MIT
Libraries | D>pace@MIT

MIT Open Access Articles

Analysis and Design of Weakly Coupled LC Oscillator
Arrays Based on Phase-Domain Macromodels

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Maffezzoni, Paolo, Bichoy Bahr, Zheng Zhang, and Luca Daniel. “Analysis and Design
of Weakly Coupled LC Oscillator Arrays Based on Phase-Domain Macromodels.” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 34, no. 1 (January 2015): 77-85.

As Published: http://dx.doi.org/10.1109/TCAD.2014.2365360
Publisher: Institute of Electrical and Electronics Engineers (IEEE])
Persistent URL: http://hdl.handle.net/1721.1/102284

Version: Author’s final manuscript: final author’'s manuscript post peer review, without
publisher’'s formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

I I I .
I I Massachusetts Institute of Technology


https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/102284
http://creativecommons.org/licenses/by-nc-sa/4.0/

Analysis and Design of Weakly Coupled LC
Oscillator Arrays Based on Phase-Domain
Macromodels

Paolo MaffezzoniMember, IEEE Bichoy Bahr,Student Member, IEEEZheng ZhangStudent Member, IEEE
and Luca DanielMember, IEEE

Abstract— An array of weakly coupled oscillators can generate ~ Designing an array composed of many oscillators with well
multiphase signals, i.e. multiple sinusoidal signals witispecific precise phase separation is a challenging task. Even if one
phase separations. Multiphase oscillators are attractivesolutions considers the array topology with almost identical ostilia
in many electronic applications such as the synchronizatio d with i v limited t t-neiahb add
of multiple processing units in digital electronics and the ana wi .coup Ings only imitead 1o n_eares neighbor, resar
frequency synthesis in mixed-signal RF circuits. Due to the tO as chain array, the number of design parameters and degree
complexity of multiphase oscillators and the large number 6 of freedom remain very large. In fact, the chain array may be
design parameters, novel simulation techniques are highlgesired  open at the end or closed with a feedback path; the coupling
to efficiently handle such large-scale problems. In this pagr,  patween two oscillators may be unidirectional or bidirecsl;

an efficient phase-domain simulation technique is proposedo the directi d st th of i h | th
calculate the phase response of LC oscillator array. By some '€ GIF€Cion and strength of couplings may change along the

practical examples, it is shown how the proposed method caneb chain [4]-[6]. While some studies have been presented for
exploited to identify the array topologies and parameter sdings  particular settings of parameters, a more general anadysls
that guarantee stable phase separations. It is also shown Wwo design methodology is still lacking. In this paper, we prego
the proposed technique can be used to evaluate phase-noisea solution by adopting a phase-domain macromodel for the
performance. . . L o .
multiphase oscillator. Our analysis aims at finding somefm
Index Terms—Coupled oscillators, phase-domain modeling, rules for the design of multiphase LC oscillators organiired
stochastic simulation. a chain. Macromodeling techniques have already been used
in the literature to study frequency locking/pulling in agie
oscillator or in two mutually coupled oscillators [7]-[9].
Our Contribution The novel contributions of our paper are
The term multiphase oscillator refers to an array of couplegimmarized as follows:
oscillators that can generate iso-frequency sinusoidaia$$ 1) The phase-domain macromodeling technique is extended
with prescribed phase separations. These devices have many to an array of many coupled oscillators and it is utilized
applications in RF frequency synthesizers and multiphase to determine the stable phase differences.
sampling clocks [1], [2]. For these applications, preciggat  2) For the practically-relevant case of LC oscillators ar-
phase differences and low phase-noise degradation are key ranged in a chain array, topologies and coupling parame-
figures of merit. In addition, new emerging technologied wil  ters are identified, which allows designers to obtain well
soon allow efficient, large-scale integration of osciltaorays. precise phase separations.

One example of such technologies is the CMOS-integrated3) The output phase noise of the multiphase oscillator is
MEMS device resonant body transistor, which has demon-  determined via some original closed-form expressions.
strated quality factors comparable to LC tanis 25) while The dependence of the output phase noise on the array
occupying orders of magnitude smaller area (device footpri topology and coupling parameters is studied in detail.

< 15 um?) [3]. In practical implementations, weak coupling paper Organization Section 11 reviews briefly the phase-
is particularly appealing since it can be realized with 8a%  y,04in modeling and phase noise in a single oscillator. In
devices at the cost of negligible power dissipation. In&ddj  gec | we describe the nonlinear phase-domain model for
resonant or LC oscillators are preferred to other topoBgi§ generic multiphase oscillator and the related stochastic
(e.g. ring oscillators) since they are able to generate Sim@qation in the presence of noise. In Sec. IV, we focus on LC
sinusoidal signals, with high harmonic purity, while ensgr  ogijiators arranged in a chain array. Section V demorestrat
a good phase noise/power tradeoff [4]. the results of numerical experiments and derives some mlesig

rules.

I. INTRODUCTION
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wherewy = 27 fy is the oscillating angular frequencyy =

1/fo the period, andp(-) denotes a generi@r-periodic Sin(t) sin(t)
function of its argument. Phase-domain macromodels arke wel L @ % L r(—»}
suited to describe the oscillator response in the presefice o L Vo(t) ‘ V(t)
deterministic weak perturbations or stochastic noise as it C T
briefly reviewed below. '
R a(t)
A. Phase-domain response to a weak perturbation o I
M.

In the presence of a small-amplitude injected signalt), 1‘ I |l; ’
the response of the perturbed oscillator is well approxéthat
by the phase model

Vi @—| M;
V(1) = Vo(t + a(t)) = p(wo(t + a(t))) @

where thea(t) function represents the time-dependent time-
shift of perturbed response with respect to the free-rlg']niﬁig. 1. LC oscillator: (left) circuit; (right) the phase-gain model.
one.

The productyp(t) = woa(t) gives the related excess phase
variable. It has been proved thaft) depends on the injected
signal through the following nonlinear differential egioat

a(t) = T(t + a(t))sin(t) ®)

whereI'(t) is aTp-periodic function that describes the phase
sensitivity to the particular injecting source [10], [1Epr LC
oscillators the output response and phase model paramete
assume particular values. As an example, Fig. 1 shows the Lt
oscillator topology that will be considered in this work. t/i
the parameters in Table-I, the circuit oscillates at thgdency

of 1.0261 GHz and its output voltag&j(t) measured across
the LC tank is shown in Fig. 2. In the same figure, the
I'(t) function (scaled by the factds0) related to a current
perturbations;,(t) injected at the output terminals is also
EI(;)Igef(c)ir I:r glf)a]c;ge%r?)s:ﬁg':l)grzts(ot Tﬁefgﬂ?m??esggﬁggﬁtth Fig. 2. Free-running response and functioft) of an LC oscillator.
sinusoidal (ii) the related’(¢) is almost sinusoidal as well
and is delayed by a/2 phase angle. This can be formalize
mathematically as:

response [V] and (scaled)(t) [A~!]

%SDSQ(]’) = 5%,/ f. In the frequency domain, we can derive
the PSD of the phase noise variablg) = woa(t) as follows

13

f2

) _ The macromodel paramete‘ﬁgg and qu can be extracted via

whereVy, andl'y, are the peak values of the two sinusoidsphase-noise measurements or detailed transistor-lewaseph
noise simulations [16].

Vo(t) = Vs cos(wot + 7/2)
(4) Se(f) - (S¥y + S5/ F) - (6)

(t) = T'pr cos(wot),

B. Modeling phase noise

Noise sources internal to the oscillator circuit introduce Ill. ARRAY OF RESISTIVELY COUPLED OSCILLATORS

stochastic fluctuations to the time-shift variablg) and to the  In this section, we provide the phase-domain macromodel
associated phase noise. This can be described, in a comf@can array ofV oscillators which are weakly coupled through
way, by the following average stochastic equation [12]}{14 aresistiveN-port network described by its conductance matrix
G = {g;1} € R¥*N "as shown in Fig. 3. In integrated CMOS

. o W F J !

(t) = neq(t) = neq (1) + 1y (1), () circuits, coupling between oscillators is commonly reatdiz
in which nl} () andnf,(t) are the macro noise sources thawtr.ouﬁ]h d|ff§rc|e|nt(|jal-pa|r t.ratr.13|s"[[ors [4], [dlS]tthat cale tE;;
reproduce the global effect of all white and flicker noisgS |ca.3t: rgc_) ?he ast reSfé\;e ransconductance elesy
sources in the oscillator circuit, respectively. Thmig(t) escribed in the next sectior
is a zero-mean Gaussian process of constant Power Spec”ﬁ’or the small-area transistors used to realize weak caypliarasitic

Density (PSD)SYY (f) =S¥, while nf,(t) is a process with capacitances are in fact negligible.



At synchronization, the variables;, (¢) need not to be bounded
Resistive Network and in fact they may grow almost linearly with time [17]. In
general, we can thus assume that asymptotically fer oo,
variablesay(t) approach the waveforms; (¢) of the type

n(t) % Vi) pe % Vg(t)% In(r) L V() ak(t) = ar +mt+ og(t), (11)
where @y, is a constant term varying along the array,is a
constant slope value, identical for all oscillators, andt) is

a1 (t) as(t) e an(t) a small-amplitude high-frequency oscillating term withrcze
mean value.
Neglecting the rapidly oscillating terms;(¢), on average,
, _ the excess phase of oscillators tend asymptotically to the
Fig. 3. Array of N weakly coupled oscillators. waveforms
o1 (t) = wody, +womt (12)
A. Phase response and the phase difference between any two oscillators ap-

We focus first on the phase response of the array. To tiigaches a constant value given by
aim, we denote withV(¢) and wy, the output response and T T o
angular frequency, respectively, of thgh oscillator when Ok(t) = 9;(t) = dr = 65 = wo (A — ). (13)
working in free-running mode and withy,(¢) the associated The challenge in applications is just to design an oscillato
phase-sensitivity funct_ion. Similarly, we denote with(t) and  array such that well precise and stable phase separati8jhs (1
¢k(t) = wi ax(t) the time-shift and excess phase of #t& can be achieved. It is also worth noting that the presendeeof t
OSC|II§t0r which arise when_the _o;cﬂlator is connectedh® ttermm ¢ in (11) implies that the common oscillating frequency
coupling network and thus it is injected by a currdptt).  w, of the array differs from the free-running ong. In fact,

By extending the method described in the previous sectiaeplacing (11) in (2) and neglecting.(¢), we obtain
we find

ag(t) = Tr(t + ag(t)) Ik (t) p((wo + wom)t + ax,) (14)

N @ which gives
L(t) = > gi Vit + a (b)), we = wo(1 +m). (15)
= For weak coupling, we will find thagm| << 1 and thus the
which results in the following set of Ordinary Differentialffequency correction (15) is very small.
Equations (ODESs):
B. Phase noise

N
(1) = Ti(t + ax(t)) - Z 9k; Vit +a;(t))  (8)  The noise sources internal to theh oscillator in the array
J=1 are represented by a macro noise som@eet) as explained in
with k=1.....N. Sec. lI-B. These internal noise sources produce extra rando

The mutual synchronization regime is achieved Wheﬂyctuationsm(t_), i.e. jitter, 0f~the ti_me shifi (t) variables
asymptotically fort — oo, the phase difference betweerf'irounOI the regime wavefornis, (t), i.e.
any cguple of pgcillators remains bounded [17], i.e. when th an(t) = dr(t) + (). (16)
following condition
, The equations of the noisy array are given by the following
|wit + ok (t) — wit — ¢;(t)] < e (9) set of stochastic differential equations

holds for any %k and j, where ¢ is a constant value. A N

scenario of particular interest in practical applicationsan & (t) = Fk(t+ak(t))'zgkj Vi(t+ a;(t) +ng, (). (17)
array formed of N identical oscillators and thus with the j=1

same frequency, = wo for any k. In practical circuit im- The stochastic equations above can be solved numerically by
plementations, mismatches among oscillators may int@dugtegration in time. In addition, since internal noise sms
small differences (i.e. detunings) in the free-runningilesc e small-amplitude signals, the random fluctuationét)
lating frequenciesy.. However, as long as detunings argre small as well and thus (17) can be further expanded by
small compared to the locking range [9], [17] they vanish §hearization. To this aim, we plug (16) into (17) and adopt

synchronization and thus can be neglected. truncated Taylor expansions
Under this condition, the synchronization condition can be )
rewritten as follows Di(t + ow(t) + (1) = Ti(t + ar(t) + Lt + an(t))7e(t))
Vie(t 4+ ap(t) + m(t)) = Vi(t + ar(t)) + Vi (t + aw(t)) (1))

i (t) — a; ()] < e. (10) (18)
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(k) (k+1)

(k) (k+1)
Fig. 5. Coupling in a chain array: (top) the voltage acrosskih oscillator
controls the current injected into the + 1 oscillator (bottom) schematic
Fig. 4. Possible implementation of the coupling in a chaiayiby means representation of this local coupling.
of a differential stage.

nearest oscillators is commonly realized through difféetn
pair transistors [15], as shown in Fig. 4. The differentiat-c
rent of coupling stages can be modelled by voltage-coetloll
current sources of transconductange= g ;, as shown in
N Fig. 5(top part) [4]. The magnitude of the transconductance
Te(t) = f‘k(t + ag(t)) - ngj Vit +a;(t) | () gk,; gives the coupling strength while its sign refers to the way
j=1 the voltage-controlled current (i.e. the coupling diffetial
N ) stage) is connected to the terminals of the injected ogwmilla
+T%(t+ ak(t)) - Z gr; Vit +a;(t)m5(t) + nlgq(t). To realize weak coupling among oscillators, injected quse
j=1 should be kept one order of magnitude smaller than inner

(19)  oscillator currents (i.e., inner transistor currents)uglong is

The linearized equations above will be exploited in the nextpematically represented with an oriented arch that goint
Section to derive closed-form expressions for the phaseenofyom the controlling device to the controlled/injected pne

Neglecting the resulting second-order product ter{s); (t)
and higher order terms in (17) and using the fact thaft))
solves (8) leads us to the linearized equations

in a chain array. Fig. 5(bottom part).
In practice, the chain array may have several possible
IV. CHAIN ARRAY OF LC OSCILLATORS topologies: coupling may be unidirectional (i.e., ostdlak

The deterministic nonlinear ODE (8) and the relatetfjects into oscillatork + 1) or bidirectional (i.e., oscillatok
stochastic ODE (17) hold for generic oscillatory deviced arinjects into oscillatok+1 and oscillatort+1 injects backward
for generic resistive coupling networks. In particulareyh into oscillatork), the chain may be open at the two ends or
hold for non-harmonic oscillators (e.g. ring or relaxatiofay be closed with a feedback. Fig. 6 shows some of the
oscillators) whose responséé (¢) and sensitivity functions POssible topologies.
I'x(t) may contain many harmonic components. In this section,In the case of chain arrays, some theoretical results exist
we consider more specific cases that are of great relevancéhiat prove the uniqueness of the achievable phase separatio
applications and for which we derive some practical desigh’l. [6]. To link our phase-domain model to these theoedtic
rules. results, we further develop equations (20) and use avayagin
To this aim, we first suppose that the array is formed 3], [14]. Keeping only the slowly varying terms resulting
N identical LC oscillators whose output response and phaé@m the cosines product in (20) leads us to the following
sensitivity waveforms take the form reported in (4), for gny averaged equations for the excess phasgés) = woou (t)

The phase-domain response equations (8) become N
j=1
al (20)  with ar - v for i — -
~ng]— Vs cos(wot + woa; (t) + 7/2). with g ; #0 only for j =k —1andj =k + 1 and
— 1
=t B = §OJOF]L]VM. (22)

Second we focus on the relevant topology of the chain
array where coupling arises only between nearest-neighddren, we make the difference between each equation in (21)
oscillators. In integrated CMOS circuits, coupling betweefor ¢, (¢) and the subsequent one fof:(t), obtaining the
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Fig. 6. Chain array topologies: a) and b) open array with ivextional
and bidirectional coupling, respectively, c) d) unidifentl and bidirectional
array closed in feedback.

following set of (V — 1) nonlinear coupled equations

Ur(t) = —Bgkn—15n(r—1(t)) + Bgk k1 sin(r(t))
+Bgk+1,k8i0(Vk (1) — B+t k+28in(Yrr1(t)),
(23)
with k =1,..., N — 1, for the phase difference variables
Ui (t) = Prg1(t) — or(t). (24)

and (11), the linearized phase noise model (19) is rewrdten
() = {TmVmwe coslwo(t + ay + mt) + 7/2]

-ngjVM cosfwo (t + @; + mt) + 7/2]}7i(¢)

+T s Viagwe cos|wo (t + @y, + mt))

N
-ngj coslwo(t + @; +mt) + 7| 7;(t) + nlgq(t).
j=1
’ (25)
Then, we exploit averaging again and keep only the low-
frequency terms arising from the cosine products, obtginin

() ~ B (ngj cos(dp — @-)) -7 (t)
—BY gk; cos(dk — b;) - 75(t) + nk, (b).

j=1

' (26)
Multiplying both sides of (26) byw, and noticing that the
excess phase fluctuation is

Ok () = wok(t), (27)
equation (26) can be rewritten in the following compact form
d - S
—0(t) = A - 0(t) + wo Tleq(t) (28)

dt
whered(t) and leq(t) are the vectors that collect the excess
phase fluctuations variables and the equivalent noise ssurc

of the oscillators, respectively. The elements of matkixe
RY*N are decided by

N
ak =B Y grjcos(dr — ¢))
J=1j#k  _ _ )
apj = 7ngj COS(gf)k — d)]) for k 7& 7.

It is worth noting that the matrixA = A(¢1, 2, ...,0N)

is a function of the phase difference values which establish
at synchronization regime. From (28) we see that the eigen-
values of such a matrix govern the dynamics induced by any
perturbation of the synchronization phase values [18].sThu
a given phase set;, ¢s, ..., ¢y is stable if and only if the
eigenvalues\; of A are such that: one eigenvalue is zero,

(29)

For a set of nonlinear equations having the structure of, (28. A\1 = 0, and the remaining ones have negative real part

it has been proved in [6] that there exizsl’ ~! stationary
solutions, i.e. withy,(t) = 0 but thatonly oneof them

R(A\g) < 0for k =2,...,N. As a result, the computation
of matrix A and of its eigenvalues provides a robust way to

is stable and thus observable in practice. This guarant@stablish the stability of a given phase separation siredlat
that in the case of a chain of LC oscillators, the numericalith the phase-domain model (8).

integration of the phase model (8) (or of its simplified vensi

Finally, to compute the array phase noise, the system (28) is

(20)) will supply the only phase separation set values (18pnsformed in the frequency domain and the Fourier transfo
which is stable for a given chain topology. Therefore, thef 6(t) is calculated to be

same phase separation will be obtained independently of the

assumed initial phase condition.

0(f) =T(f) - (wo Neg(f)) (30)

.whereT(f) = {tx;(f)} is the inverse matrix

We end this section by deriving the closed-form expression

for the phase noise in a chain of LC oscillators. Based on

@) T(f) = (j2rnfIy — A) ", (31)
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Iy is the identity matrix of sizéV while ”"—1” denotes matrix
inverse operator. Since the equivalent noise sounzég(i) of
different oscillators are mutually independent, the phasiee

of the kth oscillator in the array is given by 4 Q/\@/\@m@/\@
—_— 5 =

N
So, (f) =Y _Itwi () w§ Sn, (f)- (32) g
j=1

Each entryt;(f) in the matrix (31) has an intuitive interpreta- o o ——
tion: its squared module represents the noise transfetiomc 5) @ @ @ @
from the noise sources in thih oscillator towards the phase @

variable of thekth oscillator in the chain array. -9

V. NUMERICAL EXPERIMENTS Fig. 7. A chain array with five different topology and paraereettings.

In this section, we study a multiphase chain array formed
with N LC oscillators. The schematic of each LC oscillator is
shown in Fig. 1 and the device parameters are listed in tabléhat Settings 1), 2) and 5) are not useful for applications (f
Transistor models are from(@®28 um CMOS technology. The & chain array of identical devices) since they do not allow
oscillator is first simulated with the periodic steady sigiss) achieving fine phase separation even if we increase the numbe
analysis of SpectreRF and then thg) function is extracted IV of stages.
with the method described in [21]. Fig. 2 in Sec. Il reporis th The first case relevant for applications is that of Setting
output voltage/y (t) measured across the LC tank andE{e) 3) where the phase variables shown in Fig. 10 are such that
function (scaled by the fact®0). In the remainder, we presentor+1(t) — ¢x(t) = —n/N. Repeated phase-domain simula-
the results for a chain array with the topology and paramet&ns reveal that for Setting 3) a regular phase separation i
settings shown in Fig. 7. The transconductance parametee#tablished in the chain array and that such separation can
fixed g = 10°Q~! which corresponds to a weak couplingpe made finer by increasing the numh¥r of oscillators.
among oscillators. The sign plus or minus in Fig. 7 refers 1o addition, all the eigenvalues (but the first which is zero)
the way a transconductance source is connected to the nogfethe matrix A in (28) have negative real part confirming
of the injected oscillator, as shown in Fig. 5. the stability of such phase configurations. Fig. 11 repdrés t

Fig. 8 reports the phase variables simulated with the phasettput voltagesVy () of the oscillator array for Setting 3)
domain model (8) for Setting 1) which corresponds to @btained after substituting the simulated phase wavefantos
bidirectional open chain. The initial phase values arecsete the phase-domain model (2).
randomly in the interval0, 27). Asymptotically, fort — oo, To verify the correctness of our phase-domain predictions
all phase variables approach the same waveform, meanfag Setting 3), detailed circuit-level simulations of thbain
that all oscillators synchronize in phase (i.e. outputagdis array are performed with SpectreRF. The array output vetag
are perfectly superimposed). We note also that the asyimaptatielded by SpectreRF are plotted in Fig. 12 and fully confirm
waveform in Fig. 8 has a finite negative slopewhich corre- the predicted phase separations as well as the validity of
sponds to a negligible reduction of the oscillating frequyen. weak coupling hypothesis for the selected transconduetanc
(15) compared to the free-running oag. A similar result (not parameter valugy. It is worth noting here that the circuit-
shown for brevity) is obtained for Setting 2) which corresgs level simulation of a weakly coupled oscillator array can
to a closed unidirectional chain with feedback. be very tricky and/or time-consuming. If oscillators aré al

For Setting 5), shown in Fig. 9, instead we obtain that thdentical (and weakly coupled), the array admits a trivial
phase variables of two consecutive oscillators are such tipariodic steady solution (pss) with the output voltagesIbf a
odr+1(t) — i (t) = £7. This means that the output voltages obscillators perfectly superimposed. For Setting 3) thidqmtly
different oscillators are in phase or in antiphase. We aaiel in-phase solution is unstable and thus it is a spuriousisalut
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Fig. 8.
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Fig. 9. Setting 5): phase variables divide into two clusters

Phase Variables

Fig. 10. Setting 3) phases are separated-ty/N.

Output Voltages
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Fig. 11. Output voltages simulated with the phase-domaidehfor Setting
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Output Voltages

QOutput voltages simulated with Spectre for SetBhg

Fig. 12.

To avoid that the pss analysis of SpectreRF converges to this
spurious solution, long transient initializations (stagt from
nonidentical initial conditions) and tight tolerance hatee
be imposed which results in long simulation time. For these
reasons, circuit-level simulations are not suitable tolee
the numerous phase separation cases that can occur in a large
chain array but they may be used for cross validations in a
few cases.

Another case which is relevant for applications is Settihg 4
the phase variables shown in Fig. 13 are such ¢hat(t) —
¢x(t) = 2w/N. In this case, a regular phase separation is
established between thigh and the(k + 2)th oscillator in
the chain. Repeated phase simulations reveal that sucle phas
separation is actually obtained only whéhis odd while for
an even number of oscillators phases divide in two clusters
like in Fig 9. We conclude that Settings 3) and 4) (with
odd) achieves the desired phase separation. We also verified



Phase Variables

Output Noise [raél/Hz]

2 25 3 35 4 45 5 10° 10° 10
Time[s] X107 Frequency [Hz]

Fig. 13. Setting 4) phases are such that, o (t) — ¢x (t) = —27/N. Fig. 15. Phase noise for Setting 3) in a symmetric bidireetioarray
N = 5,10, 20 stages. (Continuous lines) closed-form expression (F2)ed
square markers) pnoise of SpectreRF.

Second, with the closed-form expression (32) we compute
the phase noise spectrufip, (f) of one oscillator in a chain
array composed ofV stages. For the case of unidirectional
coupling, this phase noise is plotted in Fig. 14 for incregsi
values of chain staged¥. We see how the array phase noise
is reduced compared to that of the free-running oscillator
(shown in Fig. 14 with a dashed line) at frequencies lower
than500 kHz and how such a reduction gets more effective for
higher values ofV. However, we also see that increasiNg
results in a phase noise deterioration with the appearanae o
spur around MHz. The phase noise in the bidirectional array,
shown in Fig. 15, instead exhibits a uniform reduction of the

10’1105 e o noise spectrum over a much wider frequency range and with-
Frequency [HZ] out deteriorating spurs. A symmetric bidirectional conglis
thus recommended in all those applications where the above
Fig. 14. Phase noise for Sefting 3) in & unidirectionsl arkayned of mentioned noise spurs are n_ot tolerable. The abqve reported
N =5, 10,20 stages. (Continuous lines) closed-form expression (B2ed results have been fully_con_ﬂrmed by the s!mul_atlon results
square markers) pnoise of SpectreRF. from SpectreRF plotted in Figs. 14 and 15 with filled squared
markers. The phase noise analysidisg with SpecteRF
of the unidirectional array formed witlv = 20 oscillators
that the same result holds when parameter Settings 3) andakes about forty minutes on a quad-core workstation. By
are implemented in a bidirectional symmetric chain arrdye T comparison, the phase-domain simulation of (8) and noise
realization of bidirectional coupling (i.e. where eachilistor ~calculation with (32) is accomplished in a few seconds, i.e.
is connected to the next and previous oscillators) costemdiris about three orders of magnitude faster.
in terms of number of devices (and thus of area occupation),
however the theoretical results presented in the litegafbf VI. CONCLUSION
suggest that symmetric arrays may give better phase noisén this paper, we have described a phase-domain modeling
performance than unsymmetric ones. In what follows Wechnique to simulate in a very efficient way an array of
investigate this issue for the case of Setting 3). weakly coupled oscillators. The method allows determining

First, with the phase noise analysis of SpectreRF, wie stable phase separations that establish at synchtioniza
simulate the phase noise spectrum of one free-running la€ a function of array topology and parameter settings. For
oscillator. Above some kilohertz, this spectrum is domadat the relevant case of a chain array of LC oscillators, we
by the white noise internal sources and corresponds to thave identified two topologies that achieve the desired @has
noise parameteﬁ;’f]’ = 10" rad’/Hz in (6). This parameter separation in a stable way. Finally, an original closearfor
corresponds to a noise leve}(f) of about10~'°rad’/Hz at expression for the chain array phase noise has been derived
frequency offsetf = 1 MHz. and its accuracy has been verified against detailed SpéetreR

Output Noise [raél/Hz]




simulations. Phase-domain simulations reveal that thesgph¢
noise of an oscillator in the array is reduced compared

that

reduction becomes more effective when the number of sta¢
is increased and oscillators are coupled in a bidirectiorzst
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of the same oscillator working in free-running. Nois
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