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Abstract
Stokes et al demonstrate that cortical neurons that adapt their properties with task demands form
patterns reflecting the shifting mental states needed to solve the task. Adaptive neurons may be
critical to hallmarks of cognition: behavioral complexity and flexibility.

Traditionally, cortical neurons have been viewed as specialized for single functions or a few
highly related functions. Different sets of neurons analyze space, recognize objects, etc. The
thinking is that while a given neuron may participate in many behaviors, its activity always
“means” one thing like “leftward motion”. And, indeed, the cortex is organized by sensory
and motor functions, has maps of external space, etc. But strict specialization may be the
exception not the rule, more evident in primary sensory and motor cortex or for
exceptionally important information like faces (Gross et al., 1972; Kanwisher et al., 1997).
Instead, at the higher levels of cortical processing, neural specialization waters down in mix
of disparate, seemingly unrelated, information. There is no obvious function that unites the
variety of information signaled by individual neurons.

Consider recent examples from the lateral intraparietal area (LIP), a cortical area widely
regarded as specialized for visuospatial functions. The same neurons showed independent
selectivity for motion categories and unrelated information like shape categories (Fitzgerald
et al 2011; Rishel et al., 2013). Such multidimensional or mixed selectivity may apex in the
prefrontal cortex (PFC), the “executive” cortex, where cognitively demanding tasks engage
large fractions of neurons that encode different information in different tasks or different
times in the same task (e.g., Cromer et al., 2010). Note that this does not mean that cortical
areas are functionally equivalent. Certain information is emphasized, more explicit, or more
orderly in some areas than others. But it is increasingly clear that the cortex is not a
patchwork of high specialization. Many areas may be special for certain functions but not
specialized for them because cortical neurons are often a nexus of disparate information.

This mixed selectivity suggests “adaptive coding”: neurons with extensive inputs from a
wide range of external (sensory, motor) and internal (values, memories, etc) sources
(Duncan and Miller, 2002). There is no one message from such neurons. They can be
recruited for different functions because their message changes with the activity of other
neurons. This flexibility seems essential for complex behavior (more below). But thus far,
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much of the evidence has been indirect, based on mixed selectivity of single neurons and
core brain areas in humans that are activated by many different cognitive tasks. In this issue,
Stokes and colleagues provide some of the first direct evidence for adaptive coding in
action.

Monkeys were taught that six pictures formed three pairs. Then, they saw two randomly
chosen pictures in sequence separated by a short delay. They were rewarded if they
successfully indicated whether the two pictures were paired or not. Note the evolution and
diversity of mental states: Perception and short-term memory (for the first picture), recall (of
its pair), and decisions (paired or not?). Rather than use the typical approach of focusing on
the average firing rate of single neurons over long intervals (seconds), Stoke's et al examined
patterns of PFC neural activity recorded from multiple electrodes over small steps in time
(50 ms). This revealed shifting patterns of PFC activity that followed a trajectory through
multi-dimensional space from signaling sensory events to internal factors like rules and
decisions. Many PFC neurons participated in multiple states. Thus, mixed selectivity doesn't
result in cortical porridge but rather an organized progression of mental states, provided you
have multiple electrodes and can simultaneously take multiple neurons into account.

Why such complexity? Wouldn't it be simpler if every neuron had its own job? You could
build a brain like that, but it would not work very well. Consider a simple neural circuit
designed to solve the Stokes task (Figure 1). The readout neuron is active when the weighted
sum of the inputs is above a threshold. As in the exclusive-or (XOR) problem, there is no
solution if inputs include only specialized neurons that encode the pictures separately. Even
in the simplest case of two pictures (A,B) and their pairs (A',B'), the readout neuron cannot
respond to the two related pairs (A, A' and B, B') and not to the other two (A, B' and B, A').
The solution is to add neurons that respond to non-linear mixtures of relevant variables. The
task is solved by simply adding a third neuron that adapts its selectivity according to the cue
stimulus (it discriminates A' vs B' only when the cue was A). In a forthcoming paper, we
demonstrate that mixed selectivity in PFC neurons have critical computational advantages
(Rigotti et al 2013). It greatly increases the complexity and number of tasks that can be
learned. Rather than “confuse” downstream readout neurons, increasing the number of
mixed selectivity neurons exponentially increases the number of possible input-output
mappings that readout neurons can implement. Networks without mixed selectivity have a
limited capacity to learn a few simple tasks. Plus, mixed selectivity speeds and eases
learning because only readout neurons need to be trained and, with high-dimensional neural
representations, learning algorithms converge more rapidly (Rigotti et al., 2010). Given
these advantages, it is no wonder that mixed selectivity is so widely observed in the cortex.

But doesn't mixed selectivity create problems? Don't downstream neurons sometimes
receive signals that are irrelevant or counterproductive? One solution is the oscillatory brain
rhythms. It could allow neurons to communicate different messages to different targets
depending on whom they are synchronized with (and how, e.g., phase, frequency). For
example, rat hippocampal CA1 neurons preferentially synchronize to the entorhinal or CA3
neurons at different gamma frequencies and theta phases (Colgin et al, 2009). Different
frequency synchronization between human cortical areas supports recollection of spatial vs
temporal information (Watrous et al., 2013). Different phases of cortical oscillations
preferentially signal different pictures simultaneously held in short-term memory (Siegel et
al., 2009). Monkey frontal and parietal cortices synchronize more strongly at lower vs
higher frequency for top-down vs bottom-up attention, respectively (Buschman and Miller,
2007). Entraining the human frontal cortex at those frequencies produces the predicted top-
down vs bottom-up effects on behavior (Chanes et al., 2013). Thus, activity from the same
neurons has different functional outcomes depending on their rhythmic dynamics.
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For years, experimentalists have observed that cortical areas central to cognition have large
proportions of “weird” neurons with mixed selectivity that cannot be pinned to one
particular message. These neurons may have seemed difficult to interpret but there is
mounting evidence that they may underlie hallmarks of cognition: the great capacity to
absorb and flexibly implement a wide range of cognitive skills and tasks. Stokes et al
provides a new intriguing glimpse into their neural infrastructure and dynamics.
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Figure 1.
Example of a neural circuit that can solve a task only with mixed selectivity neurons. A. Cue
and related target pictures. A is paired with A', and B with B'. B. Left: Two highly
specialized input neurons converging on a readout neuron. One responds to A and not B and
the other to A' and not B'. Right: The x-axis represents the activity level of one input neuron
(A vs B) and the y-axis the other (A' vs B'). The four triangles are four possible input
patterns for the cue and choices. Red triangles cannot be separated from yellow triangles
with a line (the readout neuron cannot respond to A, A' and B, B' but not to A, B' and B, A').
B Same as b, but with a mixed selectivity neuron responding to the combination A&A' is
included. The input space is now 3D, and red triangles can be separated from the yellow
ones by a transparent plane.
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