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ABSTRACT

This thesis examines identification of frequencies, damping

ratios, and mode shapes of large space structures (LSSs) in real time.

Real time processing allows for quick updates of modal processing after

a reconfiguration or structural failure.

Recursive lattice least squares (RLLS) was selected as the

baseline algorithm for the identification. Simulation results on a one

dimensional 'LSS' demonstrated that it provided good estimates, was not

ill-conditioned in the presence of under-excited modes, allowed

activity by a supervisory control system which prevented damage to the

LSS or excessive drift, and was capable of real-time processing for

typical LSS models.*

A suboptimal version of RLLS, which is equivalent to simulated

parallel processing, was derived. Applying it to the same data as the

optimal version showed that the number of computations per step could

be reduced by a factor of four with little accuracy penalty.

The possibility of improving these results by using an input

optimized for the LSS was examined. A method for constructing optimal

inputs was presented and applied to simple LSSs. The identification

results using an optimal input were compared to those using a pseudo-

random binary sequence as the input. The optimal input significantly

improved the accuracy of the estimates.

A NASTRAN model of the dual keel U.S. space station was used to

demonstrate the input/identification algorithm package in a more

realistic simulation. Because the first eight flexible modes were very

close together, the identification was much more difficult than in the

simple examples. Even so, the model was accurately identified in real

time.
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Table of Abbreviations, Acronyms, and Terminology

ARMA = auto-regressive, moving average

ARMAX = auto-regressive, moving average, exogenous input

CPU = central processing unit

identifier order = number of stages in identifier = M

LLS = lattice (or ladder) least squares

LS = least squares

LSS = large space structure

MIMO = multiple input, multiple output

PRBS = pseudo-random binary sequence

RELS = recursive extended least squares

RGLS = recursive generalized least squares

RML = recursive maximum likelihood

RLELS = recursive lattice (or ladder) extended least squares

RLLS = recursive lattice (or ladder) least squares

RLS = recursive least squares

SISO = single input, single output

slinky = masses connected by linear springs and viscous dampers (see

Figure 1.2.1)

SNR = signal to noise ratio

system order = number of modes in the system model = N/2 = n

UDUT = way to factor a covariance matrix; U is upper triangular and D

is diagonal

6
Table of Symbols and Notational Conventions

(_) = ( ) is a column vector

(_R = ( ) is a row vector

( )T = transpose of ( )

(0) = derivative of ( )

(^) = estimate of ( )
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C) = (1) corrected value of ( ) (see RML algorithm in Section 2.2)

(2) ( ) transformed to RLLS form (see equation A12)

(_) = (_) calculated with estimated parameters one step less current

than those used to get (_) (compare equations A21 and A42)

( ) *= (1) complex conjugate (see section 2.1)

(2) variables involved in the unknowns estimated by RLLS which are

not of direct interest in this thesis i.e. unknowns which

describe an ARMAX model in terms of future inputs and outputs

(compare equations A23 and A14)

( )(n) = the version of ( ) appropriate to an nth order identifier

(see equation 2.4.1); similar to ( )n except this is used

when the orders are not independent so that ( ) depends on the

actual order used

)(n)(n) = the ith order part of ( ), whih- was identified with an nth

order identifier (see equation 2.4.1)

( )i = (1) partial derivative of ( ) with respect to i (see equation

4.2.1)

(2) order index i.e. minimum order of identifier which would use*

( ) (see equation A14); similar to ( )(i) except this is used

when the orders are independent so that C ) doesn't change with

the actual order used

S)j = magnitude of ( ) i.e ( )2 or (_)T (_)

dim( ) = dimension of (

Im( ) = imaginary part of

Re( ) = real part of ( )

a = (1) dimension of many vectors and matrices used in an RLLS

identifier = m + p for RLLS = m + 2p for RLELS

(2) parameter targeted by an optimal input (see equation 4.2.1)

8 = (1) scalar weighting factor used in RLLS = y/A (see equations

A31-A33 and Figure 2.4.1)

(2) eigenvalues -- of the matrix F' (see equation 4.3.18) or the

matrix F (see section 2.1, "Modal Forms")

8 = vector of unknown parameters which multiplies the past inputs in

MIMO Parameterization 3 (see section 2.1, "Parameterizations:

MIMO")
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y = (1) scalar weighting factor used in RLLS = X S (see equation A61

and Figure 2.4.2)

(2) unknown parameters which are part of the vector $ in MIMO

Parameterization 3 (see section 2.1, "Parameterizations: MIMO")

y = vector containing constants chosen to meet boundary conditions

used to calculate optimal inputs (see equation 4.3.18); dim(y) =

2N*(r+1) = 4n*(r+1)

r = Hamiltonian (see equation 4.3.14)

E = error estimates used in RLELS (see "Correlated Noise" in section

2.4); dim(e) = p

= modal damping ratio

e = matrix of unknown parameters to be estimated (see equation 2.2.1)

A = forgetting factor (see Chapter 2)

X = LaGrange multiplier (see equation 4.3.14); dim) = N*(r+1)

v = (1) structural index = number of rows in the observability matrix

corresponding to each input (see "Parameterizations: MIMO" in

section 2.1)

(2) boundary condition on LaGrange multipliers X (see equation

4.3.14)

vi= number of rows in the observability matrix corresponding to

inputi (see "Parameterizations: MIMO" in section 2.1)

Vij = dimension of the ijth block of the A matrix in observable

canonical form (see "Parameterizations: MIMO" in section 2.1)

IT = [ 0 . . . 0 1 ]T (see equation A4)

= (1) vector describing modal shape (see Chapter 1); dim( ) = N

(2) vector of regressors, whose elements depend on the

identification algorithm being used (see equation 2.2.1 and

Appendix A)

(3) eigenvectors of matrix F' (see equation 4.3.18); dim(j) =

4n*(r+1) = 2N*(r+1)

= matrix whose columns are the eigenvectors of matrix F' (see

equation 4.3.18); size = 4n*(r+1) x 4n*(r+1)

Ic = matrix 0 with the top half evaluated at time t=0 and the bottom

half evaluated at time t=T (see text after equation 4.3.18); size =

4n*(r+1) x 4n*(r+1)
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IR (or L) = matrix of right (or left) eigenvectors (see section 2.1,

"Modal Forms")

= modal frequency

Wc = average or center frequency of two modes, used when optimizing

with respect to the frequency difference of the modes (see

"Separating Closely Spaced Frequencies" in section 4.6)

= augmented state vector used for calculating optimal input (see

equation 4.3.5); dim(E) = N*(1+r)

= derivative of the estimate of outputi with respect to its

unknowns (see equation 2.2.2); dim(si) = number of columns in 0

aij = vector of unknown parameters which multiplies the past outputs

in MIMO Parameterization 3 (see section 2.1, "Parameterizations:

MIMO")

A = (1) system matrix as in x = A x (elements of A are scalar

constants) (see Chapter 3); size = N x N

(2) system matrix as in Ek+1 = A Kk (elements of A are scalar

constants) (see Section 2.1); size = N x N

(3) ARMA system matrix as in y ='A y (elements of A are polynomials

in inverse powers of the q transform variable) (see section

2.2); size = p x p

bi = elements of a SISO system control influence matrix (see equation

4.6.2)

bij = ijth element of modal control influence matrix (see equation

4.3.1)

B = (1) control influence matrix as in = A x + B u (elements of B are

scalar constants) (see Chapter 3); size = N x m

(2) control influence matrix as in xk+1 A + B uk(elements of B

are scalar constants) (see Section 2.1); size = N x m

(3) ARMA system matrix as in y = A y + B u (elements of B are

polynomials in inverse powers of the q transform variable) (see

section 2.2); size = p x m

ci= (1) viscous damper constants (see Figures 1.2.1 and 4.6.1)

(2) elements of a SISO system measurement matrix (see equation

4.6.2)
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ci,j = ijth element of measurement matrix (see equation 4.3.2)

C = (1) measurement matrix as in y = Cx (see Section 2.1 and Chapter

4); size = p x N

(2) noise influence numerator matrix as in y = Ay + Bu + Ce

(elements of C are polynomials in inverse powers of the q

transform variable) (see section 2.2); size = p x p

(3) damping matrix in finite element model of a system (see section

2.1, "Physical System Model"); size = n x n

D = (1) control measurement matrix as in y = Cx + Du (see Section 2.1

and Chapter 4); size = p x m

(2) noise influence denominator matrix as in y = Ay + Bu + D-le

(elements of D are polynomials in inverse powers of the q

transform variable) (see section 2.2); size = p x p

(3) diagonal matrix obtained from factoring a covariance matrix as

in UDUT (see below equation A16 and section 2.4)

e = (1) noise on outputs (see Chapter 2); dim(e) = p

(2) vector of regressors (errors) used in the RLLS identifier (see

Figures 2.4.1 and 2.4.2, and equations Al and A21); dim(e) = a

E = constraint on integrated amount of input allowed for the optimal

1 TT *
input = u u dt (see equation 4.2.3)

0
F' = augmented system matrix for E and X (see equation 4.3.15); size

= 2N* (r+1 ) x 2N* (r+1 )

F = (1) matrix used in commonly used version of the RLLS identifier

which approximately equals E~reTJ (see Figure 2.4.1); size =

a x a

(2) system matrix of augmented system used for calculating an

optimal input i.e. = F E + G u (see equation 4.3.6); size =

N*(r+1) x N*(r+1)

(3) system matrix ( = F x + G u) in system from which a modal form

is derived (see section 2.1, "Modal Forms")

G = (1) control influence matrix of augmented system used for

. calculating an optimal input i.e. i = F + G u (see equation

4.3.6); size = N*(r+1) x m
e0

(2) control influence matrix (x = F x + G u) in system from which a

modal form is derived (see section 2.1, "Modal Forms")

0
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G(n)= matrix of unknown parameters to be estimated (see equation

A10). Similar to e, except that e is used in a model which

predicts present outputs from the past; G is used to predict both

present inputs and outputs from the past. Size = a x na

Gn = columns of G from 1+(i-1)*a to i*a (see equation Al)

H = (1) measurement matrix of augmented system used for calculating an

optimal input i.e. [y ] = H E (see equation 4.3.7); size = r*p

x N*(r+l)

(2) measurement matrix (y = H x + D u) in system from which a modal

form is derived (see section 2.1, "Modal Forms")

H(n)= matrix of unknown parameters to be estimated (see equation

2.4.3). Similar to 0, except that e is used in a model which

predicts present outputs from the past; H is used to predict the

past (both outputs and inputs) from the present. Size = a x na

Ip= p x p identity matrix

J = cost function for calculating optimal inputs (see equation 4.2.1)

kn)= Kalman gain vector in RLS estimator for unknowns in G matrix (see

equation A39); dim(k(n)) = n*a
*

k or k = Kalman gain vector in RLLS estimator (see equations 2.2.2,-n -n
2.4.4, and 2.4.5); dim(k) = number of columns in G (equation 2.2.2)

or = a (equations 2.4.4 and 2.4.5)

k. = (1) weighting factor used in J, the cost function for calculating

optimal inputs (see equation 4.2.1)

(2) spring constants (see Figures 1.2.1 and 4.6.1)

K = (1) weighting factors ki arranged in a matrix (see equation

4.3.8); size = r*p x r*p

(2) stiffness matrix in finite element model of a system (see

section 2.1, "Physical System Model"); size = n x n
*

K or K = unknowns-being estimated in RLLS identifier (see Figures
n n

2.4.1 and 2.4.2 and equations A14 and A23); size = a x a

1 (n)= Kalman gain vector in RLS estimator for unknowns in H matrix (see

equation A50); dim(1(n)) = n*a

m = number of inputs = dim(u)

mi= mass in a slinky (see Figures 1.2.1 and 4.6.1)
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M = (1) maximum identifier order = number of stages in identifier (see

Figures 2.4.1 and 2.4.2)

(2) transformation matrix used to get from MIMO Parameterization 2

to MIMO Parameterization 3 (see section 2.1)

(3) mass matrix in finite element model of a system (see section

2.1, "Physical System Model"); size = n x n

n = (1) index most commonly used to count identifier order (see Figures

2.4.1 and 2.4.2)

(2) number of modes in a system model (see equation 4.3.1) = N/2

N = (1) dim(stage vector x) (section 2.1 ) = twice the system order = 2n

(2) abbreviation for a newton of force

p = number of outputs = dem(X)

P( ) = projection operator which projects on the space spanned by the

rows of matrix ( ) (see equation A4)

P or P = covariance matrix, size = (number of columns in 0) x (number
n n

of columns in 0) (equation 2.2.3) or a x a (eqs. 2.4.4 and 2.4.5)

q = (1) discrete time transform parameter i.e. q y(k) = y(k+1)

(2) weighting parameter on the input in an alternate form of the

cost function for the optimal input (see "Characteristics of

the Solution" in section 4.6)

(n)= inverse of covariance matrix for estimating H (n) (see equation

A49); size = n*a x n*a

r = number of parameters being optimized over (see equation 4.3.5)

r = vector of residuals used in the RLLS identifier (see Figures 2.4.1

and 2.4.2, and equations 2.4.3 and A5); dim(r) = a

R(n)= inverse of covariance matrix P used in the RLS identifier (see

equation A38); size = n*a x n*a
* *

R or R = inverse of the covariance matrix P or P
n n n n

S = (1) matrix. used to prove sufficient second order conditions for the

optimality of the inputs (see equation 4.4.3)

(2) generic matrix which equals XN,t (see eq. A6 and Table A.1)

t = time index, may be either continuous or discrete

t' = time shifted by n units = t - n (see equation A33)

T = duration of an identification run (Chapter 4)
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T(n) = lower triangular transformation matrix with ones on the

diagonal which converts from RLS to RLLS form (see equation A12)

u = vector of inputs; dim(u) = m

U = upper triangular matrix obtained from factoring a covariance matrix

as in UDUT (see below equation A16 and section 2.4)

v = estimate of the value of the noise e (see RML(II) algorithm in

Section 2.2); dim(v) = p

V = (1) variance of output noise (see equation 2.2.2 and Figure 2.4.2)

(2) generic vector or matrix (see equation A6 or Table A.1)

w = estimate of the value of the noise e (see RML(I) algorithm in

Section 2.2); dim(w) = p

W = (1) weighting matrix which penalizes state amplitude in calculating

an optimal input (see equation 4.6.4); size = N x N

(2) generic vector or matrix (see equation A6 or Table A.1)

x = (1) state vector (section 2.1 and Chapter 4)); dim(x) = N

(2) vector containing regressors = [yT uT]T for least squares

algorithms (dim(x) = m+p) = [yT u eT]T for extended

least squares algorithms (dim(x) = m+2p) (section 2.4)

t= x(O) - - - x(t) ]T; size = (t+1) x a (see equation A2)
N+1

x = shifted N times with 0 in the vacated elements (see eq. A5)

XNt= matrix of past inputs and outputs (see equation A3); size =

N*a x (t+1)

y = vector of outputs; dim(y) = p

y = y with the ith element removed (see MIMO Parameterization 3)

Y = generic vector or matrix (see equation A6 or Table A.1)
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Chapter 1: Introduction

For the past several years, design and construction of large space

structures (LSSs) has been a growing area of interest. These systems

will range in size from tens of meters to several hundred meters in

their largest dimension. Examples currently of interest are the

Langley Mast flight experiment, the Hubble Space Telescope, and the

U.S. space station.

1.1 The Large Space Structure Problem

Since launch costs are a major portion of total space system

costs, achieving high structural stiffness by structural means will be

very costly. This forces space structures to be light and flexible

relative to earthbound structures. The low natural frequencies, caused

by the low stiffness coupled with the low natural damping character-

istic of light metal and composite structures, lead to large response

to low frequency disturbances. Space structure control systems must be

designed using dynamic models that include some flexible modes. This

requires accurate values for the structural frequencies (wi), mode

shapes ( i), and modal damping (qi).

These modal parameters can be estimated by analysis of finite

element models of the LSS. The accuracy of these estimates is limited

by having to approximate a distributed structure with a finite element

model, and discrepancies between the expected structure and the actual

structure (e.g. use "typical" material property values rather than

measuring the exact values for each piece of the structure). The best

estimates will be 10%-20% off, and even that accuracy will be achieved

only for the lowest frequency modes (ref. 25).

For more accurate estimates, testing is done on a prototype of the 9

space structure. The structure is mounted on a test platform, shaken,

and the response is measured. LSSs are too big for ground-based

testing of a full-scale prototype, so the final testing will have to be

done in orbit.

40
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In Orbit Identification

Doing the identification in orbit creates special problems.

Getting equipment and personnel to orbit is expensive (currently

$2000/pound)2 6, so that testing will be done on flight hardware, not

a prototype. Actuators and sensors will be limited to those which will

be on the operational system. This limits the number and type of

inputs and outputs available. It also limits the inputs to those which

don't overstress the structure and don't drive the structure to a state

from which the control system can't recover.

There are two options for processing the data - onboard or on the

ground. Air-to-ground communications have a limited data transmission

capability, so onboard processing is preferred. Autonomy is a goal for

the space station, again pointing towards onboard processing. This

will limit computing power, CPU time available to devote to

identification, and data storage capacity. Due to data storage limita-

tions and for applications involving reconfiguration (like docking a

shuttle to the space station), a recursive identification algorithm

which can run in real time is preferred.

Closely Spaced Frequencies

In addition to on-orbit testing, the large number of closely

spaced modal frequencies makes identification difficult (ref. 12). The

algorithm must be able to resolve frequencies that are very close

together. It also must be able to handle tens of modes without

exceeding the computer facility's capacity.

1.2 Thesis Goal

Identification of unknown systems is a common problem and has been

extensively studied. However, LSSs are new and identification of a

system with their characteristics has only recently been examined. Two

areas which have not been addressed - optimal inputs and processing

with limited computational resources - are the subject of this

research.
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Chapter 2 starts with an overview of what is required to identify

a structure (choose a model, an algorithm, and inputs). This procedure

is then applied to a LSS. A baseline algorithm is selected --

recursive lattice least squares -- described, and evaluated.

The baseline algorithm was chosen partly on the basis of cycling

faster than other algorithms for LSSs. In Chapter 3, a suboptimal

version of the baseline algorithm is described which reduces the cycle

time even more. This suboptimal version is applied to some simulated

LSSs and compared to the baseline version.

One of the conclusions reached in Chapter 3 is that choice of

input is very important. This is explored in detail in Chapter 4. A

cost function is chosen which is appropriate to a LSS identification

experiment, and then minimized to determine an optimal input. The

characteristics of the resulting inputs are examined. The

effectiveness of the system identification using optimal inputs is

compared to using other inputs.

The examples used in chapters 2,3, and 4 to simulate large space

structures are slinkys, i.e. masses connected by linear springs and

proportional viscous dampers as shown-in Figure 1.2.1.

F F F
1  2 n

k k2 kn-1

M1 23 mn

c c - C.
2 2n-

+ x1 + x 2 + xnI 1x 21 c. I~n

Figure 1.2.1: N-mass Slinky

In all cases the masses are free to move at both ends so that

there is always a rigid body mode. In Chapter 5, a more complicated

model is used -- a finite element model of the U.S. dual keel space

station. The algorithms of Chapters 2 and 3 and the inputs of Chapter

4 are applied to the space station model.

Finally, Chapter 6 summarizes the conclusions reached in the

preceding chapters and suggests directions for future work.
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Chapter 2: Identification Algorithms

Identification means defining a model, from a specified class of

models, which is most nearly equivalent to the system of interest. 1 3

The choice is based on the results of applying an identifi'cation

algorithm to inputs and outputs of the system. Thus, identification

requires choosing a class of models, an algorithm, and appropriate

inputs.

There are almost as many model/algorithm/input combinations as

there are identification problems2 2 . Thoroughly examining all the

possibilities is impossible to do in a few pages, so the approach taken

here is to briefly discuss each major decision in the process of

picking a model/algorithm/input package in the context of LSSs, then

continuing to develop only those possibilities with the most merit.

2.1 Choosing a Model

1. Use a.linear model

The first choice is between a linear or nonlinear model. A LSS is

a nonlinear, distributed parameter system. However, linear models have

worked well in predicting the behavior of flexible structures9 .

Also, identification of linear systems is usually easier to implement

than a nonlinear approach. There is no general solution to a nonlinear

identification problem - an algorithm effective on one nonlinear system

often cannot be implemented on other nonlinear systems. Finally, the

identified system is usually used in a controller to compensate for

disturbances. A linear model is appropriate for a nonlinear system

when excursions are small.

2. Use a lumped parameter (parametric) model

Again, even though a LSS is a distributed parameter (non-

parametric) system, lumped parameter models have worked well in

describing flexible structures9 . LSS identification has two goals -

verifying the ground-based analysis of the LSS and providing a model

the control system can use. Ground-based analysis usually includes a

finite element model of the structure, which can be easily
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compared to a lumped parameter model. Modern control algorithms use a

state-space form, which is a lumped parameter form. (Typical

distributed parameter models are impulse responses, sets of partial

differential equations, and spectral densities.)

3. Use a time-invariant model

This choice is marginal but turns out not to be critical when

combined with all the other choices. The identification algorithm as

recommended in this thesis applies as well to a slowly time-varying

system as to a time-invariant system.

LSS characteristics vary slowly with time. Temperature changes

cause the structure to expand, contract, and warp. Outgassing can

change the material properties of a structure. Variations in

atmosphere due to fluctuations in the earth environment can affect the

amount of damping a structure experiences. To avoid excessive stress

on the structure, LSSs are being designed to minimize the effect of

temperature variations. The other disturbances should cause only small

changes in structural properties and/or take place over a time scale

much longer than required for an accurate identification. So a

time-invariant model should work well except across major

reconfigurations of a space structure, either intentionally or due to a

failure. Reconfiguration will be either known ahead of time or

detected by failure monitors and can be handled by reinitializing the

algorithm.

4. Use a discrete time model

Modern control systems operate in discrete time, as do typical

input/output data collectors.

Parameterizations: SISO

The class of models has been restricted to linear, time-invariant,

lumped parameter, and discrete time. This is the class of discrete

time state space models and all equivalent parameterizations.

Parameterization refers to which parameters describing a class of

models are assumed to be known. Equivalent parameterizations are ones

which can't be distinguished on the basis of input/output data alone.

0
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Some examples of this in the class of discrete time single-input,

single-output (SISO) state space models (ignoring noise to simplify the

examples) are:

SISO Parameterization 1: All parameters unknown

Example:
(9 unknowns)

SISO Parameterization 2:

Example:

(5 unknowns)

a b e
x(k+1) = x(k) + u(k)

c d . _f

y(k) = [g h] x(k) + iu(k)

Observable Canonical Form

x(k+1) = x(k) + j u(k).
a b 1 0 d

y(k) = [1 0] x(k) + iu(k)

where a, = bc-ad; b, = a+d; cl = eg+fh; d, = (ae+bf)g + (ce+df)h

SISO Parameterization 3: ARMAX (Auto Regressive Moving Average

Exogeneous input) Form

Example: y(k) = b 1 y(k-1) + a 1 y(k-2) + iu(k) + d 2u(k-1) + e 2u(k-2)
(5 unknowns)

where d2 = c -ib ; e2 = d -b c - ia

The systems considered in this thesis are restricted to

observable, controllable systems. (Since that covers all the likely

structures, it is not a severe restriction.) For such systems, all

three of these parameterizations exist and are equivalent. Parameter-

ization 1 is typical of a model derived from a physical knowledge of

the system. Parameterization 3 corresponds to the format an identifi-

cation algorithm uses because the intermediate state x has been

eliminated. Parameterization 2 is a combination. It has the state
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space form of parameterization 1 but the same number of unknowns as

parameterization 3.

There are many more parameterizations than the three mentioned

here (section 4-3 and Chapter 7 of ref. 6). These are a representative

sample and are used in the rest of this thesis.

The number of unknowns is a critical factor. All the unknowns in

parameterization 3 can be uniquely determined from input/output data.

A unique value of the parameters in parameterization 2 can also be

determined from the input/output data, because the number of unknowns

is the same as in parameterization 3 and the two sets of unknowns are 0

related by an invertible transformation. However, values for the

unknowns in parameterization 1 cannot be uniquely determined solely on

the basis of input/output data. The transformation from parameteriza-

tion 1 to parameterization 2 is not invertible.

Parameterizations: MIMO

The same comments apply to a multi-input, multi-output (MIMO)

system. However, specifying the parameterization is more complicated

because the coefficients in parameterization 3 become matrices.

For SISO systems, the minimum number of unknowns is always 2N+1

(ref. 14, p. 14), where N=dim(x). N coefficients are associated with N

past values of y, and N+1 with the current and N past values of u.

Once N is determined, the parameterization can be completely specified.

For a MIMO system, parameterizations 2 and 3 become:

MIMO Parameterization 2: Observable Canonical Form1 3

x(k+1) = [A..] x(k) + B u(k)

1 0 00- 0
0 0. 01 0 0.. Q

y(k) = . . x(k) + Du(k)

0 ... 0 1 0 goo 0

column 1 column vj+1

0



where: A..
II

A

ij

0

0
a..1

0

a..a1 1

I
V. -1

1

... a..
liv.

--. a..
13V..j

B = fully populated

D = fully populated

V.. =V.
11 1

Sfj min (v.,v.+1) j < i

min (v.,v.) j > i
p 1 -

p = number of outputs

i,j = 1 to p

The structural indices vi are characteristic of the physical system,

i.e. are invariant under linear transformation. vi equals the number

of rows in the observability matrix corresponding to sensori when the

rows not required for a full rank matrix are deleted1 3 . Since the

dimension of Aui is vi x vi ( or equivalently since the rank of

the observability matrix is N):

p

i=1
v. = N

1

Thus, the A matrix in the observable canonical form of a SISO system is

the special case of the A matrix in the observable canonical form of a

MIMO system with p=1.

21
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MIMO Parameterization 3: ARMAX form 1 3

T ' T TT
y.(k) = a. 1 (k) + a. y(k-1) + ge*+ a. y(k-v) + dT u(k)

i -iV.+1 -+V. - - u- k

T T
+ 8. u(k-1) + ***+T u(k-v.)

-iv. -il - 1

1T

where: y'(k) = [y1 (k) y 2 (k) * y. 1(k ) y +1 (k) *99 y (k) T

T
a. . = [a. .- oe a. .j i=1 to p; j=1 to V.+1
-1j i11 ipj

T Tr
8.. = -a. . D + [y .1.. y

*1 --1 1 i-1

[Y..] = MB
1J

7 -a11 2  -a1 1
-a

1 1 3

-a
11v1
1

1

0

-a 12a p a1  0

*pl0

-a
p1

m put
0 0

m = number of inputs

-a 1

p2

0e. -a
1pvp

-a 0

0 0

- ---~~- -- -

-app ---- -a-
pp2 ppv

p

0 -a - . 0

ppv
p

1 0

At first glance, there appear to be Nx(p+m) + p(m+p-1) unknown

coefficients. Each y. equation has v.+1 a vectors, the first of which

has p-1 elements (because y' has p-1 elements) and the rest of which

have p elements, one m element d vector, and vi 8 vectors, each of

which has m elements:

0

0

V

I
-
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p p
number = (v xp + p-1 + m + vi x m) = V ) )(p+m) + p(p+m-1)

i=1 i=1

This count overestimates the number of coefficients because some of

them must be zero. From the definition of v . , aiV. += 0 for all

j < i. If all the v. are equal, then a . =0 for all i,j (equiva-
1 ijV.+1

lently, a. +1 = 0 for all i). In that case:
v.1

MIMO number of coefficients
= N(p+m) + p x m (2.1.1)

when all the vi are equal

The structure of the Aij shows that this is the largest number

of coefficients in the ARMAX form for any system. It corresponds to

the bottom row of each Aij block being full df non-zero elements.

For some systems, the number of coefficients may be less. If the

sensors have been placed so that some provide very little new informa-

tion while others provide a lot, the vi will be very different and

the number of coefficients will be less than that given above. Note

that this makes the problem more difficult, not less. The computation

time per update is dominated by the yi (i=1 to p) equation with the

largest number of terms i.e. the largest vi. The minimum maximum

Vi occurs for all the Vi equal (or different by no more than one

when N is not evenly divisible by p).

Modal Forms

For LSSs, a modal form is a particularly useful parameterization.

It is easier to connect the unknowns in a modal form with physically

significant quantities than the unknowns in either of the MIMO

parameterizations. This connection is made by creating the modal forms

from the continuous time physical model (usually a finite element

model), then converting to discrete time to get the discrete time

equivalent. The forms exist for discrete time systems, but the

parameters lose their physical interpretation.
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Physical System Model:

c(t) = F x(t) + G u(t)

y(t) = H x(t) + D u(t)

where:

F= [Fij ], i=1 to n, j=1 to n

F.. = 0 1
11

-[M -1K].. -[M 1 C]..

F.. = 0 0

[M -1K]. . -[M- 10 C ..1J)I

M = mass matrix from the finite element model M + C x + K x =

force, where x is a vector of the nodal displacements of

dimension n. The x in the Physical System Model contains

the nodal displacements and velocities and has dimension N.

C = damping matrix from the finite element model

K = stiffness matrix from the finite element model

G = matrix with odd rows all 0 and even rows determined by

actuator placement. The elements of the rows typically

equal a known calibration factor divided by a modal mass

(there are n modal masses).

H = contains zeroes and.known calibration factors which are

determined by sensor type and placement

D = contains zeroes and known calibration factors which are

determined by sensor type and placement

Two modal forms are in common use, and a third one was derived

by modifying the technique used to get MIMO Parameterization 2:

Modal Parameterization 1:

0(t) = A x(t) + B u(t)

y(t) = C x(t) + D u(t)

where:

A = diag -k 0 ,k=1 to n

k
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= eigenvalues of F = *( + i ), k=1 to n. If the
*

kth mode is real, then Ok is a real number, possibly

different from the real number Bk-

Ck = damping ratio of kth mode

Wk = undamped vibration frequency of kth mode

B = fully populated = 01 G
R

IR = matrix of right eigenvectors of F. The inverse matrix equals
T

(within normalization factors) %L, the matrix of left
eigenvectors i.e. eigenvectors of FT

C = fully populated = H R

D = as in the Physical System model

R = matrix of (right) eigenvectors of F

The number of non-trivial parameters- needing to be identified is N

from A, N*m from B, N*p from C, and m*p from D, for a total of

N*(m+p+1) + m*p. Note that this is N greater than the total for MIMO

Parameterization 3 as given in equation 2.1.1, so that this is not a

minimal parameter form. It could be made into a minimal parameter form

by choosing the N arbitrary normalization factors on the columns of t

so as to make N elements of C trivial. The -physical significance of

the unknown parameters is that N are associated with modal damping

ratios and frequency and N*(m+p-1) + m*p with elements of the

eigenvectors combined with sensor and actuator calibration factors and

modal masses. If the sensor calibration factors are such that the

sensors are position sensors which sense exactly one state in the

Physical System Model system, then the elements of each column of C

correspond to (within a normalization factor) elements, at the sensor

positions, of the eigenvector of the mode associated with that column.

(The two columns of C associated with a vibratory mode are complex

conjugates of each other.) Note that this is true even if the modal

form was not constructed directly from the Physical System Model. If

the system is equivalent to (i.e. a linear transformation of) the

Physical System Model, the same procedure can be used to recover the

eigenvector elements of the Physical System Model. (The position

elements of an eigenvector are collectively referred to as the mode

shape.)
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If the sensors had been velocity sensors, the column elements

would have been corresponding eigenvector elements. Note that while

adding velocity sensors increases the number of unknowns to be

identified, no new information is obtained. The form of the Physical

System Model requires the velocity elements of eigenvectors to be ak

times the position elements, so that determining the position elements

(mode shape) of an eigenvector determines the entire eigenvector. The

maximum number of useful (from the point of view of providing

non-redundant information) sensors is N/2, with each sensor being

either a position or velocity sensor and no co-located sensors.

Similarly, the rows of B are elements of the left eigenvectors

divided by the modal masses.

A disadvantage of this form is that A, B, and C are complex.

Modal Parameterization 2:

y(t) = A x(t) + B u(t)-

y(t) = C x(t) + D u(t)

where:

diag Re(Bk) Im(k1  k=1 to n except for

-Im(Ok) Re(Ok) rigid body modes

A =

diag 0 1 rigid body modes

0 0
1 ~1

B = fully populated = 1 G

0 = [ Re(f1 ) Im(%1 ) . Re(I) Im( nH

= eigenvector of F. For real modes, Im(in) becomes the

eigenvector for the second real root. For rigid body modes,

Im( ) is the generalized eigenvector for the mode.-6n
C = fully populated = H f

D = as in the Physical System Model

The number of non-trivial parameters needing to be identified is

the same as for Modal Parameterization 1. The same comments on

specifying the eigenvector normalizations in Modal Parameterization 1

apply to this form. The procedure requires treating the two columns

associated with a vibratory mode as a single complex column .and

normalizing them simultaneously.
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The recovery of eigenvector elements for vibratory modes is a

little different from Modal Parameterization 1. The first column of C

associated with that mode becomes the real part of the eigenvector

element, and the second column becomes the imaginary part.

A disadvantage of this form is that in the limit as wk+ 0 (i.e.

Ok+ 0, a rigid body mode), the A matrix abruptly changes form. This

makes comparison of regulator performance between a truth model with

rigid body modes and an identified model with frequencies at (say) .01

rad/sec difficult to interpret because the state weights are different.

Modal Parameterization 3:

x(t) = A x(t) + B u(t)

y(t) = C x(t) + D u(t)

where:
diag ~ 1 1 ~ k=1.to n except for real modes

A= - -2* (]

diag 0 1 real modes (eigenvalues=

La bJ .5*b + . 25*b2+ a)
B = odd rows of first column are 0 and one element of every even

row is 1; the rest is fully populated = T G

T = transformation described in appendix B

C = fully populated = H T-1

D = same as in Physical System model

Because (effectively) one column of B is trivial, this form has the

same number of unknowns as Modal Parameterizations 1 and 2, with the

normalization already included. In addition, if the mode shapes

are real (M1 K and M C in the finite element model are diagonalizable

by the same matrix) then the odd rows of every column of B are 0.

The disadvantage of this form is that it is more complicated to

implement than the other two and there is no simple way to recover mode

shapes. It has the conceptual advantage of being in the form used in

finite element models. It is the only one of the three forms which

always has some elements go to zero when the modes are real.

2.2 Choosing an Algorithm

The parameterization used depends on the algorithm chosen. Even

with the class of models limited to linear discrete time state space,
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there are many algorithms from which to choose. Most of these can be

eliminated because they are inappropriate for LSS identification:

1. Use a recursive (on-line) algorithm

As discussed in the introduction, recursive (on-line) algorithms

are preferred to batch (off-line) algorithms because data storage

requirements are much less and less powerful computers are required for

large systems. Most batch algorithms have a recursive version which

has asymptotically the same accuracy. Typically, reasonably good

estimates are available much more quickly with a recursive algorithm.

2. The algorithm must work when applied to an operational LSS

As discussed in the introduction, LSS identification will be

performed on the operational system. For the low frequency modes of a

LSS (periods on the order of 6 seconds), identification can take

several minutes. Some control action may be required during an

identification experiment, especially if the structure has been excited

enough to allow modal identification. The technique must allow the

superposition or mixing of inputs good for identification and inputs

required to keep the structure stabilized. Any technique, such as

Ibrahim Time Domain1 5 or Eigensystem Realization 16, which requires

a system in free decay after an initial excitation, is not a good

choice for orbital testing. A technique like Multi-Shaker Sine

Dwell7 , which excites the structure with a pure sinusoid, is even

more likely to require control action (due to resonance), and would be

inappropriate.

3. Use a time domain technique 0

Frequency domain techniques (such as Sine Dwell) identify modes by

increased structural response at the modal frequency, making closely

spaced modes hard to separate. Time domain techniques are preferred

for LSSs. }

The algorithms consistent with the above choices are recursive

least squares (RLS), recursive maximum likelihood (RML), recursive

extended least squares (RELS), recursive generalized least squares

(RGLS) and their variations. All these algorithms share the
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characteristic that they don't assume proportional damping i.e. the

modes can be coupled through lumped dampers (as is found in structural

joints). This was not considered an important enough property to be

used to eliminate algorithms (as proportional damping models have

worked well in the past), but it is certainly desirable.

All of these techniques apply to a system in the form of

parameterization 3. Since some of the techniques differ in the way the

noise is handled, write parameterization 3 in the form:

y(t) = Ay(t) + B u(t) + CD- 1 e(t)

where: A = matrix whose elements are polynomials in inverse powers of

the discrete time shift operator q, with leading term

aiji q-1

B = matrix whose elements are polynomials starting with bijo

C = matrix whose elements are polynomials starting with

1 +c i j1 q- 1

D = matrix whose elements are polynomials starting with

1+dij1 q-1

e(t) = white noise sequence

The framework which will be used to describe the above algorithms is:

y.(t) = t-1) *(t) (2.2.1)

P (t-) (t

k. (t) = (2.2.2)
-' T

Xt) V. +*. (t) P. (t-1) (t)

P.(t) = 1 I - k.(t) T (t) P.(t-1) (2.2.3)
S A.t) -t -_ 1

.Ct) =e (t-1) + (y.(t) - (t-1) (t))k.(t) (2.2.4)

where G = matrix of unknowns being estimated, arranged consistent

with the elements of

Ri = ith row of matrix 0
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vector of regressors for output i which depends on the

algorithm

k.= gain vector, one for each of the i outputs

P.= covariance matrix for the coefficients associated with
output i

(t)= forgetting factor (0<X<1, usually near 1)

V. = variance of noise on the ith sensor. If unknown, it can be
2

estimated with V. (t)=V. (t-1)+y(t)(s. (t)-V. (t-1)) and

Y (t-1 ) 1
Y(t) = with y(-1) = large (user choice)

,. = derivative (or its approximation) of the estimate of output
dT[y(t)]

i with respect to its unknowns = d . Of the
dO. *O h
-1

algorithms presented in this section, RELS and RGLS use an

approximation for the derivative.

1 = 1 to p

To simplify the summary of the algorithms, "coefficients in A"

will be used to indicate a matrix whose elements are the aijk of the

MIMO parameterization 3 form. The polynomial elements of the matrix A

have been spread out into a larger matrix whose elements are the

coefficients of the polynomials. The leading "ones" in the C and D

matrix polynomials are not included in their expanded matrices. For

more detail, see ref. 20, Chap. 3.

Recursive Least Squares (RLS)

Model: y(t) = A y(t) + B u(t) + e(t) i.e. C=D=I

T B
G = [coefficients in A coefficients in B

= T C yT(t-v. )U(t) so* u (t-v. )
-1 --1

Advantages: (1) Simplest algorithm

(2) Fastest algorithm

(3) Not very sensitive to initial guess for e and P
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Disadvantages: (1) Estimate is biased if C or D differs from I

(2) Convergence is usually slower than RML

Recursive Maximum Likelihood (RML)

I. Model: y(t) = A y(t) + B. u(t) + C e(t) i.e. D=I (same as RELS)

T
G = [coefficients in A coefficients in B coefficients in C

(t) = T (t 1) 0 yT (t-v ) uT(t)4 uT (t-v ) T(t-1)owT Ct-v )]

*T T ~T ~T T
(t) = T(t-1) e (t-v.) u (t) t-.tv w(t-l).-*w (t-VL~t1 - 1 -- Ctv)

where: w(t) = C ((I-A) y(t) - Bu(t))
A i T T )T
C y(t)=y(t) i.e. y(t)=y(t)-[coefficients in C[y (t-1)*eOy (t-V )

C u(t) = u(t)

C w(t) = w(t)

Advantages: (1) Converges rapidly near the correct solution

(2) Estimate is unbiased for C differing from I

Disadvantages: (1) Calculating C, w, y, u, and w costs cycle time

(2) May not converge if initial guess for A, B, and C

is poor

II. Model: y(t) = A y(t) + B u(t) + D 1e(t) i.e. C=I (same as RGLS)

T De = [coefficients in A coefficients in B coefficients in D

T T T T T T T
.(t) =[y (t-1)eeey (t-v.) U (t)***u (t-v.) v (t-i)**. V (t-v.)

T YT~, ~T ~T ~T T ~T
Ct) = t1) y (t-V.) u t).OS u (t-v.) v (t-1)S69 v (t-V

- 1 - 1 i- -

where: v(t) = D((I-A) y(t) - B u(t))

y(t) = Dy(t)

u(t) = Du(t)
-A

v(t) = Dv(t)

Advantages and disadvantages same as for RML (I) with C replaced by D.
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Recursive Extended Least Squares (RELS)

Model: y(t) = A y(t) + B u(t) + C e(t) i.e. D=I (same as RML (I))

G = same as RML (I)

= same as RML (I)

Advantages: (1) Faster than RML

(2) Estimate is unbiased for C differing from I

Disadvantages: (1) Calculating C and w costs cycle time

(2) May not converge if initial guess for A, B, and C

is poor

(3) Less likely to converge than RML (depends on C)

Recursive Generalized Least Squares (RGLS)

Model: y(t) = A y(t) + B u(t) + D e(t) i.e. C=I (same as RML (II))

0 = same as RML (II)

= same as RML (II)

Advantages and disadvantages same as for RELS with C replaced by D.

All these simplify to RLS if the noise is white (C=D=I), but the

noise is almost certainly correlated. Typically, the measurement noise

for a system in the form of parameterization 1 is close to white.

Transforming to parameterization 3 gives CD-1 =(I-A) or C=I-A, D=I.

The noise in a real system would have to be correlated in a very

specific way to be white in parameterization 3 form. RML(I) or RELS is

required for accurate estimates when the noise level is high.

For the noise levels considered in this thesis (signal to noise

ratio > 100), RLS converged and gave accurate estimates. Since RLS is

significantly faster than either RML or RELS, RLS was chosen as the

best technique for LSSs. (More accurately, an alternative formulation

of RLS, as described in section 2.4.)

9
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2.3 Inputs

Choosing the input is discussed in Chapter 4. During the early

work on examining identification algorithms, the inputs used were

pseudo-random binary sequences (PRBSs). To make the inputs as

realistic as possible, a supervisory control loop was added so that:

1. If the rigid body velocity exceeds a deadband or the rigid

body position exceeds a deadband and the rigid body velocity

has the same sign, all inputs fire in the same direction (that

which decreases the rigid body motion).

2. If 1 isn't in effect, and the flexible component of any sensor

exceeds a deadband, no inputs fire.

It is assumed that the controller has perfect knowledge of the

rigid body and flexible motion.

After adding the supervisory control, PRBSs became more difficult

to use. Some PRBSs worked very well, others did not. As discussed in

Chapter 4, this is not surprising, but was difficult to work with, and

emphasized the importance of choosing good inputs. Much better results

were achieved by using an input which consisted of the sum of several

sinusoids with a linear decay envelope (see Chapter 4). To simulate

modelling error, the sinusoid frequencies were chosen to be not too

close to the true frequencies.

2.4 LSS Algorithm (Recursive Lattice Least Squares (RLLS))

The implementation of the estimation equations for least squares

techniques has changed as ways of doing the same calculation more

efficiently and/or accurately have been discovered. Gauss1 1 (circa

1800) was the first to use least squares (for an orbit determination

problem). His technique is now referred to as batch least squares.

The Kalman filter (circa 1960) was the first recursive version, as well

as being designed for easy use on computers.

Equations 2.2.1-4 are written in the Kalman filter form. Equation

2.2.3 (P equation) was very sensitive to round-off errors due to finite

computer word length, leading to the development of a square root

version (1963) and UDUT factorization (1974)3. UDUT

factorization is currently the standard implementation of equation

2.2.3, eliminating the numerical problem for the P matrix.
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The latest improvement, called a lattice (or ladder) filter,

attacks 2 problems, both important for LSSs: choice of system order

and the number of computations required per new data point. Although

RLLS has been used some for LSS identification2 3, it is not widely

known outside speech and signal processing. For those unfamiliar with

RLLS, the next few pages describe the algorithm.

Derivation

The motivation for the development of RLLS was to obtain an

algorithm which didn't require an a priori choice of system order

(ref. N, p. 350). Consider the RLLS version of equation 2.2.1:

^(n)(t) = 6(n) (n) (t-1) (2.4.1)
n

(n) [T~, uT T T T(24)1jn (t-1) = [y(t-1) u (t-1) e*e yT(t-n) u (t-n)] (2.4.2)

where superscript (n)=nth order model and subscript n means nth order

part (see equations on next page for need for this subscript). Note

that in equation 2.2.1 the regressor is O(t) and in 2.4.1 it is

0(t-1). This is because RLLS (as presented in this thesis) does not

allow use of u(t) as a regressor i.e. it assumes that D (in y=Cx+Du) is

zero. For LSSs, this is no problem unless un-integrated accelerometer

data is being used. In that case, u(t) has to be delayed one time step

so that u(t) is labeled u(t-1). This would increase the identifier

order by one and would require modifying the equations to recover the

ARMA coefficients so that half the coefficients -are not shifted one

order. In the rest of this thesis, the D matrix is assumed to be zero.

In general, the regressors y(t) and u(t) are correlated with their

values at other times:

Fy(t-n-1) _ (n) (n)1 = H (t-1) (t-1) + r (t-1) (2.4.3)

Lu(t-n-1)

where rn(t-1) is the uncorrelated (orthogonal) part of [yT(t-n-1)

uT(t-n-1)]T. Then:

0
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A (n+AS(n+1) ^ (n+1) (n+1)
y t n+1 (t-1)

^(n+1) (n) y(t-n-1

n +_u (t-n-1)

=(n+) (n) t + * t (H (n) Ct-i)(n) (t-1) + r (t-1))
Sn + -n

t (n+1)+ ]H(n)(t-1) )(n) t-1)+ ]r (t-1)
n -n-

A(n+1) ^(n)
Since y Wt y Wt + (new information from adding n+1 terms):

^(n(t) = +1+ [- ]H n(t-1) (n(t-1)= n) ()t-1)

Ar (n+1) ^ (n) -[ H(n)(t-1)
or: 1 0 -]HO

-n -n

Thus, for RLS, increasing system order changes the estimates of all the

parameters, not just the additional ones. Increasing the system order

requires restarting the identification.

In RLLS, the regressors r(t) described above are used in the

identification instead of y(t) and u(t). Because of the orthogonality

property, parameters are identified one order at a time instead of one

inputs must be replaced by r as well as the outputs.) Because RLLS

replaces the inputs with orthogonal regressors, it requires a

regressive model of the inputs as well as the outputs. Thus, RLLS

identifies more unknowns -than RLS, although the additional parameters

are not directly required to reconstruct the unknown system.

The RLLS equations can be derived either as an orthogonal
T T iT

projection of [y (t) u (t)j on O(t) or a transformation of coordinates

(see Appendix A). These equations are listed in Figure 2.4.1.

Extension of Derivation

Four modifications make this algorithm easier to use and less

complex:
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(1 ) The equations in Figure 2.4.1 assume that the state variables,

inputs, and outputs have been normalized so that the measurement noise

has variance one for all sensors. Including the variance explicitly

permits using variance = 0 to check that the equations are working

properly. (When there is no noise and the RLLS noise variance

parameter y is set to zero, the identifier converges to the true system

exactly, in a finite number of steps.) It also allows this scalar

parameter to be varied to adjust the convergence rate of the identifier

for best performance. In the examples in this thesis, the best

performance was for the variance to be set to about 100 times the true

variance. The state variables have been normalized so that the true

noise variance is the same for all outputs.

-1 * *-
(2) Defining P = R and P = R eliminates two matrix

n n n n
inversions, saving computation time for systems with m (=number of

inputs) + p (=number of outputs) > 3 (see Figure 2.4.3).

*
If P and P are used:

n n

(3) The parameter F, which is an intermediate parameter used in

the standard form of the algorithm (see Figure 2.4.1), can be

eliminated, saving computation time.

T *-
(4) A UDU formulation for P and P can be used, increasing

n n
numerical stability. This costs computation time, but the improvement

in numerical stability is usually necessary for good algorithm

performance.

The details of incorporating these three changes into the equations are

given in Appendix A. The resulting equations are listed in Figure

2.4.2. A comparison of the number of multiplications required for the

standard and modified algorithms is presented in Figure 2.4.3. The

savings in computation time for typical LSS models is substantial.
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Initialization: FnCO) = 0

Rn(-1) = Rn*(0) = small I

00(t) = 1

Each new measurement: e (t) = r (t) = [ T(t) uT t) T

For n=O, -o', M-1:

R (t-1) = )R (t-2) + r (t-1) r (t-1)/S (t)n n -n -n n

* * T
R (t) = X R (t-1) + e (t) e (t)/O (t)n n -n -n n

F (t) = X F (t-1) + r (t-1) e (t)/6 (t)n n -n -n n

K (t) = F (t) R (t-1)
n n n

**-
K (t) = F (t) R (t)n n n

For n*M-1:
*

r (t) = r (t-1) - K t) e (t)--n+i - n -n

-n+1(t) =e (t) -Kn(t) r (t-1)

an+1(t) = n(t) - r (t-1) R 1(t-1) r (t-1)

where, for x(t) = G(t) (t-i):

G(n+1) = [G(n)Ct) 0] + Kn(t)[-H (n)(t-1) I]

H(n+1) (t) = [0 H (n) Ct-1)] + K*(t)[I -G(n) (t)]

Figure 2.4.1: RLLS Equations as Presented in the Literature



Initialization: K (0) = K (0) = 0
n n

P (-1) = P (0) = large I
n n

Yo(t) = XV, where X = forgetting factor

V = measurement noise variance

Each new measurement:

e (t) = r (t)
-o -o

[ T T T= Ct) u Ct)]T

For n=0 + M-1:

k
P (t-2) r (t-1 )
n

r (t-1) P (t-2) r (t-1) + y (t)
-n n -n n

K (t) = K (t-1 ) + [e (t)
n n-n

- K (t-1) r (t-1) kT
n -n

P (t-1) =kI -krT (t-1) Pnt2)
n--n

k*

*
P (t-1) e (t)

n -n

e (t) P (t-)*e (t) + y Ct)
-n n -n n

* * * *
K (t) = Kn* (t-) + [r (t-1) - K (t-1) e (t)k
n n -n n -n

P*(t) = [I - * n(t) P (t-1)

For n#M-1:

e (t) =e (t) -K (t) r (t-1)

r (t) =r (t-1) -K (t)e t)
-n1 nn -ni

Yn+ (t) = Y(t) - X r (t-1) P (t-1) r (t-1)
n n --n

To recover RLS coefficients (x(t) = G(t) 4(t-i)):

G (n+1) (t) = [G(n) t)

H(n+1) t) = [0 H(n)

01 + K n(t)

(t-1)] + K (t)
n

[-H (n) Ct-1)

[I -G(n) (t)

with: GO )(t) = Ko(t) and HMi)(t) = K.*(t)

Figure 2.4.2: Alternate Form of RLLS Equations

0
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0

0

(2.4.4)

(2.4.5)

(2.4.6)

(2.4.7)

(2.4.8)

I]

(2.4.9)

n=O.+M-1
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-- standard RLLS

- - modified RLLS

.I I I I I
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--. - -.- - - - - - - -......... -- - - . . . . - . . - -............-....- -.. .

1 2 3 4 5 6 7 8 9 10

NUMBER OF INPUTS + NUMBER OF OUTPUTS

Figure 2.4.3: Comparison of Number of Multiplications Required for
Standard and Modified RLLS
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Correlated Noise

RLLS has the same problem with correlated noise as RLS i.e. the

estimates are biased for correlated noise. Extended least squares can

be used in a lattice filter (called RLELS) to eliminate the bias just

as it is used in RLS, with Ay + Bu replaced by Kr. Equations 2.4.4-9

are unchanged in form, but their dimension is increased because the

error estimates en(t) are added to the regressors. The execution

order is rearranged to allow calculation of .E(t):

Each new measurement:

S.O(t) = Y(t)/YO(t)

For n = 0 + M-1:

.Cn+1 (t) = 15(t) - Kn(t-1 )r-n(t-1 )/Yn(t)

Do Pn(t-1) equation from equations (2.4.4)

Do equation (2.4.8) (the Yn+1(t) equation)

e (t) = r (t)= [yT (t) u(t) e t)Y (t)T
-o -0- -n n

Do equations (2.4.4)-(2.4.7) and (2.4.9), with 'Pn(t-1)

equation from equations (2.4.4) deleted.

Evaluating. Performance

Because of the large number of parameters involved, measuring the

accuracy of an identification is difficult. In addition, the two basic

purposes of an identification have slightly different goals. The

modellers need to know where the largest errors in the model are, an

indication of where the modelling assumptions are most in error. The

users need to know how well a controller based on the identifed model

will perform with the real system.

Comparing the numerical values of the identified parameters in the

RLLS model is not useful for either group. It is impossible to tell

how significant errors in a single parameter are, or whether errors in

two parameters tend to cancel each other out. The approach used here

is to take the identified system, convert it to modal form, and use the

result in a simple control system. The modal form is well suited to

revealing identifier errors in the model, and comparing the performance

using a simple control system reveals how important the identifier

errors are in degrading system performance. The procedure is:

0
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(1) Transform the RLLS model to a RLS (ARMAX) model.

(2) Transform the RLS model to continuous time.

(3) Transform to Modal Parameterization 2 form. The

modes are now decoupled.

(4) Perform an eigen analysis on the system matrix to recover

the identified eigenvalues (frequencies and damping

ratios). Compare with the known correct values.

(5) Recover the identified mode shapes from the C matrix.

Compare with the known correct values.

(6) If any rigid body modes were identified as low

frequency flexible modes, transform them to Modal

Parameterization 3 form. (Since the modes are decoupled

this can be done without transforming the other modes.)

This step is required to insure that as the frequency of

such modes approach 0, the form of the system matrix will

approach a rigid body mode.

(7) Transform to discrete time using the step size for the

control system.

(8) Use the identified system to generate a steady state linear

quadratic regulator with steady state Kalman filter

observer. Run the known true system with this identified

regulator+filter and look at the LSS transient response,

closed loop poles, and standard deviation of the steady

state errors. Compare with results for the true system.

Note that the identified and true cases use the same

weighting and covariance matrices to design the regulator

and filter and the same A, B, and C matrices to calculate

the true state (those for the true system). They use

different gains and different A, B, and C matrices to

propagate the state.

Presenting the frequencies, damping ratios, mode shapes, and

regulator performance is unnecessary for every example. In general,

the more accurate the identification, the closer all these measures are

to correct. For brevity, comparison between data runs will be done by

comparing identified frequencies. Examination of a single run's

accuracy will include all the measures.
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Figures 2.4.4-12 examine the performance of RLLS on an 8 mass

slinky. The SNR used to generate this data, averaged over the

sensors, was about 100. Figures 2.4.4 and 2.4.5 show the time history

of the two inputs (on masses 1 and 5). Figure 2.4.6 shows the

identified frequencies. The error is 2% or less for all modes. Figure

2.4.7 shows the identified damping ratios. The percentage error is

large (318%) because the damping ratios are so small, but the absolute

magnitude of the error is small (worst error was .024). Figure 2.4.8

compares the real part of the identified and true mode shapes at the

four masses where there were sensors (1,3,5, and 7). Figure 2.4.9

shows the same comparison for the imaginary part (which was zero for

the true modes). Figure 2.4.10 compares the regulator commanded inputs

for the true and identified systems. The true inputs use gains

determined using the true system, and the- states are estimated using

the true system. The identified system uses the identified system to

calculate gains and propagate states, but the exact state is obtained

by applying the commanded inputs to the true system. Figure 2.4.11

compares the outputs for the true and identified system+regulator+

filter. Figure 2.4.12 compares the closed loop poles and standard

deviation of the steady state errors for the true and identified

systems. All these figures indicate that RLLS works very well.

Figure 2.4.13 compares the performance of RLLS, RLELS with

forgetting factor=1, and RLELS with forgetting factor=.98. For all

modes, RLELS was as good or better than RLLS, but the improvement was

slight. The difference in forgetting factor was not significant.

As demonstrated in the previous pages, RLLS is a good baseline

algorithm for identifying a LSS. Since it is recursive, the data

storage requirements are not large. It requires no specific type of

inputs, so a controller running in parallel with the identification

experiment to stabilize the structure does not interfere. The

resulting identified model is useful both for verifying a finite

element model and for use in a linear, discrete time control system.

A version exists (RLELS) which provides unbiased estimates for

correlated noise, if the extra accuracy is desired over faster cycle

times. The errors in frequency and damping ratio in the identifier are

acceptable for reasonable run times (Figures 2.4.6 and 7).

0
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Input 1 = .037*cos(.35T)+.064*cos(.68T)-.103*cos(.95T)+.077*cos(1.24T)+
.096*cos(1.5T)+.150*cos(1.75T)+.193*cos(1.9T)

where T = time+20 so that the terms don't all start at a peak

1.00

.750 k

.500-

.250k-

n 0.00

-. 250

-. 500k

-. 750 -

-1.001
0. 0 50.0 100. 150. 200. 250. 300.

STEP NUMBER (TIME)

Figure 2.4.4: Input from Actuator 1 During Identification Run
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Input 2 =-.125*cos(.43T)+.074*cos(.84T)+.151*cos(.99 T)+.113*cos(l. 2 8 T)+

.112*cos(1.54T)+.144*cos(1.79T)+.122*cos(1.94T)

where T = time+20 so that the terms don't all start at a peak
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500 -

.250

n 0.00
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-1 nnl
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I U

50.0 100.

STEP NUMBER (TIME)

Figure 2.4.5: Input from Actuator 2 During Identification Run
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.- identified frequencies

- - true frequencies

150. 200. 250. 300.

STEP NUMBER (=TIME)

Figure '2.4.6: Identified Frequencies for 8 Mass Slinky
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changing lines are identified damping ratios
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Figure 2.4.7: Identified Damping Ratios for 8 Mass Slinky
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identified mode shapes

true mode shapes

2 3 4

SENSOR NUMBER

Figure 2.4.8: Identified Mode Shapes for 8 Mass Slinky

*Integers are mode number; deflections about 0 for each integer
are the mode shape
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- identified mode shapes

... -true mode shapes

8

7

c:

CE

5

X:
aL-

z
2C 3

2

12

SENSOR NUMBER

Figure 2.4.9: Imaginary Part of Identified Mode Shapes

for 8 Mass Slinky

*Integers are mode number; deflections about 0 for each integer

are the mode shape



49

-- inputs using identified system

"o true
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Figure 2.4.10: Control History for Identified Closed Loop System

for 8 Mass Slinky
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.- outputs using identified system

"f "f true "
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Figure 2.4.11: Outputs for Identified Closed Loop System

for 8 Mass Slinky
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Freq. Damp. F/Ri Freq. Damp. F/R Freq. Damp. F/R

Ratio Ratio Ratio

True 0.266 .699 R 0.407 .237 R 0.515 .439 F

Identified 0.270 .672 0.408 .226 0.548 .466

True 0.605 .530 F 0.768 .080 R 0.903 .375 F
Identified 0.581 .555 0.771 .052 0.896 .361

True 1.112 .028 R 1.168 .145 F 1.385 .107 F
Identified 1.116 .016 1.146 .166 1.418 .012

True 1.415 .022 R 1.648 .077 F 1.663 .021 R

Identified 1.430 .104 1.661 .016 1.688 .082

True 1.848 .019 R 1.848 .043 F 1.954 .054 F

Identified 1.847 .018 1.871 .053 1.958 .056

True 1.962 .022 R

Identified 1.961 .021

1F/R: F means filter pole, R means regulator pole. For the identified

system, the poles don't separate so this cannot be determined directly.

(a) Closed loop poles for steady state filter and regulator

Modal State Steady State Errors

x V X V X V

True .0152 .0036 .0114 .0120 .0095 .0095
Identified .0152 .0036 .0114 .0120 .0107 .0108

True .0078 .0078 .0058 .0058 .0040 .0040
Identified .0101 .0101 .0071 .0072 .0044 .0044

True .0019 .0019 .0033 .0033
Identified .0019 .0019 .0033 .0033

(b) Standard deviation of steady state errors

Figure 2.4.12: Closed Loop Poles and Steady State Error Standard
Deviations for Identified Closed Loop System for 8 Mass Slinky
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- - true frequencies
RLLS estimates
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Figure 2.4.13: Comparison of Performance of RLLS and RLELS

for 8 Mass Slinky
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Chapter 3: Computational Considerations

Chapter 2 described the RILLS algorithm in general. This chapter

examines the two computational characteristics which make it

particularly attractive for LSSs: cycle time and order recursion. .In

section 3.1, these are explored for the optimal RLLS algorithm

presented in Chapter 2.

As illustrated in Figure 3.1.3, RLLS has a lower cycle time than

RLS for the large numbers of identified parameters typical of LSSs.

Even so, the RLLS cycle time grows rapidly with the number of

parameters. For a minimal identifier (no error checking and no

monitoring of the identified modes or choice of system order), the

measured cycle time was 15 milliseconds. This limits real-time

processing to frequencies lower than about 3 Hz even if the computer is

dedicated to identification, the identifier is minimal, only 8 modes

are being identified, and the computer is as fast as a VAX 11/782.

Section 3.2 discusses how this cycle time can be reduced with no

loss of accuracy by parallel processing. Section 3.3 describes a

suboptimal RLLS algorithm which trades off decreased cycle time for

increased total number of cycles and/or decreased accuracy.

3.1 Computational Characteristics of RLLS

Cycle time

For RLS, there will be p sets of equations 2.2.1-4, one for each

output. Each set will estimate a unknowns. (For a system with N

states, m inputs, p outputs, and vi=N/p, ai = a = vi(p+m) =

N(1+m/p). If the D matrix were non-zero, a would equal N(1+m/p) + m.)

The number of calculations required for all p equations is:

Equation 2.2.2 + 2.2.3 2.2.4 Total

Multiplies (3a2+5a) 2ap }(3a2 +9a)Mutpis2 2

Divides 2ap p (2a+1)p

Add/Subtract 3a2 +3a-2) 2ap (3a2+7a-2)

Table 1: Computations Required for UDUT Version of RLS
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The cycle time is limited by the number of multiplies, which goes

like 6pN (for N>>1 and m=p and N evenly divisible by p). RLLS is a

transformed version of the equations whose number of multiplies goes

4 2
like Np N under those conditions (see Table 2). For N > m,p > 1, as is

typical for LSSs, RLLS can cycle more quickly. (NOTE: There is another

way to implement RLS where the number of multiplies and additions goes

like 8p2N. Since this is not as good as RLLS and doesn't have the

numerical stability of the UDUT form, it is not considered in this

thesis (ref. 20, p. 340-346.)

The RLLS equations (2.4.4 to 2.4.8) are like 2 RLS estimators plus

the calculation of e (t), r (t), and y (t). The maximum filter order M
-n -n n

equals the largest value of vi. (For a system with N states, m

inputs, p outputs, and vi=N/p, a=m+p and M=N/p. If the D matrix were

non-zero, M=v +1=N/p + 1.) The number of calculations required is:

max

Equation Multiplies Divides Add/Subtract

7 2 1 2
2.4.4 -M(a +a) M(2a+1) M(7a +3a-2)

*2 2
7 2 1 2

2.4.5 -M(a 2+a) M(2a+1) M(7a +3a-2)
2 2

2.4.6 + 2(M-1)a - 2(M-1)(a2 +a)
2.4.7

1 3 2 1 3 2
2.4.8 -(M-1 ) (a +9a +2a+6) -(M-1 )(a +6a +5a+6)

6 6

1 3 7 2 1 3 2
Total 6(M-1 )a +-(3M-1 )a + 2M(2a+1) (M-1)a +(1 OM-3)a +

1 1
-(22M-1 )a -(35M-1 7)a-M-1

Table 2: Computations Required for UDUT Version of RLLS

The expressions for the number of calculations for equation 2.4.4 (and

2.4.5) are different from those in the Total column in Table 1 because

K (and K ) are axa matrices while 6 is a ixa vector. (Note thatn n Ri
even if the expressions were the same, the actual numbers would be

different because a in Table 1 is different from a in Table 2.) The

number of calculations for equation 2.4.8 is high because the P matrix

0

0

0

0

0



55

is not automatically available when using the UDUT equations. The a 3

contribution comes from performing U times D times UT.

Using RLELS revires 1a + (M+1)a2 + (M + ba + 1 multiplications,

M divisions, and + (M + -)a + (M + + 2p + 1 add/subtract more
6 2 3

than RLLS, and a is increased to m+2p instead of m+p for RLLS.

Figure 3.1.1 is a comparison of the number of multiplies for RLLS,

RLELS, and RLS using the expressions from Tables 1 and 2. For these

curves, vi was assumed to equal N/p and that there is no D matrix.

For N (number of states in model) large, both absolutely and relative

to p (number of outputs) and m (number of inputs), RLLS is faster than

RLS (even though it estimates more parameters). RLELS is substantially

slower than RLLS. It is faster than RLS for large systems, although

the crossover is at much larger system sizes than for RLLS. Whether

this time penalty is worth the gain in accuracy will depend on the

application, especially on the amount of noise in the system.

Figure 3.1.2 shows the predicted cycle times for the same cases.

The times are for double precision arithmetic on a VAX 11/782 (5.3 Usec

for a multiply, 8.5 psec for a divide, and 4.1 psec for an add/

subtract). (NOTE: These numbers are for double precision operations

involving elements of 2 dimensional arrays. The numbers for scalar

double precision operations are 3.6, 6.7, and 2.3 respectively.)

Comparing these two figures shows that even though cycle time will vary

with machine, counting the number of multiplications is a good measure

of relative performance of RLLS and RLS.

Table 3 lists the number of calculations and predicted cycle times

for systems with 6 or fewer outputs for even larger systems. To

minimize the table size, only systems which have no more actuators than

sensors are considered. The table also assumes that the number of

states is evenly divisible by the number of outputs and that only

systems with an even number of states are of interest. For each

combination of m and p, two entries are included: either the two values

of N where the crossover from RLS being faster to RLLS being faster

occurs, or the lowest two values of N. (Note that the assumption of N

even means that when p is odd, only every other evenly divisible N is
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RLS RLLS RLELS

CYCLE CYCLE CYCLE
N m p MULT DIV ADD (MSEC) MULT DIV ADD (MSEC) (MSEC)

456
690
324
540
540
912
396

1368
585

2070
810

2916
240
780
324

1080
420

1428
528

1824
1350
4860
1785
6510
2280
8400
2835

10530
3450

12900
630

2142
792

2736
972

3402
1170
4140
1386
4950
1620
5832

33 439
41 669
38 304
50 514
50 514
66 878
51 369
99 1317
63 552

123 2007
75. 771

147 2841
44 216
84 736
52 296

100 1028
60 388

116 1368
68 492

132 1756
125 1285
245 4735
145 1710
285 6365
165 2195
325 8235
185 2740
365 10345
205 3345
405 12695

90 582
174 2052
102 738
198 2634
114 912
222 3288
126 1104
246 4014
138 1314
270 4812
150 1542
294 5682

4.50
6.75
3.29
5.39
5.39
8.99
4.04

13.49
5.90

20.24
8.09

28.35
2.53
7.86
3.37

10.79
4.33

14.16
5.39

17.99
13.49
47.25
17.70
63.02
22.49
81.05
27.83

101.33
33.74

123.86
6.49

21.24
8.09

26.98
9.86

33.40
11.80
40.49
13.91
48.26
16.18
56.70

448 80 396
564 100 500
326 42 292
447 56 403
556 54 508
764 72 701
348 36 315
764 72 701
530 44 487

1170 88 1085
752 52 698

1668 104 1558
210 22 188
530 44 487
294 26 268
752* 52 698
392 30 362

1015 60 949
504 34 470

1320 68 1241
752 52 698

1668 104.1558
1015 60 949
2261 120 2123
1320 68 1241
2952 136 2783
1668 76 1575
3744 152 3541
2060 84 1952
4640 168 4400
392 30 362

1015 60 949
504 34 470

1320 68 1241
630 38 592

1668 76 1575
770 42 728

2060 84 1952
924 46 878

2497 92 2373
1092 50 1042
2980 100 2839

4.68
5.89
3.28
4.50
5.49
7.54
3.44
7.54
5.18

11.40
7.29

16. 11
2.07
5.18
2.88
7.29
3.82
9.78
4.89

12.66
7.29

16.1.1
9.78

21.71
12.66
28.21

15.94
35.65
19.64
44.06

3.82
9.78
4.89

12.66
6.09

15.94
7.42

19.64
8.89

23.75
10.48
28.28

Table 3: Comparison of Predicted Cycle Times for RLLS and RLS

41

4

10.51
13.18
9.70

13.10
13.72
18.54
12.02
25.02
15.65
32.57
19.81
41.23

9.11
19.82
11.28
24.53
13.71
29.82
16.43
35.70
29.83
62.04
35.71
74.26
42.20
87.73
49.32

102.51
57.09

118.62
19.44
42.21
22.74
49.33
26.34
57.10
30.25
65.54
34.49
74.66
39.06
84.49
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considered.) For p larger than 2, RLLS is faster than RLS starting

with the lowest value of N considered, and the discrepancy grows as N

increases.

To verify the accuracy of the formulas in Tables 1 and 2, figure

3.1.3 shows predicted cycle times vs. measured cycle times for 1 input,

2 outputs. For the measured times, the program was timed with the

identification algorithm subroutine replaced by a null subroutine.

This time was subtracted from the runs with the identifier to minimize

the amount of overhead time included in the measurements. (Typical

values were 6.3 CPU sec for initialization and final print-out and 3.3

CPU millisecond per cycle to generate data and call the subroutines.)

The actual performance is about 1.5 times slower than predicted, which

is as close as could be expected. These times do not include

converting from LLS coefficients to LS coefficients (for RLLS) or any

eigenanalysis to check the identified frequencies.

Recursive-by-Order Property

The second characteristic of RLLS (RLELS) which is advantageous

for LSSs is choice of model size. Unlike many identification

algorithms, RLLS is well behaved if the model size is chosen to be

larger than the true system. Thus, if a mode is underexcited so that

it disappears from the data, the identifier will not have numerical

problems.

Because equations 2.4.4-9 are performed one order at a time, the

estimates for low orders are theoretically and in practice unaffected

by the estimates for higher orders. "Low orders" refers to the

parameter estimates obtained from assuming a low system order. These

estimates are corrupted by the presence of unmodelled higher orders and

do not correspond to the low order part of the complete system. In
*

other words, K (K ) of equation 2.4.4 (2.4.5) is unaffected by the

estimate of K1, 000, KM-1 (K1, e**,KM-1
This means that the only decision required for RLLS is the maximum

identifier order to be considered. If the maximum identifier order is

10 (giving a system order of 10p), then K 8 (K8 *) is exactly the same
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as if the maximum identifier order had been chosen to be 9. So, the

estimated system for all lower ident.fier orders can be recovered. For

RLS, only the estimated system corresponding to the maximum order is

recovered. Note that this is not exactly true for RLELS. The estimate

of the error e(t) depends on the maximum identifier order. Since e(t)

affects the estimates of all orders, the lower order systems can still

be recovered, but they will vary with the maximum identifier order to

some extent.

Figure 3.1.4 shows how this works. In Figure 3.1.4, the dashed

lines are the correct frequencies for the 6 modes (there is a rigid

body mode at 0 frequency) of a 6 mass slinky. The exact identifier

order is also 6 (12 states divided between 2 position sensors, one on

mass 1 and one on 5). The assumed maximum identifier order was 9.

These results are after 300 steps and a SNR of 85. Spurious modes

fitted to the noise appear for orders above 6, but the true modes

persist. For low noise levels, this characteristic can be used to

identify the system order -- the frequency estimates stabilize abruptly

at the correct system order. The noisier the system, the harder this

is to judge. For a noise free system, the identifier converges to the

true system exactly in a finite number of steps.

Figure 3.1.5 demonstrates this persistence-of-correct-frequency

effect, for a 9 mass slinky, even when the true system order changes

during an identification. The middle mode (at 1.2856 rad/sec) is

deleted at step 100, causing its estimate to drift. Note that it

drifts right through the persisting modes with only temporary

disturbances to their estimates. (SNR=20 for this graph.)

As demonstrated in the previous pages, RLLS has computational

advantages over other algorithms which are important when identifying a

LSS specifically. LSS models have so many parameters that the lower

cycle time for large models of RLLS is important (see Figure 3.1.2 and

Table 3). Also, the identifier is not degraded by choosing a model

which is larger than the actual system or by modes which are

temporarily underexcited making the system appear smaller than it is

(Figure 2.4.16).
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Parallel Processing

The recursive-by-order property makes RLLS ideally suited to

parallel processing. Fquations 2.4.4-8 are performed once for each

order. Each order needs e(t), r(t-1) and y(t) from the next lower

order, which is a total of 2a+1 variables. Most of the variables (k,
* * * 2

K, P, k , K , and P , a total of 4a +2a) are not passed between

orders. Thus, the data transmission requirements are not large.

The only change to the algorithm is that the computations would

have to be staggered in time. en+1(t) is not available until after

-n(t) has been computed, so they can't be calculated in parallel

during the same cycle. For example, suppose the identifier is

estimating 3 orders, with 3 processors working in parallel. The inputs

and outputs are shown in Figure 3.1.6a.

Recovering the parameters in G( 3 )(t)- requires K2 (t), which

won't be available until time t+2. The identification will be delayed

as many time steps as processors. This is balanced by a decrease in

cycle time by a factor which equals the number of -processors if the

identifier order is divisible by that number; slightly less decrease if

not. With this approach, there is no loss of accuracy (unlike the

technique discussed in the next section).

Recovering G(n)(t) requires execution of equations 2.4.9, which

are not required for the processing shown in Figure 3.1.6a. Either the

K and K* being estimated by each processor needs to be sent to some

other processor periodically, or the calculations can be included in

the parallel processors, but not executed every cycle. This latter

approach is illustrated in Figure 3.1.6b. Note that this requires

periodic transmission of G and H between processors, increasing the

data transmission requirements.

Again, there is no loss of accuracy but the identifier output is

delayed.

4
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At time t:

x(t)

estimates hold 1

K0 (t) and cycle.

K0 (t)

e1 (t)

hold 1
cycle

Y1 (t) Y

el(t-1 ) i

r (t-2) i
Yi (t-1)

Processor 21

estimates hold 1

Kl(t-1) and cycle.

K1 t-1)

2(t-i)

hold 1
2t-1 ) cycle

2(t-1)

e2 (t-2)

12(t- 3 )

Y 2 (t-2)

Processor 3

estimates

K 2 (t-2) and

K 2 (t-1)

(a) No Parameter Recovery

At time t: Op

x(t)

Processor 1

estimates hold 1

K0 (t) and cycle.

K0 (t)

G (t) G

H (t) hold 1 H(2)
cycle

l(t) e2

hold 
1

cycle

Yi(t) Y2

G (1 )
H 01 )

E1Ct

Y1 (t

yit

Proce

esti

Ki(t-

K1 (

Ct-)

Ct-i)

(t-i)

.(t-1)

f 4-_'I %

(t-2)
-1) i
-2) >
-1)

ssor 2

mates hold 1

1) and cycle

t-1)

hold 1
cycle

hold 1
cycle

G (t-2)
H (t-3)

et2(t-2)
r2(t-

3 )

Y 2 (t-2)

Processor 3

estimates

K 2 (t-2) and

K 2 (t-1)

G (t-2)

(b) With Parameter Recovery

Figure 3.1.6: RLLS Parallel Processing with Parameter Recovery
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3.2 Suboptimal, Low Cycle Time RLLS

The parallel processing technique presented in Section 3.1 has one

major drawback--it requires more than one processor. The idea explored

in this section is: Suppose you have only 1 processor. How much

accuracy do you lose if you approximate parallel processing by (using

the example from Figure 3.1.6) running the block of software for
* (1)

Processor 1 for awhile, freezing the values of K t), K (t), G (t)
()0 

0
(1)

and H (t), then running the software for processor 2 for awhile,

etc.? The cycle time is slightly higher than for parallel processing,

because the e(t), r(t), and y(t) are still generated for the lower

orders, but only 1 processor is required and there are no between-

processor data transmission requirements. The penalty is in reduced

accuracy caused by freezing low orders and in the extended total number

of cycles caused by the serial processing. (The number of cycles is

extended by the same factor as the cycle time is decreased.)

This procedure is listed in Figure 3.2.1. To see how this differs

from the optimal RLLS algorithm, compare it with that given in Figure

2.4.2. As indicated by the parameters LO and HI in Figure 3.2.1, each

block of software may estimate any number of identifier orders.

No noise case:

If there is no measurement noise and the noise variance parameter

V(t) in the RLLS identifier is set to zero, then the identifier will

converge exactly to the true system in a finite number of steps. If

the number of cycles per block of identifier orders is greater than

that number, the suboptimal identifier will also converge exactly. The

reduction in cycle time is acheived with no loss in identifier

accuracy.

NOTE: In the case of a RLLS identifier, "exactly" means one of a

set of solutions, all of which give the same ARMAX form. The matrices
*

K and K correspond to an identified system which requires only one
0 0

identifier order. If the real system is bigger than that, there is no

single correct value of K and K . Even in the no noise case, their
0 o

identified values will depend on the input sequence. Every data run

a
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I. Initialization: As in Figure 2.4.2

II. Each new neasurement: e (t) = r (t) = [y T(t) uT (t)]T

A. For n=O, ... , LO-1:

e n+1(t) =e (t) -Kn(t)r (t-1)

r (t) =r (t-1) -K (t) e (t)
n+1 -n n --n

(t) = y (t) - A r (t-1) P (t-1) r (t-1)
n+1 n -n n -n

B. For n= LO + HI: P Ct-2) r (t-1)

k = n -n
- T

r (t-1) P (t-2) r (t-1) + y (t)
-n n -n n

K (t) = K (t-1) + [e (t) - K (t-1) r (t-1)]kT
n n -n n -n -

P(t-1) = jI - k r (t-1) (t-2)n Xn n
*

P (t-1) e (t)
k = n --n
- T *

e (t) P (t-1) e (t) + y (t)
-nI n -n n

* * * *T
K (t) = K (t-1) + (t-1) - Kn(t-1) e (t)k

* 1 * T *
P n(t) =-(I - k e n(t)] P n(t-1)

For n*HI:

e (t) =e (t) -K (t) r (t-1)-n+i ni n --n

r (t) =r (t-1) -K (t) e (t)
-n+1 -n n -n

Y (t) = yn(t) - X r (t-1) P (t-1) r (t-1)

III. To recover RLS coefficients (x(t) = G(t) (t-1)):

For n = LO + HI:

G(n+1)(t) = G(n) (t) 0] + K (t) [-H(n) t-1) I]
n

H(n+1) t) = [0 H(n) (t-1)] + K (t) [I -G(n)(t)]n

where: LO= i*M/NBLOCK

HI = (i+1 )*M/NBLOCK - 1

i = largest integer in NCYCLES*NBLOCK/NSTEPS

NCYCLES = number of cycles identifier has executed so far
NBLOCK = number of blocks identifier orders divided into
NSTEPS = total number of cycles the identifier will be run

Figure 3.2.1: Simulated Parallel Processing with RLLS
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will produce the same G(n) and H(n) (see equations 2.4.9) for n

equal to the true system size, but the Ks and K*s will vary. Thus,

"exactly" means that the true system transfer function is recovered

when the assumed system size equals the true system size.

Noise case:

In real systems, there is always noise. The more noise, the more

error caused by using the suboptimal identifier. Figures 3.2.2-8

show the results of using the suboptimal identifier on the example

examined in Figures 2.4.6-12. The suboptimal identifier required

one-quarter as many computations per step as the optimal RLLS

identifier.

Comparing the suboptimal results to the optimal results shows:

(1) largest frequency error is 4% (vs. 2%); (2) largest damping ratio

error is 872% or .14 (vs. 318% or .024); (3) standard deviation of

steady state state is .0019 to .025 (vs. .0019 to .015 for the optimal

and exact cases).

Note that the maximum decrease in number of computations per step

is limited to a factor equal to the maximum identifier order. For SNRs

in the range of 100, a factor of four is probably the most which can

be expected. The limit on computation decrease factor is not the

amount of error introduced by the suboptimality with each decrease in

number of computations, but the maximum identifier order which still

gives good estimates by the optimal identifier. This in turn depends

on the SNR and the difficulty of the identification (spacing of modes,

placement of actuators and sensors). For the 8 mass slinky example

examined here, the resulting error is about twice that of the optimal

identifier, which is still adequate for recovering a useful system

model.

I

4
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for 8 Mass Slinky
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*Integers are mode number; deflections about 0 for each integer

are the mode shape
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- inputs using identified system
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Figure 3.2.6: Control History for Suboptimal Identified Closed
Loop System for 8 Mass Slinky
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outputs using identified system

true "

.500

0.00-

-. 500 - - - -

-1.000

-1.500

-2.00-

-2.50 - - - - - - - - --- - -- - - -

-3.00 1 11
- 0.00 20.0 40.0 60.0 80.0 100.

STEP NUMBER (TIMExi0)

Figure 3.2.7: Outputs for Suboptimal Identified Closed

Loop System for 8 Mass Slinky

4
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Freq. Damp. F/Ri Freq. Damp. F/R Freq. Damp. F/R
Ratio Ratio Ratio

True 0.266 .699 R 0.407 .237 R 0.515 .439 F
Identified 0.218 .063 0.424 .116 0.565 .575

True 0.605 .530 F 0.768 .080 R 0.903 .375 F
Identified 0.780 .038 0.869 .095 1.011 .991

True 1.112 .028 R 1.168 .145 F 1.385 .107 F
Identified 1.111 .012 1.127 .174 1.414 .020

True 1.415 .022 R 1.648 .077 F 1.663 .021 R
Identified 1.544 .246 1.652 .014 1.725 .140

True 1.848 .019 R 1.848 .043 F 1.954 .054 F
Identified 1.853 .017 1.935 .162 1.954 .062

True 1.962 .022 R
Identified 1.966 .017

F/R: F means filter pole, R means regulator pole. For the identified
system, the poles don't separate so this cannot be determined directly.

(a) Closed loop poles for steady state filter and regulator

Modal State Steady State Errors

x V X V X V

True .0152. .0036 .0114 .0120 .0095 .0095
Identified .0252 .0046 .0128 .0139 .0148 .0152

True .0078 .0078 .0058 .0058 .0040 .0040
Identified .0098 .0099 .0060 .0059 .0047 .0047

True .0019 .0019 .0033 .0033
Identified .0019 .0019 .0034 .0034

(b) Standard deviation of steady state errors

Figure 3.2.8: Closed Loop Poles and Steady State Error Standard
Deviations for Suboptimal Identified Closed Loop System

for 8 Mass Slinky
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Chapter 4: Inputs to Enhance Identification

-4.1 Introduction

Once the identification algorithm has been chosen, the next step

is to choose the input (control) sequence. The necessary and

sufficient condition on the input is that it be "persistently exciting

and sufficiently rich." A formal definition of these terms can be

found in ref. 14, pages 42 and 70. Heuristically, the input must be

significantly non-zero during the experiment and must have content at

as least as many frequencies as the system being identified. This

leaves many choices for an input--step, pulse, pseudo-random binary

sequence (PRBS), sum.of sinusoids, or some less common function. Some

identification algorithms require specific inputs e.g. eigensystem

realization requires pulses1 6 . Many do not, such as least squares

filters.

This chapter presents an algorithm for calculating an optimal

input for an unspecified identifier and applies it to an example

system. The algorithm was suggested by earlier work by Kalaba &

Spingarn1 7 ,1 8 and Mehra21 , but applying it to LSSs permitted a

variation on the approach suggested in their papers which is easier and

faster to use. Further, it was extended to consider two problems of

particular interest for LSS applications -- very light damping and

closely spaced frequencies.

4.2 Figure of Merit

There are two basic theoretical approaches to designing optimal

inputs--frequency domain and time domain. Since experiment times for a

lightly damped structure are typically much less than the time required

to reach sinusoidal steadystate, time domain approaches are more 4

appropriate for LSSs.

The "best" input to use would be that which gives a minimum

experimental variance for estimates of the parameters being identified

after an experiment of duration T. However, this choice causes the 4

optimal input to depend on the identification algorithm, limiting its

usefulness. Also, this would be a complex problem to solve, giving

61
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results which might be too parameter dependent to apply in a real

situation, and providing little insight.

To avoid the problem of identification algorithm dependency,

select J to be the sensitivity of the output to the parameter(s) of

interest. Maximizing the sensitivity should make a parameter easier to

determine. Since estimate variances at T depend on all the data from

time 0 to T, choose:

T r T
= - f( Z k y y ) dt (4.2.1)

2 i=1 i a. a.
0 i i

where:

y = output

Lai= partial derivative of y with respect to ai

ai = parameter of interest

ki = relative weighting when several parameters are being

estimated

This choice for J has a more theoretical justification- than that

given- above. If the ki equalled the inverse of the variance of the

measurement noise, J would equal the trace of the information

matrix21 . The diagonal elements of the inverse of the information

matrix are the Cramer-Rao lower bounds on the variances of the

estimates. The inverse of the trace of the information matrix and the

trace of the inverse have similar asymptotic behavior, so maximizing

J should decrease the variance of the estimates.

The J of equation 4.2.1 cannot be used to calculate optimal inputs

because it grows as the magnitude of the input grows, giving an answer

of input=oo. Some constraint must be put on the input to get a usable

answer. One of three constraints is most likely to appear in practice:

1. On-off input i.e. lul = fixed

2. Available input is limited i.e. Jul <= Tfixed

3. Input usage needs to be minimized i.e. fu2 dt <= fixed
0

Flexible LSSs are almost certain to have proportional actuators

for good control of the flexible motion. These actuators will be
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limited in the maximum amount of torque/force they can provide. This

makes choice 2 the most realistic. Using that in an optimal control

algorithm is not only difficult but will probably produce bang-bang

trajectories, as if you had selected choice 1. These may be difficult

to implement on a proportional actuator.

Because of the difficulty of using constraint 2, the initial

investigation used constraint 3. Since this gave good results, the

constraint 2 case was not carefully studied and might be a good area

for future work.

So, the problem statement was changed to:

i T r T
= f (.I, k. yy)dt (4.2.2)

0 T

subject to: fu u dt =-E (4.2.3)
2f
0

Note that constraint (4.2.3) forces the input to be non-zero i.e.

"do nothing" is not an allowable solution.

4.3 Necessary (First Order) Conditions

The possible solutions are given by applying the Pontryagin

maximum principle. For a LSS, the parameters of interest are

structural frequencies, damping ratios, and mode shapes, so the state

equations are written in modal form:

0 1 0... 0 0 ... 0
2

W0 -2C0w0 . 2,1

0 0.
0 . . x

x =+.b.4xj+ b u (4.3.1)
o -4,1 .-. . 0

0 1 0 0

0 . . . 0 -2 -2Cn no b 2n;1 b~n
1 2C n-1 n-1b 2n, b 2n,

6
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: : .1,:2n

x

. . p, 2n_

c

c p

(4.3.2)

or: = Ax + Bu (4.3.3)

y = Cx (4.3.4)

The a are w0,., n1 WnlCO1' ' Cn-1b2,1,.,b 2nm. The case of

unknown elements in C will be discussed in section 4.8. Defining the
x

augmented state =x , the state equations become:

xa

r

A

A

a
2

A
2
r

A

0 A

0

A

B

B

.B

B
.r.

u (4.3.5)

y C X
-a -a.

i~e . 0

-a
e- [

= FE + Gu

[y =H

or:

C

C 0

0 C

(4.3.6)

(4.3.7)

. .0
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Define an additional state xo and weighting matrix K, where:

S= u

K =

41with x (0) = 0, x (T) = 2E

0 
1

with I = pxp identity matrix

k I
r pi

The boundary conditions on are the initial conditions on x and

xa.(O)=O (since x(0) is fixed). The terminal state is free.

Collecting these equations, the problem is:

Minimize
over u

Subject to:

iTT T T
J = - - f(T H KHE) dt

2 0

E = FE + Gu
T

0 --

B.C.s: Vo) = (0

x (0) = 0
x0 (T) = 2E

Solving this:

A 1 T T T T
Hamiltonian = r = - - H KHE + (F( + Gu) + uu

2 cr--
Tar T T

= -- = H KHE - F X

ar 0
S=- -- = 0
o ax

0

ar T - 1 T-= 0 = X G + 2X u ;u= -- G A
au- o- - 2T -

0

(4.3.8)

(4.3.9)

(4.3.10)

(4.3.11)

(4.3.12)
(4.3.13)

a

(4.3.14)

41

a

(T) = 0

( CT) = V
0

U

I

a

a

41

I
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Solving the Xo equations:

= 0 and X (T) = v + X (t) = V0 0 0

Combining these equations, the solution is:

Di F - GG L
T 2v T A -1

H KH -F X

x(O)
with (0) = (4.3.15)

0

X(T) = 0

- 1 T
u = -GX (4.3.16)

-2v -

T
1 f TGG Tdt = 2E (4.3.17)

4v 0

Two solutions to this two point boundary value problem were

proposed: one by Kalaba & Spingarn1 7 ,1 8 and one by Mehra21 . The

approach in ref. 17 and 18 works only for x(0)*Q; that in ref. 21 only

for x(0)=0. Both require numerical integration. The numerical

integration limits the accuracy of the solution and requires long

computer runs for experiment times longer than a few seconds.

This thesis uses a third approach which takes advantage of the

uncoupled modes model of a LSS. This approach replaces the numerical

integration with an eigensolution and will work for either x(0)=0 or

x(0)#0. Assume a solution of the form:

V(t) 4n(r+1) t
-i A

= Y e =0 Y (4.3.18)
(t) = 1
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where: ai = eigenvalues of F' (see equation 4.3.15)

& = normalized eigenvectors of F'

yi = constant chosen to meet the boundary

conditions of equation 4.3.5t
4 = matrix whose columns are O e

y = column vector whose elements are yi.

Solving for $ and y as stated involves inverting a rather large

matrix and computing independent eigenvectors for repeated eigen-

values. Solutions to these two problems are discussed in section

4.10. The procedure for finding 4 and I if the above were easy to do

is:

1) Choose v (see step 4 and comment 2). Construct F'

(equation 4.3.15). 4

2) Find the eigenvalues and eigenvectors of F'.

3) Evaluate the rows of $ (eq. 4.3.18) corresponding to elements

of E (i.e. rows 1 to 2n x (r+1)) at t=0. Evaluate the rest of

the rows at t=T. Call this matrix Oc' 4

4) If x(0)0, r= r [(0) XT(T)]T = 01 T (0) 0 T T If- - -E - I .

x(0)=0, v was chosen so that c=0. Solve for the elements

of y in terms of one of its elements. The amplitude of that

element is chosen to satisfy equation 4.3.17.

Comment 1: As described in step (4), the algorithm is affected by

whether or not x(0)=Q, but the variation is a minor part of the

algorithm.

Comment 2: To get an optimal input for an experiment where T is

specified will require iterating through steps 1-4. Pick a value of v

and: iterate on the value of T until Icf=0 if x(0)=_; or (2)

evaluate equation 4.3.17 if x(0)#0. If T (x(0)=0) or E (x(Q)*0) is

wrong, try a new value of v and iterate. The system is well-behaved,

so that a search algorithm can be used to make the process very fast.

A similar iteration sequence is required by the approaches of ref. 17

61
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and 21. The method proposed here is faster and more accurate than

their approaches because the numerical integration is eliminated. (For

example, ref. 18 gives a numerical example of a SISO single state

system. The reported value of T for the given V is 1.02 while the

correct value to three decimal places is 1.012.) In addition (as

discussed in section 4.10), using the modal form uncouples some of the

variables and they can be removed from the calculations for v and T.

This reduces the number of variables used, saving even more time.

4.4 Sufficient (Second Order) Conditions

The sufficient conditions for a weak local minimum of the system

given by equations 4.3.14, 4.3.15, and 4.3.16 are (ref. (E) for the

case x(T)=free):

r uu(t) > 0 for 0<t<T (strengthened Legendre-Clebsch) (4.4.1)

S(t) finite 0<t<T (Jacobi or no conjugate point condition) (4.4.2)

T 1 T T
where: S = -SF - F S + --- SGG S + H KH with S(T)=0 (4.4.3)

Differentiating equation 4.3.14 twice gives:

r 2X I = 2vIuu o

Since v>0 always (see Section 4.6, "Characteristics of the Solution",

comment 4) equation 4.4.1 is satisfied. To check equation 4.4.2,

consider the Ricatti equation form of the solution to equation 4.3.15

(ref. (D)):

_(t) = S(t)(t) (4.4.4)

= T 1 T T
S -SF-F S + -- SGG S + H KH with S(T)=0 (4.4.5)2v

Note that equations 4.4.5 and 4.4.3 are the same. From equations 4.4.4

and 4.4.5, if S goes to infinity in the interval 0<t<T, then X(t) also

goes to infinity for 1(t)*0. Thus, the condition on the equation for a

solution to exist (4.4.5) and the condition (equation 4.4.2) on the
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equation for there to be no conjugate point (4.4.3) are the same. In

addtion, for x(O)#O, there can be no conjugate point at T, because then

S(0) is infinite, E(O) is non-zero, giving X(0) infinite. For x(O)=Q,

the solution when there are no conjugate points in O<t<T is X(t) = E(t)

= 0. This is a valid solution in that it is an optimum, but it is not

useful. If there is a conjugate point at T, then there exists a

nontrivial perturbation to the optimum which satisfies the first order

conditions and is zero at 0 and T8 . Thus, the boundary conditions

E(0)=0 and X(T)=0 can be met with a nontrivial E(t) and X(t) only at a

conjugate point. As shown in step (4) at the end of section

4.3, this means there is a conjugate point at T such that Itcj = 0:

For x(O)*O, the algorithm provides a weak local minimum provided

T < first conjugate point. For x(0)=0, 'the algorithm has no

solution except at conjugate points, and is minimum only if T =

first conjugate point.

Because of the form of equation 4.3.18, E(t) and X(t) are sums of

exponentials, some of which are oscillatory, so that c=0 for an

infinite number of periodically repeating T, given a particular system

and choice of v and E. Past the first such T, numerical results show

that the solution is maximizing, although there is no theory that

allows determination of optimality for times larger than the first

conjugate point.

4.5 Simple Example

A low order example may clarify this procedure. Consider the case

used in ref. 18, i.e. SISO single state with (single element) state

matrix unknown. In the notation of eq. 4.3.1:

x = ax + bu

y = cx + noise

Assume b=c=1 and a is unknown but the true value is -. 1. The weighting

parameter k1 =1. Following the procedure from section 4.3:

0
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1. Choose v. Construct F'.

Choose v=.0375. F' becomes:

F -- GG T
F' 2v

H TKH -F T

A 0

A A
a

1 T
2v
0

0 0 -A -A
a

o C TKC 0 -AT

0 -2 0 -.1
2v

a 0 0 1
0 -a -1 0
2

k c 0 -a0
1

0 -13.3 0

-1 0 0
0 1 -1

1 0 . 1

2. Find the eigenvalues and eigenvectors of Ft.

= 0 + = 2 +bc/1 81 +
2v

2 7v
a -bc --

= 1.9135, t 1.9083 i

1

1

8.-a

b 2

2v 2 2

-b -a

0

0

F'-I I

a

10

0
L
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-1.91 4t
e
1 .908it

e

.50e
1 .91 4t

-. 15e
1 .91 4t

.27e 1. 91 4t

-. 55e-1.91
4 t

(.027-.52i)e1.908it (.027+.52i)e-1.908it

1 4 -1.914t (-.008-.14i)e 1.908it (-.008+.1 4i)e- 1. 9 0 8 it

.27e
1 . 914t -. 27 e1.908it -. 27 e- 1. 908it

1
3. Evaluate the first two rows (n=n, r=1) of I at t=0, the last

2
rows at t=T. (Consider two values of T, T=1.0120098 seconds and

seconds.)

0 (T=1.0120098) =
C

$ (T=1.0)
c

1

.50

-1.05

1.90

r1
.50

=-1.02

L1 .86

4. If x(0)*0, y = - x (0)

element of Y. 1O

1

-. 55

.020

.040

1

-. 55

.020

.040

1

.027-. 52i

.1 4+.044i

.097. 26i

1

.027-.5.2i

.14+.040i

.091-.26i

1]

.027+. 52i

.14-. 044i

.097+.26ij

1 -

.027+.52i

.14-.040i

.091+. 26iJ

. If x(0)=0, y is in terms of one

1 - 19 - 7x1 0- I c2 -2x10~ 1 9 + .018i 0

So, T=1.0120078 can be used only if x(0)=0, T=1.0 only if x(0)*0.

(T=1.0120098 is the first conjugate print for v=.0375).

(a) For x(0)=0:

1.91 4t
e e

-1 .908it~

4

4

two

T=1. 0

4

A
c1

I

6
=A

c2

a

48

6
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-1

0 1 0 1 0

1 0 1 0 1

0 -. 55 0 .027 .52

.50 0 -. 55 -. 52 .027

1

0

.027

.52

FRe

Im

Re

Im

Re

Im

Re

.337 0 -2.337023 1.445 1 -1.445 IMY4

The notation is Y 4 =(-1.445+i) Imy4, where ImyL is not restricted to be

real. For ImY4 =-i:

a [.337

(b) For x(0)*0:

2.2~~ =% x(0)Y 0 C2 0
0

L 0

-2.337 1-1.445i 1+1.445i]

I
2.70

8.09-11 14i
8.09+11.14i

[2.70

[.337

1
1

3.68
-26.01
1 17-1 5.10i
1. 17+15.1 Oi

-17.88 8.09 -11.14i

-2.231 1.009-1.390i

-14.02
91. 410

-38. 54+56. 74i
-38. 54-56. 74i

-9.63
66.83

-28.60+41 .33i
-28.60-41.33if

8.09+ 11.14i] x(0)

1.0093+1.390iT 8.01 x(0)

x(0)
0
0
0]

(4.5.2)

(4.5.3)

So, the solutions are:

1

0

.50

Yi

Yj

Y2

Y2

Y3

Y3

Y4

0 .020 0 .14 -.044 .14

-1.05 0 .020 .044 .14 -.044

0 .040 0 .097 .26 .0 9 7

0

-1.05

0

1.90

1

0

-1

.52

-. 027

-. 044

-. 14

.26

(Imy4 ) 1

= [o0

(4.5.1)
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(a) For x(0)=0:

= U(.337e1.
9 1 4 t -2.337e-1 .914t + (1-1.445i)el.9O8 it

+ (1+1.445i)e-1.908it)

= y (.337e1.91
4 t -2.337e-1.914t + 2 cos(1.908t)

+2.891 sin (1.908t))

= - iG = (.679e1.914t + 4.238e-1.914t

+ (2.858 + 1.764i)e1.908it + (2.858-1.764i)e-1.908it

= y(.679e1.914t + 4.283e-1.914t + 5.716 cos

- 3.527 sin (1.908t))

1.0120098
where U is chosen so that f

0

(1 .908t)

2
u dt = 2E

Is

(b) For x(0)*0:

= x(0)(2.701e
1 .9 1 4t - 17.876e-

1 . 9 1 4 t

+ (8.088-11.138i)e-1.908it)

= x(0)(2.701e1 .9 1 4 t - 17.876e- 1.914t + 16.175 cos(1.908t)

+ (8.088-11.138i)e1.908it

u(t)

+ 22.276 sin(1.908t))

= x(0)(5.438e1.914t + 32.42e-1.914t +

0

(22.06 + 14.32i)e1.
9 0 8 it

-1 .908i t
+ (22.06-14.32i)e

= x(0)(5.44e1.914t + 32.42e-1.914t + 44.13 cos(1.908t)

+ 28.64 sin(1.908t)) a

1
where f u 2 dt is compared to 2E to see if the wrong value of v was

used. 0

0

x(t)

u(t)

a

a

x(t)
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4.6 Solutions for a Simple LSS

To examine the solutions produced by this algorithm for a LSS,

start with the simplest model which contains all the characteristics of

a LSS i.e. a rigid body mode and a lightly damped flex mode which may

be closely spaced with respect to a second flex mode. This system is

modelled as a three mass slinky as shown in Figure 4.6.1. Initially,

consider a non-colocated SISO set up, with the thruster at one end and

the (position) sensor at the other:

F
k k 2

m mnin3

c c 2x

Figure 4.6.1: Three Mass, SISO Slinky

For the graphs in this section, the numerical values of the parameters

are:

3.

ml=m 3=100 kg; m2=300 kg ( l m = 500 kg)

kl=k 2=100 N/m

cl=c2 =2 N-sec/m

The maximum thrust available is 50 N, which is included in the gain

matrix, so that the optimal input should be <= 1. Substituting these

values into the modal equations 4.3.3(4.3.1) and 4.3.4(4.3.2) gives:
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0

0

0

-m2-W 12

0

0

0 0

0 0

1 0

-2CiWi 0

0 0

0 -W22

0

0

0

0

1

-2C2W2

4

(4.6.1)

0

0

0

0

0

0

1

0

0

0

0

0

0

where: b 2

w2

Ci

= .10 N/kg

= 1.000 rad/sec, i = .01000,

= 1.291 rad/sec, C2 = .01291,

= 1, c3 = 1.58, C5 = 1.22

b4 = -. 15 N/kg

b6 = .12 N/kg

The transformation to modil form uses 3eigenvectors (mode shapes) which

have been normalized via U m.*.(i) = E m , where *.(i) = ith element of
=1 i=1J

the jth eigenvector. The elements of the mode shapes are the three

displacements xj, x 2 , and x 3. For this system:

(on1 S= [9]
-1

Characteristics of the Solution

Before examining optimal inputs for identification of this system,

several characteristics of the solution are described. This makes

the optimal inputs easier to interpret and generalize.

1. The frequency content of the optimal input does not depend on the

initial condition. In addition to the elements of A, B, C, it depends

on:

0

b2

0

b4

0

b
6

c3 0 c 5 0]

a

C = [c

is

(4.6.2)

18

4

-12 =

11

-2/3

L 1 J

(4.6.3) 6

a

4

I
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x(O) = 0: T (or equivalently v)

x(O) * 0: E and T (V can replace either E or T)

Figure 4.6.2 shows how the frequency content changes with T for an

input optimized with respect to a frequency with x(0)=0.

2. As x(O)+O, the shape of the optimal input approaches that of x()=0

for the same choice of T. (Compare equations 4.5.1 and 4.5.3.) The

amplitudes will also match for the same choice of E.

3. For x(0)=0, large values of T require large values of v and vice

versa. As v increases, the frequency content of the optimal input

approaches the system frequencies. Hence, for large T, the optimal

input is a sinusoid at the system frequency.

4. The two problems:

Minimize: J = - 1 ( H TKH)dt
over u 0

1T
Subject to: - uu dt = E

0

and:

T

Minimize: J= - (T H TKHE - qT u)dt

over u 0

are mathematically exactly the same problem, where q=2v in the notation

used in previous sections. If q were less than zero, the algorithm

would be trying to use a lot of input. With no boundary conditions on

E, this is like the inverse of the regulator problem i.e., drive E as

far from the origin as possible using as much control as possible.

Thus q (and v) must be greater than zero.
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5. In the equations described by eq. 4.3.15, many of the elements of 1

and X are zero for all time for a system in modal form. In addition,

some elements are nonzero but not needed to calculate u. Which

elements these are can be identified by inspection of equation 4.3.15

or equivalently by inspection of the eigenvectors. Eliminating these

elements significantly reduces the order of the problem. For example,

in the most complicated case considered here (section 4.6, Optimizing

with Respect to Many Parameters), the number of variables required is

reduced from 96 to 38. The minimum number of variables required equals

four per parameter included plus some or all of the system states.

After calculating u, the deleted states can be restored if their

time histories are desired.

6. For x(O)=O, the amplitude of the optimal'input is determined by,

and only by, the choice of E. Choosing T affects only the shape of the

signal. Hence, even though the algorithm assumes E is fixed, E can be

chosen so that the amplitude of the optimal input does not exceed 1.

In the figures in this chapter, optimal inputs with the same T have the

same E, and that E was chosen so that the input peaks near 1. Inputs

with different values of T are scaled to different values of E.

Because of characteristics 2 and 6, and because in a real

experiment the initial conditions will always be unknown and usually

near zero, x(O)=O was used in solving for the optimal inputs.
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Optimizing with Respect to a Single Parameter

Figures 4.6.3-7 show the optimal input to maximize the sensitivity

of the output to W1 =1 rad/sec. They required assuming values for wl,

C1, b4, and c3 (see equation 4.6.1 and 4.6.2).

The input is, in all cases, like a damped sinusoid. For

experiment durations longer than a few mode periods, the frequency of

the sinusoid is nearly that of the mode. The change of the frequency

content of the input with experiment duration is shown in the root

locus graph in Figure 4.6.2.

Because the amount of input used is penalized, the envelope of the

input decays towards the end of the experiment. For very short

experiments (less than 3 mode periods), the envelope is similar to an

exponential decay. The input has almost all its energy in an initial

pulse, then quickly decays (see Figure 4.6.3 and 4.6.4). For longer

experiments (3 to 35 mode periods), the envelope is an approximately

linear decay with a more rapid decay for the last 10-15% of the

experiment (see Figure 4.6.4). For longer experiment times in a damped

system, the slope of the linear decay region would be so low that the

output would decay rapidly if this envelope shape were maintained.

Thus, as shown in Figure 4.6.5, the early part of the input drops down

(enabling a steeper slope in the linear region) for longer experiment

durations. Increased damping strengthens this effect, as illustrated

in Figure 4.6.6. For an undamped system, this effect never appears, as

shown in Figure 4.6.7. Penalizing the amplitude of the mode weakens

the effect (see "Limiting State Amplitude" in section 4.6) since more

rapid decay is useful in that case.

Note that the optimal signal does not always start near a peak as

might be expected (see, for example, Figure 4.6.10). The trade-off

between frequency content, phasing, and decay envelope usually results

in starting the experiment near a peak, but not always.

Figure 4.6.8 shows the optimal input to maximize the sensitivity

of the output to Cj=.01. The second curve on the graph shows an input

optimized with respect to frequency for comparision.

U]
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frequency = 1.0 rad/sec, damping ratio = .01
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frequency = 1.0 rad/sec, damping ratio = .01
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frequency = 1.0 rad/sec, damping ratio = .01
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Figure 4.6.5: Input Optimized With Respect to One Frequency

for a Yet Longer Experiment
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frequency = 1.0 rad/sec, damping ratio = .04
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frequency = 1.0 rad/sec, damping ratio = 0.0
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frequency = 1.291 rad/sec, damping ratio = .01291
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Figure 4.6.9 shows the optimal input to maximize the sensitivity

of the output to b 4 =-.15 N/kg. Values for wj, C1 and c 3 must be

assumed, but not b4 .

The second curve on the graph shows an input optimized with

respect to frequency for comparison. Optimizing with respect to

control effectiveness shifts the input so that it is more evenly

distributed over the experiment time relative to optimizing with

respect to frequency.

Optimizing With Respect to Many Parameters

Figure 4.6.10 shows an example of the optimal input to maximize

the weighted sensitivity of the output to w1 , w2o CP C2, b 4 and b 6 '

Values for all these parameters, and for c1 , c 3 , and c 5 must be

assumed.

Figures 4.6.11-13 illustrate more explicitly the effect of the

weighting parameters. Figure 4.6.11 shows that for parameters in the

same mode, where the single parameter shapes are similar, the optimal

input is similar, too. As shown in Figures 4.6.12 and 13, when the

parameters are in different modes, the resulting input is like the

weighted sum of two damped sinusoids, oscillating at the two

frequencies of interest.



102

frequency = 1.0 rad/sec, damping ratio = .01
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weights: wl x 1, Cl x 1, b4 x 1, W2 x 2,

C2 x 1, b 6 x 2
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Figure 4.6.11: Effect of Changing the Relative Weighting on

Two Parameters in the Same Mode
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Figure 4.6.12: Input Optimized With Respect to Two Frequencies

(plot first 10 seconds of a 32 second experiment)
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damping ratio = .01, .01
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Figure 4.6.13: Effect of Changing the Relative Weighting

When Optimizing With Respect to Two Frequencies

(plot first 10 seconds of a 32 second experiment)
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Limiting State Amplitude

One of the problems with LSSs is that they are typically lightly

damped. Exciting such a structure at a natural frequency is likely to

cause structural failure. To avoid this, a term is added to the cost

function' to penalize state amplitude i.e. equation 4.3.8 becomes:

1 1 T T xTxd
J = - - LET H KHE - xTWx)dt (4.6.4)

0

Since x is the first N elements of E, the problem formulation is

unchanged. Replace all H with H' and all K with K' where:

I N -W 0
H' = L-~HiK=L]

where the cost will be:

J = - H K H ) dt
2 -0

This is a regulator problem where some regulation is traded off

for increased sensitivity of the output to parameters. The graphs on

the following pages show the results for different values of W for

optimizing with respect to frequency 2 (=1.291 rad/sec).

As shown in Figure 4.6.14-16, rigid body displacement can be

eliminated with very little effect on the flex modes, when optimizing

over a flex mode parameter.

As shown in Figure 4.6.17-20, it is much more costly to limit the

amplitude of the mode whose parameters are being identified. Figure

4.6.17 shows that the penalty shifts the linearly-decaying envelope

portion of the input to earlier times, as expected (see section 4.6,

Optimizing With Respect to a Single Parameter), and adds some input

near the end of the run. Figure 4.6.19 shows this effect for a larger

penalty. As shown in Figures 4.6.18 and 20, the penalty primarily

decreases the modal response during its decay, but also decreases the

peak amplitude.
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Penalty
none

1
100

5.00 10.0 15.0

(frequency = 1.291 rad/sec,
damping ratio = .01291)

20.0 25.0

a

a

30.0

TIME
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Penalty
- none
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Figure 4.6.15: Rigid Body Motion with Input from Figure 4.6.14
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(frequency = 1.291 rad/sec,
damping ratio = .01291)
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Figure 4.6.16: Flexible Mode Motion with Input from Figure 4.6.14
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- no state penalty
- - penalty of 1200 on amplitude of flex mode 2

(w2=1.291 rad/sec, 2=01291)
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Figure 4.6.17: Input Optimized With Respect to a Frequency
With a Small Penalty on a Flexible Mode
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- no state penalty
- - penalty of 1200 on amplitude of flex mode 2

(w2=1 .291 rad/sec, C2=-01291)
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Figure 4.6.18: Modal Response to Input Optimized
With a Small Penalty on a Flexible Mode
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- no state penalty
- - penalty of 2500 on amplitude of flex mode 2

(w 2 =1.291 rad/sec, 2=-01291)
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Figure 4.6.19: Input Optimized With Respect to a Frequency
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- no state penalty
- - penalty of 2500 on amplitude of flex mode

(w2=1.291 rad/sec, 2=-01291)
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Figure 4.6.20: Modal Response to Input Optimized
With a Large Penalty on a Flexible Mode
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Separating Closely Spaced Frequencies

Another LSS problem is that frequencies are typically closely

spaced. To highlight the frequency separation, model the frequencies

as wl=wc-e and W2=wc+e, then optimize with respect to e. Note that
T

this is the same as replacing the y term in the cost with
T T T

(x -x ) C C (x -x ). Graphs on the following pages show the

result. In all the graphs, the damping ratios of the two modes are

.01.

In the first graph (Figure 4.6.21), the input is optimized with

respect to the frequency difference of two widely spaced modes (1 and

4.3 rad/sec). The input looks much like optimizing with respect to a

single frequency, because the amplitude of response of the lower

frequency mode is so much higher than that of the higher frequency mode

that almost all the input goes to exciting the lower mode.

Figure 4.6.22 shows the input for closer frequencies (1 and 1.1

rad/sec). As the frequencies get closer together, the input develops a

beat pattern. As shown in figure 4.6.23, this beat pattern can be

duplicated using the program which- optimizes with respect to the

frequencies rather than their difference. The solid line is optimized

with respect to the two frequencies. The weighting on the two

frequencies was chosen so that the integrated sensitivities of the

state with respect to the two frequencies is similar for the two

inputs. (Frequency 1 was weighted with 1, frequency 2 with 1.8.)

Thus, optimizing with respect to frequency-difference selects the

input which, among all the different inputs obtained by varying the

relative weights when optimizing with respect to the two frequencies,

gives the strongest beat. This is illustrated in Figure 4.6.24, which

shows the measurement (with the rigid body motion subtracted out) in

response to inputs optimized three different ways: (1) optimized with

respect to frequency difference (solid line); (2) optimized with

respect to two frequencies with both frequencies weighted by 1; (3)

optimized with respect to two frequencies with frequency 1 weighted by

1 and frequency 2 weighted by 2. The strongest beat is obtained by the

input optimized with respect to the frequency difference.
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,= 1.0 rad/sec, i = .01
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Figure 4.6.22: Input Optimized With Respect to a Frequency
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w, = 1.0 rad/sec, i = .01

w2 = 1-1 f , C2 = t

- optimize with respect to w, penalties = w, x 1, W2 x 1.8

- - optimize with respect to frequency difference
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-- optimize with respect to frequency difference
-, penalties = w, x 1, w2 X 1-- -"" "" I" " ", " 2
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4.7 Comparison with PRBS

One of the limitations of picking an input based on maximizing a

cost function is that expected values of the system parameters must be

assumed to calculate the optimal input. This is characteristic of all

optimal input algorithms. The alternative is to use an input which

requires no knowledge of the system parameters. It will be less

effective but robust with respect to differences between the actual and

modelled systems. A PRBS is the most common example of this type of

input. The input is always at full positive or negative thrust, and

switches at random at fixed time intervals.

How far can the real parameter values deviate from their expected

values before the optimal input is no better than a PRBS? This was

tested by simulating the system response to the optimal input and to a

PRBS for different values of the system paramfeters.

A typical result is shown on the next page. Three optimal inputs

were tested: (1) optimized with respect to frequency (at 1 rad/sec)

(solid line); (2) optimized with respect to two closely spaced

frequencies (at 1 and 1.291 rad/sec) (longest dashes); and (3)

optimized with respect to two widely spaced frequencies (at 1 and 4.3

rad/sec) (second longest dashes). The PRBSs tested may switch every

second. The gray region indicates the range of system response for all

PRBSs which are restricted to switch at least every 4 seconds. (The

restriction raises the lower edge of the region but has no effect on

the "best" sequences.) In addition, the response to a particular PRBS

is graphed (second shortest dashes). This PRBS gave the best result,

of those considered, at the nominal frequency of 1 rad/sec.

As shown in Figure 4.7.2, choosing a "good" PRBS is not trivial

even for this simple case. The graphs show three PRBSs with a sinusoid

at the actual frequency superimposed to show how closely they match.

The top graph looks fine but has an integrated weighted sensitivity of

2056, 10% poorer than the best. The middle graph is the natural guess

for best, and has a sensitivity of 2222, 7% poorer than the best. The

bottom graph is the best, with a sensitivity of 2398. When the system

has several actuators and widely spaced modes, the only way to find a 4

good PRBS is trial and error.



121

-- optimal, no error, weighting = wixl, W2x0
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How does the difference in integrated sensitivity shown in Figure

4.7.1 translate into identifier accuracies? This is demonstrated in

Figure 4.7.3. The optimal input and 3 different PRBSs were used to

excite the 8 mass slinky. The PRBSs were chosen at random; all of the

'best guess' PRBSs tried (such as using 1 when the optimal input would

have been positive and -1 when it would been negative) were any

better. These inputs are shown in Figures 4.7.4-6. To give the same

integrated input (equation 4.2.3), the PRBSs have an amplitude equal to

.37 that of the optimal input. The optimal identifier used the

resulting input/output data to identify a model.

Figure 4.7.3(a) compares the frequency estimates for the four sets

of inputs when the same noise variance is used for all four and there

are no deadbands imposed to prevent breakage or drift. The results are

that the PRBSs are slightly better.

However, this is not a good comparison because the identifier

performance is very sensitive to SNR. The PRBSs have a much higher SNR

(1000, 90 if the rigid body modes are not included in the SNR vs. 200

for the optimal input, 35 if the rigid body modes are not included).

In Figure 4.7.3(b), the noise variance was varied for the PRBS runs so

that the flex-only SNR was comparable. The relative performance in (b)

agrees well with that expected from Figure 4.7.1.

In reality, the noise variance will not usually vary with the

input. However, there will be deadbands which will prevent the PRBSs

from exciting the modes to such high amplitudes. This case is examined

in Figure 4.7.3(c). Again, the relative performance agrees with Figure

4.7.1.

To see how the performance degrades in the presence of modelling

errors, these four sets of inputs were used to identify an 8 mass

slinky with masses 55, 45, 55, 45, 55, 45, 55, 55 (vs. all 50), springs

55, 55, 55, 55, 45, 45, 55 (vs. all 50), and dampers 1.1, 1.1, .9, .9,

.9, 1.1, 1.1 (vs. all 1). The resulting frequency estimates are shown

in Figure 4.7.7. Comparison with Figure 4.7.3(c) shows that the

optimal input estimates are degraded (as are the PRBSs, although they

could go either way).
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Mode True Damped Optimal % 3 PRBS %
Frequency Estimate Error Estimate* Error

1 0.0000 0.0024 0.0008,0.0011,0.0005
2 0.3902 0.3835 1.8 0.3901,0.3903,0.3905 0.0,0.0,0.0
3 0.7654 0.7679 0.3 0.7655,0.7653,0.7653 0.0,0.0,0.0
4 1.1111 1.1165 0.5 1.1155,1.1142,1.1149 0.4,0.3,0.3
5 1.4142 1.4263 0.8 1.4354,1.4282,1.4290 1.5,1.0,1.0
6 1.6693 1.6693 0.4 1.6671,1.6649,1.6716 0.3,0.1,0.1
7 1.8478 1.8503 0.1 1.8692,1.8652,1.8697 1.2,0.9,1.2

8 1.9616 1.9688 0.4 1.9655,1.9630,1.9616 0.0,0.1.0.0

(a) Same integrated input, same noise variance, no deadbands

Mode True Damped Optimal % 3 PRBS %
Frequency Estimate Error Estimates Error

1 0.0000 0.0024 0.0017,0.0013,0.0008
2 0.3902 0.3835 1.8 0.3902,0.3908, 0.3914 0.0,0.2,0.3
3 0.7654 0.7679 0.3 0.7659,0.7659,0.7654 0.3,0.3,0.3
4 1.1111 1.1165 0.5 1.1241,1.1232,1.1260 1.2,1.1,1.3

5 1.4142 1.4263 0.8 1.4690,1.4744,1.4756 3.9,4.2,4.3
6 1.6629 1.6693 0.4 1.6750,1.6765,1.6992 0.7,0.8,2.2

7 1.8478 1.8503 0.1 1.9064,1.9254,1.9310 3.2,4.2,4.5
8 1.9616 1.9688 0.4 1.9718,1.9662.1.9667 0.5,0.2,0.2

(b) Same integrated input, same flex SNR, no deadbands --

Mode True Damped Optimal % 3 PRBS %

Frequency Estimate Error Estimates Error

1 0.0000 0.0088 0.0018,0.0027,0.0094
2 0.3902 0.3912 0.3 0.3902,0.3903,0.3907 0.0,0.0,0.1
3 0.7654 0.7677 0.3 0.7655,0.7667,0.7653 0.0,0.3,0.0
4 1.1111 1.1214 0.9 1.1138,1.1138,1.1136 0.2,0.2,0.2

5 1.4142 1.4291 1.0 1.4299,1.4232,1.4230 1.1,6.4,6.2

6 1.6629 1.6652 0.2 1.6878,1.6683,1.6760 1.5,0.3,0.8
7 1.8478 1.8488 0.1 1.9664,1.8686,1.8750 6.4,1.1,1.5

8 1.9616 1.9652 0.2 1.9876,1.9611,1.9638 1.3.0.0,0.1

(c) Same integrated input, same noise variance, deadbands

Figure 4.7.3: Comparison of Identifier Performance Using Optimal Input

To Using PRBS for 8 Mass Slinky
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Mode True Damped Optimal % 3 PRBS %

Frequency Estimate Error Estimates Error

1 0.0000 0.0023 0.0118,0.0003,0.0081
2 0.3847 0.3864 0.4 0.3849,0.3850,0.3848 0.0,0.0,0.0
3 0.7575 0.7589 0.2 0.7584,0.7598,0.7582 0.1,0.3,0.1
4 1.1286 1.1513 2.0 1.1452,1.1343,1.1320 1.5,0.5,0.3
5 1.4181 1.4406 1.6 1.4575,1.4459,1.4546 2.8,2.0,2.6
6 1.7158 1.7567 2.4 1.8566,1.8665,1.8606 8.2,8.8,8.4
7 1.8551 1.8562 0.0 1.8959,1.8812,1.8786 2.2,1.4,1.3

8 2.0331 2.0380 0.2 2.0505,2.0580,2.0430 0.8, 1.2, 0.5

Figure 4.7.7: Comparison of Identifier Performance Using Optimal Input

To Using PRBS for 8 Mass Slinky With Modelling Errors

Thus, Figure 4.7.1 illustrates three things: (1) the optimal input

performs better than a PRBS, even when that PRBS has been carefully

chosen, using the a priori model of the system, to perform well for that

particular system (an 'intelligent' binary sequence); (2) while some PRBSs

may perform better than the optimal input for large modelling errors, a

random choice is more likely to come up with a PRBS which is less

effective than the optimal input than one-which is better; (3) the

performance of the optimal input degrades in the presence of modelling

errors, but so do many PRBSs.
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4.8 Unknown Elements in observation Matrix

The elements of the C matrix in equation 4.3.4 are combinations of

sensor calibration factors and mode shapes. Usually, the calibration

factors are known well and don't need to be experimentally measured.

If the sensors and actuators are colocated, then the elements of the C

matrix contain no information which can't be obtained by optimizing

with respect to elements of the B matrix. If there is new mode shape

information in the C matrix, then optimizing with respect to its

elements may be desirable. Identifying unknown elements in C is a

special case of limiting state amplitude, as shown by the simple

example below:

x = Ax + Bu

y = C1 C2 Jx

x =Ax-C -C
1 1

YC [ -o + [C1  C2

But (0) = [0 01T since x(0) is fixed:
1

.* x E (t) = [0 0 T + y C 1=[
1 1

Thus, maximizing the sensitivity of the output to an element of C

is equivalent to maximizing the element of the state which it

multiplies. This is the case of limiting state amplitude using a

negative W (see section 4.6, Limiting State Amplitude).
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4.9 MIMO LSS

Adding a thruster and sensor on mass 2 of the system in Figure

4.6.1 (as shown in Figure 4.9.1) makes this a MIMO structure. This

adds the complexity of different modal content in the different

inputs. Mass 2 is at the node of the first flex mode, so the optimal

input from actuator 2 should have no mode 1 content. The optimal input

from actuator 1 should have a lot of mode 1 content to make up for the

lack of excitation from actuator 2.

F2 F

2 1
k k

1

x x 2 c

Figure 4.9.1: Three Mass, Two Input, Two Output Slinky

As expected, the optimal input on mass 2 is pure mode 2, and that

on mass 3 is primarily mode 1. The frequencies used for this example

are 1 and 4.3 rad/sec (damping ratio=.01 for both modes). 4.3 was used

instead of 1.291 to make the frequency content of the signals easier to

identify.
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4. 10 Programming Considerations

There are two potentially severe problems with the technique for

finding optimal inputs (see Section 4.3): inversion of a large matrix

and computation of independent eigenvectors for repeated eigenvalues.

Both problems are solved by the same observation -- most of the

elements of E(t) and X(t) in equation (4.3.18) are zero or not needed

to calculate the optimal input.

The easiest way to clarify this is to work through the equations

for a low dimensional example. (To save space, 'X' is used to indicate

non-zero elements in the larger matrices.) Consider a SISO system with

2 flexible modes, and optimize with respect to the damping ratio of the

first mode, weighted by 1:

0 1 0 0 0
2- -2C 0 0 0 b

(4.3.1) + x = 0 0 0 x + 21 U
0 0 0 1 0

0 0 -W -i2C b

(4.3.2) + y = [ c c1 2  c1 3  c4 1

0 1 0 0 0 0 0 0 0
X X 0 0 0 0 0 0 X
0 0 0 1 0 0 0 0 0
0 0 X X 0 0 0 0 X

(4.3.5) = 0 00 0 0 1 0 0 0 u
0 X 0 0 X X 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 X X . 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X X 0 0 0 0 0 0 0 X 0 X 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 X X 00 0 0X 0 X 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 X 0 0 X X 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

)0 0 00 0 0 X X 0 0 0 0 0 0 0 0
(4 3 55 -0- 5 -0~ 5 ~0~ 5 ~0~ ~0~ R ~0~ 0- ~0~ 0- ~0~ 0

0 0 0 0 0 0 0 0 -1 X 0 0 0 X 0 0
0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0
0 0 0 0 0 0 0 0 0 0 -1 X 0 0 0 0
0 0 0 0 X X X X 0 0 0 0 0 X 0 0
0 0 0 0 X X X X 0 0 0 0 -1 X 0 0
0 0 0 0 X X X X 0 0 0 0 0 0 X
0 0 0 0OXXXX 00000 0 -1 X
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The boundary conditions in equation 4.3.15 give E7 and E8 zero at t=0

and X3 and X4 zero at t=T. The equations at the bottom of the previous

page show that these variables are part of unforced, uncoupled second

order systems. With zero boundary conditions, they will always be

zero. Further examination shows that E3, E4, X7, and X8 , while

possibly non-zero because they are driven by other variables, do not in

turn drive any other variables, so they are not needed to solve the

problem. Eliminating these 8 variables:

0 1 0 0 0 0 0 0
X X 0 0 0 X 0 0
0 0 0 1 0 0 0 0
0 X X X |0 0 0 0
0 0~ 0 ~0 0 X 0 0
0 0 0 0 -1 X 0 X g

-- 0 0 X X 0 0 0 X -

L0 0 X X 0 0 -1 !X

The resulting system is half the original -size and has no repeated

eigenvalues. (As demonstrated in Figure 4.6.2, the eigenvalues will

all approach -CO wo T W/ 1 -70 as the experiment time lengthens, I

but they are all distinct.)

If at least one parameter from every mode is included in the

optimization, then no variables can be eliminated, but there are no

repeated eigenvalues. For every parameter in the optimization, the

number of variables which need to be kept is 2 for the sensitivity for

that parameter, 2 for its costate, plus 2 for each mode involved and 2

for each of those costates. The total ranges from 4*r + 4 to 8*r,

depending on the number of modes involved (where r = number of 4

parameters in the optimization).

If the time history of any of the deleted variables is of

interest, it can be easily recovered by saving the appropriate rows of

the eigenvector matrix in equation 4.3.18. The reduced size system is 4

used to calculate the Oi in the columns of t which correspond to

nonzero values of Yi, and to calculate those non-zero values.
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Chapter 5: Results for a Typical LSS

All the examples used in the previous chapters were slinkys, which

were useful for learning the characteristics of the RLLS algorithm and

for comparing different algorithms. A system which more closely

resembles a typical LSS is desirable for final verification. Also, the

data from such a model is more easily compared to data presented by

other researchers. This chapter presents such a model and applies the

identification algorithms of Chapters 2 and 3 and the optimal input

from Chapter 4 to it.

5.1 Dual Keel Space Station Model

As a result of NASA's preliminary work on designing a space

station, models of a likely space station have been developed. One of

these models -- the "dual keel" -- was chosen as the example of a

typical LSS. Figure 5.1.1 is a drawing of this LSS. One of the

problems in assembling such a large structure with current technology

is that it cannot be assembled on one trip to orbit. The configuration

will be different after each trip, with orbital maintenance required

between trips. Identifying the structure characteristics as the

structure grows will be necessary to safely and effectively control the

station between assemblies.

The particular stage used in this chapter would be typical of the

station configuration after 4 assembly flights. This corresponds to

Figure 5.1.1 without the modules in the center and without the 4 bays

and the instrument storage. The resulting structure has a mass of

34,000 kg. It measures 405 meters from tip to tip of the booms

carrying the solar arrays. The dual keel box measures 306 by 108

meters. The simulated measurements are generated by a NASTRAN model

which divided the station into 157 nodes as shown in Figure 5.1.2.

(Note that the structure for the central modules is in place even

though the modules aren't.) Each gap shown in the figure is a node.

The numbered nodes are where actuators and/or sensors were placed.

(The node numbering is that used in the NASTRAN output. Adjacent nodes

do not always have sequential numbers.)
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Model Size

The NASTRAN model included 6 rigid body modes and 24 flexible

modes ranging from 1.3 rad/sec (.21 Hz) to 8.1 rad/sec (1.3 Hz), as

listed in the following table.

Mode 1 2 3 4 5 6 7 8
Frequency 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.2977 1.3543

Mode 9 10 11 12 13 14 15 16
Frequency 1.3568 1.3734 1.3771 1.3980 1.4045 1.4257 2.3855 2.5701

Mode 17 18 19 20 21 22 23 24
Frequency 2.8274 3.1788 3.2922 3.3652 3.9364 4.1165 4.7312 4.7837

Mode 25 26 27 28 29 30
Frequency 6.1456 6.5253 7.8914 8.0491 8.0507 8.0994

Table 5.1.1: Modal Frequencies ix' NASTRAN Model

The original intention was to use all 30 modes. Unfortunately, this

turned out to be not feasible due to the close spacing of the first 8

flexible modes.

As frequencies get more closely spaced, finite accuracy errors

begin to cause problems. Finite accuracy errors are identified by: (1)

failure of the algorithm to converge exactly to the known model in a

finite number of steps in the absence of noise; (2) significant changes

in the results when the numerical precision of the computer code is

changed. Both of these were observed in the simulations.

This causes two problems. The first problem is that sampling rate

becomes very important. A sampling rate between the Nyquist frequency

and twice the Nyquist frequency of the closely spaced modes is best for

minimizing the effects of finite accuracy error2 4. To prevent

aliasing, this limits the modes included in the model to those in that

cluster or a few nearby clusters, depending on the spacing. The second

problem is that the round off errors incurred by using the larger

matrices required by the identifier for large models become more

significant.

The result is that a smaller model had to be used. One way to

make the system look smaller is to use a band pass filter to isolate

clusters of modes. This was simulated by using the first eight
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flexible modes as the station model. Even so, the close spacing of the

eight modes means that the identification problem is more difficult

than for the eight mode cases examined in Chapters 2 and 3.

Unfortunately, this eight mode model is a poor test for the

optimal input algorithm. When the modes are so close together, a

square wave at the center frequency of the closely spaced modes gives

results very similar to the optimal input. The optimal input algorithm

would be more valuable on a LSS such as the Langley Mast flight

experiment 2 (first five flexible modes at .97, 1.3, 9.1, 9.2, and

17.2 rad/sec) or the Galileo spacecraft7 (first five flexible modes

at 69.6, 70.3, 93.8, 94.7, and 102.7 rad/sec).

5.2 Simulation Environment

Noise sources

In addition to the measurement noise used in the examples in the

previous chapters, system disturbance is included in the form of

gravity gradient and atmospheric drag.

The station is oriented with the z axis (the long direction of the

dual keel box, see Figure 5.1.2) pointed toward the center of the

earth. This orientation is stabilized by gravity gradient forces. The

inputs used to excite the structure for identification cause variations

from this stable position, generating unaccounted-for gravity gradient

forces on the structure. The gravity model assumes a homogeneous,

spherical earth with the station in a circular,.500 km orbit.

Since the time scale of the experiments is short (on the order of

5 to 10 minutes), the atmospheric model is a constant density of 10-12

3
kg/m. The drag is almost entirely from the solar cell panels.

The measurement noise is the same as in previous examples i.e.

Gaussian white noise generated by a random noise generator and added to

the measurements.

Sensors and Actuators

Since the clusters of flexible modes are primarily due to solar

cell panel motion, the sensors and actuators were placed on the

panels. There were four actuators, 2 firing in the x direction at

nodes 129 and 137, and 2 in y at the same nodes (see figure 5.1.2).
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two combinations of sensors were used: (1) four position sensors, 2

measuring inertial displacement in the x direction at nodes 129 and

135, and 2 measuring inertial displacement in the y direction at nodes

127 and 137; (2) those four, plus 2 measuring inertial y at nodes 229

and 235 and 2 measuring inertial x at nodes 227 and 237.

5.3 Results

The optimal input for the 4 thrusters is shown in Figures 5.3.1

and 5.3.2. The input was calculated by optimizing with respect to

frequency with weighting factors of .01, .02, .04, .0065, .01575,

.0179, .004, .003 on the eight flexible modes. This choice

approximately equalizes the integrated sensitivity of the outputs with

respect to each of the eight mode frequencies. The sample-and-hold

input used in the simulation is shown in Figures 5.3.3 and 5.3.4. Note

the strong aliasing of the signal for this case, where the sample rate

is close to the dominant frequency of the signal. The input for the

suboptimal identifier is the optimal input repeated four times, as

shown in Figure 5.3.5 for actuators 1 and 2.

The first case studied was the four sensor case. When the same

SNR (100) which was used in the Chapters 2 and 3 examples was used,

only four of the eight modes were correctly identified by the optimal

identifier, as shown in Table 5.3.1. The performance improves markedly

with SNR. In the Table 5.3.2 results, the SNR has been increased to

1000. While the damping ratio estimates are poor, all eight

frequencies were identified to within 4%. The suboptimal identifier,

which had one-quarter the number of computations per cycle, also

identified all eight frequencies to within 4%. (The suboptimal

identifier performed better than the optimal in terms of frequency

error (2% maximum error) for this particular run. The damping error

was worse, however.) The identified mode shapes for the optimal input

case, SNR = 1000, is shown in Figures 5.3.6-7.

As studied in reference 12, for closely spaced modes,

identification accuracy can be improved by increasing the number of

sensors to equal the number of closely spaced modes. As shown in Table

5.3.3, using 8 sensors gives better estimates at a SNR of 100 than 4
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Mode True Damped Optimal

Frequency Estimate

1 1.2976 1.3202
2 1.3542 *lost
3 1.3567 1.3650
4 1.3733 lost
5 1.3770 1.3811
6 1.3879 lost
7 1.4044 lost
8 1.4256 1.4243

(a) Identified Frequencies

Mode Damping Optimal
Ratio Estimate

1. .01 .0463
2 .01 -
3 .01 .0180
4 .01 -
5 .01 .0185
6 .01 -
7 .01

8 .01 .0056

(b) Identified Damping Ratios

Table 5.3.1: Identified Frequencies and Damping Ratios,
4 Sensors, SNR = 100

*
lost means identified as a pair of real roots instead of a complex

conjugate pair or error in frequency estimate greater than 50%
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Mode True Damped Optimal Suboptimal

Frequency Estimate Estimate

1 1.2976 1.2978 1.2974
2 1.3542 1.3515 1.3620
3 1.3567 1.3634 1.3641
4 1.3733 1.4258 1.4057
5 1.3770 1.3802 1.3763
6 1.3879 1.3967 1.3927
7 1.4044 1.3917 1.4114
8 1.4256 1.4250 1.4214

(a) Identified Frequencies

Mode Damping Optimal Suboptimal
Ratio Estimate Estimate

1 .01 .0105 .0217
2 .01 .0103 .0032
3 .01 .0132 .0116
4 .01 .2203 .8049
5 .01 .0169 .0157
6 .01 .0119 .0146
7 .01 .0491 .1065

8 .01 .0145 .0182

(b) Identified Damping Ratios

Table 5.3.2: Identified Frequencies and Damping Ratios,
4 Sensors, SNR = 1000

149
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Mode True Damped Optimal Suboptimal

Frequency Estimate Estimate

1 1.2976 1.2958 1.2991

2 1.3542 1.3547 1.3521
3 1.3567 1.3612 1.3545
4 1.3733 1.3616 1.3748

5 1.3770 1.3760 1.3838
6 1.3879 1.3980 1.3959

7 1.4044 1.3991 1.4057

8 1.4256 1.4224 1.4265

(a) Identified Frequencies

Mode Damping Optimal Suboptimal

Ratio Estimate Estimate

1 .01 .0107 .0107
2 .01 .0126 .0003
3 .01 .0241 .0105
4 .01 .0130 .0093
5 .01 .0102 .0084
6 .01 .0117 .0127

7 .01 .0175 .0148
8 .01 .0127 .0094

(b) Identified Damping Ratios

Table 5.3.3: Identified Frequencies and Damping Ratios, 8 Sensors,
SNR = 100
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significant improvement over the 4 sensor case. The identified mode

shapes are shown in Figures 5.3.8-9. (The true mode shapes look

different from the previous case because there are 8 sensors. The

first halves of the true mode shapes in Figures 5.3.8-9 are the same as

the true mode shapes in Figures 5.3.6-7.)

As mentioned earlier, a good PRBS input is easy to pick for the

closely spaced modes case. Such an input is shown in Figure 5.3.10.

It is a square wave at the center frequency of the closely spaced

modes. The inputs from actuators 1 and 2 have the same time history,

as do inputs from actuators 3 and 4. The phasing between these two

pairs was explored a little, but it appeared to have no significant

effect on the results. The identification results are presented in

Table 5.3.4 for two phasing patterns. The results are similar to those

for the optimal input i.e. the maximum frequency error is 1.5%.

Is this still true in the presence of modelling errors? Modelling

errors were simulated by moving the center frequency of the clustered

modes down 10% and spreading the modes evenly over the interval. The

optimal input was the same as the one used in the previous paragraphs.

The identifier estimates are shown in Table 5.3.5. Two cases are

presented. For the first case, the simulation was exactly the same as

the no modelling errors case except the frequencies were changed. This

resulted in a much lower SNR (=30) because the structure was not as

strongly excited. If this happened in practice, the most likely result

is that the operator would increase the input until the LSS began to

hit the deadbands. The results for that procedure are also shown in

Table 5.3.5, and they are much better. In fact, they are better than

the no modelling errors case for the same SNR (=100). This is due to

the modes being less closely spaced. That helps the identifier more

than the modelling error hurts it. The identified mode shapes are

shown in Figures 5.3.11-5.3.13.

To summarize the results, the conclusions drawn in previous

chapters (i.e. (1) the optimal algorithm can be used to accurately

identify a LSS; (2) the suboptimal algorithm provides estimates only

slightly worse than the optimal; (3) using the optimal input improves

identifier performance) have been demonstrated on a more complicated

model. The overall performance was degraded due to the extremely close

spacing of the flexible modes.
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Mode True Damped *PRBS 1 *PRBS 2

Frequency Estimate Estimate

1 1.2976 1.2984 1.2982
2 1.3542 1.3707 1.3584
3 1.3567 1.3557 1.3576
4 1.3733 1.3636 1.3768
5 1.3770 1.3768 1.3775
6 1.3879 1.3693 1.3589
7 1.4044 1.4020 1.4020
8 1.4256 1.4242 1.4245

(a) Identified Frequencies

Mode Damping PRBS 1 PRBS 2
Ratio Estimate Estimate

1 .01 .0098 .0101
2 .01 .0096 .0101
3 .01 .0104 .0112
4 .01 .1126 .0115
5 .01 .0108 .0099
6 .01 .0468 .0859
7 .01 .0107 .0110

-8 .01 .0102 .0110

(b) Identified Damping Ratios

Table 5.3.4: Identified Frequencies and Damping Ratios,
PRBS Input, 8 Sensors, SNR = 100

*

PRBS 1 has actuators 2 and 4 shifting phase with respect to actuators
1 and 3 every 40 steps (4.6 seconds); PRBS 2 switches phase every 80
steps (9.2 seconds). PRBS 2 is shown in Figure 5.3.6.



Optimal Optimal
Mode True Damped Estimate Estimate

Frequency SNR=30 SNR=100

1 1.1600 1.1771 1.1605
2 1.1800 1.2060 1.1801
3 1.2000 1.2279 1.2004
4 1.2200 1.2603 1.2198
5 1.2400 1.2524 1.2397
6 1.2600 1.2683 1.2601
7 1.2800 1.2960 1.2792
8 1.3000 1.3609 1.2997

(a) Identified Frequencies

Optimal Optimal
Mode Damping Estimate Estimate

Ratio SNR=30 SNR=100

1 .01 .0281 .0101
2 .01 .0167 .0105
3 .01 .0204 .0116
4 .01 .0257 .0122
5 .01 .1251 .0108
6 .01 .0524 .0105
7 .01 .0193 .0103
8 .01 .3447 - .0100

(b) Identified Damping Ratios

Table 5.3.5: Identified Frequencies and Damping Ratios in the
Presence of Modelling Errors, Optimal Input, 8 Sensors
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Chapter 6: Conclusions and Recommended Future Work

The goal of this thesis was to create an identification package

(model + inputs + algorithm) which was well-suited to the

characteristics of real-time identification of LSSs.

The first step was to use the LSS characteristics (no prototype

available in orbit, closely spaced modes, variations in apparent model

size when modes are underexcited, need for a state space model) to

select an algorithm. This established RLLS as the baseline algorithm.

Simulation results on simple structures demonstrated that this

algorithm:

(1) accurately identified LSSs,

(2) was as fast as predicted,

(3) was tolerant of variations in apparent numbers of modes,

(4) could identify closely spaced modes,

(5) generated a state space model which was useful for

control and for verifying finite element models.

The next step was to examine ways to increase the cycle rate of

the algorithm. First, reformulating the RLLS algorithm (as presented

in the literature) as two interlocking Kalman filters eliminated some

computations with no loss of identification accuracy. Second, two

(related) ways were proposed which would decrease the cycle rate

(inverse of CPU seconds per measurement > sample rate for a real-time

algorithm) and/or increase the number of modes with no increase in

cycle rate. The better of these is parallel processing, which gives

the increased cycle rate/more modes with no identification accuracy

penalty. In the absence of parallel processing capability, the second

approach uses the structure of the RLLS algorithm to simulate parallel

processing i.e. do the blocks of computation serially. This approach

was demonstrated in simulation to increase the cycle rate by a factor

of four with little decrease in the accuracy of the identified

parameters. In theory, parallel processing (and the suboptimal

technique up to the limit of allowable identification error) eliminates
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the cycle rate penalty for increasing model size. (Although, since

total CPU time is constant, this is achieved at a similar penalty in

length of data run.) In practice, the model size is still limited by I

finite accuracy and observability considerations.

The simulation results from the above work indicated that the

standard PRBS input was not always adequate for good identification.

An algorithm was developed for using the a priori knowledge of the

system to generate an input which was more effective. The input is in

the form of coefficients of sines, cosines, and exponentials rather

than a table of values. This eliminates the storage requirements of a

large table. Evaluating the cost function used to create the optimal

input using the optimal input and PRBSs shows that even when there are

small errors in the frequencies used to generate the optimal input, it

still works better than a PRBS. Even when the frequencies are known

very poorly, an input generated using the optimal input algorithm and

assumed frequencies spaced evenly over an interval around the expected

system frequency will outperform a PRBS.

Recommended Future Work

Finite Accuracy Errors

The space station example simulated a way to make a large system

look smaller to handle closely spaced modes. It simulated using a

bandpass filter to isolate clusters of modes. The problem is that it

requires good knowledge of the frequencies of the gaps between

clusters. Designing and evaluating a procedure to do this (e.g. by

using an FFT to find the gaps, then a set of overlapping bandpass

filters to identify the model) would be valuable.

Another possibility would be to explore ways to decrease the error

or its effects (as has already been done to some extent by using the

UDUT formulation for the covariance matrices).
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Optimal Input

The cost function used to create the optimal input was quadratic

in the output sensitivities and input magnitude. The resulting input

makes efficient use of the actuators by tailing off towards the end of

the data run when a given amount of thrust does less good than earlier

in the experiment. This is appropriate when fuel usage needs to be

minimized. It would be interesting to compare these inputs to those

generated using just the practical constraints that Jul < umax and

xdeadband-

The optimal input as derived is a continuous input. In this

thesis, the discrete input is obtained by applying sample-and-hold to

this signal. When the sampling frequency is near the primary

frequencies in the input, this can significantly distort the signal. A

study of how significAnt this effect is might- be informative.

Monitoring Apparent System Size

Since the RLLS variables en and rn are a measure of the amount

of new information contained in each additional order of the

identifier, monitoring these might provide real-time estimates of the

apparent system size. This could prevent spurious modes from being

mistaken for real modes. Studies of a test (such as a whiteness test)

to detect the presence of spurious modes could be useful.

Other Identification Issues

The space station results were generally poorer than the slinky

results because of the close modal spacing. There is also the question

of sensor and actuator placement. These areas need to be explored

for best identifier performance.
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4
4

Appendix A: Derivation of Recursive Lattice Least Squares

4
d

A.1 Derivation of RLLS as an Orthogonal Projection

The following derivation is reproduced from ref. 10, with some

notational changes to match the rest of this thesis.

Suppose the system model is:

N G(N)
x(t) = G . (t) x(t-i)

where: x(t) = (m+p) x 1 vector of regressors = [YT(t) uT (t)]T

(N)
G =.(m+p)x(m+p) matrix of regressor coefficients

N = assumed order of the model

Looking on this equation as a predictor of x(t), minimize in the least

squares sense the prediction error:

A A NA (N)
(t) = _x(t) - x(t) = x(t) - G (t) x(t-i)

i=1

(N)
The choice of G . which will give the minimum error is (ref. M, p.

19):

(N) G(N) ) T T T
(t) = G () %G() x (X X )1N (tj -t ,tN,t N,t

x(0)

0

(A2)

. . x(t-1) (an N(m+p)x(t+1 ) matrix)
I (A3)

x(0) 0-- x(t-N)

g

I
I

I
I

I
I

(Al)

4
i

I
I

where: XNt

I
I

I
I

I
I



t = [x(o) eeo x(t)]T (a (t+1)x(m+p) matrix)

Substituting equation A2 into equation Al:

T T T -1
e.(t) = x(t) - x XT (X X T) (last column of XN)

T T T T -1
it Nt N,t N,t Nit

T T T -1 Tt) =t(I - Xt Xt) X t = T (I - P(Xt))TI
-N t N,t (N,tN,t Nrt- I -t N,t

where: = [0 ... 0 1 IT (a (t+1 ) column vector)

T T -1
P(XNt , TXt XN t ) X, t N,t = projection operator which

projects on the space spanned by the rows of Xt

Similarly for the backward prediction errors:

N (N)

r-N(t-1) = x(t-N-1) - HN+1-i(t) x(t-i)
N+=1

N+1T
r (t-1) =Et (I-P(XN, ))

(A4)

(A5)

where: N+ = [0 *. 0 x(O) *.. x(t-N-1) = x shifted N+1 times.

Note that the right hand sides of equation A4 and equation A5 are

of the form VT[I-P(S)]W where V and W are matrices and vectors and

P(S) is a projection operator, projecting on the space spanned by the

rows of matrix S. Recursion formulas are derived by changing the

167
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projection space. The space spanned by S+Y is the same as the space

spanned by S+Y(I-P(S)), because (I-P(S)) is the complementary

projection operator i.e.Y(I-P(S)) is orthogonal to S. Two matrices A

and B are orthogonal if trace (ABT)=O (ref. X). In this case:

trace [Y(IP(S))ST] = trace [Y(IST (SST) S)ST

= trace [Y(ST-ST)] = 0

Since Y(I-P(s)) and S are orthogonal:

P(S+Y) = P(S+Y(I-P(S))) = P(S) + P(Y(I-P(S)))

= P(S) + (I-(S))yT [y(Ip())(I.p(S))yT]-ly(o-p(S))

Because I-P(S) is the complementary projection operator to P(S):

(I-P(S))P(S) = (I-ST (SSTyl -)T -T 1

=S (SS) S - S (SST) '=0

Substituting:

P(S+Y) = P(S) + (I-P(S)) Y T[Y(I-P(S))YT] y(I-P(S))

Or:

VT (I-P(S+Y))W = V (I-P(S))W-V (I-P(S))YY(IP(S))Y]Y(I-P(S))W
(A6)

The choice of Y in equation A6 determines whether the equation

describes time, order, or both recursion:

N+1T
I. To get order recursion, choose Y = xT

I
I

I
I

4

6
4

4
4

I
4

I
I

I
I

I
i

I
I

I
I
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_ 1
XN Y= ' tX, (A7)

XNt + T N+1,tN+1

II. Tb get time recursion, choose Y= T

Y = x~(O) * *e x(t-1)X,t+x()

0
-2 x (0) --- x(t-N)

L 0 0 0 9 0 1

Using elementary row operations on the last row to eliminate the

last column shows that this matrix spans the same space as:

x(0) x(t-2) 0 0

0 - . = Nrt-1e -
x(*) ... x(t-N-1) 0 0

0 so* 0 1 0 * 0 0 1

Since the upper matrix and bottom row are orthogonal:

T 0 - T -1 T
P(X +Y) = P(upper) + P(H ) = P(X : + HO )

N,t - N,t-1 + -11 -

P(X )0
Njt-1 0e

0
0 * 0 1

Or:
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I - P(XNit + r )

P(XN,t-1 
0 i

0, 0
(A8)

T
III. To get both time and order recursion, choose Y =x:

T x(0) *** x(t)

N, t + I

XNit 0 x (0) e x ( t-N )

T)=L T Tt

P(N, t t.t It] t+1, N+1 (Xt+1 , N+1 1 0
1w t-.

= Xt+l, N+l

-1
It l,N+l1 t+1,N+1

=[0 It Xt+1,N+1 (Xt+l,N+1 XT+, N+)1 Xt+1,N+1

FTi0T'

tj

When using this choice to get recursion formulas, note that:

N+1 T
or x

t+1

[0 it] = x N+2T

t+1

T N+1 T r N+2
ir x = x(t-N-1 ) = [ I

t t+1

The next step is to use these projection rules to derive a recursive

version of equation A4. Comparing equation A4 to equation A6 and using

equations A7 and A5:

4
I

I
I

4
I

0 T

ti

0T'

x.

I
4

N+2
x

t+1

I
I

(A9)

I
I

I
I

I
I

I
I

I
I

I
I

N+1
-t
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Set: ?1 = F (t)

?2 - R (t-)

Three more recursive equations, for rE, FN and RN, are

required to evaluate tN recursively. Determining these:

y

V

w

V T(Ip (S+Y )W

VT(I-P(S))w

VT(I-P(S))YT

Y(I-P(S ))Y T

Y(I-P(S) )w

N+1 T

-t
T

it

N+1
-t

x-t

7Jr

-N+1

N (t)

F (t)
N

R N(t-1)

rN(t-1)

T
7Jr

N+1
-t

It

T
7Jr

N+1
x
--t
N+1

xt

EN+1 (t) FN (t-1) RN (t-1)

r (t-1) F N(t) R N(t)

F N(t)

?3

N (t)

N t-i) EN t-i)

?.4 ?4

T T
N -N

N+1T
At

V -

w 'Jr

VT(I-P (S+Y ))W tN+1(t )

V (I-P(S))w eN(t)

VT(I-P(S))YT

Y[I-P(S))Y ?2
Y I-P(S) _W _N(t-1)

I
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Set: ?3 = RN(t)N

?4= 8N(t)

Two more equations are required:

y

V

VT(I-P(S+Y))W

v T(I-P(S))Y

Y(I-P(S))YT

Y(I-P(S))W
4

N+1 T

Et

-t

eN+ 1 (t)

eNCt)-NW

F (t)
N

R N(t-1)

EN (t-)

T

It
N+1

-t

7t

-N+1

(t-i)

F Nt)

R (t)

N (t)

T
it

N+1
xt

-t

F (t-1)

F14(t)

KN

N-

T
e Ct)

T T

N+1
-t At

N+1
It -t

*RN(t-2) R N(t-)

R N(t-1) R (t)

rN(t-i) CN(t)

a Ct 8 CNt)

T T
rNCt-1) e Ct)

Table A.1: Update Formulas for RLLS

The combinations

coefficients and

4
IT -1*-

F t ) RN (t-1) and F Ct) R (t) are called reflection
rN N N

are designated by K:

KN(t) = C t) R C1(t-1)NN N

* A *-

KNCt) = F NN) Ct)

The RLLS update equations (with the above substitutions and the help of

equation A6) can be read from Table A.1:

172
4
4

4
d

Is
41

N+1x
-t

a (t

.N+1(t)

CN(t)
T

r (t-1)

R N(t-1)

EN (t-1) 4
I

I
I

4
I

I
I

I
I

i
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2N+1 ()=2N (t) - K(t) EN (t-1)

N+(t) = rN(t-i) - K (t) e (t)

N N -NT
FN (t) = F(t-i) + r (t-1 ) (t)/N (t)

NN -N -N t1N~T
RN~t-1) = RNCt-2) + r Ct-1)rNCt-i1)/8NCt)

**T

RN(t) =RN(t-1) + N(t)-2N(t)/ON(t)

+(t) = N(t) - r (t-1) R1 (t-1) r (t-1)N+1 N NEN-N

These are the same equations as in Figure 2.4.1 except that the

forgetting factor X hasn't been included.

Recovering the coefficients GN) of equation Al requires finding
* (N)

a transformation between K + K and the G . This relationship is
N N1

derived in the following pages.

A.2 Derivation of RLLS as a Coordinate Transformation:

The following derivation is based on the one in Appendix 6.C in

Ref. 20. This derivation differs from that in ref. 20 by emphasizing

the change of coordinates aspect of the algorithm. This simplifies the

algebra required in the ref. 20 derivation and makes the extension of

the derivation (section A.3) trivial. Also, some notational changes

were made to match the rest of this thesis and the parameter V was

added (see note 1 under Extension of Derivation in section 2.4).

Equation numbers with asterisks indicate equations which are listed in

Figure 2.4.9.

The system model in ARMA form, as given in equation 2.4.1, is:

y(t) = e(t) A(t-1)

(assuming vi is the same for all i=1 to p, so that i(t)=j(t)).

Writing the system order explicitly and including a prediction of the

inputs as well as the outputs:

"(n) ^(n) (n)
x (t) = G (t) (t-1) (A10)

where the first p rows of G equal e. Since equation 2.4.3 will be used

extensively in this derivation, it is repeated here for easy reference:



r (t) = x(t-n) - H (t) ) t)

As described by equation All,

03t) (where (0 )(t) = 0):

r (t-l) x(t-1) (

the r(t) are linear combinations of

[I a

t x(t-2) - H (t-1) (t

or: ~(n) t - 1

Lr ( - ) I= T(n) (t) (n) (t-1 )

01 (2)(t-l)

)= -H (t-O)

where T is lower triangular with ones on the diagonal.

is always invertible so:

Define:

A10 becomes:

n)(t-l)

S Kn-l1 =

Such a matrix

I

(n) (n)(n

G (n)(t) = A(n).(t) (n)G -t =G t)T

I
I

(t). Then equation

^(n) t = (n) ( (n) t-1)

A A

= K (t) r (t-l) + *ee + K (t) r (t-l)o -o n-l -n-1

The covariance matrix P for the weighted least squares with forgetting

factor solution of equation A10 is (ref. 20, p. 57):

174 I
I

(A11)

I
I

(2) (t-1 )

I
I

I
I

(A12)

I

I
I(Al 3)

(Al 4)

41
4

I
I

I
I
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P(t) = [ t-k P) _(n) k-1)/V(k-1) (A15)
k=1

Likewise, for equation A13:

~ t t- ~( )1(n
P(t) = [ t (n) (k-1)f (k-1 )/V(k-1)]

k=1

t -k TT(n) 
Tt) 

(n) (n) k (n) T-1

k=1

= T (t) [ [ t (k-1)( (k-1)/V(k-1)] 1T (t)
k=1

= T (t) P(t) T (n) t)

or: P(t) = T (t) P(t) T t) (A16)

The r(t) were specifically chosen so that Eir. (t) r (t)}=0 for i*j,
-i-J

so that P(t) is asymptotically block diagonal with blocks of dimension

a x a. (Note that if a were 1, then P(t) asymptotically equals D in

the UDUT decomposition of P(t) and Tn)T asymptotically equals

U).

Relationship Between Transformed and Untransformed Coefficients:

Comparing equation A14 and A10 order by order gives the

relationship between G(n) and (n) i.e. G(n) and K :
n

^i ) A A(1)Order 1: x (t) = K (t) r (t-1) = G t) x(t-1)
0 -o



From equation All, r (t-i) = x(t-l):

K (t) x(t-1) = G (t) x(t-1) or K (t) = G (t)

nth order:

f(n+ )x Ct
A (n) A

=x Ct) +K (t) r C t-i)

= ^(n) t) 0(n) (t-1)
A A(fl+l

+ K (t) r (t-i) = G
n -n

From equation All, r (t-1) =_x(t-n-l)-H(n)

= [-H(n) t-l)

^(n+l) (n+l) t (n) (n)

) (t) (n+l )

(n)(t-1)

t (n+1) t- ):

+K (t) -^(n) nt-1) I

1 76 4

4
I

(A17)

I
4

(t-l )
(A18)

(A19)

I
4
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={~l [^(n)(t 0 ~)-^(n) t1)I (+ -

or: G(n+1 ) ) = [G(n)(t) o] + K(t) [-H(n).t-l) I *(A20)

^(1) ^
with: G t) = K (t)

0

Using equation A20 requires a way to generate H(n)(t). A

recursive equation for H(n)(t) can be derived by considering the

counterpart of equation All which is obtained from equation A10. The

rn are backward prediction errors (or residuals), where rn(t) is

that part of x(t-n) which can't be predicted from x(t),.-.,x(t-n+l).

Equation A10 can be used to generate forward prediction errors 2n(t):

A(n) (n)
e t) = x(t) - G (t) ( t-i) (A21)

-This leads to alternate expressions for x(t) which are similar to

equations A10 and A14. From equation All:

^(n) A(n) (n)
x (t-n) = H Ct) W Ct) (A22)

A**

= K (t-n+l) e (t-n+1) + so. + K t) e (t) (A23)o -o n-1 -n-i

The time indexing in equation A23 can be understood by a change of

notation. Define t' t-n. Then equation A23 becomes:

^(n) ^*
x (t') = K (t'+i) e (t'+i) + *oe + K (t'+n) e (t'+n)

0 -0 n-1 -n-i

Thus, the low order terms do not depend on the number of terms in the

equation, as must be true if the en are orthogonal. Another way to

look at it is that the ith term is a linear combination of

x(t'+1),.--,x(t'+i) just as in equation A14 the ith term is a linear

combination of x(t-1),-..,x(t-i).
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Deriving the recursion for H(n) by comparing equations A22 and A23

order by order:

1st order:

^(1) ^(1) (1) ^* ^(1 )
x (t) = H (t+1) (t+1)=K (t+1)e (t+1)=H (t+1)x(t+1)

00
From equation A21 , e(t+1 )=x_(t+91 ):4

^(1 )
H (t) =K (t) (A24)

0

nth order:

^(n) t (n) (n)
x (t) =H (t+n) (t+n)

A* ^* *

= K (t+1) e (t+1)+...+K (t+n-1)e -.(t+n-1)+K (t+n)e (t+n)
o -o n-2 n-2 n-i -n- 1

^(n-1) ^*
= x (t) + K (t+n)e (t+n)

n-i -n-i

^(n) (n) A(n-1) (n)
H (t+n) (t+n)=H (t+n-1) (t+n-1)+K (t+n)e (t+n) (A25)

n-i -n-i

Shifting the time down by n and substituting from equation A21:

^(n) (n) ^(n-1) (n)t-) _t ( n-)t (n-1)

(~n-1) ,A* A (n-1 ( n)(t

= {[oH (t-1)]+K (t)LI -G (t)]f ) t)

^(n) ^(n-1) ^* ^(n-1)
or: H (t) = [0 H (t-1)] + K 1 (t)[I -G (t)] *(A26)

^(1) A*
with: H (t) = K (t)

0

Generating rn and e :

The next step is to derive equations for generating . and

e2n. From equation All:
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x(tn)=r(t)+^ (n) (t)< (n) t)=r (t1 )+^ (n-1 )(-- ) --n - -t rn-1 + t 1) ( -

or: r (t)=r (t-1 )-H(n) (n) (t)+A(n-1 ) (n-1 )

Substituting from equation A25 (after shifing the time in A25 down by

n):

r (t) = r (t-1) - K (t) e n-1(t) *(A27)

Similarly, from equation A21:

A (n) (n)
x et n (t) + G (t) (t-1) e n1(t)

or: e (t) = e (t) - (t) (t-1G) + G( t) n t-1

Substituting from equation A18 (after shifting A18 down one order):

e (t) = e n-1(t) - n-1(t) r (t-1) *(A28)

*
Generating K and K :

n n

From ref. N, p. 57, the weighted least squares with forgetting

factor solutions for Kn (from equation A28) and -Kn*

A27) are:

At t

K (t) = { X [
k=1 j=k+1

(from equation

T - 1
(j)] e n(k) r nki (k)1Bn } x

t t
I X [ ) X(j)] r
k=1 j=k+1 n

(k-1)r (k -1) (k)}
n n

+G(n-1) t (n-1)t)
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n(t) = F (t)R 1(t-1) *(A29)n n n

t t T -
K (t) = ( H [ (j)] r (k-1)e (k) (k))

n =1jk1 -n -n n
k=1 j=k+1 t-

t TtJi -1
I [ 1 X(j) e (k) e (k) $-1 (k))

k=1 j=k+1 n n n

* A *-1
K (t) = F (t) R (t) *(A30)n n n

where: Bn(k) = as yet undetermined weighting factor dependent on the

measurement noise variance V(k) and the order n. There is

a suboptimal version of this algorithm called a gradient

lattice which sets this parameter to 1.

t t T
F (t) = [ H X(j)] r (k-1)e (k) 1(k) (A31)n k=1 j=k+ -n -n n

At t T 1
R (t-1) I H X(j)] r (k-1)r (k-1)0 (k) (A32)

n k=1 j=k+1 n

A t tT 1
R (t) = TI (j) e (k)e (k)-1 ( (A33)

n k=1 j=k+1 -n -n n

Deriving these in recursive form:

t-1 t
F (t) = I[ 1 A(j)] r (k-1)e (k) W(k) + r (t-1)e (t)/a (t)

n k=1 j=k+1 n n n -n n

T= X(t) F (t-1) + r (t-1) e nt)/O (t) *(A34)n -n -n n

Similarly for equations A32 and A33:

R (t-1) = X(t) R (t-2) + r (t-1) r(t-1)/n(t) *(A35)n n Ct- n / nt

* * T
R (t) = A(t) R (t-1) + e (t) e (t)/O (t) *(A36)n n -n -n n
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Generating n (t):

The On can be calculated by transforming the weighting factors

from the LS form. The LS solution is (ref. N, p. 57):

A(n) (~n) (n)
x nt) = G (t) ()t-1) (A10)

A (n) A (n) A (~n) (n) (n) T
G )t) = G (t-1) + [x(t) - G (t-i) ) Ct-1)]k t) (A37)

(n) t t (nCn) T
R (t-1) = k [ +1 (n) (k-1) ( k-)/V(k) (A38)

k=1 j=k+1

k(n) t) = R (n) t-1) (n) Ct-1)/V(t) (A39)

The time indexing on R(n) (t) has been changed from the standard

^(n)
version. In RLLS, the regressors used to calculate x Ct) are

available at time t-1 (e.g. u(t) is not included). The noise

statistics and forgetting factor (see equation A38) are needed to time

t, so that R(n)(t-1) apparently depends on data at time t. However,

the noise statistics and forgetting factor are-constant for RLLS (see

Approximation Used in Equation A53, at the end of section A.2), so the

notation R(n)(t-1) is appropriate. As indicated by equation A39,

R(n)(t-) isn't used until time t, but it can be calculated at time

t-1. From equation A38, A12, and A16 (with the new notation, P(t) is

written as P(t-1) and equals R(n)~1(t-1)):

(~n) T (n) (Cn) TCn) - n
(t) (t-1) = n Ct-1) R Ct-1) ( t-1)/V(t)

( T -T T (n)~ -1 ~n)

= (t-1)T (t) T (t)P(t)T (t)T n) ( t-i)/V(t)

(n) T (n)
- t-i )P~t) ( t-i )/V~t)



From equation A12 and since the ri are uncorrelated:

T 
(n) t-1)

r T(t-1)
-10

ege r Ct-1)]
-n-1

f ) T
k - (t)

or:

(n) t-1) = ni T -1

i=0

T
kn) t) n) (t-) = k(n-i) T (n-1

t-1)+r T--n-1
(t-1 )/V(t)

Note the similarity of the term in brackets in equation A37 to equation

A21. Call this e.n(t):

(t) x(t) - ^(n)(t-1) .(n)(t-1) (A42)

Similarly, from equation All:

A H(n) t n)r Ct) = x(t-n) - H (t-1) * Ct) (A43)

If the derivations for equations A27 and A28 are repeated using these

estimators:

r(t) =r (t-1) -K (t-1) n-1(t)

e (t) = e (t) - Kn- (t-l)r Ct-1)

(A44)

(A45)

182 4
4

R 1(t-i)
0

0

0 ,

0C
4
4

0 r t
-i-

R (t-1) r (t-)
n-1 J n-1 4

4

(A40)

4
4

4
4

4
4

4
41

4
I

41

41

41
4

(t-1)R- 1 )r _n-I1 -- n-



Substituting equation A42 into equation A37:

^(n) A (n) n
G (t) = G Ct-i) + e nCt).k.~

To relate e (t) and e (t), combine equations A21,

t(n) (n)et) = x~t) - G (t) Ct-i)

A46, and A42:

= xt) - ^(n) t-1 )(n) t-1)
(n)

-e Wtk

T
(t)(n) Ct-1)

= Ct) - (t)k(n) t)
-n -n

(n) t-1)

=(1- k(n) tn) Ct-i) t (t)

To relate r and r , the RLS solution to equation A22 is needed:

x (t-n)
A (n) (n)

-H (t)~ C t)

^ (n) t = (n) t-i)

(n)
4-

[x(t-n) - ^(n) tH t-i)

[ (n) k C(n)
k=1 j=k+1

(n) t) = Q(n) t) (n) (t)/V(t)

Substituting equation A43 into A48:

Hn) (t) =^n) t-1) + (t) 1C(n t)

183

T
(A46)

(A47)

(n) t)] 1 (n)
T

T

C(k) /V C(k)

(A22)

(A48)

(A49)

(A50)

(A51)
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Combining equations All, A51, and A43:

^(n) (n) 4
r (t) = x(t-n) - H (t) (t)

TT

^(n) (n) (n) T (n)
= X(t-n) - H (t-1) W t - rt) 1 (t) W t

-- n
T (n)

=r Wt - r Wt 1 (t) (t)

= ( 1(n) (t) (n (t)) r (t) (A52)

Comparing equations A49 to A38 and A50 to A39 shows that, for

measurement noise statistics and forgetting factor constant:

(n) (n)
1 (t) = k (t+l) (A53)

(For a detailed discussion of this equivalence, see "Approximation Used

in Equation A53" at the end of section A.2.) Since the noise I

statistics and forgetting factor must be constant, use V in place of

V(t) and X in place of X(t) in the rest of this derivation.

Substituting equation A53 to A52:

T
r t) = (1 - k(n) (t+l) f(n) t)) rt) (A54)

To compare the estimates of K and K from equations A29 and A30 to

(n) (n) n n
those for G and H in equations A46 and A51, the K and K

n n
equations have to be converted to the same form as the G(n) and

H(n) equations. Starting with equation A29, substituting A34, A29,

A35, A47, A54, and A45:

T -
K (t) = F (t) R n (t-i)
n n n

=( F (t-1) + e (t) r (t-l)/O t) R (t-i)
n -n -- n n n
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A 1
= [ K(t-1) R (t-2) + e (t) r (t-1)/a (t)] R (t-1)

n -n n n

= (K (t-1)
n [R (t-1) - r (t-1) r (t-1)/O (t)]n --n -n n T -1

+ e n(t) r (t-1)/0 (t)) Rn (t-1)
-n n n n

= K (t-i)- {K (t-1)
n n

r (t-1) rT (t-1)/0 (t)+e (t)rT t-1)/ ) R 1(t-1)
n -n n -n -n n n

= Kn(t-1) + Len(t) - K (t-1) r(t-1))r (t-1) R 1 (t-1)/nCt)
nnnnnn n

= K (t-1) +
n

(t - ) -r (t 1 ) R - 1 ) ( n ) T

K (t) = K n(t-1) + ;+1 (t)r (t-1)R (t-1) (1-k(n) t) (n) t-1) /an(t)
(A55)

Similarly, using equations A30, A34, A30, A36, A47, A54, and A44:

A*

K C t) = K C t-i)

T a (n) ATo compare G and K n-11

+ r n+1t)e (t)R (t)(1-k(n)t)

start with equation A46 then substitute A20:

A (n+1) t
(t-1) +~ C + t) k (n+1) t)

[^(n)Ct) Q]+Knt)[-^(n) t-1) I] = [^(n)Ct-) o]+KnCt-1)1-^(n)Ct-2) I]Kn t l _ (-2

+ en+1 (t)k n+)t

[^(n) t)-^(n) t-i) 0] + K (t)
n

A (n) A

[-H (t-1) I] -K (t-1
n

=e n+1 (t)

(n)
(t-1))/On(t)

A(n+1
G t

-H(n) t-2) I]

(n+1) Tk (t)

(n t-1 ))/a n(t)



Multiply from the right by I(n+1) Ct-1) = (n)T Ct-1) x(t-n) T:

[Gn(t)-G (t-1) (n) t-)+K (t)- (t-1) I ](n+1) (t-i )-

K (t-1 ) [-H(n) t- 2 ) I] (n+1 (t-1) = en+1 t)k t)

4
4

(n+1 ) t-1)

Substituting from equations A46, A19, and the equivalent of A19 for

r (see equation A43):
-n

'I'

(t)n) (t-1 )+K nt)r (t-1)-Kn (t-1)r (t-1)=

e n+1 (t)k~n+1
St (n+1)

Substituting from equation A55:

(n)T (n) t A
Ct) Ct-i)+K (t)r Ct-i)-K Ct-i )r (t-1) +

+ T -1
e n1(t) r nCt-1 )Rn (t-1 )r (t-1 ) 1 -k(n t ~(n)t-1 ) 1/0n (t)=

+ (t)k (n+1 t) (n+1
-n+1 - t (-

Substituting from equation A54:

(n) t)(n) Ct-1 )+(1-k(n) (t)(n) t-1) )K t)r (t-1 )-K t)r (t-1 )+

(n+1 T
Ct)=e Cn+ k nti) (t) (n+1 ) (t-1 )

Combining terms:

1 86
4
4

(n)
e t)k
-n

4
I

e (t)k

I
I

e (t)k

I
I

T -1

I
I

4
a1

I
I

4
4

I
I

a
I
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(t)-Kn(t)-(t-1 ))k(n )(t) (n) t- )+

+t T -1
e n 1 (t) (:(t-1 )R C t-i (t)j(n+1 

)
(t-i)) = 0

Substituting from equations A47 and A54:

(t)- (t)r
(n n --n

(t-1 ) )k(n) t)(n) t-1 )/[1-k(n) (t)(n) (t-1)]

+1(t) T -1 )(n+1) T (n+1)
)R ( - n ntl/ t- (t)A (t-1)) = 0

Substituting from equation A28 and A47:

(n+1) T (n+1) t- (n) T (n) (n) T (n)(1 -kn+1 (t)C C t-i + () k (t)~ Ct-i _/[ -k t)j Ct-i

T) Ct-1/ (t-n+1) T Cn+1)
+ n+1 (t) ( t-1 )R n(t-1 )r n 

(t-1 )/-n (t) -k t) +1

Multiplying through by 1 -k(n) T t)Cn)(t-1) and combining terms:

-(n+i) (t) (n) Ct)(n) Ct-)+

Ct-1 ) )=o

r (t-i)R 1(t-1
n n

(n) (n+1) T (n+1)
(t-1))

= 0

Since this is true for all e n+1(t):

+

)r n(t-1 )/0 n(t) -k(n+1

)r n(t-1 )[1-k~n tW
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k(n) T (n) t-1)+r (t-1)R (t-1)r (t-1)(1-k (n)
-T n n --n

T

tq (n) t-1))/a (t)

(A56)

Subsgituting from equation A41 into the right hand side and subtracting

k(n) (n) (t-1) from both sides:

'ii

r T(t-1)R1 (t-1)r (t-1)(1-k(n)
-n n --n- t)# (n) (t-1) / (t)=

- n

r (t-1)R- (t-)r (t-)/V-n n-1 -n-1

n (t) = V [1-k(n) T(t)(n) t-1)Or:

For n=O (since (O) = 0 from equation 2.4.2):

8 (t) = V

This is the same as the equation in Figure 2.4.1 because that equation

is for the inputs normalized by the noise so that V=1.

orders, substitute A41 into A57:

8 (t)
n

[1-k(n-1

= V [1-k (n-

tq (n-1) t-1)-r (t-1)R 1 (t-1)r (t-1 )/V-n-1 n-1 -n-1

(n-i ) T 1
( (t-1)] - r T1(t-1 )R-i (t-)r (t-1)

-n- n-1 -- n-

Substituting for the first term from equation A57 and shifting up one

order:

8 (t) = 8 (t) - rT (t-)R 1(t-1)r (t-1)n+1 n -n n -n
*(A59)

I
I

I
I

I
4

(A57)

I
I

*(A58) 4
I

For higher

I
I

I1
41

I
41

I
I

I
I

I
4

= k_(+1 ) 6(t) ) (n+1 ) (t-1 )
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Approximation Used in Equation A53

Equations A37-A39 and A48-A50 are the batch version of the

equations for k(n) and 1 (n). For the recursive form, the matrices

R(n) and Q(n) are given initial values at t=o. In this case,

equations A38, A39, A49, and A50 become:

R(n) t-1 = AjR(n) -1 + A) (n) (n)T
R (t-1) =[I r j( )]R (1) + Z [ X(j)]j (k1 )_I (k-1)/V(k)

j=1 k=1 j=k+1

k (n) (t) = R(n)- 1t-1) (n) (t-1)/V(t)
(n) (n (n) ,n (nT

Qn) (t) = A(j)]Q (n) + t (n) kf(n) (k)/V(k)
j=1 k=1 j=k+1

(n) (n) -1 (n) t)/V(t)

The equations are initialized at t=0, and data is taken starting at

t=1. To make the comparison easier to see, write the expressions for

l(n)(2) and k(n)(3):

(n) (n) (n)k (3) = R (2)0 (2)/V(3)

= [X(1)X(2)X(3)R(n) (-1) + X(2)X(3) (n) (0)0 (0)/V(1) +

-1 -
(3)0 (n) (n) 1)/V(2)+o(n) 2)0(n) 2)/V(3)] 0(n 2)/V(3)

1(n) (2) = Q (n) 2)(n) (2)/V(2)

= [X(1)X(2 )Q(n) (0) + X(2 )0(n) (1) 1)/V1) +

-(n) (2)0 (n) (2)/V(2)] 0 (n) (2)/V(2)



190

Comparing these 2 expressions illustrates that 1 (n)(t)=k (n)(t+1) if:

(1 ) V(t) = constant = V

(2) j(n)(O) = 0

and either:

(3) X(t) = 1 (3) )(t) = constant = X

(n) (n) or: (n) (n)
(4) Q (0) = Rn(_l) (4) Q (0) = XR (-1)6

This is the standard set of conditions for the algorithm to be

valid. An alternate set of sufficient conditions is:

(1) V(t) = constant = V

(2) X(t) = constant = X

(3) Q(n)(Q) = XR(n)(-1) + _ ( ) ) ( )/V(1)

Note that this set allows non-zero initial conditions while preserving

the strict equality of equation A53.

A.3 Extension of Derivation

Since On(t) is the least squares weighting factor (see "Generating

Kn and Kn* in section A.2), the equations in figure 2.4.2 are just

the Kalman filter version of the equations in figure 2.4.1 (Ref. 20,

p. 57), where:

P (t) = R1 (t) (A60)
n n

* A *-1
P (t) =R (t)
n n

y (t) = (t) (A61)
n n

Using equations A60 and A61, the equations for O(t) (equations A58 and

A59) become:

y(t) = X 8 (t) = X V (A62)

n+ (t) = nW (t) = (t) - r (t-1) P (t-1) r (t-1)

y (t) - r (t-1) P (t-1) r (t-1) (A63)

-
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Appendix B: Modal Parameterization 3

As described in Ref. 13 and referred to in this thesis as MIMO

Parameterization 2, any observable system can be put in the form

(assuming the inputs don't affect the outputs directly e.g. no

un-integrated accelerometer data):

x(k+1) = [A..] x(k) + B u(k)

0
1J I

where: A.. = - 1

0
a. .- a..

Si1 iiv.

A-J = . 0
ij

a.. --- a.. 0 0.00
iji ~13i

B= fully populated

V.. =V.
11 1

V min (v_.,v.i+1) j < i ij 1t
V.. = J .i,j = 1 to p

min (v.,v.) j > i

Consider a system where the number of outputs equals half the number of

states and the outputs are positioned so that vi= vij= 2. Then the

transformed Aui will be of the form:

0 1
A. .=

11

- a il aii2 j

Suppose further that the sensors were such that aijk=O for all i /
j. Then the transformed A matrix would be of the form:

0 1
A =diag i=1,...,jp; p=N/2

a.. a..
L 1 a iia 2J
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which is precisely the form desired for modal parameterization 3. To

get this form, generate the transformation as if the above described

situation existed, then apply to the real model. This requires proving

that it is possible to choose the sensors as described.

Proof of Existence of Transformation:

Given (see ref. G):
*T

Consider the system +1 = A , k = C xk C , where A is

2n x 2n. Transform this system using the matrix T:
T

L 2A

T o 1 fo 1

T

T= Ri A T A T =--$1....92.92 - - . - - -

R20 0

S211- S212-1 - - - . .- . . - - -.
cT A0 1c A-

ann1 ann2

T 2 n T T
c. A = .(a.. c. + a c. A)
- j=1 iji -j ij2 -j

(1) Assume a = 0 for i,= j. Then:
ijk

T 2 T T
c. A = a.. c. + a.. c A
-i i1 -i ii2 -i

(2) The A matrix satisfies its own characteristic equation so:

A- A - a = rank deficient by 2 no repeated roots
>2 repeated roots

where 8 = - i flexible mode

- product of 2 exponents rigid body mode

a =C w
sum of 2 exponents

flexible mode

rigid body mode

2
(3) Since A - a .2 A - a. . is rank deficient by at least 2, two

conditions can be imposed on c..

(a) Replace one row of A - a. . A - a ii with the transpose

of the first column of B
T

(b) Normalize c. so that the largest element of c i A B =1
- -i

I
I

Ia

I
I

I
I

I
I
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If there are repeated roots, or adding the column from B doesn't

increase the rank of the matrix, then more conditions could be imposed

on ci. Any choice which gives T nonsingular is allowed.

The 3(a) and 3(b) conditions give the B matrix in the form

required by modal parameterization 3.
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