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Abstract 

Surface nanocrystallization is an effective approach to bypass the difficulties of synthesizing bulk 

nanocrystalline material and yet exploit its unique advantages in service. This study uses air blast shot 

peening over a wide range of coverage (peening time), from conventional to severe, to generate 

nanostructured surface layers on high strength low alloy steel. Electron microscopy observations were 

carried out to systematically study the degree and the mechanism of grain refinement as the severity of 

deformation increases. A model linking finite element simulation of severe shot peening to dislocation 

density evolution due to the accumulated plastic strain was developed to predict the resultant grain/cell 

size gradient in the surface layers. The proposed framework establishes a physical connection from 

processing parameters such as media size, velocity and peening coverage to the resultant structure, 

opening the possibility of designing a severe surface peening process to achieve a desired nanostructure. 

Keywords: Surface nanocrystallization, Severe shot peening, Finite element, Dislocation density, Grain 

refinement. 
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1 Introduction 

Most material failures, including fatigue fracture, fretting fatigue, wear and corrosion are very sensitive to 

the structure and properties of a material’s surface, and many of these properties are known to improve in 

fine grained and nanocrystalline (NC) materials [1,2]. As a result, methods to achieve a nanocrystalline 

surface layer over bulk material are of broad interest, especially since surface nanocrystallization [3] 

processing techniques may bypass difficulties of synthesizing bulk NC components and yet exploit the 

advantages of NC materials in service. Mechanically induced surface nanocrystallization is generally 

effected through repeated multidirectional plastic deformation caused by high velocity impacts.  Such 

impacts create high dislocation densities through strain localization in shear bands, followed by 

recombination, rearrangement and annihilation of some dislocations upon subsequent impact events. The 

initial grains are thereby subdivided into a large number of sub-grains (or domains) separated by small 

angle grain boundaries [3,4], which can also gradually accumulate misorientation to become high-angle 

boundaries. Equiaxed ultrafine or nano grains with random crystallographic orientation have been found 

by TEM observation in a variety of studies of this kind [4–6]. 

A variety of shot peening derived processes have been developed, although they all fundamentally exploit 

the same materials mechanics and structural evolution mechanisms to achieve surface nanocrystallization.  

For example, ultrasonic shot peening (USSP), sometimes called surface mechanical attrition (SMAT) [4–

13] uses a dynamic generator at frequencies ranging from 50 Hz to 20 kHz, to resonate peening media 

against a sample surface. Air blast shot peening employs compressed air to accelerate shots, and is widely 

used industrially because of its simplicity, low cost and applicability to variety of targets. Air blast shot 

peening becomes a severe process that accesses ultrafine and NC structures when certain combinations of 

peening parameters are used to multiply the kinetic energy of the shot impacts [14–18]. In general, we 

differentiate severe shot peening [19–21] from conventional shot peening in order to emphasize its aim at 

generating ultra-fine grained or NC surface layers.      
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Surface nanocrystallization mechanisms can be related to the magnitude of the stacking fault energy [22]. 

In materials with larger stacking fault energy such as iron, TEM observations after SMAT revealed that 

dense dislocation walls and tangles are generated inside the original grains. Upon further straining, the 

dislocation walls and tangles transform into sub-boundaries with small misorientation via annihilation and 

rearrangement in order to minimize the total energy of the system. Eventually, sub-grain boundaries 

evolve into high-angle grain boundaries that subdivide the original grains into refined structures [23]. In 

low stacking fault energy materials such as austenitic stainless steel, the prominent features include planar 

dislocation arrays and mechanical micro-twins at higher strains [6,10]. The original coarse grains thus 

become sub-divided by lamellar twins with nanometer-sized thickness. Upon further straining 

dislocations inside the lamella arrange themselves into dislocation walls traversing the thickness of the 

microtwin lamellae. Twin-twin intersection also leads to nanometer sized blocks. In the case of SMATed 

copper (medium stacking fault energy) intermediate behavior with two different mechanisms of 

refinement is observed [12]. In the subsurface layer, dislocation activity leads to dislocation cells instead 

of tangles, but at the top surface layer (within 25 µm), the twinning-related refinement mechanisms seen 

in low stacking fault energy materials, are operative. 

Modeling of nanocrystallization mechanisms during severe shot peening has not been extensively treated. 

In Ref. [24] a finite element analysis of the mechanics of peening was presented. However, no connection 

was given to the microstructural evolution process, grain size and the gradient of nanostructure that 

naturally evolves during peening. A physical model of structure evolution would be useful to engineer the 

surface layers and design a peening process to attain a desired nanostructure.  

It is the purpose of this paper to present a systematic study of surface nanocrystallization by severe shot 

peening. Using air blast peening, a wide range of coverage was adopted to span both conventional and 

severe shot peening regimes. A hybrid numerical model was developed with the aim of assessing 

microstructural evolution during shot peening. Scanning electron microscopy (SEM) and transmission 
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electron microscopy (TEM) observations were conducted to study the grain refinement, surface 

nanocrystallization and also for comparison with a finite element simulation incorporating dislocation 

density evolution. The comparison of dislocation cell size obtained by numerical framework and those 

measured by TEM/SEM observation shows a satisfactory and promising agreement.  

2 Material and experiments 

The substrate material considered in this study is high strength low alloy steel ESKYLOS6959 

(equivalent to DIN 35NiCrMoV12-5 or AISI 4340). Its chemical composition is summarized in Table 1. 

AISI 4340 is one of the most widely studied materials after shot peening. The reason is that its application 

is mainly power transmission gears, shafts and aircraft landing gears where fatigue is always the first 

design consideration, and shot peening has been widely applied to these components to improve fatigue 

behavior. 

Table 1. Chemical composition of the present high strength low alloy steel (wt %). 

C Mn Si Cr Mo Ni V Fe 

0.3-0.4 0.4-0.9 0.15-0.55 1-2 0.35-0.9 2.5-4.5 0.05-0.25 Balance 

 

 

Cylindrical specimens of 7.52 mm diameter in the target section were machined from a forged bar. All 

specimens were extracted from the bar in the same radial position to ensure similarity of micro-structure. 

The bar had been quenched from 880 °C in water and then tempered at 635 °C for 5 h.  

Standard cast steel shots, S230, were accelerated in an air blast machine to conduct shot peening. Shot 

peening was performed with 100%, 200%, 650%, 1000% and 1300% coverage to examine the evolution 

of microstructure as coverage increases. 100% and sometimes 200% are the typical coverage levels used 

in conventional shot peening to generate an appropriate field of compressive residual stress and sufficient 

work hardening. The higher levels of 650%, 1000% and 1300% represent the severe shot peening regime, 
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in which significant grain refinement and eventually surface nanocrystallization are produced. Shot 

peening coverage can be effectively related to the peening time. For instance, for a given target area and 

set of peening parameters, the time needed to attain a coverage of 1000% is ten times the time needed to 

attain the full coverage (100%). The angle between the shot flow and the target surface in the experiment 

was set equal to 90° for simplicity, and because this is a recommended angle for uniform residual stress 

generation. Randomly deviating from perpendicular impacts might also be beneficial in terms of inducing 

very localized multidirectional severe plastic deformation. The shot peening intensity as measured on 

“Almen A” strip was 18, which is an index of the total energy of the treatment. Using the approach of 

Ref. [25], we may connect the Almen intensity to the shot flow velocity for a fixed shot; in this manner 

the effect of shot velocity on nanocrystallization can be inferred for practical applications. 

The microstructure of peened samples was characterized using a JEOL 2010F analytical microscope 

operated at 200 kV and FEI/Philips XL30 FEG ESEM at 20 kV. The peened samples were mechanically 

cross sectioned, polished and mounted on copper grids for TEM observation. To prepare TEM specimens, 

two cylindrical disks were prepared first by cutting the shot-peened specimens. These disks were glued 

face-to-face on a metal plate, and then mechanically polished to make thin foils. This procedure was 

needed to preserve a disk edge that included the severely deformed layer (top surface), as well as observe 

the non-deformed layers simultaneously. The two polished parts of the disk were then re-glued onto a slot 

grid, and were ion-milled using a Gatan PIPS instrument with an ion accelerating voltage of 5 kV at 5°. 

The distance of a given observed region from the free surface was measured in the TEM using low-

magnification imaging. The mean grain size was evaluated from layers within a vertical range of 5 µm. 

SEM observations were also conducted to evaluate grain refinement. 8% Nital was used as etchant to 

reveal the final microstructure (i.e., lower bainite and/or tempered martensite) with the cell boundaries. 

All the SEM observations were conducted under the same magnification factor of 2000X to attain better 

statistics. The cell (and/or grain) sizes reported are area-equivalent circular diameter for structures that are 

dominated by equiaxed cells, and length for the structures dominated by lamellar cells [26]. The total 
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counts for each size measurement was at least above 70. For the low coverage levels (100% and 200%), it 

was difficult to use TEM because of the relatively coarse grains and the correspondingly limited view of 

the relevant structural scales, which are coarser than the TEM observations.  Similarly, for high coverage 

levels (650%, 1000% and 1300%), the refined grains were too small to evaluate by SEM.  

3 Numerical framework 

3.1 Finite element simulation 

Finite element models of a single impact and multiple impacts are developed and linked to a dislocation 

density evolution model. The single impact model, as the unit process of peening, was used to examine 

the effect of media size, velocity and hardness on the induced refinement. Multiple impacts model was 

used to realistically simulate the induced refinement by peening with different coverage levels, from 

100% to 1300%. 

Two dimensional axisymmetric models of a target impinged upon by a single impact were developed with 

the commercial finite element code Abaqus Explicit 6.10-1 [27]. The dimension of the target was chosen 

to be 5R×5R, where R is the shot radius, to ensure boundary conditions do not interfere with the elasto-

plastic deformation occurring in the surface layer. Only the lower half of the shot was modeled to reduce 

the computation time. However, its density was doubled to convey the same kinetic energy as the full 

shot. CAX4R [27], which is a 4-node bilinear axisymmetric quadrilateral element with reduced 

integration and hourglass control, was used to discretize both target and shot. Interface contact elements 

were introduced using the penalty algorithm [27] with a Coulomb friction coefficient of 0.2. The target’s 

bottom was constrained against all degrees of freedom, and the initial shot velocity was set to a value in 

the range of 20-200 m/s (with 65 m/s matching the experimental value), applied to all of the shot’s nodes. 

This is the velocity range adopted for practical peening. Higher impact velocities would cause an 

intolerable surface roughness or even abrasion, while at lower impact velocities plastic deformation of 

materials of technical interest is not likely. In order to study the effect of media size on the refinement, a 
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range of 0.2-1.2 mm diameter balls were simulated, with 0.6 mm matching the size of the shot used in the 

experiments. Appropriate damping parameters [28] were introduced into the model in order to prevent 

residual oscillations. Figure 1a shows the finite element model of a single impact and the corresponding 

boundary conditions.  

An elastic-perfectly plastic behavior was applied to simulate the shot behavior, with a yield stress (Y) in 

the range of 1550-2500 MPa (with 1550 MPa matching the experimental value based on the expectation 

that steel shot has a hardness range of 40-52 Rockwell C). The density ρ=7850 kg/m3, Young’s modulus 

E=210 GPa and Poission’s ratio υ=0.3 were also used. 

Strain rate plays a major role in dictating the level and distribution of the residual stress field, and the 

induced plastic strains due to shot peening [28]. Therefore, it is crucial that the target’s constitutive 

behavior is able to reflect not only an appropriate hardening law as a function of plastic strain but also the 

strain rate sensitivity of the flow stress. The Johnson-Cook constitutive equation [29] originally tested and 

proposed for metallic materials such as 4340 steel was applied for the target. It expresses the flow stress 

as a function of equivalent plastic strain, strain rate and temperature by the following relation; 
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where p is equivalent plastic strain, p and 0 are the applied and reference deformation rate, T , roomT and 

meltT  are applied, reference and melting temperature, A is the initial yield stress, B and n are constants 

describing hardening coefficient and exponent respectively, C and m are also constants describing the 

flow stress sensitivity to strain rate and temperature. Table 2 represents the Johnson-Cook parameters for 

AISI 4340 [29]. It should be noted that the dependency of flow stress on temperature has been neglected 
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in the present simulation because shot peening is widely accepted to be a cold working process and any 

local heat rise at the surface would be quenched to the bulk quickly. 

Table 2. Johnson-Cook equation parameters for AISI 4340. 

A (MPa) B (MPa) n C m 0 (1/s) meltT (K) 

792 510 0.26 0.014 1.03 1 1793 

 

 

We also simulated 3D shot peening over a sequence of multiple impacts, as incorporation of a large 

number of impacts is crucial toward a realistic simulation of sever shot peening and the induced structural 

refinement.  The basic principles of the 3D simulations (material behavior, initial and boundary condition 

and contact properties) are essentially similar to those of the 2D simulations. The main difference lies in 

the multiple impacts, which should represent a realistic and yet not too computationally demanding 

evolution of coverage. We employed a constrained random positioning method for each 100% increment 

of coverage, in which the center of every impact is forbidden to lie within 0.4R of prior impact centers; 

where 0.4 is the ratio of a single impact indentation radius to the shot radius for parameters matching our 

experiment. It should be noted that this constraint does not mean there is no overlap, as any impact hitting 

0.4-0.8R away from previous impact centers provides interaction of plastic zones. Furthermore, the 

history of random positioning is reset after each 100% increment of coverage leading to a realistic overlap 

simulation of multiple deformation events. 

 

Based on some trial runs, the radius of the treated area for the 3D simulations of multiple impact was 

chosen to be 5 times the radius of the indentation induced by a single impact. To avoid edge effects, the 

target was considered to be a big enough cylindrical domain with the treated area at the middle. Full 

coverage (100%) at the treated area was attained with 42 impacts, and by extension 1300% coverage was 

achieved with 546 impacts. For a more detailed description, readers are referred to Ref. [30]. Figure 1b 

shows the finite element model for multiple impacts. Since equivalent plastic strain is the output of the FE 
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simulation and the input for the subsequent dislocation density model, our mesh convergence study was 

conducted on this parameter. The results converged for 5 µm and 20 µm element size in 2D and 3D 

models respectively. 

 

 

Figure 1. Finite element model of a) a single impact and b) multiple impacts. 

 

3.2 Dislocation density evolution model 

Generation of a dislocation cell structure in the early stage of plastic deformation and its evolution to the 

final fine grain structure as deformation continues, is perhaps the most commonly accepted model of 

refinement due to large plastic strain. This occurs through continual decrease in the average grain size 

accompanied by accumulation of misorientation between neighboring dislocation cells [31]. Based on 

many earlier developments describing the stages of hardening in crystals deformed to various strain levels 

[32–37], Estrin et al. [38] proposed a 2D dislocation density model, sometimes called ETMB, consisting 

of two coupled differential equations for the evolution of cell and wall dislocation densities, such as is 

relevant to larger strains where a cell structure emerges.  The model was generalized soon afterwards for 

3D cases and arbitrary strain paths [39] and has become a useful framework to predict grain refinement in 

the last decade. This model is adopted in the present work to assess the grain refinement during severe 

shot peening. It should be underlined that the present model is intended to treat materials that deform by 
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dislocation plasticity only and materials which undergo extensive deformation twinning are not treated by 

this model. The model begins with the reciprocal-parabolic relation between the average dislocation cell 

size and the total dislocation density: 

t

K
d


  (2) 

This relationship was presented in the early work of dislocation cell formation by Holt [40]. K is taken to 

be an accumulated strain-dependent parameter [41,42] which quickly decreases from an initial to a 

saturated value with the accumulation of the total dislocation density:  

0( )exp( )rK K K K       (3) 

where 
r  is the resolved shear strain. The total dislocation density can be expressed by a weighted sum 

of dislocation density in the cell walls (subscript “w”) and cell interior (subscript “c”). 

(1 )t w cf f      (4) 

0( )exp( / )rf f f f       (5) 

 

Here, f represents the volume fraction of dislocation walls. f is assumed, as suggested by the 

phenomenological Eq. (5), to have a decreasing trend from an initial to a saturated value as plastic strain 

increases. The parameter   is a constant that quantifies the rate of the descent. 

The evolution of the dislocation population in the cell interior and cell walls is captured by a set of 

coupled differential equations, under a Taylor-type assumption that the shear strain is the same in both 

phases: 
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The various terms in the right hand side of Eqs. (6) and (7) represent the contribution from different 

dislocation mechanisms. The first term in Eq. (6) represents the rate of dislocation generation in the cell 

interior due to activation of Frank-Read sources at the interface. The second term in Eq. (6) represents the 

fraction of dislocations that leave the cell interior towards the wall and become part of the wall structure. 

The last term in Eq. 6 accounts for the mutual annihilation of dislocations in the cell associated with cross 

slip of screw dislocations or climb of edge dislocations. The first term in Eq. (7) represents the 

accommodation of the dislocations in the wall corresponding to the loss of cell interior dislocations. The 

second term describes dislocation generation in the walls due to activation of Frank-Read sources at the 

interface. Finally the last term in Eq. (7) accounts for annihilation of dislocations in the walls. Here b is 

the magnitude of the Burgers vector and coefficients α*, β*, kc and kw, are numerical constants. The 

quantity 0 is a reference shear rate. The exponents nc and nw are constants here due to the assumption of 

an isothermal peening process. 

 

In order to link the dislocation interactions to the mechanical behavior of material, one can express the 

flow stress of the material as the sum of two terms: 

  

1 2     (8) 

 

In Eq. (8), σ1 represents a strain-independent contribution to the stress that originates from the resistance 

to dislocation glide (friction), not related to dislocation–dislocation interactions. This stress may be 
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estimated from the yield stress of the un-deformed material [43]. In fact this term plays the same role as 

‘A’ does in Eq. (1), and the self-consistency of Eq. (8) with Eq. (1) will be addressed in greater detail 

below where we introduce our method of optimizing the parameters in the dislocation density evolution 

model. The second term in Eq. (8) originates from dislocation-dislocation interactions and is strain and 

strain rate dependent. The resolved shear stress and the shear strain rate can be correlated to σ2 and 

equivalent strain rate via the Taylor factor: 

2r

M


   (9) 

r M   (10) 

Resolved shear stress, describing the overall mechanical behavior of the cell-wall composite structure, 

can be correlated to the two developed resolved shear stresses in the cell and in the wall by a rule of 

mixtures: 

(1 )r r r

w cf f      (11) 

Relating these resolved shear stresses to their corresponding dislocation densities completes the set of 

equations: 
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(13) 

where α is a constant, G is shear modulus and m* is the inverse strain rate sensitivity parameter.  

 

Dislocation evolution has been linked to the variation of flow stress through the course of straining. It was 

shown that the model is able to successfully predict all stages of strain hardening at large strain [38,39], 

grain refinement under equal channel angular pressing [44,45], high pressure torsion [42] and Taylor 

impact test [43]. 
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A routine was written in MATLAB [46] to represent the dislocation density evolution model described by 

Eqs (2-13), and linked to the finite element simulation of peening described in Section 3.1. The time 

history of strain and strain rate at various depths in the target during peening was first calculated using 

finite element simulation on the basis of Eq. (1) for the material response. The resulting strains and strain 

rates experienced by the target were then evaluated using the dislocation density routine to estimate the 

dislocation structure evolution. Self-consistency of the mechanical model (Eq. (1)) and the 

microstructure-based model (Eq. (8)) was enforced by performing a global minimization using a genetic 

algorithm to find the best set of input parameters that minimizes the absolute difference between flow 

stress given by the Johnson-Cook constitutive equation (Eq. (1)) and predicted by the dislocation density 

routine for high strain rates (104, 105, 106 s-1) at room temperature. Table 3 summarizes the seven tuned 

parameters for AISI4340 as well as other constants [38–45] used in the model. The schematic 

representation of the minimization procedures along with the hybrid framework is given in Figure 2. The 

hybrid framework provides a direct connection between processing parameters such as media size, 

velocity and peening coverage to the resultant structure.    

 

Table 3. Material parameters for AISI4340 used in the dislocation density evolution model. 

Tuned parameters Other parameters 

α* β* ki kw ni nw m* b (m) M α 
G 

(GPa) 
f0 f∞ 0  K0 K∞   β 

ρc
(t=0) 

(m-2) 

ρw
(t=0) 

(m-2) 

0.154 0.078 18.6 32.8 89.8 90.3 60.8 2.48×10-10 3.06 0.25 82 0.25 0.06 107 100 1 3.2 0.26 2.5×1013 5×1013 
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Figure 2. Schematic representation of the minimization procedures along with the hybrid framework. 

 

4 Results 

Figure 3 shows the distribution of residual stress, equivalent plastic strain, total dislocation density and 

dislocation cell size after a single impact, the unit process of peening. Compressive residual stresses are 

developed in the subsurface layer after a single impingement (Figure 3a), and the stored equivalent plastic 

strain correlates to microstructure evolution. Figure 3b shows that the maximum plastic strain after a 

single impingement occurs in the immediate subsurface layer near the indentation edge where material 

piles up. As generation and rearrangement of dislocations accommodate the plastic deformation, it is not 

surprising that the maximum dislocation density (Figure 3c) and the minimum cell size (Figure 3d) are 

both located at the same point, where the plastic strain is maximum. As demonstrated in Figure 3c, 

dislocation density increased by about two orders of magnitude after a single impact, for instance from 
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3.1 × 1013 to 1.5 × 1015 m-2 at the most critical point. Based on the selected initial dislocation densities, the 

initial cell size was calculated to be approximately 18 µm. As illustrated in Figure 3d dislocation cell size 

was refined from 18 to 2.47 µm. This implies that significant structural refinement might occur even upon 

the first impact, but a single impact (and by extension coverage levels below about 100%) is not expected 

to produce a uniform layer of an ultrafine or nanocrystalline structure. 

 

 

Figure 3. Distribution of a) residual stress (MPa), b) equivalent plastic strain, c) total dislocation density (1013 m-2) and d) 

dislocation cell size (µm) after single impact. 
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Figure 4 summarizes the effect of processing parameters on the minimum cell size obtained by a single 

impact. As shot hardness increases, the cell size decreases initially but tends to saturate eventually. As 

shot radius increases, no considerable change in the level of refinement is expected. Shot velocity would 

appear to be the most influential processing parameter among the variables explicitly studied, as far as 

grain refinement and surface nanocrystallization is concerned in severe shot peening; as shot velocity 

increases higher refinement in cell size can be obtained and the trend is linearly ever-increasing over the 

range studied here. 

 

 

Figure 4. Effect of processing parameters on the minimum cell size obtained after single impact, suggesting shot velocity to be 

the most influential processing parameter among the studied variables. 
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Figure 5 shows the surface and subsurface equivalent plastic strain distribution after conventional shot 

peening with 100% coverage and severe shot peening with 1000% coverage, using the parameters that 

match the experiments, namely shot velocity of 65 m/s, shot radius of 0.3 mm, and shot hardness of 48 

HRC. The average surface plastic strain after conventional shot peening was around 0.5. The maximum 

plastic strain induced in the deformation localized area was around 1, while it significantly increased to 

7.8 after severe peening with a more uniform distribution. One order of magnitude increase in the 

coverage (peening time) increased the induced plastic strain by one order of magnitude. The minimum 

amount of strain necessary for nanocrystallization was reported to be around 7-8 [15,16].  

TEM observation of the top surface layer shown in Figure 5c confirms nanocrystallization by severe shot 

peening. Nano-sized grains can be observed at the top surface. The simulation shows a relatively uniform 

distribution of plastic strain can be expected across the sample, with a significant gradient of plastic strain 

normal to the sample surface. This aligns with the gradient in the degree of structural refinement seen in 

the TEM micrographs. 
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Figure 5. Surface and in-depth distribution of equivalent plastic strain after a) shot peening with 100% coverage and severe shot 

b) peening with 1000% coverage. c) TEM observation of the surface layers after severe peening. 

 

Figure 6 shows the variation of surface dislocation density and cell size as coverage increases. Both 

parameters have been averaged over the treated surface. Surface dislocation density increases during the 

process as more shots hit the surface. A sharp increase can be seen in the early stage of deformation 

where dislocation density exceeds 1015 m-2. Afterwards the rate of increase gradually decreases as 

dislocation density increases. The surface cell size accordingly follows the same trend, with many more 

impacts needed to refine the cell size as it approaches 100 nm. The trend affirms that subdivision of cells 

below a size of 100 nm is feasible at sufficiently high coverage by severe shot peening.  
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Figure 6. Variation of surface cell size and dislocation density with coverage. 

 

Figure 7 shows the cross section SEM and TEM micrographs taken at various depths of the treated 

specimens. Nano-sized grains are observed at the top surface of severely deformed specimens (1000% 

and 1300% coverage). For 650% coverage the surface grains are in the ultra-fine regime. The average 

grain sizes measured by TEM at the surface are 370, 160 and 130 nm for 650%, 1000% and 1300% 

respectively. TEM micrographs clearly affirm that the higher the coverage is, the smaller the cell/grain 

size that results at the same depth for different specimens.   

The shape of the grains at the very top surface is equiaxed. The same observation has also been reported 

for similar mechanical treatments [4–6,9,23,47]. As one moves away from the surface a duplex micro-

structure appears. Equiaxed ultrafine cells and lamellar-shaped cells are observed. Lamellar-shaped cell 

structure with a width of around 250-500 nm far from the surface and a length of a few microns can be 

seen in Figure 7 for the coverage level of 650% at the depth of 200 μm. Inside these lamellar structures, at 
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some points, smaller equiaxed cells can also be observed. SEM images of 100% and 200% coverage 

levels (conventionally peened specimens) show the initial micro-structure is sheaf-shaped bainite. As one 

moves from 300 µm depth towards the surface, SEM micrographs demonstrate the initial sheaf-shaped 

needles or plates are subdivided to finer needles and plates, possibly as a result of multiple impingements 

and superimposed overlapping strain fields. These observations suggest that the plastic strain is 

accommodated by generation, accumulation and re-arrangement of dislocations in the form of lamella-

shape cells at first, followed by cutting of the original lamellae. As plastic strain increases and in order to 

minimize the total energy of the system, lamella walls and consecutively intersecting dislocation arrays 

transform into sub-boundaries. Further increasing plastic strain is accompanied by accumulation of 

misorientation between neighboring dislocation cells and gradually transforms them to the final fine grain 

structure. This microstructural refinement is also reflected in the selective area electron diffraction 

(SAED) patterns shown in Figure 7, where the streak spots demonstrate that the elongated lamellae are 

subdivided by dislocations. This is a local microstructural difference observed on the top surface after 

severe peening. This refined structure is retained up to a depth of 100 µm in both 1000 and 1300% 

coverage conditions (see the SAED patterns at 100 µm depth), but not in the peened sample with 650% 

coverage.  
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Figure 7. Cross section SEM and TEM micrographs taken at various depths of treated specimens. 
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5 Discussion 

Figure 8 shows the depth distribution of cell size resulting from the numerical modeling as well as the 

ones experimentally measured by SEM and TEM. The agreement between the simulations and the 

experiments is good, with no fitting parameters in the present use of the model. The maximum refinement 

occurs at the surface, and no large variation of cell size (note the log scale) is observed in the top surface 

layer to a depth of about 50 µm. This region in fact corresponds to the equiaxed nano-sized or ultrafine 

grains structure in severely peened specimens.  The variation then is followed by a gradual increase of 

cell size up to around 200 µm where it encounters a sharp rise towards the grain size of the initial 

structure. A duplex structure containing both equiaxed and lamellar-shaped cells appears at this region. A 

similar trend has been experimentally observed elsewhere [5] where a slight increase of cell size from 

surface to a certain depth is followed by a rapid rise to the micrometer regime in high energy peened 

carbon steel. Superimposed data from TEM and SEM measurements affirms that the numerical 

framework is able to correctly simulate the gradient. TEM measurements tend to underestimate the cell 

size in deeper regions where the structure is mainly micron-sized lamellar cells, whereas chemical etching 

improves contrast and may account for the apparently more accurate cell size measurements made by 

SEM for the coarser structures. 
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Figure 8. In depth variation of cell size; comparison of numerical simulation and experimental measurements. 

The numerical framework developed in this study is able not only to predict the refinement after severe 

peening, but also to support some related experimental observations of which five are discussed. First, 

Umemoto et al. [15] experimentally observed that a nanocrystalline layer is formed along the edge of the 

crater after 8 particle impacts at the same point. This can be explained by the present simulation (Figure 3 

b-d) that shows a comparable point of critical refinement after single impact. Second, smaller media fired 

at higher velocity appeared to be more effective than larger media fired at lower velocity in forming a NC 

surface layer; even though the latter case conveyed higher kinetic energy with respect to the former case 

[17,18]. This could be attributed to the fact that shot velocity, as shown in Figure 4, is more influential 

than media size for grain refinement. Third, the trend of dislocation density evolution shown in Figure 6 

is compatible with the argument on the limit of dislocation density and refinement in severely deformed 

iron which estimated the limit of dislocation density to be on the order of 1016 m-2 [48].  
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Fourth, experimental measurements of the yield stress of surface nano-crystallized low carbon steel by 

high energy shot peening, showed a pronounced increase of yield strength after 30 min peening while the 

strength saturated upon further increasing the treatment time to 60, 90 and 180 min [5]. As coverage and 

dislocation density are directly related to peening time and strength respectively, the trend of dislocation 

density variation with coverage, given in Figure 6, are in qualitative agreement with the reported 

experiments. Finally, an important outcome of the numerical result depicted in Figure 8 is that as 

coverage increases, the cell size in the surface and subsurface layers decreases and the thickness of the 

nano-crystallized or refined layer increases. However, the trend suggests that the thickness of the refined 

layer saturates at very high coverage. This finding is also supported by experiments. It was shown that the 

thickness of the NC layer formed by high coverage shot peening initially increases with peening time 

[15], but eventually remains unchanged after a certain level of coverage [47,49]. However, measurement 

of the grain size at a depth of 10 µm revealed no such saturation with coverage [47]. 

It is important to note that other microstructural evolution besides dislocation density and grain size 

changes are also possible.  Although we have not extensively studied it in the present system, peening 

clearly can cause phase evolution as well. TEM images taken from the top surface and at 200 µm depth of 

the peened specimen with 1300% coverage are shown in Figure 9. Two interesting features can be 

observed on the top surface shown in Figure 9a. The first is dissolution of cementite. This can be realized 

by the trace comprising small particles (<100 nm) of spherical shape, which are generally arrayed (but not 

necessarily oriented) along a <1 1 0> direction. Completely different features, on the other hand, are 

observed at 200 µm in depth (Figure 9b), where cementite domains of approximately 200 nm lie within 

and in between ferrite plates. This suggests microstructural refinement by severe shot peening is also 

accompanied by dissolution of cementite. Dissolution of cementite in the ferritic matrix has also been 

reported in high coverage peened Fe–0.80C with an initial spheroidite structure [15,16]. 

 

Another observation is that a considerable number of nano-sized particles are precipitated at the top 
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surface region as shown in Figure 10, and appear to likely be M2C-type carbides. These particles were 

characterized using their intrinsic orientation relationship with the matrix; needle or rod-shaped M2C 

carbide generally has an orientation relationship with the martensite matrix; (1 1 0)a//(0 0 0 1)M2C, [1 0 0]a 

//[2 1 1 0]M2C . In other words, the M2C carbide precipitation can be found in <1 0 0> cube directions of 

the [1 0 0] zone-axis. This result is also confirmed by the SAED patterns shown in Figure 7. The 

diffraction spots at a smaller distance from the direct beam at the surface are larger than those at 200 μm 

depth. This indicates the existence of other phases, especially carbides, different from the bcc matrix. 

These microstructural findings suggest that severe plastic deformation by shot peening can lead not only 

to microstructural refinement by introduction of a large density of dislocations but also to the dissolution 

of cementite and subsequent nano-sized carbide precipitation. 

 

 

 

Figure 9. TEM images taken from a) top surface and b) 200 µm depth of peened specimen with 1300% coverage. 
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Figure 10. Bright and dark field TEM image taken from the top surface of peened specimen with 1300%; nano-sized carbide 

precipitation at two different magnifications. 
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Conclusion 

Surface nanocrystallization by severe shot peening was assessed by SEM and TEM observations, and a 

hybrid numerical framework was developed to simulate the structural refinement.  The model relates the 

process parameters to structural evolution, and to the resulting mechanical properties of the structure. On 

the basis of the results the following conclusions can be drawn: 

 

 Air blast shot peening is able to generate a nanostructured surface layer on high strength low 

alloy steel using conventional media, a typical peening impact velocity and a high level of 

coverage. This is technologically promising as air blast shot peening has a lower cost and more 

flexibility as compared to other kinds of severe peening, and can be applied on a variety of 

components. 

 The average grain sizes measured by TEM at the surface of severely peened specimens are 370, 

160 and 130 nm for 650%, 1000% and 1300% coverage respectively. The degree of refinement 

increases as the coverage increases, mainly due to generation, accumulation and re-arrangement 

of dislocations in the form of lamella-shape cells at first, followed by cutting of the original 

lamellae by intersecting dislocation arrays for the examined high strength low alloy steel.  

 The hybrid simulation framework consisting of finite element simulation and a dislocation 

density evolution model produced satisfactory agreement with the experimentally measured 

grain/cell size. 

 The model also reveals that the maximum refinement after a single impingement occurs in the 

immediate subsurface layer at the edge of the crater, and that increasing media velocity is more 

effective than increasing its size or hardness in producing grain refinement. 
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 The plastic strain distribution after conventional peening showed an average surface value around 

0.5 with a maximum value around 1 in the deformation localized area. The corresponding surface 

cell/grain size was around 2 μm. One order of magnitude increase in the coverage (peening time) 

increased the induced plastic strain by one order of magnitude. Finite element simulation shows 

that at such coverage levels, a relatively uniform distribution of plastic strain can be expected 

across the peened sample, with a significant gradient of plastic strain normal to the sample 

surface. One order of magnitude increase in the coverage, from the conventional level to severe, 

also decreased the surface cell/grain size by one order of magnitude.  

 The TEM observations show that other microstructural evolution besides dislocation density and 

grain size changes are also possible by severe shot peening; the dissolution of cementite and 

subsequent nano-sized carbide precipitation were observed in the present case. 

 

The success of the present model in matching the properties and structure evolution of the experimental 

material provides a direct connection between the processing parameters and the resulting surface 

nanostructure.  It is hoped that such a tool could be useful in the practical design of a shot peening 

operation aimed at a target surface nanostructure. 
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