University Press, New York (1984).

100

