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Abstract

Common spatial patterns (CSP) is a well-known spatial filtering algorithm for multichannel 

electroencephalogram (EEG) analysis. In this paper, we cast the CSP algorithm in a probabilistic 

modeling setting. Specifically, probabilistic CSP (P-CSP) is proposed as a generic EEG spatio-

temporal modeling framework that subsumes the CSP and regularized CSP algorithms. The 

proposed framework enables us to resolve the overfitting issue of CSP in a principled manner. We 

derive statistical inference algorithms that can alleviate the issue of local optima. In particular, an 

efficient algorithm based on eigendecomposition is developed for maximum a posteriori (MAP) 

estimation in the case of isotropic noise. For more general cases, a variational algorithm is 

developed for group-wise sparse Bayesian learning for the P-CSP model and for automatically 

determining the model size. The two proposed algorithms are validated on a simulated data set. 

Their practical efficacy is also demonstrated by successful applications to single-trial 
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classifications of three motor imagery EEG data sets and by the spatio-temporal pattern analysis of 

one EEG data set recorded in a Stroop color naming task.

Index Terms

Common spatial patterns; Fukunaga-Koontz transform; sparse Bayesian learning; variational 
Bayes; electroencephalogram; brain-computer interface

1 Introduction

Electroencephalography (EEG) is a non-invasive imaging modality that is widely used to 

measure the electrical activities of the brain. Multichannel EEG simultaneously measures 

coordinated brain activities at multiple sites on the scalp at millisecond temporal resolution, 

which makes it valuable for cognitive and neural engineering studies and for clinical 

applications [1]. However, the analysis of EEG remains challenging because the volume-

conducted EEG suffers from a low spatial resolution, such that the signal recorded at each 

individual channel is a mixture of attenuated activities from more than one brain region, and 

it frequently suffers interference from various (e.g., cardiac, muscular, and ocular) artifacts. 

To address these challenges, one must enhance the signal-to-noise ratio (SNR) and isolate 

the overlapping activities via spatial filtering—that is, linearly combining the EEG signals at 

multiple channels such that the sources of interest are enhanced and the unwanted sources 

are suppressed [2].

Among the various EEG spatial filtering methods, the common spatial patterns (CSP) 

algorithm [3] has attracted considerable attention as an effective method for the concurrent 

analysis of multichannel EEG signals recorded under two conditions. Under the name of 

Fukunaga-Koontz transform, CSP was first proposed as a supervised learning method that 

was an extension of principal component analysis (PCA) for feature extraction [4]. Since 

then, it has become popular in a diverse range of applications [5], [6], [7]. Notably, CSP has 

been successful in extracting sensorimotor rhythms for brain-computer interfaces (BCIs), as 

evidenced in international BCI competitions [8], [9], [10].

Consider two conditions of multichannel EEG signals  ∈ ℝN×L×2, where X·,·,k = [X·,1,k … 

X·,L,k] is the data matrix for condition k, which consists of the vectors of N-channel EEG 

signals with L sample points. Without loss of generality, the EEG signal at each channel is 

assumed to have a zero mean hereafter, and for conciseness, we let Xk ≜ X·,·,k. CSP is aimed 

at finding a set of linear transforms (spatial filters) to maximize the ratio of the transformed 

data’s variance between the two conditions. Mathematically, the spatial filters are the 

stationary points of the following optimization problem [3]:

(1)

where w ∈ ℝN denotes a spatial filter, and  denotes the estimated 

spatial covariance matrix for condition k. Since J(w) is a Rayleigh quotient, the stationary 

points can be obtained collectively in a closed form as the eigenvectors of a generalized 
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eigendecomposition: R̂
1w = λR̂

2w, where λ denotes the eigenvalue associated with w. Since 

λ = J(w), it is often presumed to be a good measure of the separability between the spatially 

filtered signals of two conditions.

Nonetheless, as a multivariate algorithm, CSP is known to suffer from overfitting, which 

may yield poor generalization performance [3], [11], [12]. We use the term “overfitting” 

when a statistical model or algorithm describes noise rather than the underlying data 

structure. In the literature, overfitting has mainly been tackled by regularization, i.e., by 

incorporating an additional penalty term in the cost function in (1) to restrict the search 

space of the unknown spatial filters. More specifically, the regularized CSP [13], [14], 

motivated by Tikhonov regularization in the setting of linear inverse problems, uses a 

weighted ℓ2-norm penalty to enforce the smoothness of the entries in the (weighted) spatial 

filters (see also [15] for a comprehensive review of the group of regularized CSP 

algorithms):

(2)

where ρ is the regularization parameter, and H is a symmetric positive semi-definite matrix. 

By contrast, the sparse CSP [16], [17], [18] uses an ℓ1-norm penalty to impose sparsity on 

the spatial filters:

(3)

where the formulation in [17] is employed. Multiple filters are found sequentially via the 

deflation method [16].

Despite that the various regularization strategies may ameliorate CSP’s overfitting, the 

algorithms were designed primarily for classifying instead of modeling the EEG data—in a 

way akin to classical modeling techniques such as factor analysis and independent 

component analysis (ICA) [19]—and therefore not specifically designed for exploring the 

underlying spatio-temporal dynamics. To the best of our knowledge, a principled modeling 

methodology to address the CSP overfitting issue remains missing to date.

1.1 Contributions

The contributions of this paper consist of both theoretical and algorithmic levels:

• We establish the probabilistic CSP(P-CSP) model as a general framework to 

characterize multichannel EEG under two experimental conditions (Section 3). 

Specifically, we show that CSP and regularized CSPs can be subsumed under the 

proposed framework in that they can be derived from the P-CSP model as a special 

case in the noiseless and square mixing scenario. Formulating an existing algorithm 

within a probabilistic framework is beneficial for both theoretical and practical 

reasons. From a statistical perspective, this approach allows us to examine when 

the algorithm will perform well or poorly. From a practical standpoint, associating 
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a probability model with an algorithm allows us to assess the uncertainty of the 

data analysis results, and opens the possibility of improving the algorithmic 

performance by model refinement.

• We develop effective algorithms to address the over-fitting issue of CSP (Section 

4). Two inference algorithms: MAP-CSP and VB-CSP, are derived from the P-CSP 

framework to alleviate the local optima problem of conventional maximum a 

posteriori (MAP)-based iterative updating algorithms. Specifically, MAP-CSP 

assumes additive isotropic noise and is suited for real-time EEG classification due 

to its computational efficiency. VB-CSP performs approximate Bayesian inference 

for more general noise conditions. The algorithm is capable of automatically 

inferring the component number, and can be used for the exploratory analysis of 

EEG spatio-temporal patterns in neurophysiologically-driven studies when there is 

no obvious performance metric as in classification tasks. We also provide detailed 

analyses to examine their properties. Finally, we apply these algorithms to analyze 

the synthetic data and experimental EEG datasets (Section 5).

As a roadmap of the paper, the P-CSP modeling framework is depicted in Fig. 1. For 

notations, the set of multi-condition multichannel EEG signals can be mathematically 

viewed as a three-way (channel × time × condition) tensor; we make this fact explicit and 

denote it by . Similarly, the set of multi-condition component signals is denoted by a three-

way (component × time × condition) tensor . Throughout the paper, scalars are denoted by 

italic normal letters, matrices and vectors are denoted by upright boldface letters, I denotes 

the identity matrix, and the superscript⊤ denotes the transpose operator.

2 Related Work

Recent years have witnessed a growing number of sophisticated CSP variants in the 

literature, particularly in the BCI field. We present a brief review below, in addition to the 

regularized CSP algorithms described in Section 1.

One important line of CSP-related algorithmic advancements concerns the automatic 

learning of the optimal temporal or spectral filters in conjunction with the spatial filters. 

Lemm et al. [20] and Dornhege et al. [12] exploited the idea of variance ratio maximization 

to optimize both the spatial and temporal filters Tomioka et al. [21] and Wu et al. [22] 

proposed iterative algorithms that alternate between CSP and other learning criteria (Fisher 

ratio maximization in the former and the maximum margin in the latter) for the simultaneous 

optimization of spatial and spectral filters. Zhao et al. [23] generalized CSP to high-

dimensional spaces within a tensor analysis framework. Zhang et al. [24] considered a 

spatio-spectral filtering network, in which multiple CSPs were embedded within a filter 

bank, with each targeting a distinct frequency subband. More recently, Higashi and Tanaka 

[25] proposed a discriminative algorithm to design spatio-temporal filters by optimizing a 

modified CSP cost function. Suk and Lee [26] presented a particle-based Bayesian spatio-

spectral filter optimization algorithm.

Along other lines, CSP has been extended from binary to multi-class case by several groups 

[27], [28], [29]. To handle the setting of a small labeled sample size, Li and Guan [30] 
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proposed an EM algorithm for joint extraction and classification of CSP features, where 

unknown labels of the data were treated as latent variables. Wu et al. [31] presented a 

hierarchical Bayesian method to model the inter-trial variability of the EEG signals. 

Alternatively, the non-stationarity issue has also been addressed within a regularization 

framework in [32], [33], and via a cluster-based approach in [34]. Finally, several robust 

CSP algorithms have been developed to alleviate the sensitivity to noise and outliers [35], 

[36], [37], [38].

3 Probabilistic Generative Model Formulation of the CSP Algorithm

The discriminative formulation of CSP in (1) is motivated by maximizing the separability 

between two conditions. In this section, we present a generative view of CSP, which casts 

the solution as a maximum likelihood (ML) estimate from a probability model of the 

multichannel EEG signals. The probability model consists of two coupled latent linear 

models, with each modeling EEG signals derived from one condition:

(4)

where Zk ≜ Z·,·,k ∈ ℝM×L consists of the vectors of component signals (latent variables) for 

condition k, and A ∈ ℝN×M is the non-degenerate square mixing matrix that contains spatial 

patterns (i.e., scalp maps of the components) as columns. Three assumptions are made in the 

model (4): 1) Xk and Zk are identically and independently distributed (IID) across time; 2) M 

= N; 3) The component signals are mutually uncorrelated, i.e., Λk = diag(λmk) is a diagonal 

matrix.

The connection between model (4) and CSP is revealed by the following theorem [3], [31], 

[39], [40]:

Theorem 1: Let W ≜ [w1, …, wN]⊤, where w1:N are the stationary points for (1). Then W = 

Â−1, where Â is the ML estimate of A in model (4).

The proof of the theorem is detailed in [31]. Non-stationarity has been suggested as a 

generic criterion for blind source separation (BSS) in Pham’s pioneering work [41]. Under 

the generative setting, CSP is derived as an algorithm for BSS by utilizing the non-

stationarity of EEG data between conditions.

Remark 1: In model (4), the mixing matrix A is identical for the two conditions, i.e., the 

spatial patterns are common to both conditions, hence justifying the name “CSP”. It shall be 

stressed that while sharing common spatial patterns, the two conditions are differentiated by 

assessing the variance ratios of the associated time courses Zk (see (1))—the initial 

motivation for applying CSP to discriminative EEG analysis. Theorem 1 states that by 

fitting model (4) to the EEG signals derived from two conditions, the optimal spatial filters 

are the “dual” of Â in that they can be obtained by taking the inverse of the latter.

In cognitive neuroscience, a standard practice for testing a hypothesis regarding a condition 

of interest is to contrast it with a control condition so that the confounding effects of 
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extraneous variables can be eliminated [42]. The generative algorithmic formulation 

provides a theoretical ground for CSP as a spatio-temporal decomposition method (i.e., 

modeling the data as apposed to merely classifying the data).

3.1 Revisiting the Overfitting Issue

Probabilistic model (4) may shed light on the overfitting issue of CSP. Specifically, there are 

two situations in which CSP is prone to overfitting:

1. When the true number of underlying components is less than the number of the 

channels N, CSP necessarily produces spurious components due to the inflated 

component number assumed in its generative model [11]. The overfitted 

components often possess large variance ratios between conditions because they 

may fit the noise component in one condition that is only weakly present in the 

other condition.

2. Overfitting also occurs when N is large relative to the amount of data available 

[43]. Here the amount of data need not be taken literally as L; the effective amount 

of data is considerably smaller when high temporal correlations exist within the 

samples. In model (4), the number of free parameters is N + N2, which may easily 

outnumber L, even when the channel number is moderate.

The overfitting issue of CSP stems from the square mixing and noiseless assumptions. The 

noiseless assumption implies that the EEG data are fully characterized by the estimated 

components and the mixing matrix. This assumption does not take into account of random 

factors, such as the amplifier noise. The square mixing assumption is closely linked to the 

noiseless assumption in that if we relax the square mixing assumption by using a smaller 

number of components, a model mismatch will automatically arise between the best linear 

fit and the EEG data.

3.2 Connections with Regularized CSPs

Learning CSP filters relies on estimating the spatial covariance matrix Rk for the EEG data 

of each condition. As such, regularized CSP (see (2)) has attempted to alleviate the 

overfitting issue by using more robust estimates of Rk. In this section, we present a unified 

view for the group of regularized CSP algorithms based on the probabilistic model (4).

The following theorem asserts that by imposing conjugate priors on the spatial covariance 

matrices for the two conditions, various regularized CSP algorithms can be cast into the P-

CSP framework as specific algorithms computing the MAP estimates of the model 

parameters with different priors.

Theorem 2: Regularized CSPs yield the joint MAP estimate of A and Λk in model (4), with 

the following inverse-Wishart prior on Rk:

(5)
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where Gk ∈ ℝN×N is a positive-definite scale matrix, νk is a degree-of-freedom parameter, 

and Tk is a normalization constant. tr[·] denotes the trace operator.

See Appendix B for the proof, which can be found on the Computer Society Digital Library 

at http://doi.ieeecomputersociety.org/10.1109/TPAMI.2014.2330598. Various regularized 

CSP algorithms can be differentiated by their specific choice of Gk in the inverse-Wishart 

prior. For instance, Gk can be proportional to the estimated covariance matrices from other 

subjects [14], [44], to the estimated covariance matrix of the noise source [13], or to the 

identity matrix [15]. Borrowing information from other subjects can potentially benefit 

subject-to-subject transfer, however, care must be taken to allow for the large between-

subject variability in the EEG signals. Estimating the covariance matrix of the noise source 

requires additional EEG signals to be recorded beyond the experimental conditions.

The P-CSP modeling framework presented in the next section takes a different perspective 

by imposing joint priors on the underlying spatio-temporal patterns to obtain a parsimonious 

representation of the EEG signals. The derived algorithms regularize the common spatial 

patterns in a group-wise fashion, in which an “optimal” tradeoff between data fitting and 

regularization can be automatically learned from the data within the probabilistic framework 

(Section 4.2.2).

4 P-CSP Modeling of Multichannel EEG

4.1 Basic Model

The P-CSP model for multichannel EEG signals is a noise-corrupted Bayesian latent linear 

model:

(6)

Here, Xk, Zk, and A are similarly defined as in model (4). Ξ ≜ diag[ξ] ∈ ℝM×M. Ek ∈ ℝN×L 

is the matrix of additive Gaussian noise for condition k, with the covariance matrix Ψk ≜ 

diag[ψk] ∈ ℝN×N.

As opposed to the noise-free model (4) with M = N, model (6) assumes that M ≤ N, i.e., 

there are no more component signals than EEG signals (over-determined). Intuitively, this 

fact means that the dynamics of the EEG signals from both conditions can be represented by 

a smaller number of independent component signals, with spatial patterns identical across 

conditions. In addition, Ek accounts for the mismatch between the component space and 

EEG space.

Remark 2: Model (6) imposes priors on both the spatial and temporal patterns in the 

component space. With the row-wise IID Gaussian priors, A is placed on an equal 

probabilistic footing with Zk, which are endowed with column-wise IID Gaussian priors.
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4.2 Inference Algorithms

For model inference, one may compute the MAP estimates of {A, } in model (6) via 

alternate updates to increase the posterior. Nonetheless, there are two limitations that remain 

to be resolved. First, the MAP estimation via alternate updates is known to be susceptible to 

local optima, since it fails to account for uncertainties when making hard decisions 

throughout the update process [19]. Second, in practice Λk, Ψk, Ξ are unknown a priori, and 

the proper determination of these unknowns is crucial because they serve to control the 

model capacity to prevent overfitting.

To address the above limitations, we present two algorithms for model inference: MAP-CSP 

and VB-CSP. For a given M, MAP-CSP is able to compute the MAP estimates of {A, } in 

a closed form when Ψk are isotropic, thus mitigating the issue of local optima. However, the 

model size must be specified in advance. VB-CSP is an approximate fully Bayesian 

inference algorithm that computes the variational distributions of {A, } by integrating over 

all of the other unknowns while simultaneously achieving automatic model selection. We 

also provide an analysis to show that VB-CSP can be understood as a sparse learning 

algorithm.

4.2.1 MAP-CSP: A Fast MAP Estimation Algorithm—MAP-CSP seeks the joint 

MAP estimates for {A, } in the following hierarchical Bayesian model with additive 

isotropic noise:

(7)

where  is the inverse-gamma distribution. We assume 

that Ψk are isotropic so that the number of unknown parameters in the noise covariances is 

reduced to two, thereby the local optima arising from estimating full Ψk are largely avoided.

To let the data speak for themselves, we further assume that α → 0, β → 0 and ξ → ∞ to 

render the priors on A and Λk non-informative [45], yielding flat priors on A and p(λmk) ∝ 

1/λmk. In contrast to the flat prior on A (which does not lead to the orthogonality between 

the columns of A since the prior makes no contribution in the MAP estimation of {A, } 

regardless of the orthogonality between the columns of A), the hierarchical prior on Zk 

enforces the belief that the component signals are mutually uncorrelated (i.e., the rows of Zk 

are orthogonal) as in CSP (see also Proposition 1 below along with its proof in Appendix C, 

available in the online supplemental material, for how to achieve the orthogonality). More 

specifically, the hierarchical prior on Zk is equivalent to the Student-t distributions on Zm,·,k 

([46]; see also Appendix A, available in the online supplemental material, for an integral 

representation of the Student-t distribution):

(8)
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As α → 0, β → 0, the resulting distributions are heavily tailed and sharply peaked at the 

origin, thereby favoring sparsity.

Remark 3: p(λmk) ∝ 1/λmk is an improper probability distribution. It was argued in [47] that 

an improper distribution for the prior variance parameters does not yield a proper posterior 

distribution in several types of hierarchical models. To avoid the improperness issue, in the 

following we assume small nonzero values for α and β, e.g., α = β = 10−8. Moreover, the 

result of sensitivity analysis presented in Section 5.1.2 demonstrates that the VB solution is 

relatively insensitive to the choice of the values for α and β.

In a nutshell, MAP-CSP is an iterative algorithm, with each iteration consisting of two 

phases. The first phase identifies a low-dimensional subspace common to the two 

conditions, and the second phase finds axes on which the data from the two conditions are 

jointly decorrelated. The algorithm is formalized below.

Proposition 1: For given ψk, the joint MAP estimates of {A, } in (7) can be obtained by 

solving

(9)

where ||·||F denotes the matrix Frobenius norm.  is the manifold of real diagonal matrices 

with nonnegative diagonal entries.

The following result is required to solve (9):

Proposition 2: Problem (9) is equivalent to

(10)

where B ∈ ℝN×M, Yk ∈ ℝM×L.

Proposition 2 asserts that the orthogonality constraint on Zk can be effectively removed 

when we solve (9), leading to an unconstrained optimization problem. Now let 

; then, we have

Proposition 3: 

(11)

where U·,1:M ∈ ℝN×M is the matrix with columns being the eigenvectors of 

associated with the M largest eigenvalues, and G ∈ ℝM×M is an arbitrary invertible matrix.

Wu et al. Page 9

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2015 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Propositions 1, 2 and 3 provide the theory to identify a low-dimensional subspace common 

to the two conditions. See Appendices C–E, available in the online supplemental material, 

for the proofs. In light of the results presented above, the two phases per iteration of MAP-

CSP are as follows:

1. Employ an iterative procedure to optimize {B, } and ψk in an alternate manner 

until convergence. More specifically, for given ψk, {B, } can be optimized 

according to Theorem 5, and ψk can in turn be updated as (see Appendix C, 

available in the online supplemental material)

(12)

2. Let the generalized eigendecomposition of  be . Zk 

and A can then be estimated using

(13)

The pseudocode of MAP-CSP is provided in Algorithm 1. We initialize the algorithm by 

setting M and ψk. In our implementation, ψk = 1. Each iteration of MAP-CSP involves an 

eigendecomposition and matrix inversion, requiring (N3 + M3) flops. Moreover, the 

algorithm is guaranteed to converge to a stationary point typically within a few iterations, 

since the noise covariance matrices are parameterized by only two parameters. Hence, 

MAP-CSP can be implemented efficiently. The convergence can be checked by evaluating 

whether the relative change of the parameters between adjacent iterations is less than a pre-

defined tolerance η.

Algorithm 1

The MAP-CSP Algorithm

Input: multichannel EEG data  that are recorded from two experimental conditions

Output: MAP estimates Â, , ψ̂
k

1: Initialization: set M; ψ̂
k = 1

2: repeat

3:

 solve ;

 % perform eigendecomposition of 

 % eigenvalues are sorted in descending order in

 % the main diagonal of D

4:  B ← U·,1:M, Yk ← (B⊤B)−1B⊤Xk

5:

  

6: until Convergence
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7:

solve 

% perform generalized eigendecomposition of 

8: Ẑk ← V⊤Yk, Â ← BV−⊤

Model selection: MAP-CSP assumes that the number of underlying components is known, 

which hardly holds in practice. Classical statistical model selection criteria, such as the 

Bayesian information criterion (BIC) [19], are not applicable to resolve this difficulty, since 

they require the number of parameters to be fixed, whereas in MAP-CSP, the dimensions of 

Zk vary with the number of data points. Nonetheless, in EEG classification cross-validation 

can be used for model selection in a straightfoward manner based on predictive accuracy; 

the increased computational cost should not be a concern due to the fast running speed of 

MAP-CSP.

Alternatively, we can take a regularization approach by placing group-sparse priors on both 

A and Zk (by contrast, placing the group-sparse prior on Zk alone with no penalty on A, as 

in MAP-CSP, cannot achieve model selection due to the scaling ambiguity between A and 

Zk—the full model is always preferred, since the entries of Zk can be made arbitrarily small 

by exchanging their amplitudes with those of A). This approach has the advantage that the 

model order can be automatically determined with a proper inference procedure. We 

proceed to the detail in the next section.

4.2.2 VB-CSP: A Variational Bayesian Inference Algorithm—In more general cases 

where the additive noise is non-isotropic for each condition, MAP-CSP no longer preserves 

the optimality. In this section, we propose a fully Bayesian method for model inference. The 

developed algorithm is an approximate Bayesian inference algorithm that is capable of 

inferring the “optimal” model capacity.

In contrast to pursuing the mode of p(A, | ) as in MAP-CSP, Bayesian inference attempts 

to estimate the full posterior distribution p(A, | ) for the following model:

(14)

Analogous to Zk, with the inverse-gamma hyperprior on the covariance of A, A is now 

endowed with a column-sparse prior (with α and β close to zeros):

(15)
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This particular model specification is inspired by the influential idea of automatic relevance 

determination (ARD) [19], which has been widely used in the machine learning community. 

Intuitively, Ξ and Λk comprise hyperparameters that govern the amplitude of A·,m and Zm,·,k, 

respectively; a component with small hyperparameters will be effectively zeroed out. Note 

that although the nuisance parameters Ξ and Λk are estimated by evidence maximization 

(also known as type-II ML) in ARD, we instead follow a fully Bayesian path by integrating 

out these parameters.

Remark 4: Model (14) can be viewed as a Bayesian matrix co-factorization model [48] for 

X1 and X2 due to the symmetry between A and Zk.

Exact Bayesian inference is not viable for model (14) due to intractable integrations. The 

problem arises from the product coupling of A and Zk in the likelihood, as well as the 

inconvenient form of the sparse priors. Instead, we devise the variational Bayesian CSP 

(VB-CSP) algorithm for approximate inference. The key ingredients of the algorithm are the 

two differing variational techniques that are employed to bound the marginal likelihood. The 

first technique seeks a “surrogate” probability to globally approximate the posterior 

probability. The second variational technique, which has gained popularity in recent years 

[49], [50], [51], is based on Fenchel’s duality theorem. We use it for locally approximating 

the sparse priors. Below, we describe how these techniques are integrated in VB-CSP.

First, we seek a variational distribution q*(A, ) in a structured probability space  that 

finds the optimal approximation of the true posterior (in the Kullback-Leibler (KL) 

divergence sense) p(A, | ) [19]:

(16)

We make use of the mean-field approximation by assuming that the distributions in  are 

factorable such that A and  are probabilistically decoupled: q(A, ) = q(A)q( ). The 

marginal log-likelihood is given by

(17)

with  being the variational free energy:

(18)

where 〈·〉q is the expectation with respect to the variational distribution and [·] is the 

differential entropy. As observed from (17), minimizing the KL divergence between the 

variational distribution and posterior distribution is equivalent to minimizing , which is an 

upper bound for the negative marginal log-likelihood.

Next,  can be further upper bounded by using a convex representation of the Student-t 

distribution (see Appendix A, available in the online supplemental material):
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(19)

where

VB-CSP is aimed at inferring q(A, ) by minimizing :

(20)

The problem can be tackled by alternately updating the variational distributions q(A) and 

q(Zk), and the variational parameters Λk, Ξ, Ψk via coordinate descent. Derivation of VB-

CSP is provided in Appendix F, available in the online supplemental material. The 

pseudocode is provided in Algorithm 2, in which Â and Ẑk are the variational means of A 
and Zk, respectively. In our implementation, Â, Ξ, and Λk are initialized using the estimates 

from CSP. Moreover, ΣAn,· = Ψk = 10−8I. However, it is empirically observed that the 

algorithmic performance is only slightly affected by initialization (see sensitivity analysis in 

Section 5.1.2). The main cost of VB-CSP is the computation of matrix inversions at each 

iteration, which requires (K · L · M3 + N · M3) flops. Convergence is guaranteed to a 

stationary point and can be determined by checking whether the decrease of  between 

adjacent iterations is less than a pre-defined tolerance η.

Algorithm 2

The VB-CSP Algorithm

Input: multichannel EEG data  that are recorded from two experimental conditions

Output: variational parameters {Λk, Ψk}k=1,2, Ξ; variational distributions q*(Zk), q*(A)

1:

Initialization: M = N; set Â and Λk by calling CSP; 

2: repeat

3:

 q(Zk) = Πl q(Z·,l,k) ← Πl (Ẑ·,l,k, ΣZ·,l,k) where  and 
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4:

 q(A) = Πn q(An,·) ← Πn  (Ân,·, ΣAn,· where and 

5:

  

6:

  

7:

  

8:   until Convergence

Analysis. VB-CSP as a sparse bayesian learning algorithm: In order to gain deeper insight 

into VB-CSP, we provide analysis to show that the algorithm induces sparsity to the 

approximate Bayesian solution in a MAP-like manner. This portion of the study is partially 

inspired by the seminal work concerning sparse Bayesian learning [51], [52].

To simplify analysis, we assume that α = β = 0, Ψk are known, and ΣAn,· ΣZ·,l,k = 0. Let Θ ≜ 

{Λk, Ξ); then, we have

Theorem 3: The VB inference problem (20) can be rephrased using the following MAP 

setup:

(21)

with the loss term  defined by , and the 

regularization term  defined by 

, where 

 and .

Proof of Theorem 3 is provided in Appendix G, available in the online supplemental 

material. The  has the following desirable properties:

• Given ,  is a concave, non-decreasing function of [||Â·,1||2, …, ||Â·,M||2], a 

hallmark of sparsity-inducing regularizer [53]. Likewise, given Â,  is a concave, 

non-decreasing function of [||Ẑ1,·,k||2, …, ||ẐM,·,k||2].

• For either Â or Ẑk,  imposes stronger sparsity than the group norm ||Â|| ≜ Σm ||
Â·,m||2 or ||Ẑk|| ≜ Σm ||Ẑm,·,k||2, while producing far less local minima than the 

regularizers associated with (15) or (8). Therefore, VB inference (21) is less 
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susceptible to local minima than using a conventional numerical algorithm, e.g., 

coordinate descent, to seek the locally optimal MAP solution to model (14).

• The sparse priors associated with  for Â and Ẑk are mutually coupled. Such 

interdependency guarantees that the optima are not affected by the scaling 

indeterminacy between Â and Ẑk [51].

It is also suggested by (21) that Ψk play the role of regularization parameters that balance 

between  and . In VB-CSP, Ψk are optimized via a variational learning rule analogous 

to those for Λk and Ξ.

In contrast to the sparse CSP algorithm (see (3)), which aims to sparsify each individual 

spatial filter by forcing many coefficients to zero, the sparsity in our VB-CSP algorithm is 

targeted at the group level in the component space, i.e., using as few components as possible 

to represent the multichannel EEG signal; the redundant components are automatically 

zeroed out within the Bayesian framework. Moreover, VB-CSP allows us to inspect spatio-

temporal patterns in the component space, while it is generally unclear how to relate the 

spatial filters optimized by the sparse CSP to the components’ spatial patterns (see [54] for a 

discussion of the difference between spatial filters and spatial patterns). Finally, it shall be 

cautioned that the estimate from VB inference may be biased, and its variance is often 

underestimated (due to the mean-field approximation) [55].

4.3 Spatial Filtering via MAP-CSP/VB-CSP

Similar to CSP, MAP-CSP and VB-CSP use label information to guide learning; thus, in 

classification tasks, they can be used to generate discriminative features as the inputs to the 

classifier by discarding inessential components, resulting in enhanced predictive accuracies.

For MAP-CSP, since Ψk are isotropic, the following linear transformation matrix W can be 

estimated from the training set of EEG data to map from the EEG space to the component 

space:

(22)

Each row of W defines a spatial filter. Likewise, the following pair of linear transformation 

matrices can be estimated for VB-CSP (according to the third step in Algorithm 2):

(23)

The discriminative filters can be selected via similar measures as conventionally employed 

for selecting CSP filters, e.g., filters associated with large component variance ratios 

between conditions. One can also use other well-established feature selection criteria [19] to 

select discriminative filters.
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Although both MAP-CSP and VB-CSP can be employed in single-trial EEG classification, 

MAP-CSP is more suited for real-time applications, such as BCI decoding, due to its low 

computational overhead (Table 1), whereas VB-CSP is more suited for off-line exploratory 

data analysis with the advantage of automatic model size determination.

5 Experiments

In this section, we test the performance of the proposed algorithms using both synthetic and 

experimental EEG data. In the synthetic experiment where the ground truth is known, we 

compare CSP, MAP-CSP, and VB-CSP in terms of the recovery accuracy of the spatio-

temporal patterns via Monte Carlo simulations. We also assess VB-CSP’s capability in 

model selection and sensitivity to hyperprior selection and algorithmic initialization. In the 

analysis of high-density EEG data, we demonstrate the effectiveness of MAP-CSP and VB-

CSP in the single-trial classification of several motor imagery (MI) EEG data sets. In 

addition, we apply VB-CSP as an exploratory tool to analyze spatio-temporal EEG patterns 

in a Stroop task [56]. In all experiments, we set α = β = 10−8 unless otherwise specified, and 

the same tolerance η = 10−8 is used for determining the convergence of MAP-CSP and VB-

CSP.

5.1 Synthetic Experiment

5.1.1 Description—The experiment consists of 50 independent Monte Carlo runs. In each 

run, N = 40 channels of synthetic EEG signals X are randomly generated according to model 

(6) for two experimental conditions:

1. Two sets of M = 6 mutually uncorrelated component signals Zk are generated, with 

each set corresponding to a single condition. Each component signal comprises L 

IID Gaussian samples. The variances of the 6 component signals summed over the 

two conditions are integers from 2 to 7.

2. A mixing matrix A of size 40 × 6 is randomly generated, with each entry having a 

standard Gaussian distribution.

3. For each condition, additive white Gaussian noise with non-isotropic covariance is 

simulated to produce different levels of SNR. The SNR is defined per condition 

and channel as the ratio of the variance of the noiseless EEG and the variance of 

the additive noise in the same channel. The experiment is run repeatedly under a 

variety of settings: L ∈ {500, 100} and SNR ∈ {10, 5, 0, −5} dBs.

The noisy multichannel EEG signals are fed into CSP, MAP-CSP, and VB-CSP, from which 

we obtain their estimated spatio-temporal patterns {Â, }. The component number is 

assumed to be known for MAP-CSP.

First, we evaluate the ability of VB-CSP to uncover the number of underlying components 

(MAP-CSP is excluded for evaluation since the component number must be specified 

beforehand rather than being estimated). The procedure for determining the effective 

component number Me is described as follows. For each component m, we divide Ẑm,·,k by 

the scaling coefficient  such that their l2-norms sum to one. 
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We then multiply Â·,m with sm such that Â·,m · Ẑm,·,k remains unchanged. With the scaling 

applied on each component, Me is set to represent the number of components with ||Â·,m||2 

larger than a given threshold τ (we use τ = 10−6).

Second, to assess the estimated model, the Amari index [57] is used to quantify the 

reconstruction fidelity of the components’ spatio-temporal patterns:

(24)

where

As a prerequisite for computing the Amari index, the sizes of Â and Ẑk must be identical 

with those of A and Zk. To meet this requirement, for CSP and VB-CSP we select six 

components associated with the six largest ||Â·,m||2 and discard the others. In the case of VB-

CSP, in certain runs with L = 100 and SNR = −5 dB the effective component number is less 

than 6, leaving the calculation of the Amari index problematic. Because the likelihood of 

such events is relatively low (<10 percent), we discard these runs when computing the 

statistics for simplicity.

5.1.2 Results—Fig. 2 presents the results of component number estimation using VB-

CSP. For L = 500 and L = 100, Me is correctly identified to be 6 when SNR = 10, 5, 0, −5 

dBs and SNR = 10, 5, 0 dBs, respectively. For L = 100 and SNR = −5 dB, Me deviates 

slightly from 6.

The Amari indices computed from CSP, MAP-CSP, and VB-CSP are displayed in Fig. 3. 

Two observations are in order. First, the benefit of using sparse learning is evident. As a 

general trend, MAP-CSP and VB-CSP substantially outperform CSP under all settings 

(three-way repeated-measure analysis of variance (ANOVA), with the algorithm, L, and 

SNR as the factors, indicates a significant main effect for the algorithm factor: F(1, 49) = 

1,793.172, P < 10−8 for VB-CSP versus CSP; F(1, 49) = 1,611.934, P < 10−8 for MAP-CSP 

versus CSP). For each specific L and SNR, the decrease of the Amari indices for VB-CSP is 

greater than two-fold compared to those for CSP. Second, MAP-CSP is comparable to VB-

CSP in performance, at relatively high SNRs (10 and 5 dBs), which is not unexpected 

because MAP-CSP finds the globally optimal MAP solution (up to the unknown and non-

isotropic noise covariances). However, the performance gap between these two algorithms 
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increases at low SNRs (0 and −5 dBs) since the increasing non-isotropic effect of the 

additive noise is not captured by MAP-CSP.

To provide an intuitive example, Fig. 4 presents the Hinton diagrams of A and Â from a 

simulated result with L = 500 and SNR = 0 dB. In this specific run, we obtain D = 1.3332, 

0.5094, and 0.3239 for CSP, MAP-CSP, and VB-CSP, respectively. Here, redundant spatio-

temporal patterns are shrunk to negligible values in VB-CSP. By contrast, it is hard to tell 

which columns are the redundant patterns in Â obtained from CSP, confirming that CSP is 

insufficient for component number determination.

Sensitivity analysis: We conduct Monte Carlo simulations to assess the sensitivity of VB-

CSP (L = 500 and SNR = 0 dB). Specifically, sensitivity to hyperprior selection is studied by 

sampling α and β uniformly from (0, 10−3), whereas sensitivity to algorithmic initialization 

is studied by sampling the elements of Â from IID standard Gaussian distributions, and the 

diagonal elements of Ξ uniformly from (0, 1). VB-CSP inference is then performed over 100 

repetitions for each Monte Carlo simulation, yielding D = 0.2899 ± 0.0091 for hyperprior 

selection and D = 0.3026 ± 0.0192 for initialization. These results demonstrate that the 

performance of VB-CSP is only slightly affected by hyperprior selection and initialization.

Computational speed: Table 1 provides the runtime of the three algorithms in one 

representative Monte Carlo run for two setups: L = 500, SNR = 10 dB and L = 100, SNR = 

10 dB. The algorithms are implemented in MATLAB 7.10 on a PC with 3.4 GHz Intel Core 

(TM) i7-3770 CPU and 8 GB RAM. The numbers of iterations needed to reach convergence 

for MAP-CSP and VB-CSP are shown in parentheses. In this example, MAP-CSP converges 

in far fewer iterations than VB-CSP. Note that in the course of VB-CSP, we monitor not 

only the convergence of { , but also the convergence of the variational means of the model 

parameters. Results indicate that the variational means converge in a regular manner as { 

decreases (see Fig. 5 for the convergence curves at L = 100). In terms of the runtime, MAP-

CSP is only 10 times slower than CSP but more than 103 times faster than VB-CSP, making 

it highly appealing for online applications, such as BCI decoding.

5.2 Single-Trial Classification of Motor Imagery EEG Data

5.2.1 Description—A single-trial binary EEG classification experiment is conducted on 

three motor imagery EEG data sets. It has been well-documented in literature that imagined 

movements give rise to an attenuation of the sensorimotor rhythms in specific regions of the 

sensorimotor cortices, a phenomenon known as event-related desynchronization (ERD) [1] 

(e.g., imagined left or right hand movements generate ERD over hand regions in the 

contralateral motor cortices). The fact that ERD can be examined by evaluating the variance 

change of EEG spatial patterns across conditions provides good justifications to apply CSP 

and the related algorithms for MI EEG data analysis.

Among the three data sets, two were from BCI Competition 3 Data Set 3a and Data Set 4a.1 

The third data set was collected in the Laboratory of Neural Engineering at Tsinghua 

1Downloadable at http://www.bbci.de/competition/iii/.
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University. Data set 1 consists of 60-channel EEG data from three subjects recorded for the 

left-hand, right-hand, foot, and tongue MI tasks (sampling rate: 250 Hz). There are 90, 60, 

and 60 trials per task for subjects k3, l1, and k6, respectively, with equal number of training 

and test trials. Data set 2 consists of 118-channel EEG data from five subjects recorded for 

the right-hand and right-foot MI tasks (sampling rate: 100 Hz). A total of 140 trials per task 

were collected for each subject, with varying percentages of training and test trials (168, 

224, 84, 56, and 28 training trials for subject aa, al, av, aw, and ay, respectively). Data set 3 

consists of 32-channel EEG data from 20 subjects for the left- and right-hand MI tasks 

(sampling rate: 256 Hz). For each subject, a total of 240 trials (120 per task) were split into 

equal number of training and test trials.

Since data set 1 contains the EEG data recorded under multi-class MI tasks, we construct 

smaller data sets for each possible pair of MIs for the purpose of binary classification, 

resulting in six data sets for left-hand versus righthand, left-hand versus foot, left-hand 

versus tongue, right-hand versus foot, right-hand versus tongue, and foot versus tongue MI 

tasks, respectively.

We compare the classification performance of CSP, CSP with Tikhonov regularization (TR-

CSP, with H = I in (2)) [15], MAP-CSP, and VB-CSP on a total of 18 + 5 + 20 = 43 subsets 

of multichannel EEG signals as described above. TR-CSP is chosen from the existing 

regularized CSP algorithms as a benchmark due to its excellent classification performance, 

as demonstrated earlier [15]. Sparse CSP is not included for comparison for three reasons: 1) 

The major use of sparse CSP is channel selection, which is not the concern of this paper; 2) 

According to the results reported in [16], [17] on experimental EEG data, in general, sparse 

CSP yielded a degraded performance compared with CSP using a full set of channels; 3) 

The deflation procedure proposed in [16] for optimizing multiple spatial filters is not 

theoretically well-grounded since it does not preserve the positive semi-definiteness of the 

data covariance matrices when applied to a sparse spatial filter [58]. Addressing this issue is 

beyond the scope of this paper.

To avoid any potential bias towards any algorithm, we apply identical preprocessing settings 

to the data for channel selection (all EEG channels are used), bandpass filtering (8–30 Hz 

bandpass filtered using a fifth order Chebyshev Type-1 filter. The frequency range is known 

to encompass the ERD effect [1]), and time windowing (0.5–3.5 sec rectangular window 

relative to the initiation of the MI tasks) before the use of each algorithm. To form the 

proper input to each algorithm, the training data for the kth condition is concatenated across 

trials along the time axis to yield the data matrices Xk for each subset.

As suggested in [3], [15], the feature vector of each trial is formed as the log-variances of 

the estimated component signals obtained by the six spatial filters (see Section 4.3) 

associated with the three largest and three smallest variance ratios between the first and 

second experimental tasks. The three largest/smallest variance ratios correspond to large 

response in the first/second task. Fisher linear discriminant analysis (FLDA) is employed as 

a classifier due to its computational efficiency. The use of log-variance features helps FLDA 

to attain optimality due to the Gaussian-like distribution. The hyperparameters are 

determined using ten-fold CV on the training sets. For MAP-CSP, the component number M 
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is sought within {10, 15, 20, …, 60} for data sets 1 and 3, and {10, 20, …, 110, 118} for 

data set 2. For TR-CSP, the regularization parameter ρ is sought within {10−10, 10−9, …, 

10−1} as suggested in [15].

5.2.2 Results—Test errors for all 43 subsets of EEG data are summarized in Fig. 6. A 

point beneath the diagonal indicates the superiority of the algorithm on the y-axis over the 

one on the x-axis. The results indicate that VB-CSP and MAP-CSP have a superior or equal 

performance compared to CSP and TR-CSP for the majority of subsets. The exceptions are 

that CSP is slightly superior to VB-CSP and MAP-CSP on two and three subsets, 

respectively, and that TR-CSP is slightly superior to VB-CSP on one subset. The overall 

average test errors for VB-CSP, MAP-CSP, TR-CSP, and CSP are 10.36, 11.03, 13.07, and 

14.22, respectively. Paired T-tests indicate that VB-CSP and MAP-CSP significantly 

outperform CSP and TR-CSP (VB-CSP versus CSP: P = 1.61 × 10−5, VB-CSP versus 

TRCSP: P = 9.96 × 10−5; MAP-CSP versus CSP: P = 7.54 × 10−5, MAP-CSP versus TR-

CSP: P = 8.73 × 10−5), but TR-CSP does not significantly improve CSP (P = 0.10). There is 

no significant difference between the test errors from VB-CSP and MAP-CSP (P = 0.0532). 

Due to the markedly lower computational load of MAP-CSP compared with VB-CSP, the 

use of MAP-CSP in single-trial classification tasks is encouraged.

To facilitate reproducibility, the test errors for the publicly available data sets 1 and 2 are 

reported in Table 2, with the lowest test error highlighted in boldface for each subject. The 

values of the hyperparameters (ρ and M are determined by 10-fold CVs on the training sets; 

see Section 5.1.1 for calculating Me) listed in the parentheses for TR-CSP, MAP-CSP, and 

VB-CSP. The results again indicate that VB-CSP and MAP-CSP have the overall best 

performance in that they yield the lowest test errors for all subjects. Furthermore, M and Me 

are much lower than the channel number for a substantial portion of the subsets, suggesting 

that it is beneficial to use a sparse model to fit the highly redundant multichannel EEG data. 

M and Me differ considerably for some subsets since they are estimated according to 

different model selection criteria. M is determined based on ten-fold CV classification 

errors, whereas Me is the number of remaining components when a full Bayesian approach 

is applied to learning sparse models.

For subject k3, there is little room for improvement due to the low baseline test error as 

achieved by CSP. The improvement for subjects k6 (left-hand versus right-hand, left-hand 

versus foot, left-hand versus tongue, right-hand versus foot) and aw are the most prominent, 

with more than 8 percent decline in the test errors from VB-CSP and MAP-CSP compared 

with CSP. For subject aw the training set consists of only 56 trials, which CSP has a 

tendency to overfit. In contrast, VB-CSP and MAP-CSP alleviate the overfitting by using 

only 53 and 50 components, respectively, to characterize the 118-channel EEG data.

For data set 2, it is noteworthy that the difficulty level varies differently among subjects for 

classifying various combinations of MI tasks. For example, whereas it is easy to 

discriminate the foot from the tongue MIs for subjects k3 and k6, the classification 

performance deteriorates for subject l1. By contrast, the left- and right-hand MIs can be 

reliably discriminated for subjects k3 and l1 but not for subject k6. This result suggests that 

it is worthwhile to determine the optimal sets of MI tasks for subject-specific BCI systems.
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The results of CSP on data set 2 differ substantially from the winning entries of the 

competition. Through personal communications with the winner, we are aware of several 

factors that may contribute to the superiority of the winning entries: 1) Intensive manual 

tuning was performed previously to obtain the optimal preprocessing settings. Relevant 

parameters included the EEG channels to be used, passband of the spectral filter, and time 

window, et al.; 2) Apart from ERD/ERS, two additional features, namely the autoregressive 

coefficients and temporal waves of the readiness potential, were employed previously for 

classification; 3) a semi-supervised tactic was applied to use part of the test data in the 

training stage. Our current paper focuses on the CSP algorithm, and it is beyond our scope to 

investigate the effect of the factors mentioned above. We stress that our comparison of the 

tested algorithms is fair, since except for spatial filtering, all of the other settings are 

identical for the tested algorithms.

5.3 Analysis of Stroop EEG Data

5.3.1 Description—Next, we consider a neurophysiologically-driven example and 

illustrate how VB-CSP can be used for exploratory EEG analysis in this setting. The data set 

contains EEG recordings from two male subjects (s1 and s2) participating in a Stroop color 

naming task, in which they were instructed to name the colors of Chinese characters. There 

were two experimental conditions: congruent versus incongruent. In the congruent 

condition, the color and the meaning of the characters were consistent (e.g., the Chinese 

character for “red” in red), whereas the color and meaning differed in the incongruent 

condition. The experiment was comprised of four sessions. A total of 144 trials of 64-

channel EEG data were collected per condition in each session. Each trial lasted for 1 sec. 

Signals were down-sampled to 200 Hz offline. For preprocessing, the EEG signals were 

band-pass filtered between 1 and 40 Hz. The filtered signals were then temporally 

concatenated across trials to feed into VB-CSP.

5.3.2 Results—The Hinton diagrams of Â obtained from VB-CSP are shown in the upper 

panel of Fig. 7. Among the 60 possible components, only 11 and 12 are retained by VB-CSP 

for the two subjects, respectively.

By visually inspecting the spatio-temporal patterns of the retained components for each 

subject, we are able to identify two components that are neurophysiologically meaningful. 

The respective spatio-temporal patterns are shown in Fig. 8. For each subject, the left panel 

presents the event-related potentials (ERPs) of the two components. For each component, 

the ERP is calculated by averaging the time courses of the entire 72 trials. As indicated by 

the shaded bars, the incongruent condition elicits stronger negative potentials than the 

congruent condition within the time intervals 400–600 and 700–900 msec. The differences 

are significant as can be observed from the 95 percent posterior credible intervals [19] 

(bounded by the light curves) derived from the variational posterior distributions. The 

corresponding spatial patterns for 400–600 and 700–900 msec are concentrated on the 

fronto-central and fronto-polar scalp regions, respectively.

The results are consistent with the previous findings reported in [56]. Through the source 

localization of the ERP components in the brain, it was suggested that the enhanced 
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negativity for the incongruent condition was likely to stem from activation of the anterior 

cingulate cortex (ACC), reflecting its role in the detection of interference between the 

character meaning and color (400–600 msec interval) and in the engagement of central 

executive processes (700–900 msec interval). It is important to notice that our current 

analysis is conducted on an individual subject basis, as opposed to previous instances of 

grand-averaging over multiple subjects [56]. For comparison, CSP is also applied to the 

same EEG data set. As expected, the estimated mixing matrices are not sparse (see the lower 

panel of Fig. 7). Moreover, no components with significant time course difference between 

conditions are observed.

6 Conclusion

With the motivation of overcoming the CSP’s overfitting problem, here we presented a 

Bayesian framework for modeling multichannel EEG signals from two experimental 

conditions. The proposed framework encompasses the existing CSP and regularized CSP 

algorithms as special cases, which addresses overfitting in a principled manner by using the 

sparse Bayesian learning technique. Under this framework, we developed the MAP-CSP and 

VB-CSP algorithms for use in real-time single-trial EEG classification and exploratory EEG 

analysis, respectively. Their algorithmic efficacy and superiority were demonstrated by the 

successful analyses of synthetic and experimental EEG data sets.

Questions that remain to be addressed in the future include the following: 1) Although the 

models presented in this paper exploit the spatial structure of the multi-channel EEG signals, 

temporal dynamics are not fully characterized by the IID assumption. More sophisticated 

time-series modeling techniques are required to account for the temporal dependency; 2) 

The exact posterior distribution under model (14) is multimodal, due to the inherent scaling 

and permutation ambiguities between A and . The degree of multimodality can be 

empirically assessed using the Markov chain Monte Carlo (MCMC) strategy, which is 

capable of numerically representing the exact posterior distribution, as opposed to the 

approximate nature of VB [59]; 3) Further effort is required to improve the slow 

convergence of VB-CSP.
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Fig. 1. 
P-CSP modeling framework. The models and algorithms proposed in this paper are based on 

a probabilistic modeling reformulation of the CSP algorithm.
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Fig. 2. 
Effective component number Me determined by VB-CSP under different settings of L and 

SNR.
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Fig. 3. 
The average Amari indices obtained under varying SNRs and sample sizes. left panel: L = 

500; right panel: L = 100.

Wu et al. Page 31

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2015 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Hinton diagrams of A and Â estimated by different algorithms for an exemplary run with L 

= 500 and SNR = 0 dB (columns are in random order). The magnitude of each entry in the 

matrices is proportional to the square size (dark: positive, light: negative). Note that the 

results are subject to the scaling and permutation ambiguities. a) Non-square mixing matrix 

A, b) Estimated square matrix Â from CSP (D = 1.3332), c) Estimated non-square matrix Â 
from MAP-CSP (D = 0.5094), d) Estimated sparse matrix Â from VB-CSP (D = 0.3239).

Wu et al. Page 32

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2015 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Examples of convergence curves of { , Â, and Ẑk at L = 100.
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Fig. 6. 
Test errors (percent) on three motor imagery BCI data sets (43 subsets) for four tested 

algorithms. Each point provides the result on one subset of EEG data. a) VB-CSP versus 

CSP, b) VB-CSP versus TR-CSP, c) MAP-CSP versus CSP, d) MAP-CSP versus TR-CSP, 

e) TR-CSP versus CSP, f) VB-CSP versus MAP-CSP.
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Fig. 7. 
Hinton diagrams of the estimated sparse matrix Â (columns are in random order). Upper 

panel: the variational mean estimates from VB-CSP; lower panel: the estimates from CSP. 

a) subject s1, b) subject s2.
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Fig. 8. 
The spatio-temporal patterns of selected two meaningful components. For each subject, the 

left panel presents the ERPs of the components (dark curves: variational means; light curves: 

95 percent posterior credible intervals), and the right panel presents the spatial patterns of 

the components as scalp maps. a) subject s1, b) subject s2.
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TABLE 1

Comparison of the Runtime (Second) from CSP, MAP-CSP and VB-CSP

L CSP MAP-CSP VB-CSP

500 1.61 × 10−3 2.17 × 10−2 (4) 1.20 × 102 (3693)

100 1.40 × 10−3 2.06 × 10−2 (5) 8.58 × 10 (2909)

The numbers in parentheses indicate the number of iterations to reach convergence.
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