
MIT Open Access Articles

Statistical modeling of behavioral dynamics 
during propofol-induced loss of consciousness

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Wong, Kin Foon Kevin, Anne C. Smith, Eric T. Pierce, P. Grace Harrell, John L. Walsh, 
Andres Felipe Salazar-Gomez, Casie L. Tavares, Patrick L. Purdon, and Emery N. Brown. 
“Statistical Modeling of Behavioral Dynamics During Propofol-Induced Loss of Consciousness.” 
Journal of Neuroscience Methods 227 (April 2014): 65–74.

As Published: http://dx.doi.org/10.1016/j.jneumeth.2014.01.026

Publisher: Elsevier

Persistent URL: http://hdl.handle.net/1721.1/102339

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-NonCommercial-NoDerivs License

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/102339
http://creativecommons.org/licenses/by-nc-nd/4.0/


Statistical Modeling of Behavioral Dynamics During Propofol-
Induced Loss of Consciousness

Kin Foon Kevin Wonga,b,*, Anne C. Smithc, Eric T. Piercea,d, P. Grace Harrella,d, John L. 
Walsha,d, Andrés Felipe Salazar-Gómeza,e, Casie L. Tavaresa,f, Patrick L. Purdona,d, and 
Emery N. Browna,d,g,h,*

aDepartment of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 
Boston, Massachusetts, USA

bDepartment of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA

cDepartment of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA

dHarvard Medical School, Boston, Massachusetts, USA

eBoston University, Boston, Massachusetts, USA

fSchool of Nursing, Regis College, Weston, Massachusetts, USA

gDepartment of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 
Cambridge, Massachusetts, USA

hHarvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of 
Technology, Cambridge, Massachusetts, USA

Abstract

Background—Accurate quantitative analysis of the changes in responses to external stimuli is 

crucial for characterizing the timing of loss and recovery of consciousness induced by anesthetic 

drugs. We studied induction and emergence from unconsciousness achieved by administering a 

computer-controlled infusion of propofol to ten human volunteers. We evaluated loss and recovery 

of consciousness by having subjects execute every four seconds two interleaved computer 

delivered behavioral tasks: responding to verbal stimuli (neutral words or the subject's name), or 

less salient stimuli of auditory clicks.

New Method—We analyzed the data using state-space methods. For each stimulus type the 

observation model is a two-stage binomial model and the state model is two dimensional random 

walk in which one cognitive state governs the probability of responding and the second governs 
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the probability of correctly responding given a response. We fit the model to the experimental data 

using Bayesian Monte Carlo methods.

Results—During induction subjects lost responsiveness to less salient clicks before losing 

responsiveness to the more salient verbal stimuli. During emergence subjects regained 

responsiveness to the more salient verbal stimuli before regaining responsiveness to the less 

salient clicks.

Comparison with Existing Method(s)—The current state-space model is an extension of 

previous model used to analyze learning and behavioral performance. In this study, the probability 

of responding on each trial is obtained separately from the probability of behavioral performance.

Conclusions—Our analysis provides a principled quantitative approach for defining loss and 

recovery of consciousness in experimental studies of general anesthesia.

Keywords

Bayesian Monte Carlo methods; behavioral data; propofol; state-space models; unconsciousness

1. Introduction

A fundamental question in anesthesiology is understanding the relationship between doses 

of anesthetic drugs, changes in behavior and changes in neurophysiological markers of brain 

activity. To understand the relationship between changes in level of consciousness and 

dosing of an anesthetic drug a common experimental approach is to record a subject's 

responses to a simple verbal command, e.g. “move your left hand”, as the dose of the 

anesthetic being studied is increased and decreased. The quality of the responses is rated 

subjectively on a 0 to 5 scale; the stimulus is only repeated every few minutes (Chernik et 

al., 1990; Kearse et al., 1998). Loss of consciousness is then defined as the point at which 

the subject stops responding. Similarly, return of consciousness is defined as the point at 

which the subject first responds after a period of unresponsiveness.

Although this paradigm is widely used, it has several shortcomings. In these experiments the 

stimuli are often not standardized, they are not computer controlled and the responses to the 

stimuli are not automatically recorded. Furthermore, these experiments do not consider 

stimulus salience. That is, although a command such as, “Move your left hand” is easy to 

understand and execute, a more salient command would be to ask a subject to respond with a 

specific button press to his or her name whereas a less salient command would be to ask the 

subject to respond to a sound click. These types of stimuli are not considered in current 

experiments. The stimuli are delivered infrequently so that the point of loss of 

responsiveness can be resolved with an accuracy of no more than a few minutes. This 

feature of current experiments is particularly important to correct since the thalamic switch 

hypothesis, the abrupt inactivation of the thalamus leading to unconsciousness, and 

presumably reactivation leading to return of consciousness, is a key thesis regarding 

anesthetic mechanisms that can be investigated (Alkire et al., 2000). Finally, while stimulus 

responses are often analyzed across subjects, there is no formal statistical analysis of the 

data within subject beyond noting the points at which response to the stimulus was either 
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lost or regained. Detailed analyses within subject would be more informative as they would 

provide a subject specific markers of loss and return of responsiveness.

Improvements in the execution and analysis of behavioral experiments in anesthesiology can 

be made by adapting approaches that are widely used in learning and behavioral experiments 

in neuroscience (Wirth et al., 2003; Smith et al., 2004, 2005). For example, a standard 

paradigm in the neuroscience experiments is to present a series of trials on which a subject 

must execute a simple task. The presentation of each trial is precisely controlled by a 

computerized delivery system and the subject's responses are automatically recorded. 

Because the task can either be executed correctly or incorrectly, the primary data analyzed in 

these experiments are a sequence of binary responses. A state-space paradigm has been 

successfully used in many of these studies to analyze these experiments and report trial-

specific estimates of the probability of response (Smith et al., 2004, 2005). We hypothesize 

that these experimental and data analysis approaches can be readily adapted to the problem 

of developing precise quantitative characterizations of the dynamics of loss and recovery of 

consciousness during induction and emergence from unconsciousness in studies of 

anesthetic drugs.

To address these questions we conducted a study of loss and recovery of consciousness 

induced by delivering to subjects a computer-controlled infusion of propofol. The subjects 

received increasing (induction) and decreasing (emergence) doses of propofol while 

executing two interleaved behavioral tasks: responding to salient stimuli (the subject's name 

and words) or responding to less salient stimuli (auditory clicks). We develop a family of 

state-space models analogous to those used in learning and behavioral studies to characterize 

the responses of each individual subject to the behavioral tasks during induction and 

emergence (Wirth et al., 2003; Smith et al., 2004, 2005). We use a Bayesian Monte Carlo 

approach to fit the models to the experimental data and the Deviance Information Criterion 

(DIC) to guide model selection (Lunn et al., 2000; Spiegelhalter et al., 2002; Smith et al., 

2009). Our analysis allows us to define precisely the time points of loss and recovery of 

consciousness for each subject in terms of stimulus saliency. This will allow us to relate the 

behavioral changes directly to neurophysiological events within subject. This also suggests a 

principled approach to aligning the data with respect to a well defined reference in order to 

pool information across subjects.

The balance of the paper is organized as follows. In Section 2 we describe the experimental 

protocol, state-space model formulation, Bayesian model fitting procedure, and variants of 

the model to test hypotheses about stimulus saliency. In Section 3 we present the findings 

from our analyses, and in Section 4 we explain the results give and possible future 

directions.

2. Material and Methods

2.1. Experimental Procedure

We studied induction and emergence from unconsciousness in ten healthy adult volunteers 

(five male and five female, aged 20 to 32) using the anesthetic propofol. The Human 

Research Committee at the Massachusetts General Hospital approved this study and the 
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investigations followed all hospital safety regulations for administration of general 

anesthesia. During induction and emergence from unconsciousness, each subject listened to 

a series of pre-recorded auditory stimuli consisting of two types: either a verbal stimulus 

(name or affectively-neutral word presented pseudorandomly), or a train of 40 Hz (left ear) 

and 84 Hz (right ear) clicks of two seconds, with four seconds between onset of each 

stimulus. The stimuli were presented in a block of five stimuli consisting of four click 

stimuli and one verbal stimulus, arranged in a click-click-verbal-click-click pattern. Subjects 

were instructed to press either the right mouse button for the subject's name, or the left 

mouse button for all other stimuli. The duration of the names/words stimulus was 

approximately half a second, while each click stimulus was approximately two seconds. 

Because the click stimulus was longer than verbal stimulus, subjects were instructed to wait 

until the end of each click stimulus before responding.

During induction, we increased the infusion rate of the computer-controlled pump to achieve 

the target effect-site concentrations (Purdon et al., 2013) in stepwise levels of 0, 1, 2, 3, 4, 

and 5 μg/ml every 14 minutes (Fig. 1, Induction) based on the Schnider pharmacokinetics 

model (Shafer and Gregg, 1992; Schnider et al., 1998). The effect site concentration is the 

concentration of propofol estimated to be in the brain area responsible for the observed 

behavioral or electrophysiological responses based on the pharmacokinetics model. We 

defined the target effect-site concentration at which the subject stopped responding as CLOR 

(loss of response). For emergence, we used an adaptive dosing strategy. Beginning at the 

end of the 5 μg/ml level, we reduced the propofol concentration in a stepwise fashion to 

concentrations of CLOR – 0.5 μg/ml, CLOR – 1.0 μg/ml, CLOR – 1.5 μg/ml and 0 μg/ml for 14 

minutes each (Fig. 1, Emergence). Button press times were recorded throughout the 

experiment. The entire experiment lasted approximately 150 minutes.

2.2. State-Space Model for Verbal Stimuli

A state-space model consists of two components: the observation model and the state model. 

We first define the observation model for the responses to the verbal stimuli. Assume that 

the experiment consists of K verbal stimulus trials. On any trial there are three possible 

outcomes for the response to the verbal stimulus; the subject may respond correctly, respond 

incorrectly or not respond. Let mk = 1 if the subject responds on trial k and 0 otherwise. If 

there is a response on trial k, let nk = 1 if it is correct and 0 otherwise. Let pk denote the 

probability of a response on trial k, i.e. that mk = 1, and let qk denote the probability of a 

correct response, i.e. nk = 1. The observed data at trial k are the pair (mk, nk) which can 

assume the values {(1, 1), (1, 0), (0, 0)}. The observation model at trial k is therefore

(1)

where we define pk and qk in terms of the cognitive state variables by the logistic relations

(2)
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(3)

It follows that pk·qk is the probability of a correct response at trial k (Fig. 2). We use pk to 

define loss and recovery of consciousness, whereas pkqk can be used to define level of 

sedation. We define the state model for the unobservable cognitive state variables as the 

random walk equations

(4)

(5)

where ∊k and ηk are zero-mean Gaussian random variables with variances  and , 

where Δk is the time elapsed between verbal stimulus trials k − 1 and k.

Formulating the probability of response and the conditional probability of a correct response 

on each trial as a logistic function of the cognitive state variable ensures that these 

probabilities are properly defined between 0 and 1. The state-model provides a continuity 

constraint so that the current cognitive state and hence, the probability of a response and the 

conditional probability of a correct response depend on the previous cognitive state and 

experience. We let  denote the unknown parameters to be estimated.

2.3. State-Space Model for Click Stimuli

We can use the same logic presented for the verbal stimuli to develop a state-space model 

for the clicks. The only exception is we rewrite the observation equation to allow for four 

click stimuli presentations per trial: for each verbal stimulus, there are four click stimuli. 

Hence the observation model for the clicks is

(6)

where mk = 0, 1, 2, 3, 4 is the number of responses and nk = 0, 1, 2, …, mk is the number of 

correct responses to the click stimuli, otherwise pk, qk, xk and zk are defined exactly as they 

were defined for the verbal state-space model. These are 15 possible outcomes in an any 

click trial block. The unknown parameters are again .

2.4. Model Estimation

Our objective is to develop a Bayesian procedure for model parameter estimation. We 

assume that there is a 2-dimensional state-space model for the verbal responses and a 

separate 2-dimensional state-space model for the click stimuli. We denote the unobserved 

state as X = (xv,1, …, xv,K, zv,1, …, zv,K, xc,1, …, xc,K, zc,1, …, zc,K), the model parameters as 

Θ = (θv, θc) and the, observed data as M = (mv,1, …, mv,K, nv,1, …, nv,K, mc,1, …, mc,K, nc,1, 

…,nc,K), where the subscripts v and c have been added to denote the verbal and click 
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components of the model respectively. If we assume that f (Θ) is a prior distribution for Θ, 

then by Bayes' rule the posterior distribution for the parameters and the states is

(7)

The observation models (Eqs. 1-3, 6) define f (M|X, Θ) and the state-space models (Eqs. 

4-5) define f (X|Θ) and f (M) is the normalizing constant. To specify f(Θ) we chose the 

independent prior distributions for xv,0, zv,0, xc,0 and zc,0 to be uniform distributions each on 

the interval [0, 100]. For each of the variance parameters , ,  and  we take as 

the prior distribution independent inverse gamma distributions with parameters α = 5 and λ 

= 1. These choices of prior distributions constrain the parameter estimation while allowing 

the shape of the posterior distribution to be determined by the likelihood.

We used the WinBUGS software (Lunn et al., 2000; Smith et al., 2009) to compute by 

Bayesian Monte Carlo methods the posterior densities f(X, Θ|M) and the marginal posterior 

densities of the form

(8)

where the inner integral is over the components of all values of Θ and the outer integral is 

over all components of X excluding xc,k. We computed the comparable marginal posterior 

densities for zc,k, xv,k, zv,k and for each component of Θ. We report the median of each 

marginal posterior density as the estimate of a given state at a particular trial and a given 

parameter. We report the uncertainty in any state or parameter estimate as the 95% or 90% 

credibility interval based on the Monte Carlo samples. The posterior densities were 

computed using 100,000 iterations after a 20,000 iteration burn-in period.

2.5. Model Selection

An important objective of our analysis is to understand how stimulus saliency affects the 

definitions of loss and recovery of consciousness during general anesthesia. Therefore, we 

analyzed the data with three different formulations of the state-space model to determine 

which gave the most parsimonious data descriptions. In Model A we assume a 4-

dimensional state-space model as described in 2.2. That is, at each trial k there is a cognitive 

state xv,k for the verbal stimuli and a cognitive state xc,k for the click stimuli governing the 

subject's propensity to respond. There are also cognitive states zv,k and zc,k for the verbal and 

click stimuli respectively, governing the subject's conditional probability of responding 

correctly to each. Model B is the 3-dimensional special case of Model A which assumes that 

xv,k = xc,k, i.e. the probability of responding is the same for both stimulus types. Model C is 

another 3-dimensional special case of Model A. It assumes that zv,k = zc,k, i.e., the 

probability of correctly responding given that the subject responded is the same for both 

stimulus types.
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To guide selecting among the 3 different models we computed for each the Deviance 

Information Criterion (DIC), which is an approximate Bayesian analogue of Akaike's 

Information Criterion used in likelihood analyses (Spiegelhalter et al., 2002). It is defined as

(9)

where Θ̄ is the posterior mean of Θ, D̄ is the posterior mean of the deviance and D̂ = −2 log f 

(M|Θ̄) + 2 log h (M), where h(M) is the evidence, which can be, and is usually, set to equal 1 

(Celeux et al., 2006). The second term in (9) defines the approximate number of parameters 

in the model, by analogy with AIC. The model with the smallest DIC is the one that would 

predict best a replicate set of data with the same structure observed in the current data. In 

this case, the model with the smallest DIC value would be preferred.

3. Results

3.1. Model Selection and Analyses of Individual Responses

We show in Fig. 1 the propofol target effect site concentrations and the behavioral responses 

for Subjects 1 (upper panel) and 2 (lower panel). Both subjects responded to all of the 

auditory stimuli at level 0 when no propofol was administered. During induction Subject 1 

(Subject 2) stopped responding to the auditory stimuli at target propofol levels of 2 μg/ml (3 

μg/ml), which we defined as the subject's CLOR. Both subjects stopped responding to the 

clicks before the verbal stimuli. On emergence both subjects began responding when the 

target propofol level fell below CLOR. Once Subject 1 began responding during emergence, 

he responded immediately and correctly to every stimulus. In contrast, Subject 2 did not 

respond consistently during emergence until the target level was 0.

For Subjects 1 and 2 we show respectively in Figs. 3 and 4, the probability curve estimates 

from Model A (panels 1-2), Model B (panels 3-4) and Model C (panels 5-6). Model A 

estimates a distinct probability of response (Figs. 3 and 4, panel 1) and probability of correct 

response (Figs. 3 and 4, panel 2) for each of the two stimuli. In Model B, the common 

probability of a response curve (Figs. 3 and 4, panel 3) is similar in shape to the probability 

of the response to the click in Model A (Figs. 3 and 4, panel 1) because there are four times 

as many click stimuli (1680 presentations) as verbal stimuli (420 presentations). For the 

same reason, the two curves for the probability of a correct response (Figs. 3 and 4, panel 4) 

resemble the probability of a correct response for the clicks in Model A (Figs. 3 and 4, panel 

2). The assumption of a common response probability for both types allows the click stimuli 

to determine the structure of both the probability of a response and the probability of a 

correct response.

For Model C, the response probability (Figs. 3 and 4, panel 5) is similar to Model A (Figs. 3 

and 4, panel 1). The probability of correct response (Figs. 3 and 4, panel 6) is also similar to 

Model A (Figs. 3 and 4, panel 2), with a reduced probability of correct response for the 

verbal stimuli. Model C shows that assuming a common probability of a correct response for 

both types of stimuli yields a different probability of a response and probability of a correct 

response for each of the two stimuli.
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The DIC analyses are summarized in Table 1 for the fits of Models A, B and C for all 10 

subjects. In terms of minimum DIC, Model B is not preferred for any subject, if we use the 

criterion of a DIC difference of at least 5. Model B has the lowest DIC only for subject 6 

(346.6), yet this is not appreciably different from the DIC value for Model C (349.5). Model 

A is the preferred model for subjects 1, 4, and 10 whereas Model C is the preferred model 

for subjects 8 and 9. The DICs for Models A and C are sufficiently close (< 5) that we 

consider these models indistinguishable for subjects 2, 3, 5 and 7. Therefore, our results 

suggest that either a model assuming 4 distinct cognitive states, Model A, or a reduced 

model assuming that the conditional probabilities of response of response are the same for 

verbal and click stimuli, Model C, would be preferred. That Models A and C would be the 

preferred models was suggested by the analyses of the data from subjects 1 and 2 which 

showed that unlike Model B, these former two models preserved the response characteristics 

of the two different stimuli.

Our analyses using both Models A and C showed that the verbal probability of a correct 

response curve tended to be above the click probability of a correct response curve for 

nearly all trials for all of the subjects. This suggested that the loss of responsiveness to the 

less salient clicks occurred before loss of responsiveness to the more salient verbal stimuli. 

Similarly responsiveness to the verbal stimuli returned prior to the return of the 

responsiveness to the click stimuli. Therefore, for each subject we defined the point of loss 

of consciousness (LOC) as the time at which the probability of a correct response to a verbal 

task was less than 0.05 and remained so for at least 10 minutes. Similarly, we defined 

recovery of consciousness (ROC) as the first time, since being unconscious, at which the 

probability of a correct response to a verbal task was greater than 0.05 and remained so for 

at least 10 minutes.

For Model A (Fig. 5) and C (Fig. 6) we plotted the fits of the data from all of the subjects 

aligned with respect to LOC and with respect to ROC. Both models give similar estimates of 

both response probability curves. For each subject, the tendency of the click response 

probability curve to decline before and increase after the verbal response probably curve is 

evident for Model A (Fig. 5) and Model C (Fig. 6). The difference between these curves 

during induction defines a transition into loss of consciousness, whereas the difference on 

emergence defines a transition through recovery of consciousness.

3.2. Analyses of Pooled Behavioral Responses

To develop an average estimate of these transitions we fit both Models A and C to the 

pooled data. We used both Models A and C to conduct the pooled analysis because the DIC 

values (Table 1) and fits of the two were indistinguishable. We aligned the verbal and click 

responses across all 10 subjects separately with respect to LOC and with respect to ROC. In 

each 20-second bin-the time required to present four click stimuli and one verbal stimulus-

we tallied the number of stimuli, the number of responses and the number of correct 

responses for the 10 subjects. For Model A the verbal stimuli observation model (Eq. 1) 

became a binomial model with n = 10, whereas the clicks observation model is a binomial in 

Eq. 6 with n = Lk instead of 4, where Lk is the number of trials aligned at a given time. The 

maximum of Lk is 40 and the minimum 4. The state equation is 4-dimensional for Model A. 
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The observation models for Model C are the same as for Model A. The state equation for 

Model C is again 3-dimensional as in the individual analyses. We used the Bayesian Monte 

Carlo methods to fit both models to the pooled data aligned with respect to LOC and with 

respect to ROC.

The pooled verbal (Fig. 7, red curves) and click (Fig. 7 blue curves) response probability 

curves and their difference curve (Fig. 7 green curves) computed from Model A (Fig. 7 

upper panels) and C (Fig. 7 lower panels) agreed closely. The pooled probability response 

curves computed from both Models A and C (Fig. 7) show clearly the tendency to lose 

responsiveness to the more salient verbal stimuli (Fig. 7, red curves) later and regain 

responsiveness to them sooner relative to the less salient click stimuli (Fig. 7, blue curves). 

This tendency is also evident in the difference curves (Fig. 7, green curves). The fact that 

during induction the lower bound of the 95% credibility interval for the difference curves 

lies above zero for the entire twenty minutes prior to LOC suggests that the click probability 

response curve is significantly greater than the verbal probability response curve. During 

emergence the lower bound of the 95% credibility intervals for the difference curves lies 

above zero for the entire twenty minutes following ROC suggesting that the click probability 

response curve is again significantly greater than the verbal probability response curve. 

These findings demonstrate that stimulus saliency is important for defining the transitions 

into and recovery from unconsciousness induced by general anesthesia.

4. Discussion and Conclusion

We have studied the use of state-space models fit by Bayesian Monte Carlo methods to 

analyze the effect of stimulus saliency for defining loss and recovery of consciousness under 

general anesthesia. We used DIC to aid in model selection. Because no single model gave a 

superior description of the data for all of the study subjects, we used two models to analyze 

the data for the individual subjects and to conduct the pooled analyses across subjects. Our 

results show that during induction subjects tend to lose their responsiveness to less salient 

auditory clicks before losing their responsiveness to the more salient verbal stimuli neutral 

words and the subject's name. During emergence subjects tend to regain their responsiveness 

to the more salient verbal stimuli before regaining responsiveness to the less salient auditory 

clicks. We conclude that taking account of stimulus salience is important for understanding 

how to define loss and recovery of consciousness under general anesthesia.

Our experimental paradigm offers improvements over current experimental approaches to 

characterizing loss of consciousness, recovery of consciousness and unconsciousness 

induced by general anesthesia (Chernik et al., 1990; Kearse et al., 1998). We used a 

computer controlled system to deliver precisely timed stimuli and to record the subjects' 

responses. Our stimuli consisted of auditory clicks at two different frequencies (40 Hz and 

84 Hz) and verbal stimuli consisting of the subject's name and neutral words. We chose the 

subject's name as a stimulus because it is among the most salient auditory stimuli that could 

be administered. Moreover, anesthesiologists frequently address patients by their preferred 

names during emergence from general anesthesia because of their presumed saliency. By 

administering in an interleaved manner salient and non-salient stimuli we were able to 

demonstrate that stimulus saliency is important for defining be-haviorally the onset and 
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offset of unconsciousness during general anesthesia. In our study, we treated the neutral 

words and the subject's name as a single stimulus type because our preliminary analyses 

showed the subject's responses to these stimuli could not be distinguished. We also treated 

the two frequencies for the verbal stimuli as a single stimulus. In future work, we will report 

on the relationship between the differences in the electroencephalogram responses of these 

subjects to the two different auditory stimuli.

The current state-space model is an extension of previous models used to analyze learning 

and behavioral performance (Smith et al., 2004, 2005, 2009). In previous applications of the 

state-space paradigm, the study needed only to consider whether the response was correct or 

incorrect on each trial because the subject was certain to respond on each trial with 

probability one. In contrast, in this study which required our subjects to execute the 

behavioral task while receiving increasing and then decreasing doses of propofol, the 

probability of responding on each trial was not one. This key feature of the responses was 

easily accounted for by using a two-stage formulation of the responses for both the verbal 

and click stimuli. The first stage considers the probability of a response whereas the second 

stage considers the probability of a correct response given that the subject responded (Fig. 

2).

To accommodate the two-stage nature of the subject responses, we specified in the state 

equation a cognitive state variable for each of the two response components. Earlier 

applications of the state-space paradigm used maximum likelihood approaches computed 

with an approximate EM algorithm (Smith et al., 2004). Under the EM framework, a new 

algorithm has to be written for each model making its use less feasible when model selection 

is central to the analysis. By using the Bayesian Monte Carlo methods implemented in 

WinBUGS to conduct the analysis we only needed to specify the observation and state 

equations for each new model (Lunn et al., 2000; Smith et al., 2009), WinBUGS used a 

Bayesian Monte Carlo scheme to conduct the model analysis thus, obviating the need to 

write a fitting algorithm for each model.

To conduct our group analyses, we aligned the data across subjects with respect to LOC and 

ROC because these time points have the same behavioral interpretation for each subject. In 

contrast, the more traditional approach of constructing a Bayesian hierarchical model 

(Gelman et al., 1995; Smith et al., 2005) to exchange information among subjects to 

estimate simultaneously individual and population response curves and then determine 

individual and population LOC and ROC would not be accurate. This is because the 

cognitive state dynamics around LOC and ROC differ appreciably across subjects. 

Moreover, in our analyses of the neurophysiological data from this study, we use LOC and 

ROC to align the spectrograms across subjects (Purdon et al., 2013). Use of similar 

strategies to align data across subjects with respect to estimated reference points is a 

common practice in circadian rhythm studies (Czeisler et al., 1989).

We used DIC to help guide our selection among the three models not to identify a “true 

model”. DIC is known to be problematic in state space models as the effective number of 

parameters (D̄ − D̂ in Eq. 9) can be negative (Celeux et al., 2006). This was not an issue in 

any of our experiments. By this criterion, Model B was the least favored whereas Models A 
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and C were essentially comparable, with Model C being the more parsimonious of the two. 

Both Models A and C suggest that the probability of responding to the verbal stimuli and the 

probability of responding to the click stimuli are different. This is consistent with the idea 

that the verbal stimuli, in particular the subject's name are more salient whereas the click 

stimuli are less salient. Being more parsimonious, Model C suggests that the probability of a 

correct response for the two types of stimuli do not differ. Hence, this study provides 

evidence that the propensity to respond to the two types of stimuli differs yet, it is less clear 

that the conditional probability of correct responses differs for the two stimuli.

Our work suggests that behavioral markers can be developed to define the points of loss and 

recovery of consciousness due to administration of anesthetic agents. The behavioral 

markers must now be related to neurophysiological markers such as EEG changes associated 

with different stages of general anesthesia (Brown et al., 2010; Purdon et al., 2013) to gain a 

more accurate systems neuroscience characterization of the transitions into and out of 

unconsciousness induced by an anesthetic such as propofol. We used propofol in our 

experiments because it is the most widely used anesthetic agent. Our experimental and state-

space analysis paradigms can be readily adapted to characterize loss and recovery of 

consciousness during induction and emergence from other anesthetics. Similarly, because 

pkqk defines the probability of a correct response, it can be used to define quantitatively the 

concept of level of sedation in terms of different stimulus types. In addition to the time 

series of binary responses, we recorded for each stimulus presentation the subject's reaction 

times. These data can be analyzed separately or jointly with the binary responses to gain a 

more complete picture of how behavioral responses are affected by general anesthesia 

(Prerau et al., 2009). These experiments and analyses will be the topics of future 

investigations.
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Highlights

• We study induction and emergence from propofol-induced loss of 

consciousness.

• We have subjects execute two interleaved computer delivered behavioral tasks.

• We fit the model to the experimental data using Bayesian Monte Carlo methods.

• Our analysis provides a principled approach for defining loss and recovery of 

consciousness.

Wong et al. Page 13

J Neurosci Methods. Author manuscript; available in PMC 2015 April 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1. 
Target effect-site propofol concentration levels (black) and behavioral responses of verbal 

(subject's name and neutral words) stimuli (red) and auditory click stimuli (blue) for 

Subjects 1 (upper panel) and 2 (lower panel). Stimuli were delivered every four seconds. 

The heights of the vertical lines are the response times in seconds. An X at the tip of the line 

indicates an incorrect response whereas no X at the tip indicates a correct response. Absence 

of a vertical line indicates no response. Subject 1 had a low CLOR, as a result, the predicted 

effect-site concentration did not decrease as fast as the target propofol concentration and did 

not show a stepwise fashion.

Wong et al. Page 14

J Neurosci Methods. Author manuscript; available in PMC 2015 April 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. 
Probability tree showing the three possible outcomes in response to a verbal stimulus at trial 

k.

Wong et al. Page 15

J Neurosci Methods. Author manuscript; available in PMC 2015 April 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. 
Model Fit Results for Subject 1 for Model A (panels 1-2), Model B (panels 3-4), Model C 

(panels 5-6). We show the marginal posterior median estimate of (solid curve) and 95% 

credible interval (shaded area) of the probability of a response (panels 1, 3 and 5) and 

probability of a correct response (panels 2, 4 and 6) to verbal stimuli and click stimuli. 

Response probability curves for verbal stimuli are red and for click stimuli are blue. Green 

curve (panel 3) indicates response probability curve estimated to be the same for verbal and 

click stimuli. A vertical dash above (below) the probability curves indicates a response (no 

response) to an auditory stimulus for panels 1, 3 and 5, or a correct response (an incorrect 

response or no response) for panels 2, 4 and 6.
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Figure 4. 
Model Fit Results for Subject 2 for Model A (panels 1-2), Model B (panels 3-4), Model C 

(panels 5-6). We show the marginal posterior median estimate of (solid curve) and 95% 

credible interval (shaded area) of the probability of a response (panels 1, 3 and 5) and 

probability of a correct response (panels 2, 4 and 6) to verbal stimuli and click stimuli. 

Response probability curves for verbal stimuli are red and for click stimuli are blue. Green 

curve (panel 3) indicates response probability curve estimated to be the same for verbal and 

click stimuli. A vertical dash above (below) the probability curves indicates a response (no 

response) to an auditory stimulus for panels 1, 3 and 5, or a correct response (an incorrect 

response or no response) for panels 2, 4 and 6.
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Figure 5. 
Response probability curves for the verbal (red) and click (blue) stimuli with their associated 

95% credible intervals based on Model A for all ten subjects during the transition into loss 

of consciousness (left panels) and into recovery of consciousness (right panels). A vertical 

dash above (below) the probability curves indicates a response (no response) to an auditory 

stimulus. All probability curves in the left (right) panels were aligned with respect to LOC 

(ROC).
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Figure 6. 
Response probability curves for the verbal (red) and click (blue) stimuli with their associated 

95% credible intervals based on Model C for all ten subjects during the transition into loss 

of consciousness (left panels) and into recovery of consciousness (right panels). A vertical 

dash above (below) the probability curves indicates a response (no response) to an auditory 

stimulus. All probability curves in the left (right) panels were aligned with respect to LOC 

(ROC).
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Figure 7. 
Group level response probability curves for the verbal (red) and click stimuli (blue) and the 

differences in the curves (green) with their associated 95% credible intervals (shaded areas) 

for loss of consciousness (left panels) and recovery of consciousness (right panels) 

computed from Models A (upper four panels) and C (lower four panels). Dots above (below) 

the probability curves indicate a response (no response) to an auditory stimulus.
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