
MIT Open Access Articles

A 6 mW, 5,000-Word Real-Time Speech
Recognizer Using WFST Models

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Price, Michael, James Glass, and Anantha P. Chandrakasan. “A 6 mW, 5,000-Word
Real-Time Speech Recognizer Using WFST Models.” IEEE Journal of Solid-State Circuits 50, no.
1 (January 2015): 102–112.

As Published: http://dx.doi.org/10.1109/JSSC.2014.2367818

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: http://hdl.handle.net/1721.1/102176

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/102176
http://creativecommons.org/licenses/by-nc-sa/4.0/

SUBMISSION TO IEEE JOURNAL OF SOLID-STATE CIRCUITS 1

A 6-mW, 5,000-word Real-time Speech Recognizer
using WFST Models

Michael Price, Student Member, IEEE, James Glass, Fellow, IEEE, and Anantha Chandrakasan, Fellow, IEEE

Abstract—We describe an IC that provides a local speech
recognition capability for any electronic device. We start with a
generic speech decoder architecture that is programmable with
industry-standard WFST and GMM speech models. Algorithm
and architectural enhancements are incorporated in order to
achieve real-time performance amid system-level constraints on
internal memory size and external memory bandwidth. A 2.5 ×
2.5 mm test chip implementing this architecture was fabricated
using a 65 nm process. The chip performs a 5,000 word
recognition task in real-time with 13.0% word error rate, 6.0 mW
core power consumption, and a search efficiency of approximately
16 nJ per hypothesis.

Index Terms—CMOS digital integrated circuits, speech recog-
nition, weighted finite-state transducers (WFST), Gaussian mix-
ture models (GMM), low-power electronics

I. INTRODUCTION

Speech recognition has applications in energy-constrained
devices that are not well served by existing software or
hardware decoders. This paper shows how modern speech
recognition techniques can be mapped to digital circuits, and
presents a test chip with design techniques that reduce power
consumption and memory bandwidth to levels appropriate for
embedded systems.

We envision cooperation and interchangeability between
cloud-based (software) and circuit-based (hardware) imple-
mentations of speech recognition. For Internet-connected de-
vices, cloud-based decoders can be provisioned to run in real-
time with decoding adding little to the latency of the network.
Hardware speech recognition becomes useful when the In-
ternet connection is slow or unreliable, when the overhead of
using a cloud-based decoder is prohibitive (e.g. wearable elec-
tronics with limited battery capacity), or for local operations
that do not require Internet capabilities (e.g. appliances and
industrial equipment). As hardware speech decoders improve,
client devices will be able to seamlessly transition between
cloud-based and local decoding.

Speech recognition is an area of active research. While use-
fully accurate algorithms and models for domain-constrained
tasks are well known, practical limitations have prevented the
widespread adoption of hardware recognizers:

• Fixed-function digital circuits cannot easily be repro-
grammed to keep up with developments in algorithms
and statistical modeling techniques.

• Circuits developed so far require complex external com-
ponents and interfaces to realize complete speech-to-text
decoding.

• The memory size and bandwidth requirements of speech
decoding (often similar to those of a general-purpose
computer) are excessive.

The remainder of this paper explores and addresses these
problems. We first discuss background and previous efforts
that lay the foundation for this work (section II) and a
circuit/system architecture (section III) for complete audio-
to-text speech recognition. Section IV describes architectural
enhancements that make real-time decoding feasible in a low-
power system. Section V presents and characterizes a 65 nm
test chip used to evaluate this architecture, and section VI
concludes.

II. BACKGROUND

Speech recognition technology evolved from dynamic time
warping (DTW) in the 1980s to hidden Markov models
(HMM) that are still used today [1]. The HMM is a graphical
model expressing a relationship between hidden variables xt
(representing the underlying word sequence) and observed
variables yt (representing the acoustic observations). The regu-
lar structure of connections in this graph (Markov property) is
exploited to allow approximate inference in linear time (Viterbi
algorithm), making statistical speech recognition tractable.

A. HMM Framework

Figure 1 shows the high-level architecture of a speech
recognition system. Training components are implemented in
software and decoding components are implemented on an
IC. The decoder includes a front-end which transforms audio
(typically 16-bit data at 16 kHz) into the feature representation
used by the models, and a search component which generates
hypotheses about the underlying speech production process.

The HMM framework requires modeling the dependencies
between variables, specifically the transition model p(xt+1|xt)
and the emission model p(yt|xt). The transition model in-
corporates information about the language, including its vo-
cabulary and grammatical constraints; the hidden states xt
are discrete variables. The emission model describes how
observations yt vary depending on the unobserved state xt; in
speech recognition, this is called the acoustic model. These ob-
servations of the speech signal are influenced by the speaker’s
vocal tract, the microphone, and the acoustic environment.

Properly accounting for multiple levels of knowledge (con-
text, pronunciation, and grammar) compounded the complexity
of early HMM decoders. The weighted finite-state transducer
(WFST) is a state machine representation that allows each
component to be described separately [2], [3] and then com-
posed into a single WFST encompassing the entire speech
process [4]. All possible transitions between states are ex-
pressed as weighted, labeled arcs. A WFST-based decoder can

SUBMISSION TO IEEE JOURNAL OF SOLID-STATE CIRCUITS 2

Speech
Signal

Feature
Vectors

Recognized
Words

ConstraintsApplying

Search
x1 x2 x3 x4

y1 y2 y3 y4

Transition model: WFST

Emission model: GMMRepresentation

Training Data

Acoustic
Models

Lexical
Models

Language
Models

Memory

Speech Recognition ASIC

0 1
<eps>:<eps>

2

<eps>:<eps>/-1.6094

3

<eps>-z+ih:ZERO/1.6094

4

<eps>-z+iy:ZERO/1.6094

5sil:<eps>/0.51074

6

z-ih+r:<eps>

7

z-iy+r:<eps>

8
#10000:<s>/1.0986

9
#10002:<sil>/1.0986

10
#10001:</s>/1.0986

11

ih-r+ow:<eps>

12
iy-r+ow:<eps>

<eps>:<eps>

<eps>:<eps>

<eps>:<eps> r-ow+<eps>:<eps>

r-ow+<eps>:<eps>

<eps>:<eps>

<eps>:<eps>

Waveform Spectrogram MFCCs
16-bit, 16 kHz

Speech Recognition Decoder ASIC

Fig. 1. High-level overview of speech recognition system. The speech recognition chip includes only decoding components (representation and search).
Software tools are used to train an HMM incorporating WFST and GMM models, which are stored in an external memory.

complete tasks of varying complexity in different domains and
languages by substituting the appropriate model parameters.

We use the Viterbi search algorithm, which maintains a
list of active states at each time step. The forward update
approximates the likelihood of all reachable states at the next
time step:

p(xt+1) =
∑
xt

p(xt) p(xt+1|xt) p(yt+1|xt+1)

≈ max
xt

p(xt) p(xt+1|xt) p(yt+1|xt+1)

The existing state likelihood p(xt) is retrieved from mem-
ory. The transition probability p(xt+1|xt) is the weight of
the WFST arc[s] leading from state xt to state xt+1. The
emission probability p(yt+1|xt+1) is an acoustic likelihood
specified by the acoustic model, typically a Gaussian mixture
(GMM). Rather than using a separate GMM for each state in
the WFST (of which there are usually millions), the states are
usually grouped into clusters (typically 1,000 to 10,000) by the
similarity of their sounds; all states in each cluster share one
GMM probability density [5]. Evaluating these probabilities
takes up the bulk of power and I/O for the chip and is the
main focus of our architectural enhancements.

B. Related Work

WFSTs are now commonplace in software speech decoders,
including commercial systems [6]. Perhaps due to long devel-
opment cycles, most of the hardware implementations realized
so far have used non-WFST software decoders as a starting
point.

ASICs for HMM-based speech recognition were reported
as early as 1991 [7], followed by power-conscious implemen-
tations intended for portable devices [8]. The “In Silico Vox”
project [9] created sophisticated hardware ports of Sphinx-
3, a well-established software framework. Between 2006 and
2010 this project developed several hardware decoders in both
single-FPGA and multi-FPGA implementations [10], [11],
[12], achieving 10x faster than real-time performance using
a Wall Street Journal (WSJ) dataset.

Digital circuits using WFSTs were presented in 2008 [13],
contributing an important observation that pre-processing the
WFST could eliminate the need to consider unlabeled arcs
recursively during each frame. Taking advantage of external
DRAM memory with 3.2 GB/s bandwidth, [14] illustrated
how to split the decoder’s active state list between internal
and external memory to achieve better accuracy with limited
internal SRAM.

More recent efforts have expanded decoder capabilities
for general-purpose transcription applications with a 60,000
word (or larger) vocabulary. For example, [15] proposed an
architecture for achieving much higher throughput (127x faster
than real-time) using an ASIC. Another effort [16], [17], [18]
bridged the gap between high-performance and low-power
applications, applying a series of optimizations to a Japanese-
language system called Julius in order to obtain just 54 mW
of power consumption and 82 MB/s of memory bandwidth
during real-time decoding.

This paper presents a working ASIC providing real-time
audio-to-text conversion on a single chip, with 6 mW core
power consumption on a 5,000-word speech decoding task.

SUBMISSION TO IEEE JOURNAL OF SOLID-STATE CIRCUITS 3

Front-end

WFSTGMM

External Memory

Snapshots

Search

Save raw data
for backtrace

Read model
parameters

Feature vectors

AudioADC

Microphone

16-bit
16 kHz

Fig. 2. High-level architecture of speech decoder.

III. BASE ARCHITECTURE

The high-level architecture of a hardware speech decoder is
shown in figure 2. First, a front-end circuit extracts feature
vectors from the audio stream. These feature vectors are
treated as observations by a Viterbi search circuit, which reads
model parameters from an external memory in order to update
its active state list. The feature vectors are buffered in a FIFO
so that the search module can accommodate varying workloads
at a constant clock frequency. At the end of an utterance,
the search circuit constructs a backtrace of the most likely
state sequence. In a hybrid hardware/software system, multiple
backtraces could be rescored using a more detailed language
model to improve accuracy. Control logic translates the state
sequence into words and handles communications with a host
device as well as the external memory.

There are two clock domains in this system. An external
clock between 20–100 MHz drives the decoder logic, and is
divided by 16 internally to drive the less demanding front-end
logic (as a simple energy-saving mechanism).

Our system was designed to accommodate publicly avail-
able WFST [19] and GMM [20] models trained on a Wall
Street Journal (WSJ; Nov. 1992) data set [21], using a bigram
language model with a 5,000 word vocabulary. The WFST has
2.9M states and 9.2M arcs, and the GMM has 10.2M parame-
ters (4,002 mixtures in 39 dimensions, with 32–64 components
per mixture). Both the WFST and GMM are programmable
and reside in an external memory. Larger vocabularies (up
to 65,535 words) could also be used, with language model
pruning to obtain the desired WFST size. In this work, both
the WFST and GMM models are speaker-independent.

We now describe the major components of the architecture
(front-end and search) in detail.

A. Front-end (feature extraction)
Speech audio signals are sparse in the sense that time-

domain sampling captures redundant information. We use mel-
frequency cepstral coefficients (MFCCs) to concisely repre-
sent relevant characteristics of the signal. The MFCCs’ low
dimensionality simplifies classification, and channel effects
(convolution) are additive in the cepstral domain [22]. Several
standalone feature extraction devices have been reported in
the literature, including DSPs, FPGAs, fixed-function digital
circuits [23], and low-power analog front-ends [24]. The front-
end could be used to provide features to an external (e.g.
cloud-based) decoder or to the on-chip decoder.

MFCCs are derived from an audio timeseries via a chain of
conventional signal processing blocks including an FFT, mel-
scale bandpass filter bank, and DCT. Our front-end, shown
in figure 3, emulates the behavior of the commonly used
HCopy utility from HTK [5]. The audio is split into a series
of overlapping frames 25 ms long with a 10 ms pitch. In
addition to computing 12 cepstral coefficients and the log
power for each frame, we extract first- and second-order time
differences and concatenate them into a 39-dimensional feature
vector at 16-bit resolution. Cepstral mean normalization is
approximated by subtracting a 10-second moving average from
the feature vectors.

Architectural optimizations shown at right in figure 3 re-
duced the front-end’s circuit area and power consumption.
The FFT exploits the real-valued nature of the input signal
to operate on half as many points [25], and the bandpass filter
bank employs two multipliers which are reused across the 26
bands. The circuit has an area of 51.8k gates (plus 107 kb of
SRAM and 66 kb SROM) and requires a clock speed of at
least 625 kHz to process a 16 kHz waveform in real-time.

B. Viterbi search

Viterbi search begins with an empty hypothesis for the
utterance text and incorporates a stream of information from
the feature vectors to develop a set of active hypotheses,
represented by states in the HMM [26]. Each of these hypothe-
ses is modeled using the WFST and GMM; if its likelihood
is sufficiently high, it will be saved. Figure 4 shows the
architecture of this subsystem.

The forward pass of Viterbi search propagates a set of
hypotheses forward in time, from the active state list of frame t
to that of frame t+1. We represent this operation as a pipeline
with the following stages, corresponding to blocks in figure 4.

1) Hypothesis fetch: Each hypothesis is read from the
active state list for the current frame (frame t). The active
state list is implemented as a hash table in SRAM with
open addressing and collisions resolved by chaining [27]. We
store accepted states for the next frame in a separate SRAM
and swap the two SRAMs using multiplexers at the end of
each frame. In these hash tables, the key is a unique state
ID (the memory address of the state in the WFST model)
and the value is a structure describing the state. Hash table
operations become slower as more states are stored (increasing
the number of collisions), but this latency is masked by the
much longer time required by WFST and GMM operations
that access external memory. To reduce the need for memory
accesses (which require additional logic and create pipeline
stalls), arc labels and other metadata are carried through the
pipeline along with state information.

2) Arc fetch: Each state ID is an index into the WFST
model, from which we can retrieve the parameters of all
outgoing arcs. These include all of the information (except
a final score) that will be stored in the active state list if the
hypothesis is accepted.

While this operation requires far less memory bandwidth
than fetching GMM parameters, the arcs retrieved during a
typical frame are distributed sparsely across a large memory

SUBMISSION TO IEEE JOURNAL OF SOLID-STATE CIRCUITS 4

Audio
16-bit
16 kHz

Feature vectors

Window

RAM

RAM

R
O

MFFT

DCT

log(x)

Bandpass

ROM

ROM

filter bank

x(t)

ROM

In

Out61

Out62

Out63

Out6N

Band61

Band62

Band63

Band6N

Out61

Out62

Out63

Out6N

Active6Right6Band

Active6Left6Band
0

0

0

0

In

Triangle
Filter
Shape

N=266multipliers 26multipliers

FFT
N6=6256

Real-valued6512-point6FFT

D
e

ci
m

a
tio

n

W
a

rp
in

g

Real6Signal Complex6Signal Complex6Spectrum Conjugate-symmetric
Spectrum

Fig. 3. Block diagram of MFCC frontend (left); filter bank and FFT optimizations applied to reduce circuit area and power consumption (right).

Active state lists

Key Value

Key Value

SRAM 1

SRAM 2

Swap SRAMs
each frame

R
ea

d
W

rit
e

WFSTGMM

External Memory

Snapshots

Cache SRAM

GMM eval

Cache SRAM

Pruning

Beam width control

Arc fetch

Save

Discard

Search
Save raw data
for backtrace

Read model
parameters

Evaluate
likelihoods

Feature vectors

Fig. 4. Block diagram of Viterbi search module.

space: 193 MB for the 5,000 word WSJ model, versus 1 GB or
larger for state-of-the-art models. The memory access pattern
is sparse and depends on the hypotheses being searched.

3) GMM evaluation: The acoustic likelihood of the current
feature vector yt (given each hypothesis for the state xt) is ap-
proximated using a GMM. GMMs used in speech recognition
are typically limited to diagonal covariance matrices to reduce
the number of parameters, using more mixture components
to make up for the shortfall in modeling accuracy. Diagonal
GMMs can be efficiently evaluated in the log domain, using a
dot product for each component followed by a log-sum across

components [28]:

p(yt|xt) =

C∑
c=1

wc

|Σc|
1
2 (2π)

K
2

exp
[
− 1

2 (yt − µc)TΣ−1
c (yt − µc)

]
=

C∑
c=1

Ac exp

[
K∑
k=1

− 1
2

(yt,k − µc,k)2

σc,k

]

log p(yt|xt) = log

C∑
c=1

exp

[
gc

K∑
k=1

(yt,k − µc,k)2 1
σc,k

]
In this computation, mixture component c has parameters wc
(weight), µc (mean) and Σc (covariance); the dimensionality
of yt (and hence µc and Σc) is K. The values

gc = logAc − 1
2 = log

wc

|Σc|
1
2 (2π)

K
2

− 1
2

are pre-computed in software and stored along with the mean
variance parameters in external memory. The variances are
stored as inverses 1

σc,k
in order to use multiplication rather

than division.
We implemented the log sum operator log

∑
exp by repeat-

ing a binary log add operation in an area-efficient manner as
in [29]. Assuming that a > b (the inputs can be swapped as
necessary),

log(ea + eb) = log ea(1 + eb

ea)

= a+ log(1 + eb−a)

The scalar log(1+eb−a) operator, with a range of [0, log 2],
can then be implemented using a lookup table without appre-
ciable loss of accuracy.

The speed of GMM evaluation is limited by the rate at
which parameters can be fetched from memory. Section IV-D
presents a parameter compression approach to reduce the
memory bandwidth demands at some expense in accuracy.

SUBMISSION TO IEEE JOURNAL OF SOLID-STATE CIRCUITS 5

4) Pruning and storage: The state space of a Viterbi search
grows exponentially unless a beam or histogram method is
used to prune unlikely hypotheses from being stored and
considered. A beam pruning stage tests each hypothesis against
a threshold (relative to the highest likelihood encountered on
the previous frame). Only hypotheses that pass the test are
stored into the active state list for frame t + 1. Once all
hypotheses for a given frame have been processed, a snapshot
of the active state list is saved to the external memory.

C. Control

A control module accepts commands via a bytewise host
interface (UART or USB) to actuate the front-end, search,
and modeling components. These commands can program
models into external memory, send audio data to the front-
end, send feature data directly to the search system, and adjust
configuration parameters. The chip is also instrumented with
registers that collect a variety of statistics at the per-frame
and per-utterance level. The statistics include the number of
active states, number of WFST states expanded, and amounts
of memory access required for WFST and GMM parameters.
The host can be a portable or embedded device since its
computational demands are trivial.

IV. SEARCH ARCHITECTURE ENHANCEMENTS

Using a software prototyping environment, we determined
that the original WFST/GMM architecture would require large
on-chip memories and place great demands on the external
memory, resulting in system power consumption well over 100
mW. An external DRAM configured to provide the necessary
bandwidth of nearly 3 GB/s would dissipate most of this power
[30].

Due to the large storage requirements of the WFST model,
read-heavy workload, and low duty cycle of portable appli-
cations, it is desirable to use non-volatile memory such as
NAND flash. Flash memory has limited bandwidth compared
to SDRAM, and also has a significant out-of-order access
penalty, on the order of 20–40 µs per 2–8 kB page [31].
The limitations of flash memory informed the architectural
enhancements described in this section. These changes im-
prove decoding performance with limited on-chip memory,
reduce memory bandwidth (improving decoding speed and I/O
power), and make memory access more sequential.

A. Beam width control

When beam pruning is used in Viterbi search, the number
of active states fluctuates over time. There are more possible
states in between words, when little acoustic information is
available to constrain the branching of the language model.

Especially in large-vocabulary tasks, this fluctuation can
quickly encounter on-chip memory limitations. If the beam
width (pruning threshold) were constant, it would have to
be set fairly low to avoid overflowing the active state list,
and desirable hypotheses would be rejected. [14] demonstrates
that the overflow could be stored in off-chip DRAM, but the
bandwidth required is prohibitive in our application.

Naccepted

Nprocessed

Ntarget

State ID

Score

Other data

Incoming arc

(Beam width)

Accept

New frame

Feedback gain

(Accepted arcs stored
in active state list)

Highest score in current frame

Error

A > B

Yes

No

A

B

max(A, B)

Reject

New arc

New arc

Pruning threshold

Nexpected

Fig. 5. Block diagram of feedback-based beam width controller.

0 100 200 300 400 500 600 700 800 900
0

500

1000

1500

2000

2500

3000

3500

4000
ASL size

0

50

100

150

200

Max BW = 110, Gain = 0

Beam width

0 100 200 300 400 500 600 700 800 900
0

500

1000

1500

2000

2500

3000

3500

4000
ASL size

0

50

100

150

200

Max BW = 130, Gain = 8

Beam width

0 100 200 300 400 500 600 700 800 900
Frame index

0

500

1000

1500

2000

2500

3000

3500

4000
ASL size

0

50

100

150

200

Max BW = 180, Gain = 32

Beam width

Time (frame index)

Timeseries of ASL size

0 500 1000 1500 2000 2500 3000 3500 4000

=865
=920

Feedback Gain = 0

0 500 1000 1500 2000 2500 3000 3500 4000

=957
=450

Feedback Gain = 8

0 500 1000 1500 2000 2500 3000 3500 4000

=1451

¹
¾

=251

Feedback Gain = 32

¹
¾

Overflow

¹
¾

Ntarget

Histograms of ASL size

Number of active states

Fig. 6. Timeseries of beam width and active state list size (left) and histogram
of active state list size (right) under varying levels of feedback.

By adopting a feedback scheme shown in figure 5, we are
able to obtain a 13.0% word error rate (WER) with an active
state list capacity of only 4096. Our data structure for a WFST
arc includes counts of outgoing arcs from its destination state.
By accumulating these counts, the decoder knows how many
arcs (hypotheses) it expects to consider in the next frame; we
call this Nexpected. The feedback logic (shown in the lower
half of the figure) adjusts the beam width by comparing the
proportion Naccepted

Nprocessed
of arcs accepted so far to the proportion

Ntarget

Nexpected
needed for the desired active state list size of Ntarget. A

gain parameter controls how quickly these changes take effect,
and the beam width can also be clamped within a specified
range. Registers store the highest score in the previous frame,
from which the beam width is subtracted in order to test the
incoming arc score and make an accept/reject decision.

Figure 6 shows how the number of active states varies over
time with three different levels of beam width feedback. The
best performance is obtained with a moderate amount of feed-

SUBMISSION TO IEEE JOURNAL OF SOLID-STATE CIRCUITS 6

Yes

No

Read request Read data

Write dataRead request

Read data

Memory

Not Found

Found

Isolated Arc?

Data Lookup

Data

0

1

2

(Dest State ID, Arc Weight, Input Label, ...)

...

...

Arc Request

State ID

Arc Index

Hash Table Lookup

Key Value

(State ID, Arc Index) Data Address

Response

Dest State ID

Arc Weight

Input Label

...

Fig. 7. Block diagram of WFST arc cache.

back (middle plots), which compresses but does not eliminate
the natural variation occurring throughout the utterance.

B. WFST arc caching

Google has shown that the set of active states changes
slowly during decoding, with an average of just 8,000 new
states being explored per second in a voice search application
[32]. If we could cache all WFST parameters fetched so far
for an utterance, then arc fetch would require little memory
bandwidth: we would only need to look up arcs reaching pre-
viously unseen states. There is not enough on-chip memory to
do this within a reasonable core area, but we can still achieve
bandwidth and memory latency reductions by prioritizing the
most valuable WFST parameters to cache.

WFST arc fetch and caching operations are implemented
as shown in figure 7. During each Viterbi update, we need to
retrieve information about arcs leaving all of the active states.
Some of these active states are located close together in the
WFST model memory; we can encourage this behavior by
ordering the WFST states according to a breadth-first search.
We cache only “isolated” arcs that are not on the same page
as others being evaluated in each frame, since these incur
the most amortized latency. Furthermore, different states have
different numbers of outgoing arcs; most have one or two,
but some have thousands. To get the most out of our limited
cache, we only consider states that have 0, 1, or 2 outgoing
arcs.

The data table SRAM contains one entry for each arc.
The pseudo-least-recently-used (PLRU) algorithm [33] was
selected based on a comparison of hit rates between different
cache eviction algorithms under typical use. The PLRU tree
is fully associative (4096-way), and we use a hash table to
map from keys to data addresses. This cache hit rate is 30.4%
and WFST memory bandwidth is reduced from 8.01 MB/s
to 5.73 MB/s; hit rates are limited by the large working set.
The average number of distinct (non-sequential) 2 kB page
accesses is reduced by a factor of 3, from 554 to 180 per
frame, as shown in figure 8. This is sufficient for real-time

0 500 1000 1500 2000
Number of distinct page accesses per frame

0

20

40

60

80

100

120

140

Fr
e
q
u
e
n
cy

Effect of arc fetch cache

Without AF cache
With AF cache

Fig. 8. Histogram of distinct page accesses per frame with and without WFST
arc caching.

Request

Response

parameter indices

Senone ID

Likelihood Score
accumulated score

+

MAC

MAC

ScoreSenone ID

Cache SRAM +
log add

Feature Vector SRAM

Port 1 Port 2

P
or

t 1
P

or
t 2

Quantization Tables

Mean
SRAM

Variance
SRAM

P
or

t 1
P

or
t 2

x2

x2

Dispatch

Fetch mixture

Cache hit
avoids GMM
evaluation

Off-chip memory

in pairs

Inverse

Fig. 9. Block diagram of GMM evaluator incorporating caching and parameter
quantization.

operation when the WFST is read from SLC NAND flash
memory. The total area of this block is 73.1k gates, plus 966
kb of SRAM.

C. GMM score caching

While the GMM acoustic model occupies less memory than
the WFST, reads of GMM parameters are highly sequential
and make up the bulk of data volume in any speech decoding
task. We now present two architectural enhancements which
together reduce the bandwidth needed for GMM parameters
by a factor of 55.

A typical decoding workload in our tests required 2,900
GMM evaluations per frame, each with 32 mixture com-
ponents. In a 39-dimensional feature space, using single-
precision parameters, this would require 2.9 GB/s of memory
bandwidth. However, the same GMM density is often evalu-
ated multiple times per frame (for different arcs with the same
input label). By caching each distinct GMM log-likelihood and
adding the weight and previous likelihood of each candidate
arc, we avoid repeated calculations (and parameter reads) with
a hit rate of 86%.

SUBMISSION TO IEEE JOURNAL OF SOLID-STATE CIRCUITS 7

M1

M2

M3

M4

M5

M6

M7

M8

L1

L2

Logic regions

L1:bDecoder
L2:bFrontend

Memories

M1:bActivebstateblistb1
M2:bActivebstateblistb2
M3:bGMMbquantizationbtables
bbbbbbbandbcache
M4:bWFSTbcachebdatabtable
M5:bFeaturebvectorbbuffer
M6:bWFSTbcachebhashbtable
M7:bFeaturebandbaudioblog
M8:bFrontendbandbFFT
bbbbbbbscratchbmemoriesb

Fig. 10. Annotated die photo of speech decoding chip.

Specification Value
Process TSMC 65nm
Die size 2.5 x 2.5 mm
Package 128-pin LQFP

Logic gates 340k (NAND2 equiv.)
SRAM 2.4 Mb

Supply voltage 0.8 – 1.2 V
Power consumption 5 – 23 mW (core)

Clock frequency 40 – 110 MHz
WFST states 2.9M

GMMs 4k x 32 Gaussians

Fig. 11. Summary of test chip specifications.

D. GMM parameter quantization

Compressing the GMM model itself allows a further reduc-
tion in memory bandwidth into the sub-100 MB/s range that
is feasible with flash memory. With an appropriate choice of
quantizer one can eliminate many bits of resolution from the
mean and variance values while incurring just 1–2% higher
WER [34]. We use 32 quantization levels (5 bits) for the
mean and 8 levels (3 bits) for the inverse variance; these sizes
were identified by [34] as a good trade-off between accuracy
and bandwidth. Our feature representation is not normalized
or whitened, so the parameters have very different empirical
distributions in different dimensions; thus, we need a different
quantizer for each of the 39 dimensions.

Figure 9 demonstrates how caching and quantization are
incorporated into the GMM evaluator. A dual-port SRAM
totaling 41 kb is used to store the quantization tables at 16-
bit resolution; these are loaded from the external memory at
startup. The two ports of the SRAM feed two arithmetic units
in parallel, such that evaluating one 39-dimensional mixture
component requires 20 clock cycles. Parallel evaluation would
increase throughput but require corresponding increases in the
width of the external memory bus.

Parameter quantization results in a further 7.2x memory
bandwidth reduction; typical GMM parameter bandwidth with
both caching and quantization is 53.7 MB/s. The GMM
evaluator has an area of 37.7k gates, plus 143 kb of SRAM
(cache and quantization tables) and a 64 kb SROM for the log
adder.

V. RESULTS

In order to evaluate this architecture, we designed a digital
IC using TSMC’s 65 nm low power logic process. The die

photo and specifications of this chip are shown in figures 10
and 11. The chip’s generic host and memory interfaces are
translated by an FPGA, and supporting board-level circuitry
allows us to control and monitor its power supplies (figure 12).
This system recognizes real-time audio input from an electret
microphone; however, in the following tests we supplied audio
samples digitally to ensure repeatability and consistency with
the models.

We verified correct operation of the entire system at a
variety of operating voltages and clock frequencies. Figure
13 shows the maximum working frequency of the system as
a function of the chip’s core supply voltage. Scaling above
100 MHz and 0.9 V is limited by the FPGA logic and
interfaces. Characteristics of the SRAMs (which use high-
density 6T bit cells) prohibit operation at very low voltages.
Alternative SRAM designs such as [35] could allow lower-
voltage operation in exchange for increased chip area.

As with software decoders, the beam width can be used to
trade between decoding speed and accuracy. Figure 14 shows
the decoding time and WER across the 40-minute speaker-
independent WSJ dataset with a variety of beam width set-
tings; figure 15 shows how the workload of GMM and WFST
model evaluations is affected by beam width. By employing
voltage/frequency scaling, we can also trade between speed
and power consumption, or accuracy and power consumption.

Real-time performance at the best word error rate of 13.0%
was obtained at a clock speed of 50 MHz, allowing the supply
voltage to be reduced to 0.85 V for both the logic and the
embedded SRAMs. Under these conditions the average core
power consumption (including both logic and SRAMs) was
6.0 mW while decoding with a 100% duty cycle. The front-
end (feature extraction) circuit consumed an average of 110
µW. External clock gating results in an idle (leakage) power
of 42 µW; clock gating can be activated between utterances
to reduce power consumption at lower duty cycles.

Figures 16 and 17 show measurements collected from the
chip while decoding a test utterance, “bids totaling five hun-
dred twenty-five million dollars were submitted.” The memory
bandwidth required during each frame is shown in figure
16; there is significant variation due to the changing set of
hypotheses over time. More than 85% of the bandwidth is
used reading GMM parameters (with caching and quantization
enabled). Memory writes due to state snapshots average 1–
2 MB/s and are sequential within each utterance, allowing
hundreds of hours of endurance when using a large circular
buffer in flash memory. Memory bandwidth tracks overall
decoding time very closely because nearly all on-chip compu-
tation involves parameters fetched from memory.

A timeseries of core logic and memory power consumption
is shown in figure 17; note that the horizontal axis of this graph
is clock time, rather than utterance time as in figure 16. The
current draw is essentially constant except when the decoder
has processed all available feature vectors and is waiting for
further input. Memory is responsible for 77% of the core
power consumption when operated at the same voltage as
the logic. This is important because conventional high-density
memory designs do not scale to lower voltages as well as
standard-cell logic.

SUBMISSION TO IEEE JOURNAL OF SOLID-STATE CIRCUITS 8

UART UART

F
M

C
 c

on
ne

ct
or

FPGADDR3

ASIC

Host computer

KC705 FPGA board Custom test fixture

USB

FT232H
FIFO

Power
control/

monitoring
90

14

104

4

Fig. 12. Block diagram and photograph of test setup.

0.7 0.8 0.9 1.0 1.1
Core voltage (V)

0

20

40

60

80

100

120

140

160

Fr
e
q
u
e
n
cy

 (
M

H
z)

Max. working frequency and normalized energy

Frequency
0

5

10

15

20

25

30

35

40

N
o
rm

a
liz

e
d
 e

n
e
rg

y
 (

n
J/
h
y
p
o
th

e
si

s)

Energy

Fig. 13. Voltage/frequency scaling performance.

0.5 0.6 0.7 0.8 0.9 1.0
Decoding time (xRT)

10

15

20

25

30

35

40

W
o
rd

 e
rr

o
r

ra
te

 (
%

)

Accuracy vs. decoding time

Fig. 14. Accuracy vs. decoding time tradeoff at 50 MHz.

Power consumption is closely correlated with the number of
active states. Figure 18, a heat map of 13,530 decoding results
using a variety of different utterances and configurations,
shows the correlation between the energy per utterance and
the number of active states stored during the utterance. At
this operating point (0.9 V and 50 MHz), the coefficient of
correlation is 81 nJ per stored active state, or 16 nJ per
hypothesis (80% of hypotheses were pruned and not stored).

90 95 100 105 110 115 120 125 130
Beam width (arbitrary units)

0

100

200

300

400

500

600

700

800

900

T
h
o
u
sa

n
d
s

o
f

o
p
e
ra

ti
o
n
s

p
e
r

se
co

n
d

Computation demands

WFST arcs
WFST arcs (cached)
GMM evals
GMM evals (cached)

Fig. 15. Computational workload as a function of nominal beam width.

Fig. 16. Time-dependent breakdown of measured memory bandwidth require-
ments for an example utterance.

Fig. 17. Timeseries of core logic and memory current draw during an
utterance. The timescale differs from figure 16 since decoding is faster than
real-time.

SUBMISSION TO IEEE JOURNAL OF SOLID-STATE CIRCUITS 9

0 100 200 300 400 500 600 700 800
Thousands of total active states

0

10

20

30

40

50

60

70

E
n
e
rg

y
 c

o
n
su

m
e
d
 (

m
J)

Energy vs. total hypotheses

Fig. 18. Scatter plot of energy consumption and cumulative number of active
states.

VI. CONCLUSION

Computational problems such as speech recognition admit
a spectrum of system design approaches. While our research
has focused on the extreme low-power results that can be
obtained using ASICs, commercial systems may choose to use
other approaches including FPGA, GPU and DSP architectures
(or some combination, such as SoC hardware accelerators).
The architectural changes described above can also be applied
to other types of systems (including embedded software) if
memory bandwidth reductions are desired.

This work has demonstrated that general-purpose speech
recognition tasks can be performed in hardware with modest
core power (6.0 mW) and memory bandwidth (58 MB/s)
requirements. We presented an ASIC speech decoder that
uses industry-standard WFST models and performs end-to-end
recognition (audio in, text out). Compared to state-of-the-art
hardware speech decoders, we achieved an order of magnitude
lower core power consumption.

ACKNOWLEDGMENT

This work was funded by Quanta Computer (via the Qmulus
Project) and an Irwin and Joan Jacobs fellowship. The authors
would like to thank the TSMC University Shuttle Program for
providing chip fabrication; Xilinx for providing FPGA boards;
and Synopsys, Mentor Graphics, and Cadence for providing
CAD tools.

REFERENCES

[1] R. Lawrence, Fundamentals Of Speech Recognition. Pearson
Education, 2008. [Online]. Available: http://books.google.com/books?
id=4PQeabgwfX8C

[2] M. Mohri, “Weighted Finite-State Transducer Algorithms. An
Overview,” in Formal Languages and Applications. Springer, 2004,
pp. 551–563.

[3] M. Mohri, F. Pereira, and M. Riley, “Speech recognition with weighted
finite-state transducers,” in Springer Handbook on Speech Processing
and Speech Communication, 2008.

[4] C. Allauzen, M. Mohri, M. Riley, and B. Roark, “A generalized
construction of integrated speech recognition transducers,” in Acoustics,
Speech, and Signal Processing, 2004. Proceedings. (ICASSP ’04). IEEE
International Conference on, vol. 1, 2004, pp. I–761–4 vol.1.

[5] S. J. Young, “The HTK hidden Markov model toolkit: Design and
philosophy,” Cambridge University, Tech. Rep., 1994.

[6] M. Riley, A. Ljolje, D. Hindle, and F. Pereira, “The AT&T 60,000
word speech-to-text system,” in Fourth European Conference on Speech
Communication and Technology, 1995.

[7] A. Stolzle, S. Narayanaswamy, H. Murveit, J. Rabaey, and R. Brodersen,
“Integrated circuits for a real-time large-vocabulary continuous speech
recognition system,” Solid-State Circuits, IEEE Journal of, vol. 26, no. 1,
pp. 2 –11, jan 1991.

[8] A. Burstein, “Speech Recognition for Portable Multimedia Terminals,”
Ph.D. dissertation, University of California, Berkeley, CA, USA, 1996.

[9] E. C. Lin, K. Yu, R. A. Rutenbar, and T. Chen, “Moving Speech
Recognition from Software to Silicon: The In Silico Vox Project,” in
INTERSPEECH-2006, 2006.

[10] ——, “A 1000-word vocabulary, speaker-independent, continuous
live-mode speech recognizer implemented in a single FPGA,” in
Proceedings of the 2007 ACM/SIGDA 15th international symposium
on Field programmable gate arrays, ser. FPGA ’07. New York,
NY, USA: ACM, 2007, pp. 60–68. [Online]. Available: http:
//doi.acm.org/10.1145/1216919.1216928

[11] E. C. Lin and R. A. Rutenbar, “A multi-fpga 10x-real-time high-
speed search engine for a 5000-word vocabulary speech recognizer,”
in Proceedings of the ACM/SIGDA international symposium on
Field programmable gate arrays, ser. FPGA ’09. New York,
NY, USA: ACM, 2009, pp. 83–92. [Online]. Available: http:
//doi.acm.org/10.1145/1508128.1508141

[12] P. J. Bourke and R. A. Rutenbar, “A High-Performance Hardware
Speech Recognition System for Mobile Applications,” in Proceedings
of Semiconductor Research Corporation TECHCON, August 2005.

[13] J. Choi, K. You, and W. Sung, “An FPGA implementation of speech
recognition with weighted finite state transducers,” in Acoustics Speech
and Signal Processing (ICASSP), 2010 IEEE International Conference
on, march 2010, pp. 1602 –1605.

[14] Y. kyu Choi, K. You, J. Choi, and W. Sung, “A Real-Time FPGA-Based
20,000-Word Speech Recognizer With Optimized DRAM Access,” Cir-
cuits and Systems I: Regular Papers, IEEE Transactions on, vol. 57,
no. 8, pp. 2119 –2131, aug. 2010.

[15] J. Johnston and R. Rutenbar, “A High-Rate, Low-Power, ASIC Speech
Decoder Using Finite State Transducers,” in Application-Specific Sys-
tems, Architectures and Processors (ASAP), 2012 IEEE 23rd Interna-
tional Conference on, 2012, pp. 77–85.

[16] G. He, T. Sugahara, Y. Miyamoto, T. Fujinaga, H. Noguchi, S. Izumi,
H. Kawaguchi, and M. Yoshimoto, “A 40 nm 144 mW VLSI Processor
for Real-Time 60-kWord Continuous Speech Recognition,” Circuits and
Systems I: Regular Papers, IEEE Transactions on, vol. 59, no. 8, pp.
1656–1666, 2012.

[17] G. He, T. Sugahara, S. Izumi, H. Kawaguchi, and M. Yoshimoto, “A
40-nm 168-mW 2.4x-real-time VLSI processor for 60-kWord continuous
speech recognition,” in Custom Integrated Circuits Conference (CICC),
2012 IEEE, 2012, pp. 1–4.

[18] G. He, Y. Miyamoto, K. Matsuda, S. Izumi, H. Kawaguchi, and
M. Yoshimoto, “A 40-nm 54-mW 3x-real-time VLSI processor for 60-
kWord continuous speech recognition,” in Signal Processing Systems
(SiPS), 2013 IEEE Workshop on, Oct 2013, pp. 147–152.

[19] J. R. Novak, N. Minematsu, and K. Hirose, “Open Source WFST
tools for LVCSR cascade development,” in Proceedings of the 9th
International Workshop on Finite State Methods and Natural Language
Processing, July 2011, pp. 65–73.

[20] K. Vertanen, “Baseline WSJ Acoustic Models for HTK and Sphinx:
Training Recipes and Recognition Experiments,” http://www.keithv.com/
pub/baselinewsj, Cavendish Laboratory, University of Cambridge, Tech.
Rep., 2006.

[21] D. B. Paul and J. M. Baker, “The design for the Wall Street Journal-
based CSR corpus,” in Proceedings of the workshop on Speech and
Natural Language, ser. HLT ’91. Stroudsburg, PA, USA: Association
for Computational Linguistics, 1992, pp. 357–362. [Online]. Available:
http://dx.doi.org/10.3115/1075527.1075614

[22] S. Davis and P. Mermelstein, “Comparison of parametric representations
for monosyllabic word recognition in continuously spoken sentences,”
Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 28,
no. 4, pp. 357–366, Aug 1980.

[23] J.-C. Wang, J.-F. Wang, and Y.-S. Weng, “Chip design of mel frequency
cepstral coefficients for speech recognition,” in Acoustics, Speech, and
Signal Processing, 2000. ICASSP ’00. Proceedings. 2000 IEEE Inter-
national Conference on, vol. 6, 2000, pp. 3658–3661 vol.6.

[24] M. Baker, T.-T. Lu, C. Salthouse, J.-J. Sit, S. Zhak, and R. Sarpeshkar,
“A 16-channel analog VLSI processor for bionic ears and speech-
recognition front ends,” in Custom Integrated Circuits Conference, 2003.
Proceedings of the IEEE 2003, 2003, pp. 521–526.

SUBMISSION TO IEEE JOURNAL OF SOLID-STATE CIRCUITS 10

[25] A. Wang and A. Chandrakasan, “A 180-mV subthreshold FFT processor
using a minimum energy design methodology,” Solid-State Circuits,
IEEE Journal of, vol. 40, no. 1, pp. 310–319, 2005.

[26] A. Viterbi, “Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm,” Information Theory, IEEE Transactions
on, vol. 13, no. 2, pp. 260 –269, april 1967.

[27] G. Panneerselvam, G. Jullien, S. Bandyopadhyay, and W. Miller, “Re-
configurable systolic architectures for hashing,” in Databases, Parallel
Architectures and Their Applications,. PARBASE-90, International Con-
ference on, Mar 1990, pp. 543–.

[28] P. Cardinal, P. Dumouchel, G. Boulianne, and M. Comeau, “GPU
accelerated acoustic likelihood computations,” in INTERSPEECH, 2008,
pp. 964–967.

[29] S. J. Melnikoff and S. F. Quigley, “Implementing log-add algorithm in
hardware,” Electronics Letters, vol. 39, no. 12, pp. 939–940, 2003.

[30] “DDR3 SDRAM System-Power Calculator,” available online: http://
www.micron.com/products/support/power-calc.

[31] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi,
P. H. Siegel, and J. K. Wolf, “Characterizing flash memory: anomalies,
observations, and applications,” in Microarchitecture, 2009. MICRO-42.
42nd Annual IEEE/ACM International Symposium on. IEEE, 2009, pp.
24–33.

[32] C. Allauzen and M. Riley, “OpenFst: A General and Efficient Weighted
Finite-State Transducer Library. Part II: Applications,” in 2010 IEEE
Workshop on Spoken Language Technology, 2010, available online: http:
//www.openfst.org/twiki/pub/FST/FstSltTutorial/part2.pdf.

[33] Q. Wang, “WLRU Cache Replacement Algorithm,” Ph.D. dissertation,
University of Western Ontario, London, Ontario, Canada, 2006.

[34] I. L. Hetherington, “PocketSUMMIT: Small-Footprint Continuous
Speech Recognition,” in INTERSPEECH-2007, 2007, pp. 1465–1468.

[35] M. E. Sinangil, N. Verma, and A. P. Chandrakasan, “A reconfig-
urable 65nm SRAM achieving voltage scalability from 0.25–1.2 V and
performance scalability from 20kHz–200MHz,” in Solid-State Circuits
Conference, 2008. ESSCIRC 2008. 34th European. IEEE, 2008, pp.
282–285.

