A Fragmentation Technique for Parsing Complex Sentences
for Machine Translation
by

Jung-Taik Hwang

Submiitted to the Department of Electrical Engineering and Computer Science
in partial fulfillmert of the requirements for the Degrees of
Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 1997
© Jung-Taik Hwang, MCMXCVIL All rights reserved.
The author hereby grants to MIT permission to reproduce and distribute

publicly paper and electronic copies of this thesis document in whole or
in part, and to grant others the right to do so.

Author i
@éartment of Electrical Engineering and Computer Science
May 23, 1997
Certified by e p R T oy tae e
Clifford J. Weinstein
Group Leader, MIT Lincoln Laboratory
Thesis Supervisor
Certified by . .
Young-Suk Lee
_,Staff, MIT Linco]n Laboratory
€sig Sppervisor
Accepted by -
“ Arthur C. Smith

Chairman, Departmental Committee on Graduate Students

0cT 291097 =

A Fragmentation Technique for Parsing Complex Sentences for
Machine Translation

by
Jung-Taik Hwang

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 1997, in partial fulfillment of the
requirements of the degree of
Masters of Engineering

Abstract

The Speech Systems Technology Group at MIT Lincoln Laboratory has been developing an
automatic speech and text translation system called CCLINC, for English to Korean
translation. For the system to be useful in real world applications, it has to be robust enough
to translate any new input sentence. A major challenge in developing a robust translation
system lies in the parsing of a complex sentence containing multiple clauses and coordinates.
A complex sentence induces a higher degree of ambiguity than a simple sentence, and poses
a problem for both processing and grammar acquisition of a complex sentence input. A
method of overcoming such a problem by means of sentence fragmentation, including a
fragmentation algorithm and experimental results, is presented in this thesis. The algorithm
utilizes and builds on the output of the Apple Pie Parser developed by Satoshi Sekine at New
York University. In addition, a possible future application of a fragmentation technique to

locate noun phrases for purposed of information retrieval is discussed.

Thesis Supervisor: Clifford J. Weinstein
Title: Group Leader, MIT Lincoln Laboratory

Thesis Supervisor: Young-Suk Lee
Title: Staff, MIT Lincoln Laboratory

Acknowledgments

Many individuals have helped me write this thesis both directly and indirectly. I
would like to start off my thanking my academic advisor Albert Meyer. He provided me with
invaluable advice in both academics and outside of academics. I would also like to thank my
thesis supervisor and Group Leader at MIT Lincoln Laboratory, Clifford Weinstein. Without
Cliff, I would have never had an opportunity to work on this project. [want to also thank
Young-Suk Lee, my other thesis supervisor, for everything she has done for me. Without her,
this thesis would be no where close to being done. She took care of everything from making
suie { had interesting research work, to coming up with a timetable for my thesis work, to
providing me invaluable feedback on my work. Thank you Young-Suk.

Next, I would like to thank all the members of Group 49 at Lincoln. I am glad to say
that I had a wonderful time working here. I would like to especially thank Linda Kukolich
for keeping her door open for the many conversations about anything and everything. [would
like to also say thank you to the members of the Translation Project (Clifford Weinstein,
Young-Suk Lee, Dinesh Tummala, Stephanie Seneff, and Linda Kukolich) on whose work
my thesis work is based on.

I would like to thank my Theta Xi fraternity brothers and my other special friends
(you know who you are) who have helped me survive and get the most out of the MIT
experience. What I have learned in school is trivial to the things [have learned from living,
breathing, and drinking beer with you. Thank you my friends.

Finally, I would like to thank my parents. Without their financial support, moral

support, and love, none of this would have been possible.

Contents

1 Introduction Cerrersreaeaeaas cerereeneaees9
1.1 Introduction To The Lincoln MT System 9
L2CCLINC Systemoott ettt et e 11
1.3ThesisGoals i e e 14
l.4ResearchDomain 15
LSSummary 17

2 Apple Pie Parser Cereeeeaas Cefeeeriessceteseetencens 19
2.1 Overview of the Apple PieParser 19
22Bottom-UpChartParsing i, 20
2.3 Probability in Lexiconand Grammar 23
2.4 Probability Calculation25
25 FittedParsing 31
2.6 Experimental Results i 33

2.6.1 Misparses Due to Use of Incorrect Rule 36
2.6.2 Misparses Due to Incorrect Part of Speech Tagging 37
2.6.3 Misparses Due to Two Non-Terminal Grammar 38

2.6.4 Misparses Due to Incorrect Prepositional Phrase Attachment 40

2.6.5 Misparses Due to Incorrect Fitting 4]
2.6.6 Misparses Due to PunctuationErrors 42
2T SUMMATY . ..o 43

3 Sentence Fragmentationccc00iiiineienecnccnceeeee. . 45

3.1 Overview of Sentence Fragmenter 45

3.2 Working with known Apple Pie Parsererrors 49

3.3 Sentence Fragmentation Techniques 52

3.3.1 Definitions of Fragments 53

3.3.2 Exampleof Fragments, 56

34 Experimental Results 59
3.58ummary ... 65

4 Role of Fragmentationin MTcciiiiinnnnnn.. 67
4.1 Translation System Overview, 68

4.2 System with Part of Speech Tagging 70

4.3 System with POS Tagging and Fragmentation 74

44 EvaluationResults i 79

4.5 SUMMATY . ..ot 80
SConclusioncoiiiiiiiiiiiiiiiiiiiteiieeenannnn ceeene 82
5.1 Summaryof Thesis i, 82
S2Future Worko 84

5.3 Applications of Fragmentation Techniques 86

5.4 8UMMArY ...t e e 88

A Glossary of Linguistic Tagsc000... cerena ceeea. 89
B TestSentencescoiiiiiiiiineenrneenennnnnn —— 1
C Sample Chart Parsing Results ceeeeaen ceeeeees ceeeeees ... 102

D Apple Pie Parser Nicknames

Bibliography

List of Figures

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4

Figure 4-5

CCLINC System Structure

Translation System Process Flow

Parse Tree Generated by TINA

Semantic Frame

Top-Down and Bottom-Up Parsing Methods

Example of Factoring Grammar Rules

Simple Gramnmar Rules

Chart Parsing of the Sentence the dog chased the cat

Input Sentence and Corresponding Semantic Frame

Parsing with and without Part-of-Speech Tagging

Flow Control After the Addition of the Part-of-Speech Tagger
Flow Control After the Addition of the Sentence Fragmenter

Frame Composition Algorithm

List of Tables

Table 2-1

Table 2-2

Table 3-1

Table 3-2

Table 5-1

Experimental Results of the Apple Pie Parser on 200 C2W Sentence
Type and Frequency of Paring Errors

Misparses and Number of Fragmentation Errors

Partially Correct Fragmentation

Summary of Performance Results

Chapter 1

1 Introduction

The Speech Systems Technology Group at MIT Lincoln Laboratory has been
developing an automatic text and speech translation system for English/Korean translation.
The system I have been working with takes an English sentence as the input and generates
a Korean sentence as the output. The existing system handled shorter simple sentences very
well. However, with longer complex sentences containing multiple clauses and coordinates,
the system often could not parse the sentence which leads to no translation output at all. To
tackle this problem, we looked at techniques of fragmenting the sentence in such as way that
the pieces can be translated and then combined at a later stage. This technique enables the
translation of relatively long sentences, which poses a challenge to many existing machine
translation systems. This chapter gives a quick overview of the current machine translation

system, presents the thesis goals, and explains two research domains of interest.

1.1 Introduction To The Lincoln MT System

The goal of the Lincoln project is to automate translation of text and speech for

enhanced C41' among allied military fcrces, as explained in Reference [5]. The main focus
is the translation of English to Korean, however the system has to be flexible enough to
extend to other languages with minimal duplication of work. The problem is that human
translators in the military spend an enormous amount of time translating documents,
messages, and other material. The goal of this research is to increase the effectiveness of
human translators by providing them a tool which replaces the manual labor required in
translation.

In the process of achieving these goals, current research advances in language
understanding, language generation, and speech recognition were adapted. These research
areas were integrated into an useful real world application. The main focus of the application
is translating messages in the military domain from English to Korean. The results is a
system that utilizes robust translation techniques to handle new words and complex
sentences. In addition to these techniques, the application also features a graphical user
interface for the translator’s aid, which is the final application that the translators will use.

The goal was to develop a high performance translation system for translating
military task domain. The system was designed to handle highly telegraphic military
messages as well as long and complex grammatical sentence. This translation system is

called CCLINC.

'Command, Control, Communications, Computing, and Intelligence

1)

1.2 CCLINC System

C4l INFO &
DISPLAYS

UNDERSTANDING

ENGLISH SEMANTIC FRAME KOREAN
TEXTOR BEE= (COMMON "t TEXT OR
SPEECH —— COALITION $T¢ SPEECH

LANGUAGE)

<€—— GENERATION

Figure 1-1 CCLINC System Structure

The CCLINC system uses a semantic frame or common coalition language as the
common basis for translation. A given text in a source language is translated into the
common coalition language through the use of a language understanding module. Then, the
text in the common coalition language is translated into the target language through the use
of the language generation module. A graphical representation of the system structure is
given in Figure 1-1 from Weinstein, Lee, Seneff, and Tummala [13]. This design allows the
system to be extended to any other languages by developing the appropriate language

understanding and language generation modules.

1

LANGUAGE UNDERSTANDING
PARSE:

ISTRUCTURE

| MEANING |yt LANGUAGE
ANALYSIS

ANALYSIS GENERATION

e 3
GENESIS (MIT/LCS)
E TINA (MIT/LCS) f

KOREAN GRAMMAR
BILINGUAL LEXICON

REWRITE RULES

Figure 1-2 Translation System Process Flow

To understand how the system truly works, it is necessary to follow a sentence
through the entire translation path. Figure 1-2 from Weinstein, Lee, Seneff, and Tummala
[13], shows the original system before the thesis work has been integrated.

To clearly see the process, an example sentence can be followed through the
translation pipeline. The following is a typical MUC-II* Naval Operations Report message.
INPUT SENTENCE:

0819 Z USS Sterett taken under fire by a kirov with SSN-12’s

TINA, the language understanding module does a structural analysis of the input
sentence using its English grammar and lexicon. The output of this analysis is a
corresponding parse tree. The parse tree that is generated from the example sentence is

shown below in Figure 1-3, also from Reference [13].

2MUC-Il stands for 2™ Message Understanding Conference. MUC-Il messages were collected and
prepared by NraD to support DARPA sponsored research message understanding. We utilized these
messages for the DARPA sponsored machine translation project.

12

sentence

full_parse
statement
pre-adjunct subject participlal_phrase
tlme_exrresslon np pasSive
gmt_time a_ship anmmekaﬂm
numeric_time ship_mod ships vtake under_fire v_by_agent v_with_instrument
numeric gmt uss ship_name v_by /ﬂ v_with np
indefquantifier a_ship a_mlssile
|
ship_name ml}u{
0819 z uss sterett taken underfire by a kirov with ssn-|12 L

Figure 1-3 Parse Tree Generated by TINA

From the parse tree, TINA generates a common coalition language or semantic frame,
though the use of a mapping algorithm. The corresponding semantic frame is shown in

Figure 1-4 from Reference [13].

{ ¢ statement
:time_expression {p numeric_time
:topic {g gmt
:name “z” }
:pred {p numeric
stopic 819 } }
:topic {qg ship_name
:name “sterett”
:pred {p ship_mod
stopic *“uss” } }
:subject 1
:pred {p taken_under_ fire
:mode “pp”
:pred {p v_by
:topic {g ship_name
:tname “kirov” } }
:pred {p v_with
:topic {qg submarine_name
sname “ssn-12s” } } } }

Figure 1-4 Semantic Frame

13

The semantic frame captures the core meaning of the original input sentence. The
relationship among all the elements involved is completely captured by the semantic frame.
It does this by assigning a specific descriptive label to each word in the parse tree. For
example ssn-12 is correctly represented as a submarine_name in the statement instead of just
as a noun. To generate the Korean text output, the language generation module, Genesis,
takes the semantic frame as the input and produces the Korean text by using generation rules

that are unique to the target language.

1.3 Thesis Goals

In this thesis, I worked on methods to improve our existing translation system
through the use of a sentence fragmentation technique. The problem was that the existing
system did not deal very well with complex sentences (sentences with more than one clause)
as well as other long sentences. This is a common problem in many existing machine
translation systems because complex sentences introduce a higher level of ambiguity in the
parsing stage. However, since TINA, the language understanding module, performs very well
with simple military domain sentences and the entire system is stable, we wanted to add a
module to act as a pre-processor to TINA rather than making the sentence fragmentation an
internal component of it.

The overall goal of the research was to integrate an accurate Sentence Fragmenter
into the existing system in order to improve performance on complex sentences. The solution
involved pre-processing the sentence before it is passed to the language understanding

system and breaking up the sentence into smaller fragments. The smaller fragments are then

14

fed through the language understanding system and the results are recomposed together at
the semantic frame level, while preserving the meaning of the original sentence.

There were three goals that I wanted to accomplish in this thesis. The first goal was
to understand the inner-working of the Apple Pie Parser so we can use it as a starting point
in the research, which is addressed in chapter 2 of this thesis. The second goal was to design
and implement a Sentence Fragmenter algorithm, which is presented in chapter 3. The
algorithm has gone through many iterative steps over the period of the thesis in order to
improve performance. The third goal was to integrate the new Sentence Fragmenter into the
overall system, which is presented in chapter 4. Finally, in chapter 5, I suggest ways of
improving the performance of the Fragmenter and some potential applications of the sentence
fragmentation technique in other research areas.

I am very happy to have been able to successfully achieve all three of the goals
mentioned above. However, in a pioneering research area as this one, further research can
always be used to improve the existing work. Specifically, the work accomplished in this
thesis shows the feasibility of using the technique of sentence fragmentation for coping with
the problem of complex sentence. However, the sentence fragmentation algorithm is far from
perfect. Iu this thesis, in addition to the current work, I also propose several possible ways

that the system can be improved in the future.

1.4 Research Domain

As stated earlier, the goal of the project is to develop a machine translation system

for a military task domain. Specifically, the domains we are interested in transiating are

15

military domains. The two main message categories that we are interested in translating are
MUC-II data and Command and Control Warfare (C2W) data.

MUC-II data is messages used in Naval Operations Reports. They are often highly
telegraphic, containing a lot of domain specific elliptical expressions. MUC-II data was the
original target of the machine translation project, which over time has been extended to
handle other types of data. Below are a few examples from MUC-II data and a paraphrase
of the intended message. The telegraphic nature of MUC-II data is very clear from these two

examples.

SENTENCE: 3a-6e's launched agm 84's foll by 2 a-6e's launch of skipper iii

PARAPHRASE: Three A-6e aircrafts launched AGM 84 missiles and was followed
by two A-6e aircrafts launching skipper III missiles.

SENTENCE: friendly cap a/c splashed hostile tu-16 proceeding inbound to
enterprise at 35nm

PARAPHRASE: Friendly combat air patrol aircraft splashed a hostile TU-16

aircraft which was proceeding inbound toward USS Enterprise when it was 35
nm away

Another domain is Command and Control Warfare domain (C2W). The sentences
forming this domain were extracted from the Command and Control Warfare handbook,
which is a bilingual book written in both Korean and English. This is a great source of a large
amount of bilingual text which is otherwise very scarce. C2W data differs from MUC-II data
in the sense that since it is extracted from a handbook, it uses grammatical correct English

sentences. Below are a couple of sentence from the C2W data.

military deception can be used to enhance the impact obtained from
practicing these tenets, but military deception also provides
opportunities to apply these tenets in ways that are not otherwise
available

electronic deception, as another component of ea, conveys false or
misleading information to enemy decisionmakers to influence their
perception of an operational situation incorrectly and respond, or fail to
respond, in a way advantageous to friendly operations

16

Initially, the sentence fragmentation work was started using the MUC-II data.
However, due to the telegraphic nature of the MUC-II, the Apple Pie Parser’s performance
was poor because it was trained using normal grammatically correct sentences. Therefore,
basing the sentence fragmentation algorithm on MUC-II data didn’t seem like the best
choice.

Upon coming across C2W data, we decided to use that data as a basis of the thesis
work because of several properties of these sentences. First, they were grammatically correct
which translated into a better performance of the Apple Pie Parser. Second, the sentences
were very long, containing many clauses and coordinates, which is what we needed to
develop and test the framentation algorithm. The average length of the 286 test sentence from
the C2W domain is 15 words®, however many of the sentences used in the research exceed

25 words.

1.5 Summary

This thesis presents a sentence fragmentation technique to overcome the problem of
parsing complex sentences. The current understanding system, TINA, is a system designed
to handle domain specific grammar and achieves a high performance for simple sentences
in the MUC-II domain. However, when presented with longer sentences such as sentence
from the C2W domain, TINA’s grammar is unable to handle them.

The overall goal of the thesis is to solve this problem through the use of sentence

fragmentation. In achieving this overall goal, several sub goals were established. These are

3See Reference [6).

17

to learn the inner workings of the Apple Pie Parser, build a Sentence Fragmenter based on

that knowledge, and integrate the research into the existing system.

18

Chapter 2

2 Apple Pie Parser

The Sentence Fragmenter is built on the output of the Apple Pie Parser developed by
Satoshi Sekine at NYU. Therefore, it is necessary to understand the inner workings of the
Apple Pie Parser in order to efficiently implement the Sentence Fragmenter.

The following chapter describes the inner workings of the Apple Pie Parser. This
includes an overview of the parser in Section 2.1, the bottom-up chart parsing technique in
Section 2.2, the probability calculations in Section 2.3 and Section 2.4, and the technique of
fitted parsing in Section 2.5. In addition, experimental results and the drawbacks of the

system are presented in Section 2.6.

2.1 Overview of the Apple Pie Parser

The Apple Pie Parser Version 5.8 was developed by Satoshi Sekine at New York
University. It is a bottom-up probabilistic chart parser which uses a best-first search

algorithm to assign scores to the individual parse trees. The grammar of the parser is a semi-

19

context sensitive grammar with two non-terminals'.

The Apple Pie Parser’s grammar was extracted from Penn Tree Bank, which is a
syntactically tagged corpus at the University of Pennsylvania. The Penn Tree Bank corpus
contains over 47000 sentences gathered from the Wall Street Journal. The grammar was
acquired fully automatically from the Penn Tree Bank. The advantage of this method was
that it was possible to generate a very broad coverage grammar without having to invest a
large amount of human labor.

The output? of the Apple Pie Parser is a syntactically bracketed sentence as given in
the example below.

Input:

the damaged enemy bogey left the friendly area

Output:

(S (NPL the damaged enemy bogey) (VP left (NPL the friendly area)))

The parsed sentence has syntactic brackets as well as syntactic categories® for the

corresponding part of the sentence.

2.2 Bottom-Up Chart Parsing

The Apple Pie Parser uses a bottom-up chart parsing method. A bottom-up strategy

involves starting with the words in the sentence and using rewrite rules to reduce the

'"The two non-terminals are S and NP.

*The Apple Pie Parser is capable of generating four different types of outputs. Refer to the Manual
of the Apple Pie Parser (Reference [9]) for more details.

%A list of labels can be found in the Appendix.

20

sequence of symbols until it terminates with a single S, the top level symbol for a sentence.
Contrarily, a top-down strategy involves starting with a single S and searching for different
ways to rewrite the symbol until the input sentence is generated. Figure 2.1 illustrates both

the bottom-up and top-down strategies.

-)

S John ate the apple
=> NP VP => NP ate the apple
=> John VP => NP V the apple
=>John V NP => NP V ART apple
=> John ate ART N =>NP VARTN
=> John ate the apple =>NP V NP
=>NP VP
=> S
Top-Down Approach Bottom-Up Approach
\. J

Figure 2-1 Top-Down and Bottom-Up Parsing Methods

The bottom-up chart parsing technique uses the technique of a bottom-up approach
with the addition of one performance enhancing optimization to the algorithm. The technique
uses the concept of a “chart” structure in order to store partial results so that it can recall
them for later use instead of recomputing the partial results each time they are used. A step
by step derivation is given later in this chapter, when the probability calculations are
introduced into the bottom-up chart parser.

A bottom-up chart parser uses the following strategy®. The parser maintains an
agenda, a chart, and a list of active nodes. The agenda contains a list of constituents that have

yet to be added to the chart, which contains partially constructed constituents, and the list of

“*For a detailed description of the bottom-up chart parsing method, see reference [1]

21

active nodes contain grammar rules and the current positions within the rules that are
currently beine considered. The algorithm reads one word at a time, keeps track of the
possible rules that the word introduces and attempts to combine constituents to form new
constituents. The sentence is completely and correctly parsed when the agenda contains only
the top-level symbol and there are no more word left in the sentence. The storing of the
partial result is achieved through the use of active nodes by allowing the algorithm to
examine each word only once.

Because the rules were acquired automatically from a tree bank, there are over 32000
grammar rules in the system, approximately 9000 of which are rules for S, the top level
symbol in a sentence. The very large number of grammar rules, combined with the fact that
the Apple Pie Parser grammar only has two non-terminals, eliminates the possibility of using
a simple top-down or bottom-up approach because such methods would generate an
enormous number of active nodes in the parsing process.

Even the bottom-up chart parsing method generates too many active nodes for
practical purposes. This problem is solved by the author of the Apple Pie Parser by
integrating some strategies which reduce the number of active nodes. One strategy for
reducing the number of active nodes is by factoring the grammar rules with common

prefixes.

r A

RULE 1: NP ->ARTN

RULE 2: NP -> ART ADJ N
RULE 3: NP -> ART ADJ ADJ N
RULE 4: NP -> ART N PP

PHRASE: a large dog
\ J

Figure 2-2 Example of Factoring Grammar Rules

22

Suppose we have four rules and the sequence of words to be parsed given in Figure
2-2. Upon reading the article a, the Appie Pie Parser would only generate one active node
instead of the normal four. The active node would contain a dot after ART and a list of four
pointers pointing to the individual rules. Hence, we have factored the four rules into one
which uses less memory. Instead of maintaining all the rules that have common prefixes
separately in the list of active nodes, the Apple Pie Parser simply maintains a single pointer
to that node in the grammar automaton.

Furthermore, if there are still too many active nodes, the Apple Pie Parser resorts to
a secondary backup grammar which contains fewer grammar rules. This is the second

strategy used to lessen the memory requirements.

2.3 Probability in Lexicon and Grammar

As mentioned before, the Apple Pie Parser is a probabilistic parser. It uses probability
in two distinct ways. First, it uses probability to choose which grammar rule to use in case
it runs into an ambiguity. Second, it uses probability in the lexicon to determine the
likelyhood of a word being a certain part of speech. For example, the word can can be used
as a noun, a main verb, or an auxiliary verb. The probability measures are then used to
calculate the weight or the “validity” which is used to resolve ambiguities.

Using probability in parsing techniques is similar to the previous example because
we are interested in parsing sentences that we have not encountered before. The goal is to use

the sentences of the training set to predict the interpretation of the new test sentence.

Probability is first used to calculate the probability in the lexicon. For example, when

the Apple Pie Parser comes across the word can, it must decide between whether it is used
as a verb or a noun. Since both the grammar and lexicon was derived from the Penn
Treebank project, the probability assigned to the particular word depends on the way it was
used in the Treebank. As it turns out, can was used as a verb 1079 times and as a noun only
6 times. Therefore, the parser guesses that for the given word in our sentences, there is a
1079/1085 = 99.45% probability that it will be used as a verb. Since the word has been seen
1085 times in the corpus, we can be fairly confident in the accuracy of our probability
calculation.

In contrast, take the word bend for example. In the training data, it was used as a verb
five times and as a noun once. As we did before, we can determine that the Apple Pie Parser
will treat bend as a verb with 5/6 = 83.33% probability. However, we can reason that this
probability measure has a greater margin for error because it is based on a fewer number of
samples, six, compared to the previous example which was seen 1085 times in the corpus.
In general, since the probability for a given word is only used as a small portion of the whole
probability calculation, the performance of the lexical probability calculator is pretty good.
The main reason behind the good performance is that most words have only one
interpretation in the dictionary.

The performance of the part of speech tagger can be significantly improved by using
a more complex strategy. For example, we can use the words around the word we are
examining to derive a more accurate probability. However, the Apple Pie Parser uses the
simple strategy of assigning tags for complexity and speed reasons. Therefore, if the first
assigned tag generates a lower score after the grammar rules are applied than a less common

interpretation, the parser will actually use the less common interpretation. The formula of

24

how the probabilities for the lexicon and the grammar are related is examined in the next
section. We will also examine errors caused by mistagging, a situation where the incorrect

tag was selected by the parser, later in the paper.

4)

Rule Count for LHS Count of Rule Probability
1.S>NPV 1000 800 0.8

2. S->NP VNP 1000 200 0.2

3. NP->NP PP 3000 750 0.25

4. NP->NN 3000 300 0.1

5. NP->N 3000 1000 0.333

6. NP->ART N 3000 950 0.317

_ Wy,

Figure 2-3 Simple Grammar Rules

The second way probability is used in the Apple Pie Parser is in the grammar. The
way that the Apple Pie Parser uses probability in the grammar is that it uses the number of
constructions seen for each rule in the training data. Then by using the probabilities, it then
finds the parse tree that could have generated the sentence. Together with the probabilities
acquired from the lexical analysis, the parser uses the grammar probabilities to return the

most-likely parse tree.

2.4 Probability Calculation

The Apple Pie Parser uses the following strategies for assigning probabilities. In

assigning part of speech tags, it uses a simple probability function.

P_(t|w - Frequency of word w with tag t
rad Frequency of word w

25

To calculate the score of a parse tree S .., the following formula is used. The probability for
a given grammar rule X -> Y is based on the frequency with which X dominates Y in the
training corpus and the frequency of X. For example, in Figure 2-3, the probability of the rule
[NP -> N N]is 0).1 because NP appears 3000 times in the training corpus and the right hand

side construction appears 300 times.

P (X->Y) - Frequency with which X is expanded as Y
rute Frequency of X

The total score for a given parse tree is the product of each rule used to build the tree
together with the square of the probability of the tag for each word in the sentence. The
square factor acts to put more empiiasis on the tag probability over the rule probability which

produces better results than without the square factor.

Scree(T) = H PruJQH) H (Pcastl w))z

The best parse tree is the one with the highest score among the trees possibly derived
from the input. The probability calculation methods of the Apple Pie Parser can be best seen
through the computation of an example.

The bottom-up probabilistic chart parsing can best be shown with a simple example.
For more examples, see Appendix C. Consider the simple sample sentence, the dog chased
the cat. This is interpreted as a list of tokens seperated by node markers, 0 START 1 the 2
dog 3 chased 4 the 5 cat 6 END 7. After the start symbol is read, the parser reads the word
the. The word is looked up in the dictionary and the tag DT (for a determiner) is assigned
since it is the only entry. The second step is to create active nodes from node 1 to node 2.

This is done in the Apple Pie Parser by searching for the rule which has DT on the right hand

26

(I. [0, 1] o(0) -¢{ -1} -> =§= i\
2. [1, 2] DT(0) -{ -1}-> the
3. [1, 2] : NPL(49) - {37495} -> DT{1 2]
4. [1, 2] : §S(103) -{25363}-> NPLI[1 2]
5. [1, 2] : NP(90) -{17837}-> NPL([1 2]
6. [1, 2] : S(135) -{ 3259} -> NPL[1 2]
7. [1, 3] : NPL(20) -{38966}-> DT[1 2] NNX([2 3]
8. [1, 31 : NP(61) -{17837}-> NPL{1 3]
9. [1, 3] : SS(74) -{25363}-> NPL[1 3}
10. [1, 3] : S(106) -{ 3259} -> NPL[1 3]
11. [1, 4] : NPL(96) -{39163}-> DT[1 2] NNX[2 3) VBX([3 4]
12. [1, 4] : SS(58) -{28334}-> NPL({1 3] VBXI[3 4)
13. [1, 4] : NP{ 97) -{20757}-> NPL[1 3] VBNI[3 4]
14. [1, 4] : S{ 88) -{ 5358} -> NPL(1 3] VBX[3 4)
15. I 1, 6] : Ss5(79) - {28580} -> NPL{1 3] VBX[3 4] NPL(4 6]
16. [1, 6] : NP(114) -{21318}-> NPL{1 3] VEX[3 4) NPL{4 6)
17. [1, 6] : S(91) -{ 5748} -> NPL[1 3] VBX[3 4] NPL[4 6]
18. [2, 3) : VBX(25) -{ -1} -> dog
19. {2, 3] : VB({ 25) -{ -1} -> dog
20. { 2, 3] : NNX{ 1) -{ -1} -> dog
21. [2, 3] : NPL{ 22) - {41257} -> NNX[2 3]
22. [2, 31 : SS(76) -{25363}-> NPL[2 3]
23. [2, 3] : NP(63) -{17837}-> NPL[2 3]
24, [2, 3] : $(108) -{ 3259} -> NPL[2 3]
25. [2, 4] : NPL(109) -{41467}-> NNX[2 3] VBX[3 4]
26. [2, 41 : SS(60) - {28334} -> NPL([2 3] VBX([3 4)
27. [2, 4] : NP(99) -{20757}-> NPL[2 3! VBN([3 4]
28. { 2, 4) : S(90) -{ 5358}-> NPL[2 3) VBX[3 4]
29. [2, 6] : £S(81) -{28580} -> NPL[2 3] VBX([3 4] NPL[4 6]
30. [2, 6] : NP(116) -{21318} -> NPL[2 3] VBX[3 4) NPL[4 6]
31. [2, 6] : S(93) -{ 5748} -> NPL(2 3] VBX[3 4] NPL[4 6]
32. [3, 4] : VBN(10) -{ -1} -> chased
33. [3, 4) : vBX{(4) -{ -1} -> chased
34. [3, 4) : NPL(96) -{41473}-> VBX[3 4]
35. [3, 4] : SS(73) - {35156} -> VBN[3 4]
36. [3, 4] : S(100) -{15968} -> VBX[3 4)
37. [3, 4] : NP (164) -{17824}-> S3(3 4]
38. [3, 6] : SS(67) -{35526}-> VBX[3 4] NPL[4 6]
39 [3, 6] : NP(131) -{22827}-> VBX[3 4] NPL[4 6]
40. [3, 6) : S(92) -{15975}-> VBX[3 4] NPL[4 6]
41, [4, 5] : DT(0) -{ -1} -> the
42. [4, 5] : NPL{(49) - {37495} -> DT(4 5]
43. [4, 5] $S(103) - {25363} -> NPL{4 5}
44. [4, 5] NP(90) -{17837} -> NPL[4 5]
45, [4, 5] : S(135) -{ 3259}-> NPL{4 5}
46. (4, 6] : NPL({ 19) -{38966}-> DT[4 5] NNX[5 6]
47. [4, 6] : NP(60) -{17837}-> NPL[4 6]
48. [4, 6] : SS(73) -{25363} -> NPL[4 6]
49. [4, 6] : S(105) -{ 3259} -> NPL{4 6]
50. [5, 6] : NNX(0) -{ -1} -> cat
51. [5, 6] : NPL(21) -{41257}-> NNX[S 6]
52. [5, 6] : SS({ 75) -{25363}-> NPLI[5 6]
53. [5, 6] : NP(62) -{17837}-> NPL[5 6}
54. [5, 6] : S(107) -{ 3259} -> NPL[5 6]
55. [6, 7] : 0(0) - { -1} -> =E=
\ J

Figure 2-4 Chart Parsing of the Sentence the dog chased the cat

side. This rule actually is a factored form of all the rules that have DT as the first element of

the right hand side. By just adding one active node for all the rules that begin with DT, the

27

Apple Pie Parser dramatically reduced the number of active nodes that it needs to keep track
of. In the traditional chart parsing technique without this factoring processes, there would be
many more active nodes that would be generated by the first token. Figure 2-4 line 3
represents that there exist rules for NPL which start with the symbol DT (this rule has a score
of 49). Then, the parser looks up all the rules that can be composed from the constituents in
the chart, which at this step is only the symbol NPL. The parser generates three active nodes
that has NPL as the righthand side. These rules are shown in lines 4,5,6 in Figure 2-4. After
these three active nodes are added, the parser is done with the first step. Since chart parsing
does not require back tracking, it isn’t necessary to revisit the first the later in the parsing
process.

To start the next step, the word dog is read and looked up in the dictionary. The word
dog has been seen 11 times as a NN, once as a VB and once as a VBP in the training data.
Using the NN defintion, the active node shown in line 3 is extended from [1-2] to [1-3] to
generate a new active node shown in line 7. From this new active node, which has the label
NPL on the left hand side, the new nodes shown in lines 8, 9, and 10, which have NPL as the
first element on the right hand side are created. In addition, new active nodes covering [2-3]
are created in similar fashion to how active nodes for [1-2] were created. These are shown
in lines 21, 22, 23, and 24. From the chart, it can bee seen that there were no rules that has
VB or VBP as the first element on the right hand side.

Next, the word chased is looked up in the dictionary, which shows that it has been
seen as a VBN once and a VBX twice. As with before, new actives nodes 34, 35, 36, 37
spanning [3-4] are created. Then, the active node shown in line 7 is extended from [1-3] to

[1-4] to create active node shown in line 11, using the VBX definition. Similarly, using the

28

VBX definition, the actives nodes shown in lines 8, 9, and 10 are extended from [1-3] to [1-
4], to create the new actives nodes in lines 12, 13, and 14. Using the same technique, the
actives nodes spanning [2-3] are extended to [2-4], shown in lines 25 26, 27, and 28.

The fourth token, the second the is looked up in the dictionary to be a DT. As before,
new actives nodes [4-5] are generated, shown in lines 42, 43, 44, and 45. Then the parser
tries to extend the existing active nodes by using the new token. None of the active nodes
spanning [1-4] or [2-4] or [3-4] can be extending by the token DT, therefore no new actives
nodes are generated in the extending stage.

The last token, cat has only a NNX interpretation in the dictionary. As usual, this
generated some active nodes from [5-6] shown in lines 51, 52, 53, and 54. In the extending
stage, only the active nodes spanning [4-5] can be extended. This step is identical to the
extension from [1-2] to [1-3]. Four new active r.udes shown in lines 46, 47, 48, and 49 are
created. However, we can now use the constituent spanning [4-6], namely NPL, to extend
other active nodes which terminate at node 4. This creates new active nodes spanning [1-6]
(lines 15, 16, and 17) and spanning [2-6] (29, 30, and 31).

Finally, the END symbol is encountered, marking the end of the sentence. At this
point, the parser looks at all active nodes that span the whole sentence ({1-6] in the case) that
also have S as the left hand side. The rule with the lowest’ score is chosen at this point,
although in this example, there is only one active node which meets the criteria. This is

grammar rule number 5748 shown in line 17 of Figure 2-4.

{ 1, 6] : S(91) -{ 5748}-> NPL(1 3) VBX(3 4] NPL[4 6]

The lowest score represents the highest probability due to the log function and negative constant
factor used in the calculation, as explained later in the chapter.

29

Rule 5748 in the grammar file is:

1 : 272 483 272
:score 48
sstruct "({S <1> (VP <2> <3>))" ;

From this, the parser replaces <1> and <2> by our words and returns the following output.
(S (NPL the dog) (VP chased (NPL the cat)))

The score calculation for the given node is as follows. The score of 91 given in line
17 was generated by the following step by step derivation. The rule itself has a score of 48.
In addition to this, the same rule which coverts the dog and the cat into NPL (rule number
38966) has a score of 19. In addition, the rule which treats dog as a NNX has a score of | and
the rule which treats chased as a VBX has a score of 4. Summing them, 48 + 19+ 19+ 1 +
4, we get a composite score of 91.

The scores are added instead of multiplied because the author takes the logarithm of
the probabilities. This natural logarithm function is already pre-applied to the grammar rules.
To see how this works in the dictionary, consider how the scores of 10 and 4 are assigned to
the interpretations VBN and VBX for the word chased respectively. From the dictionary, we
can see that chased was seen twice as a VBX and once as a VBN in the training set. This sets
the probability of *“‘chased being used as VBX” at 0.666 and the probability of “chased being
used as a VBN” at 0.333. The scores can be derived from the probabilities using the
following formula.

Score for VBN =-10.0 * In (0.333) = 10.996 which is truncated to 10.
Score for VBX =-10.0 * In (0.666) = 4.065 which is truncated to 4.
The 10 is the weight that is placed on the part of speech tagging and a factor that is

adjustable in the parameter file. The negative sign is used to convert the score into a positive

30

number. The author uses the log function to transform all probabilities (both lexical and
grammar) because logarithms allows the multiplication problem to be transformed to an
addition problem. Logs have a unique feature that the product of any two numbers equals the
sum of the logs. Therefore, instead of using multiplication functions throughout the process
as new words and grammar rules are used, by using this transformation, the author manages
to simplify the process. By using the score assignment strategy describes above, the score
reflects the probabilities of both the lexical assignments as well as the grammar rules used

in the construction.

2.5 Fitted Parsing

One major reason that we chose to use the Apple Pie Parser as a base is that it
produce an output for any sentence regardless of the construction of the sentence. Although
there are over 30000 rules in the grammar of the Apple Pie Parser, it is still not possible to
produce parse tree for all possible sentences. In these cases, the Apple Pie Parser “gives up”
and uses a technique called fitted parsing to return the best result it can.

Fitted parsing occurs when the parse tree cannot be constructed due to the fact that
no grammar rules cover the whole input sentence. In this case, the Apple Pie Parser returns
a partial result or a fitted parse. The basic strategy is to identify parts of the input structure
that can be reliably identified. The list of these “fitted” labels that are allowed are listed in
the parameter file.

Generally fitted parsing happens with long sentences where specific rules cannot

compose the whole sentence. Long sentences tend to generate a larger number of active

31

nodes and often caused the Apple Pie Parser to run out of memory. When this occurs, as
mentioned earlier, the parser resorts to using a smaller list of grammar rules that were seen
two or more times in the training data. However, this has the side effect that the grammar is
not very complete and a lot of sentence cannot be parsed. However, this is also possible in
heavily ungrammatical sentences containing not many nouns®.

Fitted parsing involves dividing up the sentence into smaller, more manageable
pieces. The parser selects sentential coordination boundary markers such as commas that
separate possible pieces which individually reduce to an S structure. The markers to be used
as sentential boundaries are specified in the parameters file. These include some punctuation
marks single quote, brackets (both open and close), comma, period, and colon. It also
includes CC (which includes the word and) and apostrophe.

In the 200 test sentences, 20 were parsed through fitted parsing. Of those, 6 were
correctly parsed because the markers were indeed top level S sepearators. However, in the
14 other cases, the markers were actually only separating higher level structures and were
misinterpreted as sentential separators. Considering fitted parsing is a last resort for sentences
which do not conform to the grammar rules, the 30 percent accuracy is very good. On the
other hand, the other 70 percent of the sentences are completely misparsed and are not
salvageable.

The internal workings of a fitted parse is clearer through the use of an example. The

detailed chart parsing results can be found in appendix C. Consider the following sentence:

military deception can be used to enhance the impact obtained from
practicing these tenets, but military deception also provides

®If there are many nouns in the sentence, the NP and S terminal grammar would be able to break
up the sentence into smaller pieces.

32

opportunities to apply these tenets in ways that are not otherwise
available

The Apple Pie Parser tries to parse this sentence using the full grammar. However,
due to the long length, the sentence generated more than the allowed 600000 active nodes.
The parse then resorts to the much smaller backup grammar, which fails to cover the whole
sentence.

At this point, the Apple Pie Parser looks for sentence level coordinators defined in
the parameter file. Upon finding comma, the Apple Pie Parser treats the fragment before the
comma military deception can be used to enhance the impact obtained from practicing these
tenets as a sentence and parses it. Then it treats the whole segment as an SS structure and
ignores any other possible interpretations of the first part. Normal parsing then resumes with

the next word which is the word but.

2.6 Experimental Results

There are two widely used methods for measuring performance, recall and precision.
Recall is defined to be the accurate predictions divided by the correct answer. Therefore,
recall is not affected by extra predictions that might be inserted by the parser. Precision is
defined as the accurate predictions divided by the total number of predictions. Therefore,
precision on the other hand is affected by the extra brackets that are inserted by the parser.
A parser that doesn’t insert brackets unless it is absolutely certain can have very low recall
and very high precision. A parser that inserts brackets very aggressively can have very high
recall and very low precision. By using both the precision and recall numbers, we can get a

fairly good picture on how close the results were to the correct answers.

33

The performance of the Apple Pie Parser given by the author is that the parser has a
recall of 73.43 percent and a precision of 72.61 percent. The author trained the parser with
96 percent of the Penn Treebank corpus and used the remaining 4 percent to derive this
accuracy. Since both the training set and the test set were extracted from the Wall Street
Journal, the sentence structures and styles of the training and test sets are very comparable,
or more concisely the sentences are from the same domain. Thus, it is reasonable to assume
that the performance of the Apple Pie Parser wouldn’t be quite as good on sample sentences
from different domains.

To calculate the performance of the Apnle Pie Parser for purposes of sentence
fragmentation, I used a less quantitative and more qualitative measurement. [manually went
through each output and classified it as to whether it is a correct parse tree or not. The result
is a more useful measure of performance at the cost of some accuracy.

To determine the performance of the Apple Pie Parser on sentences from the military
domain, I ran an experiment on 200 sentences extracted from chapters 1,3,8 and 11 of the
Command and Control Warfare handbook, described earlier in chapter I of this thesis. I
chose the 200 sentences randomly, with the only requirement being that they were
grammatically correct sentences. The sentences used in this experiment can be found in

appendix B.

34

Correctly Parsed Incorrectly Parsed
Number of sentences 110 90
Number of fitted sentences | 6 14
Average length (in words) 16.9 21.5

Table 2-1 Experimental Resuits of the Apple Pie Parser on 200 C2W Sentences

As it can be seen in Figure 2-1, only 110 out of 200 sentences, or 55 percent of the
sentences were parsed correctly. However, many of the misparses at the Apple Pie Parser
level does not translate into an error at the Sentence Fragmenter level. Also, certain errors
that do affect the Sentence Fragmenter can be corrected at the Fragmenter level. Therefore
the overall performance of the Sentence Fragmenter can be better than the underlying Apple
Pie Parser.

For the purposes of sentence fragmentation, we are more interested in the 90
sentences that did not parse correctly. The 110 correctly parsed sentences can be easily
handled by the Fragmenter. Our goal is to salvage as many of the 90 sentences as we possibly

can by understanding what caused the error.

Type of error Frequency
Incorrect rule 32

Two non-terminal side effect 4
Incorrect PP attachment 14
Incorrect fitting 14
Incorrect part-of-speech tagging 26

Total 90

Table 2-2 Type and Frequency of Parsing Errors
35

By examining the misparsed sentences, we can categorize the errors into five different
categories. In the cases where more than one type of error in a sentence, we care about the
most serious error. The five categories are errors due to the use of the incorrect rule, errors
due to incorrect part of speech tagging, errors due to the use of the two-non terminals (S and
NP) in the grammar, errors due to incorrect fitting, and finally errors due to incorrect
attachment of prepositional phrases. Another type of errors which have been avoided by
preprocessing the input sentences are errors due to punctuation. Table 2-2 shows the relative
frequency of those errors based on the 90 misparsed sentences. The sentences, sub-divided

into their error types, are listed in appendix B.

2.6.1 Misparses Due to Use of Incorrect Rule

The most common errors is due to the Apple Pie Parser choosing the incorrect parse
tree due to choosing the incorrect grammar construction. These misparses occur most often

because of the incorrect ambiguity resolution. Here is an example of such a sentence.

at field army and below the cjg3 is the focal point for c2-attack planning
and execution

Below is the incorrect parse tree produced by the Apple Pie Parser.

(S (PP at
(NP (NPL field army)
and
(NPL below the cjg3)))
(VP is)
(NP (NPL the focal point)
(PP for
(NPL c2-attack planning and execution))))

The correct parse tree is shown below.

(S (PP at
(NPL field army and below))
(NPL the cjg3)
(VP is

36

(NP (NPL the focal point)
(PP for
(NPL c2-attack planning and execution)))))

As it can be seen from this example, the structure of the correct parse tree is very
different from the incorrect one given by the Apple Pie Parser. Since the parse output is very
different from the correct parse and since there is no easy way of algorithmically identifying

such sentences’, there are no easy ways of fixing this error at the Sentence Fragmenter level.

2.6.2 Misparses Due to Incorrect Part of Speech Tagging

The second most common cause of the misparses is incorrect part of speech tagging.
These are the cases where the parser assigned the incorrect part of speech tag because using
that tag produced the highest probability for the parse tree according to the formula given for

S.... in section 2.4. Here is an example of such a misparse.

tree
isolated sources of information alone may not be believed

This sentences produced the following misparse.

(S (VP isolated
{(SS (NP (NPL sources)

(PP of
(NP (NPL information)
(ADVP alone)})))
(VP may
not
(VP be

(VP believed))))))
Where as the correct parse tree should have been the following.

(S (NP isolated sources
(PP of
(NP (NPL information)
(ADVP alone))))
(VP may
not

"An algorithm can't identify the error because the output parse is a legal parse with a different
“meaning” than the obvious one.

37

(VP be
(VP believed))))

The misparse is caused by the word isolated being used as a verb rather than an
adjective. If we look up the word isolated in the lexicon, we can see that the in the corpus,
the word isolated was used 11 times as a verb and only once as an adjective. There are two
ways that these types of problem can be fixed. First, we can simply adjust the weight of the
given word in the parameter file by using the SUP_WORD? functionality. However, this
could be very time consuming because we would have to manually enter a line for each
word. Also, this can cause some side-effects which might cause the word isolated to be
tagged as an adjective rather than a verb in a different sentence where it is actually used as
a verb. A possible second solution would be to examine the structure of the misparses and
determine certain patterns which might suggest a incorrect part of speech tag. While this
solution might be more complex, it has the advantages that it fixes a set of problems and that

it can use surrounding lexical information to determine patterns.

2.6.3 Misparses Due to Two Non-Terminal Grammar

Another category of misparses are caused by the parser’s two non-terminal grammar.
Because S and NP are the only two non-terminals, any nesting or coordination of any other
categories must be specified explicitly in the grammar. This can easily be seen by comparing

a couple of examples.

pigs, sheep, chicken, dogs, lions, and tigers are animals

(S (NP (NPL pigs)
-COMMA -

¥The SUP_WORD function allows the user of the Apple Pie Parser to override the definition for any
word in the dictionary file.

38

(NPL sheep)

- COMMA -

(NPL chicken)

-COMMA -

{NPL dogs)

-COMMA -

(NPL lions)

-COMMA -

and

(NPL tigers))
(VP are

(NPL animals)))

Clearly, we can see from this example that the grammar can correctly handle an
indefinite number of noun coordinates. This is Lecause there are grammar rules which define

NP recursively as compositions of NP. One such rule is rule number 18336 shown below.

68 : 272 406 272
:score 42

;struct " (NP <1> <2> <3>)" ;
This is possible because NP is one of the allowed non-terminals. However, consider

another example.

the chicken ran, sprinted, walked, smiled, and died

(S (SS (NPL the chicken)
(VP ran))
- COMMA -
(SS (VP sprinted))
-COMMA -
(SS (VP walked))
- COMMA -
(SS (VP smiled))
-COMMA -
and
(SS (VP died)))

In this example, the parser didn’t produce the correct parse because the grammar
cannot capture the coordinated verbs. This is because verbs are terminals in the Apple Pie
Parser and therefore there cannot exist a rule where verbs are recursively defined. Instead,
the only way the previous example could have been parsed correctly is if the Appie Pie
Parser saw five coordinated verbs in the training data. This would have generated a grammar
rule S->NPV,V,V,V, and V. However, since this is a rare occurance in the Wall Street

39

Journal, there isn’t such a rule because such a construction was not in the training data.
Similar problems happen for adjective, adverb, and other constructions. However, since the
parser always produces a consistent wrong output for such cases, it might be possible to

determine a pattern and fix the problem at the Sentence Fragmenter level.

2.6.4 Misparses Due to Incorrect Prepositional Phrase Attachment

Another category of misparses is cases when the prepositional phrase is attached to
the incorrect construction. This problem is one that the author of the Apple Pie Parser lists
as a known problem area. The problem occurs because without lexical information, it is
impossible to determine where the prepositional phrase’ should be attached. Consider the

following example.

the commander must exercise constraint when defining the role of deception
within the overall concept of his operations

The Apple Pie Parser generated t:ic following incorrect parsed tree.

(S (NP (NPL the response)

(PP of
(NP the
(NP (NPL us)
service
components)
and
(NP (NPL republic)
(PP of
(NP (NPL korea)
(PP to
(NPL these threat changes))))))))
(VP are
(VP shared
(PP with

(NPL each other))))

In this example, the prepositional phrase fo these threat changes is attached to korea.

°A similar problem exists for conjunctive attachments. However, due to the low frequency of
conjunctive attachments in the C2W data, those errors were classified as errors caused due to the use of
the incorrect rule.

40

However, intuition on the meaning of the sentence suggests that the prepositional phrase
should be attached to the the response.

Prepositional phrase attachment is a classic problem that cannot be resolved by
context free grammars. Clearly, without the knowledge of the actual words, we couldn’t
justify that the second structure is more correct than the first one. However, since we have
access to the actual word, it might be able to fix some cases of incorrect attachment in the

Sentence Fragmenter.

2.6.5 Misparses Due to Incorrect Fitting

The last category of misparse are the failed attempts at fitted parsing. As explained
in section 2.5, the Apple Pie Parser resorts to fitted parsing when it cannot construct the parse
tree in any other manner. Out of the 20 sentences that were attempted to be fitted, only 6 of
them were correctly fitted. The other 14 sentences resulied in an inaccurate parsing. Since
fitted parsing is done as a last resort, there isn’t a very easily identifiable way of salvaging

the incorrectly fitted sentences. Below is an example of one such misfitted sentence.

once targets are selected and c2-attack methods determined, channels must
be esrtrablished from the source that found the target, to the weapons
system that will attack the target

(S (S (ADVP once)
(NPL targets)
(VP are
(ADJP selected)))
and
(S (SS (NPL c2-attack methods)
(VP determined))
- COMMA -
(NPL channels)
(VP must
(VP be
(VP established
(PP from
(NPL the source))))))

41

(S (NPL that)
(VP found
(NPL the target)
-COMMA -
(PP to
(NPL the weapons system))))
(S (NPL that)
(VP will
(VP attack
(NPL the target)))))

2.6.6 Misparses Due to Punctuation Errors

Another cause for misparses, which hasn’t been mentioned so far is a misparse due
to punctuation marks such as “:’, *-’, *(‘, or ’)’. The author of the Apple Pie Parser recognized
this as an area which needs further work. The reason why these punctuation marks cause
problems is because these are relatively rare tokens in the training data. Therefore, the
statistical parser only knows of a few ways these punctuation marks are used. Also, the
parentheses cause further problems because the parser was trained by sentence and some
parentheses span over multiple sentence. This causes odd occurances such as unmatched

parenthesis. An example where such a punctuation causes a problem is given below:

deception cycle: the entire process and procedure for preparing for
planning, executing, and evaluating deception operations

(S (SS (NP (NP (NPL Deception)

Cycle)
-COLON-
(NP (NPL The entire process)
and
(NPL procedure)))
for
(VP preparing
{PP for
(NPL planning))))
- COMMA -
(SS (VP executing))
- COMMA -

and
(SS (VP evaluating
(NPL deception operations))))

In the previous example, the colon causes a problem because it is not used as a

42

sentential barrier like it was supposed to. The previous parse tree seems to suggest that
deception cycle is only related to the entire process and procedure. However, clearly it
relates to the whole sentence.

To handle these and other similar problems, the input sentence is run through a pre-
processer which “cleans” up the input sentence before it is sent to the Apple Pie Parser. One
of the things that the preprocessor does is it replaces colons with periods. For the purposes
of sentence fragmentation in the domain we are interested in, experimental data supported
that colons can be treated as periods. The preprocessor also removes the second comma in
the phrase apples, oranges, and bananas. This was also a result of experimental results

which generated better performance without the second comma.

2.7 Summary

The Sentence Fragmenter is built on the output of the Apple Pie Parser and therefore
understanding the inner working of the Apple Pie Parser is very important. The Apple Pie
Parser is a probabilistic bottom-up chart parser which a couple of enhancements. These
enhancements include a strategy for factoring active nodes as well as techniques of secondary
backup grammar and fitted parsing. The parser uses probability assignments of both the
lexical items and grammar rules to assign a score to each possible complete parse tree. Then,
it returns the best parse tree among the possibilities which reflects its best guess.

The experimental results show that the Apple Pie Parser is parses completely
correctly about 55 percent of the time on sentence from the C2W domain. The errors were

studied and classified into five different categories, which are incorrect rule, two non-

43

terminal grammar side effect, prepositional phrase attachment problem, incorrect fitted
parsing, and incorrect part-of-speech tagging. This was done because by understanding the

nature and frequency of the errors, it is possible to fix some of them in the Sentence

Fragmenter stage.

44

Chapter 3

3 Sentence Fragmentation

Long complex sentences induce a higher degree of ambiguity than shorter simple
sentences. This causes some problems for our existing language understanding system, TINA
because the processing load due to ambiguity grows exponentially with sentence length. To
solve this problem, we decided to use the output of the previously described Apple Pie
Parser' to fragment complex sentences into simpler pieces that could be individually
translated and then recomposed at the semantic frame level.

This chapter presents an overview of the Sentence Fragmenter. It also presents the
description of the algorithm, including methods for dealing with Apple Pie Parser errors.
Then, the experimental results of the Sentence Fragmenter on the 200 sentences mentioned

from the previous chapter are presented.

3.1 Overview of Sentence Fragmenter

The Sentence Fragmenter is an independent module written in C that takes in the

'We used the Apple Pie Parser because it is robust and computationally efficient

45

bracketed output of the Apple Pie Parser as the input and produces a list of fragments as an
output. We decided to make the Fragmenter a separate module rather than modify the
existing Apple Pie Parser because it provided better abstraction and minimized the chances
of introducing new bugs, therefore improving reliability.

Given the bracketed sentence input, the Fragmenter recreates the tree structure with
additional information necessary to easily examine the relationships between nodes. Each
node keeps track of their surroundings including a pointer to its parent and its children. These
pointers are used extensively in determining the individual fragments.

After the tree structure is created, the Fragmenter processes the tree to fix certain
known Apple Pie Parser errors as well as replace some tags with others to facilitate the
understanding process. For example, certain category labels can be combined with others
because they do not change anything for the purposes of sentence fragmentation. The
category label NX is replaced with the label NP. Other changes to the tree include removing
unnecessary SS and SBAR labels as determined through experimentation.

Once this step is complete, the Fragmenter maintains a list of current fragments. This
list initially contains only one tree, which is the tree that represents the input sentence. The
algorithm then looks for new fragments in each of the fragments in the list. When new
fragments are found, they are extracted from the original tree and added to the list of
fragments. This allows the Fragmenter to find fragments which are imbedded under another
fragment. This process is continued until no more sub-fragments can be found. The
Fragmenter also keeps track of the index for each type of fragment so that it can assign
unique tags for each fragment. When a fragment is found, the Fragmenter leave a unique

marker which is used later to recompose the sentence.

46

The process is easier to see with an example. Consider the sentence, john who was
hungry went to a store to buy a sandwich, a salad, and a soda. By breaking up the sentence
into simpler fragments, we can simplify the analysis of this sentence.

First, this sentence is fed through the Apple Pie Parser, which produces the following

output.

(S (NP (NPL john) (SBAR (WHNP who) (SS (VP was (ADJP hungry))))) (VP went
(PP to (NPL the store)) (TOINF (VP to (VP buy (NP (NPL a sandwich) -COMMA-
(NPL a salad) -COMMA- and (NPL a soda)))))))

From this, the following tree structure is created.

(S (NP (NPL john)
(SBAR (WHNP who)
(SS (VP was
(ADJP hungry)))))
(VP went
(PP to
(NPL the store))
(TOINF (VP to
(VP buy
(NP (NPL a sandwich)

- COMMA -
(NPL a salad)
- COMMA -
and
(NPL a soda)))))))

In the tree correcting stage, the -comma- between a salad and and a soda is removed.
In this particular example, that was the only correction necessary. Next, the tree is added to
the list of fragments. At this point, the Fragmenter recognizes who was hungry as a relative

clause, and adds it to the list of fragments which now contains two trees.

Main Sentence
(S (NP (NPL john)
relclausel
(VP went
(PP to
(NPL the store))
(TOINF (VP to

(VP buy
(NP (NPL a sandwich)
- COMMA -
(NPL a salad)
and

47

(NPL a soda))))}))

Relative Clause 1
(SBAR (WHNP who)
(SS (VP was
(ADJP hungry)))))

Then, the Fragmenter recursively handles the coordination of a sandwich, a salad,

and a soda. At this point, the list of fragment trees look like:

Main Sentence
(S (NP (NPL john)
relclausel
(VP went
(PP to
(NPL the store))
(TOINF (VP to
(VP buy
(NP (NPL a sandwich)
- COMMA -
ndtopicl))))))

Relative Clause 1
(SBAR (WHNP who)
(SS (VP was
(ADJP hungry)))))

And Topic 1

(NP (NPL a salad)
and
ndtopic2))

And Topic 2
(NP (NPL a soda))

Finally, the Fragmenter recognizes the to-infinitive clause. This modifies the main

sentence fragment and adds a new fragment to the list.

Main Sentence
(S (NP (NPL john)
relclausel
(VP went
(PP to
(NPL the store))
toinfcl))

Toinf Clause 1
(TOINF (VP to
(VP buy
(NP (NPL a sandwich)
-COMMA -
ndtopicl))))))

From these five fragment trees, the Fragmenter produces the following output.

48

john relclausel went to the store toinfcl
ndtopl a salad and ndtopic2

toinfcl to buy a sandwich comma ndtopicl
relclausel who was hungry

ndtop2 a soda

The order of the output fragments is not guaranteed other than that the main sentence
will be the first fragment. However, this is not important because the unique tags allows the

sentence to be fully reconstructed.

3.2 Working with known Apple Pie Parser errors

Some of the Apple Pie Parser errors happen regularly enough that it is possible to
determine a pattern. Some of these errors can be corrected at the Fragmenter level because
we can use additional data such as context information. Also, we can modify the tree and use
it to help in the understanding process as long as it does not have a negative side-effect on
the fragmentation.

One common pattern that emerges from the Apple Pie Parser is that when it cannot
determine the category of a word, it sometimes uses the tag UCP (uncategorized phrase) to
mark those words. However, in most of the examples we have seen, UCPs are imbedded
under a NP (noun phrase) and the words within the UCP are also nouns. Therefore, the
algorithm simply strips the UCP tag, treating the contents as NP. The following sub-tree is

replaced with the new sub-tree.

BEFORE:
(NPL (UCP devices and other)
materials))))

AFTER:
(NPL devices and other materials))))

This is a much more accurate result because the word other is clearly associated with

49

materials.

Another group of errors of the Apple Pie Parser can be fixed with the help of lexical
information that is available to the Fragmenter. One such problem is the prepositional phrase
attachment problem. The prepositional phrase attachment ambiguity can be most easily

solved by referring to the lexical informantion. Consider the following sentence.

The response of the us service components and republic of korea to these
threat changes are shared with each other

The tree structure for this sentence is the following.

the commander must exercise constraint when defining the role of deception
within the overall concept of his operations

The Apple Pie Parser generated the following incorrect parsed tree.

(S (NP (NPL the response)

(PP of
(NP the
(NP (NPL us)
service
components)
and
(NP (NPL republic)
(PP of
(NP (NPL korea)
(PP to
(NPL, these threat changes))))))))
(VP are
(VP shared
(PP with

(NPL each other))))

The parse tree above suggests that the prepositional phrase to these threat changes
is attached to the korea. But it is clear from the lexical property of response that the
prepositional phrase should be attached to the response. How can we fix this problem? The
key is the word response because it is a noun that often has a prepositional phrase that begins
with the word o associated with it. Therefore, anytime the word response is the noun phrase
of a structure which contains a prepositional phrase that begins with the word o, it is more
likely attached to it. The previous example is converted to the following.

50

(S (NP (NPL the response)

(PP of
(NP the
(NP (NPL us)
service
components)
and
(NP (NPL republic)
(PP of
(NP (NPL korea))))))
(PP to
(NPL these threat changes)))
(VP are
(VP shared

(PP with
(NPL each other))))

Yet another group of errors that the Apple Pie Parser makes are due to the fact that
the only non-terminals of the grammar are S and NP. If we can recognize a constant pattern
of the errors caused by this, it is possible to fix it at the Fragmenter level. This is true for

cases involving coordination of more than three adjectives. Consider the following sentence.
areas that can be included are visual, electronic, sonic and olfactory
This generates the following output.

(S (NP areas

(SBAR that
(SS (VP can
(VP be
(VP included))))))
(VP are
(ADJP visual)
-COMMA -

(SS (ADJP electronic -COMMA- sonic and olfactory))))
Because the grammar of the Apple Pie Parser is based on the non-terminals NP and
S, the parser can only handle coordinations of terminals such as adjectives and verbs only if
has a grammar rule for them. Since the grammar rules were extracted automatically from the
tree-bank, the only way the Apple Pie Parser could parse the above sentence correctly is if
there was a sentence with four coordinated adjectives in the tree-bank. Therefore, when

faced with such sentences, the Apple Pie Parser treats the latter three as S, because there is

51

grammar rule which treats the three adjectives as an SS. This is done using grammar rule

number 32841 which is shown below.

271 : 415 406 415 409 415
:score 98
:struct " (SS (ADJP <1> <2> <3> <4> <5>))"

These and other similar problems that were caused because of only two non-terminals
can be generally fixed, if they occur regularly, in the Fragmenter. For this particular example,

the Fragmenter outputs:

areas relclausel are visual comma ndmodl
ndmodl electronic comma ndmod2
relclausel that can be included

ndmod2 sonic and ndmod3

ndmod3 olfactory

3.3 Sentence Fragmentation Techniques

The overall strategy of sentence fragmentation is to fragment a sentence into smaller
pieces if we can do so while preserving the meaning of the sentence and the fragments. The
goal is to reduce the ambiguity of the original sentence by making it shorter. Since we want
to preserve the meaning of the main sentence and the fragments, we have to decide
boundaries at which both the main sentence and fragments have a meaniwg of their own. The
fragments can be extracted, translated, and re-inserted without much loss of information.

Such fragments include coordinates, relative clauses, complemeat clauses, adverb
clauses, to-infinitive clauses, adverb prepositional phrases, and therefore clauses. The
definition and algorithm to determine each type of fragment are discussed in the following
sections.

The concept of determining fragments is an important sentence fragmentation

52

technique because such fragments allow sentences to be divided into smaller pieces without
sacrificing the meaning of the original sentence. Often, long sentences, which are the
sentences we are really interested in fragmenting, contain several clauses. Thus, determining

and fragmenting such clauses is an important part of the Fragmenter.

3.3.1 Definitions of Fragments

Nouns, verbs, adjectives, noun phrases, and verb phrases can all be coordinated by
using coordinators such as comma, and, or, but, etc. Coordinates can easily be identified and
therefore, they are a good target for fragmentation. By examining the output of the Apple Pie
Parser, we can easily determine the cases of coordination. The following is an example of

a sentence with a verb phrase coordinate.
john bought the house and sold the car

Similar to verb phrase coordination and noun coordination, other types of
coordination can be recognized and fragmented. The Fragmenter currently handles verb
phrase coordination, verb coordination, noun coordination, adjective phrase coordination,
and sentence level coordination.

A relative clause is a clause that modifies the noun. In the Fragmenter, it is defined

to be a VP or a clause’ immediately dominated® by an NP.
the man who is tall walked down the street

In the sentence above, the relative clause who is tall modifies the man. Clearly, extracting

who is tall does not affect the overall meaning of the sentence. Also, the fragment who is tall

?A clause is defined as a SS or SBAR structure
*X immediately dominates Y if and only if Y is nested exactly one step under X.

53

can be separately translated.

A complement clause is similar to a relative clause in that it has its own meaning.
The difference is that while a relative clause is optional within a sentence, a complement
clause is obligatory. A complement clause is often but not always preceded by a special word

called the complementiser, which marks the beginning of the clause.
john thought that the world is flat

The complementiser is the word that and the complement clause is that the world is
flat. Due to the complex nature of complement clauses, the algorithm that recognizes
complement clauses is more complex than the previous examples.

A complement clause is defined as a clause which is immediately dominated by a
VP.. This captures the cases where the actual verb is followed by a complete idea, as in the

example given above.

military deception can be used to enhance the impact obtained from
practicing these tenets

A second definition of a complement clause is a sentence phrase embedded under a
prepositional phrase. In the sentence above, practicing these tenets is a complement clause.
An adverb clause is a clause that functions like an adverb. The clause typically

modifies a verb or verb phrase and is optional in the sentence.
if the apple is ripe, ship it to the wholesaler

The phrase if the apple is ripe is an adverb clause that modifies the verb ship. The
main sentence is ship it to the wholesaler. Adverb clauses are defined in the Fragmenter as
a sentence phrase (SBAR) followed by a comma and then a verb phrase.

A to-infinitive clause is similar to a complement clause in the sense that it is not

optional but can be seperated from the main sentence without affecting the meaning.

54

john saved money to buy a house

The phrase to buy a house is the to-infinitive which describes the consequent action
of the main sentence. The main sentence is then john saved money <to do something>.
Clearly, the to-infinitive does not change the meaning of the sentence. To-infinitive are
defined to be a verb dominated by the verb ro in the Fragmenter.

Another clause like structure is the adverb prepositional phrase. An adverb

prepositional phrase is a prepositional phrase that modifies the verb.
afrter the deception operation is completed, conduct an evaluation

The phrase after the deception operation is competed is a prepositional phrase that
gives extra information about the main sentence. However, it can be treated as a separate
fragment because it contains a unique noun phrase and a verb phrase. The current Fragmenter
algorithm classifies a PP structure followed by a comma as an adverb prepositional phrase.
This strategy was successfully tested with many examples to make sure this is an accurate
classification.

In addition to using the structure of the Apple Pie Parser output as a way of
fragmenting sections, it is also possible to make use of the knowledge of the English
language to determine certain cases where fragmentation is possible. The two English words
that can be used to our advantage are the words therefore and the word so. These are
instances of clause conjunctions. Consequently, the two fragments are named the therefore-

clause and the so-clause respectively. Consider the following sentence.
a feint must appear real, therefore some contact may be required

In this example, we can use our knowledge of the word therefore to fragment the

sentence into two parts. Words like therefore, so, hence, etc. clearly put two sentences

55

together in the English language. Currently the algorithm only handles the words therefore
and so because those two words occur the most in the domain we are interested in. An
improvement that can be implemented in the future could dynamically handle any of those

words by looking up the words from an user editable list of such words.

3.3.2 Example of Fragments

The following is an example of verb phrase coordination.

john bought the house and sold the car

(S (NPL john)
(VP (VP bought
(NPL the house))
and
(VP sold
(NPL the car))))

OUTPUT:

john bought the house and ndvpl
ndvpl sold the car

The following is an example of noun coordination.

the fruit store sold apples, oranges, peaches, purple grapes, and large
watermelons

(S (NPL the fruit store)
(VP sold
(NP (NPL apples)

-COMMA -
(NPL oranges)
-COMMA -
(NPL peaches)
- COMMA -
(NPL purple grapes)
-COMMA -
and
(NPL large watermelons))))

OUTPUT:

the fruit store sold apples comma ndtopicl
ndtopl oranges comma ndtopic2

ndtop2 peaches comma ndtopic3

ndtop3 purple grapges and ndtopic4

ndtopd4 large watermelons

56

The following is an example of a relative clause.

the man who is tall walked down the street

(S (NP (NPL the man)
(SBAR (WHNP who)
(SS (VP is
(ADJP tall)))))
(VP walked
(PP down
(NPL the street)))})

OUTPUT:

the man relclausel walked down the street
relclausel who is tall

The following is an example of a complement clause.
john thought that the world is flat

(S (NPL john)

(VP thought
(SBAR that
(SS (NPL the world)
(VP is
(ADJP flat))))))
QUTPUT:

john thought compclausel
compclausel that the world is flat

The following is an example of an adverb clause.

if the apple is ripe, ship it to the wholesaler

(S (SBAR if
(SS (NPL the apple)
(VP is
(ADJP ripe))))
- COMMA -
(VP ship
(NP (NPL it)
(PP to
(NPL the wholesaler)))))
OUTPUT:

adverbcl comma ship it to tne wholesaler
adverbcl if the apple is ripe

The following is an example of a to-infinitive clause.

57

john saved money to buy a house

(S (NPL john)
(VP saved
(NPL money)
(TOINF (VP to
(VP buy
(NPL a house))))))

OUTPUT:

john saved money toinfcl
toinfcl to buy a house

The following is an example of an adverb preposition.

after the deception operation is completed, conduct an evaluation

(S (PP after
(SS (NPL the deception operation)
(VP is
(VP completed))))
-COMMA -
(VP conduct
(SS (NPL an evaluation))))

OUPUT:

adverbppl comma conduct an evaluation
compclausel the deception operation is completed
adverbppl after compclausel

The following is an example of a therefore clause.

a feint must appear real, therefore some contact may be required

(S (SS (NPL a feint)
(VP must
(VP appear
(ADJP real))))
-COMMA -
(ADVP therefore)
(SS (NPL some contact)
(VP may
(VP be
(VP required))}))

OUTPUT:

a feint must appear real comma thereforeclausel
thereforeclausel therefore some contact may be required

58

3.4 Experimental Results

To judge the performance of the Fragmenter, the two hundred sentences used in the
previous chapter on the Apple Pie Parser were used as a test set. The sentences were run
through the Fragmenter and manually examined to determine the correctness. Through this
testing, [wanted to answer several questions regarding the performance of the Fragmenter.
Since the algonthms were generally designed with the correct parse as the input, we expect
the Fragmenter to be accurate for those sentence for which the Apple Pie Parser parsed
correctly. However, how would the Fragmenter handle misparsed sentences? How many
fragments would it determine incorrectly? To answer these questions, the output of the
Sentence Fragmenter on the 90 misparsed sentences were examined.

Table 3-1 below shows the number of misparses that actually caused fragmentation
errors. As stated early, not all incorrectly parsed sentence lead to a fragmentation error. The
sentences which are misparsed but doesn’t cause a fragmentation error are marked in
Appendix B. Misparsing only affects sentence fragmentation if the misparsing leads to an
extra fragment or causes the fragment to be missed. Examples of such sentence are given

later when the individual types of errors are discussed.

59

Misparse Type Misparsed Fragmentation Error
Incorrect rule 32 23

Two non-terminal side effect 4 3

Incorrect PP attachment 14 8

Incorrect fitting 14 13

Incorrect part-of-speech tagging 26 20

Total 90 67

Table 3-1 Misparses and Number of Fragmentation Errors

From Table 3-1 we can see that 67/90 or 74% of the misparsed sentence have
fragmentation errors. To find out why some misparsed sentences don’t cause fragmentation
errors and to find out why some types of misparses cause a higher or lower percentage of

misfragmentation, we need to look at the relationship between misparses and sentence

fragmentation.

Sentence that are misparsed due to the use of an incorrect rule cause a fragmentation
error 23/32 or 72% of the time. Many of these misparsed sentence do not cause a

fragmentation error if the structure of the sentence is simple. This happens most (but not

necessary limited to) with shorter sentences. For example, the sentence:

use an implementation schedule at tab d to control complex deception

operations
(S (VP use
(NPL an implementation schedule)
(PP at
(NPL tab))
(NPL d)

(TOINF (VP to

This sentence is clearly misparsed because the correct parse tree should look like the

following.

(VP control

(NPL complex deception operations))))))

60

(S (VP use
(NPL an implementation schedule
(PP at
(NPL tab 4)))
(TOINF (VP to
(VP control
(NPL complex deception operations))))))

However, the output of the Fragmenter is not affected because the only fragment that

the Fragmenter recognizes in either case is the to-infinitive clause. The output is:

use an implementation schedule at tab d toinfcl
toinfcl to control complex deception operations

For the misparses caused by the S-NP grammar limitation, one of the four sentence

is salvaged by the fragmentation algorithm. The following sentence is clearly misparsed but

is corrected by the Fragmenter, producing the correct output.

areas that can be included are visual, electronic, sonic and olfactory

(S (NP areas

(SBAR that
(SS (VP can
(VP be
(VP included))))))
(VP are
(ADJP visual)
- COMMA -

(SS (ADJP electronic -COMMA- sonic and olfactory))))

This sentence is misparsed because of the inability of the Apple Pie Parser to handle
the four coordinated adjectives. However, since this pattern is very common, the Fragmenter

corrects the following tree to the following.

(S (NP areas
(SBAR that
(SS (VP can
(VP be
(VP included))))))
(VP are
(ADJP visual -COMMA- electronic -COMMA- sonic and olfactory))))

areas relclausel are visual comma ndmodl
relclausel that can be included

ndmodl electronic comma ndmod2

ndmod?2 sonic and ndmod3

ndmod3 olfactory

By taking advantage of re-occuring misparse patterns and their causes, It is possible

61

to overcome shortcomings of the Apple Pie Parser.

The third category of misparses, misparses due to incorrect prepositional phrase
attachment, generally does not cause a fragmentation error by itself because prepositional
phrases are not considered to be fragments. This explains the relative low (8/14 or 57%)
percentage of misparses that cause a fragmentation error. However, when other types of
fragmentations occur, the prepositional phrase might be wrongly attached to the wrong

fragment. And example of one such sentence is:

reject actions that add undo complexity to a deception plan without
materially improving its chances of success

(S (VP reject
(NP actions

(SBAR that
(SS (VP add
(NPL undo complexity)
(PP to

(NPL a deception plan))))))
(PP without
(SS (ADVP materially)
(VP improving
(NP (NPL its chances)
(PP of
(NPL success))))))))

ACTUAL OUTPUT:

reject actions relclausel without compclausel
relclausel that add undo complexity to a deception plan
compclausel materially improving its chances of success

CORRECT OUTPUT:

reject actions relclausel

relclausel that add undo complexity to a deception plan without
compclausel

compclausel materially improving its chances of success

The preposition phrase without materially improving its chances of success should
be attached to the verb add instead of the verb reject. The algorithm decides that that add
undo... is a relative clause. If the preposition phrase was attached properly, it would have
been a part of the relative clause rather than part of the main sentence.

This problem is fixed in the Fragmenter for the case where the verb is response and

62

the preposition is 0. A further enhancement that can be implement in the future would be
to extend the system to recognize more verb - preposition pairs which can be used to correct
more of the prepositional phrase attachment problem.

Sentences that are misparsed due to incorrect part of speech tagging affects sentence
fragmentation 20/26 or 77% of the time. Similar to the case where the incorrect rule was
chosen, this type of misparse causes the Fragmenter to behave in an unpredictable manner.
Therefore, generally only shorter sentence do not affect sentence fragmentation. An example

of a short sentence that was misparsed is:

designate security measures

(S (NPL designate security)
(VP measures))

designate security measures

The word measures is mistagged as a verb instead of a noun. However because the
sentence only has one fragment, the misparse does not affect sentence fragmentation.

Sentence that are misparsed due to incorrect fitting cause more problems than any
other category. Among 14 of the sentences, only one of them was fragmented properly. This
is partial due to the fact that most fitted sentences are long and complex. Therefore, they tend
to have a lot of fragments. Since misparsing affect sentences that have multiple fragments,
sentences that are misfitted can seldom be salvaged in whole. However, some of the

fragments can be salvaged.

63

Misparse Type Number of Number of Number
Sentence Fragments Salvaged

Incorrect rule 23 72 29

Two non-terminal side effect 3 9 4
Incorrect PP attachment 8 24 14
Incorrect fitting 13 68 35
Incorrect part-of-speech tagging 20 45 12

Total 67 218 94

Table 3-2 Partially Correct Fragmention

Even when the sentence as a whole is incorrectly fragmented, some of the fragments
in the sentence are determined correctly. Therefore, it is possible to salvage those fragments.
Table 3-2 shows the total number of fragments and the number of fragments salvaged among
those sentence that were not fragmented correctly. In the 67 that were not fragmented
correctly, 94 out of 218 or 43% of the fragments were still determined properly. Consider the

following misparsed sentence which has ten fragments.

deception means are the methods, resources and techniques that can be used
to control friendly, physical, technical and administrative actions to
convey or deny information and indicators to the deception target

(S (S (NPL deception means)

(VP are
(NPL the methods -COMMA- resources and techniques)
(SBAR that
(SS (VP can
(VP be

(VP used
(TOINF (VP to
(VP control

(NPL, (ADJP friendly
- COMMA -
physical
-COMMA -
technical
and
administrative)

actions)
(TOINF (VP to

64

(VP convey)
))))))))))))

or
(S (VP deny
(NPL information and indicators)
(PP to

(NPL the deception target)))))

This sentence is misfitted because the parser treated the or as a sentential coordinator
instead of the correct verb coordinator. However, the rest of the sentence is not affected by
this misparse. Out of the 10 fragments, the misparse only affected one of them. Therefore
the 9 other fragments can be salvaged.

ACTUAL OUTPUT:

deception means are the methods comma ndtopicl compclausel or orclausel

ndtopl resources and ndtopic3

ndmodl physical comma ndmod2

toinfcl to control friendly comma ndmodl actions toinfc2

compclausel that can be used toinfcl

ndtop2 indicators

ndtop3 techniques

ndmod2 technical and ndmod3

toinfc2 to convey or orvpl information and ndtopic2 to the deception
target

orvpl deny

orclausel deny ndmod3 administrative

CORRECT OUTPUT:

deception means are the methods comma ndtopicl compclausel or orclausel
orclausel deny information and ndtopic2 to the deception target
ndtopl resources and ndtopic3

ndmodl physical comma ndmod2

toinfcl to control friendly comma ndmodl actions toinfc2
compclausel that can be used toinfcl

ndtop2 indicators

ndtop3 techniques

ndmod2 technical and ndmod3

toinfc2 to convey

ndmod3 administrative

3.5 Summary

The Sentence Fragmenter is built on the output of the Apple Pie Parser. The
Fragmenter recursively searches the parse tree for clauses and coordinates and returns a list

of fragments that it finds. When a clause is found, the Fragmenter leaves a unique marker

65

which is later used for reconstruction of the semantic frame.

The fragments that the Fragmenter finds are verb phrase coordination, verb
coordination, noun coordination, adjective phrase coordination, sentence level coordination,
relative clause, complement clause, adverbe clause, to-infinitive clause, adverb prepositional
phrases, so-clauses, and therefore clauses. It also fixes some known and predictable errors
of the Apple Pie Parser such as the UCP problem and the prepositional phrase attachment.

The experimental results show that the Sentence Fragmenter correctly fragments 23
out of the 90 misparsed sentences. Even in the 67 misfragmented sentences, about 43 percent

of the fragments are still salvaged.

66

Chapter 4

4 Role of Fragmentation in MT

The overall goal of the machine translation project is to develop a robust, high-
performance machine translation system. To achieve these goals, several different
enhancements have been made to the original system. The two major architectural changes
are the addition of a Part of Speech Tagger as well as the integration of sentence
fragmentation.

The Part of Speech Tagger and the Sentence Fragmenter play important roles in our
machine translation system. The use of the Part of Speech Tagger allows the system to
translate sentence with words that are not registered in the system grammar. The use of the
Sentence Fragmenter reduces the length of the sentences that need to be parsed. This reduces
ambiguity which results in better performance in terms of speed.

To examine the effects of these enhancements in machine translation, we need to
examine the system before and after the enhancements were integrated. This chapter presents
a detailed description of the original machine translation system, the system with the Part of
Speech Tagger, and finally the system with the Part-of-Speech Tagger and the Sentence

Fragmenter both integrated. Regarding the integration of the Part-of-Speech Tagger, refer to

67

Lee, Weinstein, Seneff, and Tummala [4]. Regarding the semantic frame composition
algorithm, which has been proposed and implemented by Stephanie Seneff and Y oung-Suk
Lee, refer to the project report [6]. The last section contains performance evaluations from

which we can clearly see the benefits of these enhancements.

4.1 Translation System Overview

INPUT SENTENCE: 0819 z unknown contacts replied incorrectly

{c statement
time_expression {p numeric_time
‘topic {q gmt
:name "2" }
:pred {p cardinal
‘topic “0819" } }

‘topic {q nn_head
:name “contact”
:pred {p unknown
. global 1}}

:subject 1
:pred {p reply_v

:mode “past”
:adverb {p incorrectly } } }

Figure 4-1 Input Sentence and Corresponding Semantic Frame

The most important and perhaps the most computationally difficult part in the
machine translation system is the language understanding module. The Ianguage
understanding module takes as the input a given sentence and produces a semantic frame,
which is an annotated structure which captures the meaning of the input. Figure 4-1, taken

from Reference [6], gives an example of a semantic frame representation of the input

68

sentence 0819 z unknown contact replied incorrectly.

The heart of the language understanding module our of system is TINA. It was
developed in 1992 by the Spoken Language Systems Group in the Laboratory for Computer
Science at MIT, described in Reference [10]. TINA integrates key ideas from context free
grammars, Augmented Transition Networks, and the unification concept. It provides a
seamless interface between syntactic and semantic analysis, and produces a highly
constraining probabilistic language model. TINA is based on a context free grammar
augmented with additional features used to add syntactic and semantic constraints. The
grammar rules are converted to a shared network structure which combines rules with similar
Right Hand Side constructions for a given Left Hand Side element.

A machine translation system relies on a semantic frame to provide meaning
representation of a given sentence. This semantic frame representation is also used to provide
constraints in terms of permissible syntactic and semantic structures. In many system, the
ability to parse as many sentences as possible is often achieved at the expense of many
misparses. TINA utilizes mechanisms that were designed to support a seamless interface
between syntax and semantics, leading to an efficient mechanism for constraining semantics.
Grammar rules encompass both syntactic and semantics structures. At high levels, they
describe the syntactic structures while at the lower levels, they describe the semantic
structures. TINA uses a very large number of descriptive category labels, which reflects the
meaning of the sentence. Therefore, separate semantic rules are not needed. By encoding
meaning in the category labels of the parse tree, it is possible to represent semantic
restrictions as well as syntactic restrictions in an efficient manner in the same grammar. This

also allows the final semantic frame to be directly extracted from the parse tree.

69

TINA was designed to allow rapid development of the grammar and/or porting of
the grammar to a new domain. This allowed us to develop our machine translation system
to work with both MUC-II data and C2W data. The grammar of TINA is initially written by
hand and then augmented automatically by using a set of training sentences. The design also
includes a framework that easily allows to run the system on a wide variety of grammar and
input files through the use of a DEFINITIONS file.

The process of acquiring the TINA grammar is a two step procedure that uses a
specific set of sentences. The rule set is first built up by parsing the sentences one-by-one
manually, adding new rules as necessary. Once this first step is complete, the parse trees are
converted automatically into a set of grammar rules used to parse each sentence. The

probability assignments is then established in the second pass from the same set of sentences.

4.2 System with Part of Speech Tagging

The biggest shortcoming of TINA was in its inability to handle unknown words.
Because it uses semantic rules defined in terms of part-of-speech tagging, unknown words
cause some serious problems, which results in the sentence not being parsed. TINA was
originally designed to work in a limited domain with a very limited vocabulary. However,
the MUC-II and C2W domains has a much greater vocabulary, not all of which can be

learned from the training data set.

70

Parsing without POS: 0819 Z UNKNOWN CONTACT REPLIED INCORRECTLY
Parsing with POS: CARDINAL Z ADJECTIVE NOUN REPLIED ADVERB

sentence
full_parse
statement
pre_adjunct subject predicate
time_expression JP vp_reply
gmt_time ADJECTIVE NOUN vreply ADVERB_PHRASE
numeric_time ADVERB
cardinal gmt
0819 z unknown contact replied incorrectly

Figure 4-2 Parsing With and Without Part-of-Speech Tagging

In order to handle this problem, TINA was augmented with a Part of Speech tagger.
Reference [4], An Application of Part-of-Speech Tagging To Robust Parsing in Machine
Translation of Telegraphic Messages, describes the part-of-speech tagger that was integrated
into TINA. Figure 4-2 from Reference [6], shows an example on how the Part of Speech
tagger helps parse the sentence 0819 Z unknown contact replied incorrectly. The TINA
grammar doesn’t have a rule for the word incorrectly. However, by using the part-of-speech
tagger, the original sentence is converted into a structure which has been encountered by the
grammar. Specifically, although the grammar doesn’t know how to deal with the word
incorrectly, it knows how to deal with an adverb following the word replied. Therefore by
using a Part of Speech tagger, it is possible to write a grammar that captures a larger set of

data.

/A

Bl e R o
- SEQUENGE) “ SEMANTIC

NO.~ a SEMANTI
PARSE |

TAGGING

.

© PARSING -
. (ON MIXED
... SEQUENCE)

Figure 4-3 Flow Control After the Addition of the Part-of-Speech Tagger

A main design goal in designing the Part of Speech tagger was that it had to integrate
seamlessly into the existing system, which minimal side effects. To achieve the goal, a two-
step method was implemented where the parser first tries to parse the sentence strictly on the
word sequence. If this step is successful, then the system acts exactly as if the Part-of-Speech
Tagger did not exist. If this step fails to produce a parse, the system then uses part-of-speech
tagging and tries to parse on the mixed sequence. Figure 4-3 from Reference [4], shows the
flow of the system. The mixed mode increases the coverage of the grammar without
increasing ambiguity. This two-step method guarantees that only sentences that failed to
parse in the old system are subjected to the part-of-speech tagging method.

The part-of-speech tagger uses a balance mixed mode of semantic and syntactic
information. Rules involving verbs and prepositions are lexicalized to resolve the
prepositional phrase attachment ambiguity. Rules involving verbs are also lexicalized to
prevent misparsing due to incorrect sub-categorization. Domain specific expressions which

occur frequently in phrases with omitted elements are also lexicalized. Any other syntactic

72

rules are defined in terms of Part-of-Speech. This mixed mode allows the parser to achieve
a broader coverage without introducing more ambiguity. The strategy was refined by testing
on many test sentences and lexicalizing the grammar rules which caused misparses.

In integrating the Part-of-Speech Tagger, TINA was adapted to accommodate to take
as input a mixture of words and parts-of-speech. A rule based part-of-speech tagger was
integrated as a preprocessor to the parse. The advantage of using a part-of-speech tagger over
a lexicon containing part-of-speech information is that the former can tag words which are
new to the system based on the surrounding words. This results in a more robust system that
can deal with any unknown word, such as unique acronyms. Once the parse tree is generated
using the parts-of-speech, the semantic frame representation contains parts-of-speech as
terminals, which is not very desirable for machine translation purposes. Thus, after the parse
tree is generated, the parts-of-speech are replaced with the actual input words.

The actual part-of-speech tagger used is the Transformation-Based Part-of-Speech
tagger which uses the transformation-based error-driven learning algorithm. This tagger was
chosen because it is a rule-base tagger which achieves high performance with a training
corpus of modest size, which was well-suited to our use because our training corpus is fairly
small. The transformation-based tagger, on the first pass, tags all the words in isolation by
using the most likely possibility. Unknown words are assumed to be nouns and then
upgraded to the most likely tag by using prefixes, suffixes, infixes, and adjacent words. In
the second pass, contextual transformations are used to improve the accuracy. The part of

speech tagger achieves a very high performance of 98 percent accuracy and 82 to 87 percent

73

accuracy on unknown words®.

4.3 System with POS Tagging and Fragmentation

FRAGMENTATION

FOR EACHLFRAGMENT

‘: ¢ <((“‘.!l‘ "»‘ RD . \ — —
AT
PART-OF-SPEECH

TAGGING

Figure 4-4 Fiow Control After the Addition of the Sentence Fragmenter

TINA augmented with the Part-of-Speech tagger is very robust and accurate with
short sentences with simple construction. However, when presented with a longer sentence
with a complex construction, TINA’s grammar cannot cover the constructions. Additionally,
longer sentences introduce more ambiguity as well as increase the computational complexity.
This problem stems from the fact that TINA’s grammar is limited to the constructions of the
training sentences.

To overcome this problem, the Sentence Fragmenter was added as a preprocessor to

“The results are from Reference [4].

74

the system. The tlow of the parsing processor after the Sentence Fragmenter is integrated is
shown in Figure 4-4 from Reference [6]. The input sentence is fed through the Sentence
Fragmenter, which generates one or more fragments as the outputs. Then, each of the
fragments are fed through the previous parsing strategy, first by just on the sequence of
words and if that fails to produce a parse, on the mixed sequence of words and parts-of-
speech. Therefore, each fragment generates its own semantic frame. Then, by using the
unique tags and labels generated by the Sentence Fragmenter which are accommodated by
the grammar, the partial fragments are composed to create a combined semantic frame for
the entire input sentence. Then, as before the output sentence is generated by feeding the
composed semantic frame through the generation module.

Through the use of the techniques of Sentence Fragmenter, the language
understanding module can now handle complex sentences. This additional feature is
especially important in the C2W domain where the sentences tend to be very long (20 or
more words).

Integrating the Sentence Fragmenter into the existing system involved three major
parts. First, the main procedure of TINA had to be modified to call the Sentence Fragmenter
module as well as to handle the fragments instead of the original sentence. Second, the TINA
grammar had to be augmented to handle the new tags. In addition, TINA had to be
augmented to parse fragments instead of complete sentences for which is was designed.
Third, the algorithm which composes the semantic frames of the fragments into a combined
frame had to be implemented.

TINA was designed to parse one sentence at a time. Therefore, when the Sentence

Fragmenter was integrated, we needed to augment the system to work with multiple

75

fragments for a given sentence. TINA has a main loop that reads a sentence, generates a parse
tree, and displays the semantic frame. The modified system has a slightly different flow. It
uses the same code to read a sentences but as the next step, it runs the Sentence Fragmenter
to determine the number of fragments in the sentence. Then it calls the original parse
function for each of the fragments.

The second modification that was necessary was to the grammar. The gramrmar had
to be augmented in two ways. First, it needed to be able to recognize and use the markers left
in the original sentence in the grammar. Secondly, TINA needed to be augmented to be able
to parse fragments in addition to sentences. These two modifications were made in parallel
with the Sentence Fragmenter as new ways of fragmenting were implemented throughout the
development cycle.

Once the multiple semantic frames are generated by the parser, we needed an
algorithm to recompose the frames into one. The semantic frame composition algorithm,
which has been proposed and implemented by Young-Suk Lee and Stephanie Seneff, is
described in detail in Reference [6]. By using the markers and labels left in the original
sentence and fragments by the Sentence Fragmenter, it 1s possible to always reconstruct the
original sentence or more specifically combine the semantic frames into one. This process
is done iteratively as each of the frames are generated by the parser. The frame composition
algorithm is run after each fragment is parsed by TINA. Figure 4-6 below shows the flow of

the combining process.

76

Frame Combining Algorithm

mpt || Sentence [pase |_, | COMBINE | |
Sentence Fragmentation Fragment 1 - FRAME #1
R S)
 Parse . | COMBINE
| Fragment2 FRAME#2 |
s AR 3\ .
" parse ~ COMBINE
™| Fregments | | FRAME3
FINAL COMBINED
FRAME

Figure 4-5 Frame Composition Algorithm Flow

The actual frame combination works as follows. The algorithm keeps track of the
final combined frame which is initially empty. After the first fragment is parsed, its semantic
frame is now stored as the final combined frame. Then as shown in Figure 4-5, the combine
frame function is called with the second semantic frame. The combine frame algorithm now
takes the label of the second semantic frame and searches for the corresponding marker in
the final combined frame. Then, it replaces the node with the marker with the semantic frame
of the second fragment. This combining process continues until all the fragments have been
parsed and composed.

The following example shows an example of how TINA with the Sentence

Fragmenter parses a sentence with multiple fragments.

r

rnighlight cric

ca. e.lerments and wvulrerabilities of enemy C2 systems,
operations, and arran

genencs.

This sentence is first put through the Sentence Fragmenter which generates four fragments.

77

The underlined words have never been seen before in the training data in TINA.

highlight critical elements and ndtopicl of enemy c¢2 systems comma
ndtopic2

ndtop2 operations and ndtopic3

ndtop3 arrargements

ndtopl vulnerabilities

Each four fragments are parsed and results in the following partial semantic frames,

listed respectively.

{c imperative
:subject 1
:pred {p highlight
:mode “root”
:topic {g nn_head
:name “elements”
:and {q ndtopic
:name “ndtopicl" }
:pred {p critical
:global 1 }
:pred {p n_of
:topic {q nn_head
:name “system”
:number “pl”
:and {qg ndtopic
:name “ndtopic2" }
:pred {p nn_mod
:topic “enemy c2"
:global 1 } }
:tglobal 1} } } 1}

{c fragment
:tag “ndtop2"
rand {q nn_head
:name “operations”
:and {q ndtopic
:name “ndtopic3" } } 1}

{c fragment
:tag “ndtop3"
:and {g nn_head
:name “arrangements” } }

{c fragment
:tag “ndtopl"
:and {g nn_head
:name “vulnerabilities” } }

78

By using the frame composition algorithm, these four frames are then combined into

one combined frame using the algorithm described earlier in this section.

{c imperative
:subject 1
:pred {p highlight
:mode “root”
:topic {g nn_head
:name *“elements”
:and {q nn_head
:name “vulnerabilities" }
:pred {p critical
:global 1 }
:pred {p n_of
:topic {g nn_head
:name “system”
:number “pl”
rand {qg nn_head
:name “operations"
:and {g nn_head
:name
“arrangements”
bl
:pred {p nn_mod
stopic “enemy c2"
:global 1 } 1}
:global 1} } } }

4.4 Evaluation Results

To understand the full benefits of the enhancements made to TINA, as always, it is

necessary to do some performance evaluations.

79

CATEGORY A B C D E F G Total
Number of sentences 158 | 26 22 48 24 5 3 286
Number of fragments 283 | 130 |52 165 | 47 16 3 696
No. of frags per sent 2 4 2.4 4 24 3 1 24
No. of frags parsed 283 |70 27 78 20 6 0 484
Average sent length 7.4 21 15 21 15 20 15 15

A: perfectly parsed and composed

B: improvable by augmenting fragmentation algorithm
C: part-of-speech tagging error

D: apple pie parser error

E: improvable by augmenting grammar

F: improvable by working on TINA

G: sentences whose cause for parsing failure is unclear

Table 4-1 Summary of Performance Resulits

Table 4-1, extracted from Reference [4], summarizes the performance of the system
after all the enhancements have been integrated. From the test results, we can see that
158/286 or 55 percent of the sentences are parsed and composed completely correctly. When
we look at partial fragment parsing performance, 484/696 or 70 percent of the fragments are
parsed correctly by the system. Clearly, there are still many enhancement that can be made

to improve the performance of the system.

4.5 Summary

The Sentence Fragmenter and the part-of-speech tagger play important roles in the
machine translation system. The experimental results show that integration of these two

enhancements have resulted in a significant improvement over the original system.

80

The addition of the transformation-based part of speech tagger improves the system’s
ability to handle unknown words. The use of part-of-speech increases the coverage of the
grammar because the grammar can be defined using a mixture of words and parts-of-speech.
Therefore, an unknown word does not automatically cause the system to fail.

The addition of the Sentence Fragmenter adds the ability of parsing complex
sentences. By dividing complex sentences into smaller fragments, we can reduce the
ambiguity and therefore achieve better performance. The fragments are individually parsed
and then the semantic frames of the fragments are composed into a combined frame through

a frame composition algorithm.

81

Chapter 5

5 Conclusion

The technique of sentence fragmentation for the purposes of machine translation was
the main focus of this thesis. Although the algorithm performs well, there are still many
enhancements that can be made to improve the performance of the overall system. In
addition, the idea of fragmentation can be extended beyond the field of machine translations
into other areas of research. This chapter presents an overview of the thesis, suggests some
areas for future improvement to the Sentence Fragmenter, and also presents an example on

how the techniques learned from this thesis can be applied in other areas of research.

5.1 Summary of Thesis

The goal of this thesis was to enhance the existing machine translation system to
handle complex sentences. The existing system consists of two main modules, one for
language understanding and one for language generation. The problem lies in that complex
sentences introduce a higher degree of ambiguity, which causes a problem for parsing. To
solve the problem, a new separate pre-processor module was designed, implemented, and

integrated into TINA.

82

The basis for the pre-processor module is the output of the Apple Pie Parser. It was
used because of its ability to handle long sentences with very good speed performance. The
Apple Pie Parser uses a bottom-up chart parsing technique augmented with some strategies
for reducing the memory requirements by factoring active nodes with the same label for the
left hand side of the grammar rule. It also uses a smaller secondary grammar when it still
runs out of memory. In addition to these two techniques for robust parsing, it also uses the
idea of a fitted parse when it cannot find a parse tree, especially as a side-effect of using the
smaller grammar. Through these three techniques, the Apple Pie Parser manages to
efficiently produce a decent output for any arbitrary input. Thus, it makes a good basis to
build the Sentence Fragmenter on.

The Sentence Fragmenter module uses the Apple Pie Parser internally. It takes an
input sentence, feeds it through the Apple Pie Parser, and uses its output as the basis for the
fragmentation algorithm. The Fragmenter converts the output of the Apple Pie Parser into
a tree, which facilitates the definition of different fragments by providing a set of relations
among the words in the tree. To find all the fragments in the sentences, it recursively
searches the tree for the relation definitions. Once the fragments are found, the Sentence
Fragmenter leaves a marker in the original sentence for later use and extracts the sub-tree
from the main tree. The strategy is repeated to each of the sub-trees until no more
new fragments can be found.

The integration of the Sentence Fragmenter into the existing system consisted of
many steps. Before the Sentence Fragmenter was integrated, TINA was augmented with a
part-of-speech tagger which allows it to use parts-of-speech in addition to individual words

in the grammar rather, as described by Lee, Weinstein, Seneff, and Tummala [4]. This allows

83

the TINA grammar to cover a larger number of sentences. The integration of the Sentence
Fragmenter itself consisted of two steps. First, the flow of TINA had to modified such that
it could handle more than one fragment per sentences. Second, after each fragment was
parsed to produce a partial semantic frame, the partial frames had to be combined to create
a combined frame describing the meaning of the whole sentence. This is done through a

frame composition algorithm implemented by Stephanie Seneff and Young-Suk Lee [6].

5.2 Future Work

There are a number of future improvements which could lead a to better performance
of the Sentence Fragmenter.

Chapter 3 briefly mentioned a couple of improvements that can be made to the
Sentence Fragmenter to achieve better performance. The first one involves identifying
special word clauses such as so clauses and therefore clauses. The second improvement that
was hinted at was a solution to the prepositional phrase attachment problem.

These two possible future improvements belong to a group of improvements that can
be made by making use the lexical knowledge. Because the Apple Pie Parser is based on a
contex' free grammar defined in terms of part of speech, it pays no attention to words. This
often leads to misparses which can have been easily avoided had the grammar taken
advantage of the lexical knowledge. Improving the Sentence Fragmenter through the use of
the actually word is generally something that needs to be identified manually on a case by
case basis. However, in some cases, it is possible to generalize the ideas. For example, in the

case of the prepositional phrase attachment problem mentioned in chapter 3, it is possible to

84

build a table of verb - preposition pairs which can be used to reattach the prepositional
phrases more appropriately.

Another improvement that can be made to the Sentence Fragmenter is to achieve
better performance on MUC-II data. It was mentioned briefly in chapter one that the Sentence
Fragmenter research was initially targeted at highly telegraphic MUC-II data. However,
partially due to the ungrammatical nature of the MUC-II data, the more grammatical C2W
data was used as the basis of the research. However, we are still interested in extending the
Sentence Fragmen'er to work with MUC-II data.

The main problem with fragmenting MUC-II data is that the ungrammatical nature
of the data leads into very poor performance of the Apple Pie Parser. The reason behind this
is the fact that the Apple Pie Parser grammar was automatically extracted from the Penn Tree
Bank, which is a tagged corpus of sentences from the Wall Street Journal. Therefore, what
the parser is really doing is trying to match up test sentence with a previously seen
construction. However, since the constuction of sentences are very different between MUC-11
and the Wall Street Journal, this is not a very good method.

One possible solution to this problem would be to train the Apple Pie Parser with
some manually tagged MUC-II corpus. By somehow combining the existing grammar of the
Apple Pie Parser with a new grammar generated from the manually tagged MUC-II corpus,
it could be possible to improve performance on MUC-II data while not losing the robustness
of the Apple Pie Parser. However, the details on how the two grammars should be combined
is unclear and it can only be answered by experimentation. Another major problem that needs
to be overcome is that there doesn’t exist a tagged MUC-II corpus. Creating any kind of

corpus involves at least some human labor and hence is very time intensive.

85

A third possible improvement would be to improve the performance of the internal
part-of-speech tagger of the Apple Pie Parser. The Apple Pie Parser currently uses a simple
strategy to assign tags to the words. It does not consider the neighboring words to help
determine the part of speech. For example, the word can can be used either as a noun or a
modal verb. The Apple Pie Parser simply looks this word up in the dictionary and assigns a
1077/1083 or 99.45% score on the modal verb interpretation and only a 6/1083 or 0.55%
score of can as a noun. Clearly, in cases where the word the precedes the word can, it is
being used as a noun. The Apple Pie Parser part-of-speech tagger has no provision for this
and thus still assigns a 0.55% probability of can being used as a noun. The result is that
nearly 100% of sentences that use the word can as a noun are misparsed by the Apple Pie
Parser.

A solution to this problem would be to replace the Apple Pie Parser’s part-of-speech
tagger with a more advanced tagger. A good candidate for this would be the same
transformation-based part-of-speech tagger that was integrated into TINA. This would
probably fix many of the 26 sentences that were misparsed due to wrong part-of-speech
tagging. Replacing the Apple Pie Parser’s part-of-speech tagger is not a trivial task because
it would require reworking some of the internal details of the Apple Pie Parser. In addition,
the new tagger has to use the same tags as the current tagger for it to be integrated seemlessly

with the existing grammar. However, the rewards could be well worth the effort.

5.3 Applications of Fragmentation Techniques

The techniques used in the Sentence Fragmenter can be applied in other areas of

86

research. One such possible area of research that this could be used in is information retrieval
systems. Current search engines only use a simple string search algorithm on a pre-compiled
index to find matching results. This is, for the most part, useful and very fast. However, as
computers get faster and faster, there will be enough processing power to allow more
complex searching algorithms involving semantics.

To demonstrate a possible use of the Sentence Fragmenter techniques in building
complex information retrieval algorithms, an experimental system called NP Finder was
implemented from the Sentence Fragmenter through a few minor modifications. The NP

Finder takes a sentence as an input and extracts all the noun phrases in the sentence.
the big dog ran from the cat
The previous sentence returns the following output.

Main Sentence:
NP1 ran from NP2

Noun Phrases:
NP1l the big dog
NP2 the cat

To see how the NP Finder can be used in information retrieval systems, it is necessary
to understand what the problem is with current technologies. Through a clever use of
indexes, search engines such as Digital’s Altavista are very fast. The main problem is that
the search returns many inaccurate matches. Suppose we wanted to find information on *big
dog”. This returns over 1000 matches on Altavista, which offsets the value of using a search
engine to find specific ideas. It returns inaccurate matches including big dog toys and
description of the book “little big dog”.

Returning too many matches is a very common problem when using search engines

and as the databases get larger, more matches will occur, compounding the problem. By

87

using the NP Finder output example shown above, we can design a new information retrieval
system which only returns full NP matches. This would prevent the system from matching
big dog toys and description of the book “little big dog”.

This is only one aspect on how the Sentence Fragmenter techniques could be used.
It is possible to extend this idea to verbs and other categorys. Furthermore, more interesting
search system could be created by allowing the definition of relationships between words.
By taking this one step further by adding some semantic information, it could be possible to
create an information retrieval system that would allow the user to query for <something>
crashing into <something> where <something> are types of vehicles, which would match

blue honda, big truck, a train, etc.

5.4 Summary

This chapter included an overview of the Thesis, including TINA, the Apple Pie
Parser, and the Sentence Fragmenter. Following the overview, several possible strategies for
improving the system in the future are presented. Finally, a possible application of the

sentence fragmentation technique outside of machine translation systems is discussed.

88

Appendix A

A Glossary of Linguistic Tags

The list of linguistic tags used in this thesis was compiled from Reference [1].

cC ccordinating conjunction

DT determiner

NN noun, singular or mass

NNS proper noun, singular

NNX combined tag of NN, and NNS
NP noun phrase

PP prepositional phrase

PRP personal pronoun

S sentence

VB verb, base form

VBD verb, past tense

VBN verb, past participle

VBP verb, non-3s, present

VBZ verb, 3s, present

VBX combined tag of VBP, VBZ, VBD
VP verb phrase

UcCp uncategorized phrase

89

Appendix B

B Test Sentences

These 200 test sentences used for evaluation of the system at different levels. The sentences
were randomly selected from chapters 1,3,8, and 11 of the Command and Control Warfare
(C2W) handbook. Sentences that were incorrectly parsed by the Apple Pie Parser, yet which

did not affect sentence fragmentation are marked with an asterisks (*).

Sentence correctly parsed by the Apple Pie Parser

military deception is a fundamental aspect of the greater whole of military art

military art focuses on the direct use of military force to impose one's will on an opponent

the capability and opportunity to exercise military deception is highly situation-dependent

although opportunities to use deception should not be overlooked, the commander must also recognize
situations where deception is not appropriate

military deception can be used to enhance the impact obtained from practicing these tenets, but military
deception also provides opportunitics to apply these tenets in ways that are not otherwisc available

while the role of military deception is relatively simple to understand, its actual use in military operations is
not

military deception is functionally related to the broader concept of (c2w and must be applied in that framework
c2w involves all measures aimed at affecting the c2 of the opponent

military deception should be viewed as an important aspect of the c2w effort

the following references provide additional guidance in the preparation and execution of deception

an examination of the common characteristics of successful military deception operations provides a sound

90

basis for acquiring a practical understanding of the key requirements for success

six common characteristics that underpin successful deception operations are particularly notable

any successful deception operation must provide the target with a wide range of information from multiple
sources to form a solid foundation for the deception

effective deception operations usually aim at obtaining a very clear and concise result

the goal and objective of the deception should be easily understood by the originator

comprehensive preparation and exact timing are hallmark characteristics of deception planning and execution
deception is a precision art

the test of value for a deception operation is measured by its success

success is gained if the deception goal is a fully integrated element of the commander's overall concept of
operations

such methods usually entail breaches in opsec to convey misleading indicators

common characteristics (paragraph 11-3) are used to reinforce and lead credence to a deception story

a feint must appear real, therefore some contact with the enemy may be required

maintain a staff component within the c2w cell to act as the single working level point of contact for
supervision and coordination of deception

tactical deception planners in units, corps and below, will coordinate with lateral units to ensurc deception
operations do not interfere with other units oplans

consider deception planning while basic operation plans are being developed

this will ensure the plan properly supports and complements operational objectives

the deception plan must influence the deception target

the deception target is ultimately the enemy commander who has the authority to make decisions that will force
favorable enemy reaction to the deception objective

the deception story supports the deception objective

the deception story tells the enemy of a believable friendly capability or intent

the story must be realistic and plausible

the deception story must be within our tactical capability as the enemy knows it

it should not project activities that violate our doctrine

planning the following into the deception story is instrumental in its successful execution

information will be verified through the collection of more than one source

the deception story must be consistent with current tactical doctrine

ensure close coordination and control

limit the number of people knowledgeable of the deception

even tasked units may not be cognizant that they are performing a deception operation

there are several different methods for formulating deception plans

during any deception planning, use the deception checklist, tab a, for self-evaluation/appraisal of the plan

91

this method is not recommended

unwritten deception planning simply executes deception operations as the situation develops

this method has the potential of severe repercussions and should be used only as a last resort
implementation schedules at tab d, are essential for orchestrating and executing the deception in an orderly
manner

ensure feedback is incorporated in the plan

during deception plan preparations, continuously review an estimate of the situation and react to changing
conditions

in addition to procuring any needed deception devices, other preliminary actions must be completed to include
identify unit to conduct the deception

identify means to command and control the activity

establish logistic support for devices and other materials

it is a scenario for presenting the deception story to the enemy

if the reaction is unfavorable, modify or terminate the operation

this record keeps the commander aware of operational developments, deception execution status and aids in
evaluating the deception's success

after the deception operation is completed, conduct an evaluation

use operational and intelligence feedback to evaluate the deception's success

c2-attack encompasses those measures taken to deny enemy commanders and decisionmakers the ability to
effectively command and control their forces

active measures are most commonly thought of in the development of a c2-attack strategy

planners should not lose sight of the fact that such a strategy should be supported by the total integration of
both active and passive measures

offensive measures include the application of both lethal and nonlethal ca activities

lethal capabilities are targeted against key c2 personnel and their supporting communications systems or
facilities

jamming is targeted against those electromagnetic communications and sensors essential to the encmy's ¢2 in
the near term

electronic deception, as another component of ea, conveys false or misleading information to enemy
decisionmakers to influence their perception of an operational situation incorrectly and respond, or fail to
respond, in a way advantageous to friendly operations

this involves the employment of c2-protect (see chapter 5) in support of c2-attack and illustrates why neither
the c2-attack nor the c2-protect strategy can be developed in isolation

also, in a passive sense, intelligence and electronic warfare support (es) are essential in the analysis of enemy
c2 and in planning, execution and feedback of c2-attack actions

the following list of unclassified references provides additional useful information about c2-attack planning

92

and employment

dissuade the enemy from taking actions that would adversely affect mission accomplishment

promote operational superiority at the time and place of engagements

although the authority to develop and implement an effective and integrated c2-attack strategy is delegated to
his statf, responsibility for c¢2-attack remains with the cinc

the c2-anack planner is responsible for coordinating the development of the c2-attack plan with
component/supporting force staff elements and translating the strategy into appendix 10 to annex c for cinc
unc/cfc/usfk ¢j3 approval

various staff elements perform duties and functions to support the ¢j3 and the c2-attack planner in meeting
overall c2-attack responsibilities

the following planners are responsible to the ¢j3 for the integration of their disciplines into the c2-attack
strategy

the application of c2-attack against enemy c2 is a complex problem

the process of selecting and identifying c2 targets is difficult because »f the large numbers and, in some cases,
lack of unique identifiable characteristics

despite the difficulty, all of the following considerations should be examined in developing the overall
¢2-antack plan

mission accomplishment is the primary consideration in developing a c2-attack plan

regardless of the type of conflict, c2-attack must be considered in the development of the oplan

the threat estimate consists of area of operations, electronic order of battle, c2 activities supporting enemy
decisionmakers and weapons systems and estimated enemy intentions

consideration must be given to the possibility that c2-attack actions may affect our ability to collect information
from a lucrative source

disruption of enemy command links should be evaluated in terms of the intelligence loss that may result
assets available to execute c2-attack options include forces assigned

such factors include rain, fog, clouds, terrain, propagation conditions and sea state (both open and coastal)
which affect radar, transmitters/receivers, jammers and sensors

the decision to employ physical destruction must consider the effects of diverting destructive combat power
from other targets

the expendable nature of lethal weapons and their requirement for extremely accurate target location
information, could make nonlethal actions more cost effective alternatives

the mobility or location of some c2 targets also makes the consideration of nonlethal counteractions desirable
finally, jamming and deception options may have the potential of affecting several targets simultaneously
destruction, ea, psyop and deception operations must be timed with a friendly operat.on/mission that can
exploit the loss or degradation of enemy c2

however, it could have an adverse impact on friendly operations if it reveals plans and intentions

93

planners must clearly understand potential enemy c¢2 targets and their importance to the encmy in both
offensive and defensive operations

information in this handbook applies to united nations command , component commands, field armies and
other subordinate and supporting organizations, regardless of service

the ¢2w branch, cjg3 plans division is the unc and cfc/ustk/ground component command for all 2w matters
the organization of the ¢2w branch, which includes both united states military of all services is shown at figure
1-1

jamming and electronic deception operations, normally referred to as electronic attack , are certainly two
essential components of the c2w strategy

formats for appendices which are presented in this handbook are taken from the unc and cfc planning guide
and jopes volumes i and ii

¢2-attack encompasses those measures taken to deny enemy commanders and decisionmakers the ability to
effectively command and control their forces

planners should not lose sight of the fact that such a stratcgy should be supported by the total integration of
both active and passive mcasures

offensive measures include the application of both lethal and nonlethal ea activitics

lethal capabilities are targeted against key ¢2 personnel and their supporting communications systems or
facilitics

electronic deception, as another component of ca, conveys false or misleading information to enemy
decisionmakers to influence their perception of an operational situation incorrectly and respond, or fail to
respond, in a way advantageous to friendly operations

this involves the employment of c2-protect in support of c2-attack and illustrates why neither the c2-attack
nor the ¢2-protect strategy can be developed in isolation

also, in a passive sense, intelligence and electronic warfare support are essential in the analysis of cnemy ¢2
and in planning, execution and feedback of c2-attack actions

the following list of unclassified references provides additional useful information about c2-attack planning
and employment

although the authority to develop and implement an effective and integrated c2-attack strategy is delegated to
his staff, responsibility for ¢2-attack remains with the cinc

maximum coordination between c2-attack planning and intelligence and es and communications support
activities are established and maintained

a c2-attack plan is issued to all component and supporting force commands that contains sufficient detail to
assure maximum guidance and direction in support of mission accomplishment

various staff elements perform duties and functions to support the ¢j3 and the c2-attack planner in mecting
overall ¢2-attack responsibilities ‘

the following planners are responsible to the cj3 for the integration of their disciplines into the c2-attack

94

strategy

the application of c2-attack against enemy c2 is a complex problem

the process of selecting and identifying c2 targets is difficult because of the large numbers and, in some cases,
lack of unique identifiable characteristics

despite the difficulty, all of the following considerations should be examined in developing the overall

c2-attack plan

Sentences incorrectly parsed by the Apple Pie Parser

Due to using the incorrect rule

often, the skillful application of tenets of military operations-initiative, agility, depth, synchronization and
versatility, combined with effective opsec, will suffice in dominating the actions of the opponent

*military deception is more subtle, relying on the manipulaticn of selected appreciations to influence the
actions of the opponent

*other functional components of c2w (psyop, opsec, ew and physical destruction) involve more overt measures
aimed toward denial, disruption and destruction

*consequently, to achieve its desired effect, military deception operations usually require access to a functional
enemy c¢2 system

key bits of information essential to the deception story may be simply overlooked by the recipient if they are
transmitted by a single source

the quality of information is as important as its quantity, including mixing sufficient truth with the falsehoods
or distortions to increase their likelihood of acceptance

it is a show of force to gain enemy response, with the friendly force withdrawing without engagement

the net effect of this information must directly lead to an appreciation that is more believable than the reality
it is intended to disguise

*included are such areas as sigint, humint and imint which verify desired responses to the deception plan
*the successful deception story must end up in the enemy commander’s hands as his staff's estimate of friendly

capabilities and intentions

95

*use an implementation schedule at tab d to control complex deception operations

*the deception story is the information provided to the enemy commander which leads him to an incorrect
assessment

*¢2-attack planner serves as the key coordinator and point-of-contact within command on all c2-attack matters
at field army and below the ¢jg3 is the focal point for ¢2-attack planning and cxecution

there must be feedback to determine the results of the ¢2-attack activity for adjusting current or future actions
or tactics, or for terminating current actions if the objectives have been accomplished

this forces the enemy to make a decision which puts him at a disadvantage

it is never advisable to undertake a deception that is clearly not within one's technical means and capability
experience has shown that deception plans which do not account for all of the factors necessary to credibly
portray the illusion result in failure

the deception concept and the resulting deception story should generally conform to the enemy's
preconceptions of how his opponent is expected to behave

the individual whom we are actually targeting may not be the highest ranking officer in the enemy order of
battle

the deception objective is what we want the enemy to do or not to do

when developing a deception objective, determine what conclusions the enemy should draw and what actions
they should or should not take

sometimes achieving the deception objective is accomplished if the story merely lengthens the enemy
commander's decision cycle, resulting in delayed decisions

the indicators displayed must be believable or they will be readily discounted

appendix 7 to annex c, tab c, is used for deception planning to support an oplan, conplan, or an explan
evaluation is an ongoing process as the success of a future operation may depend on the lessons learned from
completed operations

determine if the deception was conducted as planned, whether the enemy accepted the deception as real and
whether the deception influznced the enemy as desired

*c2-attack planner serves as the key coordinator and point-of-contact within command on all c2-attack matters

96

¢2 can often be reconstructed or redirected to bypass a particular disabled command post, terminal or
communications link

it is mutually supported by intelligence to deny information, influence, degrade, or destroy adversary command
and control capabilities, while protecting friendly c2 against such actions

these included actions taken to destroy and and or disrupt the functioning of an enemy's c2 capabilities by
direct attack against his c2

plan for the integration and execution of those actions designed to deny or convey misleading information to

the enemy
Due to part of speech tagging

publish and distribute deception plans and schedules

*designate security measures

such characteristics, as listed below, can provide a general frame of reference for evaluating the relative merits
of alternative approaches to specific deception operations

isolated sources of information alone may not be believed

conversely, the deception plan must also conform to the initiator's mission and operational concept

as deception is conducted, measure its effectiveness in terms of enemy reaction

*keep a record of events, documenting all activity

he coordinates c2w disciplines to effectively coordinate and plan for the total integration for these functional
areas in support of the overall c2-attack plan

publish and distribute deception plans and schedules

the c2w intelligence support officer is located in the cj2 plans and targets branch and coordinates intelligence
support to c2w branch

however, the technical measures that must actually be taken to portray a false reality are normally very complex
improperly timed c2-attack may have little or no influence on the success or failure of the enemy operation
*additionally, the c2w branch is available to coordinate specific training needs as required

this forces the enemy to make a decision which puts him at a disadvantage

*designate security plans

97

the plan details and formalizes the complete deception operation and, when approved, is the basis for initiating
execution on order

the simulate weapons and installations, disguise the appearance of an object, portray the existence of a notional
unit, or indicate a different type unit than actually exists

the use of a discarded basic operation plan can be easily modified to support a deception operation

*plan on using multi-spectral operations

conduct deception using deception measures and deception tasks which are directed in the deception plans
this handbook was designed 10 provide both operators and planners the information needed to successfully plan
and execute a command and control warfare strategy

it is organized as a reference guide covering all aspects of c2w in korea including electronic warfare , physical
destruction and intelligence support

users are encouraged to extract, amplify and provide useful portions to their subordinate units

*jamming is targeted against those electromagnetic communications and sensors essential to the enemy’s c2
in the near term

he coordinates c2w disciplines to effectively coordinate and plan for the total integration for these functional
areas in support of the overall c2-attack plan

the c2w intelligence support officer is located in the cj2 plans and targets branch and coordinates intelligence

support to c2w branch
Due to two non-terminals S and NP

a mastery of military art is a prerequisite to successful practice of military deception but the mastery of military
deception takes military art to a higher level

back of envelope approach is used for time critical situations, a quick method of scratching out a few notes (on
the back of an envelope) and then executing the deception

*areas that can be included are visual, electronic, sonic and olfactory

the tactical commander directing the deception should set up a small deception cell to develop, coordinate,
monitor and implement the deception plan

Due to incorrect fitting

98

c2w also involves protective measures taken to protect one's own c2 against similar effort of the opponent,
making the overall goal of c2w to obtain a decisive advantage in the ability to manage forces

*without an integrated approach to planning military deception as a component part of c2w, the commander
may find himself making choices that unintentionally degrade one capability at the expense of another, rather
than synchronizing the total contribution of all aspects of c2w

since it is impossible to totally control all of the information available to the target, deception may involve less
of an effort to conceal reality than it does an effort to corrupt the target's perception of reality in a very
methodical and convincing manner

even when the material capability exists, if littie is done in advance to train and prepare the command to
execute deception operations, subsequent attempts at deception may often result in a waste of effort and
resources

to be believable, the deceiver is asking his target to accept must be in line with the target's understanding of
the originator's warfighting style, military doctrine and battlefield behavior in the existing circumstances
deception means are the methods, resources and techniques that can be used to control friendly, physical,
technical and administrative actions to convey or deny information and indicators to the deception target
planning process steps at tab b, is an informal style that can be used in development of a deception plan when
an appendix c-7 is not written, or as a basic outline in the development of a deception story

close coordination among all participating services throughout all phases of planning and execution is essential
to insure an implemented c2-attack option by one friendly force does not adversely affect the c2 of another
friendly force unit

attempts to counter every enemy c2 activity is unrealistic and will prove futile due to the sheer number involved
and, in some instances, the value of some of the enemy c2 activities as sources of intelligence

once targets are selected and c2-attack methods determined, channels must be established from the source that
found the target, to the weapons system that will attack the target

command and control warfare training is coordinated and conducted throughout the year in each of the
functional areas, to keep c2w planners and operators informed of changing roles and requirements

in other words, c2w is a methodical approach to the integrated, timely, balanced and complementary

99

employment of available lethal and nonlethal means to attack the enemy’s ¢2, while simultaneously protecting
our own c2 from similar enemy activities

although each of the elements can be used individually, the maximum eftectiveness of c2w is attained only by
thoroughly integrating hard kill options, psyop and opsec techniques with ew and deception operations to
achieve the synergistic effect of all five elements of c2w

the c2-attack planner is responsible for coordinating the devi.lopment of the c2-attack plan with component
and supporting force staff elements and translating the strategy into appendix 10 to annex c for cinc
unc/cfc/usfk cj3 approval

Due to PP-attachment problem

*it is capable of causing the enemy commander to mismanage his forces, leaving him unaware of how his c2
system is being undermined

*military deception differs from other c2w components by virtue of achieving its goals through the orchestrated
release of information to the adversary

*the unusual requirement for conduits to the adversary may be at cross-purposes with other functional
components of c2w

it may be the one who holds great influence in the decision making process, such as the intelligence or
operations officer

reject actions that add undo complexity to a deception plan without materially improving its chances of success
these include opsec actions taken to deny or conceal information from enemy surveillance systems regarding
friendly intentions and capabilities

the commander must exercise constraint when defining the role of deception within the overall concept of his
operations

deception methods are the specific actions employed to convey elements of the deception story to the target
it may be a simple tactical trick conducted by a lone soldier on a battleficld, or an elaborate stratagem
conducted at the theater level

these included actions taken to destroy and disrupt the functioning of an enemy’s c2 capabilities by direct attack

against his c2

100

these include opsec actions taken to deny or conceal information from enemy surveillance systems regarding
friendly intentions and capabilities

such support would normally be over existing communications channels with no requirement for dedicated
c2-attack circuits

*c2-attack planning should be centralized at the unc/cfc/usfk level, with execution at the level exercising
operational control over the assets being employed

*such support would normally be over existing communications channels with no requirement for dedicated

c2-attack circuits

101

Appendix C

C Sample Chart Parsing Results

the dog chased the cat

---------- chart

{ 0, 1] o(0)
(1, 2] : DT(0)
[1, 2} : NPL{ 49)
{1, 2] : 55(103)
{ 1, 2} : NP(90)
{ 1, 2] : S(135)
(1, 31 : NPL(20)
(1, 3] : NP(61)
(1, 3] : SS(74)
[1, 3] : S(106)
[1, 4) : NPL(96)
[1, 4] : SS(58)
[1, 4] : NP(97)
[1, 4] : S(88)
[1, 6] : Ss(79)
[1, 6] : NP(114)
([1, 6] : S(91)
[2, 3] : VBX{(25)
[2, 3] : VB(25)
[2, 3] : NNX(1)
[2, 3] : NPL{ 22)
[2, 3] : Ss(76)
[2, 3] : NP(63)
{ 2, 31 : S(108)
[2, 4] : NPL(109)
[2, 4] : SS(60)
[2, 4] : NP(99)
[2, 4] : S(90)
{ 2, 6] : SS(81)
{ 2, 6] : NP(116)
(2, 6] : S(93)
[3, 4) : VBN(10)
[3, 4) : VBX(4)
{ 3, 4] : NPL{(986)
[3, 4] : SS(73)
[3, 4] : S(100)

-{ -1} -
- {37495} -
- {25363} -
-{17837} -
-{ 3259}
- {38966} -
-{17837} -
- {25363} -
-{ 3259} -
- {39163} -
- {28334} -
- {20757} -
-{ 5358} -
- {28580} -
-{21318} -
-{ 5748} -
-{ -1} -
-{ -1}-
-{ -1} -
-{41257} -
- {25363} -
-{17837} -
-{ 3259}
-{41467} -
- {28334} -
- {20757} -
-{ 5358} -
- {28580} -
- {21318} -
-{ 5748} -
-{ -1} -
-{ -1} -
- {41473} -
- {35156} -
- {15968} -

VVVVVVVVVYVVVVVVVVVVYVVVVVVVYVVVYV

>
>
>
>

->

the

DT{1 2]

NPL (1
NPL (1
NPL {1

2]
2]
2]

DT ({1 2] NNX([2 3]

NPL[1
NPL (1
NPL[1

3]
3]
3]

DT(1 2] NNX{2 3] VBX[3 4]

NPL (1
NPL[1
NPL (1
NPL (1
NPL[1
NPL {1
dog

dog

dog

NNX (2
NPL {2
NPL (2
NPL[2
NNX [2
NPL[2
NPL (2
NPL [2
NPL [2
NPL[2
NPL (2

chased
chased

VBX (3
VBN (3
VBX [3

102

3]
3]
3]
3]
3]
3]

3]
3]
3]
3]
3]
3)
3]
3]
3]
3]
3]

4]
4)
4]

VBX (3
VBN (3
VBX (3
VBX (3
VBX (3
VBX (3

VBX (3
VBX (3
VBN {3
VBX[3
VBX (3
VBX [3
VBX [3

4]
4]
4]
4] NPL[4 6]
4] NPL[4 6]
4] NPL[4 6]

4]
4)
4]
4]
4] NPL(4 6]
4] NPL[4 6]
4] NPL[4 6]

[3, 4] : NP(164) -{17824}-> SS[3 4]

{ 3, 6] : SS(67) -{35526}-> VBX[3 4] NPL[4 6]
[3, 6] : NP (131) -{22827}-> VBX[3 4] NPL([4 6]
([3, 6] : S{ 92) -{15975}-> VBX[3 4] NPLI[4 6]
[4, 5] : DT(0) -{ -1}-> the

[4, 5] : NPL(49) -{37495}-> DT[4 5]

([4, 5] : $8(103) -{25363}-> NPL[4 5]

[4, 5] : NP(90) -{17837}-> NPL[4 5]

[4, 5] : S(135) -{ 3259}-> NPL[4 5]

[4, 6] : NPL(19) ~-{38966}-> DT[4 5] NNX(5 6]
[4, 6] : NP(60) -{17837}-> NPL[4 6]

[4, 6] : Ss(73) -{25363}-> NPL[4 6]

[4, 6] : S(105) -{ 3259}-> NPL[4 6]

{ 5, 6] : NNX(0) -f{ -1}-> cat

[5, 6] : NPL{ 21) -{41257}-> NNX(5 6]

{ 5, 6] : SS(75) -{25363}-> NPL(5 6}

[5, 6] : NP(62) -{17837}-> NPL([5 6]

[5, 6] : $(107) -{ 3259}-> NPL([5 6]

(6, 71 : o(0) -{ -1}-> =E=

---------- chart -------------------

1] 0o(0) -{ -1} -> =8=

2] DT(0) -{ -1}-> the

2] : NPL(49) -{37495}-> DT([1 2]

2] : $5(103) -{25363}-> NPL[1 2]

2] : NP(90) -{17837}-> NPL[1 2]

2] S$(135) -{ 3259}-> NPL[1 2]

3] : NPL(19) -{38966}-> DT[1 2] NNX[2 3]
3] : NP(60) -{17837}-> NPL[1 3]

3] Ss(73) -{25363}-> NPL[1 3]

3] 5(105) -{ 3259}-> NPL[1 3]
NPL(91) -{39163}-> DT[1 2] NNX([2 3] VBX[3 4]

4] SS(53) -{28334}-> NPL[1 3] VBX[3 4]

4] NP(113) -{21309}-> NPL[1 3] VBX[3 4]

4] : S(83) -{ 5358}-> NPL{1 3] VBX[3 4]

5} SS{ 71) -{30731}-> NPLI[1 3] VBX[3 4] VBN[4 5]

5] S({ 97) -{ 7827}-> NPL[1 3] VBX[3 4] VBN[4 5]

5] : NP(141) -{17854}-> NPL[1l 3] SS[3 5]

6] : $S(112) -{30939}-> NPL[1 3] VBXI[3 4] VBN[4 5] INI[S5 6]
6] : $(130) -{ 8037}-> NPL[1 3] VBX[3 4] VBN[4 5] IN[5 6]
6] : NP (203) -{17824}-> SS[1 6]

PRPRPRREPRPERPBRPERBREPRLRPLERBPEO

D . T T T S
—

7] S5(132) -{31024}-> NPL[1 3] VBX([3 4] VBN[4 5] IN([5 6] JJ[6

AN D O N, S P P P A e e

1, 8] S8(108) - {30970} -> NPL[1 3] VBX([3 4] VBN([4 5] IN[5 6] NPL[6

]
, 8] $(120) -{ 8081}-> NPL[1 3] VBX[3 4] VBN[4 5] IN[5 6] NPL[6

]

1, 8] : NP(199) ~-{17824}-> SS[1 8]

2, 3] : NNX(0) -{ -1} -> bogey

2, 3] : NPL{ 21) -{41257}-> NNX[2 3]

2, 31 : SS(75) -{25363}-> NPL[2 3]

2, 3] : NP(62) -{17837}-> NPL[2 3]

2, 3] : S(107) -{ 3259}-> NPL([2 3]

2, 4] : NPL(104) -{41467}-> NNX[2 3] VBX[3 4]

103

NN

R N T R

N

~

N

-~

LR R e e e W o B e e e R e W e e e K e W e Ran R Ram e R o W o e e e L e e e R e R Ea i e e e e R R R R e R)

S Y T Y e

OOV OB S d DR BB BB WWWWWWwwWwwWwwwwN

4] SS(55) -{28334}-> NPL[2 3] VBX(3 4]

4] NP(115) -{21309}-> NPL[2 3] VBX[3 4)

4] : S(85) -{ 5358} -> NPL([2 3] VBX[3 4]

5] : SsS(73) -{30731}-> NPL(2 3] VBX[3 4] VBN[4 5]

5] : S{ 99) ~-{ 7827}-> NPL[2 3] VBX[3 4] VBN[4 5]

5] : NP(143) -{17854}-> NPL{2 3] SS[3 5]

6] : 5S(114) -{30939}-> NPL{2 3] VBX[3 4] VBN([4 5] IN[5 6]
6] : S(132) -{ 8037}-> NPL[2 3] VBX(3 4] VBN([4 5] IN[5 6]
6] : NP(205) -{17824}-> SS[2 6]

7] : §5(134) -{31024}-> NPL{2 3] VBX[3 4] VBN[4 5] IN[5 6] JJ[6
8] : §$S(110) -{30970}-> NPL[2 3] VBX([3 4] VBN[4 5] IN[5 6] NPL([6
8] : $(122) -{ 8081}-> NPL[2 3] VBX[3 4] VBN[4 5] IN{[5 6] NPL[6
8] : NP(201) -{17824}-> SS[2 8]

4] : VBX(0) -{ -1}-> was

4] : NPL(92) -{41473}-> VBX([3 4]

4] : SS(70) - {35435} -> VBX[3 4]

4] S{ 96) -{15968}-> VBX([3 4]

4] NP(133) -{17837}-> NPL[3 4]

5] SS(78) - {36227} -> VBX[3 4] VBN(4 5]

5] : NP(163) -{20757}-> NPLI[3 4] VBN[4 5]

5] : S(150) -{15974}-> VBX(3 4] SS(4 5]

8] : SS(96) -{36306}-> VBX[3 4] VBN[4 5] IN[(5 6] NPL[6 8]
8] $(126) -{16090}-> VBX[3 4) VBN[4 5] IN([5 6] NPL[6 8]
8] : NP(187) -{17824}-> SS(3 8]

5] : VBX(10) -{ -1} -> destroyed

5] : VBN(4) -{ -1} -> destroyed

5] : NPL(102) -{41473}-> VBX (4 5]

5] : SS(67) -{35156}-> VBN[4 5]

5] : S(97) -{15622}-> VBN[4 5]

5] : NP(143) -{17837}-> NPL (4 5]

6] : SS{(113) -{35184}-> VBN[4 5] IN[5 6]

6] : NP(204) -{17824}-> SS[4 6]

6] : $(209) -{ 2663}-> SS[(4 6]

71 S$S(113) -{35222}-> VBN([4 5] IN(5 6] JJ[6 7]

71 : NP(204) -{17824}-> SS[4 7]

71 S(209) -{ 2663}-> sS{4 7]

8] : SS(95) -{35198}-> VBN([4 5] IN[5 6] NPL[6 8]

8] : S(114) -{15649}-> VBN[4 5] IN[5 6] NPL[6 8]

8] NP(186) -{17824}-> SS{4 8]

6] : IN(0) -{ -1}-> by

6} : NPL(111) -{39253}-> IN(5 6]

6] : $5(109) -{32171}-> IN(5 6]

6] : NP (152) -{17837}-> NPL([5 6]

6] : S$(197) -{ 3259}-> NPLI[5 6]

7] :+ NPL(125) -{39284}-> IN(5 61 JJ[6 7]

7] S$5(146) -{32403}-> IN([(5 6] NPL[6 7]

7] NP(165) -{22524}-> IN([(5 6] NPL[6 7]

8] : S$S(114) - {32403} -> IN([5 6] NPL[6 8]

8] NP(133) -{22524}-> IN([5 6] NPL[6 8]

8] : NPL(105) -{39286}-> IN[5 6] JJ[6 7] NNX[7 8]

8] : 5(191) -{ 3259} -> NPL([5 8]

7] Ja(0) -{ -1} -> friendly

7] : NPL(61) -{39361}-> JJ(6 7]

71 SS(57) -{32827}-> JJle 7]

7] S(107) -{14007}-> JJle 7]

7] NP(102) -{17837}-> NPL[6 7]

104

[6, 8] : NPL(29) -{39657}-> JJ[6 7] NNX[7 8]
[6, 8] : S5(83) - {25363} -> NPL[6 8]

[6, 8] : NP(70) -{17837}-> NPL[6 8]

[6, 8] S(115) -{ 3259}-> NPL(6 8]

[7, 8] : NNX(0) -{ -1}-> aircraft

[7, 8] : NPL{ 21) - {41257} -> NNX[(7 8)

[7, 8] : SS(75) - {25363} -> NPL(7 8]

[7, 8} : NP(62) -{17837}-> NPL[7 8]

[7, 8] S(107) -{ 3259} -> NPL([7 8]

[8, 9] H 0(0) ‘[-1}-) =R=

The following is only a partial chart parse results. It only shows the
nodes extending from node 1.

military deception can be used to enhance the impact obtained from
practicing these tenets, but military deception also provides
opportunities to apply these tenets in ways that are not otherwise
available

1, 9] : NP (226) -{17854}-> NPL[1 3] SS[3 9]

1, 10] $S(141) -{26857}-> NPL[1 3] MD[3 4] VB[4 5] VBN[5 6]
TOINF [6 10]

[1, 10] : S(151) -{ 4587}-> NPL[1 3] MD[3 4] VB[4 5] VBN([5 6]
TOINF[6 10]

---------- chart -------------------

[1, 2] : NNX(21) -{ -1} -> military

[1, 2) : JJ(1) - { -1} -> military

[1, 2] : NPL{(42) - {41257} -> NNX[1 2]

[1, 2} : SS(58) -{32827}-> JJ([1 2]

{1, 2] : S(108) -{14007}-> JJ(1 2]

[1, 21 : NP(83) -{17837}-> NPL[1 2]

[1, 3] : NPL{(30) -{39657}-> JJ[1 2] NNX(2 3]

[1, 3] : SS(84) -{25363}-> NPL[1 3]

(1, 3] : NP(71} -{17837}-> NPL[1 3]

[1, 3] : S(116) ~-{ 3259}-> NPL[1l 3]

[1, 4] : $S(101) -{25898}-> NPL[1 3] MD(3 4]

[1, 4] : S(137) -{ 4126}-> NPL[1 3] MD([3 4]

[1, 4] : NP(178) -{17854}-> NPL[(1 2] SS[2 4]

[1, 5] : SS(84) -{26173}-> NPL[1 3] MD[3 4] VB[4 5]

[1, 5] : S(112) -{ 4263}-> NPL[1 3] MD(3 4] VB[4 5]

[1, 5] : NP(159) -{17854}-> NPL[1 3] SSI[3 5]

{ 1, 6] : SS(95) -{26826}-> NPL[1 3] MD[3 4] VB[4 5] VBN[S 6]

[1, 6] : S(125) -{ 4572}-> NPL[1 3] MD([3 4] VB[4 5] VBN[5 6]

[1, 6] : NP(167) -{17854}-> NPL[1 3] SS(3 6]

[1, 7] 85(172) -{26857}-> NPL[1 3] MD([3 4] VB{4 5] VBN[5 6]
TOINF (6 7]

[1, 71 5(182) -{ 4587}-> NPL[1 3] MD([3 4} VB[4 5] VBNI[5 6]
TOINF (6 7]

[1, 71 : NP(227) -{17854}-> NPL[1 3] SS[3 7]

[1, 8] : SS(134) -{26857}-> NPL[1 3] MD(3 4] VB[4 5] VBN[5 6)
TOINF (6 8]

(1, 8] : 5(144) -{ 4587}-> NPL[1 3] MD[3 4] VB[4 5] VBN[5 6]
TOINF (6 8]

[1, 8] : NP(189) -{17854}-> NPL[1 3] SS[3 8]

(1, 9] : 8S(171) -{26857}-> NPL{1 3] MD[3 4] VB[4 5] VBN[5 6]
TOINF (6 9]

{ 1, 9] : S(181) -{ 4587}-> NPL[1 3] MD([3 4} VB[4 5] VBNI[5 6]
TOINF([6 9]

{

[

105

(1, 10)
[1, 11)
TOINF (6 11]
1, 11}

TOINF {6 11]

(1,
(1,

11)
12]

TOINF (6 12]

(1, 12}
TOINF (6 12]
[1, 12]

(1, 13]

TOINF ({6 13)

{ 1, 13])]
TOINF (¢ 13]

[1, 13)

{ 1, 14])
TOINF[6 14])

{ 1, 14)
TOINF (6 14)]

[1, 14}

(i, 15)
TOINF {6 15]

{ 1, 15] :
TOINF[6 15]

{ 1, 15]

{ 1, 16}

TOINF (6 16]

{ 1, 16] :
TOINF([6 16]
[1, 16)

{ i, 17)

TOINF (6 17)

{ 1, 17)
TOINF (6 17)

[1, 17)
(1, 18) :
TOINF [6 18]

(1, 18]

[1, 18]
(1, 19]

TOINF (6 19]

[1, 19] :
TOINF (6 19]

[1, 19])

[1, 20]

[1, 20} :
TOINF[6 20]

[1, 20}

(1, 21}
TOINF (6 21]

[1, 211

[1, 21}

(1, 22)
TOINF (6 22])

[1, 22)

[1, 22}

[1, 23]

{ 1, 23]

NP (196)
55(200)

S(210)

NP (255)
SS(246)

5(256)

NP(301)
55(235)

S(245)

NP (290)
SS(309)

S(319)

NP (364)
S$S5(279)

5(289)

NP (334)
55(356)

S5(366)

NP(411)
SS(447)

S(457)

NP (502)
SS(389)

S(372)
NP (444)
55(381)

5(391)

NP (436)
NP (476)
55(421)

5(425)
55(426)

S(409)
NP (481)
55(448)

5(431)
NP(503)
NP (598)

55(543)

- {17854} -> NPL[1 3]
-{26857}-> NPL[1

-{ 4587}-> NPL[1

- {17854} -> NPL[1 3]
- {26857} -> NPL[1

-{ 4587}-> NPL(1

-{17854}-> NPL(1 3]
- {26857} -> NPL{1

-{ 4587}-> NPL[1

-{17854}-> NPL[1 3]
- {26857} -> NPL[1

-{ 4587}-> NPL[1

- {17854} -> NPL[1 3]
- {26857} -> NPL[1

-{ 4587}-> NPL[1

-{17854}-> NPL[1 3]
-{26857}-> NPL[1

-{ 4587}-> NPL([1

- {17854} -> NPL[1 3]
- {26857} -> NPL[1

-{ 4587}-> NPL[1

-{17854)}-> NPL[1 3]
-{26857}-> NPL[1

-{ 3010}-> SS(1 15]
-{17854} -> NPL[1 3]
- {26857} -> NPL{1

-{ 4587} -> NPL([1

- {17854} -> NPL([1 3]
- {17854} -> NPL[1 3]
- {26857} -> NPL(1

-{ 3010} -> ss{1 15]
-{26857}-> NPL(1

-{ 3010} -> ss{1 15)
-{17854} -> NPL[1 3}
-{26857}-> NPL[1

-{ 3010}-> Ss(1 15]
-{17854}-> NPL[1 3]
-{17854}-> NPL(1 3]

-{26857}-> NPLI1

106

SS ({3 10]
3] MD(3

3] MD[3

Ss([3 11]
3] MD([3

3] MD(3

5S([3 12]
3] MD[3

3] MD(3

SS[3 13}
3] MD[3

3] MD(3

SS{3 14]
3] MD[3

3] MD[3

SS (3 15])
3) MD[3

3] MD{3

SS(3 16]
3] MD[3

3] MD[3

SS[3 17]
3] MD[3

, (15 16]
SS ({3 18]
3] MDI[3

3] MD[3

Ss{3 19)
SS(3 20]
3] MDI[3

., [15 16]
3] MD(3

. [15 16)
SS(3 21]
3] MD(3

, (15 186]
SS([3 22)
SS{3 23]
3] MD([3

4] VB[4 5] VBN[5 6]

4) VB[4 5] VBN[5 6]

4} VB[4 5] VBN(5 6]

4) VB[4 5] VBN[5 6]

4] VB[4 5] VBN[5 6]

4] VB[4 5] VBN[5 6]

4] VB[4 5] VBN[S5 6]

4] VB[4 5] VBNI[5 6]

4] VB[4 5] VBN[5 6]

4] VB[4 5] VBNI([5 6]

4] VB[4 5] VBN(5 6]

4] VB[4 5] VBN[5 6]

4] VB[4 5]} VBNI[5 6]

4] VB[4 5] VBN[5 6]

4] VB[4 5] VBN([5 6]

CC(16 17] sS([17 18]
4] VB[4 5] VBN[5 6]
4] VB[4 5] VBNI[5 6]
4] VB[4 5] VBN([5 6]

CcCl1l6 17)
4] VB[4 5]

SS (17 20)
VBN (5 6]

CC(16 17) sS{17 21]

4] VB[4 5] VBN[5 6]

CC(16 17] sS([17 22]

4) VB[4 5] VBNI[5 6]

TOINF {6 23]

[1, 23]

[1, 24]

{ 1, 24) :
TOINF {6 24]

[1, 24]

[1, 25]

[1, 25) :
TOINF (6 25]

[1, 25]

[1, 26]

[1, 26] :
TOINF [6 26]

[1, 26]

[1, 27]

[1, 27)
TOINF [6 27]

[1, 27)

[1, 28]

[1, 28] :
TOINF [6 28]

[1, 28]

[1, 29]

[1, 29]

[1, 29]

5(529)
NP (56.)
SS(506)

5(492)
NP (598)
55(543)

5(529)
NP (568)
5S5(513)

5(499)
NP (630)
55(575)

S(560)
NP (604)
S5(549)

S(535)
55(649)
5(632)
NP(716)

-{ 3010} -> SS[1 15]
- {17854} -> NPL[1 3]
- {26857} -> NPL(1

-{ 3010} -> SS[1 15]
-{17854}-> NPL[1 3}
- {26857} -> NPL{1

-{ 3010}-> sSs(1 15]
- {17854} -> NPL[1 3]
- {26857} -> NPL([1

-{ 3010} -> Ss[1 15]
- {17854} -> NPL[1 3]
-{26857}-> NPL[1

-{ 3010} -> 8S{1 15]
-{17854}-> NPL(1 3]
- {26857} -> NPL[1

-{ 3010}-> SS[1 15]
- {25218} -> SS[1 15]
-{ 3010}-> SS[1 15]
-{17827}-> SS[1 15]

107

, [15 16]
SS([3 24]
3] MD([3

. [15 16]
Ss([3 25]
3] MDI[3

. (15 16)
SS(3 26]
3] MDI[3

. [15 16]
Ss[3 27]
3] MD(3

, [15 16]
Ss (3 28]}
3] MDI[3

. [15 16]
, [15 16]
., [15 16]
. [15 16]

CC[16 17] s5([17 23]
4] vB[{4 5] VBN[S5 6]
CC[16 17] sSS[17 24)
4] VB[4 5] VBN[5 6]
CC[16 17] s85[17 25]
4] VB[4 5] VBN[5 6]
CC[16 17] sS([17 26]
4] VB[4 5] VBN[5 6]
CC[16 17) SS([17 27]
4] VB[4 5] VBN[5 6]
CC[16 17] Ss[17 28]
CC[16 17] SS[17 29]

CCl6 17) SS(17 29]
CC[16 17) NP[17 29]

Appendix D

D Apple Pie Parser Nicknames

WU d Wi

S
ADJP
ADJP-ADV
ADJP-CLR
ADJP-HLN
ADJP-LOC
ADJP - MNR
ADJP- PRD
ADJP-PRD-TPC
ADJP-SBJ
ADJP-TMP
ADJP-TPC
ADJP-TPC-PRD
ADJP-TTL
ADVP
ADVP-CLR
ADVP-CLR-MNR
ADVP-CLR-TPC
ADVP-DIR
ADVP-DIR-CLR
ADVP-DIR-TPC
ADVP-EXT
ADVP-HLN
ADVP-LOC
ADVP-LOC-CLKk

ADVP-LOC-CLR-

ADVP-LOC-PRD

ADVP-LOC- PRD-

ADVP-LOC-TMP
ADVP-LOC-TPC

ADVP-LOC-TPC-

ADVP-MNR
ADVP-MNR-CLR
ADVP-MNR-THMP
ADVP-MNR-TPC
ADVP- PRD
ADVP-PRD-LOC

ADVE-PRD-LOC-

ADVP- PRD- TMP
ADVP-PRD-TPC
ADVP- PRP
ADVP- PUT
ADVP-PUT-TPC
ADVP-TMP
ADVP-TMP-CLR
ADVP-TMP-CLP
ADVP-TMP- PRD
ADVP-TMP-TPC
ADVP-TPC

TPC

TPC

PRD

TPC

-TPC

ADVP-TPC-PRD
ADVP| PRT
CONJP

FRAG
FRAG-ADV
FRAG-HLN
FRAG- PRD
FRAG-TPC
FRAG-TTL
FRAG-TTL-SBJ
INTJ
INTJ-CLR
INTJ-HLN
LST

NAC
NAC-LOC
NAC - TMP
NAC-TTL

NP

NP-ADV
NP - BNF
NP-CLR
NP-CLR-LOC
NP-CLR-TMP
NP-DIR
NP-EXT
NP-HLN

NP- LGS

NP- LOC
NP-LOC-CLR
NP-LOC-HLN
NP-LOC- PRD

NP-LOC-PRD-TPC
NP-LOC-TPC-PRD

NP-MNR
NP-MNR-CLR
NP - PRD
NP-PRD-TPC
NP-PRD-TTL
NP-SBJ
NP-SBJ-TTL
NP-TMP
NP-TMP-CLR
NP-TMP-HLN
NP-THMP- PRD
NP-TMP-TPC
NP-TPC
NP-TTL
NP-TTL- PRD

108

99 NP-TTL-SBJ

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

NP-TTL-TPC
NP-VOC

PP-BNF
PP-CLR
PP-CLR-LOC
PP-CLR-TMP
PP-CLR-TPC
PP-DIR
PP-DIR-CLR
PP-DIR-PRD
PP-DTV
PP-EXT
PP-HLN
PP-LGS
PP-LOC
PP-LOC-CLR

PP-LOC-CLR-TPC

PP-LOC-HLN
PP-LOC-MNR
PP-LOC-PRD

PP-LOC-PRD-TPC

PP-LOC-TPC

PP-LOC-TPC- PRD

PP-MNR
PP-MNR-CLR
PP-MNR- PRD
PP - NOM
PP- PRD
PP-PRD-LOC

PP-PRD-LOC-TPC

PP-PRD-TPC
PP-PRP
PP-PRP-CLR
PP-PRP-PRD
PP-PUT
PP-SBJ
PP-TMP
PP-TMP-CLR
PP-TMP- PRD
PP-TMP-TPC
PP-TPC
PP-TPC-CLR

PP-TPC-LOC- PRD

PP-TPC- PRD
PP-TTL

148
149
150
151
152
153
154
155

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

PP-TTL- PRD
PRN

PRT

PRT|ADVF

QP

RRC

S-ADV

S-CLF
S-CLF-TPC
S-CLR
S-CLR-ADV
S-HLN

S-LOC

S-MNR
S-MNR-CLR
S-NOM

S-NOM- LGS
S-NOM- PRD
S-NOM-SBJ
S-PRD
S-PRD-TPC
S-PRP
S-PRP-CLR
S-PRP-PRD
S-PRP-TPC
S-SBJ

S-TMP
S-TMP-TPC
S-TPC
S-TPC-TMP
S-TTL
S-TTL-PRD
S-TTL-SBJ
SBAR
SBAR-ADV
SBAR-ADV-TPC
SBAR-CLR
SBAR-DIR
SBAR-DIR-TPC
SBAR-HLN
SBAR- LOC
SBAR-LOC-CLR
SBAR-LOC- PRD
SBAR-MNR
SBAR-MNR- PRD
SBAR - NOM
SBAR-NOM- LGS
SBAR-NOM- PRD
SBAR-NOM- SBJ

271

410

SBAR-NOM-TPC
SBAR- PRD
SBAR-PRD-TPC
SBAR- PRP
SBAR- PRP-PRD
SBAR- PUT
SBAR-SBJ
SBAR-TMP
SBAR-TMP-CLR
SBAR-TMF- PRD
SBAR-TPC
SBAR-TTL
SBARQ
SBARQ-HLN
SBARQ - NOM
SBARQ- PRD
SBARQ-TPC
SBARQ-TTL
SINV
SINV-ADV
SINV-HLN
SINV-TPC
SINV-TTL

SQ

SQ-PRD
SQ-TPC
SQ-TTL

ucp

Ucp-ADV
UCP-CLR
UCP-DIR
UCP-EXT
UCP-HLN
UCP-LOC
UcCPp-LOC-CLR
UCP-LOC- PRD
UCP-MNR
uce-PRD
UCP-PRD-LOC
ucp- PRP
ucp-T™MP
UCP-TPC

VP

VP-TPC
VP-TTL
WHADJP
WHADVP
WHADVP - TMP
WHNP

WHPP

X

X-ADV

X-CLF

X-DIR

X-EXT
X-HLN
X-PUT
X-TMP
X-TTL

AUX

NEG

SS

NPL

TOINF

#

s.

-LRB-
-RRB-

*SYM

@SNC
@DLQ
@HAVE
@BE
@DLQ2

-s-
-E-

109

Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

Allen, James. Natural Language Understanding. The Bejamin/Cummings Publishing
Company, Inc, Redwood City, CA 1995.

Fromkin, Victoria and Rodman, Robert. An Introduction to Language. Ho' ., Rinehart
and Winston, Inc, Orlando, FL 32887.

Hutchins, John W. and Somers, Harold L. An Introduction to Machine Translation.

Academic Press Limited, San Diego, CA 1992.

Lee, Young-Suk, Weinstein, Clifford, Seneff, Stephanie, and Tummala, Dinesh. An
Application of Part-of-Speech Tagging to Robust Parsing in Machine Translation of
Telegraphic Messages Unpublished Manuscript. MIT Lincoln Laboratories, 1996.

Lee, Young-Suk. Automated English/Korean Translation for Enhanced Coalition

Communications. JAC Technical Seminar, MIT Lincoln Laboratories, March 1997.

Lee, Young-Suk. Project Report 2/25/97. MIT Lincoln Laboratories, 1997

Lee, Young-Suk, Weinstein, Clifford, Seneff, Stephanie, and Tummala, Dinesh.
Ambiguity Resolution for Machine Translation. Proceedings of the 35 Conference

of the Association of Computational Linguistics (ACL ‘97), 1997.

Sekine, Satoshi and Grishman, Ralph. A Corpus-based Probabilistic Grammar with
Only Two Non-terminals. Fourth International Workshop on Parsing Technology,

110

[9]

[10]

[11]

[12]

(13]

1915.

Sekine, Satoshi. Manual of Apple Pie Parser. New York University, NY 1996

Seneff, Stephanie. TINA: A Natural Language System for Spoken Language

Applications. Association for Computational Linguistics, 1992.

Tummala, Dinesh, Seneff, Stephanie, Paul, Douglas, Weinstein, Clifford, and Yang,
Dennis. CCLINC: System Architecture and Concept Demonstration of Speech-to-
Speech Translation for Limited-Domain Multilingual Applications. ARPA Spoken
Language Technology Workshop, 1995.

Weinstein, Clifford, Tummala, Dinesh, Lee, Young-Suk, and Seneff, Stephanie.
Automatic English-to-Korean Text Translation of Telegraphics Messages in a

Limited Domain. COLING ‘96. Copenhagen, Denmark 1996.
Weinstein, Clifford, Lee, Young-Suk, Seneff, Stephanie, and Tummala, Dinesh.

Presentation at CSTAR II Meeting: Automatic English/Korea Translation of

Telegraphics Messages in a Limited Domain. Kyoto, Japan 1996.

111

