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Abstract— An array of weakly coupled oscillators can generate
multiphase signals, i.e. multiple sinusoidal signals withspecific
phase separations. Multiphase oscillators are attractivesolutions
in many electronic applications such as the synchronization
of multiple processing units in digital electronics and the
frequency synthesis in mixed-signal RF circuits. Due to the
complexity of multiphase oscillators and the large number of
design parameters, novel simulation techniques are highlydesired
to efficiently handle such large-scale problems. In this paper,
an efficient phase-domain simulation technique is proposedto
calculate the phase response of LC oscillator array. By some
practical examples, it is shown how the proposed method can be
exploited to identify the array topologies and parameter settings
that guarantee stable phase separations. It is also shown how
the proposed technique can be used to evaluate phase-noise
performance.

Index Terms— Coupled oscillators, phase-domain modeling,
stochastic simulation.

I. I NTRODUCTION

The term multiphase oscillator refers to an array of coupled
oscillators that can generate iso-frequency sinusoidal signals
with prescribed phase separations. These devices have many
applications in RF frequency synthesizers and multiphase
sampling clocks [1], [2]. For these applications, precise output
phase differences and low phase-noise degradation are key
figures of merit. In addition, new emerging technologies will
soon allow efficient, large-scale integration of oscillator arrays.
One example of such technologies is the CMOS-integrated
MEMS device resonant body transistor, which has demon-
strated quality factors comparable to LC tanks (Q ∼ 25) while
occupying orders of magnitude smaller area (device footprint
< 15µm2) [3]. In practical implementations, weak coupling
is particularly appealing since it can be realized with auxiliary
devices at the cost of negligible power dissipation. In addition,
resonant or LC oscillators are preferred to other topologies
(e.g. ring oscillators) since they are able to generate almost
sinusoidal signals, with high harmonic purity, while ensuring
a good phase noise/power tradeoff [4].
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Designing an array composed of many oscillators with well
precise phase separation is a challenging task. Even if one
considers the array topology with almost identical oscillators
and with couplings only limited to nearest-neighbor, referred
to as chain array, the number of design parameters and degrees
of freedom remain very large. In fact, the chain array may be
open at the end or closed with a feedback path; the coupling
between two oscillators may be unidirectional or bidirectional;
the direction and strength of couplings may change along the
chain [4]-[6]. While some studies have been presented for
particular settings of parameters, a more general analysisand
design methodology is still lacking. In this paper, we propose
a solution by adopting a phase-domain macromodel for the
multiphase oscillator. Our analysis aims at finding some simple
rules for the design of multiphase LC oscillators organizedin
a chain. Macromodeling techniques have already been used
in the literature to study frequency locking/pulling in a single
oscillator or in two mutually coupled oscillators [7]–[9].

Our Contribution. The novel contributions of our paper are
summarized as follows:

1) The phase-domain macromodeling technique is extended
to an array of many coupled oscillators and it is utilized
to determine the stable phase differences.

2) For the practically-relevant case of LC oscillators ar-
ranged in a chain array, topologies and coupling parame-
ters are identified, which allows designers to obtain well
precise phase separations.

3) The output phase noise of the multiphase oscillator is
determined via some original closed-form expressions.
The dependence of the output phase noise on the array
topology and coupling parameters is studied in detail.

Paper Organization. Section II reviews briefly the phase-
domain modeling and phase noise in a single oscillator. In
Sec. III, we describe the nonlinear phase-domain model for
a generic multiphase oscillator and the related stochastic
equation in the presence of noise. In Sec. IV, we focus on LC
oscillators arranged in a chain array. Section V demonstrates
the results of numerical experiments and derives some design
rules.

II. M ODELING A SINGLE OSCILLATOR

Let us consider an electrical oscillator in free running, the
output steady-state response of which is given as

V0(t) = p(ω0t) (1)
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whereω0 = 2πf0 is the oscillating angular frequency,T0 =
1/f0 the period, andp(·) denotes a generic2π-periodic
function of its argument. Phase-domain macromodels are well
suited to describe the oscillator response in the presence of
deterministic weak perturbations or stochastic noise as its
briefly reviewed below.

A. Phase-domain response to a weak perturbation

In the presence of a small-amplitude injected signalsin(t),
the response of the perturbed oscillator is well approximated
by the phase model

V (t) = V0(t+ α(t)) = p(ω0(t+ α(t))) (2)

where theα(t) function represents the time-dependent time-
shift of perturbed response with respect to the free-running
one.

The productφ(t) = ω0α(t) gives the related excess phase
variable. It has been proved thatα(t) depends on the injected
signal through the following nonlinear differential equation

α̇(t) = Γ(t+ α(t))sin(t) (3)

whereΓ(t) is a T0-periodic function that describes the phase
sensitivity to the particular injecting source [10], [11].For LC
oscillators the output response and phase model parameters
assume particular values. As an example, Fig. 1 shows the LC
oscillator topology that will be considered in this work. With
the parameters in Table-I, the circuit oscillates at the frequency
of 1.0261GHz and its output voltageV0(t) measured across
the LC tank is shown in Fig. 2. In the same figure, the
Γ(t) function (scaled by the factor50) related to a current
perturbationsin(t) injected at the output terminals is also
plotted. This figure highlights the following properties that
hold for LC-based oscillators: (i) the output response is almost
sinusoidal (ii) the relatedΓ(t) is almost sinusoidal as well
and is delayed by aπ/2 phase angle. This can be formalized
mathematically as:

V0(t) = VM cos(ω0t+ π/2)

Γ(t) = ΓM cos(ω0t),

(4)

whereVM andΓM are the peak values of the two sinusoids.

B. Modeling phase noise

Noise sources internal to the oscillator circuit introduce
stochastic fluctuations to the time-shift variableα(t) and to the
associated phase noise. This can be described, in a compact
way, by the following average stochastic equation [12]–[14]

α̇(t) = neq(t) = nW
eq (t) + nF

eq(t), (5)

in which nW
eq (t) andnF

eq(t) are the macro noise sources that
reproduce the global effect of all white and flicker noise
sources in the oscillator circuit, respectively. Thus,nW

eq (t)
is a zero-mean Gaussian process of constant Power Spectral
Density (PSD)SW

eq (f) = SW
eq , while nF

eq(t) is a process with

α(t)
R
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sin(t)sin(t)

Fig. 1. LC oscillator: (left) circuit; (right) the phase-domain model.
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Fig. 2. Free-running response and functionΓ(t) of an LC oscillator.

PSDSF
eq(f) = SF

eq/f . In the frequency domain, we can derive
the PSD of the phase noise variableφ(t) = ω0α(t) as follows

Sφ(f) =
f2
0

f2
·
(
SW
eq + SF

eq/f
)
. (6)

The macromodel parametersSW
eq andSF

eq can be extracted via
phase-noise measurements or detailed transistor-level phase-
noise simulations [16].

III. A RRAY OF RESISTIVELY COUPLED OSCILLATORS

In this section, we provide the phase-domain macromodel
for an array ofN oscillators which are weakly coupled through
a resistiveN-port network described by its conductance matrix
G = {gjk} ∈ R

N×N , as shown in Fig. 3. In integrated CMOS
circuits, coupling between oscillators is commonly realized
through differential-pair transistors [4], [15] that can be real-
istically modelled as resistive transconductance elements, as
described in the next section1.

1For the small-area transistors used to realize weak coupling, parasitic
capacitances are in fact negligible.
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Resistive Network

VN (t)IN (t)V2(t)I2(t)V1(t)I1(t)

αN (t)α2(t)α1(t)

Fig. 3. Array ofN weakly coupled oscillators.

A. Phase response

We focus first on the phase response of the array. To this
aim, we denote withVk(t) and ωk the output response and
angular frequency, respectively, of thekth oscillator when
working in free-running mode and withΓk(t) the associated
phase-sensitivity function. Similarly, we denote withαk(t) and
φk(t) = ωk αk(t) the time-shift and excess phase of thekth
oscillator which arise when the oscillator is connected to the
coupling network and thus it is injected by a currentIk(t).

By extending the method described in the previous section,
we find

α̇k(t) = Γk(t+ αk(t))Ik(t)

Ik(t) =
N∑

j=1

gkj Vj(t+ αj(t)),

(7)

which results in the following set of Ordinary Differential
Equations (ODEs):

α̇k(t) = Γk(t+ αk(t)) ·

N∑

j=1

gkj Vj(t+ αj(t)) (8)

with k = 1, . . . , N .
The mutual synchronization regime is achieved when,

asymptotically for t → ∞, the phase difference between
any couple of oscillators remains bounded [17], i.e. when the
following condition

|ωkt+ φk(t)− ωjt− φj(t)| < ǫ′ (9)

holds for any k and j, where ǫ′ is a constant value. A
scenario of particular interest in practical applicationsis an
array formed ofN identical oscillators and thus with the
same frequencyωk = ω0 for any k. In practical circuit im-
plementations, mismatches among oscillators may introduce
small differences (i.e. detunings) in the free-running oscil-
lating frequenciesωk. However, as long as detunings are
small compared to the locking range [9], [17] they vanish at
synchronization and thus can be neglected.

Under this condition, the synchronization condition can be
rewritten as follows

|αk(t)− αj(t)| < ǫ. (10)

At synchronization, the variablesαk(t) need not to be bounded
and in fact they may grow almost linearly with time [17]. In
general, we can thus assume that asymptotically, fort→ ∞,
variablesαk(t) approach the waveforms̃αk(t) of the type

α̃k(t) = ᾱk +mt+ ok(t), (11)

whereᾱk is a constant term varying along the array,m is a
constant slope value, identical for all oscillators, andok(t) is
a small-amplitude high-frequency oscillating term with zero
mean value.

Neglecting the rapidly oscillating termsok(t), on average,
the excess phase of oscillators tend asymptotically to the
waveforms

φk(t) = ω0ᾱk + ω0mt (12)

and the phase difference between any two oscillators ap-
proaches a constant value given by

φk(t)− φj(t) = φ̄k − φ̄j = ω0 (ᾱk − ᾱj). (13)

The challenge in applications is just to design an oscillator
array such that well precise and stable phase separations (13)
can be achieved. It is also worth noting that the presence of the
termmt in (11) implies that the common oscillating frequency
ωc of the array differs from the free-running oneω0. In fact,
replacing (11) in (2) and neglectingok(t), we obtain

p((ω0 + ω0m)t+ ᾱk) (14)

which gives
ωc = ω0(1 +m). (15)

For weak coupling, we will find that|m| << 1 and thus the
frequency correction (15) is very small.

B. Phase noise

The noise sources internal to thekth oscillator in the array
are represented by a macro noise sourcenk

eq(t) as explained in
Sec. II-B. These internal noise sources produce extra random
fluctuationsτk(t), i.e. jitter, of the time shiftαk(t) variables
around the regime waveforms̃αk(t), i.e.

αk(t) = α̃k(t) + τk(t). (16)

The equations of the noisy array are given by the following
set of stochastic differential equations

α̇k(t) = Γk(t+αk(t)) ·

N∑

j=1

gkj Vj(t+ αj(t)) +nk
eq(t). (17)

The stochastic equations above can be solved numerically by
integration in time. In addition, since internal noise sources
are small-amplitude signals, the random fluctuationsτk(t)
are small as well and thus (17) can be further expanded by
linearization. To this aim, we plug (16) into (17) and adopt
truncated Taylor expansions

Γk(t+ α̃k(t) + τk(t)) ≈ Γk(t+ α̃k(t)) + Γ̇(t+ α̃k(t))τk(t))

Vk(t+ α̃k(t) + τk(t)) ≈ Vk(t+ α̃k(t)) + V̇k(t+ α̃k(t))τk(t)).
(18)
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Fig. 4. Possible implementation of the coupling in a chain array by means
of a differential stage.

Neglecting the resulting second-order product termsτk(t)τj(t)
and higher order terms in (17) and using the fact thatα̃k(t))
solves (8) leads us to the linearized equations

τ̇k(t) =



Γ̇k(t+ α̃k(t)) ·

N∑

j=1

gkj Vj(t+ α̃j(t))



 τk(t)

+Γk(t+ αk(t)) ·

N∑

j=1

gkj V̇j(t+ α̃j(t))τj(t) + nk
eq(t).

(19)
The linearized equations above will be exploited in the next
Section to derive closed-form expressions for the phase noise
in a chain array.

IV. CHAIN ARRAY OF LC OSCILLATORS

The deterministic nonlinear ODE (8) and the related
stochastic ODE (17) hold for generic oscillatory devices and
for generic resistive coupling networks. In particular, they
hold for non-harmonic oscillators (e.g. ring or relaxation
oscillators) whose responsesVk(t) and sensitivity functions
Γk(t) may contain many harmonic components. In this section,
we consider more specific cases that are of great relevance in
applications and for which we derive some practical design
rules.

To this aim, we first suppose that the array is formed of
N identical LC oscillators whose output response and phase
sensitivity waveforms take the form reported in (4), for anyk.
The phase-domain response equations (8) become

α̇k(t) = ΓM cos(ω0t+ ω0αk(t))

·

N∑

j=1

gkj VM cos(ω0t+ ω0αj(t) + π/2).
(20)

Second we focus on the relevant topology of the chain
array where coupling arises only between nearest-neighbor
oscillators. In integrated CMOS circuits, coupling between

n+

k n−
k n+

k+1
n−
k+1

(k + 1)(k)

gk+1,k · Vk

gk+1,k

Vk

αk+1(t)αk(t)

Fig. 5. Coupling in a chain array: (top) the voltage across the kth oscillator
controls the current injected into thek + 1 oscillator (bottom) schematic
representation of this local coupling.

nearest oscillators is commonly realized through differential-
pair transistors [15], as shown in Fig. 4. The differential cur-
rent of coupling stages can be modelled by voltage-controlled
current sources of transconductanceg = gk,j , as shown in
Fig. 5(top part) [4]. The magnitude of the transconductance
gk,j gives the coupling strength while its sign refers to the way
the voltage-controlled current (i.e. the coupling differential
stage) is connected to the terminals of the injected oscillator.
To realize weak coupling among oscillators, injected currents
should be kept one order of magnitude smaller than inner
oscillator currents (i.e., inner transistor currents). Coupling is
schematically represented with an oriented arch that points
from the controlling device to the controlled/injected one,
Fig. 5(bottom part).

In practice, the chain array may have several possible
topologies: coupling may be unidirectional (i.e., oscillator k
injects into oscillatork + 1) or bidirectional (i.e., oscillatork
injects into oscillatork+1 and oscillatork+1 injects backward
into oscillatork), the chain may be open at the two ends or
may be closed with a feedback. Fig. 6 shows some of the
possible topologies.

In the case of chain arrays, some theoretical results exist
that prove the uniqueness of the achievable phase separation
[17], [6]. To link our phase-domain model to these theoretical
results, we further develop equations (20) and use averaging
[13], [14]. Keeping only the slowly varying terms resulting
from the cosines product in (20) leads us to the following
averaged equations for the excess phasesφk(t) = ω0αk(t)

φ̇k(t) = B

N∑

j=1

gk,j sin(φk(t)− φj(t)) (21)

with gk,j 6= 0 only for j = k − 1 andj = k + 1 and

B =
1

2
ω0ΓMVM . (22)

Then, we make the difference between each equation in (21)
for φ̇k(t) and the subsequent one forφ̇k+1(t), obtaining the
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a)

b)

c)

d)

Fig. 6. Chain array topologies: a) and b) open array with unidirectional
and bidirectional coupling, respectively, c) d) unidirectional and bidirectional
array closed in feedback.

following set of (N − 1) nonlinear coupled equations

ψ̇k(t) = −Bgk,k−1 sin(ψk−1(t)) +Bgk,k+1 sin(ψk(t))

+Bgk+1,k sin(ψk(t)) −Bgk+1,k+2 sin(ψk+1(t)),

(23)
with k = 1, . . . , N − 1, for the phase difference variables

ψk(t) = φk+1(t)− φk(t). (24)

For a set of nonlinear equations having the structure of (23),
it has been proved in [6] that there exist2N−1 stationary
solutions, i.e. withψ̇k(t) = 0 but that only one of them
is stable and thus observable in practice. This guarantees
that in the case of a chain of LC oscillators, the numerical
integration of the phase model (8) (or of its simplified version
(20)) will supply the only phase separation set values (13)
which is stable for a given chain topology. Therefore, the
same phase separation will be obtained independently of the
assumed initial phase condition.

We end this section by deriving the closed-form expression
for the phase noise in a chain of LC oscillators. Based on (4)

and (11), the linearized phase noise model (19) is rewrittenas

τ̇k(t) = {ΓMVMωc cos[ω0(t+ ᾱk +mt) + π/2]

·

N∑

j=1

gkjVM cos[ω0(t+ ᾱj +mt) + π/2]}τk(t)

+ΓMVMωc cos[ω0(t+ ᾱk +mt)]

·
N∑

j=1

gkj cos[ω0(t+ ᾱj +mt) + π] τj(t) + nk
eq(t).

(25)
Then, we exploit averaging again and keep only the low-
frequency terms arising from the cosine products, obtaining

τ̇k(t) ≈ B




N∑

j=1

gkj cos(φ̄k − φ̄j)


 · τk(t)

−B

N∑

j=1

gkj cos(φ̄k − φ̄j) · τj(t) + nk
eq(t).

(26)
Multiplying both sides of (26) byω0 and noticing that the
excess phase fluctuation is

θk(t) = ω0τk(t), (27)

equation (26) can be rewritten in the following compact form

d

dt
~θ(t) = A · ~θ(t) + ω0 ~neq(t) (28)

where~θ(t) and~neq(t) are the vectors that collect the excess
phase fluctuations variables and the equivalent noise sources
of the oscillators, respectively. The elements of matrixA ∈
R

N×N are decided by

akk = B

N∑

j=1,j 6=k

gkj cos(φ̄k − φ̄j)

akj = −B gkj cos(φ̄k − φ̄j) for k 6= j.

(29)

It is worth noting that the matrixA = A(φ̄1, φ̄2, . . . , φ̄N )
is a function of the phase difference values which establish
at synchronization regime. From (28) we see that the eigen-
values of such a matrix govern the dynamics induced by any
perturbation of the synchronization phase values [18]. Thus
a given phase set̄φ1, φ̄2, . . . , φ̄N is stable if and only if the
eigenvaluesλk of A are such that: one eigenvalue is zero,
i.e. λ1 = 0, and the remaining ones have negative real part
ℜ(λk) < 0 for k = 2, . . . , N . As a result, the computation
of matrix A and of its eigenvalues provides a robust way to
establish the stability of a given phase separation simulated
with the phase-domain model (8).

Finally, to compute the array phase noise, the system (28) is
transformed in the frequency domain and the Fourier transform
of ~θ(t) is calculated to be

~θ(f) = T(f) · (ω0
~Neq(f)) (30)

whereT(f) = {tkj(f)} is the inverse matrix

T(f) = (j2πfIN −A)
−1
, (31)
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TABLE I

PARAMETERS OF THELC OSCILLATOR

Parameter Value

VDD 2.5 V
Vgs 1.0 V
C 0.3 pF
L 40 nH
R 11 kΩ

(W/L)1,2 10
(W/L)3 33

IN is the identity matrix of sizeN while ”−1” denotes matrix
inverse operator. Since the equivalent noise sourcesnk

eq(t) of
different oscillators are mutually independent, the phasenoise
of the kth oscillator in the array is given by

Sθk(f) =
N∑

j=1

|tkj(f)|
2 ω2

0 Snj
(f). (32)

Each entrytkj(f) in the matrix (31) has an intuitive interpreta-
tion: its squared module represents the noise transfer function
from the noise sources in thejth oscillator towards the phase
variable of thekth oscillator in the chain array.

V. NUMERICAL EXPERIMENTS

In this section, we study a multiphase chain array formed
with N LC oscillators. The schematic of each LC oscillator is
shown in Fig. 1 and the device parameters are listed in table I.
Transistor models are from a0.28µm CMOS technology. The
oscillator is first simulated with the periodic steady state(pss)
analysis of SpectreRF and then theΓ(t) function is extracted
with the method described in [21]. Fig. 2 in Sec. II reports the
output voltageV0(t) measured across the LC tank and theΓ(t)
function (scaled by the factor50). In the remainder, we present
the results for a chain array with the topology and parameter
settings shown in Fig. 7. The transconductance parameter is
fixed g = 10−5Ω−1 which corresponds to a weak coupling
among oscillators. The sign plus or minus in Fig. 7 refers to
the way a transconductance source is connected to the nodes
of the injected oscillator, as shown in Fig. 5.

Fig. 8 reports the phase variables simulated with the phase-
domain model (8) for Setting 1) which corresponds to a
bidirectional open chain. The initial phase values are selected
randomly in the interval(0, 2π). Asymptotically, fort→ ∞,
all phase variables approach the same waveform, meaning
that all oscillators synchronize in phase (i.e. output voltages
are perfectly superimposed). We note also that the asymptotic
waveform in Fig. 8 has a finite negative slopem which corre-
sponds to a negligible reduction of the oscillating frequencyωc

(15) compared to the free-running oneω0. A similar result (not
shown for brevity) is obtained for Setting 2) which corresponds
to a closed unidirectional chain with feedback.

For Setting 5), shown in Fig. 9, instead we obtain that the
phase variables of two consecutive oscillators are such that
φk+1(t)−φk(t) = ±π. This means that the output voltages of
different oscillators are in phase or in antiphase. We conclude

g

g

gggg

gggg

−g

−g

−g

−g

−g−g

−g−g

−g

−g

−g

−g

−g−g−g

−g −g−g

1)

2)

3)

4)

5)

Fig. 7. A chain array with five different topology and parameter Settings.

that Settings 1), 2) and 5) are not useful for applications (for
a chain array of identical devices) since they do not allow
achieving fine phase separation even if we increase the number
N of stages.

The first case relevant for applications is that of Setting
3) where the phase variables shown in Fig. 10 are such that
φk+1(t) − φk(t) = −π/N . Repeated phase-domain simula-
tions reveal that for Setting 3) a regular phase separation is
established in the chain array and that such separation can
be made finer by increasing the numberN of oscillators.
In addition, all the eigenvalues (but the first which is zero)
of the matrixA in (28) have negative real part confirming
the stability of such phase configurations. Fig. 11 reports the
output voltagesVk(t) of the oscillator array for Setting 3)
obtained after substituting the simulated phase waveformsinto
the phase-domain model (2).

To verify the correctness of our phase-domain predictions
for Setting 3), detailed circuit-level simulations of the chain
array are performed with SpectreRF. The array output voltages
yielded by SpectreRF are plotted in Fig. 12 and fully confirm
the predicted phase separations as well as the validity of
weak coupling hypothesis for the selected transconductance
parameter valueg. It is worth noting here that the circuit-
level simulation of a weakly coupled oscillator array can
be very tricky and/or time-consuming. If oscillators are all
identical (and weakly coupled), the array admits a trivial
periodic steady solution (pss) with the output voltages of all
oscillators perfectly superimposed. For Setting 3) this perfectly
in-phase solution is unstable and thus it is a spurious solution.
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Fig. 9. Setting 5): phase variables divide into two clusters.
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Fig. 10. Setting 3) phases are separated by−π/N .
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Fig. 11. Output voltages simulated with the phase-domain model for Setting
3).
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Fig. 12. Output voltages simulated with Spectre for Setting3).

To avoid that the pss analysis of SpectreRF converges to this
spurious solution, long transient initializations (starting from
nonidentical initial conditions) and tight tolerance haveto
be imposed which results in long simulation time. For these
reasons, circuit-level simulations are not suitable to explore
the numerous phase separation cases that can occur in a large
chain array but they may be used for cross validations in a
few cases.

Another case which is relevant for applications is Setting 4):
the phase variables shown in Fig. 13 are such thatφk+2(t)−
φk(t) = 2π/N . In this case, a regular phase separation is
established between thekth and the(k + 2)th oscillator in
the chain. Repeated phase simulations reveal that such phase
separation is actually obtained only whenN is odd while for
an even number of oscillators phases divide in two clusters
like in Fig 9. We conclude that Settings 3) and 4) (withN
odd) achieves the desired phase separation. We also verified
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Fig. 13. Setting 4) phases are such thatφk+2(t) − φk(t) = −2π/N .
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Fig. 14. Phase noise for Setting 3) in a unidirectional arrayformed of
N = 5, 10, 20 stages. (Continuous lines) closed-form expression (32); (Filled
square markers) pnoise of SpectreRF.

that the same result holds when parameter Settings 3) and 4)
are implemented in a bidirectional symmetric chain array. The
realization of bidirectional coupling (i.e. where each oscillator
is connected to the next and previous oscillators) costs more
in terms of number of devices (and thus of area occupation),
however the theoretical results presented in the literature [5]
suggest that symmetric arrays may give better phase noise
performance than unsymmetric ones. In what follows we
investigate this issue for the case of Setting 3).

First, with the phase noise analysis of SpectreRF, we
simulate the phase noise spectrum of one free-running LC
oscillator. Above some kilohertz, this spectrum is dominated
by the white noise internal sources and corresponds to the
noise parameterSW

eq = 10−16 rad2/Hz in (6). This parameter
corresponds to a noise levelSφ(f) of about10−10 rad2/Hz at
frequency offsetf = 1MHz.
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Fig. 15. Phase noise for Setting 3) in a symmetric bidirectional array
N = 5, 10, 20 stages. (Continuous lines) closed-form expression (32); (Filled
square markers) pnoise of SpectreRF.

Second, with the closed-form expression (32) we compute
the phase noise spectrumSθk(f) of one oscillator in a chain
array composed ofN stages. For the case of unidirectional
coupling, this phase noise is plotted in Fig. 14 for increasing
values of chain stagesN . We see how the array phase noise
is reduced compared to that of the free-running oscillator
(shown in Fig. 14 with a dashed line) at frequencies lower
than500 kHz and how such a reduction gets more effective for
higher values ofN . However, we also see that increasingN
results in a phase noise deterioration with the appearance of a
spur around1MHz. The phase noise in the bidirectional array,
shown in Fig. 15, instead exhibits a uniform reduction of the
noise spectrum over a much wider frequency range and with-
out deteriorating spurs. A symmetric bidirectional coupling is
thus recommended in all those applications where the above
mentioned noise spurs are not tolerable. The above reported
results have been fully confirmed by the simulation results
from SpectreRF plotted in Figs. 14 and 15 with filled squared
markers. The phase noise analysis (pnoise) with SpecteRF
of the unidirectional array formed withN = 20 oscillators
takes about forty minutes on a quad-core workstation. By
comparison, the phase-domain simulation of (8) and noise
calculation with (32) is accomplished in a few seconds, i.e.
it is about three orders of magnitude faster.

VI. CONCLUSION

In this paper, we have described a phase-domain modeling
technique to simulate in a very efficient way an array of
weakly coupled oscillators. The method allows determining
the stable phase separations that establish at synchronization
as a function of array topology and parameter settings. For
the relevant case of a chain array of LC oscillators, we
have identified two topologies that achieve the desired phase
separation in a stable way. Finally, an original closed-form
expression for the chain array phase noise has been derived
and its accuracy has been verified against detailed SpectreRF
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simulations. Phase-domain simulations reveal that the phase
noise of an oscillator in the array is reduced compared to
that of the same oscillator working in free-running. Noise
reduction becomes more effective when the number of stages
is increased and oscillators are coupled in a bidirectionalway.
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