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Abstract—Deep convolutional neural networks (CNNs) are
widely used in modern AI systems for their superior accuracy
but at the cost of high computational complexity. The complex-
ity comes from the need to simultaneously process hundreds
of filters and channels in the high-dimensional convolutions,
which involve a significant amount of data movement. Although
highly-parallel compute paradigms, such as SIMD/SIMT, effec-
tively address the computation requirement to achieve high
throughput, energy consumption still remains high as data
movement can be more expensive than computation. Accord-
ingly, finding a dataflow that supports parallel processing with
minimal data movement cost is crucial to achieving energy-
efficient CNN processing without compromising accuracy.

In this paper, we present a novel dataflow, called row-
stationary (RS), that minimizes data movement energy con-
sumption on a spatial architecture. This is realized by ex-
ploiting local data reuse of filter weights and feature map
pixels, i.e., activations, in the high-dimensional convolutions,
and minimizing data movement of partial sum accumulations.
Unlike dataflows used in existing designs, which only reduce
certain types of data movement, the proposed RS dataflow
can adapt to different CNN shape configurations and reduces
all types of data movement through maximally utilizing the
processing engine (PE) local storage, direct inter-PE communi-
cation and spatial parallelism. To evaluate the energy efficiency
of the different dataflows, we propose an analysis framework
that compares energy cost under the same hardware area
and processing parallelism constraints. Experiments using the
CNN configurations of AlexNet show that the proposed RS
dataflow is more energy efficient than existing dataflows in
both convolutional (1.4× to 2.5×) and fully-connected layers
(at least 1.3× for batch size larger than 16). The RS dataflow
has also been demonstrated on a fabricated chip, which verifies
our energy analysis.

I. INTRODUCTION

The recent popularity of deep learning [1], specifically
deep convolutional neural networks (CNNs), can be attributed
to its ability to achieve unprecedented accuracy for tasks
ranging from object recognition [2–5] and detection [6, 7]
to scene understanding [8]. These state-of-the-art CNNs [2–
5] are orders of magnitude larger than those used in the
1990s [9], requiring up to hundreds of megabytes for filter
weight storage and 30k-600k operations per input pixel.

The large size of such networks poses both throughput
and energy efficiency challenges to the underlying processing
hardware. Convolutions account for over 90% of the CNN
operations and dominates runtime [10]. Although these
operations can leverage highly-parallel compute paradigms,
such as SIMD/SIMT, throughput may not scale accordingly
due to the accompanying bandwidth requirement, and the
energy consumption remains high as data movement can be
more expensive than computation [11–13]. In order to achieve
energy-efficient CNN processing without compromising
throughput, we need to develop dataflows that support parallel
processing with minimal data movement. The differences
in data movement energy cost based on where the data is
stored also needs to be accounted for. For instance, fetching
data from off-chip DRAMs costs orders of magnitude more
energy than from on-chip storage [11, 12].

Many previous papers have proposed specialized CNN
dataflows on various platforms, including GPU [14],
FPGA [15–21], and ASIC [22–26]. However, due to dif-
ferences in technology, hardware resources and system
setup, a direct comparison between different implementations
does not provide much insight into the relative energy
efficiency of different dataflows. In this paper, we evaluate
the energy efficiency of various CNN dataflows on a spatial
architecture under the same hardware resource constraints,
i.e., area, processing parallelism and technology. Based
on this evaluation, we will propose a novel dataflow that
maximizes energy efficiency for CNN acceleration.

To evaluate energy consumption, we categorize the data
movements in a spatial architecture into several levels of
hierarchy according to their energy cost, and then analyze
each dataflow to assess the data movement at each level.
This analysis framework provides insights into how each
dataflow exploits different types of data movement using
various architecture resources. It also offers a quantifiable
way to examine the differences in energy efficiency between
different dataflows.

Previously proposed dataflows typically optimize a certain
type of data movement, such as input data reuse or partial



sum accumulation. Using our analysis framework, we show
that a dataflow that exploits all types of data reuse, and takes
into account the energy cost of data movement at different
levels of the storage hierarchy, can deliver significant energy
savings. In summary, the main contributions of this work
include:
• A taxonomy that classifies existing CNN dataflows from

previous research. (Section IV)
• A spatial architecture based on a new CNN dataflow,

called row stationary, which is optimized for throughput
and energy efficiency. It works on both convolutional and
fully-connected layers, and optimizes all types of data
movement in the storage hierarchy. This dataflow has
also been demonstrated on a fabricated chip. (Section V)

• An analysis framework that can quantify the energy
efficiency of different CNN dataflows under the same
hardware constraints. It can also search for the most
energy efficient mapping for each dataflow. The analyti-
cal model uses energy/area numbers from a commercial
65nm process and all R/W numbers are exact based
on real CNN shape configurations, i.e., AlexNet. (Sec-
tion VI-C)

• For a variety of CNN dataflows, we present a compar-
ative analysis of the energy costs associated with data
movement and the impact of different types of data
reuse. (Section VII)

II. SPATIAL ARCHITECTURE

Spatial architectures (SAs) are a class of accelerators that
can exploit high compute parallelism using direct commu-
nication between an array of relatively simple processing
engines (PEs). They can be designed or programmed to
support different algorithms, which are mapped onto the PEs
using specialized dataflows. Compared with SIMD/SIMT
architectures, SAs are particularly suitable for applications
whose dataflow exhibits producer-consumer relationships or
can leverage efficient data sharing among a region of PEs.

SAs come in two flavors: coarse-grained SAs that consist of
tiled arrays of ALU-style PEs connected together via on-chip
networks [27–29], and fine-grained SAs that are usually in
the form of an FPGA. The expected performance advantage
and large design space of coarse-grained SAs has inspired
much research on the evaluation of its architectures, control
schemes, operation scheduling and dataflow models [30–35].

Coarse-grained SAs are currently a very popular imple-
mentation choice for specialized CNN accelerators for two
reasons. First, the operations in a CNN layer (e.g., convo-
lutional, fully-connected, pooling, etc. Details are described
in Section III-A) are uniform and exhibit high parallelism,
which can be computed quite naturally with parallel ALU-
style PEs. Second, direct inter-PE communication can be
used very effectively for (1) passing partial sums to achieve
spatially distributed accumulation, or (2) sharing the same
input data for parallel computation without incurring higher
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Figure 1. Block diagram of a general CNN accelerator system consisting
of a spatial architecture accelerator and an off-chip DRAM. The zoom-in
shows the high-level structure of a PE.

energy data transfers. ASIC implementations usually deploy
dozens to hundreds of PEs and specialize the PE datapath
only for CNN computation [22–26]. FPGAs are also used
to build CNN accelerators, and these designs usually use
integrated DSP slices to construct the PE datapaths [15–21].
However, the challenge in either type of design lies in the
exact mapping of the CNN dataflow to the SA, since it has
a strong implication on the resulting throughput and energy
efficiency.

Fig. 1 illustrates the high-level block diagram of the
accelerator system that is used in this paper for CNN
processing. It consists of a SA accelerator and off-chip
DRAM. The inputs can be off-loaded from the CPU or GPU
to DRAM and processed by the accelerator. The outputs are
then written back to DRAM and further interpreted by the
main processor.

The SA accelerator is primarily composed of a global
buffer and an array of PEs. The DRAM, global buffer and
PE array communicate with each other through the input
and output FIFOs (iFIFO/oFIFO). The global buffer can be
used to exploit input data reuse and hide DRAM access
latency, or for the storage of intermediate data. Currently, the
typical size of the global buffer used for CNN acceleration is
around 100–300kB. The PEs in the array are connected via a
network on chip (NoC), and the NoC design depends on the
dataflow requirements. The PE includes an ALU datapath,
which is capable of doing multiply-and-accumulate (MAC)
and addition, a register file (RF) as a local scratchpad, and
a PE FIFO (pFIFO) used to control the traffic going in and
out of the ALU. Different dataflows require a wide range of
RF sizes, ranging from zero to a few hundred bytes. Typical
RF size is below 1kB per PE. Overall, the system provides
four levels of storage hierarchy for data accesses, including
DRAM, global buffer, array (inter-PE communication) and
RF. Accessing data from a different level also implies a
different energy cost, with the highest cost at DRAM and
the lowest cost at RF.



III. CNN BACKGROUND

A. The Basics

A convolutional neural network (CNN) is constructed by
stacking multiple computation layers as a directed acyclic
graph [36]. Through the computation of each layer, a higher-
level abstraction of the input data, called a feature map (fmap),
is extracted to preserve essential yet unique information.
Modern CNNs are able to achieve superior performance by
employing a very deep hierarchy of layers.

The primary computation of CNN is in the convolutional
(CONV) layers, which perform high-dimensional convolu-
tions. From five [2] to even several hundred [5] CONV
layers are commonly used in recent CNN models. A CONV
layer applies filters on the input fmaps (ifmaps) to extract
embedded visual characteristics and generate the output
fmaps (ofmaps). The dimensions of both filters and fmaps
are 4D: each filter or fmap is a 3D structure consisting of
multiple 2D planes, i.e., channels, and a batch of 3D ifmaps
is processed by a group of 3D filters in a CONV layer. In
addition, there is a 1D bias that is added to the filtering results.
Given the shape parameters in Table I, the computation of a
CONV layer is defined as

O[z][u][x][y] = B[u]+
C−1

∑
k=0

R−1

∑
i=0

R−1

∑
j=0

I[z][k][Ux+ i][Uy+ j]×W[u][k][i][ j],

0≤ z < N,0≤ u < M,0≤ x,y < E,E = (H−R+U)/U.
(1)

O, I, W and B are the matrices of the ofmaps, ifmaps, filters
and biases, respectively. U is a given stride size. Fig. 2 shows
a visualization of this computation (ignoring biases).

A small number, e.g., 3, of fully-connected (FC) layers are
typically stacked behind the CONV layers for classification
purposes. A FC layer also applies filters on the ifmaps as
in the CONV layers, but the filters are of the same size as
the ifmaps. Therefore, it does not have the weight sharing
property as in CONV layers. Eq. (1) still holds for the
computation of FC layers with a few additional constraints
on the shape parameters: H = R, E = 1, and U = 1. In
between CONV and FC layers, additional layers can be added
optionally, such as the pooling (POOL) and normalization
(NORM) layers. Each of the CONV and FC layers is also
immediately followed by an activation (ACT) layer, such as
a rectified linear unit [37].

B. Challenges in CNN Processing

In most of the widely used CNNs, such as AlexNet [2]
and VGG16 [3], CONV layers account for over 90% of
the overall operations and generate a large amount of data
movement. Therefore, they have a significant impact on the
throughput and energy efficiency of CNNs. Even though
FC layers use most of the filter weights, a recent study has
demonstrated that these weights are largely compressible to
1–5% of their original size [38], which greatly reduces the

Shape Parameter Description
N batch size of 3D fmaps
M # of 3D filters / # of ofmap channels
C # of ifmap/filter channels
H ifmap plane width/height
R filter plane width/height (= H in FC)
E ofmap plane width/height (= 1 in FC)

Table I
SHAPE PARAMETERS OF A CONV/FC LAYER.
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Figure 2. Computation of a CONV/FC layer.

impact of FC layers. Processing of POOL layers can share
the same compute scheme used for CONV layers since its
computation is a degenerate form of Eq. (1), where the MAC
is replaced with a MAX operation. Computation of ACT
layers is trivial, and we believe support for the NORM layer
can be omitted due to its reduced usage in recent CNNs [3, 5].

Processing of the CONV and FC layers poses two
challenges: data handling and adaptive processing. The detail
of each is described below.

Data Handling: Although the MAC operations in Eq. (1)
can run at high parallelism, which greatly benefits throughput,
it also creates two issues. First, naı̈vely reading inputs for
all MACs directly from DRAM requires high bandwidth and
incurs high energy consumption. Second, a significant amount
of intermediate data, i.e., partial sums (psums), are generated
by the parallel MACs simultaneously, which poses storage
pressure and consumes additional memory R/W energy if
not processed, i.e., accumulated, immediately.

Fortunately, the first issue can be alleviated by exploiting
different types of input data reuse:

• convolutional reuse: Due to the weight sharing property
in CONV layers, a small amount of unique input data
can be shared across many operations. Each filter weight
is reused E2 times in the same ifmap plane, and each
ifmap pixel, i.e., activation, is usually reused R2 times
in the same filter plane. FC layers, however, do not have
this type of data reuse.



Layer H1 R E C M U
CONV1 227 11 55 3 96 4
CONV2 31 5 27 48 256 1
CONV3 15 3 13 256 384 1
CONV4 15 3 13 192 384 1
CONV5 15 3 13 192 256 1

FC1 6 6 1 256 4096 1
FC2 1 1 1 4096 4096 1
FC3 1 1 1 4096 1000 1

1 This is the padded size

Table II
CONV/FC LAYER SHAPE CONFIGURATIONS IN ALEXNET [39].

• filter reuse: Each filter weight is further reused across
the batch of N ifmaps in both CONV and FC layers.

• ifmap reuse: Each ifmap pixel is further reused across
M filters (to generate the M output channels) in both
CONV and FC layers.

The second issue can be handled by proper operation
scheduling so that the generated psums can be reduced as
soon as possible to save both the storage space and memory
R/W energy. CR2 psums are reduced into one ofmap pixel.

Unfortunately, maximum input data reuse cannot be
achieved simultaneously with immediate psum reduction,
since the psums generated by MACs using the same filter
or ifmap value are not reducible. In order to achieve
high throughput and energy efficiency, the underlying CNN
dataflow needs to account for both input data reuse and psum
accumulation scheduling at the same time.
Adaptive Processing: The many shape parameters shown
in Table I gives rise to many possible CONV/FC layer
shapes. Even within the same CNN model, each layer can
have distinct shape configurations. Table II shows the shape
configurations of AlexNet as an example. The hardware
architecture, therefore, cannot be hardwired to process only
certain shapes. Instead, the dataflow must be efficient for
different shapes, and the hardware architecture must be
programmable to dynamically map to an efficient dataflow.

C. CNN vs. Image Processing
Before CNNs became mainstream, there was already

research on high-efficiency convolution due to its wide
applicability in image signal processing (ISP) [40]. Many
high-throughput ISP techniques have also been proposed
for handling convolutions, including tiling strategies used in
multiprocessors and SIMD instructions. However, they are
not directly applicable for CNN processing for two reasons:
• The filter weights in CNNs are obtained through training

instead of fixed in the processing system. Therefore,
they can consume significant I/O bandwidth and on-
chip storage, sometimes comparable to that of ifmaps.

• The ISP techniques are developed mainly for 2D
convolutions. They do not optimize processing resources
for data reuse nor do they address the non-trivial psum
accumulation in the 4D convolutions of CNN.

IV. EXISTING CNN DATAFLOWS

Numerous previous efforts [15–26] have proposed solu-
tions for CNN acceleration, but it is difficult to compare their
performance directly due to differences in implementation
and design choices. In this section, we present a taxonomy
of these existing CNN dataflows based on their data handling
characteristics. Following are descriptions of these dataflows,
which are summarized in Table III.

A. Weight Stationary (WS) Dataflow

Definition: Each filter weight remains stationary in the RF to
maximize convolutional reuse and filter reuse. Once a weight
is fetched from DRAM to the RF of a PE, the PE runs
through all NE2 operations that use the same filter weight.
Processing: R×R weights from the same filter and channel
are laid out to a region of R×R PEs and stay stationary. Each
pixel in an ifmap plane from the same channel is broadcast
to the same R×R PEs sequentially, and the psums generated
by each PE are further accumulated spatially across these
PEs. Multiple planes of R×R weights from different filters
and/or channels can be deployed either across multiple R×R
PEs in the array or onto the same R×R PEs.
Hardware Usage: The RF is used to store the stationary
filter weights. Due to the operation scheduling that maximally
reuses stationary weights, psums are not always immediately
reducible, and will be temporarily stored to the global buffer.
If the buffer is not large enough, the number of psums that
are generated together has to be limited, and therefore limits
the number of filters that can be loaded on-chip at a time.
Examples: Variants of the WS dataflow appear in [15–17,
19, 25, 26].

B. Output Stationary (OS) Dataflow

Definition: The accumulation of each ofmap pixel stays
stationary in a PE. The psums are stored in the same RF for
accumulation to minimize the psum accumulation cost.
Processing: This type of dataflow uses the space of the PE
array to process a region of the 4D ofmap at a time. To
select a region out of the high-dimensional space, there are
two choices to make: (1) multiple ofmap channels (MOC) vs.
single ofmap channels (SOC), and (2) multiple ofmap-plane
pixels (MOP) vs. single ofmap-plane pixels (SOP). This
creates three practical OS dataflow subcategories: SOC-MOP,
MOC-MOP, and MOC-SOP.
• SOC-MOP is used mainly for CONV layers, and focuses

on processing a single plane of ofmap at a time. It
further maximizes convolutional reuse in addition to
psum accumulation.

• MOC-MOP processes multiple ofmap planes with mul-
tiple pixels in the same plane at a time. By doing so,
it tries to further exploit both convolutional reuse and
ifmap reuse.

• MOC-SOP is used mainly for FC layers, since it
processes multiple ofmap channels but with only one
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Figure 3. Comparison of the three different OS dataflow variants: (a)
SOC-MOP, (b) MOC-MOP, and (c) MOC-SOP. The red blocks depict the
ofmap region that the OS dataflow variants process at once.

pixel in a channel at a time. It focuses on further
exploiting ifmap reuse.

The difference between the three OS dataflows is illustrated
in Fig. 3. All additional input data reuse is exploited at the
array level, i.e., inter-PE communication. The RF level only
handles psum accumulation.
Hardware Usage: All OS dataflows use the RF for psum
storage to achieve stationary accumulation. In addition, SOC-
MOP and MOC-MOP require additional RF storage for ifmap
buffering to exploit convolutional reuse within the PE array.
Examples: A variant of MOC-MOP dataflow appears in [20],
and variants of SOC-MOP and MOC-SOP dataflows appear
in [23] and [18]. Note that the MOC-MOP variant in [20]
does not exploit convolutional data reuse since it simply
treats the convolutions as a matrix multiplication.

C. No Local Reuse (NLR) Dataflow

Definition: The NLR dataflow has two major characteristics:
(1) it does not exploit data reuse at the RF level, and (2)
it uses inter-PE communication for ifmap reuse and psum
accumulation.
Processing: NLR divides the PE array into groups of PEs.
PEs within the same group read the same ifmap pixel but with
different filter weights from the same input channel. Different
PE groups read ifmap pixels and filter weights from different
input channels. The generated psums are accumulated across
PE groups in the whole array.
Hardware Usage: There is no RF storage required by the
NLR dataflow. Since the PE array is simply composed of
ALU datapaths, it leaves a large area for the global buffer,
which is used to store psums as well as input data for reuse.
Examples: Variants of the NLR dataflow appear in [21, 22,
24]. In [22], special registers are implemented at the end of
each PE array column to hold the psums, which reduces the
number of global buffer R/W for psums.

V. ENERGY-EFFICIENT DATAFLOW: ROW STATIONARY

While existing dataflows attempt to maximize certain types
of input data reuse or minimize the psum accumulation cost,
they fail to take all of them into account at once. This results
in inefficiency when the layer shape or hardware resources
vary. Therefore, it would be desirable if the dataflow could

Dataflow Data Handling

WS Maximize convolutional reuse and filter reuse of
weights in the RF.

SOC-MOP OS Maximize psum accumulation in RF.
Convolutional reuse in array.

MOC-MOP OS Maximize psum accumulation in RF.
Convolutional reuse and ifmap reuse in array.

MOC-SOP OS Maximize psum accumulation in RF. Ifmap
reuse in array.

NLR Psum accumulation and ifmap reuse in array.

Table III
DATA HANDLING COMPARISON BETWEEN EXISTING DATAFLOWS.

 PE Array Buffer 

4000 µm 

4000 µm
 

Process 65nm CMOS
# of PEs 168

RF Size/PE 0.5 kB
Buffer Size 108 kB
Clock Rate 200 MHz

Precision 16-bit Fixed-Point

Figure 4. Die photo and spec of the Eyeriss chip [41].

adapt to different conditions and optimize for all types of data
movement energy costs. In this section, we will introduce
a novel dataflow, called row stationary (RS) that achieves
this goal. The RS dataflow is a key feature of the Eyeriss
architecture, which has been implemented in a fabricated
chip [41] (Fig. 4), and whose functionality has been verified
using AlexNet.

A. 1D Convolution Primitives

The implementation of the RS dataflow in Eyeriss is
inspired by the idea of applying a strip mining technique
in a spatial architecture [42]. It breaks the high-dimensional
convolution down into 1D convolution primitives that can
run in parallel; each primitive operates on one row of filter
weights and one row of ifmap pixels, and generates one
row of psums. Psums from different primitives are further
accumulated together to generate the ofmap pixels. The inputs
to the 1D convolution come from the storage hierarchy, e.g.,
the global buffer or DRAM.

Each primitive is mapped to one PE for processing;
therefore, the computation of each row pair stays stationary
in the PE, which creates convolutional reuse of filter weights
and ifmap pixels at the RF level. An example of this sliding
window processing is shown in Fig. 5. However, since the
entire convolution usually contains hundreds of thousands of
primitives, the exact mapping of all primitives to the PE array
is non-trivial, and will greatly affect the energy efficiency.
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Figure 5. Processing of an 1D convolution primitive in the PE. In this
example, R = 3 and H = 5.

B. Two-Step Primitive Mapping

To solve this problem, the primitive mapping is separated
into two steps: logical mapping and physical mapping. The
logical mapping first deploys the primitives into a logical
PE array, which has the same size as the number of 1D
convolution primitives and is usually much larger than the
physical PE array in hardware. The physical mapping then
folds the logical PE array so it fits into the physical PE
array. Folding implies serializing the computation, and is
determined by the amount of on-chip storage, including
both the global buffer and local RF. The two mapping steps
happen statically prior to runtime, so no on-line computation
is required.
Logical Mapping: Each 1D primitive is first mapped to
one logical PE in the logical PE array. Since there is
considerable spatial locality between the PEs that compute
a 2D convolution in the logical PE array, we group them
together as a logical PE set. Fig. 6 shows a logical PE set,
where each filter row and ifmap row are horizontally and
diagonally reused, respectively, and each row of psums is
vertically accumulated. The height and width of a logical PE
set are determined by the filter height (R) and ofmap height
(E), respectively. Since the number of 2D convolutions in a
CONV layer is equal to the product of number of ifmap/filter
channels (C), number of filters (M) and fmap batch size (N),
the logical PE array requires N×M×C logical PE sets to
complete the processing of an entire CONV layer.
Physical Mapping: Folding means mapping and then run-
ning multiple 1D convolution primitives from different logical
PEs on the same physical PE. In the RS dataflow, folding is
done at the granularity of logical PE sets for two reasons.
First, it preserves intra-set convolutional reuse and psum
accumulation at the array level (inter-PE communication)
as shown in Fig. 6. Second, there exists more data reuse
and psum accumulation opportunities across the N×M×C
sets: the same filter weights can be shared across N sets
(filter reuse), the same ifmap pixels can be shared across M
sets (ifmap reuse), and the psums across each C sets can
be accumulated together. Folding multiple logical PEs from
the same position of different sets onto a single physical PE
exploits input data reuse and psum accumulation at the RF
level; the corresponding 1D convolution primitives run on the

same physical PE in an interleaved fashion. Mapping multiple
sets spatially across the physical PE array also exploits those
opportunities at the array level. The exact amount of logical
PE sets to fold and to map spatially at each of the three
dimensions, i.e., N, M, and C, are determined by the RF size
and physical PE array size, respectively. It then becomes an
optimization problem to determine the best folding by using
the framework in Section VI-C to evaluate the results.

After the first phase of folding as discussed above, the
physical PE array can process a number of logical PE sets,
called a processing pass. However, a processing pass still
may not complete the processing of all sets in the CONV
layer. Therefore, a second phase of folding, which is at
the granularity of processing passes, is required. Different
processing passes run sequentially on the entire physical PE
array. The global buffer is used to further exploit input data
reuse and store psums across passes. The optimal amount
of second phase folding is determined by the global buffer
size, and also requires an optimization using the analysis
framework.

C. Energy-Efficient Data Handling

To maximize energy efficiency, the RS dataflow is built
to optimize all types of data movement by maximizing the
usage of the storage hierarchy, starting from the low-cost
RF to the higher-cost array and global buffer. The way each
level handles data is described as follows.

RF: By running multiple 1D convolution primitives in a PE
after the first phase folding, the RF is used to exploit all
types of data movements. Specifically, there are convolutional
reuse within the computation of each primitive, filter reuse
and ifmap reuse due to input data sharing between folded
primitives, and psum accumulation within each primitive and
across primitives.

Array (inter-PE communication): Convolutional reuse
exists within each set and is completely exhausted up to
this level. Filter reuse and ifmap reuse can be achieved by
having multiple sets mapped spatially across the physical PE
array. Psum accumulation is done within each set as well as
across sets that are mapped spatially.

Global Buffer: Depending on its size, the global buffer is
used to exploit the rest of filter reuse, ifmap reuse and psum
accumulation that remain from the RF and array levels after
the second phase folding.

D. Support for Different Layer Types

While the RS dataflow is designed for the processing of
high-dimensional convolutions in the CONV layers, it can
also support two other layer types naturally:

FC Layer: The computation of FC layers is the same as
CONV layers, but without convolutional data reuse. Since the
RS dataflow exploits all types of data movement, it can still
adapt the hardware resources to cover filter reuse, ifmap reuse
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Figure 6. The dataflow in a logical PE set to process a 2D convolution. (a) rows of filter weight are reused across PEs horizontally. (b) rows of ifmap
pixel are reused across PEs diagonally. (c) rows of psum are accumulated across PEs vertically. In this example, R = 3 and H = 5.

and psum accumulation at each level of the storage hierarchy.
There is no need to switch between different dataflows as in
the case between SOC-MOP and MOC-SOP OS dataflows.

POOL Layer: By swapping the MAC computation with a
MAX comparison function in the ALU of each PE, the RS
dataflow can also process POOL layers by assuming N = M
= C = 1 and running each fmap plane separately.

E. Other Architectural Features

In the Eyeriss architecture, the dataflow in Fig. 6 is handled
using separate NoCs for the three data types: global multi-
cast NoCs for the ifmaps and filters, and a local PE-to-PE
NoC for the psums. The architecture can also exploit sparsity
by (1) only performing data reads and MACs on non-zero
values and (2) compressing the data to reduce data movement.
Details on these techniques are described in [41]. This brings
additional energy savings on top of the efficient dataflow
presented in this paper.

VI. EXPERIMENTAL METHODOLOGY

A. Dataflow Implementation

A simulation model of each dataflow is implemented for
the energy efficiency analysis using our proposed framework
(Section VI-C). For the RS dataflow, we have implemented
the model as described in Section V and it is verified by the
measurement results of the Eyeriss chip. For each of the exist-
ing dataflows, however, different variants are demonstrated in
previous designs. Therefore, our implementations of existing
dataflows try to find the common ground that represents their
key characteristics, and is described as follows:

Weight Stationary: Each PE holds a single weight in the
RF at a time. The psum generated in a PE at each cycle is
either passed to its neighbor PE or stored back to the global
buffer, and the PE array operates as a systolic array with
little local control. This also leaves a large area for the global
buffer, which is crucial to the operation of WS dataflow.

Output Stationary: Each PE runs the psum accumulation
of a single ofmap pixel at a time. We also model the MOC-
MOP OS dataflow to capture convolutional reuse in the PE
array, which exploits more reuse compared with the plain

matrix multiplication implementation in [20]. Unlike SOC-
MOP, which dedicates the PE array for 2D convolutional
reuse, the MOC-MOP model uses the PE array for both 1D
convolutional reuse and ifmap reuse.
No Local Reuse: The PE array consists of only ALU
datapaths with no local storage. All types of data, including
ifmaps, filters and psums, are stored in the global buffer.

B. Setup for Dataflow Comparison

To compare the performance of different dataflows, the
constraints of a fixed total hardware area and the same
processing parallelism are imposed, i.e., all dataflows are
given the same number of PEs with the same storage area,
which includes the global buffer and RF. Based on the
storage requirement of each dataflow, the storage area can
be divided up differently between the global buffer and RF
across dataflows. For example, RS can use a larger RF for
better data reuse, but NLR does not require a RF at all.

In our simulations, a baseline storage area for a given
number of PEs is calculated as

#PE×Area(512B RF)+Area((#PE×512B) global buffer). (2)

For instance, with 256 PEs, the baseline storage area for
all dataflows is calculated from the setup with 512B RF/PE
and an 128kB global buffer. This baseline storage area is
then used to calculate the size of the global buffer and RF in
bytes for each dataflow. The total on-chip storage size will
then differ between dataflows because the area cost per byte
depends on the size and type of memory used as shown in
Fig. 7a. In general, the area cost per byte in the RF is higher
than the global buffer due to its smaller size, and thus the
dataflows requiring a larger RF will have a smaller overall
on-chip storage size. Fig. 7b shows the on-chip storage sizes
of all dataflows under a 256-PE SA. We fix the RF size
in RS dataflow at 512B since it shows the lowest energy
consumption using the analysis described in Section VI-C.
The difference in total on-chip storage size can go up to
80kB. For the global buffer alone, the size difference is up
to 2.6×. This difference in storage size will be considered
when we discuss the results in Section VII.

The accelerator throughput is assumed to be proportional to
the number of active PEs for a dataflow. Although throughput
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Figure 7. The trade-off between storage area allocation and the total storage
size. (a) A smaller memory have a higher cost on area utilization. (b) Due to
the area allocation between global buffer and RF, the total on-chip storage
size varies between dataflows.

is also a function of data movement, since it adds latency
when there is limited storage bandwidth, there are many
existing techniques commonly used to compensate for the
impact, such as prefetching, double buffering, caching and
pipelining. For CNN acceleration, these techniques are quite
effective at hiding latency. Therefore, data movement is not
expected to impact overall throughput significantly.

C. Framework for Energy Efficiency Analysis

The way each MAC operation in Eq. (1) fetches inputs
(filter weight and ifmap pixel) and accumulates psums
introduces different energy costs due to two factors:
• how the dataflow exploits input data reuse and psum

accumulation scheduling as described in Section III-B.
• fetching data from different storage elements in the

architecture have different energy costs.
The goal of an energy-efficient CNN dataflow is then to
perform most data accesses using the data movement paths
with lower energy cost. This is an optimization process that
takes all data accesses into account, and will be affected by
the layer shape and available hardware resources.

In this section, we will describe a framework that can
be used as a tool to optimize the dataflows for spatial
architectures. Specifically, it defines the energy cost for each
level of the storage hierarchy in the architecture. Then, it
provides a simple methodology to incorporate any given
dataflow into an analysis using this hierarchy to quantify the
overall data movement energy cost. This allows for a search
for the optimal mapping for a dataflow that results in the best
energy efficiency for a given CNN layer shape. For example,
it describes the folding of the logical PEs onto physical PEs.
For all of the dataflows, this takes into account folding in
each of the three dimensions, i.e., number of filters, images
and/or channels. It optimizes to maximize reuse of data in
the RF, array and global buffer.
Data Movement Hierarchy: As defined in Section II, the SA
accelerator provides four levels of storage hierarchy. Sorting
their energy cost for data accesses from high to low, it in-
cludes DRAM, global buffer, array (inter-PE communication)
and RF. Fetching data from a higher-cost level to the ALU

DRAM Global Buffer Array (inter-PE) RF
(>100kB) (1-2mm) (0.5kB)

Norm. 200× 6× 2× 1×Energy

Table IV
NORMALIZED ENERGY COST RELATIVE TO A MAC OPERATION

EXTRACTED FROM A COMMERCIAL 65NM PROCESS.

incurs higher energy consumption. Also, the energy cost of
moving data between any of the two levels is dominated by
the one with higher cost. Similar to the energy consumption
quantification in previous experiments [11, 12, 43], Table IV
shows the energy cost of accessing each level relative to a
MAC operation under the listed conditions. The numbers are
extracted from a commercial 65nm process. The DRAM and
global buffer energy costs aggregate the energy of accessing
the storage and the iFIFO/oFIFO; the array energy cost
includes the energy of accessing the iFIFO/oFIFO/pFIFO
on both sides of the path as well as the cost from wiring
capacitance.

Analysis Methodology: Given a dataflow, the analysis is
formulated in two parts: (1) the input data access energy cost,
including filters and ifmaps, and (2) the psum accumulation
energy cost. The energy costs are quantified through counting
the number of accesses to each level of the previously defined
hierarchy, and weighting the accesses at each level with a
cost from Table IV. The overall data movement energy of a
dataflow is obtained through combining the results from the
two types of input data and the psums.

1) Input Data Access Energy Cost: If an input data value
is reused for many operations, ideally the value is moved
from DRAM to RF once, and the ALU reads it from the RF
many times. However, due to limited storage and operation
scheduling, the data is often kicked out of the RF before
exhausting reuse. The ALU then needs to fetch the same
data again from a higher-cost level to the RF. Following this
pattern, data reuse can be split across the four levels. Reuse
at each level is defined as the number of times each data
value is read from this level to its lower-cost levels during its
lifetime. Suppose the total number of reuses for a data value
is a×b× c×d, it can be split into reuses at DRAM, global
buffer, array and RF for a, b, c, and d times, respectively. An
example is shown in Fig. 8, in which case the total number
of reuse, 24, is split into a = 1, b = 2, c = 3 and d = 4. The
energy cost estimation for this reuse pattern is:

a×EC(DRAM)+ab×EC(global buffer)+
abc×EC(array)+abcd×EC(RF),

(3)

where EC(·) is the energy cost from Table IV. 1

2) Psum Accumulation Energy Cost: Psums travel be-
tween ALUs for accumulation through the 4-level hierarchy.

1Optimization can be applied to Eq. (3) when there is no reuse opportunity.
For instance, if d = 1, the data is transferred directly from a higher level to
the ALU and bypasses the RF, and the last term in Eq. (3) can be dropped.
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In the ideal case, each generated psum is stored in a local
RF for further accumulation. However, this is often not
achievable due to the overall operation scheduling, in which
case the psums have to be stored to a higher-cost level and
read back again afterwards. Therefore, the total number of
accumulations, a×b×c×d, can also be split across the four
levels. The number of accumulation at each level is defined
as the number of times each data goes in and out of its
lower-cost levels during its lifetime. An example is shown
in Fig. 9, in which case the total number of accumulations,
36, is split into a = 2, b = 3, c = 3 and d = 2. The energy
cost can then be estimated as

(2a−1)×EC(DRAM)+2a(b−1)×EC(global buffer)+
ab(c−1)×EC(array)+2abc(d−1)×EC(RF).

(4)

The factor of 2 accounts for both reads and writes. Note
that in this calculation the accumulation of the bias term is
ignored, as it has negligible impact on overall energy.

3) Obtaining the Parameters: For each dataflow, there
exists a set of parameters (a, b, c, d) for each of the three
data types, i.e., ifmap, filter and psum, that describes the
optimal mapping in terms of energy efficiency under a given
CNN layer shape. It is obtained through an optimization
process with objective functions defined in Eq. (3) and (4).
The optimization is constrained by the hardware resources,
including the size of the global buffer, RF and PE array.

D. Dataflow Modeling Side Note

While we charge the same energy cost at each level of the
storage hierarchy across all dataflows, the real cost varies
due to the actual implementation required by each dataflow.
For example, a larger global buffer should be charged with
a higher energy cost, which is the case for all dataflows
other than RS. At array level, short-distance transfers, such
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as communicating with a neighbor PE, should be charged
a lower energy cost than longer-distance transfers, such as
broadcast or direct global buffer accesses from all PEs, due
to smaller wiring capacitance and simpler NoC design. In
this case, WS, OSA, OSC and NLR might see a bigger
impact since they all have long-distance array transfers. At
the RF level, a smaller RF should be charged with less energy
cost. Except for RS and OSA, the other dataflows will see
a reduction in RF access energy. Overall, however, we find
our results to be conservative for RS compared to the other
dataflows.

VII. EXPERIMENT RESULTS

We simulate the RS dataflow and compare its performance
with our implementation of existing dataflows (Section VI-A)
under the same hardware area and processing parallelism
constraints. The mapping for each dataflow is optimized
by our framework (Section VI-C) for the highest energy
efficiency. AlexNet [2] is used as the CNN model for
benchmarking due to its high popularity. Its 5 CONV and
3 FC layers also provide a wide range of shapes that are
suitable for testing the adaptability of different dataflows.
The simulations assume 16 bits per word, and the result
aggregates data from all CONV or FC layers in AlexNet. To
save space, the SOC-MOP, MOC-MOP and MOC-SOP OS
dataflows are renamed as OSA, OSB and OSC, respectively.
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Figure 10. Energy consumption breakdown of RS dataflow in AlexNet.

A. RS Dataflow Energy Consumption

The RS dataflow is simulated with the following setup:
(1) 256 PEs, (2) 512B RF per PE, and (3) 128kB global
buffer. Batch size is fixed at 16. Fig. 10 shows the energy
breakdown across the storage hierarchy in the 5 CONV and
3 FC layers of AlexNet. The energy is normalized to one
ALU operation, i.e., a MAC.

The two types of layers show distinct energy distributions.
On one hand, the energy consumption of CONV layers
is dominated by RF accesses, which shows that RS fully
exploits different types of data movement in the local RF
and minimizes accesses to storage levels with higher cost.
This distribution is verified by our Eyeriss chip measurement
results where the ratio of energy consumed in the RF to the
rest (except DRAM) is also roughly 4:1. On the other hand,
DRAM accesses dominate the energy consumption of FC
layers due to the lack of convolutional data reuse. Overall,
however, CONV layers still consume approximately 80% of
total energy in AlexNet, and the percentage is expected to go
even higher in modern CNNs that have more CONV layers.

B. Dataflow Comparison in CONV Layers

We compare the RS dataflow with existing dataflows in
(1) DRAM accesses, (2) energy consumption and (3) energy-
delay product (EDP) using the CONV layers of AlexNet.
Different hardware resources (256, 512 and 1024 PEs) and
batch sizes (N = 1, 16 and 64) are simulated to further
examine the scalability of these dataflows.

DRAM Accesses: DRAM accesses are expected to have a
strong impact on the overall energy efficiency since their
energy cost is orders of magnitude higher than other on-chip
data movements. Fig. 11 shows the average DRAM accesses
per operation of the 6 dataflows. DRAM writes are the same
across all dataflows since we assume the accelerator writes
only ofmaps but no psums back to DRAM. In this scenario,
RS, OSA, OSB and NLR have significantly lower DRAM
accesses than WS and OSC, which means the former achieve
more data reuse on-chip than the latter. Considering RS has
much less on-chip storage compared to others, it shows the
importance of co-designing the architecture and dataflow.

In fact, RS can achieve the best energy efficiency when
taking the entire storage hierarchy into account instead of
just DRAM accesses (see Energy Consumption section).

The WS dataflow is optimized for maximizing weight reuse.
However, it sacrifices ifmap reuse due to the limited number
of filters that can be loaded on-chip at a time, which leads to
high DRAM accesses. The number of filters is limited by (1)
insufficient global buffer size for psum storage, and (2) size
of PE array. In fact, Fig. 11a shows a case where WS cannot
even operate due to the global buffer being too small for a
batch size of 64. OSC also has high DRAM accesses since
it does not exploit convolutional reuse of ifmaps on-chip.

In terms of architectural scalability, all dataflows can use
the larger hardware area and higher parallelism to reduce
DRAM accesses. The benefit is most significant on WS and
OSC, which also means that they are more demanding on
hardware resources. For batch size scalability, increasing N
from 1 to 16 reduces DRAM accesses for all dataflows since
it gives more filter reuse, but saturates afterwards. The only
exception is WS, which cannot handle large batch sizes well
due to the psum storage issue.
Energy Consumption: Fig. 12 shows the normalized energy
consumption per operation of the 6 dataflows. Overall, RS
is 1.4× to 2.5× more energy efficient than other dataflows.
Although OSA, OSB and NLR have similar or even lower
DRAM accesses compared with RS, RS still consumes
lower total energy by fully exploiting the lowest-cost data
movement at the RF for all data types. The OS and WS
dataflows use the RF only for psum accumulation and weight
reuse, respectively, and therefore spend a significant amount
of energy in the array for other data types. NLR does not use
the RF at all. Most of its data accesses come from the global
buffer directly, which results in high energy consumption.

Fig. 12d shows the same energy result at a PE array size
of 1024 but with energy breakdown by data type. The results
for other PE array sizes show a similar trend. While the WS
and OS dataflows are most energy efficient at weight and
psum accesses, respectively, they sacrifice the reuse of other
data types: WS is inefficient at ifmap reuse, and the OS
dataflows cannot reuse ifmaps and weights as efficiently as
RS since they focus on generating psums that are reducible.
NLR does not exploit any type of reuse of weights in the PE
array, and therefore consumes most of its energy for weight
accesses. RS is the only dataflow that optimizes energy for
all data types simultaneously.

When scaling up the hardware area and processing
parallelism, the energy consumption per operation roughly
stays the same across all dataflows except for WS, which
sees a decrease in energy due to the larger global buffer size.
Increasing batch size helps to reduce energy per operation
similar to the trend shown in the case of DRAM accesses.
The energy consumption of OSC, in particular, improves
significantly with batch sizes larger than 1, since there is no
reuse of weights at RF and array levels when batch size is 1.
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Figure 11. Average DRAM accesses per operation of the six dataflows in CONV layers of AlexNet under PE array size of (a) 256, (b) 512 and (c) 1024.
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Figure 12. Energy consumption of the six dataflows in CONV layers of AlexNet under PE array size of (a) 256, (b) 512 and (c) 1024. (d) is the same as
(c) but with energy breakdown in data types. The energy is normalized to that of RS at array size of 256 and batch size of 1. The RS dataflow is 1.4× to
2.5× more energy efficient than other dataflows.

Energy-Delay Product: Energy-delay product is used to
verify that a dataflow does not achieve high energy efficiency
by sacrificing processing parallelism, i.e., throughput. Fig. 13
shows the normalized EDP of the 6 dataflows. The delay
is calculated as the reciprocal of number of active PEs. A
dataflow may not utilize all available PEs due to the shape
quantization effects and mapping constraints. For example,
when batch size is 1, the maximum number of active PEs in
OSA and OSC are the size of 2D ofmap plane (E2) and the
number of ofmap channels (M), respectively. Compared with
the other dataflows, RS has the lowest EDP since its mapping
of 1D convolution primitives efficiently utilizes available PEs.
OSA and OSC show high EDP at batch size of 1 due to its
low PE utilization, especially at larger array sizes.

C. Dataflow Comparison in FC Layers

We run the same experiments as in Section VII-B but with
the FC layers of AlexNet. Fig. 14 shows the results of 6
dataflows under a PE array size of 1024. The results for other
PE array sizes show the same trend. The batch size now starts
from 16 since there is little data reuse with a batch size of 1,
in which case the energy consumptions of all dataflows
are dominated by DRAM accesses for weights and are
approximately the same. The DRAM accesses, however, can
be reduced by techniques such as pruning and quantization
of the values [38].

Compared with existing dataflows, the RS dataflow has
the lowest DRAM accesses, energy consumption and EDP
in the FC layers. Even though increasing batch size helps to
improve energy efficiency of all dataflows due to more filter

reuse, the gap between RS and the WS/OS dataflows becomes
even larger since the energy of the latter are dominated by
ifmap accesses. In fact, OSA runs FC layers very poorly
because its mapping requires ifmap pixels from the same
spatial plane, while the spatial size of FC layers is usually
very small. Overall, the RS dataflow is at least 1.3× more
energy efficient than other dataflows at a batch size of 16,
and can be up to 2.8× more energy efficient at a batch size
of 256.

D. Hardware Resource Allocation for RS

For the RS dataflow, we further experiment changing the
hardware resource allocation between processing and storage
under a fixed area. This is to determine its impact on energy
efficiency and throughput. The fixed area is based on the
setup using 256 PEs with the baseline storage area as defined
in Eq. (2). We sweep the number of PEs from 32 to 288 and
adjust the size of RF and global buffer to find the lowest
energy cost in CONV layers of AlexNet for each setup.

Fig. 15 shows the normalized energy and processing
delay of different resource allocations. First, although the
throughput increases by more than 10× by increasing the
number of PEs, the energy cost only increases by 13%. This
is because a larger PE array also creates more data reuse
opportunities. Second, the trade-off between throughput and
energy is not monotonic. The energy cost becomes higher
when the PE array size is too small due to (1) there is
little data reuse in the PE array, and (2) the global buffer is
already large enough that increasing the buffer size does not
contribute much to data reuse.
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Figure 13. Energy-delay product (EDP) of the six dataflows in CONV layers of AlexNet under PE array size of (a) 256, (b) 512 and (c) 1024. It is
normalized to the EDP of RS at PE array size of 256 and batch size of 1.
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Figure 14. (a) average DRAM accesses per operation, energy consumption with breakdown in (b) storage hierarchy and (c) data types, and (d) EDP of the
six dataflows in FC layers of AlexNet under PE array size of 1024. The energy consumption and EDP are normalized to that of RS at batch size of 1.
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VIII. CONCLUSIONS

This paper presents an analysis framework to evaluate the
energy cost of different CNN dataflows on a spatial architec-
ture. It accounts for the energy cost of different levels of the
storage hierarchy under fixed area and processing parallelism
constraints. It also can be used to search for the most energy-
efficient mapping for each dataflow. Under this framework,
a novel dataflow, called row stationary (RS), is presented
that minimizes energy consumption by maximizing input
data reuse (filters and feature maps) and minimizing partial
sum accumulation cost simultaneously, and by accounting
for the energy cost of different storage levels. Compared
with existing dataflows such as the output stationary (OS),
weight stationary (WS), and no local reuse (NLR) dataflows
using AlexNet as a benchmark, the RS dataflow is 1.4× to

2.5× more energy efficient in convolutional layers, and at
least 1.3× more energy efficient in fully-connected layers
for batch sizes of at least 16.

We also observe that DRAM bandwidth alone does
not dictate energy-efficiency; dataflows that require high
bandwidth to the on-chip global buffer can also result in
significant energy cost. For all dataflows, increasing the size
of the PE array helps to improve the processing throughput
at similar or better energy efficiency. Larger batch sizes also
result in better energy efficiency in all dataflows except for
WS, which suffers from insufficient global buffer size. Finally,
for the RS dataflow, the area allocation between processing
and storage has a limited effect on energy-efficiency, since
more PEs allow for better data reuse, which balances out the
effect of less on-chip storage.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, 2015.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
Classification with Deep Convolutional Neural Networks,” in
NIPS, 2012.

[3] K. Simonyan and A. Zisserman, “Very Deep Convolu-
tional Networks for Large-Scale Image Recognition,” CoRR,
vol. abs/1409.1556, 2014.

[4] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going Deeper
With Convolutions,” in IEEE CVPR, 2015.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning
for Image Recognition,” in IEEE CVPR, 2016.



[6] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich Feature
Hierarchies for Accurate Object Detection and Semantic
Segmentation,” in IEEE CVPR, 2014.

[7] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,
and Y. LeCun, “OverFeat: Integrated Recognition, Localiza-
tion and Detection using Convolutional Networks,” CoRR,
vol. abs/1312.6229, 2013.

[8] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva,
“Learning Deep Features for Scene Recognition using Places
Database,” in NIPS, 2014.

[9] Y. Le Cun, L. Jackel, B. Boser, J. Denker, H. Graf, I. Guyon,
D. Henderson, R. Howard, and W. Hubbard, “Handwritten
digit recognition: applications of neural network chips and
automatic learning,” IEEE Communications Magazine, vol. 27,
no. 11, 1989.

[10] J. Cong and B. Xiao, “Minimizing computation in convolu-
tional neural networks,” in ICANN, 2014.

[11] B. Dally, “Power, Programmability, and Granularity: The
Challenges of ExaScale Computing,” in IEEE IPDPS, 2011.

[12] M. Horowitz, “Computing’s energy problem (and what we
can do about it),” in IEEE ISSCC, 2014.

[13] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov,
B. C. Lee, S. Richardson, C. Kozyrakis, and M. Horowitz,
“Understanding Sources of Inefficiency in General-purpose
Chips,” in ISCA, 2010.

[14] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran,
B. Catanzaro, and E. Shelhamer, “cuDNN: Efficient Primitives
for Deep Learning,” CoRR, vol. abs/1410.0759, 2014.

[15] M. Sankaradas, V. Jakkula, S. Cadambi, S. Chakradhar,
I. Durdanovic, E. Cosatto, and H. P. Graf, “A Massively
Parallel Coprocessor for Convolutional Neural Networks,” in
IEEE ASAP, 2009.

[16] V. Sriram, D. Cox, K. H. Tsoi, and W. Luk, “Towards an
embedded biologically-inspired machine vision processor,” in
FPT, 2010.

[17] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi,
“A Dynamically Configurable Coprocessor for Convolutional
Neural Networks,” in ISCA, 2010.

[18] M. Peemen, A. A. A. Setio, B. Mesman, and H. Corporaal,
“Memory-centric accelerator design for Convolutional Neural
Networks,” in IEEE ICCD, 2013.

[19] V. Gokhale, J. Jin, A. Dundar, B. Martini, and E. Culurciello,
“A 240 G-ops/s Mobile Coprocessor for Deep Neural Net-
works,” in IEEE CVPRW, 2014.

[20] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan,
“Deep Learning with Limited Numerical Precision,” CoRR,
vol. abs/1502.02551, 2015.

[21] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong,
“Optimizing FPGA-based Accelerator Design for Deep Con-
volutional Neural Networks,” in FPGA, 2015.

[22] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and
O. Temam, “DianNao: A Small-footprint High-throughput
Accelerator for Ubiquitous Machine-learning,” in ASPLOS,
2014.

[23] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo,
X. Feng, Y. Chen, and O. Temam, “ShiDianNao: Shifting
Vision Processing Closer to the Sensor,” in ISCA, 2015.

[24] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li,
T. Chen, Z. Xu, N. Sun, and O. Temam, “DaDianNao: A
Machine-Learning Supercomputer,” in MICRO, 2014.

[25] S. Park, K. Bong, D. Shin, J. Lee, S. Choi, and H.-J. Yoo, “A
1.93TOPS/W scalable deep learning/inference processor with
tetra-parallel MIMD architecture for big-data applications,” in
IEEE ISSCC, 2015.

[26] L. Cavigelli, D. Gschwend, C. Mayer, S. Willi, B. Muheim, and
L. Benini, “Origami: A Convolutional Network Accelerator,”
in GLSVLSI, 2015.

[27] E. Mirsky and A. DeHon, “MATRIX: a reconfigurable com-
puting architecture with configurable instruction distribution
and deployable resources,” in IEEE FCCM, 1996.

[28] J. R. Hauser and J. Wawrzynek, “Garp: a MIPS processor
with a reconfigurable coprocessor,” in IEEE FCCM, 1997.

[29] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwere-
ins, “ADRES: An Architecture with Tightly Coupled VLIW
Processor and Coarse-Grained Reconfigurable Matrix,” in FPL,
2003.

[30] A. Parashar, M. Pellauer, M. Adler, B. Ahsan, N. Crago,
D. Lustig, V. Pavlov, A. Zhai, M. Gambhir, A. Jaleel,
R. Allmon, R. Rayess, S. Maresh, and J. Emer, “Triggered
Instructions: A Control Paradigm for Spatially-programmed
Architectures,” in ISCA, 2013.

[31] V. Govindaraju, C.-H. Ho, and K. Sankaralingam, “Dynami-
cally Specialized Datapaths for Energy Efficient Computing,”
in IEEE HPCA, 2011.

[32] S. Swanson, A. Schwerin, M. Mercaldi, A. Petersen, A. Put-
nam, K. Michelson, M. Oskin, and S. J. Eggers, “The
WaveScalar Architecture,” ACM TOCS, vol. 25, no. 2, 2007.

[33] H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine, and
R. Reed Taylor, “PipeRench: A virtualized programmable
datapath in 0.18 micron technology,” in IEEE CICC, 2002.

[34] D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. K.
John, C. Lin, C. R. Moore, J. Burrill, R. G. McDonald,
and W. Yoder, “Scaling to the End of Silicon with EDGE
Architectures,” Computer, vol. 37, no. 7, 2004.

[35] T. Nowatzki, V. Gangadhar, and K. Sankaralingam, “Explor-
ing the Potential of Heterogeneous Von Neumann/Dataflow
Execution Models,” in ISCA, 2015.

[36] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional
networks and applications in vision,” in IEEE ISCAS, 2010.

[37] V. Nair and G. E. Hinton, “Rectified Linear Units Improve
Restricted Boltzmann Machines,” in ICML, 2010.

[38] S. Han, H. Mao, and W. J. Dally, “Deep Compression:
Compressing Deep Neural Network with Pruning, Trained
Quantization and Huffman Coding,” in ICLR, 2016.

[39] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell, “Caffe: Convolutional
Architecture for Fast Feature Embedding,” arXiv preprint
arXiv:1408.5093, 2014.

[40] W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan,
C. Kozyrakis, and M. A. Horowitz, “Convolution Engine:
Balancing Efficiency and Flexibility in Specialized Computing,”
in ISCA, 2013.

[41] Y.-H. Chen, T. Krishna, J. Emer, and V. Sze, “Eyeriss:
An Energy-Efficient Reconfigurable Accelerator for Deep
Convolutional Neural Networks,” in IEEE ISSCC, 2016.

[42] J. J. Tithi, N. C. Crago, and J. S. Emer, “Exploiting spatial
architectures for edit distance algorithms,” IEEE ISPASS, 2014.

[43] K. T. Malladi, B. C. Lee, F. A. Nothaft, C. Kozyrakis, K. Periy-
athambi, and M. Horowitz, “Towards energy-proportional
datacenter memory with mobile dram,” in ISCA, 2012.


