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Science.

Abstract

This thesis describes a graphics system on which device and machine independent
graphics application programs may be developed. A high level language has been
extended to include a set of display management, graphics input, and graphics
output functions. Display management is accomplished through a window and
viewport facility. The display management functions divide the display screen into
several viewports, each of which is a virtual screen on which images are displayed.
The graphics input functions obtain inputs either synchronously or asynchronously
from graphics input devices. The graphics output functions can draw lines, fill
triangles, combine boxes, and display text on viewports. Since the basic graphics
input and output functions are graphics device independent, programs that use
those ftnctions to obtain input or to display images will be device independent and
hence transportable.

The graphics system is also transportable because only a small isolated module in
the graphics system is machine dependent or graphics device dependent. The rest of
the graphics system is written in a high level language. The machine dependent
module that interfaces the rest of the graphics system with a real machine and real
graphics devices is modelled after Western Digital's Pascal P-code interpreter. That
small interpreter module executes the machine and device independent instructions
that the graphics system compiler generates. Thus, one can move the graphics
system to a new machine easily since only the machine dependent module needs to
be implemented for each new machine or graphics device.

THESIS SUPERVISOR: Albert Vezza
TITLE: Senior Research Scientist.
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Chapter One

Introduction and Overview of the Graphics System

1.1 The DIGRAM System

This thesis describes a graphics system on which device and machine

independent graphics application programs may be developed. The application

programs devejoped in such a system are portable so one need not redevelop those

programs for each machine or display device on which they are expected to run.

Portability is important because many different computers with graphics devices

have become widely available with recent developments in the field of personal

computers. Developing portable graphics application programs in this graphics

system reduces the cost of transporting programs from one machine or display

device to another.

The graphics system itself is also relatively portable because the machine

dependent and graphics device dependent parts are isolated in a small interpreter

module and the rest of the graphics system is implemented in a high level language.

Our method of isolating the machine dependent parts of the system is modelled

after Western Digital's Pascal P-code interpreter. The interpreter interprets the

machine and device independent instructions that are generated by the graphics

system compiler. Thus, the graphics system can be easily moved to several other

machines by implementing only the interpreter module for each new machine or

graphics device.

The Device-Independent Graphics Manager (DIGRAM) system is a

portable graphics system on which portable graphics application programs can be
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developed. A high level language has been extended with a set of display

management, graphics input, and graphics output functions to create this graphics

system. Although the concepts developed in this thesis are applicable for any class

of display devices, the DIGRAM system has been specifically designed and

implemented for bit-map display devices in order to limit the effort to a manageable

size. This system has been implemented by extending the language MDL.

Application programs developed in the system has to be written in MDL. Most of

the concepts realized in the DIGRAM system will still be applicable when a similar

graphics system is implemented in another programming language, or for another

class of display devices.

The DIGRAM system has been designed to use bit-map display devices

efficiently. A basic bit-map display device refreshes its display screen periodically

from a bit-map display memory. The bit-map display memory is usually a

contiguous region of memory that stores the images that is displayed on the screen.

The device organizes the display screen as a rectangular array of points, called

pixels*. A pixel can have several level of brightness. If the pixel has only two levels

of brightness, the device stores the intensity of each pixel as a single bit in a bit-map

display memory. Though there are many different types of bit-map display devices,

all of them are very similar to the generic device described above.

A bit-map display device was chosen for several reasons. The graphics

system is a realization of a concept. As such, some engineering trade-offs have been

made to keep the realization manageable. One of these is restricting the realization

to display devices, like bit-map graphics display devices, that have some common

graphics capability. Every bit-map display device can test and change the intensity

*Pixels are sometimes called pels, which is short for picture elements
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of any pixel on the screen. Many bit-map display devices have other capabilities,

like the ability to display lines and solid areas. Since the graphics system can easily

simulate those other capabilities using these two capabilities, it can display a variety

of images on these devices. Moreover, the bit-map display screen refresh rate,

unlike some other display devices, is independent of the complexity of the displayed

image. Thus, a well designed bit-map display can display arbitrarily complex

images that are flicker-free. Finally, recent reductions in the cost of memory have

made bit-map display devices cheaper and more widely available.

The language chosen for the implementation of the DIGRAM system is

MDL (originally called "MUDDLE"). The language MDL1, 2 is derived from the

language LISP, and first appeared in the early 1970's in the MIT Laboratory for

Computer Science and the MIT Artificial Intelligence Laboratory. In 1979, a

project to redesign and reimplement the MDL language processor began. In that

project, the MDL interpreter, compiler, and environment were rewritten so that

they are all machine independent except for a small low level kernel. The aim of the

project was to allow MDL programs to move to a new machine quickly and easily.

The DIGRAM system is an extension of this effort to create portable software.

The language MDL was chosen because the goals of the Machine

Independent MDL (or MIM) project are compatible with the goals of the graphics

system. Moreover, a virtual machine instruction interpreter, and a compiler for this

virtual machine's instructions already exist for MDL. The language is also

interactive so debugging MDL programs is easy. In addition, several projects on

graphics have already been carried out in the language MDL:

- Gregory F. Pfister (one of the original builders of MDL) wrote a
doctoral thesis -- The Computer Control of Changing Pictures3 -- in
which he discussed the implementation of DALI, a sublanguage of
MDL, to provide a better control of graphics images in MDL.
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- Richard R. Shiffman later created the MUDDLE Interactive Graphics
System (or MIGS). MIGS ran on the Imlac graphics terminals at the
Programming Technology Division of the Laboratory for Computer
Science.

The graphics projects mentioned above have provided MDL with a

graphics programming tradition. Thus, the graphics system described in this thesis

is a natural extension of prior research with the introduction of the concepts of

portability and viewports to MDL. The DIGRAM system also allows MDL

programs to use bit-map graphics display devices conveniently.

1.2 Background and Related Research

This section describes some of the research carried out elsewhere that is

related to the graphics system research reported in this thesis.

The design of the portable graphics system is modelled after the design of

the MIM language processor, and Western Digital's design of the Pascal language

processor using P-code. Those language processors have been made portable by

isolating the machine dependent parts of the language in a module. This module is,

conceptually, an interpreter for instructions of a virtual machine. Basically, one

chooses a higher level language and a small low level virtual machine, creates a

compiler that compiles programs in that language to run on the virtual machine,

writes the compiler and run-time system in that language, and compiles the

compiler and the run-time system for that virtual machine. Thus, implementing the

compiler aid the run-time system for a new computer is unnecessary if the small

virtual machine can be implemented on that computer. A program in the language

can run on any computer that simulates the virtual machine, and that small virtual

machine is easier to implement than a large compiler or run-time system.
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Although the idea of storing images in a bit-map display memory and

refreshing the display screen by raster scanning the display memory regularly is not

a new idea, the high cost of fast memory has made devices that use this idea

commercially impractical until recently. Researchers in computer graphics have

implemented several graphics projects that use bit-map display devices. For

example,

- R. F. Sproull and some others at Xerox PARC were working on the
ADIS project4 to produce a graphics package for the Interlisp-D -- also
known as DLISP -- programming language.

- Researchers at Xerox PARC have developed the Smalltalk5,6,7

interactive computer language. Smalltalk has a graphics capability.

- J. Eugene Ball at Carnegie-Mellon University was developing the AT
(Alto Terminal) package to enable a C program running on a Vax-Unix
system to use the Alto personal computer as a terminal.

-Researchers at Bolt, Beranek and Newman Inc. were building a bit-map
display device called Jericho.

-Researchers at Bolt, Beranek and Newman Inc. were working on the Bit-
Map Graphics (also known as BMG) project to provide a graphics
interface for the AIPS9'10,11 (Advanced Information Presentation
System) project.

- Researchers at the MIT Artificial Intelligence Laboratory were
developing the Lisp Machine 12, 13. The Lisp Machine has a bit-map
display device.

Several features in the graphics systems developed in the projects

mentioned above are also found in the DIGRAM system. For example, many

researchers have discovered that raster operation** is useful, that operations to

**Raster Operation is also known as Bit-Blt because it transfers a block of bits from one set of

memory locations to another in a manner similar to the PDP-10 Block Transfer instruction. This

operation is called a Box Operation in this thesis. See Section 3.1.4 on Page 32.
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display text are essential, and that the ability to divide the display screen into several

independent areas is convenient. However, the DIGRAM system also has functions

to draw lines and triangles, and a systematic design for the graphics output

fmnctions. The systematic design makes graphics output functions easier to use,

understand, and remember.

Some other research in computer graphics is also related to the design of

this graphics system. Ivan Sutherland, one of the early researchers in this field,

investigated the use of interactive computer graphics in the SKETCHPAD project14

in the early 1960's. He concluded that communication with computers using

interactive computer graphics was simpler and quicker than by more conventional

methods in use at that time. Much research into the use of interactive computer

graphics has been carried out since then, and W. M. Newman and R. F. Sproull, in

their book Principles of Interactive Computer Graphics,15 summarize many

important ideas and issues that researchers in this field have encountered.

The Graphics Standard Planning Committee (GSPC) of the ACM Special

Interest Group on Graphics (SIGGRAPH) is developing a graphics standard16

based on their Core Graphics System17'1 to increase the portability of graphics

programs. However, that graphics standard is based on the vector graphics display

device rather than the bit-map graphics display device. Therefore, that

standardization effort is related to the proposed graphics system in only a very

peripheral way.

1.3 Outline of Thesis

The second chapter outlines the overall graphics system. The first section

states some of the desired goals of the graphics system and how the graphics system

14



may achieve those goals, the second section briefly describes the five components of

the graphics system, and the last section shows a simple example of how the graphics

system displays an image on a display screen.

The third chapter describes the graphics device dependent module of the

graphics system. This module is an interpreter for the instructions of a virtual

graphics device. The first section categorizes the instructions in the virtual graphics

device, and the second section describes an interesting way of organizing some

output instructions systematically and conveniently for a bit-map display device.

The fourth chapter describes the organization of the display screen. The

first section explains the concept of viewports and windows, the second section

categorizes the operations on viewports, and the third section provides some more

details about the viewports used in the graphics system.

The fifth chapter describes some of the basic graphics functions that

graphics application programs can call to use a graphics device. The first section

describes the graphcs input functions, and the second section describes the graphics

output functions. The graphics system can have other basic graphics functions as

well since the overall design of the system does not limit the basic graphics function

only to those stated in chapter five.

The last chapter briefly summarizes the discussion in the previous five

chapters, and explains how the system was implemented. That chapter also has

some suggestions for subsequent extensions to the graphics system, and further

research in this area.

Other less interesting details of the graphics system have been left in the

appendix. The appendix has a glossary of the graphics terms used in the thesis, and

15



lists the virtual graphics device instructions, the viewport manager functions, and

the basic graphics functions. The appendix also describes the implementation of the

triangle filling operation and the box combination operation. Those details are

located in the appendix because they are implementation dependent and hence

would differ for different systems.
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Chapter Two

Design of the DIGRAM System

A brief outline of the Display Independent Graphics Manager (DIGRAM)

system is given in this chapter. Some of the design goals of the DIGRAM system

are stated in the first section. A rough outline of the design of the DIGRAM system

is given in the second section. A simple example to illustrate how the various

components of the DIG RAM system interact is presented in the last section.

2.1 Design Goals

Several goals are incorporated in the design of the DIGRAM system.

These goals and how they affect the design of the overall system are discussed

below.

The first goal of the DIGRAM system is to ease the development of

portable graphics application programs. Thus, similar programs that make use of

different graphics devices will not have to be rewritten.

The second goal is to design a portable graphics system. Thus, the

graphics support software will not have to reimplemented for different devices.

This goal can be achieved by designing a virtual graphics device with a

minimal set of capabilities for which application programs and the graphics support

software can be written. The virtual device instruction interpreter interprets the

virtual graphics device instructions. The virtual device instruction interpreter has to

simulate each of the graphics capabilities in the virtual graphics device not available

17



on a real device. This simulation is possible only if all the real devices have a small

common set of graphics capabilities.

There are several graphics device parameter values, like the height and

width of the screen, that are device dependent. The virtual device can provide those

parameter values to a device independent program at run-time. The program will

run slightly slower since those parameter values are not known at compile time but

then that is a small price to pay to achieve portability. Another compiler specifically

for a frequently used graphics device may be written to accommodate users who

need a faster program.

The third goal is to prevent the output of two or more programs on one

screen from interfering with one another. For example, the debugging of a graphics

application program on a computer with only one output display device is difficult

since the output of other programs can easily interfere with the output of the

graphics program on the screen. Hence, debugging a program interactively is much

easier if the output of the application program and the debugging program can be

examined separately. Moreover, there are occasions when the user wants to

compare the output from several programs visually. The display output should be

organized so that when this occurs, the images are displayed properly.

One way of organizing images on the screen is to use the concept of virtual

screen which is similar to the concept of virtual memory in operating systems. The

concept of virtual memory and memory protection allows the sharing of a limited

resource, namely, the primary memory, among several programs. Each program has

full access to its virtual memory but cannot access the virtual memory of any other

program. Similarly, the concept of a virtual screen, or a viewport, allows the sharing

of a limited resource, namely, the display screen, among several programs. Each

program has full access to its own viewport but cannot access the viewport of any

18



other program. Image protection will prevent other programs from damaging the

output of a given program. Thus, a graphics application programmer can debug a

program easily since any defects in the displayed image can be attributed solely to

that program.

There is another advantage of using the concept of a virtual screen to

organize images. Each program displays its images on only a part of the display

screen. Each image displayed on the screen is smaller when the virtual screen

concept is used than when it is not used. Thus, a program can display images more

quickly in a graphics system that uses this concept.

The fourth goal is to have a modular design for the DIGRAM system. A

large system like the DIGRAM system can be built more easily if the divide and

conquer strategy is used to decompose the overall system into smaller sub-systems

that can be implemented separately. Furthermore, the modular design of

DIGRAM allows for additions to it, and evolution of it. Capabilities likely to be

added at a later date are, for example, the graphics input sub-system, or the sub-

system for vector graphics functions.

Finally, the graphics system should have a general design that supports a

wide variety of application programs. The graphics system will make very few

assumptions about the nature of any application program that will use it since it may

be used to implement many different programs.

The graphics system will support this goal in two ways. It will not modify

the region within a virtual screen, or viewport, of the graphics application program.

For example, the DIGRAM system will not put a border around any viewport

because some programs support viewports that do not have a border while other

programs support viewports that have a special type of border. Each program will

19



have to draw a suitable border in its viewports if a border is desired. Since many

different types of images may be displayed in a viewport, the program will have to

store the contents of its viewports. The graphics system updates the display screen

when the viewport area changes by calling the redisplay function that the

application program provides.

Some of the objectives of the DIGRAM system have been stated above.

They have influenced our design decisions regarding the proposed system. An
outline of the DIGRAM system is given below.

2.2 Components of the DIGRAM System.

The DIGRAM system is similar to the system implemented in the MIM --

Machine Independent MDL -- project at the Programming Technology Division of
the Laboratory for Computer Science. The interactive portion of the DIGRAM

system has three main components arranged in a hierarchical order. These
components are the Device Interface for the Graphics System (DIGS), the Graphics
Run-time Support Sub-system (GRSS) which is compiled to DIGS virtual device
instructions and MIM virtual machine instructions, and the Display Application

Package Sub-systems (DAPS) which is written in MDL and GRSS. There are three
categories of graphics programmers and users. At the lowest level, the graphics
system designer designs and implements DIGS and GRSS, and adapts DIGS to new
display devices. Then there is the DAPS writer who writes several DAPS using
GRSS and MDL. And finally, there is the DAPS user who uses those DAPS
programs. In addition, there are two compilers -- DIGCOM and GODCOM -- to

compile DAPS and GRSS programs written in MDL to run on the DIGS virtual
device and the real graphics device respectively.

20
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-Display Independent Graphics Compiler
-Graphics Order-code for Device Compiler

Figure 2-1: Components of the DIGRAM System.
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The following are the five components of the DIGRAM system.

- Device Interface for the Graphics System (DIGS)

- Graphics Run-time Support Sub-system (GRSS)

- Display Application Package Sub-systems (DAPS)

- Device-Independent Graphics Compiler (DIGCOM)

- Graphics Order-code for Device Compiler (GODCOM)

Figure 2-1 illustrates the relationship between the five components of the DIGRAM

system. These components are described in more detail below.

2.2.1 Device Interface for the Graphics System

The Device Interface for the Graphics System (DIGS) is an interface

between the low-level virtual graphics device on which GRSS can be implemented

and a real graphics device. DIGS has a virtual graphics device instruction

interpreter to execute those device independent parts of the DIGRAM system that

have been compiled by DIGCOM. A DIGS instruction interpreter is written

specifically for each real graphics device. That instruction interpreter will simulate

any virtual graphics device instructions that are absent from the real graphics device

and will translate those instructions that are present on the real graphics device. The

DIGS instruction interpreter can be considered as an extension of the MIM

instruction interpreter that can interpret display instructions as well.

2.2.2 Graphics Run-time Support Sub-system

The design of the Graphics Run-time Support Sub-system (GRSS) was

influenced by the design of the Core Graphics System. 17 ' 18 The Core Graphics

System is the result of the recent efforts by the Graphics Standard Planning
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Committee (GSPC) of the ACM Special Interest Group on Graphics (SIGGRAPH)

to develop a graphics standard 16. A few additional features have been added to this

design to take advantage of the special characteristics of bit-mapped display devices

and to enforce the concept of image protection within a viewport.

GRSS, embedded in the language MDL, supports a set of functions that

DAPS programs use to manipulate graphics input and output devices in a systematic

manner. These functions can be roughly divided into two categories:

- Viewport Manager Functions: These functions manage viewports,
redisplay the screen, update the database for viewports, and allocate
different regions of the display screen to different viewports.

- Basic Graphics Functions: These functions obtain input from input
devices and produce images on display devices. The application
program can display lines, triangles, boxes, and text with output
functions. The output functions also enforce image protection for the
graphics system. Other functions set up defaults for the graphics system,
provide an on-line help facility, and provide some information on the
graphics device (eg. the height of the screen) at run-time.

Thus DAPS writers will be able to use GRSS and MDL to write their DAPS

programs without having to worry about device dependent issues or the damaging

of an image in a viewport by other programs.

GRSS is initially compiled to run on the DIGS virtual display. Thus,

GRSS is device independent. A DIGS interpreter is used to execute GRSS

procedures and functions. The GODCOM compiler, if available, can be used to

compile GRSS so that GRSS can run more efficiently on a specific display device.
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2.2.3 Display Application Package Sub-systems

The Display Application Package Sub-systems (DAPS) writer uses GRSS

and MDL to write DAPS programs. These DAPS may include programs to create

three dimensional images, draw graphs, provide an interactive graphics editor, or

run a text editor.

Each DAPS program is first written in MDL and GRSS and debugged

interactively. Later, when production programs are needed, the DAPS programs

may be compiled using DIGCOM to DIGS instructions, which can run on the

DIGS virtual device. To increase the speed and efficiency of a DAPS program,

GODCOM may be used to compile the DAPS program to run on a specific real

graphics device.

2.2.4 Device-Independent Graphics Compiler

The Display-Independent Graphics Compiler (DIGCOM) can be used to

compile DAPS programs written in GRSS and MDL to DIGS instructions which

will run on the DIGS virtual display. The compiled DAPS program runs much

faster than the interpreted DAPS program since the overhead due to interpreter

calls is bypassed. DIGCOM also improves the speed of the code generated for the

compiled DAPS in other ways. The software for GRSS is initially written in MDL

and is compiled using DIGCOM to DIGS instructions so that GRSS can run on the

DIGS virtual device. Thus, DIGCOM can be considered as an extension of a MDL

compiler that compiles instructions for graphics devices as well.

2.2.5 Graphics Order-code for Device Compiler

The Graphics Order-code for Device Compiler (GODCOM) can compile

DAPS programs to order code so that those programs will run directly on the
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graphics device, bypassing the DIGS interpreter. This compiler is written

specifically for a graphics device, and is able to understand and make full use of the

features of that graphics device.

2.3 An Example

A simple example can illustrate how the various components of the

DIGRAM system interact to generate an image on the screen of a display device. In

this example, a line is drawn on the screen and Figure 2-2 shows how each

component of the DIGRAM system affects the final image on the screen.

Let us assume that the user runs a DAPS program that displays an image.

An example of such an image may be a line. To draw this line on the display screen,

the DAPS program calls the line drawing GRSS function with the endpoints of this

line, a viewport to draw this line, and the mode to draw this line as arguments. The

DIGRAM system takes over from here and eventually displays the clipped image on

the display screen.

The GRSS viewport manager maintains a list of active viewports and

allocates a different area of the display screen to each viewport. This viewport

manager also restricts the allocation of viewport areas so that the viewport areas

allocated do not overlap. When a program displays an image on a viewport, the

viewport indicates the area on the screen where the image may appear. GRSS

ensures that all the viewports in the graphics system are consistent while DIGRAM

is running.

When a program calls a GRSS graphics outputfunction, that function clips

the image so that the resultant image is totally within the given viewport area. Then,
the GRSS function draws the clipped image on the display device by calling the
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DAPS
wants to draw a line.

GRSS
Viewport Manager Functions

manages viewport showing the line.

GRSS
Output Functions

clips the line.

DIGS
Line Instruction

draws the line on the screen.

Figure 2-2: An Example of How the DIGRAM System Produces an Image.

appropriate DIGS instruction. Thus, GRSS enforces image protection by clipping

the image so that the display screen displays only the portion of the image within a

given viewport.
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The DIGS instruction interpreter interprets a virtual device instruction by

calling the appropriate instruction on a real graphics device to display the image on

the device screen. If the real graphics device does not have an instruction to display

the image on the screen, then the image displayed is simulated using other

instructions. For example, if a program would like to display a line but the real

device does not have a line drawing instruction, then the DIGS instruction

interpreter simulates a line by a sequence of points. Only the portion of the image

in the viewport area is visible on the screen since GRSS has already clipped the

image.

The above description of the DIGRAM system behavior applies when any

application program displays any image on a viewport. The process is reversed

when a program obtains graphics inputs. DIGS obtains and then sends the input to

GRSS. GRSS then filters and scales the graphics input so that DAPS can use the

input easily. GRSS maintains and provides any defaults like a suitable scaling factor

or a filter factor. Since only DIGS interacts with the real graphics device, all the

graphics software except for DIGS is device independent and hence transportable.

GRSS enforces image protection and provides functions that make the writing of

DAPS programs more convenient. This, then, is a brief description of how the

various components of the DIGRAM system interact.
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Chapter Three

The Virtual Graphics Device

This chapter describes the device interface for the graphics system. The

DIGS sub-system interfaces the graphics software with a real bit-map display by

presenting a virtual display to graphics programs. This sub-system also interfaces

the graphics software with graphics input devices. A systematic manner of encoding

images displayed on a bit-map display is also presented in this chapter.

3.1 Virtual Graphics Device Instructions

The virtual graphics device makes operations on a real graphics device

available to a program in a systematic, device independent manner. The virtual

device provides four types of instruction, namely, setup instructions, query

instructions, input instructions, and output instructions. Those instructions are

described in this section.

The main aim of the virtual graphics device is to provide a clean interface

between a real graphics device and the graphics software. To achieve this goal, a

consistent protocol that links MDL programs with the virtual device is designed.

That protocol -- a stack machine calling mechanism -- allows every MDL program

to use a real graphics device by pushing arguments on the stack and then executing a

virtual device instruction. The virtual device's instruction interpreter invokes the

appropriate real graphics device operation, or invokes several other real graphics

device operations to simulate the virtual device instruction if the real device does

not support that operation. Since there is a consistent device independent protocol
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to invoke a real graphics device operation from MDL, the graphics software is

portable.

3.1.1 Setup Instructions

A program calls a setup instruction to obtain or return a graphics device or

resource. Some setup instructions obtain a real graphics device from the operating

system for the exclusive use of the program. Other instructions return a graphics

device to the system when the program no longer needs that device.

Before a graphics application program can use a display screen, the

program has to obtain permission to use that device. The program calls setup

instructions to borrow the display screen at the beginning and return the display

screen at the end. The program that has borrowed a display screen can display

images on that device. If several display screens are available, the program may

want to borrow and return different display screens at different times. The setup

instructions allow each program to do so in a device independent manner.

A program can also load fonts into a display device or dump fonts out of a

display device. The program can display text in several fonts if different fonts are

loaded. However, the display device may not be able to hold all the fonts a program

uses. Dumping unnecessary fonts will free up space for the display device to load

other useful fonts. A program can load and dump fonts by calling the appropriate

setup instructions.

A program that expects an asynchronous input from an input device

should enable that device for interrupts. Enabling an input device informs the

operating system that the program is willing to handle interrupts from that input

device. Enabling only certain input devices will also ensure that other uninteresting
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input devices will not interrupt the program. When an asynchronous input is no

longer needed, the input device can be disabled. Thus, a graphics application

program can obtain a more imaginative response from the user by tailoring its own

input with suitable setup instructions.

3.1.2 Query Instructions

The graphics system has to know several facts about each graphics device

to use that device effectively. If those facts are compiled into the graphics system,

then the system will have to be modified for each new device. Those facts should be

stored only in the virtual device instruction interpreter. The graphics system can

obtain the information from the virtual device at run-time. Thus, only the virtual

device instruction interpreter has to be different for different graphics device. The

application program may run slightly slower but this is a small price to pay for

portability. The slow down will not be substantial since the graphics program can

obtain and store each datum only once during initialization.

Most display screens have different horizontal size, vertical size, and

resolution. Those device dependent facts should be made available to the graphics

program through the virtual graphics device's query instructions. The graphics

system can use this information to tailor each programs to use any display screen.

Thus, the whole display screen may be used efficiently.

Many graphics display devices provide instructions for displaying text

anywhere on the screen. A program that displays text may need to know the width

and height of each character. This font information is usually device dependent.

The graphics system and every application program can be device independent only

if those facts are located in the virtual graphics device.
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3.1.3 Input Instructions

The graphics system can receive two different types of input, namely,

synchronous input and asynchronous input. Synchronous input is obtained by a

graphics application program when it requests an input. Asynchronous input is

input that can occur at any point of the program's execution. In this instance, the

program is signalled by an interrupt from an input device. It typically will halt its

normal execution and handle the interrupt. These two fundamentally different

ways of interacting with the user is discussed below.

A graphics program can obtain a synchronous input from a graphics input

device by executing the appropriate DIGS instruction. The virtual input device will

obtain and return the input from the corresponding real input device. Three

examples of virtual devices that can generate synchronous inputs are described

below:

Valuator This device is used to specify an analog value. It is a one
dimensional device that generates a single floating point number
between 0.0 and 1.0. Examples of valuator devices are control
dials and slide rheostats.

Locator This device is used to specify a location on a display screen. It is
a two dimensional device that generates two floating point
numbers between 0.0 and 1.0 corresponding to the X and Y axis
on the screen. Examples of locator devices are data tablets, touch
pads, joysticks and mouse devices.

Keyboard This device is used to generate alphanumeric input. The user is
probably familiar with this input device since it is modelled after
the typewriter keyboard and almost every terminal has some
form of keyboard input device. This device buffers the
characters typed in and returns the numeric code for the
characters typed on the keyboard in order, or a special value if
the buffer is empty.

31



A program may use these input devices with the asynchronous input

devices to obtain a more useful input.

Asynchronous interactions are more difficult to handle than synchronous

interactions. An interrupt occurs whenever the user activates an asynchronous input

device. The MDL interrupt system traps, queues, and handles this interrupt just

like any other MDL interrupt. Thus, the program has to enable the interrupt for an

asynchronous input device before it can obtain inputs from that device.

Two examples of devices that can generate asynchronous inputs are the

keyboard and the button. The actions of these devices will be described below:

Keyboard The keyboard device is used to obtain alphanumeric data. If the
asynchronous keyboard device is enabled, an interrupt will occur
whenever a key is depressed and the graphics program may
process the character typed in immediately.

Button The button device is in many ways like the keyboard device.
Whenever a button is depressed, an interrupt occurs. However,
the button is usually located on a pointing device like a mouse,
each button does not represent any special symbol or character,
and the device usually can generate only asynchronous inputs.

The interrupt handler for an asynchronous input device may obtain

synchronous input values. For example, when a button is activated, the interrupt

handler may sample the locator device and perhaps place a mark on the screen. The

graphics program may use a combination of asynchronous and synchronous input to

create a more flexible and powerful user interface.

3.1.4 Output Instructions

The virtual graphics device's output instructions allow the user to create or

change images on a display screen. The virtual graphics device instruction
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interpreter calls the appropriate display device routine to perform the operation. If

the real display device cannot perform that operation, then the virtual device will

simulate the desired display operation using other display operations.

The virtual graphics device supports four different types of outputs,

namely, line, triangle, box, and text. There is a DIGS instruction for each type of

output operation. Each of those operations can affect the display screen in several

ways depending on the mode in which the instruction is called. One way of

enumerating the modes for those operations in the virtual device is given in the next

section.

The DIGS line instruction draws a line on the display screen. For a display

screen that shows each pixel in only two intensity levels of one colour, the line can

be drawn in four different modes. Those four modes are black, white, inverse of

background colour, and same as background colour. The line instruction accepts as

arguments the two end points of the line, the mode in which to display the line, and

the display screen on which the image is to appear.

The DIGS triangle instruction draws a triangle on the display screen. For a

display screen that shows each pixel in only two intensity levels of one colour, the

triangle can be drawn in four different modes. These four modes are black, white,

inverse of background colour, and same as background colour. The triangle

instruction accepts as arguments the three vertices of the triangle, the mode in which

to display the triangle, and the display screen on which the image is to appear.

The DIGS box instruction places the result of combining corresponding

pixels in two similar rectangles on the screen in one of the rectangles. For a display

screen that shows each pixel in only two intensity levels of one colour, the two

rectangles can be combined in sixteen different modes. The box instruction accepts
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as arguments the locations of the top left corners of the two rectangles, the heights

and widths of the rectangles, the mode in which to combine the two rectangles, and

the display screen on which the two rectangles are located.

The DIGS text instruction displays a line of text on the display screen.

With this instruction, the graphics system can use the built-in text displaying

capability of display devices. The text instruction accepts as arguments the starting

position of the text to be displayed, the text to be displayed, the number of

characters in the text to be displayed, the font type, and the display screen where the

text is to be displayed. This instruction can probably be written in terms of either

line or box instructions if an appropriate font database exist to create characters

using line or box instructions.

A graphics application program can produce a wide variety graphics

images with only those four instructions. Those four instructions are very flexible

because each instruction can operate in several different modes. The modes can be

systematically encoded so that all conceivable line, triangle and box shades can be

generated. The next section will outline a scheme whereby all possible ways of

drawing lines, filling triangles and combining boxes is encoded in a suitable mode.

3.2 Displaying Images on Bit-Map Display Devices

The graphics system can easily simulate the virtual device's line, triangle

and box instructions in a bit-map display device. A bit-map display device maps each

bit in a bit-map display memory to a pixel on the display screen. This bit-map display

memory is usually an array of integers. A bit-map display device can also map

several bits from several different bit-map display memories to the same pixel. Each

bit-map display memory is then called a bit-plane. The device may map each bit of
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a bit-plane to a specific colour or a specific intensity level for each pixel.

The virtual device can treat an integer array as a virtual display screen. If

the array is displayed on a real display screen, then any image stored in that-array

will be visible. With this arrangement a program can easily display images on more

than one real display screen. A program can transfer images on a virtual display

screen to another smaller integer array and use those images later. A program can

also place images in any integer array and then display that array on a real display

screen. If a program uses two arrays, it can present an animated sequence by

modifying one array while displaying the other array, and switching the roles of the

two arrays periodically. Moreover, a program can modify each bit-plane of a display

screen separately to generate overlapping images in several colours or shades. Thus

a properly organized bit-mapped display device can be a very flexible and powerful

display tool.

Smalltalk7 uses a very simple scheme to encode all possible raster

operations in a bit-map display with a single bit-plane. The DIGRAM system uses a

similar scheme to encode all the ways of drawing lines and filling triangles. The

schemes to systematically encode the modes for the line, triangle, and box

instructions are presented in the two sections below.

3.2.1 Line Drawing Modes and Triangle Filling Modes

When the triangle instruction draws a triangle on the screen, it changes the

intensity of some pixels on the screen so that the triangle can be seen. For example,
the triangle instruction can change a triangular region on the screen to white or

black so that the triangle is visible. The triangle instruction can also invert the

intensity of the images in the triangular region to make that region visible. Thus, the

triangle instruction can display a triangle in several different ways.
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Figure 3-1: The Encoding of Four Triangle Filling Modes.

The different ways that the triangle instruction can display a triangle can

be listed for convenience. For a display device that can display each pixel in only

two shades, namely, black and white, the images on the screen can only have two

intensities. Figure 3-1 is a state diagram that shows how the new intensity of each

pixel in the triangle is related to the original intensity of that pixel. The triangle

instruction can display each triangle in only four different ways, namely, the three

mentioned in the previous paragraph, and no change to the screen, if the triangle

instruction changes the intensity of each pixel in the triangle based only on the old

intensity of that pixel.

Figure 3-1 also associates a numeric code with each way of filling a

triangle. This numeric code can specify compactly the mode in which the triangle

instruction draws a triangle. Having several instructions to draw different triangles

is also unnecessary if one triangle instruction can draw triangles in different modes.
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Each of the four different ways of filling a triangle is called a trianglefilling mode.

Old Pixel States New Pixel States

-- Mode n 2 1

n = Sum of integers for white pixels.

Figure 3-2: A Diagram for the Encoding of Line and Triangle Modes.

Figure 3-2 shows a diagram that encodes the numeric codes for the triangle

filling modes compactly. A numeric code can be found by adding all the entries in

Figure 3-1 corresponding to old pixel shades that the triangle instruction will change

to white. For example, the triangle instruction draws a black triangle when the

numeric code is 0 because the pixel value is never white. The triangle instruction

does not change any pixels when the numeric code is 1 because the new pixel value

is white if and only if the old pixel value is white. The triangle instruction inverts

the shade of the pixels within a triangle when the numeric code is 2 because the new

pixel value is white if and only if the old pixel value is not white. The triangle

instruction draws a white triangle when the numeric code is 3 (= 2 + 1) because the

new pixel value is always white. Thus, both entries have to be added. The numeric

codes calculated in Figure 3-2 can be compared with the numeric code shown in

Figure 3-1.

Only four triangle filling modes can exist on a screen that can display only
two shades because each of those four triangle filling modes correspond to a boolean

function of one variables. What Figure 3-2 actually illustrates is a systematic means
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of mapping the numeric code of a triangle filling mode to a boolean function of one

variables. Each numeric code is an integer that can be systematically mapped to a

ftnction of one variable. Each function of one variable maps the old intensity of a

pixel to the new intensity of that pixel. The triangle instruction uses that function to

change the old intensity of each pixel in the triangle a new intensity.

Numeric codes for triangle filling modes can be specified for a screen that

can display several shades or colours if all the possible ways the triangle instruction

can change the intensity or colour of the pixels on the screen can be enumerated.

Thus, a triangle filling mode associates an integer with a function of one variable.

The triangle instruction uses that function to change the pixels in a triangle.

Similarly, the line drawing modes may be used to specify the type of lines

drawn by the line instruction. The line drawing mode associates an integer with a

function of one variable. The line instruction uses that function to change the

intensity of each pixel on the line. Since the line drawing modes are similar to the

triangle filling modes, the mapping from numeric codes to boolean functions are the

same for both the line instruction and the triangle instruction.

An application program can use the modes to specify the shade of the line

or triangle it displays. For example, when a program draws a white line on the

screen, the program calls the virtual graphics device's line instruction with 3 as the

numeric code for the line drawing mode. The virtual graphics device draws a white

line on a real display screen. The program might erase that line by drawing a black

line over the white line. The program does this by calling the virtual graphics

device's line instruction with 0 as the numeric code for the line drawing mode.

Thus, a program can use different modes of operation of the line instruction to

display images with lines, and different modes of operation of the triangle

instruction to display images with triangles.
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3.2.2 Box Combination Modes

The box instruction uses the box combination modes to specify how two

rectangular areas on the screen of the same size and shape are to be combined.

When the box instruction combines two boxes on the screen, the box instruction

changes the intensity of each pixel from the destination box to the value obtained by

combining the intensity of the corresponding pixel from the source box, and the old

intensity of that pixel from the destination box. For example, the new image in the

destination box is the inclusive or of the image from the source box and the

destination box if the combine operation is inclusive or. Thus, the destination box

will have the image of both the source box and the destination box since at any

point in the destination box where either the old destination image or the source

image in the corresponding source box is white, the new destination box is white.

However, the box instruction can combine the images in the source and

destination boxes in other ways. For example, the box instruction may exclusive or

the images in the source and destination boxes. The box instruction may copy the

image from the source box to the destination box. The box instruction may also and

the images in the source and destination boxes. Thus, a box instruction can

combine two boxes in several different ways.

The different ways that the box instruction can combine two boxes can be

listed for convenience. For a display device that can display each pixel in only two

shades, namely, black and white, the images on the screen can only have two

intensities. Figure 3-1 is a state diagram that shows how the new intensity of each

pixel in the destination box is related to the original intensity of that pixel and the

intensity of the corresponding pixel in the source box. The box instruction can

combine two boxes in only sixteen different ways if the box instruction changes the

intensity of each pixel in the destination box based only on the old intensity of that
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Figure 3-3: The Encoding of Sixteen Box Combination Modes.

pixel and the intensity of the corresponding pixel in the source box.

Figure 3-3 shows how the state of the intensity of each pixel changes for

each way of combining two boxes. Each square in the state diagram represents a
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possible intensity of the source pixel, the old intensity destination pixel, or the new

intensity of the destination pixel. For example, mode 7 shows the inclusive or

operation. When either the source square or the corresponding destination square is

white, the result square is white. Thus, there is only one black square in the top left

corner corresponding to a black square at both the source and destination. As

another example, mode 6 shows the exclusive or operation. When the source and

the destination square is opposite in shade, the result square is white. Thus, the top

right square and the bottom left square is white because the corresponding square in

the source and the destination differ. That figure has listed all the possible binary

boolean functions. Thus, only sixteen binary boolean functions can exist.

Figure 3-3 also associates a numeric code with each way of combining the

intensities of the pixels in two boxes. This numeric code can specify compactly the

mode in which the box instruction combines two boxes. Having several instructions

to combine boxes is also unnecessary if one box instruction can combine boxes in

different modes. Each of the sixteen different ways of combining two boxes is called

a box combination mode.

Old New
Source Destination Destination

Pixel Pixel Pixel
States States States

-Mode n

n = Sum of integers for white pixels.

Figure 3-4: A Diagram for the Encoding of Box Combination Modes.
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Figure 3-4 shows a diagram that encodes the numeric code for each box

combination mode compactly. The numeric code for a box combination mode can be

found by adding all the entries in Figure 3-3 corresponding to source and old

destination pixel shades that the box instruction will change to white. For example,

for the and operation, the new destination pixel shade is white if and only if both the

source pixel and the old destination pixel shades are white, so the code is 1. For the

or operation, the new destination pixel shade is white if the source pixel shade is

white, the old destination pixel shade is white, or both the source pixel and old

destination pixel shades are white. Thus the code is 7 (= 4 + 2 + 1). For the xor

operation, we can easily deduce that the code is 6 (4 + 2). The numeric code for the

box combination modes found in Figure 3-4 can be compared with the numeric

code shown in Figure 3-3. This simple encoding of box combination modes follows

from the encoding of raster operations used in Smalltalk 7.

Each of the sixteen box combination modes corresponds to a boolean

function of two variables. The box instruction uses those boolean functions to

combine two boxes. In general, each box combination mode associates an integer

with a function of two variables. This function maps the intensity or colour of two

pixels to the new intensity or colour of one of the pixels. The box instruction uses

that function to change the intensity or colour of each pixel in the destination box.

The virtual graphics device's box instruction can combine two rectangles

on the display screen in several ways. A program can specify how the box

instruction should combine two rectangles using the box combination modes. For

example, when a program merges two images on the screen, the program calls the

box instruction with 7 as the numeric code for the box combination mode so that the

images in the two rectangles will be inclusive ored together. The virtual graphics

device inclusive ors the two rectangles on the real display screen. Thus, a program

can use different modes of operation of the box instruction to combine images on
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the display screen.

With the mode encoding scheme given above, all possible line, triangle

and box operations can be encoded compactly. This chapter effectively summarizes

the main features of the DIGS sub-system.
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Chapter Four

The Management of Viewports

This chapter describes viewports and windows in the DIGRAM system.

Viewports and windows are higher level graphics constructs that make the

development of graphics application programs easier. The first section explains

what windows and viewports are. The second section describes several viewport

manager functions. The final section describes the components of a viewport and

shows how viewports and windows can interact.

4.1 Viewports and Windows

Producing a graphics application program is much easier if the graphics

application programmer has a good graphics system model. We can develop a

useful graphics system model by separating the data to be displayed from the

display device. The graphics system usually has more knowledge of the

characteristics of the display device than the application program. On the other

hand, the application program usually has more knowledge of the data that it

displays than the graphics system. A graphics system model that emphasizes this

separation allows the application programmer to devote more time to the

application and to ignore details of the display device.

In our graphics system model, each datum that a program displays is

treated as an object in an imaginary world. The program shows the images of those

objects on a display screen. As an example, let us consider an application program

that can handle only two dimensional images. That program considers all images to
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be flat images lying somewhere on a very large cartesian plane. The large plane is

the world and objects in that world are located relative to that world coordinate

system. However, the display screen is of finite size. Many interesting details

cannot be seen if the graphics system displays all the objects in the world on the

screen at the same time. One way out of this dilemma is to display only the

interesting areas of the world on the screen. We can see the world through a window

that specifies the area on the world that is visible on the screen.

On the other hand, we may wish to see the images in several different

windows at the same time. That can easily be accomplished if there are several

display devices available. A cheaper alternative is to divide a physical screen into

several virtual screens and to display a window in each virtual screen. Those virtual

screens are like portholes on the real display screen through which the world may be

seen. Since different worlds can be viewed through those virtual screens, those

virtual screens are called viewporis.

Having several viewports simultaneously on one screen is very useful. For

example, a graphics application program can be more easily debugged if the

program and a graphics program debugger can run simultaneously. Two separate

viewports can show the output of those two programs at the same time. This idea is

similar to the virtual memory idea that eventually gave rise to multiprogramming.

As in virtual memory systems, the display program can dynamically alter the

amount of screen area allocated to a viewport. This screen area allocated to a

viewport is known as the viewport area. The images that a program displays on a

viewport can appear only in the viewport area. So having viewports can provide

some measure of image protection if no viewport areas can overlap.

A window may differ in size and shape from the viewport that displays the

objects in that window. If a window is smaller than its viewport, then images shown
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in that viewport are magnified. If the window is narrower horizontally than its

viewport but is of the same height, then images shown on that viewport are

stretched out horizontally.

A program may display objects in a window on several different viewports

and several windows on the same world may be created. Those windows may even

show the same objects. A window that is displayed on several different viewports is

similar to several overlapping windows displayed on those viewports. Thus, the

graphics system can associate a unique window with each viewport without

artificially constraining the display of images.

. Windows and viewports are separate entities. Objects in a window on a

given world can be mapped to images in a viewport on the screen. Viewports are

specified in screen coordinates and deal with the images displayed on the screen.

Changing the size or shape of a viewport affects the images on the screen but not

which object is displayed. Windows, on the other hand, are specified in world

coordinates and deal mainly with the objects in a given world. Changing the size

and shape of a window can change the objects that are visible.

In the window and viewport model, the graphics system is responsible

mainly for the display screen and viewport while the application programmer

designs and implements the world and the window. As a result, the application

program can store graphics data efficiently since the graphics system does not place

any constraint on the nature or content of the graphics data. The next section

describes the viewport manager functions in more detail.
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4.2 Viewport Manager Functions

There are three types of functions that manage viewports. The first type

creates and destroys viewports on a display screen. The second type changes the

shape and size of the viewport area on a display screen. The third type does

miscellaneous operations not covered by the two previous types of function. The

viewport managerfunctions are described in greater detail in Appendix A.

4.2.1 Viewport Allocator Functions

Viewport allocator ftinctions create and destroy viewports on a display

screen. There are three functions in that category. The first function, OPEN-V,
creates a new viewport. The second function, CLOSE-V, destroys a viewport. The

third function, RESET-V, recycles the storage area of a destroyed viewport. Those

functions are described below.

The OPEN-V function creates a new viewport and provides suitable

defaults for that viewport. That function is suitable for interactive use since the user

does not have to provide all the details when creating a new viewport. The graphics

system changes the screen to display the new viewport.

The CLOSE-V function destroys a viewport on the screen. The function

also updates the screen to make that viewport disappear.

The RESET-V function recycles the object that stores data for a destroyed

viewport. The graphics system may need a lot of storage area to implement a

viewport. A graphics program can use the RESET-V function to recycle the storage

area of a destroyed viewport so that garbage collecting that storage area is

unnecessary. The function RESET-V, like the function OPEN-V, creates and

returns a new viewport after recycling the storage area of a destroyed viewport.
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4.2.2 Viewport Modifier Functions

The graphics system provides four functions to change a viewport area:

GROW-V, MOVE-V, PUSH-V, and POP-V. The GROW-V function changes the

shape, area, and location of the viewport area on the screen. The MOVE-V function

changes the location of a viewport area on the screen. The PUSH-V function

changes the order of all the viewports on the screen so that the viewport has the

lowest order, and the POP-V function changes the order of all the viewports on the

screen so that the view port has the highest order.

All the viewports on a screen are ordered. A rectangular area is specified

for each viewport when that viewport is created. The viewport area of a viewport is

that part of the rectangular area of that viewport that does not overlap the

rectangu/ar area of any other viewport that has a higher order. Thus, the viewport

area of all viewports on the screen do not overlap.

The POP-V and PUSH-V functions are used to shuffle the order of

viewports. Since the POP-V function changes the viewport order to the highest

order, it changes the viewport area to the rectangular area of that viewport.

Similarly, the PUSH-V function changes the viewport order to the lowest order so

the viewport area is only that part of the rectangular area not covered by any other

viewport rectangular area. The PUSH-V function and the FIND-V function

(described in the next section) can be used to locate all viewports. Since the FIND-

V function finds the viewport at a given position, the PUSH-V function can be used

o t"sink" a viewport's rectangular area that overlaps another viewport's rectangular

area so that the FIND-V function can find the viewport below.

The graphics system supports the MOVE-V function because the MOVE-

V function is not a special case of the GROW-V function. As stated before, the

GROW-V function changes the shape, area, and location of the viewport on the
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screen. The GROW-V function can change only the location of a viewport on the

display screen by keeping the shape and area of the new viewport area the same as

the old viewport area. This is similar to moving a viewport. The GROW-V function

also clears the part of the the new viewport area on the display screen where the old

and new viewport area do not overlap. However, the MOVE-V function copies the

images from the old viewport area to the new viewport area using the box

instruction. So a program can move a viewport with the MOVE-V function or the

GROW-V function, but only the MOVE-V function moves the images in the old

viewport area to the new viewport area.

4.2.3 Viewport Utility Functions

The utility functions handle miscellaneous viewport operations that are not

handled by the viewport allocator functions and the viewport modifier functions.

Occasionally, the graphics system user may want to redisplay the whole

screen or parts of the screen. The SHOW-V function may be called to redisplay part

or all of the screen.

The FIND-V function returns the viewport located at a given point on the

screen if there is a viewport there. This function can be used with a locator input

device to choose a viewport interactively.

4.3 Components of a Viewport

The viewport defines an area on a display screen where images may

appear. Each viewport has at least three components. The first component specifies

the display device and delimits the area on the screen where images may appear.

The second component is the data for the window associated with that viewport.
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The last component keeps track of other information specific to each viewport.

Examples of these are the current position and the text position. These three

components are discussed in detail below.

4.3.1 Viewport Limits and Display Screens

This component of the viewport delimits the area of the display screen --

the viewport area -- where an image may be displayed. The graphics system should

allocate area on the screen for each viewport so that each viewport area does not

overlap the area of any other viewport on that screen. This allocation scheme will

prevent images on different viewports from damaging one another.

The DIGRAM system has a simple but effective viewport area allocation

scheme. The allocation scheme requires the user to specify a rectangular area on the

screen. The graphics system stores the order of all the viewports on a given display

device. The viewport area of each viewport is the part of that rectangular area that

does not overlap the rectangular area of any other viewport on that screen that has a

higher order. Thus we can imagine each rectangular area as a sheet of paper and the

display screen as a table. There are several sheets of paper on the table and they

may overlap. The portion of each paper that no other paper above covers is visible.

Similarly, the viewport area of each viewport is the portion of the rectangular area

that is not covered by the rectangular area of another viewport "above" it.

Figure 4-1 shows how the area of a viewport is allocated. Rectangle A in

the figure is the rectangular area of viewport A, and Rectangle B is the rectangular

area of viewport B. Since the viewport area of each viewport is the portion of the

rectangular area that is not covered by the rectangular area of another viewport

"above" it, the viewport area of viewport B is the shaded part of rectangle B. Thus,

the viewport areas of the two viewports do not overlap.
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Display Screen

Rectangle A

- -Invisible part
of Rectangle B
Visible part
of Rectangle B

Figure 4-1: Allocating Viewport Area on the Screen.

The graphics application program may display an image anywhere within a

viewport, or modify the viewpoit. For example, a program may draw a boundary

around the viewport and, perhaps, place a header in that viewport to identify the

window and the world associated with that viewport. The program may also move a

viewport, change the size and shape of a viewport, push a viewport to the bottom of

the viewport list, or pop a viewport to the top of the viewport list.

There are other viewport area allocation schemes. For instance, some

viewport allocation schemes allow the viewport area in several different viewports to

overlap. A program can create composite images using one of those allocation

schemes. In yet another type of allocation scheme, a program can display

hierarchical images in nested viewports. One can probably design allocation

schemes that support viewport areas with corners that are not orthogonal or

viewport areas of arbitrary shapes. However, the above allocation scheme for the
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DIGRAM system was chosen because that scheme is simple, has a simple model,

and protects the images on each viewport.

The graphics application program may use several display devices. Since

the characteristics of each display may differ, each display has a MDL object called

a'screen where the graphics system can store data for that display device. Some of

the data stored in a screen include the size and shape of the display screen, defaults

for new viewports created for that display, the list of viewports on that display, and

the identity of that display. Every viewport has a pointer to the screen on which that

viewport is located.

4.3.2 The Viewport Display Function and Object

Associated with each viewport is a window to a world. The graphics

support system is responsible for the viewport and screen, and the graphics

application program is responsible for the window and world. The graphics system

should keep these two components separate and provide a clean interface between

them.

The viewport manager functions are aware of the objects in a window only

when they redisplay the images on a viewport. Since viewport manager functions do

not know how different worlds are implemented, each graphics application program

is responsible for finding the objects in a window and displaying those objects on

the screen. The program provides each viewport with a function to redisplay that

viewport. This ftnction is called the viewport displayfunction. The viewport display

function may use the graphics system's graphics output functions described in the

next chapter to display the images on a viewport. Thus, viewport manager functions

can redisplay a viewport without knowing how the window and the world are

implemented.
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Every viewport has a viewport display object and a viewport display

function. We can consider a viewport display object as a pointer to the window

associated with a viewport. The viewport display function is a function that should

be able to take two arguments, namely, a flag and a viewport, in that order. Each

viewport manager function described in section 4.2 above calls the viewport display

function whenever a viewport has to be redisplayed. The viewport display function

modifies the data stored in that viewport display object, redisplays the screen, and

then returns the viewport display object. A program can specify a viewport display

function when it creates a new viewport.

A viewport manager function may pass the atoms SHOW-V-FLAG,

OPEN-V-FLAG, CLOSE-V-FLAG, RESET-V-FLAG, GROW-V-FLAG, or

MOVE-V-FLAG to the viewport display ftnction as flags. The viewport display

function can redisplay the screen efficiently by displaying only the smallest area of

the viewport necessary depending on the flag. The significance of those flags are as

follows.

SHOW-V-FLAG

OPEN-V-FLAG

CLOSE-V-FLAG

RESET-V-FLAG

The viewport is not changed. The viewport display function may
update the viewport display object and redisplay the images on
the viewport. The viewport display object is returned.

A new viewport is opened. The viewport display function may
create a new viewport display object and may display the images
on the new viewport. The viewport display object passed as
argument should be ignored. The new viewport display object is
returned.

The viewport is closed and the screen is updated to make the
images in the viewport disappear. The viewport display function
updates the viewport display object accordingly. A viewport
display object is returned.

The viewport is reset. This is the same as opening a new
viewport except that the viewport display object already exists.
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GROW-V-FLAG

MOVE-V-FLAG

The viewport display function may either update the viewport
display object or create a new viewport display object, and may
redisplay the images on the new viewport. The new viewport
display object is returned.

The size and shape of the viewport is changed. The portion of
the new viewport area that is in common with the old viewport
area is not cleared. The viewport display function may update
the viewport display object, and may redisplay the images on the
viewport. The viewport display object is returned.

The viewport is moved to a new location on the screen. If the old
and new viewport area are totally visible, then the image in the
old viewport area is copied to the new viewport area. Otherwise
the new viewport area is cleared. The viewport display function
may update the viewport display object, and may redisplay the
images on the viewport. The viewport display object is returned.

Since the viewport display function provided by the graphics application

program displays the objects in a window on a viewport, the graphics system and

viewport manager functions do not have to know anything about the application

area and the world. On the other hand, the viewport display ftnction and the

graphics application program is display device independent since they display

images on a viewport by invoking higher level display functions. Thus, this

interface successfully separates the window and the viewport.

4.3.3 Other Viewport Data

The graphics system uses the information stored in each viewport to

display images on the screen. Each viewport stores some data that allows graphics

application programs to treat it as a separate virtual display screen. Every program

that displays images on a viewport is device independent since every viewport has

the same set of display data regardless of the display device used.
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An example of data stored in every viewport is the current position. The

graphics system uses the current position to draw lines on a viewport. When a

program invokes the line drawing routine, a line is drawn from the current position

to the new position and this new position becomes the new current position. Images

displayed on different viewports are usually not related. So each viewport should

have its own current position if the displaying of an image on another viewport is

not to affect images displayed on a given viewport.

Another example of data stored in every viewport is the text position.

Whenever a program invokes the text output routine, the graphics system displays a

text string on the screen starting at the text location and changes the text location to

the end of the text string just displayed. Thus, a program can display a text string in

pieces after breaking it up, or can display it all at once with no visual difference. As

in the case of the current position, each viewport has to keep a separate text position

if we want to protect the images on a viewport when we display images on other

viewports.
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Chapter Five

Basic Graphics Functions

This chapter describes some basic graphics functions that an application

program can invoke to use graphics devices. These functions are in the GRSS

component of the DIGRAM system and can be divided into two categories, namely,

the graphics input functions and the graphics output functions. This chapter justifies

the choice of functions and explains the principle of the functions chosen.

Appendix B describes these functions in more detail.

5.1 Graphics Input Functions

A graphics application program can obtain input from an input device by

calling a graphics input function. Each graphics input function also translates the

input into a form suitable for use by the program. As we have mentioned in section

3.1.3 on page 31, the device interface for the graphics system allows the graphic

system to obtain synchronous input from the virtual valuator device, the virtual

locator device and the virtual keyboard device, and asynchronous inputs from the

virtual button device and the virtual keyboard device. Thus, a program may obtain

input from those virtual input devices by invoking the appropriate graphics input

functions.

The virtual valuator device produces a device independent value, namely, a

floating point number between 0.0 and 1.0. Similarly, the virtual locator device

produces two device independent values, each of which is a floating point number

between 0.0 and 1.0. When a program calls the graphics input function of either of
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those two devices, the graphics input function invokes the appropriate virtual

graphics device instruction and returns the device independent input values.

A graphics application program can call a keyboard function to read or

peek at the next character in the input buffer of a virtual keyboard device. This

keyboard function is a graphics input function. The virtual keyboard device returns

the numeric value (for example, the ASCII value) of the input character if the input

buffer is not empty. Each graphics input function for the virtual keyboard device

waits until a character can be obtained from the input buffer, gets a character from

the input buffer, translates that character, and returns the translated character. That

translation process is described below.

5.1.1 Input Character Translation

A keyboard function peeks or reads a character from the keyboard, and

translates that character for the graphics application program. The function also

treats certain characters as special characters to simulate a rudimentary character

interrupt facility.

A graphics application program can build a more flexible input module if

the graphics system translates input from the virtual keyboard device for that

program. The program may want to translate the characters typed on the keyboard

before using those characters. For example, a program may need case insensitive

keyboard inputs. The program can get the graphics system to change all lower case

characters to the corresponding upper case characters. This section describes how a

program can get the graphics system to translate keyboard inputs.

A keyboard function uses the keyboard character translation table in the

character translation process. That table is an array consisting of either functions or
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the numeric codes of characters. The keyboard function reads in a character,

obtains the table entry for that character, and uses that table entry to translate the

character.

If the table entry is the numeric code for a character, then the keyboard

function returns the character corresponding to that numeric code as the input

character. For example, the function may return the ASCII character corresponding

to that integer.

If the table entry is a function, then the keyboard function calls that table

entry function with the integer value corresponding to the input character as

argument. The table entry function should return either a character or a special

value. If a character is returned, then the keyboard function returns that character.

If the special value is returned, then the keyboard function pretends that it has not

read a character yet, reads another character, and translates that new character.

5.2 Graphics Output Functions

A graphics application program can display images on a display screen by

using a graphics output function. Those functions are higher level graphics display

functions that support the concept of viewports as virtual screens. A program can

use those functions to draw lines and triangles, combine boxes and print text. Those

functions are described in more detail below.

5.2.1 Line Functions

An application program can construct images more easily with functions

that can display higher level basic graphics images. One of the higher level basic

graphics images that the DIGRAM system supports is the line. The program can
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use the line as a basic image to build a more complicated image. The line displaying

facility is based on the model of a vector graphics display.

The vector graphics display model is easy to understand and use because

the model is simple. Each display screen has a current position. A graphics

application program can draw a line from the current position to another point on

the display screen and make that point the new current position. Thus a program

can draw a polygon that represents the outline of an object with that operation. It

can also draw several separate images since it can change the current position

without drawing a line on the screen. Using a vector graphics display is simple if we

consider the display screen as a sheet of paper and the current position as the point

of a pencil.

In a graphics system that supports viewports, each viewport can be

considered a virtual screen. Each vector graphics display screen has a current

position. Similarly, each viewport has a current position. The line drawing

functions use that current position to draw lines in a viewport just as in a vector

graphics display. [hus each viewport is like a sheet of paper and the current

position in that viewport is like the point of a pencil. Since a display screen may

have several different viewports and different graphics programs may display

images on different viewports, we can think of the display screen as a table where

several people are drawing on different sheets of paper.

Consider the analogy between having several viewports on a display screen

and having several sheets of paper on the same table. A picture is seldom drawn on

several adjacent or overlapping sheets of paper since the sheets may be moved

around. A useful drawing on another sheet of paper may also be damaged.

Similarly, an image is seldom displayed on several different viewports. In the

graphics system, an image cannot be drawn outside a viewport. Each line drawing
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function can only draw the part of the line within the desired viewport. Clipping a

line image protects images in adjacent viewports when a program draws a line since

viewport areas on a screen do not overlap.

The graphics system provides four line drawing functions. A graphics

application program can specify a new current position for a viewport in absolute

screen coordinates using the MOVE-ABS function, or relative to the old current

position using the MOVE-REL function. It can also draw a line from the old

current position to a new position specified in absolute screen coordinates using the

DRAW-ABS function, or to a new position that is relative to the old current position

using the DRAW-REL function. For the last two functions, the graphics system

changes the current position to the new position. The program can also specify the

line drawing mode for each of the lines drawn since the virtual graphics display

supports the drawing of lines in four different modes (see section 3.1.4 on page 32).

5.2.2 Triangle Function

Another useful basic graphics function is the triangle. The triangle divides

the screen into two regions, namely, the inside and the outside. The inside of the

triangle is shaded according to the mode the triangle is displayed while the outside

of the triangle remains unchanged.

A solid image of arbitrary shape can be approximated by a polygon. That

polygon can be decomposed into several triangles so that every point in the polygon

is in one of those triangles and every point in each triangle is in the polygon. Thus, a

program can display a solid image by displaying all the triangles that make up that

image.

Triangles have been chosen as basic solid images because triangles are the
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simplest non-trivial polygons. As can be seen from Figure 5-1, any polygon can be

decomposed into triangles. Since a polygon of arbitrary shape may be represented

by the concatenation of several triangles, a program can translate and scale a

polygon by translating and scaling the component triangles. A triangle is also an

easy basic solid image to construct since every triangle is convex. Thus, triangles are

ideally suited as basic images for displaying solid images.

The graphics system user can decompose a polygon into triangles by hand

before presenting that polygon to an application program. However, a polygon is

usually represented by its ordered set of vertices. The graphics application program

should be able to decompose the polygon, which is represented as an ordered set of

vertices, into triangles. In the paper Triangulating a Simple Polygon19, Garey,

Johnson, Preparata and Taijan outline an algorithm to triangulate an arbitrary n-

vertex simple polygon that is not necessarily convex in time 0 (n log n). That

algorithm uses the "regularization" procedure described in the paper Location of a

Point in a Planar Subdivision -and its Applications20 by Lee and Preparata to

preprocess the polygon. A program can use that algorithm to triangulate a polygon

that is presented as an ordered set of vertices.

A graphics application program can display a triangle with the triangle

function. Since the virtual graphics display can display a triangle in four different

modes (see Section 3.2.1 on Page 35), the triangle function can display the triangle in

four different modes. The triangle function also clips the triangle and displays only

that portion of the triangle that is within the viewport. As in the case of line

functions, clipping the image displayed protects images displayed in other

viewports.
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5.2.3 Box Function

A graphics application program can construct the images in a viewport

with basic line and triangle images. A program can also manipulate those images

with the box function. The box function takes two rectangles of the same size and

shape from two viewports -- the two viewports may be the same -- and combines the

corresponding pixels in those two rectangles. The result is stored in one of the

rectangles.

The graphics system implements the box function with the virtual graphics

device's box instruction. The box instruction can combine two rectangles in several

different ways. For a display with only two intensities, a program can use the box

combination mode (see Section 3.2.2 on Page 39) to indicate how the box function

should combine the two boxes.

All graphics display operations should affect only the interior of a

viewport. The box function clips the two rectangles to be combined to comply with

that constraint. Only the rectangular area that is within the viewport of the source

and destination rectangle is combined. The graphics application program has to

ensure that both the source rectangle and destination rectangle are totally within

their respective viewports if no clipping of the combined image is desired.

The box function has been included in the graphics system because that

function is useful. A program can copy, mix together, erase, or move images rapidly

using that function. Thus, a program will not have to create every image from

scratch with only basic triangle and line images.
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5.2.4 Text Functions

The basic idea behind the text functions is that a graphics application

program can define several sets of basic text images and display those images

rapidly. Each basic text image is called a character, and each set of basic text images

is called a font. A character is usually a small image with a constant size and shape.

A program can display a text string with the text function. A program can also

display a cursor or other small symbolic images on a viewport with the textfunction

if a character in a given font has the appropriate shape.

The graphics system may obtain a font in several different ways. The

graphics system, itself, may provide a font initially so that a program may display

messages conveniently. Usually this font is a standard set of characters. A graphics

application program user can also use a program to create a new font. That program

is usually called afonts editor. Finally, a program may also load a new font from a

font file.

When a program invokes the text function, the function displays a

character at the text position and updates the text position. A program can print

several characters by calling the text function with a text string and a font to print

the text string. The text function prints the text string as if the program called the

text function to print all the characters in the text string in order. Thus, a graphics

application can use the text function to print a convenient message on the display

screen.

Information on the size of each character is useful to a program. The

program may use this information to decide where and how to display an image.

The graphics system has several functions that provide that information to a

program.

64



The text functions include the function to display text, the functions to

load and dump fonts, and the functions that provide information on a given font.

Thus, a graphics application program requires many functions to manipulate text.

However, the graphics system has text functions because almost every program

displays text on a display screen.
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Chapter Six

Conclusion

The highlights of the DIGRAM system are summarized in this chapter.

This chapter also describes an implementation of the DIGRAM system. Finally, a

list of ftirther research topics in this area is given.

6.1 Summary

The device independent graphics manager is a graphics system that is built

as an extension to a computer language that runs on a computer with suitable

graphics devices. This graphics system has been designed with several goals in

mind. The first goal is to ease the development of portable graphics application

programs. The second goal is to be a portable graphics system that is both machine

independent and device independent. The third goal is to have a modular design.

The fourth goal is to allow two or more programs display images on a screen so that

the images from different programs do not interfere with one another. The last goal

is to be general enough to support a wide variety of programs. A brief summary of

the main features of the graphics system is given below.

One feature of the graphics system is that it is transportable. The idea of

implementing a portable graphics manager using a device interface for the graphics

system is similar to the idea of implementing the Pascal language processor using P-

code. Basically, we choose a high level language and a small low level virtual

machine, create a compiler that compiles programs in that language to run on the

virtual machine, write the compiler and run-time system in that language, and

66



compile the compiler and the run-time system for that virtual machine. Thus, both

the compiler and the run-time system do not have to be implemented for each new

computer if the small virtual machine can be implemented on that computer. A
program in that language can run on any computer that simulates the virtual

machine, and that small virtual machine is easier to implement than a large

compiler, or a run-time system.

Similarly, the graphics application program and the graphics system can be

implemented in a high level language. A device independent graphics compiler is

then used to compile the graphics application programs and the graphics system to

run on a small virtual graphics device and a small virtual machine. When a virtual

graphics device have been implemented to use any real graphics devices, all the

compiled graphics programs can use those graphics devices. Thus, the large

graphics system does not have to be implemented again to use new graphics devices.

The virtual graphics device supports four types of instructions, namely,

setup, query, input, and output instructions. To increase the portability of graphics

programs, the query instructions provide device dependent information. The input

instructions can obtain inputs from the locator, valuator and keyboard device

synchronously, and the button and keyboard device asynchronously. The output

instructions can draw lines, draw triangles, and combine boxes in several different

ways. The output instructions can also display text. The graphics system uses those

output instructions to implement viewports as virtual screens on a real display

screen.

Viewports are similar in concept to virtual memory systems. In the virtual

memory system, the memory manager divides the address space of a machine into

several virtual memory spaces and assign a virtual memory space to each program.

Similarly, the viewport area allocator divides a real display screen into several virtual
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screens and assigns a virtual screen to each program. Those virtual screens are

called viewports. Several programs can display images on different viewports on a

screen without confusion. Thus, every program can run faster since it does not have

to display images on the whole screen.

The graphics system provides functions to create, modify, and destroy

viewports. The graphics system also provides several higher level graphics

functions. A graphics application program can use those functions to obtain input

from graphics input devices or generate output on a display screen.

The graphics input functions can interact either asynchronously or

synchronously with a program. The synchronous input functions return inputs from

graphics input devices like the keyboard device, the locator device or the valuator

device. The asynchronous input functions generate interrupts in the underlying

language. A program can process those interrupts when they occur.

A program can use graphics output functions to draw lines, draw triangles,
combine boxes and display text. Those functions cannot affect the area of the

screen outside the specified viewports. That program can use the line, triangle and

box functions in several different modes. Those modes are similar to the modes for

the corresponding output instruclion in the virtual graphics device. Output modes

have been systematically encoded for completeness and convenience.

The graphics system provides a graphics application programmer with

high level graphics functions. Moreover, the graphics system and the graphics

application program are both device independent. Thus, a graphics application

programmer can develop programs quickly and modify those programs to use new

graphics devices on other machines easily.
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6.2 Some Implementation Details

The three computers used to implement the DIGRAM system are the

MIT-XX computer, the MIT-DMS computer and the Apollo personal computer.

The MIT-XX computer and the MIT-DMS computer are a TOPS-20 computer and

a PDP-10 computer respectively manufactured by the Digital Equipment

Corporation. Most of the graphics software was written and compiled on these two

computers. The graphics system uses the display of the Apollo personal computer

as a real display device. There are also networks connecting these computers.

The language MDL (and its support software) is available on MIT-XX,

MIT-DMS, and the Apollo personal computer. The DIGRAM system uses three

components of the MIM (Machine Independent MDL) language processor. The

first component is MIMI (MIM Interpreter) which is the interpreter for MIM

instructions, the second is MIMC (MIM Compiler) which compiles MDL programs

to MIM instructions, and the third is MIMOC (MIM Open Compiler) which

compiles MIM instructions and hence a MDL program to the instructions for a

specific computer. There are working versions of MIMI, MIMC and MIMOC for

the Apollo personal computer and the MIT-XX computer on the MIT-XX

computer.

Since the DIGRAM system is similar to the MIM language processor in

many ways, the two compilers in the DIGRAM system do not have to be

implemented from scratch. The DIGCOM compiler can be implemented by

modifying the MIMC compiler, and the GODCOM compiler can be implemented

by modifying the MIMOC compiler. Similarly, since the graphics system is always

embedded in a machine independent language processor to ensure that the

application program is portable, the language compiler can always be modified to

compile graphics instructions. Hence, it is not necessary to describe the DIGCOM
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and GODCOM compiler in this thesis.

The Apollo personal computer uses a Motorola M68000 microprocessor

and has an assembler for that microprocessor. Thle virtual graphics device was

written in assembly language and integrated with the MIM interpreter on the Apollo

computer. The instructions in that virtual graphics device are available to a properly

compiled application program.

The Apollo personal computer provides some vector graphics operations

and raster operations. However, those operations can operate only in one mode.

The vector graphics operations provided can draw lines but not erase lines.

Similarly, a program can only copy boxes using the raster operations. Moreover,

those operations only affect the display memory. The machine does not provide

operations to display triangles either. Clearly, the graphics system has to simulate

virtual display instructions to display lines and triangles in different modes and in

both non-display and display memory. Similarly, the graphics system has to

simulate instructions to combine boxes in different modes for both display memory

and non-display memory. These were implemented in the DIGRAM system for the

MDL running on the Apollo personal computer.

The Apollo personal computer provides an instruction to display text.

However, that machine does not provide the vertical and horizontal sizes of each

character. The virtual graphics device estimates and makes available the sizes of

each character.

The Apollo personal computer also provides a text cursor and a rectangle

display instruction. However, the DIGRAM system does not have basic graphics

functions that use those display operations. On other display devices, there are

probably some other display operations that the Apollo computer does not support.
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Since all those instructions are display dependent, they are not used for the sake of

portability.

If a graphics application program displays all the objects in the world using

graphics output functions, the graphics system will only display the images of

objects in the window on the viewport. Thus, the program does not have to know

about viewports, or the display screen. A clean separation of the data displayed

from the display device is possible.

6.3 Suggestions For Further Research

Further work in this area can proceed in several different directions.

Interesting application packages can be built using the graphics system. The

graphics system may also be modified to use other types of graphics hardware. A

theoretical basis of storing and compressing images generated by device

independent graphics software can be developed. The possibility of using the same

technique to allow programs written in a higher level language to control other

peripheral devices in a machine independent manner may also be considered.

One obvious way of extending the DIGRAM system is to build several

useful graphics application programs. Some examples of programs that can be built

are programs to display three dimensional images, solid polygons using triangles

(see Section 5.2.2 on Page 60), or animated images. A library of useful programs

that has a graphics editor, a fonts editor, a facsimile image display program, a

network modelling program, or a page layout program can also be built.

The graphics system can be used with different graphics input and output

devices. The graphics input system can be improved when more graphics input

devices becomes available. The DIGRAM system can also be extended to display
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several bit-planes as different colours or shades if those display devices can be

obtained. Research on the optimal choice of display functions for those devices

have yet to be carried out.

Efficient methods for storing images on the screen, compressing those

irages, and converting those images to a form suitable for hard-copy reproduction

still do not exist. Perhaps, since only graphics output functions are used to create

images, those images can be stored in a form independent of the device and

application. This form may even be compact.

In this thesis, the Pascal P-code idea has been used to extend a high level

language so that programs that control two different classes of peripheral devices,

namely, graphics input devices and graphics display screens can be written. An

interesting extension to the proposed scheme is to allow user programs to control

other classes of peripheral devices. Perhaps, device independent instructions for

other peripheral devices can be designed in the same manner. Some other classes of

peripheral devices that we may use this scheme on are graphics input devices,

graphics output devices, hard copy devices, some robotic devices, secondary storage

devices, and computer networks.
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Appendix A

Viewport Manager Functions

The Graphics Run-time Support Sub-system (GRSS) supports the

functions described below. A program may call those ftinctions to manage

viewports on a display screen.

INIT-S (dx:FIX dy:FIX mnem:<UVECTOR [REST FIX]> fcn:APPLICABLE)
This function makes mem a screen (that is, a bit-map memory)
with dx pixels in the horizontal direction and dy pixels in the
vertical direction, and sets fcn as the default viewport display
function for that screen. The function INIT-S also creates a
viewport that covers the whole screen, and returns the new
screen.

INIT-V ("OPTIONAL"fcn:APPLICABLE numw:FIX border:FIX)
This function initializes the viewport management system. It also
sets fcn as the default viewport redisplay function, sets the default
size of the rectangular area of each new viewport such that numw
viewports can be placed on the display screen without overlap,
and sets border pixels as the default distance between each pair of
viewports on the screen. The default for fcn is ,CLEAR-
VIEWPORT, the default for numw is three, and the default for
border is five pixels. The function INIT-V creates and returns a
viewport that covers the whole display screen.

SHOW-V (scr:SCREEN "OPTIONAL" xs:FIX ys:FIX xe:FIX ye:FIX)
This function redisplays the images in all the viewports in the
region specified by the rectangle whose diagonal is from (xs, ys)
to (xe, ye). The function SHOW-V redisplays the whole screen if
only the screen is specified, and always returns the ATOM T.

FIND-V (scr:SCREEN x:FIX y:FIX)
This function finds a viewport located at (x, y). The function
FIND-V returns either the viewport located at that point, or a
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FALSE if no viewport is located at that point.

OPEN-V (scr:SCREEN "OPTIONAL" fcn:APPLICABLE xs:FIX ys:FIX xe:FIX
ye:FIX)
This function creates a new viewport with a rectangular shape --
the diagonal is specified by the line from (xs, ys) to (xe, ye) -- on
the screen without having any part of the new viewport off the
screen. That new viewport has the highest order (see Chapter 4)
among the active viewports. The function OPEN-V returns that
new viewport.

CLOSE-V (view:VIEWPORT)
This function closes the viewport view and updates the screen so
that the viewport vanishes. The viewport view will no longer be
active and the graphics system will not display images for that
viewport on the screen. The function CLOSE-V returns the
closed viewport.

RESET-V (view:VIEWPORT "OPTIONAL" fcn:APPLICABLE xs:FIX ys:FIX
xe:FIX ye:FIX)
This functiop resets the closed viewport view so that the viewport
looks like a freshly opened viewport. The function RESET-V
allows the user to recycle a closed viewport, but does not affect an
active viewport. This function returns the freshly reopened
viewport.

GROW-V (view:VIEWPORT xs:FIX ys:FIX xe:FIX ye:FIX)
This function tries to change the location, size, and shape of the
viewport view so that the rectangular area of that viewport is a
rectangle whose diagonal is specified by the line from (xs, ys) to
(xe, ye). The new rectangular area of that viewport is completely
on the display screen. The function GROW-V returns either the
modified viewport, or a FALSE with a message if the viewport is
no longer active.

MOVE-V (view:VIEWPORT dx:FIX dy:FIX)
This function tries to move the rectangular area of the viewport
view on the display screen by dx in the horizontal direction, and
dy in the vertical direction, without moving the viewport off the
screen. Note that the function clears the new viewport area if any
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part of the rectangular area of that viewport is covered in either
the old or the new viewport location. Otherwise, the function
moves the original image to the new location. The function
MOVE-V returns either the modified viewport, or a FALSE with
a message if the viewport is no longer active.

PUSH-V (view:VIEWPORT)
This function changes the order (see Chapter 4) of all the
viewports on the screen so that the viewport view has the lowest
order. If the rectangular area of any other viewport overlaps the
rectangular area of that viewport, the overlapped portion of the
rectangular area of that viewport will not be visible. The function
PUSH-V updates the images on the display screen accordingly,
and returns either the modified viewport, or a FALSE with a
message if the viewport is no longer active.

POP-V (view VIEWPORT)
This function changes the order (see Chapter 4) of all the
viewports on the screen so that the viewport view has the highest
order. The rectangular area of that viewport becomes the
viewport area of that viewport. The function POP-V updates the
images on the display screen accordingly, and returns either the
modified viewport, or a FALSE with a message if the viewport is
no longer active.
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Appendix B

Basic Graphics Functions

The Graphics Run-time Support Sub-system (GRSS) supports the

functions described below. A program may call those functions to obtain an input

or generate an output on a graphics device.

B.1 Graphics Input Functions

A DAPS program may use the following functions to obtain graphics input

from a graphics input device.

TTY-READCHR 0
This function reads a character from the keyboard, and returns
that character after translating that character using TTY-CHAR-
TABLE, if necessary. This function is similar to the MDL TYI
function in that the function waits for input before returning.
Note that this function does not display the input character on
the screen.

TTY-NEXTCHR 0
This function peeks at the next character typed on the keyboard.
The function TTY-NEXTCHR always returns the next character
that the function TTY-READCHR will return, after translating
that character with TTY-CHAR-TABLE if necessary. Note that
this function does not display the peeked character on the screen.
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B.2 Graphics Output Functions

A program may use these functions to generate graphics output on a

display screen.

DRAW-ABS (view:VIEWPORT x:FIX y:FIX)
This function draws a line from the current position in the
viewport view to the point (x, y) and changes the current position
to that new position. The function DRAW-ABS returns either
the viewport after drawing the line in the viewport area of the
viewport, or a FALSE if the viewport is no longer active.

DRAW-REL (view:VIEWPORT dx:FIX dy:FIX)
This function draws a line from the current position in the
viewport view to the point dx horizontally and dy vertically
relative to the current position, and then changes the current
position to that new position. The function DRAW-REL returns
either the viewport after drawing the line in the viewport area of
the viewport, or a FALSE if the viewport is no longer active.

MOVE-ABS (view:VIEWPORT x:FIX y:FIX)
This function moves the current position of the viewport view to
(x, y) and returns the viewport with the new current position.

MOVE-REL (view: VIEWPORT dx:FIX dy:FIX)
This ftnction changes the current position of the viewport view
by dx horizontally and dy vertically and returns the viewport with
the new current position.

DRAW-TRI (view:VIEWPORT xl:FIX y1:FIX x2:FIX y2:FIX x3:FIX y3:FIX
mode:FIX)
This function fills the part of the triangle with vertices at (xl, y),
(x2, y2) and (x3, y3) that is in the view viewport in the manner
specified by the mode triangle mode (see Section 3.2.1 on Page
35). The function DRAW-TRI returns either the viewport after
filling the part of the triangle in the viewport, or a FALSE if the
viewport is no longer active.

MIX-BOX (vs:VIEWPORT vd:VIEWPORT xs:FIX ys:FIX xd:FIX yd:FIX dx:FIX
dy:FIX mode:FIX)
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This function combines the source and the destination area in the
manner specified by the mode box combination mode (see
Section 3.2.2 on Page 39), and puts the result in the destination
area. The MIX-BOX function considers the source area as the
rectangle dx wide and dy high with the top left corner at (xs, ys)
in the source viewport vs, and the destination area as the
rectangle dx wide and dy high with the top left corner at (xd, yd)
in the destination viewport vd.

WRITE-STR (view:VIEWPORT output:STRING "OPTIONAL" font-id:FIX
number-of-char: FIX)
This function returns either the viewport after displaying the
string, or a FALSE if the viewport is no longer active.

POSN-STR (view:VIEWPORT x:FIX y:FIX)
This function changes the text position of the viewport view to (x,
y), and returns the viewport after modifying the text position.

SIZE-STR (outpu:STRING "OPTIONAL" font-id:FIX number-of-char: FIX)
This function returns the number of pixels needed to display
number-of-char characters of the string output using the font font-
id.

LOAD-FNT (file-naine:STRING)
This function loads a font from the file file-name if possible, and
returns the font-id of the new font.

DUMP-FNT (font-id:FIX)
This function dumps the font font-id so that room for another
font will be available.

YMIN-FNT (font-id:FIX)
This function returns the number of pixels from the lower bound
of fontfont-idto the base line.

YMAX-FNT (font-id:FIX)
This function returns the number of pixels from the upper bound
of font font-id to the base line.
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Appendix C

Virtual Graphics Device Instructions

The Device Interface for the Graphics System (DIGS) supports the

instructions described below. Those instructions are actually instructions for a

virtual graphics device. The Graphics Run-time Support Sub-system (GRSS) and

the Display Application Package Sub-system (DAPS) software may use those

instructions to obtain input or display output on a real graphics device.

DRW-LNE (xl:FIX yJ:FIX x2:F1X y2:FIX mode:FIX)
This instruction draws a line from (xl, y1) to (x2, y2) in mode line
drawing mode (see Section 3.2.1 on Page 35).

FIL-TRI (xJ:FIX yJ:FIX x2:FIX y2:FIX x3:FIX y3:FIX mode:FIX)
This instruction fills the solid triangle with vertices (xl, yi), (x2,
y2) and (x3, y3) in mode triangle filling mode (see Section 3.2.1
on Page 35).

BLT-BOX (s-xx:FIX s-yy:FIX d-xx:FIX d-yy:FIX b-dx:FIX b-dy:FIX mode:FIX)
This instruction combines the source and the destination area in
the manner specified by the mode box combination mode (see
Section 3.2.2 on Page 39) and puts the result in the destination
area. The source area is the area starting at (s-xx, s-yy) and of
size b-dx wide and b-dy high, and the destination area is the area
starting at (d-xx, d-yy) and of size b-dx wide and b-dy high.

WRT-STR (output:STRING number-of char:FIX font-id:FIX tpx:FIX tpy:FIX)
This instruction displays the first number-ofchar characters of
output string on the display screen starting at location (px, tpy)
using the font-id font.

SIZ-STR (output:STRING number-of-char:FIX font-id:FIX)
This instruction returns the horizontal width needed to display
number-of-char characters of output string on the screen using
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font-id font.

LOAD-FN (file:STRING)
This instruction loads the font file specified by file from the disk
onto the display device, and returns the font-id of that font.

DUMP-FN (font-id:FIX)
This instruction unloads the font-id font from the display device
so that other fonts can be loaded.

YM IN-FN (font-id:IX)
This instruction returns the maximum lower bound from the
base-line of all the characters in the font-id font.

YMAX-FN (fbni-id:FIX)
This instruction returns the maximum upper bound from the
base-line of all the characters in the font-id font.

CPX-MIN 0
This instruction returns the minimum horizontal position of the
display screen.

CPY-MIN 0
This instruction returns the minimum vertical position of the
display screen.

CPX-MAX 0
This instruction returns the maximum horizontal position of the
display screen.

CPY-MAX 0
This instruction returns the maximum vertical position of the
display screen.

CIN-CHR 0
This instruction returns a character if the input buffer is not
empty, or a FALSE if the buffer is empty.

INIT-GR 0
This instruction borrows the graphics display screen from the
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operating system.

DONE-GR 0
This instruction returns the graphics display screen to the
operating system.

GET-MEM 0
This instruction returns the display memory as a UVECTOR.

81



Appendix D

Clipping a Triangle

This appendix describes how the graphics system clips and displays a

triangle on a display screen. The first section describes a technique for dividing a

clipped triangle into seveial smaller triangles, and the second section describes how

we can implement that technique.

D.1 A Technique for Clipping Triangles

The graphics system clips each triangle image on a viewport before

displaying that triangle on a display screen. When the graphics system clips a

triangle, the resultant truncated triangle will look like a polygon. The graphics

system can easily divide that polygon into several smaller triangles, and display

those triangles on the screen using the virtual graphics device's triangle instruction.

One way of dividing a clipped triangle into several smaller triangles is given below.

The triangle function in the graphics system can clip a triangle so that only

that part of the triangle in a rectangular region on the display screen is visible. Since

the visible region is rectangular, the function can clip a triangle in two orthogonal

directions in two stages. It can clip the triangle vertically first, and can decompose

the resultant polygon into several smaller triangles. Then, it can clip those smaller

triangles horizontally in a similar manner, and decompose the clipped polygons into

still smaller triangles. Since those triangles are parts of the main triangle, the

function can display the clipped triangle on the display screen by displaying the

component triangles.
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Figure D-I: Clipping a Triangle Horizontally.

Figure D-1 above shows how the triangle function can clip a triangle

horizontally and can decompose that clipped triangle into several smaller triangles.

The function can clip a triangle in four ways if the right boundary i beyond the

right vertex, three ways if that boundary is between the center and right vertex, two

ways if that boundary is between the left and center vertex, and one way if that

boundary is to the left of the left vertex. When it divides the polygon -- obtained by

clipping a triangle horizontally -- into smaller triangles, it does not have to create
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more than three smaller triangles. The outline of those smaller triangles are shown

as bold lines in Figure D-1.

If the triangle function clips the main triangle horizontally and then clips

the component triangles vertically in the same manner, it will obtain several smaller

triangles that together represent the clipped portion of the main triangle. Since

clipping a triangle horizontally may create three smaller triangles, and clipping one

of those triangles vertically may create three other triangles, the function may create

as many as nine smaller triangles from one triangle. Because of the geometry of

triangles, it can obtain only eight smaller triangles by clipping a triangle in this

manner. Since clipping a triangle efficiently may create as many as five component

triangles in the worst case, this simple technique of dividing a triangle is not too

inefficient.

We can consider a viewport as a concatenation of several rectangles. If the

triangle function clips and displays the image of a triangle in all the rectangular

regions of a viewport, then the clipped image of the triangle will be visible in that

viewport. The next section describes an implementation of the algorithm to clip and

display a triangle in a rectangular region.

D.2 Implementing the Clipping of a Triangle

This section describes an implementation of the triangle clipping algorithm

in MDL. One can implement that algorithm in any other language in a similar

manner. Since all the arguments are located on the stack, the program to clip a

triangle does not generate any garbage. Thus, that algorithm can be the basis for a

very efficient way of clipping and displaying a solid polygon if a graphics

application program can represent each polygon by its component triangles.
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There are two functions in the triangle clipping algorithm. The first

function clips a triangle vertically into three or fewer small triangles, and then calls

the second function for each of the component triangles. The second function clips

a triangle horizontally into three or fewer small triangles, and calls the triangle

instruction to draw the small triangles on the display screen. The two functions are

similar with the horizontal and vertical arguments interchanged. So only the second

function will be explained.

;"Triangle clipped horizontally."
<DEFINE DRAW-TRI2 (XS XE X1 Y1 X2 Y2 X3 Y3 MODE "AUX" YA YB YC TMP)
#DECL ((XS XE X1 Y1 X2 Y2 X3 Y3 MODE YA YB YC TMP) FIX)
<COND (<G? .X1 .X2>

<SET TMP .Yl> <SET Y1 .Y2> <SET Y2 .TMP>
<SET TMP .Xl> <SET X1 .X2> <SET X2 .TMP>)>

<COND (<G? .X1 .X3>
<SET TMP .Yl> <SET Y1 .Y3> <SET Y3 .TMP>
<SET TMP .Xl> <SET X1 .X3> <SET X3 .TMP>)>

<COND (<G? .X2 .X3>
(SET TMP .Y2> (SET Y2 .Y3> <SET Y3 .TMP>
<SET TMP .X2> <SET X2 .X3> <SET X3 .TMP>)>

<COND
(<L? .X3 .XE>
<COND (<G? .X1 .XS>

<CALL SYSCALL ,DRW-TRI .X1 .Y1 .X2 .Y2 .X3 .Y3 .MODE>)
(<G? .X2 .XS>

(SET YA <+ .Y1 </ <* <- .XS .Xl> <- .Y2 .Yl>> <- .X2 .X1>>>>
<SET YB <+ .Y1 </ <* <- .XS .Xl> <- .Y3 .Yl>> <- .X3 .X1>>>>
<CALL SYSCALL ,DRW-TRI .XS .YA .X2 .Y2 .XS .YB .MODE>
<CALL SYSCALL ,DRW-TRI .XS-.-YB .X2 .Y2 .X3 .Y3 .MODE>)

(<G? .X3 .XS>
<SET YA <+ .Y2 </ <* <- .XS .X2> <- .Y3 .Y2>> <- .X3 .X2>>>>
<SET YB <+ .Y1 </ <* <- .XS .Xl> <- .Y3 .Yl>> <- .X3 .X1>>>>
<CALL SYSCALL ,DRW-TRI .XS .YA .XS .YB .X3 .Y3 .MODE>)>)

(<L? .X2 .XE>
<COND (<G? .X1 .XS>

<SET YA <+ .Y2 </ <* <- .XE .X2> <- .Y3 .Y2>> <- .X3 .X2>>>>
<SET YB <+ .Y1 </ <* <- .XE .Xl> <- .Y3 .Yl>> <- .X3 .X1>>>>
<CALL SYSCALL ,DRW-TRI .XE .YA .X2 .Y2 .XE .YB .MODE>
<CALL SYSCALL ,DRW-TRI .X1 .Y1 .X2 .Y2 .XE .YB .MODE>)

(<G? .X2 .XS>
(SET YA <+ .Y2 </ <* <- .XE .X2> <- .Y3 .Y2>> <- .X3 .X2>>>>
<SET YB <+ .Y1 </ <* <- .XE .Xl> <- .Y3 .Yl>> <- .X3 .X1>>>>
<CALL SYSCALL ,DRW-TRI .XE .YA .X2 .Y2 .XE .YB .MODE>
<SET YA <+ .Y1 </ <* <- .XS .Xl> <- .Y3 .Yl>> <- .X3 .X1>>>>
<CALL SYSCALL ,DRW-TRI .XS .YA .X2 .Y2 .XE .YB .MODE>
<SET YB (+ .Y1 </ <* <- .XS .Xl> <- .Y2 .Yl>> <- .X2 .X1>>>>
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<CALL SYSCALL
(ELSE
<SET YA (+ .Y2
<SET YB <+ .Y2
<SET YC <+ .Y1
(CALL SYSCALL
(SET YB <+ .Y1
(CALL SYSCALL

(<L? .X1 .XE>
<COND (<G? .X1 .XS>

<SET YA (+ .Y1
<SET YB <+ .Y1
(CALL SYSCALL
(ELSE
(SET YA (+ .Y1
<SET YB <+ .Y1

,DRW-TRI .XS .YA .X2 .Y2 .XS .YB .MODE>

</.<* <- .XS .X2> <- .Y3 .Y2>> <- .X3
U/ <* <- .XE .X2> <- JY3 .Y2>> <- .X3
</ <* <- .XE .Xl> >- .Y3 .Yl>> <- .X3

,DRW-TRI .XS .YA .XE .YB .XE .YC .MODE>
U/ <* <- .XS .Xl> <- .Y3 .Yl>> <- .X3

,DRW-TRI .XS .YA .XS .YB .XE .YC .MODE>

(/'(* (-

(/ (* (-

,DRW-TRI

</ * <-
U/ * <-

.XE .X1> <- .Y2 .Y1>> <- .X2

.XE .Xl> <- .Y3 .Y1>> <- .X3
X1 .Y1 .XE .YA .XE .YB .MODE>

.XS .Xl> <- .Y2 .Yl> <- .X2

.XE .X1> <- .Y2 .Y1>> <- .X2

.XE .Xl> <- .Y3 .Y1>> <-

)

X2>>>>.X2>>>>

.X1>>>>

.X1>>>>

X1>>>>
.X1>>>>

)

.Xl >

.X3 .X1>>>>
(CALL SYSCALL ,DRW-TRI .XS .YA .XE .YB .XE .YC .MODE>
<SET YB (+ .Y1 </ <* <- .XS .Xl> <- .Y3 .Y1>> <- .X3 .X1>>>>
<CALL SYSCALL ,DRW-TRI .XS .YA .XS .YB .XE .YC .MODE>)>)>>

Figure D-2: Routine to Clip a Triangle Horizontally.

Figure D-2 shows the MDL program for the second function. That

function clips the triangle horizontally. The arguments XS and XE are the lower

and upper horizontal limits of the visible rectangular region. The arguments X], Y1,

X2, Y2, X3, and Y3 are the horizontal and vertical coordinates of the three vertices

in the triangle while the argument MODE is the the mode to display the triangle.

The variables YA, YB, and YC are temporary storage for the clipped vertical

coordinates of the triangle while the variable TMP stores a temporary value during

swapping.

In the algorithm, the first three conditional statements sorts the vertices of

the triangle horizontally. The last conditional dispatches to the ten different ways of

clipping a triangle horizontally. Those ten different ways correspond to the ten

different ways of clipping a triangle shown in Figure D-1. The first section of this

appendix describes the ten different ways of clipping a triangle.
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This algorithm is simple to understand and implement. Since the graphics

system can clip triangles quickly and easily, a graphics application program can

display a polygon by displaying all the triangles that make up that polygon on a

viewport. The program does not have to know about the screen or viewport, or have

to worry about clipping the image displayed. The graphics system will clip the

image displayed automatically and displays only those parts of the image within a

viewport. Thus, the program's responsibility for the application area can be cleanly

separated from the graphics system's responsibility for the display screen.
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Appendix E

Filling a Triangle

This appendix describes a routine that implements the triangle instruction.

This instruction can fill a triangle on a display memory of any shape or size. A

triangle can be filled in on'ly four ways (see Section 3.2.1 on Page 35), if each pixel is

represented by only one bit. The routine below is an example of how a small

routine can fill' a triangle in all four modes. The routine has been implemented for

the Motorola M68000 microprocessor. The same algorithm can be used to

implement the triangle filling routine in assembly language, or even in microcode

for any other machine.

E.1 The Triangle Filling Operation

The triangle filling routine assumes that the display memory is an array of

bits. Each bit can be mapped directly to a pixel on the display screen. The bits are

also grouped together and manipulated as bytes or words. Since the display

memory is a one dimensional array of bits and the display screen is a two

dimensional array of pixels, the display memory stores the bits that represent the

pixels on a given horizontal line contiguously. The display memory also stores the

group of bits that represent the horizontal lines on the screen contiguously. Thus, a

simple mapping from the bits (and hence bytes or words) in the display memory to

the pixels on the display screen exists.

The triangle filling routine has two sections, namely, the initialization

section and the filling section. In the initialization section, the routine divides the
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triangle into two smaller triangles that can be filled more easily. In the filling

section, the routine divides each of the smaller triangles into horizontal strips, and

repeatedly calls a line filling routine to fill those horizontal strips. Since each strip is

located on a horizontal line on the display screen, the bits in the display memory

that represent the pixels on each strip are contiguous and are easily accessible.

Outline of triangle to be filled.

Upper horizontal based triangle.

Horizontal line to divide a triangle
into two horizontal based triangles.

Lower horizontal based triangle.

Figure E-1: The Two Horizontally Based Triangles in a Triangle.

The triangle filling routine divides the triangle horizontally into two

smaller triangles. The routine divides the triangle by sorting the three vertices of the

triangle vertically, and projecting a horizontal line through the middle vertex as

shown in Figure E-1. This process creates two horizontally based triangles that share

a common horizontal side. One of the two horizontally based triangles will not exist
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if one of the sides of the original triangle is horizontal. Thus, that triangle will have

only one horizontally based triangle. A horizontally based triangle is easier to fill

since the location of each horizontal strip in that triangle depends only on the two

non-horizontal sides of that triangle. Figure E-l shows the non-horizontal sides of

the upper horizontally based triangle and the lower horizontally based triangle in

bold.

The triangle filling routine can represent each horizontally based triangle

by the two non-horizontal sides of the triangle. Each side of the triangle is a line.

That line can be represented by a length, a gradient, and a position. The routine

stores the height of the triangle in place of the length of the two non-horizontal

sides, and the horizontal increment of a side when the vertical increment is one

screen line in place of the gradient of a side. The routine uses this form of the

gradient to obtain the horizontal position of a side for successive lines on the screen.

The position and the gradient have two components, namely, an integral component

and a fractional component. The fractional component allows the routine to

represent a steep side correctly. This representation of the two non-horizontal sides

of the horizontally based triangle allows the routine to calculate the two ends of

successive horizontal strips in that triangle quickly and easily.

The triangle filling routine fills the triangle from the top to the bottom.

Both ends of the first horizontal strip in the upper horizontally based triangle are

located at the top vertex of the triangle. The initialization section initializes the two

ends of the first horizontal strip for the upper horizontally based triangle to this

value. Since the upper horizontally based triangle and lower horizontally based

triangle share the same horizontal base, the initialization section may not have to

initialize the lower horizontally based triangle.

However, the programmer cannot always assume that when the routine
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fills the upper horizontally based triangle, both ends of the first horizontal strip of

the lower horizontally based triangle are automatically initialized. If the upper

horizontally based triangle does not exist, then the first strip of the lower

horizontally based triangle will not be initialized by default. Thus, the programmer

should be careful when he or she writes this part of the initialization section.

The triangle filling routine calls the line filling routine repeatedly to fill in

the horizontal strips in the triangle. The bits that represent the pixels in each

horizontal strip are located on a contiguous group of bytes or words in the display

memory since that strip falls on a horizontal line on the screen. The triangle filling

routine passes to the line filling routine the addresses of leftmost word and the

rightmost word in that group of words, and the masks for the bits in the leftmost

word and rightmost word that correspond to the pixels to be filled on the screen.

The line filling routine changes those bits in the leftmost word and rightmost word

that are masked. The line filling routine also changes all the words between the

leftmost word and the rightmost word. In this manner, the line filling routine fills in

a horizontal strip on the triangle.

The masks for the bits in the leftmost word and the rightmost word of each

strip have to be precise to allow two adjacent triangles to fit together exactly. The

triangle filling routine will display a line at the boundary of two adjacent triangles if

the boundary masks for the two triangles overlap and the routine fills the two

triangles by inverting the background intensity. To avoid this, the triangle filling

routine generates the mask for the leftmost word of a strip that is the negative of the

mask that will be generated for the rightmost word of a strip in an adjacent triangle.

Thus, two adjacent triangles will fit together perfectly since, for each horizontal line,

those two masks at the boundary are the complement of each other.

For rapid dispatch to the appropriate line filling routine, the triangle filling
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routine can initialize a register with the address of that line filling routine. Thus,

whenever the triangle filling routine has to fill a horizontal strip in the triangle, it

can call the appropriate line filling routine immediately instead of dispatching

through a table.

The program below incorporates all the ideas mentioned in this section.

The basic algorithm presented below can be altered easily for another machine.

E.2 Impleniepting the Triangle Filling Operation

Figure E-2 below shows an assembly language program that implements

the triangle instruction on the Motorola M68000 microcomputer. Below the figure

is an explanation of how the program works.

module tri
*

*-------- PREDEFINED CONSTANTS------
*

s%byte equ 3 ;shift to change bit boc. to byte loc.
s%word equ 4 ; shift to change bit loc. to word loc.
m%word equ $F ; mask to get word offset from bit offset
m%ones equ $FFFF ; an all ones mask for initialization
f%val equ $40000000 ; fractional factor
f%exp equ 14 ; 14 bits of fractional part
f%rem equ 16-f%exp ; number of bits to shift
*

*-------- REGISTER DEFINITIONS------
*

tmp equ dO ; temporary register
dl equ dl ; left increment (dxlf,,dxli)
dr equ d2 ; right increment (dxrf,,dxri)
p1 equ d3 ; left pixel position (xlf,,xli)
pr equ d4 ; right pixel position (xrf,,xri)
ml equ d5 ; left.mask
mr equ d6 ; right mask
yc equ d7 ; number of lines to fill

op equ aO ; address of fill routine (clr, not, set)
dy equ al ; byte increment to get to next line
yO equ a2 ; address of beginning of line
al equ a3 ; address of first word in line
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ar equ a4 ; address of last word in line

*-------- FILL IN A TRIANGLE

tristrt move'.1
cl r.1
move.1
move.1
link
movem.1

*

jsr
*

movem.1
unlk
addq.w
move.1
rts

*

db,-(sp)
-(sp)
aO,-(sp)
6(aO) ,db
sb,#O
aO-a4,-(sp)

; *** INITIALIZE ***

tri%dis

(sp)+, aO-a4
sb
#8,sp
(sp)+,db

; *** TERMINATE ***

*------ MAIN ROUTINE------
*

* expects: dO = xxl,,yyl; dl = xx2,,yy2; d2 = xx3,,yy3;
* d3 = dx; d4 = dy; d5 = mode;
* a2 = display memory address
* changes: dO; dl; d2; d3; d4; d5; d6; d7; aO; al; a2; a3; a4;

*

tri%dis tst.w
beq.s
cmpi.w
beq.s
cmpi.w
beq.s
rts

triOdis lea
bra.s

tri2dis lea,
bra.s

tri3dis lea
tri4dis Isr.w

ext.1
move.1

d5
triOdis
#2,d5
tri2dis
:43,d5
tri3dis

ln%cl r,op
tri4dis
ln%not,op
tri4dis
ln%set,op
#sbyte,d3
d3
d3,dy

; is triangle mode = 0 ?
; yes, then init with a clear routine
; is triangle mode = 2 ?
; yes, then init with a not routine
; is triangle mode = 3 ?
; yes, then init with a set routine
; else the mode is a no-op
; setup address of fill operation

; change to number of bytes per line
; change to long word
; initialize the increment

; sort the triangle's three vertices vertically

trilsrt cmp.w
ble.s
exg

tri2srt cmp.w
ble.s
exg

tri3srt cmp.w
ble.s

dl,dO
tri2srt
dl,dO
d2, dO
tri3srt
d2, dO
d2,dl
tri4srt

sort yl and y2 : is yl > y2 ?
if yl > y2 then exchange
exchange x2,,y2 with xl,,yl
sort yl and y3 : is yl > y3 ?
if yl > y3 then exchange
exchange x3,,y3 with xl,,yl
sort y2 and y3 : is y2 > y3 ?
if y2 > y3 then exchange
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exg d2,dl
tri4srt movem.1 dO-d2,xxi

*

*

; exchange x3,,y3 with x2,,y2
; store the results away

; calculate the gradients of the three sides of the triangle

sub.w
move. w
swap. w
swap. w
move.w
jsr
move. 1

move.w
move.w
move. w
sub.w
jsr
move. 1

move.w
move.w
move. w
sub.w
move. w
jsr
move. 1

*

*

*

dO,dl.
d1,d2
dO
dl
d2,dy12
tri%gra
dl,dx12

xxi,dO
xx3,dl
yy3,d2
yyl, d2
tri%gra
dl, dx13

xx2,dO
xx3,dI
yy3,d2
yy2,d2
d2,dy23
tri%gra
dl,dx23

; move in (y2 - yl), x1, x2

; dy12 <-- (y2 - yl)
; get slope of line (xl,yl)

cl r. 1
cl r. 1
cl r. 1
cl r. 1
move. w
move. w

move. w
mulu.w
add.l

move. 1
move. 1
move. w
bne. s
add.w
bra.s

trilbig jsr

ml
mr
p1
pr
xxip1
xxi,pr

dy, tmp
yyl,tmp
tmp,yO

dxl3,dl
dx12,dr
dyl2,yc
trilbig
dr,pr
tri2big

tri%drw

tri2big move.1 dx23,dr
move.w dy23,yc

clean the mrsks

initialize xlf to zero
initialize xrf to zero
initialize xli to x1
initialize xri to x1

initialize yO here
start from 'top' (ie. smallest yO)
now calculate 'top' absolute address

init number of lines in 1st triangle
if 1st triangle exist, then fill it

; else initialize 2nd triangle

; paint in the top triangle

; init number of lines in 2nd triangle
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to (x2,y2)

; move in x1, x3, (y3 - yl)

; get slope of line (xl,yl) to (x3,y3)

; move in x2, x3, (y3 - y2)

dy23 <-- (y3 - y2)
get slope of line (x2,y2)

; initialize and fill in the top and bottom triangle

to (x3,y3)



jsr
rts

tri%drw paint the bottom triangle

*-------- CALCULATE THE GRADIENT ------
*

* expects: dO[15:0] = xl; dl[15:0] = x2; d2[15:0] = (y2 - yl);
* [tst.w d2];
* returns: dl[15:0] <-- fix ((x2 - xl)/(y2 - yl))
* dl[31:16] <-- 6 bits fraction

tri%gra beq
sub.w
ext.1
bge

tri%neg neg.1
divu
move.w
neg.w
cl r.w
swap
beq
subq.w
neg.w
add.w
swap
asr.1
divu
swap.w

triout move.w
rts

tri%pos
*

divu

move. w
cl r.w
as r. 1
divu
swap. w
move. w
rts

tri%zro sub.w
rts

tri%zro
dO,dl
dl
tri%pos

dl
d2,dl
dl,dO
dO
dl
dl
tri%out
#1,dO
dl
d2, dl
dl
#f%rem, dl
d2,dl
dl
dO,dl

d2,dl

dl,dO
dl
#f%rem, dl
d2,dl
dl
dO,dl

dO,dl

cannot divide by zero, so ...

dl <-- x2 - x1
make dl a long word
if d2 > 0 then get positive gradient

negate dl for positive division
dl[15:0] <-- -(x2 - x1) / (y2 - yl)
dO[15:0] <-- neg. integral increment
un-negate the initial negation
dl[31:16] has the remainder
dl[15:0] has remainder
return if fractional part is zero
decrement the integer part
un-negate the initial negation
increment the fractional part
unswap again
dl has remainder * 2tf%exp
now obtain the fractional part
dl[31:16] <-- fractional increment

dl[15:0] <-- (x2 - x1) / (y2 - yl)
dl[31:16] <-- remainder
dO[15:0] <-- integral increment
d2[31:16] has remainder
d2 has remainder * 2tf%exp
now obtain the fractional part
dl[31:16] <-- fractional increment

; dl[15:0] <-- (x2 - xi)

*
*--------PAINT HALF A TRIANGLE ---

call at: tri%drw
expects: yO = address of top line first word;

dy = number of bytes in a line;
yc = number of lines to fill;
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op = address of fill operation;
pl = xlf,,xli; pr = xrf,,xri;
dl = dxlf,,dxli; dr = dxrf,,dxri

changes: yO; yc; pl; pr;
changes: al = leftmost word address;

ar = rightmost word address;
ml = positive left mask; mr = negative right mask;
tmp = temporary;

trildrw move.b
andi.w
move.w
1sr.w
move.w
lsr.w
lsl.w
move.1
add.1

move.b
andi.w
move. w
lsr.w
move.w
lsr.w
lsl.w
move.1
add.1

pl,tmp ; get pl in temporary register
#m%word,tmp ; get the 4 least significant bits
#m%ones,ml ; initialize the left mask
tmp,ml ; shift right for positive left mask
pltmp ; get pl in temporary register again
#s%word,tmp ; divide by 2t4 to get right word loc.
#s%word-s%byte,tmp ; change word to byte
yO,al ; get location of beginning of line
tmp,al ; get leftmost word location

pr,tmp ; get pr in temporary register
#m%word,tmp ; get the 4 least significant bits
#m%ones,mr ; initialize the right mask
tmp,mr ; shift right for negative right mask
pr,tmp ; get pr in temporary register again
#s%word,tmp ; divide by 2t4 to get right word loc.
#s%word-s%byte,tmp ; change word to byte
yO,ar ; get location of end of line
tmp,ar ; get rightmost word location

cmp.
blt.
bne.
eor.
bra.

tri2drw exg.
exg.

tri3drw jsr

1
s
s
w
s
1
1

add. 1
cmpi . 1
blt.s
subi .
addq.w

*

tri4drw add.1
cmpi.1
blt.s
subi.1
addq.w

al ,ar
tri2drw
tri3drw
mr,ml
tri3drw
al ,ar
ml,mr
(op)

dl ,p
#f%val,pl
tri4drw
#f%val,pl
#1,pl

dr,pr
#f%val,pr
tri5drw
#f%val,pr
#1,pr

tri5drw move.1 dy,tmp
add.1 tmp,yO

right and left pointer wrong order?
right and left pointer different?
use only left positive mask

exchange the pointers
exchange the mask
go to procedure

p1 <-- xlf,,xl
has fractional
if overflowed,

normalize
... increment

i + dxlf,,dxli
part overflowed?
then ...

fractional part ...
displacement by one

pr <-- xli,,xlf + dxli,,dxlf
has fractional part overflowed?
if overflowed, then ...

normalize fractional part ...
... increment displacement by one

need increment in data register
increment the y position
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tri%drw subi.w #1,yc
bge trildrw
rts

*

*-------

*

*

*

*

*

*

decrement the y count
continue iterating until last line

ROUTINES FOR THREE DIFFERENT FILL MODES ------

call at: ln%clr; ln%not; ln%set;
expects: al = leftmost word address;

ar = rightmost word address;
ml = positive left mask; mr = negative right mask;

changes: al; ml; mr;

ln%clr cmp.1
beq.s
and.w

1n1clr not.w
and.w
bra. s

ln2c1r clr.w
ln3clr cmp.I

bgt. s
rts

*

ln%not cmp.1
beq.s
not.w
eor.w

ln1not eor.w
bra.s

ln2not not.w
ln3not cmp.1

bgt.s
rts

*

ln%set cmp.1
beq.s
not.w
or.w

ln1set or.w
move.w
bra.s

ln2set move.w
ln3set cmp.1

bgt.s
rts

*

al ,ar
Inlcl 
mr,(ar)
ml
ml ,(al)+
1n3clr
(al)+
al ,ar
In2clr

al ,ar
Inlnot
mr
mr, (ar)
ml , (al )+
1n3not
(al)+
al ,ar
I n2not

al ,ar
lnlset
mr
mr, (ar)
ml , (al )+
#m%ones,ml
1n3set
ml , (al)+
al,ar
ln2set

al = ar -- > only one word affected
clear the right part
invert left mask (need neg. mask)
clear the left part and increment
now enter main loop
clear the center part and increment

; continue looping until right word

; al = ar -- > only one word affected
; invert right mask (need pos. mask)
; not the right part
; not the left part and increment
; now enter main loop
; not the center part and increment

; continue looping until right word

; al = ar -- > only one word affected
; invert right mask (need pos. mask)
; set the right part
; set the left part and increment

; use this constant to set
; now enter main loop
; set the center part and increment

; continue looping until right word

*-------- BEGINNING OF DATA SECTION
*

data
entry.p drw%tri

drwtri equ *
jmp tristrt
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ac drw%tri
dc.w 0

ARGUMENT BLOCKS

ds.w 1
ds.w 1
ds.w 1
ds.w 1
ds.w 1
ds.w 1

ds.1 1
ds.1 1
ds.1 1

ds.w, 1
ds.w 1

AND TEMPORARY STORAGE ------

; x coordinate of first point
; y coordinate of first point
; x coordinate of second point
y coordinate of second point

; x coordinate of third point
; y coordinate of third point

; dxfl2,,dxil2 of line (xl, yl)
dxfl3,,dxil3 of line (xl, yl)
dxf23,,dxi23 of line (x2, y2)

dy12 <-- (y2 - yl)
dy23 <-- (y3 - y2)

Figure E-2: Clipping a Triangle Horizontally.

The triangle filling routine uses thirteen registers to store various

temporary values. The routine treats the left and right ends of each horizontal strip

similarly. For each end, the routine has registers to store the horizontal location of

that end (pl, pr), for the increment to the corresponding end of the next strip (d, dr),

for the word address of that end (al, ar), and for the word mask of that end (ml, mr).

This accounts for eight of the registers. The routine also uses registers to store the

number of horizontal strips to fill in a triangle (yc), the byte increment to get to the

next horizontal strip (dy), the address of the first word in the next horizontal strip

(yO), the address of the line filling routine (op), and a temporary register for

calculating the mask (imp).

The triangle filling routine initializes various variables in the initialization

section. The routine first finds the correct line filling routine to dispatch to, and

places the address of this routine in register op. The triangle filling routine then
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*--------

*

xx1

yyl
xx2
yy2
xx3

yy3

dx12
dx13
dx23

dy12
dy23

end

to (x2, y2)
to (x3, y3)
to (x3, y3)



sorts the coordinates of the three vertices vertically, and finds the gradient of each

side of the triangle. The routine finds the gradients by calling a subroutine (the

entry point of this subroutine is located at trigra) that can calculate the gradient of

a line from the coordinates of the two end points of that line. Finally, the triangle

filling routine initializes the leftmost and rightmost end of the first horizontal strip.

The triangle filling routine fills the triangle in the filling section. The

routine calls a subroutine to fill the upper horizontally based triangle, and then calls

the same subroutine to fill the lower horizontally based triangle. The subroutine

that fills a horizontally based triangle fills that triangle one horizontal strip at a time.

That subroutine calls the line filling routine (pointed to by the register op)

repeatedly until it fills all the strips in the horizontally based triangle.

The triangle filling routine can initialize the register op with the address of

three different line filling routines. The three line filling routines are located at the

end of Figure E-2 above. They change the bits corresponding to the pixels on a line

by either clearing the bits, setting the bits, or negating the bits. These operations

correspond to three of the four triangle modes described in Section 3.2.1 on Page 35.

The line filling routines have been optimized because they are in the inner loop of

the triangle filling routine and so can affect the speed of the triangle filling routine

critically.
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Appendix F

Combining Boxes

This appendix describes how we can implement a general box combination

operation. This box combination operation can combine two rectangle in separate

display memories of diff6rent shape and size. We can combine two boxes in only

sixteen different ways if we assume that a bit represents each pixel. The routine

below shows how we can combine two boxes in all sixteen modes quickly with a

small routine. Though we have implemented the box operation for the Motorola

M68000 microprocessor, we can use the same algorithm to implement the box

operation in assembly language or even in microcode for -any other machine.

F.1 The Box Combination Operation

In this appendix, we will consider the screen as a rectangular array of

pixels that is stored as bits in the display memory. We can divide the bits in the

display memory into blocks of equal size. Two consecutive blocks of bits in the

display memory represent two consecutive lines on the screen and two consecutive

bits in a block of bits represent two consecutive pixels on the same line. We will also

assume that most machines can operate on bytes and words rather than just bits.

The box combination operation combines the pixels in two different

rectangles -- the source rectangle and the destination rectangle -- on the screen in

parallel and places the result in the destination rectangle. We can divide each

rectangle on the screen vertically into three smaller rectangles of the same height.

The pixels in the rectangle to the right and left maps to only a part of each word in
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the display memory, so we have to mask out the unused bits in each word before we

can operate on any word. The pixels in the center rectangle maps to whole words on

the display memory so we can operate on those words directly.

Since instructions that operate on words are available, the main routine

combines the bits in a word simultaneously and stores the result immediately so that

temporary storage space is not needed. If the two rectangles overlap, then we may

unintentionally alter the bits in the source rectangle before we use those bits. We

can prevent this by combining the two rectangles a line at a time and carefully

choosing the order of words to operate. If the destination rectangle is above the

source rectangle, then we should combine the top lines first. Otherwise we should

combine the bottom lines first. If the two rectangles are at the same level and the

destination rectangle is to the right of the source rectangle, we should combine the

right words first. Otherwise we should combine the left words first. If the address

of the source rectangle's first word is greater than the address of the destination

rectangle,'s first word, then the source rectangle is either below the destination

rectangle, or to the right of the destination rectangle. Thus, we require only two

different operations since we can mix the operations to combine top words first and

left words first, and we can mix the operations to combine bottom words first and

right words first.

Since we can combine boxes in sixteen different ways and each

combination can be down right or up left, we will have to write thirty two box

combining subroutines. We can avoid this by placing the address to the appropriate

combination routine in a register during initialization. When we have to use one of

the sixteen different operations in the inner loop, we place the words to be

combined in preassigned registers and jump to the required routine through the

address register. We can implement the sixteen operations using only thirty

machine instructions on a machine that has the and, or, not, and xor logical
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instructions. Thus the box combination operation can be carried out neatly and

economically.

F.2 Implementing the Box Combination Operation

We have to initialize and store fifteen different values when we use this

algorithm. We can store all those values in registers if there are fifteen registers

availabic, and we have stored the original values of those registers elsewhere. Figure

F-1 below shows the assignment of the fifteen registers in one implementation.

*

*-------- REGISTER DEFINITIONS------
*

rt equ dl ; temporary (stores value rotated out)
st equ d2 ; temporary (stores value of source)
dt equ d2 ; temporary (stores value of destination)
im equ d3 ; left partial result mask
rm equ d4 ; right partial result mask
sm equ d5 ; middle shifted out mask (1 for unused src. bits)
sh equ d6 ; src. shift count (initially right shift) + flags

yy equ d7 ; number of horizontal lines to blt
*

xx equ aD ; total number of whole long words per line to blt
tx equ al ; no. of whole long words for current line to bit
ds equ a2 ; long word increment to next line of source
dd equ a3 ; long word increment to next line of destination
as equ a4 ; address of first word of source to blt
ad equ a5 ; address of first word of destination to blt
op equ a6 ; address of routine to combine src. and dest.

*------ FLAGS DEFINITIONS ------

iflg equ 31 ; set if two src. words used for left side blt
rflg equ 30 ; set if two src. words used for right side blt
efilg equ 29 ; set if a right partial blt exists
sflg equ 28 ; set if middle shift is to the left
uflg equ 27 ; set if line shift is in the upward direction

*

Figure F-i: Register Allocation for Box Routine.
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The registers as and ad stores a pointer to the source and destination word

to be combined. Those registers are incremented until they point to the last word in

a line. Then we add the increments stored in ds and dd to as and ad to make as and

ad point to the first word to the next line. The left and right partial mask are used to

mask out the part of the rectangle to the left and the right. Since the words in the

source word may not align with the words in the destination rectangle, we shift the

source word to align with the destination word and stored the part of the word

shifted out in register rt for the next source word to combine. The routine uses the

flags to indicate the direction of the box operation (ufg), to indicate that we need an

extra source word to combine the left (lflg) and right (lflg) rectangles, and to indicate

that the rectangle is narrower than a word (eflg).

The dispatch table and the routines to combine the source and destination

word in sixteen different modes are given in Figure F-2 below.

*

*-------- CODE FOR ALL THE POSSIBLE LOGICAL OPERATIONS ------
*

* ; dispatch table for different logical operations

bigtopr dc.w bigO.opr-bigOopr
dc.w biglopr-bigOopr
dc.w big2opr-bigOopr
dc.w big3opr-bigOopr
dc.w big4opr-bigOopr
dc.w bigbopr-big0opr
dc.w big6opr-bigOopr
dc.w big7opr-bigOopr
dc.w big8opr-bigOopr
dc.w big9opr-bigOopr
dc.w bigaopr-bigOopr
dc.w bigbopr-bigOopr
dc.w bigcopr-bigOopr
dc.w bigdopr-big0opr
dc.w bigeopr-bigOopr
dc.w bigfopr-bigOopr

*

bigOopr clr.1 dt ; 0 = 0+0+0+0; D' <- 0
rts

bigfopr move.1 #-1,dt ; f = 1+2+4+8; D' <- 1
rts
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big9opr not.1
big6opr eor.1

rts
big3opr move.1
big5opr rts
bigcopr move.1
bigaopr not.1

rts
big4opr not.1
biglopr and.1

rts
big2opr not.1

and.1
rts

bigeopr and.1
not.1
rts

bigdopr not.1
big7opr or.1

rts
bigbopr not.1

or.1
rts

big8opr or.1
not.1
rts

St
st,dt

st,dt

st,dt
dt

St
st,dt

dt
st,dt

st,dt
dt

St
st,dt

dt
st,dt

st,dt
dt

9
6

3
5
C
a

;4

;2

= 1+0+0+8;
= 0+2+4+0;

= 1+2+0+0;
= 1+0+4+0;
= 0+0+4+8;
= 0+2+0+0;

= 0+0+4+0;
= 1+0+0+0;

= 0+2+0+0;

D
D'

D
D'

D'

<- S eqv D
<- S xor D

(- S
(- D
<- not S
<- not D

<- (not S) and D
<- S and D

<- S and (not D)

; e = 0+2+4+8; D' <- not (S and D)

; d = 1+0+4+8;
; 7 = 1+2+4+0;

<- (not S) or D
<- S or D

; b = 1+2+0+8; D' <- S or (not D)

; 8 = 0+0+0+8; D' <- not (S or D)

Figure F-2: Dispatch Table and Combination Operations for Box Routine.

We need only thirty machine instructions to combine the source and

destination words in sixteen modes if we have the and, or, not, and xor logical

instructions. The word combining routines assume that the source word is in

register st and the destination word is in register dt, and places the result in register

dt.

Figure F-3 shows how the box routine dispatches to the various

subroutines that actually combines the boxes.

The routine first initialize the register op so that we can call the appropriate

word combination operation easily. Then, we dispatch to either routines that
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*

*---

*

bigOdis

big1dis
big2dis

DISPATCH TO DIFFERENT BLT DIRECTION ROUTINES ------

tst.w
bge.s
rts
cmpi.w
bgt. s
1 sr.w
move. w
lea

*

btst
beq.s
btst
bne
bra

big3dis btst
bne
bra

*

rt
big2dis

#15,rt
big1dis
#1, rt
bigtopr(rt.w),dt
bigOopr(dt.w) ,op

#uflg,sh
big3dis
#sflg,sh
bigOul
bigOur
#sflg,sh
bigOdl
bigOdr

is mode negative?
continue if mode is positive

is mode greater than 15?
return if mode is greater than 15
change long word offset to word

load address of appropriate routine

is the blt in the upward direction?
no, then blt downwards
do we use the left rotate?
yes, rotate left (upwards blt)
no, rotate right (upwards blt)
do we use the left rotate?
yes, rotate left (downwards bit)
no, rotate right (downwards bit)

Figure F-3: Dispatch to Various Subroutines for Box Routine.

combine words down right or combine words up left. The box routine can shift the

source word left or right in this implementation. Since the Motorola M68000

microprocessor uses a barrel shifter, the speed of the shift instruction is dependent

on the amount of shift. Shifting leftwards when the rightwards shift of more that 16

bits is required will speed up the implementation. We can ignore this issue for other

implementations.

The main routine to combine the source and destination rectangle

downwards using a right shift is presented in Figure F-4 below.

*-------- COPY DOWNWARDS USING RIGHT SHIFT------
*

bigOdr move.l
ror.1
move.1
and.1

*
btst

(as)+,st ; get the first src. long word for this line
sh,st ; shift src. long word to align with dest.
st,rt
sm,rt ; save src. word shifted out for next round

#lflg,sh ; need two src. long word for left partial?
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beq.s big2dr
*

move.1
ror.1
eor.1
eor.
and. 1
eor. 1

big2dr move.1
jsr
move.1
eor.1
and.1
eor.l
move.1
move.1
ble.s

big1dr move.l
ror.1
eor.1
eor.1
and.1
eor.1
move.1
jsr
move.1
subq.1
bgt.s

*

big3dr move.l
btst
beq.s
btst
beq.s

move.1
lsr.1
or.1

big4dr move.l
move.1
jsr
move.1
eor.1
and.1
eor.1

big5dr add.l
add.1
subq.1

(as)+,st
sh,st
rt,st
st,rt
sm, rt
rt,st

(ad) ,dt
(op)
(ad) ,st
st,dt
1 in, dt
dt,(ad)+
yy, tx
xx,yy
big3dr

(as)+,st
sh,st
rt, st
st, rt
sin, rt
rt,st
(ad) ,dt
(op)
dt,(ad)+
#1,yy
big1dr

tx,yy
#eflg,sh
big5dr
#rflg,sh
big4dr

(as)+,st
sh,st
st, rt

(ad) ,dt
rt,st
(op)
(ad) ,st
st,dt
rm,dt
dt,(ad)+

ds,as
dd,ad
#1,yy

; no, then this one long word is sufficient

; get another src. long word
; st <- [a,c] obtained by rotating st = [c,a]
; st <- [a#b,c] = [a,c]#[b,O] = st#rt (#=xor)
; rt <- [a,c] = [a#b,c]#[b,O]
; rt <- [a,O] = [a,c]&[1,0]
; st <- [b,c] = [a#b,c]#[a,O]

; get next dest. long word; dt <- [p,q]
do the blt
st (- [p,q]
dt <- [bl#p,cl#q] = [bl,cl]#[p,q] = st # dt
dt <- [O,cl#q] = [0,1]&[bl#p,cl#q]

;+++ st <- [p,cl] = [O,cl#q]#[p,q]
save the y increment
initialize number of whole words in a line
skip middle loop if count less than one

get next src. long word
st <- [a,c] obtained by rotating st = [c,a]
st <- [a#b,c] = [a,c]#[b,O] = st#rt (#=xor)
rt <- [a,c] = [a#b,c]#[b,O]
rt <- [a,O] = [a,c]&[1,0]
st <- [b,c] = [a#b,c]#[a,O]
setup dest. word
do the blt
store shifted src. long word in dest.
decrement count and loop

restore yy. tx result is not needed.
; does the right partial exist?
; no, so end processing this line now
; need two src. long word for right partial?
; no, then this one long word is sufficient

; get another src. long word
; shift src. long word to align with dest.
;.append it to the previous value

; get next dest. long word; dt <- [p,q]
; the src. value has to be in the st register
do the blt
st <- [p,q]
dt <- [bl#p,cl#q] = [bl,cl]#[p,q] = st # dt
dt <- [bl#p,O] = [1,0]&[bl#p,cl#q]
st <- [bl,q] = [bl#p,Q]#[p,q]

increment src. pointer to next line
increment dest. pointer to next line
decrement count and loop
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bgt bigOdr
rts

*

Figure F-4: A Subroutine Main Body for Box Routine.

The routine presented has an outer loop and an inner loop. We loop

through all lines to be combined in the outer loop. At each iteration we combine

the right partial word, whole words in the middle, and then the left partial word.

We have to use the right and left partial mask to combine the right and left partial

word. The eleven instructions in the inner loop labelled bigldr is the critical loop in

this algorithm, and this loop has to be as efficient as possible if the box combination

operation is to run fast.

This algorithm is heavily based on the bit-blt operation Bahram Niamir

wrote for the Nu personal computer. I have added a few improvements and

modified the algorithm for the Apollo Personal Computer. I have also designed the

thirty instructions to implement the sixteen modes of combining operations. The

original algorithm had special routines for each of the more useful operations. We

can justify the use of a slower box operation in this graphics system by the need for a

small virtual graphics machine.
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Glossary

This glossary presents the definitions of some of the terms used in this

thesis. The glossary should clarify any ambiguity in the terms used in the text of the

thesis.

Asynchronous Input
An asynchronous input is an input that a graphics input device
generates by causing an interrupt. That interrupt can occur at
any point of a program's execution. The virtual keyboard device
and the virtual button device can produce asynchronous inputs.

Basic Graphics Functions
Basic graphics functions are used by graphics application
programs to obtain input frohi graphics input devices and display
images on a display screen.

Box Combination Mode
The box combination mode is the uniform encoding of all
possible ways of combining the pixels from two different
rectangles.

Box Function
The box function is a graphics output function that combines the
corresponding pixels in two rectangles on the display screen using
the box instruction and stores the result in one of the rectangles.
The two rectangles should be the same size and shape and may
be from two different viewports.

Box Instruction
The box instruction is an output instruction that places the result
of combining corresponding pixels in two similar rectangles on
the display screen in one of the rectangles. This instruction is
more commonly known as the bit-bit or raster operations
instruction.
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Character
A character image is a basic text image.

Current Position
The current position is the current line drawing position on a
viewport. A program uses the current position to specify one
endpoint of the line to be displayed.

Device-Independent Graphics Compiler or DIGCOM
The Device-Independent Graphics Compiler compiles programs
writteri in GRSS and MDL to DIGS instructions.

Device Interface for the Graphics System or DIGS
The Device Interface for the Graphics System is an interface
between the low-level virtual graphics device on which we can
implement a graphics system and a real graphics device.

Display Application Package Sub-systems or DAPS
A Display Application Package Sub-system is a group of graphics
application programs.

Display Screen
A display screen is a graphics output device that displays the
images on a viewport.

Font
A font is a set of character images, one for each possible character
in a text string.

Graphics Application Program
A graphics application program is a part of a Display Application
Package Sub-system. The Display Application Package writer
writes this program to make use of graphics devices.

Graphics Input Devices
A graphics input device provides either synchronous or
asynchronous inputs to a virtual input device.

Graphics Input Functions
Graphics input functions are basic graphics functions that a
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graphics application program can use to obtain graphics inputs.

Graphics Order-code for Device Compiler or GODCOM
The Graphics Order-code for Device Compiler compiles
programs written in GRSS and MDL to instructions for a real
graphics device.

Graphics Output Devices
A graphics output device displays the images on a viewport. This
device is usually a display screen.

Graphics Output Functions
Graphics output functions are basic graphics functions that a
graphics application program can use to display images on a
display screen.

Graphics Run-time Support Sub-system or GRSS
The Graphics Run-time Support Sub-system supports a set of
functions -- the basic graphics functions -- that graphics
application programs can call to use a virtual input device, or a
display screen in a systematic manner.

Image
An image is a particular view of an object or parts of an object. A
graphics application program displays images of objects in a
window on a viewport.

Input Instructions
Input instructions are virtual graphics device instructions that
obtain input from a virtual input device. The graphics system
can receive two different types of input, namely, synchronous
input and asynchronous input.

Keyboard Character Translation Table
The keyboard character translation table is a table that keyboard
functions use to translate characters obtained from the virtual
keyboard device.

Keyboard Functions
Keyboard functions are graphics input functions that peek or
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read a character from the virtual keyboard device, and translate
that character for the graphics application program.

Line Drawing Mode
The line drawing mode is the uniform encoding of all
conceivable shades of any line on the display screen.

Line Functions
Line functions are graphics output fmnctions that clip and display
a line on a viewport.

Line Instruction
The line instruction is an output instruction that draws a line on
the display screen.

Object
An object is a conceptual graphical unit in the graphics
application program. An object is a part of a world.

Output Instructions
Output instructions are virtual graphics device instructions that
allow a program to create or change images on a display screen.
The virtual graphics device supports four output instructions,
namely, the line instruction, triangle instruction, box instruction,
and text instruction.

Query Instructions
Query instructions are virtual graphics device instructions that
provide device dependent information at run-time.

Setup Instructions
Setup instructions are virtual graphics device instructions that
obtain or return a graphics device or resource. Some setup
instructions obtain a real graphics device from the operating
system for the exclusive use of the program. Other instructions
return a graphics device to the operating system when the
program no longer needs that device.

Synchronous Input
A synchronous input is an input that a program obtains from a
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graphics input device when that program needs an input. The
virtual valuator device, virtual locator device, and virtual
keyboard device can produce synchronous inputs.

Text Functions
A text function is a graphics output function that displays a text
string in a given font on a viewport.

Text Instruction
The text instruction is an output instruction that displays a line of
text in a given font on the display screen.

Text Position
The text position is the position on a viewport where a text
function will next display a text string.

Text String
A text string consist of several character objects stored together.

Triangle Filling Mode
The triangle filling mode is the uniform encoding of all
conceivable shades of any triangle on the display screen.

Triangle Function
The triangle function is a graphics output function that clips and
displays a triangle on a viewport.

Triangle Instruction
The triangle instruction is an output instruction that draws a solid
triangle on the display screen.

Viewport
A viewport is a two dimensional logical output surface. The
graphics system clips and displays the images on a viewport on a
display screen.

Viewport Display Function
A viewport display function redisplays the images in a viewport.
A graphics application program has to provide each viewport
with a viewport display function.
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Viewport Display Object
A viewport display object stores all the data useful to a display
application program. A viewport display object can be a pointer
to the window associated with a viewport.

Viewport Manager Functions
Viewport manager functions are functions that manage
viewports. A program can use these functions to create, modify,
and destroy viewports.

Virtual Button Device
A virtual button device is an
the virtual keyboard device.
interrupt occurs. However,
pointing device like a mouse,
special symbol or character,
asynchronous inputs.

isynchronous input device similar to
Whenever a button is depressed, an
the button is usually located on a
each button does not represent any
and the device can only generate

Virtual Graphics Device
The virtual graphics device provides a device independent
interface between a real graphics device and the device
independent graphics software.

Virtual Input Device
A virtual input device is a virtual graphics device that obtains
input from a graphics input device and translates that input to a
device independent format. Virtual valuator devices, virtual
locator devices, virtual button devices, and virtual keyboard
devices are four types of virtual input devices.

Virtual Keyboard Device
A virtual keyboard device produces an alphanumeric input.
Almost every terminal has this input device, which is similar to
the typewriter keyboard. When used as a synchronous input
device, this device buffers the typed characters, and returns the
numeric code for the typed characters in order, or a special value
if the buffer is empty. When used as an asynchronous input
device, an interrupt occurs whenever a key is depressed, and the
graphics application program may process the typed character
immediately.
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Virtual Locator Device
A virtual locator device is a synchronous input device that
produces two analog values as a location on a display screen.
This device is a two dimensional device that generates two
floating point numbers between 0.0 and 1.0 corresponding to the
horizontal and vertical coordinates on the screen. Examples of
locator devices are data tablets, touch pads, joysticks, and mouse
devices.

Virtual Screen
A virtual screen is another name for a viewport.

Virtual Valuator Device
A virtual valuator device is a synchronous input device that
produces an analog value. This device is a one dimensional
device that generates a single floating point number between 0.0
and 1.0. Examples of valuator devices are control dials, and slide
rheostats.

Window
A window specifies the part of a world that is visible on a
viewport.

World
A world is a collection of related objects that a graphics
application program displays as a group.
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