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Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their
fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear
effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are
directly given in terms of color-ordered helicity amplitudes. Using this basis allows one to seamlessly
combine fixed-order helicity amplitudes at any order they are known with a resummation of higher-order
logarithmic corrections. In particular, the virtual loop amplitudes can be employed in factorization
theorems to make predictions for exclusive jet cross sections without the use of numerical subtraction
schemes to handle real-virtual infrared cancellations. We also discuss matching onto SCET in
renormalization schemes with helicities in 4- and d-dimensions. To demonstrate that our helicity operator
basis is easy to use, we provide an explicit construction of the operator basis, as well as results for the hard
matching coefficients, for pp - H + 0, 1, 2 jets, pp > W/Z/y + 0, 1, 2 jets, and pp — 2, 3 jets. These
operator bases are completely crossing symmetric, so the results can easily be applied to processes with

eTe” and e p collisions.

DOI: 10.1103/PhysRevD.93.094003

I. INTRODUCTION

The production of hadronic jets is one of the most basic
processes at particle colliders. Processes including a vector
boson (W, Z, y) or Higgs boson together with jets provide
probes of the Standard Model (SM), and are also dominant
backgrounds for many new-physics searches. Optimizing
the precision and discovery potential of these channels
requires accurate predictions of the SM backgrounds.
Furthermore, the growth of the jet substructure field has
sparked a renewed interest in the study of jets themselves,
both for an improved understanding of QCD, and for
applications to identify boosted heavy objects in and
beyond the SM.

Precise predictions for jet production require perturba-
tive calculations including both fixed-order corrections as
well as logarithmic resummation. QCD corrections to
processes with jets are typically enhanced due to phase
space restrictions. Such restrictions often introduce sensi-
tivity to low momentum scales, p, of order a few tens of
GeV, in addition to the hard scale, Q, which is of order the
partonic center-of-mass energy. In this case, the perturba-
tive series contains large double logarithms o In"(p/Q)
with m <2n. To obtain the best possible perturbative
predictions, these logarithms should be resummed to all
orders in a;.

There has been tremendous progress in the calculation of
fixed-order perturbative amplitudes in QCD using the
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spinor helicity formalism [1-4], color ordering techniques
[5-8] and unitarity-based methods [9,10]. NLO predictions
are now available for a large number of high multiplicity
final states, including pp — V+ up to 5 jets [11-21],
pp — up to 5 jets [22-29], and pp — H+ up to 3 jets
[30-38], and there are many efforts [39-56] to fully
automatize the computation of one-loop corrections to
generic helicity amplitudes.

For high-multiplicity jet events, the resummation of
large logarithms is typically achieved with parton shower
Monte Carlo programs. Here, the hard process enters
through tree-level (and also one-loop) matrix elements
and the QCD corrections due to final-state and initial-state
radiation are described by the parton shower. The parton
shower resums logarithms at the leading logarithmic (LL)
accuracy, with some subleading improvements, but it is
difficult to reliably assess and systematically improve its
logarithmic accuracy.

The approach we will take in this paper is to match onto
soft-collinear effective theory (SCET) [57-60], the effec-
tive theory describing the soft and collinear limits of QCD.
In SCET, the QCD corrections at the hard scale are captured
by process-dependent Wilson coefficients. The low-energy
QCD dynamics does not depend on the details of the hard
scattering (other than the underlying Born kinematics),
similar to the parton shower picture. Resummation in
SCET is achieved analytically through renormalization
group evolution (RGE) in the effective theory, allowing

© 2016 American Physical Society
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one to systematically improve the logarithmic accuracy and
assess the associated perturbative uncertainties. For exam-
ple, for dijet event shape variables in e e~ collisions, SCET
has enabled resummation to N>LL accuracy and global fits
for ay(my) [61-66]. The analytic higher-order resumma-
tion can also be used to improve the Monte Carlo parton-
shower description [67-69]. Furthermore, SCET allows for
the direct calculation of exclusive jet cross sections,
eliminating the need for numerical subtraction schemes
for real emissions up to power corrections.

An important prerequisite for employing SCET is to
obtain the hard matching coefficients, which are extracted
from the fixed-order QCD amplitudes. The matching for
V + 2 parton and H + 2 parton processes is well known
from the QCD quark and gluon form factors, and is known
to three loops [63,70,71]. The matching for V + 3 partons
[72-75], and H + 3 partons [76-79], has been performed
at both NLO and NNLO. Partonic processes with
four external quarks have been studied in SCET in
Refs. [80-87], and the matching for all massless 2 — 2
processes has been obtained at NLO in Ref. [88] and
recently at NNLO in Ref. [89].

For high-multiplicity processes, the usual approach to
constructing an operator basis with explicit Lorentz indices
and gamma matrices is laborious. In this paper, we
introduce a convenient formalism, based on helicity oper-
ators, which allows for a seamless matching for higher
multiplicity processes onto SCET. A first look at the
formalism discussed here was already given in Ref. [90].
Indeed, results for helicity amplitudes are already
employed in the SCET matching calculations mentioned
above, though without the construction of corresponding
SCET operators.

In the spinor helicity formalism, the individual helicity
amplitudes (i.e. the amplitudes for given fixed external
helicities) are calculated, as opposed to calculating the
amplitude for arbitrary external spins in one step and then
summing over all spins at the end. One advantage is that the
individual helicity amplitudes typically yield more compact
expressions. And since they correspond to distinct external
states, they can be squared and summed at the end. Helicity
amplitudes remove the large redundancies in the usual
description of (external) gauge fields, allowing for much
simplified calculations particularly for amplitudes with
many external gluons.

As we will see, this helicity-based approach is also
advantageous in SCET. In SCET, as we will review in
Sec. II B, collinear fields carry label directions correspond-
ing to the directions of jets in the process, which provide
natural lightlike vectors with which to define fields of
definite helicity. As we will demonstrate, the construction
of an appropriate operator basis becomes simple when
using operators built out of fields with definite helicity.
Furthermore, using such a helicity operator basis greatly
facilitates the matching of QCD onto SCET, because one
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can directly utilize the known QCD helicity amplitudes for
the matching. Together, this substantially simplifies the
study of high-multiplicity jet processes with SCET.

A. Overview
Consider a process with N final-state jets and L leptons,
photons, or other nonstrongly interacting particles, with the
underlying hard Born process

Ka(qa)xp(qp) = x1(q1)- Ky (Gnr)s (1)

where «,;, denote the colliding partons, and k; denote the
outgoing quarks, gluons, leptons, and other particles with
momenta ¢;. The incoming partons are along the beam
directions, ¢, , = x,,P,, ,, where x,, are the momentum
fractions and P .. the (anti)proton momenta. For definite-
ness, we consider two colliding partons, but our discussion
of the matching will be completely crossing symmetric, SO
it applies equally well to ep and ee collisions.

In SCET, the active-parton exclusive jet cross section
corresponding to Eq. (1) can be proven to factorize for a
variety of jet resolution variables.' The factorized expres-
sion for the exclusive jet cross section can be written
schematically in the form

do = /dxadxbd‘I)N+L(% +apiq1. - )M({q;})

thr {a: D)8 [B BKbHJK,] . (2)

Here, d®y ; (9, + g5 91, -..) denotes the Lorentz-invari-
ant phase space for the Born process in Eq. (1), and
M({q;}) denotes the measurement made on the hard
momenta of the jets (which in the factorization are
approximated by the Born momenta ¢;). The dependence
on the underlying hard interaction is encoded in the hard
function A,({q;}), where {¢;} ={q1. ..., qy.1}, the sum
over k = {k,,Kkp,...Ky4r} is over all relevant partonic
processes, and the trace is over color. Any dependence
probing softer momenta, such as measuring jet masses or
low pys, as well as the choice of jet algorithm, will affect
the precise form of the factorization, but not the hard
function ... This dependence enters through the definition
of the soft function S, (describing soft radiation), jet
functions J,., (describing energetic final-state radiation in
the jets) and the beam functions B; (describing energetic
initial-state radiation along the beam direction).
More precisely, the beam function is given by

'Here active parton refers to initial-state quarks or gluons.
Proofs of factorization with initial-state hadrons must also
account for effects due to Glaubers [91], which may or may
not cancel, and whose relevance depends on the observable in
question [92,93].
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B; =>,Z;y ® fr with f; the parton distributions of the
incoming protons, and 7, a perturbatively calculable
matching coefficient depending on the measurement def-
inition [94]. The ellipses at the end of Eq. (2) denote power-
suppressed corrections. All functions in the factorized cross
section depend only on the physics at a single scale. This
allows one to evaluate all functions at their own natural
scale, and then evolve them to a common scale using their
RGE. This procedure resums the large logarithms of scale
ratios appearing in the cross section to all orders in
perturbation theory.

The explicit form of the factorization theorem in Eq. (2),
including field-theoretic definitions for the jet, beam, and
soft functions, is known for a number of exclusive jet cross
sections and measurements of interest. For example,
factorization theorems exist for the N-jet cross section
defined using N-jettiness [77,94-101]. These have also
been utilized to include higher-order resummation in
Monte Carlo programs [67-69], and are the basis of the
N-jettiness subtraction method for fixed-order calculations
[102,103]. In addition, there has been a focus on color-
singlet production at small gy [104-108], as well as the
factorization of processes defined with jet algorithms
[76,109-124], jet shape variables [125-136], or fragmen-
tation properties [137-145] for identified jets. The same
hard functions also appear in threshold resummation
factorization formulas, which are often used to obtain an
approximate higher order result for inclusive cross sections.

The focus of our paper is the hard function 4,({g;}) in
Eq. (2), which contains the process-dependent underlying
hard interaction of Eq. (1), but is independent of the
particular measurement. In SCET, the dependence on the
hard interaction is encoded in the Wilson coefficients, 5’ ,ofa
basis of operators built out of SCET fields. The Wilson
coefficients can be calculated through a matching calculation
from QCD onto the effective theory. The hard function
appearing in the factorization theorem is then given by

H{ai}) =Y Ciris, maih). ()
{4}

{‘I 3] C/ll

Here, the {4;} denote helicity labels and the sum runs over

all relevant helicity configurations. The C are vectors in color
space, and the hard function is therefore a matrix in
color space.

For processes of higher multiplicities, the construction of
a complete basis of SCET operators, and the subsequent
matching calculation, becomes laborious due to the pro-
liferation of Lorentz and color structures, similar to the case
of high-multiplicity fixed-order calculations using standard
Feynman diagrams. The use of SCET helicity fields
introduced in this paper, combined with analogous color
management techniques as used in the calculation of
amplitudes, makes the construction of an operator basis
extremely simple, even in the case of high-multiplicity
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processes. Furthermore, with this basis choice, the SCET
Wilson coefficients are precisely given by the IR-finite
parts of the color-ordered QCD helicity amplitudes, ren-
dering the matching procedure almost trivial. Combining
the results for the hard function with known results for the
soft, jet, and beam functions, then allows for the resum-
mation of jet observables in higher multiplicity processes,
which are ubiquitous at the LHC.

The remainder of this paper is organized as follows. In
Sec. IT A, we review the notation for the spinor-helicity
formalism. Additional useful helicity and color identities
can be found in Appendix A. We provide a brief summary
of SCET in Sec. II B. In Sec. III, we introduce SCET
helicity fields and operators, and describe the construction
of the helicity and color basis, as well as its symmetry
properties. In Sec. IV, we discuss the matching from QCD
onto the SCET helicity operators, including a discussion of
the dependence on the regularization and renormalization
scheme. We then demonstrate the matching explicitly for
H+0,1,2jets in Sec. V, V 40, 1, 2 jets in Sec. VI, and
pp — 2,3 jets in Sec. VIIL. Explicit results for the required
helicity amplitudes are collected in the appendixes. In
Sec. VIII, we discuss the general renormalization group
evolution of the hard coefficients, which involves mixing
between different color structures, to all orders. We give
explicit results for the anomalous dimensions for up to 4
colored particles plus an arbitrary number of uncolored
particles. We conclude in Sec. IX.

II. NOTATION

A. Helicity formalism

We will use the standard notation for the spinor algebra
(for a review see for example Refs. [146,147]). Consider the
four-component spinor u(p) of a massless Dirac particle
with momentum p, satisfying the massless Dirac equation,

p*=0. (4)

The charge conjugate (antiparticle) spinor v(p) also satisfies
Eq. (4), and we can choose a representation such that
v(p) = u(p). The spinors and conjugate spinors for the
two helicity states are denoted by

pu(p) =0,

1:‘:75

1) =
|p=E) >

u(p),

I Fys
. 5
- )

(p+|=sgn(p®)a(p)

For massless particles chirality and helicity agree while for
antiparticles they are opposite, so |p+) = u, (p) = v_(p)
corresponds to positive (negative) helicity for particles
(antiparticles). The spinors |p+) are defined by Egs. (4)
and (5) for both physical (p° > 0) and unphysical (p° < 0)
momenta. Their explicit expression, including our overall
phase convention, is given in Appendix A 1.

094003-3



MOULT et al.

The spinor products are denoted by

(rq) = (p-lq+), [pq] = (p+lg—). (6)

They satisfy

(p@)lapl =2p-q.
(7)

Additional relations are collected in Appendix A 1. The
minus sign for p° < 0 in Eq. (5) is included so the spinor
relations are invariant under inverting the signs of
momenta, p — —p, when crossing particles between the
initial and final state, e.g. ((—p)q)[q¢(-p)] =2(-p) - g

If there are several momenta p;, it is common to
abbreviate

(ra) =—(ap),  [prql=-lap].

lpit) = i), (pipy) = (). pipjl =[] (8)

The polarization vectors of an outgoing gluon with
momentum p are given in the helicity formalism by

{p—|r"|k—)
V2[kp]
9)
where k is an arbitrary reference vector with k> = 0, which

fixes the gauge of the external gluons. Using the relations in
Appendix A 1, it is easy to check that

(p+Ir*|k+)

é(p. k) = V2lp)

, el (p,k) =—

prec(p.k)=k-e(p.k) =0,
ex(p. ) ex(p.k) =
ex(p.k) - ex(p.k) =
e (p.k) = (p k), (10)

as is required for physical polarization vectors. With

p* =E(1,0,0,1), the choice k* = E(1,0,0,—1) yields
the conventional
& (p.K) = —=(0,1,F1,0) (11)
5 = = s 1y 1’ .
+ P \/z
B. SCET

Soft-collinear effective theory is an effective field theory
of QCD that describes the interactions of collinear and soft
particles [57-60] in the presence of a hard interaction.

*Throughout this paper, we will for simplicity use the notation
of SCETj. The theory SCETy; [148] is required for a certain class
of observables, for example pr-dependent measurements or
vetoes. The helicity operator formalism presented here applies
identically to constructing SCETy operators. The collinear
operators and matching coefficients are the same for both cases.

PHYSICAL REVIEW D 93, 094003 (2016)

Collinear particles are characterized by having large energy
and small invariant mass. To separate the large and small
momentum components, it is convenient to use light-cone
coordinates. We define two light-cone vectors

n = (1,n), " = (1,-n), (12)
with 77 a unit three-vector, which satisfy n> = 77> = 0 and
n-n = 2. Any four-momentum p can be decomposed as

nﬂ
p/‘:ﬁp_

5 + P (13)

it
+n-p >
An “n-collinear” particle has momentum p close to the 7
direction, so that p scales as (n-p,i-p,p,)~ni-p
(22,1,2), with A< 1 a small parameter. For example,
for a jet of collinear particles in the 7 direction with total
momentum p;, - p; =2E; corresponds to the large
energy of the jet, while n- p; = m3/E; < E;, where m,
is the jet mass, so 2> = m3/E5 < 1.

To construct the fields of the effective theory, the
momentum of n-collinear particles is written as

u
P= R =R p AR (14)

where - p~ Q and p,; ~AQ are the large momentum
components, while k ~ 22Q is a small residual momentum.
Here, Q is the scale of the hard interaction, and the effective
theory expansion is in powers of A.

The SCET fields for n-collinear quarks and gluons,
&,.5(x) and A, ;(x), are labeled by the collinear direction n
and their large momentum p. They are written in position
space with respect to the residual momentum and in
momentum space with respect to the large momentum
components. Derivatives acting on the fields pick out the
residual momentum dependence, i0* ~ k ~ A>Q. The large
label momentum is obtained from the label momentum
operator P, e.g. Pné,; = p*é, 5. If there are several
fields, P, returns the sum of the label momenta of all n-
collinear fields. For convenience, we define P, = i1 - P,
which picks out the large momentum component.
Frequently, we will only keep the label n denoting the
collinear direction, while the momentum labels are
summed over (subject to momentum conservation) and
are suppressed in our notation.

Collinear operators are constructed out of products of
fields and Wilson lines that are invariant under collinear
gauge transformations [58,59]. The smallest building
blocks are collinearly gauge-invariant quark and gluon
fields, defined as

Ynw(x) = [8(@ =P, )W
anl(): [((1)—|—P)

n ()&, ()],

é LD, W, (). (15)
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With this definition of y,, ,,, we have @ > 0 for an incoming
quark and @ < 0O for an outgoing antiquark. For B, ,, |, ® >
0 (w < 0) corresponds to an outgoing (incoming) gluon. In
Eq. (15)

iDl:u = ’PZL + gAl:u’ (16)

is the collinear covariant derivative and

W, (x) = [Zexp(—%ﬁ-m<x>)] (17)

perms

is a Wilson line of n-collinear gluons in label momentum
space. The label operators P, in Eqs. (15) and (17) only act
inside the square brackets. W,(x) sums up arbitrary
emissions of n-collinear gluons from an #i-collinear quark
or gluon, which are O(1) in the power counting. Since
W, (x) is localized with respect to the residual position x,
we can treat y,, ,,(x) and B} ., (x) like local quark and gluon
fields. For later use, we give the expansion of the collinear
gluon field

Pi -
Bﬁ’L:AﬁL—ﬁn‘An,p+~-. (18)

Here the ellipses denote terms in the expansion with more
than 2 collinear gluon fields, which are not required for our
matching calculations.

In our case the effective theory contains several collinear
sectors, 11y, Ny, ... [149], where the collinear fields for a given
sector n = (1, 11;) describe a jet in the direction 7;, and we
also define ! = (1,—n;). A fixed-order QCD amplitude
with N colored legs is then matched onto operators in SCET
with N different collinear fields. The different collinear
directions have to be well separated, which means

np-n;> 2> fori#j. (19)

The infrared singularities associated with collinear or soft
limits of legs in QCD are entirely described by the Lagrangian
and dynamics of SCET itself, so the QCD amplitudes are only
used to describe the hard kinematics away from infrared
singular limits.

Two different n; and n; with n; - n;/ ~ 2> both describe
the same jet and corresponding collinear physics. Thus,
each collinear sector can be labeled by any member of a set
of equivalent vectors, {n;}, which are related by repar-
ametrization invariance [150]. The simplest way to perform
the matching is to choose n; such that the large label
momentum is given by

=

Pt — i 20
pi = w5 (20)

with p | = 0.

PHYSICAL REVIEW D 93, 094003 (2016)

In general, operators will have sums over distinct
equivalence classes, {n;}, and matrix elements select a
representative vector to describe particles in a particular
collinear direction. For many leading power applications
there is only a single collinear field in each sector, and we
may simply set the large label momentum of that building
block field to that of the external parton using the following
simple relation:

[aio-nre =r(m-r%). e

where p is collinear with the ith jet. Here the tildes on the
integration measure and delta function ensure that the
integration over equivalence classes is properly imple-
mented.” Because of this, at leading power, the issue of
equivalence classes can largely be ignored.

Particles that exchange large momentum of O(Q)
between different jets are off shell by O(n; - n;Q%). They
are integrated out by matching QCD onto SCET. Before
and after the hard interaction the jets described by the
different collinear sectors evolve independently from each
other, with only soft radiation between the jets. The
corresponding soft degrees of freedom are described in
the effective theory by soft quark and gluon fields, ¢,(x)
and A, (x), which only have residual soft momentum
dependence i9* ~ A>Q. They couple to the collinear sectors
via the soft covariant derivative

iD! = 0¥ + gAY, (24)

acting on the collinear fields. At leading power in 4, n-
collinear particles only couple to the n - A; component of
soft gluons, so the leading-power n-collinear Lagrangian
only depends on n - D. For example, for n-collinear quarks
[58,59]

3The precise definition of this delta function and measure are

8(pi—p)= Siny p0(@; = i - p),

/dﬁzZ/dw,», (22)

{ni}

where

ni-p= O(/lz)’

1
Sint p = 23
{mik-p { 0 otherwise. 23)

The Kronecker delta is nonzero if the collinear momentum p is in
the {n;} equivalence class, i.e. p is close enough to be considered
as collinear with the ith jet. The sum in the second line of Eq. (22)
runs over the different equivalence classes.
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25
(25)

7/ . 1 \&
’Cn = é:n <1n : Ds +gn 'An +1D11LW1175_WZIBnL>}Z§

n

The leading-power n-collinear Lagrangian for gluons is
given in Ref. [60].

III. SCET OPERATOR BASIS

In this section, we describe in detail how to construct a
basis of helicity and color operators in SCET, which greatly
simplifies the construction of a complete operator basis and
also facilitates the matching process. Usually, a basis of
SCET operators obeying the symmetries of the problem is
constructed from the fields y, . B, . as well as Lorentz
and color structures. This process becomes quite laborious
due to the large number of structures which appear for higher
multiplicity processes, and the reduction to a minimal basis
of operators quickly becomes nontrivial. Instead, we work
with a basis of operators with definite helicity structure
constructed from scalar SCET building blocks, which, as we
will show, has several advantages. First, this simplifies the
construction of the operator basis, because each independent
helicity configuration gives rise to an independent helicity
operator. In this way, we automatically obtain the minimal
number of independent operators as far as their Lorentz
structure is concerned. Second, operators with distinct
helicity structures do not mix under renormalization group
evolution, as will be discussed in detail in Sec. VIII. The
reason is that distinct jets can only exchange soft gluons in
SCET, which at leading order in the power counting means
they can transfer color but not spin [see Eq. (25)]. Therefore,
the only nontrivial aspect of the operator basis is the color
degrees of freedom. The different color structures mix under
renormalization group evolution, but their mixing only
depends on the color representations and not on the specific
helicity configuration.

A. Helicity fields

We start by defining quark and gluon fields of definite
helicity, out of which we can build operators with a definite
helicity structure. To simplify our discussion we will take
all momenta and polarization vectors as outgoing, and label
all fields and operators by their outgoing helicity and
momenta. Crossing symmetry and crossing relations are
discussed in Sec. III F.

We define a gluon field of definite helicity4

B, = —ex,(n;, ﬁi)BZfl,m,.L,.’ (26)
where « is an adjoint color index. For n/ = (1,0,0, 1), we
have

“The label 4+ on B, refers to helicity and should not be
confused with light-cone components.

PHYSICAL REVIEW D 93, 094003 (2016)
1

i(nn;) = 7 (0,1, ¥i,0), (27)
in which case
a 1 a,l < 12a,2
Bi:t - 5 (Bn,-,m[J_,v + an;,a};J_[)‘ (28)

V2

For an external gluon with outgoing polarization vector
e(p,k) and outgoing momentum p in the n;-collinear
direction, the contraction with the field B¢, contributes

V2
_ Py,
—egy(nis i) €], (p ) == e(p k)| (29)

i

where we have used the expansion of the collinear gluon
field given in Eq. (18). Since e+ (n;, 71;) is perpendicular
to both n; and 7;, we can drop the _L; labels in brackets.
A convenient choice for the reference vector is to take
k = n;, for which the second term in brackets vanishes.
Equation (29) then becomes

_giF(ni’fli) : 8(p’ﬁi>’ (30)

which is equal to 0 or 1 depending on the helicity of
e(p, n;). Adopting this choice, the tree-level Feynman rules
for an outgoing gluon with polarization + (so &€ =€),
momentum p (with p° > 0), and color a are

(¢4 (p)|BL|0) = 6°5(p; — p).
(g% (p)|BL.10) = 0. (31)

Note that B2, = B2, (0), so we do not get a phase from the
residual momentum. Similarly, for an incoming gluon with
incoming polarization F (¢ = &4, S0 € = &), incoming
momentum —p (with p® < 0), and color a, we have

(0182195 (=p)) = 5°8(pi = p),
(0B |94 (—p)) = 0. (32)
We define quark fields with definite helicity’ as

]i]/s a

a
)(iﬂ: - 2 )(n,-,—(u,-v

I Fys
2 b

X =1w, (33)
where a and a are fundamental and antifundamental color
indices respectively.

For external quarks with n;-collinear momentum p, the
fields contribute factors of the form

5Technically speaking chirality, although we work in a limit
where all external quarks can be treated as massless.
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1:|:}/5}‘fiﬁiu( )_
2 4 WP

) =lpE),, (34

where in the last equality, we have defined a shorthand
notation |p4), for the SCET projected spinor. The spinor
|p£),, is proportional to |n+); see Eq. (A30).

The tree-level Feynman rules for incoming (p° < 0) and
outgoing (p° > 0) quarks with helicity +/— and color a are
then given by

(014, 1q% (=p)) = %8(p; = p)|(=pi)+),-
0|x?_|q p)) =" S@l = P)(=Pi) =),
(p)F10) = 873(p; — p),, (pit].
“(p)Z10) = 875(p: — p),, (pil. (35)

and similarly for antiquarks

OIZﬁ+|q

p)) = 675(p; - p)
OW 3% (-p)) = 3(13, = p),{(=pi)-l.
(P 10) = &%5(p; — p)|pit ).,
5+’ P)l)(,ﬂ_|0> = 5(p; — p)lpi=)n (36)

The corresponding Feynman rules with the helicity of the
external (anti)quark flipped vanish.

To avoid the explicit spinors in Egs. (35) and (36), and
exploit the fact that fermions come in pairs, we also define
fermionic vector currents of definite helicity

J V2et (nyn) T8 1

it W;W; <ninj> '
ap V2¢L (n;, Vlj))??-?’ﬂ?—
Jijo == ) (37)
;@ [ni”j]

where w; = n; - p; from Eq. (20), as well as a scalar current

J-ﬁ o 2 )_((1'_1-4— Jj—
ijo Joo; [nng]
a 2 )_(i— i+
N = : (38)
\/a)ia)j <nlnj>

In Egs. (37) and (38) the flavor labels of the quarks have not
been made explicit, but in general the two quark fields in a
current can have different flavors (for example in W
production). Since we are using a basis of physical
polarization states it is not necessary to introduce more
complicated Dirac structures. For example, pseudovector
and pseudoscalar currents, which are usually introduced
using y°, are incorporated through the relative coefficients
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of operators involving J ., J_ or Jy, J, (’) As we shall see, this
greatly simplifies the construction of the operator basis in
the effective theory.

At leading power, there is a single collinear field in each
collinear sector, so we can choose n* = p*/p! to represent
the equivalence class {n;}, so that p} =17 - p;n! which

gives
n-p— :|:>

Since we always work at leading power in this paper, we
will always make this choice to simplify the matching.
With this choice, the tree-level Feynman rules for the
fermion currents are

[pt),, = lp£) = | n; (39)

(g (p1)a™ (p2)|7242(0)
= 5a,/3,5ﬂ2a23(1~91 - Pl)S(f?z - pa),

(g (P17 (p2)|T}210)
— 5(11/_315/}2525(p1 _

(@ (1)@ (p2)|3210)

= 890 §P%5(p) — p1)6(Pa — pa).
(% ()7 (p2)|(J)15510)
= 501ﬁ1&"25’25(p1 - P1)5(P2 — Pp2). (40)

1)5(132 - P2),

The simplicity of these Feynman rules arises due to the
unconventional normalization of the operators in Egs. (37)
and (38). This normalization has been chosen to simplify
the matching of QCD amplitudes onto SCET operators, as
will be seen in Sec. IV.

We will also make use of leptonic versions of the above
currents. These are defined analogously,

\/_8 (nl’ j) l+yﬂfj+

g ,
i+ = 0;0; (nin;)
o feﬂ (nH I’l]) l:tyﬂfji (41)
E a)ia)j [I’l n]] ’

Unlike the collinear quark field y, the leptonic field £ does
not carry color and so does not contain a strong-interaction
Wilson line.

All couplings in the SM, except to the Higgs boson,
preserve chirality. This limits the need for the scalar current,
especially when considering only massless external quarks.
In the SM the scalar current can arise through explicit
couplings to the Higgs, in which case, even though we still
treat the external quarks as massless, the Wilson coefficient
for the scalar operator will contain the quark Yukawa
coupling. This is relevant for example for Hbb processes.
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The scalar current can also arise through off-diagonal
CKM-matrix elements connecting two massless external
quarks through a massive quark appearing in a loop. This
can occur in multiple vector boson production, or from
electroweak loop corrections, neither of which will be
discussed in this paper. When constructing an operator
basis in Sec. III B, we ignore the scalar current, as it is not
relevant for the examples that we will treat in this paper.
However, it should be clear that the construction of the
basis in Sec. III B can be trivially generalized to incorporate
the scalar current if needed.

B. Helicity operator basis

Using the definitions for the gluon and quark helicity
fields in Egs. (26) and (37), we can construct operators for a
given number of external partons with definite helicities
and color. (As discussed at the end of the previous section,
for the processes we consider in this paper we do not
require the scalar current Jg.) In the general case with
CKM-matrix elements, we must allow for the two quark
flavors within a single current to be different. The situation
is simplified in QCD processes, where one can restrict to
currents carrying a single flavor label.

For an external state with n particles of definite helicities
=+, colors a;, a;, @;, and flavors f, f7, ..., a complete basis of
operators is given by

001a2~-~ai—1ai-~5¢n—1%

++. (£ E) (i)l’ﬁb ] iji—l’ph s pn—]’ﬁn)

= SBYLBY L T e T (42)
For example, f = ¢ indicates that both quark fields in the
current have flavor g. When it is necessary to distinguish
different flavors with the same current, for example when
we consider processes involving W bosons in Sec. VI, we
use a label f = ud such as J;41,_. For simplicity, we will
also often suppress the dependence of the operator on the
label momenta p;. For the operator subscripts, we always
put the helicity labels of the gluons first and those of the
quark currents in brackets, with the labels for quark
currents with different flavor labels f and f’ separated
by a semicolon, as in Eq. (42). The + helicity labels of the
individual gluon fields and quark currents can all vary
independently. Operators with nonzero matching coeffi-
cients are restricted to the color-conserving subspace. We
will discuss the construction of the color basis in Sec. III D.

The symmetry factor S in Eq. (42) is included to simplify
the matching. It is given by

1

527
+ —_ b
[[;n] In7!

(43)

where n¥ denotes the number of fields of type i=

g.u,it,d,d, ... with helicity +. We also use
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n= Z:(nl+ +ny) (44)

to denote the total number of fields in the operator. Each B;
counts as one field, and each J has two fields.

For each set of external particles of definite helicities,
colors, and flavors, there is only one independent operator,
since the physical external states have been completely
specified. All Feynman diagrams contributing to this specific
external state will be included in the Wilson coefficient of that
specific operator. For the case of pure QCD, quarks always
appear in pairs of the same flavor and same chirality, and
therefore can be assembled into quark currents labeled by a
single flavor. In this case, to keep track of the minimal number
of independent operators, we can simply order the helicity
labels, and only consider operators of the form

- (45)

and analogously for any additional quark currents with
different quark flavors.’®

With the operator basis constructed, for a given n-parton
process we can match hard scattering processes in QCD
onto the leading-power hard-scattering Lagrangian

Liara = / [1dp:CLi (Brs v PO (B oo Pa),
i=1
(46)

where a sum over all color indices is implicit. Lorentz
invariance implies that the Wilson coefficients only depend
on Lorentz invariant combinations of the momenta. This
hard Lagrangian is used in conjunction with the collinear
and soft Lagrangians that describe the dynamics of the soft
and collinear modes; see for example Eq. (25).

We emphasize that Eq. (46) provides a complete basis in
SCET for well-separated jets and additional nonhadronic
particles at leading power. We will discuss in more detail in
Sec. IV the matching and regularization schemes, and
demonstrate that no evanescent operators are generated for
this case. At subleading power, the SCET operators would
involve additional derivative operators, soft fields, or

°In the general case with off-diagonal CKM-matrix elements,
there is some more freedom in the choice of the operator basis,
because quarks of the same flavor do not necessarily appear in
pairs. However, it is still true that only a single operator is needed
for a specific external state. For example, for external quarks u_,
d., s, c_, one could either use the operators J,,_J.,_, or the
operators J.,_J,,_ (where the color structures have been sup-
pressed). Since different helicity combinations are possible, a
single flavor assignment does not suffice to construct a complete
helicity basis, and one must sum over a basis of flavor assign-
ments. As an example explicitly demonstrating this, we will
consider the case of pp — W+ jets in Sec. VL.

094003-8



EMPLOYING HELICITY AMPLITUDES FOR RESUMMATION

multiple SCET building blocks from the same collinear
sector.

C. Example with a Z-boson exchange

It is important to note that all kinematic dependence of
the hard process, for example, its angular distributions, is
encoded in the Wilson coefficients. Since the Wilson coef-
ficients can (in principle) carry an arbitrary kinematic
dependence, our choice of helicity basis imposes no restric-
tion on the possible structure or mediating particles of the hard
interaction. For example, the spin of an intermediate particle
may modify the angular distribution of the decay products,
and hence the Wilson coefficients, but this can always be
described by the same basis of helicity operators.

As a simple example to demonstrate this point we
consider eTe™ — eTe™ at tree level. This process can
proceed through either an off-shell y or Z boson. Because
the SM couplings to both of these particles preserve chirality,
a basis of operators for this process is given by

1
0(++) - 4 Jer24d e3ays

0(+—) =Jern1J o34,
1

=—J0-J 34—, 47
4 el2—J ¢34 ( )

O
where the leptonic current is defined in Eq. (41). The fact
that this is a complete basis relies only on the fact that the
couplings preserve chirality, and is independent of e.g. the
possible number of polarizations of the mediating Z or y.

We now consider the calculation of the Wilson coef-
ficients for the matching to these operators (the matching
procedure is discussed in detail in Sec. IV). At tree level,
the Wilson coefficients are easily calculated, giving

2113((24
iy = =l + ool 2 (1 < 3),
2[14](23
Clymy = —€[1 + vv§ P7(s12)] %
21241(13
Cioy = =01+ 10 Polsn)] o (1 6 3,
12

(48)

Here 51, = (p; + p»)?, P is the ratio of the Z and photon
propagators,

s
P = 49
Z(S) S — m% + iFZmZ ( )
and the couplings v, » to the Z boson are
1 — 2sin’Gy, 2sin’fy,
= = 50
LT Sin(20y) %"= "Gngy) OV
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Note that the presence of the spinor factors in Eq. (48)
occur due to our normalization conventions for the
currents.

Now, consider calculating the scattering amplitude in the
effective theory, for example for the case when both
electrons have positive helicity. The matrix element in
the effective theory gives

(e3(p1)ef(p2)er(p3)el(pa)|ilhaal0)

=i (e (p2)es (po)e ()] | [Tapc..o..0

i=1
21324)

= —ie’[1 + vgvgPz(s10)]
S12

(1«<3), (51

using the Feynman rules of Eq. (40). The effective theory
therefore reproduces the full theory scattering amplitude.
The same is true of the other helicity configurations, so the
familiar angular distributions for ete™ — eTe™, as well as
the different couplings of the Z to left- and right-handed
particles, are entirely encoded in the Wilson coefficients.

D. Color basis

In addition to working with a basis of operators with
definite helicity, we can also choose a color basis that
facilitates the matching. When constructing a basis of
operators in SCET, we are free to choose an arbitrary
color basis. With respect to color, we can think of Eq. (46)
as having a separate Wilson coefficient for each color
configuration. For specific processes the color structure of
the Wilson coefficients can be further decomposed as

Ay

Here, T%® is a row vector whose entries 77 are
suitable color structures that together provide a complete
basis for all allowed color structures, but which do not
necessarily all have to be independent. In other words, the
elements of 7% % span the color-conserving subspace of

the full color space spanned by {a;...a,}, and C is a vector
in this subspace. Throughout this paper we will refer to the
elements of 7% as a color basis, although they will
generically be overcomplete, since this allows for simpler
choices of color structures. As discussed below, due to the
overcompleteness of the bases, some care will be required
for their consistent usage.
Using Eq. (52), we can rewrite Eq. (40) as

Luws = [ TT89i0% i C o (1)

where 0" is a conjugate vector defined by
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AT ay...a,
Oy = 0L

R Gy (54)

)
While the form Ci‘.:'(:._”) Ofr“:ij.a_”) in Eq. (46) is more
convenient to discuss the matching and the symmetry
properties of operators and Wilson coefficients, the alter-
native form in Eq. (53) is more convenient to discuss the
mixing of the color structures under renormalization.

For low multiplicities of colored particles it can be
convenient to use orthogonal color bases, e.g., the singlet-
octet basis for ¢ggq'q’ is orthogonal. However, using
orthogonal bases becomes increasingly difficult for higher
multiplicity processes, and the color bases used for many
fixed-order calculations are not orthogonal. [See e.g.
Refs. [151,152] for a discussion of the use of orthogonal
bases for SU(N).] The use of a nonorthogonal color basis
implies that when written in component form in a particular

basis, the conjugate C" of the vector C is not just given by
the naive complex conjugate transpose of the components
of the vector. Instead, we have

s ~*T

C' = [coaa]Tam = CTT, (55)

where

F= 3 (Fo-m)io-o (56)

is the matrix of color sums for the chosen basis. If the basis
is orthogonal (orthonormal), then 7" is a diagonal matrix
(identity matrix). Note that Eq. (56) implies that by
definition 7°7 = 7. .

Similar to Eq. (55), for an abstract matrix X in color
space, the components of its Hermitian conjugate X™ when
written in a particular basis are given in terms of the
components of X as

X' =T71XT7T. (57)

A proper treatment of the nonorthogonality of the color
basis is also important in the factorization theorem of
Eq. (2). Here, the color indices of the Wilson coefficients
are contracted with the soft function as

[Cal~~%]*Sg1~ﬂ”b1mﬂn Chr-- b — 6-TS~KC‘2

T A4S A

=C778.C.  (58)

At tree level, the soft function is simply the color-space
identity

N

S, =1, (59)

which follows from its color basis independent definition in
terms of Wilson lines [see e.g. Ref. [98] or Eq. (267)]. Here
we have suppressed the dependence of S on soft momenta.
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The action of the identity on an element of the color space
is defined by

(IT)a'af — T”'ai'““j“" (60)

and its matrix representation in any color basis is given
by 1=diag(l,1,...,1). In the literature, see e.g.
Refs. [82,88,89,134,153], often a different convention is
used, where the 7" matrix is absorbed into the definition of
the soft function. In this convention, the soft function
becomes explicitly basis dependent and is not the same as
the basis-independent color-space identity. One should be
careful to not identify the two.

As an example to demonstrate our notation for the color
basis, consider the process ggqg. A convenient choice for a
complete basis of color structures is

Taba[_f — ((TaTb)a[i" (TbTa)aﬁ,tr[TaTb]éfl/})
(TaTb)aﬁ T
= (TbTa) - . (61)
]

Qj
tr[T9T?)5 5
For cases with many color structures we will write T as the
transpose of a column vector as above. The transpose in this
case only refers to the vector itself, not to the individual color
structures. The color-sum matrix for this particular basis is

ngqz_] _ (Tabaﬂ)TTabaﬂ
- 2, 2Cr—C, 2Ty
=== 2cr-c 20 2 | (62)
2T, 2T, 2T;N

Our conventions for color factors are given in Appendix A 2.
Explicit expressions for 7" for the bases used in this paper are
given in Appendix F for up to five partons.

Depending on the application, different choices of color
basis can be used. For example, in fixed-order QCD
calculations, color ordering [5—8] is often used to organize
color information and simplify the singularity structure
of amplitudes, while the color flow basis [154] is often used
to interface with Monte Carlo generators. For a brief review
of the color decomposition of QCD amplitudes, see
Appendix A 3. Choosing a corresponding color basis in
SCET has the advantage that the Wilson coefficients are
given directly by the finite parts of the color-stripped
helicity amplitudes, as defined in Eq. (96), which can be
efficiently calculated using unitarity methods. In this paper
we will use color bases corresponding to the color
decompositions of the QCD amplitudes when giving
explicit results for the matching coefficients, although
we emphasize that an arbitrary basis can be chosen
depending on the application.
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Finally, note that the color structures appearing in the
decomposition of a QCD amplitude up to a given loop
order may not form a complete basis. The color basis in
SCET must be complete even if the matching coefficients
of some color structures are zero to a given loop order, since
all structures can in principle mix under renormalization
group evolution, as will be discussed in Sec. VIIL In this
case, we always choose a complete basis in SCET such that
the color structures appearing in the amplitudes to some
fixed order are contained as a subset.

E. Parity and charge conjugation

Under charge conjugation, the fields transform as

CB?iTZ/}C _B;l:t ;a’

crlc=-Jr. (63)

The minus sign on the right-hand side of the second equation
comes from anticommutation of the fermion fields.
Under parity, the fields transform as

PBY, (P x)P = 2 B (PF, xP),
I, (pi pjux)P = e Pu=h) j (5P B AP). (64)

where we have made the dependence on p; and x explicit,
and the parity-transformed vectors are pY = w;ii;/2,
xf,’ = x*. The ¢, are real phases, whose exact definition
is given in Appendix A 1. The phases appearing in the
parity transformation of the helicity operators exactly
cancel the phases appearing in the corresponding helicity
amplitude under a parity transformation. This overall phase
is determined by the little group scaling (see Appendix A 1
for a brief review).

Using the transformations of the helicity fields under parity
and charge conjugation in Egs. (63) and (64), it is straightfor-
ward to determine how these discrete symmetries act on the
helicity operators. Parity and charge conjugation invariance of
QCD implies that the effective Lagrangian in Eq. (46) must
also be invariant. (For amplitudes involving electroweak
interactions, parity and charge conjugation invariance are
explicitly violated. This is treated by extracting parity and
charge violating couplings from the operators and amplitudes.
See Sec. VI for a discussion.) This then allows one to derive
corresponding relations for the Wilson coefficients.

To illustrate this with a nontrivial example we consider
the ggqq process. The operators transform under charge
conjugation as

abaf ¢
COM L (P, Pas B3, pa)T**PC
= CSB?A BIZ)/I gfi TebabC

= =0 (P1, i Par P3) TP, (65)
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where 1, , denote the gluon helicities, and 7%% is as given
in Eq. (61). From the invariance of Eq. (46) we can infer
that the Wilson coefficients must satisfy

Zb,{zﬂ (P1- P23 P3+ Pa) = —Cfuz/(} >(f71vf?2;1~94’1~73)-
(66)
In the color basis of Eq. (61), we can write this as
Cxlz2(i)(l~71,l~?2;f73,l~’4) - ‘A/C/llxz(q:)(f?1,l~72;l~?4,f?3),
0 -1 0
with V=1|-1 0 0 |. (67)
0O 0 -1

Now consider the behavior under parity. For concrete-
ness we consider the case of positive helicity gluons. The
operators transform as

POibffi> (131, D2; D3 I~74)P
1
=P B{ B, J,.P
= ol 2 0D OU (50 58 L), (68)
The invariance of Eq. (46) under parity then implies that the
Wilson coefficients satisfy

C++(i) (P1. D25 D3> P4)
= C__5) (P}, ps Y. pY) e 2m 2n,Ebns=0,)
= C__(5)(P1, P2: P3: Pa)l( yoo ) (69)

Here we have introduced the notation (..) <> [..] to indicate
that all angle and square spinors have been switched in
the Wilson coefficient. The fact that the phase appearing
in the parity transformation of the operator exactly matches
the phase arising from evaluating the Wilson coefficient
with parity related momenta is guaranteed by little
group scaling, and will therefore occur generically. See
Egs. (A24) and (A25) and the surrounding discussion for a
review.

Below we will use charge conjugation to reduce the
number of Wilson coefficients for which we have to carry
out the matching explicitly. We will use parity only when it
helps to avoid substantial repetitions in the matching.

F. Crossing symmetry

Our basis is automatically crossing symmetric, since the
gluon fields B, can absorb or emit a gluon and the quark
current J;;; can destroy or produce a quark-antiquark pair,
or destroy and create a quark or antiquark. We will first
illustrate how to use crossing symmetry in an example and
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then describe how to technically have crossing symmetric
Wilson coefficients.

We will again consider the process gggg as an example.
Due to our outgoing conventions, the default Wilson
coefficient is for the unphysical processes with all outgoing
particles:

B~
CLP (P1. Pa: b3 Pa),

(70)

0- gi(l’l)gé(l?z)qoi(l?ﬁflé(l?zt) :

/\/-\/'\
S
\_/

Since the signs of momenta change when crossing
particles between the final and initial state, care is required
in taking the proper branch cuts to maintain crossing
symmetry for the Wilson coefficients. In terms of the
Lorentz invariants

Sl] = (pl + pj)2 (72)
this amounts to the choice of branch cut defined by
s;; = s;j +10. In particular, we write all logarithms as

L ln( % 10> ln(sij> in0(s;))
i=In{ —— — =In(—2 ) —iz6(s;;).
J ﬂ ﬂZ J

For spinors, crossing symmetry is obtained by defining the
conjugate spinors (p=| as was done in Eq. (5), resulting in
the following relation:

(73)

O)lpL). (74)

The additional minus sign for negative p° is included to use
the same branch (of the square root inside the spinors) for
both spinors and conjugate spinors, i.e., for p® > 0 we have

[(=p)%) =ilp$),
((=p)£] = =(=D)(p£] = i(p4|.
In this way all spinor identities are automatically valid for

both positive and negative momenta, which makes it easy
to use crossing symmetry.

(p£| =sgn(p

(75)

G. Hard function

In the factorized expression for the cross section given in
Eq. (2), the dependence on the underlying hard Born

% (p3)3" (pa):
( 4)
% (p3 )qﬂ (Pa):
P3)9”(pa):
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where we picked one specific helicity configuration for
definiteness. Crossing a particle from the final state to the
initial state flips its helicity, changes the sign of its
momentum, and changes it to its antiparticle. In addition
we get a minus sign for each crossed fermion, though in
practice these can be ignored as they do not modify the
cross section. This allows one to obtain the Wilson
coefficient for any crossing. For example, for the following
possible crossings, the Wilson coefficients are given by

Cbaa(ﬂ)( P2, =P13 P3» P4)s

= C (B3 =1 Pas =),

- Cbaa(ﬁ )(133’ —D1:=D2: Da)s

Cibﬂ( )(P%Pm —D2.—D1)- (71)
! A

process appears through the hard function H,. In terms

of the Wilson coefficients of the operator basis in the
effective theory, the hard function for a particular partonic
channel « is given by

Zcﬂl

{4}

H,({p:}) J{BDC ey (B:)). (76)

where {p;} = {pi, P2, ...}. For unpolarized experiments
we simply sum over all helicity operators, so H({p;})
with its sum over helicities in Eq. (76) appears as a
multiplicative factor. It is important to note that the color
indices of the Wilson coefficients are not contracted with
each other, rather they are contracted with the color indices
of the soft function through the trace seen in Eq. (2).

As an explicit example to demonstrate the treatment of
both color and helicity indices, we consider the contribu-
tion of the ggqq partonic channel to the pp — 2 jets
process. In this case, the Wilson coefficients are given by
C Win (1) Where 4y, A denote the helicities of the gluons, 43
denotes the helicity of the quark current, and recall that the
vector denotes the possible color structures, which were
given explicitly for this case in Eq. (61). The hard function
for this partonic channel is then given by

I:Iggqq Zci Ja(43) {P })Cz a(3) ({ i})
{4}
L .
= Civ ) Cor T G- Ci)

AT ~ ~T
+ Cor) iy + Com)Clopy
. L
+ Cot(0Clio) + Cor Crp

-

~ AT ~ i
+ C_+(_> C_+(_) + C__<_) C__(_). (77)
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Here, explicit expressions are only needed for 6‘++(+),

6‘+_(+) and 5__(+). One can obtain 5_+(+) using Bose
symmetry simply by interchanging the gluons,

~abaf
C_ ()(pl,pz,pz,m) (ﬂ)(Pz’Pl,P%,PO (78)

or equivalently,
C_+(+)(l~71 . P23 D3, Pa) =

with V= (79)

As explained in Sec. VII A 2, the remaining C J14s(—) Can be
obtained from the expressions for the other Wilson coef-
ficients by charge conjugation.

In Eq. (77), the Wilson coefficients are vectors in the
color basis of Eq. (61) and thus the hard function is a matrix
in this basis. As discussed in Sec. III D, the tree-level soft
function is the color-space identity, i.e.,

S(O)b_l byf\Brajara

9994 = 5b1a15b2025ﬂ1a1 Opa, = 1. (80)

With the color trace in Eq. (2) this amounts to contracting
the color indices of the Wilson coefficients. In the color
basis of Eq. (61), this simply becomes

(81)

10
$O _q_
Sg!]qzl_l_ 0 1

0 0

- O O

The tree-level soft function also has dependence on
momenta depending on the measurement being made,
which are not shown here.

To demonstrate a complete calculation of the cross
section using the factorization theorem of Eq. (2) together
with the hard functions computed using the helicity
operator formalism, it is instructive to see how the lead-
ing-order cross section is reproduced from Eq. (2). We
consider the simple case of H + 0 jets in the m, — oo limit.
For this channel, there is a unique color structure §,,,,, and
using the results of Sec. VA and Appendix B 1, the lowest
order Wilson coefficients are given by

2 e o a ag s1o [12]
C++(P1, P2§P3) = 5a1a2 37”]%@, (82)
> e s e ag S1p (12
C——(P17P2;P3) 5a1a2 3w éZ <[12]> (83)

N

C+—(l~71,l~72§l~93) = C—+(l~?1vl~92§l~73) =0, (84)
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where v = (v/2Gy)~'/? = 246 GeV. Note that these are
simply the helicity amplitudes for the process, as will be
shown more generally in Sec. IV. Analytically continuing
to physical momenta, squaring, and summing over helic-
ities, the tree-level hard function is given by

2
(0)ayazbyby g S12
H,p (P1.P2sP3) = EP—— 10506, b,
)
a 512

= T 187220 25d1ﬂ26b1b2' (85)

Note that only 2 of the 4 helicity configurations contribute,
hence the factor of 2.

The tree-level gluon beam functions are given by the
gluon PDFs. Since there are no jets in the final state, there
are no jet functions. The tree-level soft function is the
identity in color space7

SWObib2aias _ ghiar ghaas, (87)

The leading-order cross section is then given by

1 1 dx; d
e e

4
x / (dz L or8)o(r - )

(2”)464 <xl cm

D) +x2Ecm ) _p3>

0)ayasbyb
x Hqu)lfllla *(P1s P23 P3

aim? mgy
:5767[1}212% /d fg(Ecm Y>fg( cm Y)' (88)

The 1/(2E2,) factor is the flux factor and for each of the
incoming gluons we get a 1/[2(N? —1)] from averaging
over its spin and color. This is followed by integrals over
the gluon PDFs, f, and the Higgs phase space, where we
have restricted to the production of an on-shell Higgs. The
final expression in Eq. (88) agrees with the standard result,
where the first factor is the Born cross section.

We now briefly discuss our choice of normalization. The
currents in Eq. (37) were normalized such that the Wilson
coefficients are simply given by the finite part of the QCD
helicity amplitudes (see Eq. (96) and Sec. IV). This is

)S( )bibyaiay

"Since there is only one color structure, the tree-level soft
function is normally defined as

o__1 biay shyay
Syg = N 15111a25b,b26 1§t =1, (86)
Here we do not absorb numerical prefactors into our soft
functions, because this is not useful for processes with more
final-state partons.

094003-13



MOULT et al.

distinct from the normalization typically used for SCET
operators, e.g. 7;y"y;, which is chosen to facilitate the
matching to QCD operators. We now show that the extra
factors in Eq. (37) arrange themselves to produce the
standard normalization for the jet function (or beam
function). Starting from the current and its conjugate,

T ()"
_ \/iggF(niv ”j) Z?iyﬂfi \/Ze"j’:(n,-, ”lj) )_(?iyu)(i‘,i
C()l'COj <nl- + |anlZ> ( C()ZCO])* <l’l] + |n,» :F>

0 ey (s ny)e(mimy) [
N N 2n,--nj\a)ia)j| }’y47,4 4

7 R
X )(:izﬂhi Xjx 5 Xjx + -

_ 1 1 g
:25}, 6ﬁ5<2N| |/¥l:|: ){li) <2N| |){Jﬂ: ;X}i)’

(89)

where we have rearranged the expression in a factorized
form using the SCET Fierz formula in spin

1®1=5|3705 -8

Ll o Hys o Hiys FYL o HiYL
2 2 2 2 2 |

(90)

which applies for the SCET projected spinors. In the last
line of Eq. (89) we have dropped the color nonsinglet terms
and terms which vanish when averaging over helicities,
which are indicated by ellipses. The delta functions in color
space highlight that the jet function does not modify the
color structure. The factor 1/w; ;, which arises from the
normalization of the helicity currents, is part of the standard
definition of the jet function and ensures that this operator
has the correct mass dimension.

IV. MATCHING AND SCHEME DEPENDENCE

In this section, we discuss the matching of QCD onto the
SCET helicity operator basis introduced in the previous
section. We start with a discussion of the matching for
generic helicity operators in Sec. IVA. In Sec. IVB we
discuss in detail the subject of renormalization schemes,
and the issue of converting between regularization/renorm-
alization schemes commonly used in spinor-helicity cal-
culations, and those used in SCET. We also demonstrate
that evanescent operators are not generated in our basis.

A. Generic matching

In this paper, we work to leading order in the power
counting, which means we only require operators that
contain exactly one field per collinear sector. That is,

PHYSICAL REVIEW D 93, 094003 (2016)

different n; in Eq. (42) are implicitly restricted to belong
to different equivalence classes, {n;} # {n;} for i # j.
Operators with more than one field per collinear direction
are power-suppressed compared to the respective leading-
order operators that have the same set of collinear direc-
tions and the minimal number of fields.

At leading order, the Wilson coefficients can thus be
determined by computing matrix elements of Eq. (46), with
all external particles assigned well-separated momenta, so
that they belong to separate collinear sectors. The only
helicity operator that contributes in this case is the one that
matches the set of external helicities, picking out the
corresponding Wilson coefficient. Since we only have
one external particle per collinear sector, we can simply
choose n; = p;/ p? in the matching calculation to represent
the equivalence class {n;}.

To compute the matrix element of £y,,.4, we first note that
the helicity operators are symmetric (modulo minus signs
from fermion anticommutation) under simultaneously
interchanging the label momenta and indices of identical
fields, and the same is thus also true for their Wilson
coefficients. For example, at tree level

(g4 (p1) g (p2)| 05220
1 - -
=3 [641815%2825(py — p1)6(Pa — pa)
- Pz)S(ﬁz - Pl)] (91)

so the tree-level matrix element of Ly 4 gives

+ §a1ba §a20 S(i’l

tree

(95 (P1)g (P2) ] Lharal0)
C{%(p1. pa)-
(92)

Y2 (P1Pa) + CE (P2 P1)] =

By choosing n; = p;/pY, the label momenta p; on the
right-hand side simply become p; =7 - p;n;/2 = p;.

Taking into account the symmetry factor in Eq. (43),
one can easily see that this result generalizes to more than
two gluons or quark currents with the same helicity.
In the case of identical fermions, the various terms in
the operator matrix element have relative minus signs due
to fermion anticommutation which precisely match the
(anti)symmetry properties of the Wilson coefficients.
Hence, the tree-level matrix element of L, is equal to
the Wilson coefficient that corresponds to the configuration
of external particles,

-gn— IQn“Chard|O>n.ee

— Ca]aZ Q1 Oy

(o) (Plvpz, .

(9192
(XX} i?n—l’ﬁn)' (93)

Here and below, g; = g% (p;) stands for a gluon with
helicity 4+, momentum p;, color a;, and analogously for
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(anti)quarks. From Eq. (93) we obtain the generic tree-level
matching equation

CLi (Prv e Pa) =

where A" denotes the tree-level QCD helicity amplitude.
Intuitively, since all external particles are energetic and
well separated, we are away from any soft or collinear
limits and so all propagators in the QCD tree-level diagram
are far off shell and can be shrunk to a point. Hence, the
tree-level diagram simply becomes the Wilson coefficient
in SCET.

The above discussion can be extended to higher orders in
perturbation theory. In pure dimensional regularization
(where € is used to simultaneously regulate UV and IR
divergences) all bare loop graphs in SCET are scaleless and
vanish. Here the UV and IR divergences precisely cancel
each other, and the bare matrix elements are given by their
tree-level expressions, Eq. (93). Including the counterterm
So(eyy) due to operator renormalization removes the UV
divergences and leaves the IR divergences. Schematically,
the renormalized loop amplitude computed in SCET using
Lhara 18

—1A™(g1...q,).  (94)

Ascer = /(<6T>tm + <5T>100p)ié =[l+ 50(€IR)]i6’
(95)

where we used that the loop contribution is a pure counter-
term and thus proportional to the tree-level expression. In
general, the counterterm &, is a matrix in color space, as we
will see explicitly in Sec. VIII and Appendix G. By
construction, the 1/¢ IR divergences in the effective theory,
Céo(er), have to exactly match those of the full theory.
Therefore, beyond tree level the matching coefficients in
MS are given by the infrared-finite part of the renormalized
full-theory amplitude, A,.,, computed in pure dimensional
regularization. The IR-finite part is obtained by multiplying
A,en by SCET MS renormalization factors, which cancel
the full theory 1/eR poles. Decomposing the renormalized
QCD amplltude in a color basis so that A% =

T Aren(gl .g,), the all-orders form of Eq. (94)
becomes

Cj_l(&_n) (ﬁl’ seey lbn) - _iAﬁn(gl‘“Z]n)
J— _1 Ta].”a”ZElArCIl(gl‘"Ql’l) 96
= an/zzng/z ( )

& A

The SCET renormalization factors Z, Z:, and Z, are
discussed in Sec. VIII A. At one-loop order this corre-
sponds to taking (—iAr,*) and simply dropping the
1/er terms. In Sec. IV B we will discuss in more detail
the use of different renormalization schemes to com-

pute Aren (gq .. Qn) :
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If the same color decomposition is used for the QCD
amplitude as for the Wilson coefficients in Eq. (52), we can
immediately read off the coefficients C in this color basis
from Eq. (96). As an example, consider for simplicity the
leading color n gluon amplitude, which has the color
decomposition (see Appendix A 3)

=igi~? Z tr[ T4

=N /Z

x ng (o(1). ..

where the first sum runs over all permutations o of n objects
(S,) excluding cyclic permutations (Z,). The A are the
color-ordered or partial amplitudes at i loops. Each is
separately gauge invariant and only depends on the external

momenta and helicities (p;+) = (i*). If we choose

A1 o T]

co(n),  (97)

TZI"'G” _ tr[Ta(yk(]).'.Tarfk(”):l’ (98)

as the color basis in Eq. (52), where o; is the kth
permutation in S,,/Z,, then the Wilson coefficients in this
color basis are given directly by

Cl)f]---ﬂz(i?l’ (RS} ﬁn)

= 23 g AL (0 (M), o (). (99)

where the subscript “fin” denotes the IR-finite part of the
helicity amplitude, as defined in Eq. (96). This is easily
extended beyond leading color, given a valid choice of
subleading color basis. Our basis therefore achieves seam-
less matching from QCD helicity amplitudes onto SCET
operators.

B. Renormalization schemes

In this section we discuss in more detail the issue of
renormalization/regularization schemes in QCD and in
SCET. In particular, the construction of a basis of helicity
operators discussed in Sec. III relied heavily on massless
quarks and gluons having two helicity states, which is a
feature specific to 4 dimensions. We clarify this issue here
and discuss the conversion between various schemes.

In dimensional regularization, divergences are regular-
ized by analytically continuing the particle momenta to d
dimensions. In a general scheme, the helicities of quarks
and gluons live in @9, d{ dimensional spaces respectively.
We shall here restrict ourselves to schemes where quarks
have two helicities, but 9 is analytically continued. This is
true of most commonly used regularization schemes,
but is not necessary [155]. Different schemes within
dimensional regularization differ in their treatment of a7
for internal (unobserved) and external (observed) particles.
In the conventional dimensional regularization (CDR),
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’t Hooft-Veltman (HV) [156], and four-dimensional
helicity (FDH) [157,158] schemes the internal/external
polarizations are treated in d/d (CDR), d/4 (HV),
4/4 (FDH) dimensions.

For helicity-based computations, the FDH scheme has
the advantage of having all helicities defined in 4 dimen-
sions, where the spinor-helicity formalism applies, as well
as preserving supersymmetry. Indeed, most of the recent
one-loop computations of helicity amplitudes utilize on-
shell methods and therefore employ the FDH scheme.
However, most existing calculations of SCET matrix
elements (jet, beam, and soft functions) use d-dimensional
internal gluons, corresponding to the CDR/HV schemes.”
As we will discuss below, CDR and HV are identical for
matching onto SCET.

Although the FDH scheme is convenient for helicity
amplitude computations, it leads to subtleties beyond NLO
[161,162]. As explained in Ref. [162], this discrepancy arises
due to the different number of dimensions for the momenta in
the loop integral and the spin space, leading to components of
the gluon field whose couplings to quarks are not protected
by gauge invariance and require separate renormalization.
Nevertheless, it has been shown that FDH is a consistent
regularization scheme to NNLO [160]. The presence of these
extra degrees of freedom in the FDH scheme is quite
inconvenient in the formal construction of SCET, especially
when working to subleading power. Because of this fact, and
because most SCET calculations are performed in CDR/HYV,
our discussion of SCET schemes will focus on regularization
schemes where the dimension of the gluon field and the
momentum space are analytically continued in the same
manner. We will also discuss how full-theory helicity
amplitudes in the FDH scheme are converted to CDR/HV
for the purposes of matching to SCET.

We will now describe how helicity amplitudes in the
FDH scheme can be converted to CDR/HV. To get a finite
correction from the O(e) part of the gluon polarization
requires a factor from either ultraviolet (UV) or infrared
(IR) 1/e divergences. Although the regularization of UV
and IR divergences is coupled in pure dimensional regu-
larization schemes by use of a common e, they can in
principle be separately regulated, and we discuss their role
in the scheme conversion separately below.

When matching to SCET, the UV regulators in the full
and effective theory need not be equal. Indeed, the effective
theory does not reproduce the UV of the full theory. In
massless QCD, scheme dependence due to the UV diver-
gences only affects the coupling constant through virtual
(internal) gluons. Therefore, the CDR and HV schemes
have the same standard MS coupling, a,(u), while FDH has

8Recently while this paper was being finalized, a calculation of
the inclusive jet and soft functions in both FDH and dimensional
reduction (DRED) [159] appeared in Ref. [160]. The conclusions
of this section agree with their study of the regularization scheme
dependence of QCD amplitudes.
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a different coupling, ofPH(u). The conversion between

these couplings is achieved by a perturbatively calculable
shift, known to two loops [23,158,163]

%) = a1+ G

+(Fa-2cmm ) (52 oo

This replacement rule for the coupling captures the effect of
the scheme choice from UV divergences. One can therefore
perform a matching calculation, treating a; in the full and
effective theories as independent parameters that can be
defined in different schemes. A conversion between
schemes can then be used to ensure that the matching
coefficients are written entirely in terms of a, defined in
one scheme, for example using Eq. (100). The issue of UV
regularization is therefore simple to handle in the matching.

The structure of 1/€* and 1/¢ IR divergences in one-loop
QCD amplitudes is well known, and allows one to
determine their effect on converting amplitudes from
FDH to CDR/HV. For a QCD amplitude involving n,
(anti)quarks and n, gluons the FDH and HV one-loop

amplitudes A are related by [23,155]

1 1 ag (1 n
A = A= 52 (e +7ea )0, qon

where A(°) denotes the tree-level amplitude, and the precise
scheme of the , entering here is a two-loop effect. At one
loop, the FDH scheme can therefore be consistently used
when calculating full-theory helicity amplitudes and results
can easily be converted to HV with Egs. (100) and (101) for
use in SCET Wilson coefficients.

We will now compare CDR and HV schemes for SCET
calculations and the construction of the operator basis. In
the HV scheme, all external polarizations are 4 dimen-
sional, so that one can use a basis of helicity operators, as
was constructed in Sec. III. However, in CDR external
polarizations are d dimensional, with the limit d — 4 taken.
In particular, this implies that one must work with d —2
gluon polarizations at intermediate steps, potentially
allowing for the presence of evanescent operators corre-
sponding to operators involving the additional components
of the gluon field, so-called e-helicities. However, we will
now argue that there is no real distinction between the two
schemes, and that one does not need to consider evanescent
operators in SCET at leading power.

First consider the Wilson coefficients and matching. In
the case of CDR, the operator basis must be extended to
include operators involving the e-helicities. However, their
presence does not affect the matching coefficients for
operators with physical helicities, since they do not
contribute at tree level and all loop corrections are scaleless
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and vanish. Additionally, in Sec. VIII, we will discuss the
fact that the SCET renormalization of the operators is spin
independent at leading power, and therefore there is no
mixing under renormalization group evolution between the
physical and evanescent operators. For the beam and jet
functions, azimuthal symmetry implies that the difference
between a field with 2 or 2 — 2e polarizations is simply an
overall factor of 1 — ¢ and thus can be easily taken into
account. The independence of the soft function to the
differences in the CDR/HV regularization schemes follows
from the insensitivity of the soft emission to the polariza-
tion of the radiating parton, which is made manifest by the
SCET Lagrangian and the fact that the soft function can be
written as a matrix element of Wilson lines. Thus there is no
difference between CDR and HV and the helicity operator
basis suffices.

V. HIGGS + JETS

In this section, we consider the production of an on-shell
Higgs + jets. We give the helicity operator basis and
matching relations for H + 0, 1, 2 jets, and the correspond-
ing helicity amplitudes are collected in Appendix B.

A. H + 0 jets

The ggH and gqgH processes contribute to the H + 0O jets
process. For ggH, the scalar current in Eq. (38) is required,
and the helicity operator basis is given by

ap __ qoff
0y = Ji5,Hs,

05 = (") oHs. (102)
with the unique color structure
T = (8,p). (103)

These operators are relevant when considering Higgs
decays to massive quarks, for example H — bb.
However, we will not consider this case further since for
Higgs production the bbH and ¢7H contributions are much
smaller than the dominant gluon-fusion hard scattering
process.

For ggH, the basis of helicity operators is given by

1
Oiﬁ - EB?+B}27+H3’

1
0% = 537_33_}13. (104)
The operator O, _ is not allowed by angular momentum
conservation. Similar helicity operators, extended to
include the decay of the Higgs, were used in Ref. [164].
There is again a unique color structure for this process,

T = (§%). (105)
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Writing the QCD helicity amplitudes as

A(g19:H3) = 161"A(1,2;3y), (106)
the Wilson coefficients for ggH are given by
Cy(P1, P2 P3) = Amn(17,2%:3p),
C__(P1.P2; P3) = Amn(17.27:3p). (107)

The subscript “fin” in Eq. (107) denotes the IR-finite part of
the helicity amplitudes, as discussed in Sec. IV. Note that
the two amplitudes appearing in Eq. (107) are related by
parity. The results for the gluon amplitudes up to NNLO are
given in Appendix B 1. They correspond to the usual
gluon-fusion process, where the Higgs couples to a (top)
quark loop at leading order. The LO amplitude including
the dependence on the mass of the quark running in the
loop is well known. The NLO amplitudes are also known
including the full quark-mass dependence [165—169], while
the NNLO [170-172] and N*LO [70,71] amplitudes are
known in an expansion in mg /m,.

B.H +1 jet
The gqgH and gggH processes contribute to the H + 1
jet process. For ggqg, the basis of helicity operators is
given by

aaff
Oy =

Oio(ﬁ) = Bf_]g§+H4,

af
1123 Ha,

aaf a  7op
0+(/_) = 81+J2é_H4,
0V = Bi_JS _H,. (108)

Note that we consider only QCD corrections to the ggH
process, so the gg pair is described by J;;.. For ggg, the
helicity operator basis is

1
oY, = QBLIZ+8127+B§+H4’
1 :
Oibi— ) 61l+Bg+B§—H4’
1
0dbe, = EB?_BS_B§+H4,

1
0 = 586;_83_35_114. (109)
For both cases the color space is one dimensional and we
use the respective color structures as basis elements

Tl = (To5), T =(if").  (110)
In principle, there could be another independent color
structure, d**¢, for gggH. The gggH operators transform

under charge conjugation as

094003-17



MOULT et al.
Coglb/lczzh (i’l, ]~72, i)3; i;4)TabcC
_Oi-lhjaz,l} (131’ 132, ﬁ3; 1~74)T“hc,

(111)

Charge conjugation invariance of QCD thus leads to

C4be  (Br Pa ot Pa) = —C5h4, (Br. Bas i py). (112)
which implies that the d**¢ color structure cannot arise to all
orders in perturbation theory, so it suffices to consider if ¢
as in Eq. (110). This also means that the d“*¢ color structure
cannot be generated by mixing under renormalization group
evolution, which will be seen explicitly in Eq. (259).
Using Eq. (110), we write the QCD helicity amplitudes as

A(g19293H4) = i(if1%2%)A(1,2,3;4y),
A(glq263H4) ITZ;(I'; (192qv 3q94H>'

The Wilson coefficients for gggH are then given by

(113)

Aﬁn(1+’2q’3q, )

Aﬁn(l_’2q73q, )

i P2 D3 Pa

s P2s P33 Pa) = Ci1) (P13 P3» P23 Pa)s

(+)(P1 ) =
( i D2+ D33 Pa)
(- (P1 ) =
() (P ) =

P15 D2 P35 D4 (Pl,P%Pz,}M) (114)

where the last two coefficients follow from charge con-
jugation invariance. The Wilson coefficients for gggH are
given by

Cova(pr. Par 3 Pa) = Ap(17.27.3%14y),

Coas(Pr. Pa. P3: Pa) = Ay (11,27, 3714y),

5 +( . D2y P33 Pa) = ++—<ﬁ1’]~)2’i)3;134)|<‘.)<—>[..]’
——(P1: P2 P33 P4) = +++(1~’1,572713321774”{..)9[..]’

(115)

where the last two relations follow from parity invariance. As
before, the subscript “fin” in Egs. (114) and (115) denotes
the finite part of the IR divergent amplitudes. The NLO
helicity amplitudes were calculated in Ref. [32], and are
given in Appendix B 2, and the NNLO helicity amplitudes
were calculated in Ref. [173]. Both calculations were
performed in the m, — oo limit. At NLO, the first correc-
tions in m%/m? were obtained in Ref. [174].

C. H +2 jets

For H + 2 jets, the ¢qq'q'H, qqqqH, ggqqH, and
ggggH processes contribute, each of which we discuss in
turn. Again, we consider only QCD corrections to the ggH
process, so gg pairs are described by the helicity currents
Jij+- The LO helicity amplitudes for H + 2 jets in the m;, —
oo limit were calculated in Refs. [31,175] and are collected

PHYSICAL REVIEW D 93, 094003 (2016)

in Appendix B3 for each channel. The LO amplitudes
including the m, dependence were calculated in [176] (but
explicit expressions for ggggH were not given due to their
length). The NLO helicity amplitudes were computed in
Refs. [33,34,177-180].

1. q4q9'q'H and qqqgH

For the case of distinct quark flavors, qgq’'qg'H, the
helicity basis consists of four independent operators,

O?iyi) =J %ZJ y§34+H 5
(R
O?ﬂﬁ) =J Z/ljz—J 7@4+H 5
O = I, I, _Hs, (116)

where the additional labels on the quark currents indicate
the quark flavors. For the case of identical quark flavors,
qqqqH, the basis only has three independent helicity
operators,

. 1 - -
) )
o7 = ZJT§+J§4+H5’
S S
O?f.y) = J?ngngt—Hs’
1
0?{”_5) Zﬂﬁ J? _Hs, (117)

since both quark currents have the same flavor. In both
cases we use the color basis
T = 2T (8,56 5. 6,30,5)- (118)
The QCD helicity amplitudes for ggq'g’'H can be color
decomposed in the basis of Eq. (118) as

A(‘]lzl2q/36_1£1H5) - 21TF 5011&4501365214(1(], 2q’ 3q 14q ,SH)

1
+N5a](}26a3(}4 (14:2334.4735u) |+

(119)

where we have included a factor of 1/N for convenience.
The amplitude vanishes when the quark and antiquark
of the same flavor have the same helicity, in accordance
with the fact that the operators of Eq. (116) provide a
complete basis of helicity operators. For identical quark
flavors, ggqgH, the amplitudes can be obtained from the
qGq' g’ H amplitudes using the relation

— A(q19495'3,'Hs).
(120)

A(91929394H5) = A(q13295'G4'Hs)

The Wilson coefficients for ggq’'g'H are then given by
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-

-

Ci—.y(P1 P25 P3» P43 Ps)

Ci—)(P1: P23 P3+ P43 Ps)

Cli:1)(P1s P23 P3. P4 Ps) = (

C(Jr;_)(ﬁI’ ﬁZ;i)TM f]43 Z’S) = (

Am(15.27:35.47:50)
LB, (15,25 137, 4-,,5H))’

q’ q’
Aﬁn(1;,2q73 4j75H) )
%Bﬁn<1(—]~_’2q’3 /,421/;5[.1)

= C(4.-)(P2, P15 Da» P33 Ds)

and for ggqgH they are given in terms of the amplitudes Ag, and By, for qgq'g'H by

Aﬁn(1+ 2

-

Cii1y(P1s P23 P3» Pas Ps) = <

C(+—)(l~’1,1~72§l~73,l~74§i’5) = (

C(——)(i’l,ﬁz;ﬁy D43 [35) = 6(++

The relations for 5(_;i> and 6'(__) follow from charge
conjugation invariance. Note that there is no exchange term
for C (+—)» since the amplitude vanishes when the quark and
antiquark of the same flavor have the same helicity (both +
or both —). Also, recall that the symmetry factors of 1/4 in
Eq. (117) already take care of the interchange of identical
(anti)quarks, so there are no additional symmetry factors
needed for 6‘< ++)- Explicit expressions for the required
amplitudes at tree level are given in Appendix B 3 a.

2. ggqqH

For ggqgH, the helicity basis consists of a total of six
independent operators,

Oibff = B“ 32+J34+H5’
ot - 5y,
O‘ib_gzﬂ = —Ba By J g4ﬁ+H5’
07, = 5 BB SY_Hs
0"~ By By I Hs,
Oib_ozﬂ _ Ba B J%lff Hs. (123)
We use the color basis already given in Eq. (61),
Fabap _ ((TaTb)aﬁ’ (TbTa)aﬁ’ tr[T“Tb](sa[;)- (124)

Using Eq. (124), the color decomposition of the QCD
helicity amplitudes into partial amplitudes is

%Bﬁn(l+ 2
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= C1(+;+) (P2, P15 Pas P35 Ps) (121)
q 4’3;’44’5H)_%Bfin(13,4q,3;,2q,51q))
733447:50) — Am(15.47:34.27:50) )
An(15.27537, 45 5)
ﬁBﬁn(w,ZqﬁqA;,SH))
) (P2, P13 P4» P33 Ps)- (122)
|
A(91929394H5)
:iz[Taa<1>Taa<2)]a3&4A(a(1) (2),3q,4q,5H)
€3,
+ [T T)6,,5,B(1.2: 35,44 5p). (125)

The B amplitudes vanish at tree level. From Eq. (125) we
can read off the Wilson coefficients,

( q+47:5m)
Coy(Pr. Pai 3. Pai Bs) = | Am(27.17337,47:54)
Brn(17,27335,47:5p)
A(17,273 37, 47:5)

6++(+)(131,I32;ﬁ3»1342135): A (27, 1+’3;1r’4q’5H> ’
Brn(1%,2%: 35,473 5)
Agn (17,27 ,3;,4q,5H)
5_—(+)(1~)1’}~72;1~7371~?4;I~75): Aﬁn(z— 1_’3q’ ' )
Bin(17,27:37,47:54)

(126)

Agn(17,27:3F

The Wilson coefficients of the last three operators in
Eq. (123) are obtained by charge conjugation as discussed
in Sec. IIIE. Under charge conjugation, the operators
transform as

COab ( )(p17p2a p’;,p4,p5)TabaﬂC

= 02/12( )(P17P2ap4,P3,P5)Tabaﬁ (127)

so charge conjugation invariance of QCD implies
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CMz(—) (1317132;133,134;135) = ‘A/C,llllz(+)(1~91,I~72;1~74,l~73§1’35)

0 -1 0
with V=1-1 0 0 (128)
0 0 -1

Explicit expressions for the required amplitudes at tree
level are given in Appendix B 3 b.

3. ggggH

For ggggH, the helicity basis consists of five independent
operators,

abed a b c d
ot = L ge By, B, B, s,
1
abed  __ a b c d
Ot = 2 BY, By, By BLH,

1
Oabfﬂ_l_ = Z B‘lerBlz’Jng_Bff_H&

0dbed, = !B‘l‘_B’z’_Bg_Bﬁ+H5,
1
0dbed = 4—!8?_83_85_82_115. (129)
We use the basis of color structures
trlabed] + trldcbal\ T
trlacdb] + tr[bdcal
_ 1 trladbc| + tr|cbda
Tabed — { ] [ ] , (130)
22T 2tr[ab]tr[cd]
2tr[ac]tr[db]
2tr[ad]tr[bc]
where we have used the shorthand notation
tr[ab] = tr[TeT?], trlabed] = t[TTPT<T4]. (131)

Note that the three independent color structures with a
minus sign instead of the plus sign in the first three lines in
Eq. (130) can be eliminated using charge conjugation
invariance; see Sec. VII A 3.

The color decomposition of the QCD helicity amplitudes
into partial amplitudes using the color basis in Eq. (130) is
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A(91929394H5) =

x A(o(1),0(2),0(3),0(4); 51)

o(4):5x) |-

(132)

where the B amplitudes vanish at tree level. From Eq. (132)
we obtain the Wilson coefficients,

2A5,(17,27,37,47;5y)
2A5,(17,37,47,27;5y)
Coreelpropapanpuis) = | 2035

’ Bgn(11,21,37,47;5y)
Bin(17,37,47,2%:5y)
B (17,47,27,37:5y)
2A5,(17,27,37 47;5,)
2A5,(17,37,47 27 5,)
2A5,(17,47,27,37;5y)
By (17,27,37.47:5,)
Biin(17,3%,47,27;5y)
Biin(17,47,27,3%;5,)
2A5,(17,27,37 47 5,)
2A5,(17,37,47 27:5,)
2A5,(17,47,27 37:5,)
Biin (17,27,3%,4%:5y)
B (11,3%,47,2%:5y)
B-n(l+ 4727 3%,5,)

C+++—(ﬁlvi)27ﬁ3’i)4;ﬁ5) =

C++++([~71’f)2’ﬁ3’ ﬁ47ﬁ5) =

9p5) ++-\P1>- ’p5)| (el

pl"";i) ) 7p5)| ()<l

(133)

(P
C++++( Dis-

AL
I

I
/I\

The last two coefficients follow from parity invariance. The
factors of two in the first three entries of the coefficients
come from combining the two traces in the first three
entries in Eq. (130) using charge conjugation invariance.
Because of the cyclic symmetry of the traces, the partial
amplitudes are invariant under the corresponding cyclic
permutations of their first four arguments, which means
that most of the amplitudes in Eq. (133) are not indepen-
dent. Explicit expressions for the necessary amplitudes at
tree level are given in Appendix B 3 c.
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VI. VECTOR BOSON + JETS

In this section, we give the helicity operator basis and
the corresponding matching for the production of a y, Z,
or W vector boson in association with up to two jets.
The corresponding helicity amplitudes are collected in
Appendix C.

We work at tree level in the electroweak coupling and
consider only QCD corrections, so any external gg pairs are
described by the helicity vector currents J;;;. in Eq. (37).
We always include the subsequent Ileptonic decays
v/Z = €, W* = vf/¢D. In the following, for y/Z proc-
esses, ¢ stands for any charged lepton or neutrino flavor,
and ¢ stands for any quark flavor. For W processes, we use
¢ to denote any charged lepton flavor and v the corre-
sponding neutrino flavor. Similarly, we use u and d to
denote any up-type or down-type quark flavor (i.e. not
necessarily first generation quarks only).

The operators in the helicity bases satisfy the transforma-
tion properties under C and P as discussed in Sec. IITE.
However, the weak couplings in the amplitudes explicitly
violate C and P. Therefore, to utilize the C and P trans-
formations of the operators and minimize the number of
required amplitudes and Wilson coefficients, it is useful to
separate the weak couplings from the amplitudes.

We define P, and Py as the ratios of the Z and W
propagators to the photon propagator,

N

Pzw(s) = (134)

_ S
s =mzw +ilzwmzw

The left- and right-handed couplings v, ; of a particle to
the Z boson are, as usual,
2T —20'sin*0y
L= sin(20y)

i

20'sin’0y,
sin(260y) °

(135)

where T} is the third component of weak isospin, Q' is the
electromagnetic charge in units of |e|, and @y, is the weak
mixing angle.

The y/Z amplitudes can then be decomposed as

A(...£7)

= (001 + Ll aPrls A, 07)
Enf: boi 1 r VLT Uk -
+ 00 + VLR > PZ<SKE) Ab(ff)
i=1

¢

ﬁPZ(W;)Aa(..f%)}.

(136)
Here, A, corresponds to the usual contribution where the
vector boson couples directly to the external quark line with
flavor g. (There is one such contribution for each external

PHYSICAL REVIEW D 93, 094003 (2016)

qq pair, and this contribution is absent for pure gluonic
amplitudes like gggZ.) For A,, the y/Z couples to an
internal quark loop through a vector current and the sum
runs over all considered internal quark flavors. For A, the
Z boson couples to an internal quark loop through the axial-
vector current. This means that when using parity and
charge conjugation we have to include an additional
relative minus sign for this contribution. We have also
made the assumption in Eq. (136) that all quarks, except for
the top, are massless. Since 4, vanishes when summed
over a massless isodoublet, this has the consequence that
only the b, t isodoublet contributes to A, hence the lack of
sum over flavors. We have made this simplification
following the one-loop calculation of Ref. [14], which
calculated the amplitude in an expansion in 1/m?, assum-
ing all other kinematic invariants to be smaller than the top
mass. From the point of view of constructing a basis these
assumptions are trivial to relax.
The WT amplitudes can be written as

Alott) = Vi (50) A, (...675)
= Zsin26W w\S¢p g\~ .
_ eZVTd _
£t = u 2 £t
Al E7) = 5o Py(s,2) Ayl 72, (137)

where V, is the appropriate CKM-matrix element. The A,
amplitudes are the same in Eqgs. (136) and (137), since all
electroweak couplings have been extracted, but we have
explicitly included the helicity labels (not to be mistaken as
charge labels) to emphasize that these are the only possible
helicities. The analogs of A, and .4, do not exist for W
production.

We note again that Eqs. (136) and (137) hold at tree level
in the electroweak coupling, which is what we consider in
this paper. At this level, the leptons always couple to the
vector boson through the currents [see Eq. (A19)]

(Petlr”|pet) = (pzFIr|psF)- (138)
This allows us to obtain the Wilson coefficients for opposite
lepton helicities simply by interchanging the lepton
momenta.

A. V40 jets

For y/Z + 0 jets, the partonic process is ¢g/7, and the
basis of helicity operators is

af  _ jaf
0?+;i) - JZ]2+JK34j:’

Oaf;i) = J(Zfz—ffmr (139)

(

In principle, the process gg/7 is allowed through the axial
anomaly, but its contribution vanishes because in the
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matching calculation the gluons are taken to be on shell,
and we neglect lepton masses.

For WF 4 0 jets, the partonic processes are ud¢v and
duvt, respectively. Since the W only couples to left-handed
fields, the helicity basis simplifies to

O?vﬂw) = JZ{;IZ—JZ%M—?

0( ) - JdulZ Jw/a34_. (140)

Here, we have explicitly written out the flavor structure of
the currents. However, we use the shorthand subscript
(W¥) on the operators and Wilson coefficients, since we
will not focus any further on the flavor structure. In an
explicit calculation, one must of course sum over all
relevant flavor combinations.

The unique color structure for V + 0 jets is

T = (6,3), (141)
and extracting it from the amplitudes, we have
Aqba(Ql‘]ZK?{4) 5ala2Aqva(1q’2q’3f’42)' (142)

Here, A, and A,, first appear at two loops. In addition, A, is
proportional to the top and bottom mass splitting due to
isodoublet cancellations. It drops out when both top and
bottom are treated as massless (e.g., when the matching
scale is much larger than the top mass).

We use the same electroweak decomposition as in
Eqgs. (136) and (137) to write the Wilson coefficients.
For y/Z + 0 jets, we have

C(,i,,;/lf) (P1> P25 P3» P4)

= {1001+ 18 Pass i)

e , vh + >
+ 21: [QKQ’ + vﬁ; L 5 R Pz(334)] Coiyn) ()

¢

4 .
+mpz(sﬂ)cauq;m(m)}, (143)

where the weak couplings are determined by the helicity
labels of the quark and lepton currents,

vl =],

(144)

vy = Uk,

For W + 0 jets, we simply have
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2
~ ~ ~ ~ ~ e Vud
Cow-)(P1» P23 D3+ Pa) :m

2y 1
eV,
2sin26'W

PW(534)C61(—;—)(~-)7

Ql
/\
\_/

5(W+)(l31 . D23 D3 Pa) = w(s34)Cy

(145)

In all cases, the momentum arguments on the right-hand
side are the same as on the left-hand side. Note that the

-

Cy(—.-) coefficient is the same in all cases. The Wilson
coefficients are given by

Axﬁn( q- q’3;’4 )

Cy(411)(P1. P23 Da» P3)s

2 D3 P4

1D
Cx(+ -) D1 D2 D3 P4

C (p2 p19p37p4)

) =
) =
Pa)
4) +)(P2s P13 P3s Pa)s

(146)

where x = ¢, v, a and as discussed in Sec. IV the subscript
“fin” denotes the IR-finite part of the helicity amplitudes.
The second relation follows from Eq. (138). The last two
relations follow from charge conjugation invariance. At tree
level and one loop only C 4 receives a nonvanishing
contribution. The A, amplitude is given in Appendix C 1.

B.V +1 jet

1. gqqV

For y/Z + 1 jet, the partonic process is ggg£¢, and the
basis of helicity operators is

W
0%, 4 = BiJ 323+J #4545
sz/i;ﬂ = B{ T T eass.
O o) = BT pass.

Oa_rzlii) = B?_Jq23_ff45i- (147)

For WF 4 1 jet, the partonic processes are gudfv and
gdiv?, respectively, and the helicity operator basis is

Oi%r = Bi.J gfm—J f145—>
Oiaﬂ =Bi, Zuz'; Joeas—. (148)
The unique color structure for gggV is
T = (Tgp). (149)

and extracting it from each of the amplitudes, we have
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Ax(gﬂz(_hﬁzs) ITZ;U!@ ( ; q, 3 q,4f, 5 f) (150) where the weak couplings are determined by the helicity
labels of the quark and lepton currents,
where the subscript x stands for one of ¢, v, a.
As for V + 0 jets, we write the Wilson coefficients using
the electroweak decomposition in Eqs. (136) and (137). For v, = v%, v. =y, vy = Vg, ve = v},
v/Z + 1 jet, we have

(152)
Citage) (P13 P2. D3 P4. Ps)
5 p ;4 - For W + 1 jet, we have
=e {[Q Q1 + 5, v, P7(545)|Coaa0,) ()
¢ i UL+ R pt o 2V() N
+ Z[Q Q'+ PZ(S45):| Cuatagan () Cyw)(...) = 550 Py (s45)Coa(—r(--.).  (153)
w
vl
+7P (S45)Ca“ ) (- )} (151)
sin(20y) ’ g The Wilson coefficients are given by
|
x+ ( i)27 ]33;ﬁ4v pS) Axﬁn(1+>2j]_’3q’4+ 57)
Coa+ ( s P2y P35 Pas Ps) = Cx,1 (P13P27P3aP5,P4)
qM ( s D2s D33 P4» Ps) = Cq vA +i)(1~?1;1~?37i’2§l~74»1~75)’
(Pl,Pz,P%PmPS) Cai (Pl,P3,P2,P4,P5) (154)

The second relation follows from Eq. (138), and the last two relations follow from charge conjugation invariance. The
Wilson coefficients with a negative helicity gluon follow from parity invariance,

-

Cygo(+:4) (P15 P25 P35 Pas P5) = Cyui (=) (P13 P2y P35 Pas P3|yl s

Ca—(+;i)(i’l;l~72’1~73;l~74’ ps) = _Ca+(—;$)(i)l;i72’l~73;l~74’ 135)|<..><—>[4.]- (155)
|
The helicity amplitudes for ggg/¢ were calculated in The color space is two dimensional. We use the basis
Ref. [11,12,181]. We provide the tree-level and one-loop
results in Appendix C 2. The two-loop amplitudes were Tabe = (jfabe  qabe), (157)

computed in Refs. [182,183].

in terms of which we can write the ggg/Z amplitudes as

2. gggV
The partonic process ggg/Z first appears at one loop, and Ay (G1G2G3C4C5) = id“ 25 A,(1,2,3:4,,57),
thus contributes only at relative O(a?) to y/Z + 1 jet. Ad(9192956475) = i(if9®)A,(1,2,3:4,,55).  (158)

Nevertheless, for the sake of completeness (and
iosit briefly di it here. The helicit t
Ezzli(;s;sy) we Diietly qisctiss 1t ere. 2he helclly operator We will justify shortly that to all orders, only a single color

structure appears for each of A, A,,. This process can only
occur via a closed quark loop, so there is no A, contri-
Oibfﬂ §31+B'§+B§+J £45+> bution. The gggV operators transform under charge con-
1' jugation as
Oj_b_f_( - = Btll Bg+B§_Jf45iy

Coj{,fg (f?111~72,1~?3§i’4»l~75)T”hCC
Oabc Ba B B J 2A3(%)
—— 5 B3 45+, . S~~~ < NFabe
e o = 0%, ) (P1. P2 P3i Ps. pa) T, (159)
0 58?_8’2’_85_@4&. (156)

Charge conjugation invariance of QCD thus leads to
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Cg,lflczz/h(i) (f’h P2s P35 D4 i’s)

__ (cha

= C () (P1: P2. P33 Ps. Pa)

__ (cha

= Cy,11,12,13(i)(131,]~72,I~73;I~7471~75)a (160)

where we used Eq. (138) in the last line. This implies that to
all orders in the strong coupling, only the fully symmetnc

color structure d“*¢ can contribute to A, and C »- For C the
same relation holds but with an additional minus sign on
the right-hand side due to the weak axial-vector coupling
in A,. This implies that for A, and éa only the fully

antisymmetric color structure if’° contributes, as given
in Eq. (158). B
We decompose the gggZ¢ Wilson coefficients as

Cornnis(2s)

s i i
. v; +0v -
- ez{Z{Qle +of, =+ > RPZWS)} Coans ()

i=1

4
i -
+W/HW)PZ(S45)CMV12M(/1/)}’ (161)

where

(162)

and we have

-

Cvl]/12/13(+)(1~71 , P2, D3} D4, Ds)

0
B (Av’ﬁn(llll’sz’ 313;4;7 5§)>’
Callﬁz/h(Jr) (ﬁl’pz, [33;134’}35)
<Aa’ﬁ“(”"%,313;4;,55))
= . |

-

Cv,al,ﬂ.y{;(—) (ﬁl s i)Z’ ﬁ3; 134’ ﬁS)

= C1/‘.ai|/12l3(+) (P1: P2s P33 D5 Pa)- (163)
For brevity, we have not written out the various gluon
helicity combinations. The one-loop amplitudes for gggZ
were calculated in Ref. [184], and the two-loop amplitudes
were computed in Ref. [185]. Since their contribution is
very small we do not repeat them here.

C. V42 jets

Here we consider the processes ¢'q’'qqV, qgqqV, and
g9qqV. The ggggV process is allowed as well, but only
arises at one loop, so we do not explicitly consider here. It
can be treated similarly to gggV, but using the gggg color
basis analogous to that for ggggH given in Eq. (130).
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The NLO helicity amplitudes for V 42 jets were
calculated in Refs. [14,186] assuming that all kinematic
scales are smaller than the top mass m, and including the
1/m? corrections. We give the full expressions for the LO
results in Appendix C 3. Since the NLO results are rather
long, we do not repeat them, but we show how to convert
the results of Refs. [14,186] to our notation.

1. 4'q'qqV and 9493V
For ¢'g'qg¢¢, the helicity operator basis is

apys afp

0(++:t) Jq 12+Jq34+Jf56i*
apyd _ qop 70

Oimm) = T4 gaa s
aprs  _ qap

O ) =g Jq34+~]f56:tv

O(x[fy&

7 ) =TT 5o (164)

For identical quark flavors, ggqg£Z, the basis reduces to

afyo y
O(-/‘Z- :i:) 4 Jq12+‘]};34+‘]f56j:a
afyd a
O ) = T T s
1
apyd
O(f}: :t) 4 q12—‘]q34 JfSGi (165)

For W + 2 jets, the corresponding partonic processes are
qqud(y and qgduv?, and the helicity operator basis is

apys 75
O?ﬁw-) =J leizij £d34—‘l 2v56—1
apyd _ qop 76
O(ﬁ:};/Wﬂ JqIZiJZuM—JW”%— (166)
We use the color basis
ToPré = 2TF(6a56y/-,,, 5{1/}5},3). (167)

For distinct quark flavors, the color decomposition of the
amplitudes in this basis is

A(9)'3) 4394¢5%6)
:2TFi(Sa]5,46a3[,7A (lq”zq’ q° q75f?6f)
1
—I—ZTFié‘a]az(Sa}mNBx(l /,2 3q, q,5f,6;). (168)

For identical quark flavors the amplitudes can be obtained
from the distinct flavor amplitudes using

= A(41329334¢5%6)
— A(413493G:¢5%6).

A (91329334¢5%5)
(169)

where it is to be understood that the electroweak couplings
of ¢’ must also be replaced by those of g.
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Writing the Wilson coefficients in the decomposition in Eqs. (136) and (137), we have for the ¢'§'qg£¢ channel

-

C(Aq/;ﬂq;m(i’hl~72§f7311~74§l~75,l~76) {[Qqu + U,{ Ug Pz(sss)] q(hyshgie) (P1> P25 P3» P4 Ps» Pe)

+[0707 + Uffvzq,Pz(Sss)]C (1y4,1:,)(P3+ Pa P1s P23 Pss Do)

q"q

-

I v+ v
+Y 1070+, P7(s56) | Cots,piagia) (-

i=1 2
a -
+ mpz(ssﬁcauql;aq;m(---)}7 (170)
with the weak couplings
v = v, vl =], vl = v}, vl =i, (171)

The same decomposition is used for the case of identical flavors, gggg#¢. For the W¥ channels, qgud¢v and ggdave,
we have

(1)
62 Vud
2sin’0y

6(zq;w*)(---) = PW(SSG)éq(/lq;—;—)("')' (172)

The coefficients for ¢'g'qgV are given by

A, fin( 2/,3>;r,44,5+ 62) )
) )

xtm 1+ 2-153;,4q,5+ (5

Cx(+;+;+)<p~lv P~2§P~37 P~4;P~5, p6 <
xﬁn 2"’3 5 _)
<1
N

q°7q>

By gin( ,,2,,3 4+ 5% 6—)>’

qr g

A

x(H—1+) (P1> D23 D3 Pas Ps» Do)

1

P23 P3s P45 Pss P x(++) (Pl,P2§P3,134§1~?6,135)»

- (P
( s P25 D3> P45 Ds» De —Cyo(ti- i)(ﬁz,ﬁl;ﬁ4’l~73§l~757l~?6)’

Ca (Pz P15 D4 P35 Pss P6)

_,

C ++i)(132»ﬁ1;154,‘53;ﬁ57p6),

_,

) =
) =

+)(P1s P23 P3s Pas Ps» Ps)
——i( . P2 D3s P43 Pss Do) =
Cucmit) (P ) =

. P25 P3. P43 Ds» De a(+i+:£) (Pz,i’1§l~?4,l~93;l~75’1~76), (173)

and for ggqgV they are given in terms of the amplitudes A, 5, and B, g, for ¢'g'qgV by

q°>=q>7q° 'q° 4’ 'q°>74°>7q>

B x fi
15.25:37.47:55.65) — A mn(15.47:37.27:55.63)

x,fin
15.27:3; 4*5*6—))
) bl

(A”m(ﬁ 27:35.47:55.63) =y Bamn(14,47:35 . 27357, 6?)>
N B

<Axfin( 3:27:35,47;
C

Cy(44140)(P1. P23 P3» Pas Ps» Pe) =
)

(

Cx(+_;+)(131,132;1~73,1~?4§1~75,136 =\
N

Cx(+i;—)(l~?1,132;133,134;135,136) = x(+i;+)(P1yp2;P3,P4;P6’P5),

N

Cyov(——it)(P1s D23 D3+ Pas Pss Ps) = —Cyu(r4:2)(P2s P13 Pas P33 Ps Ds)
Ca(——;i)(i)l’i’z;ﬁ3’ﬁ4;l~)5’ﬁ6) = Ca(++;¢)(l~’2’f?l;f?4»f73§l~75’1~76)- (174)
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The various relations for the coefficients with flipped
helicities follow from Eq. (138) and charge conjugation
invariance. The tree-level helicity amplitudes are given in
Appendix C 3 a.

2. ggqqV

For ggqgt’?, the helicity operator basis consists of 12
independent operators,

bap b b
Oif(+ %) 61l+Bz+J 334+J £56+>
bap b b
O )= —B‘thJ wa—d 5615
baf 7
Oi a(/ = B BS— Z34+Jt’56¢7
Oib_aﬂ =By B5_J 234_1 /56
bap b ap
0y = —B?—Bz_f g es6ts
o B“ BLJ%, J 175
——(=:%) ~ q34—+ 56+ ( )

For W, the corresponding partonic processes are ggud£v
and ggduv?, and the helicity operator basis reduces to six
independent operators,

baf ap _
Oif(W‘ _Btf+Bz+J aasa—I 756
b
Oj— aﬁ BLIZ+B2 ud34—‘]fu56—
b 3
Oi—ogv _Ba Bz— ud%4—J 562
bap ap
Oif(WJr - Ba B2+ du34— Joese—s
b)z} 1
Oi i - Ba 812’— {du%4 Joes6-»
ba a a
0“__‘1(ﬁw+) = EBI—BS— Zu34 Joes6-- (176)
We use the color basis
Tabaf — ((TaTh)aB’ (TbTa)aB’ tr[T“T"]éal-,), (177)

and the amplitudes are color-decomposed as

A (9192938458 6)
=iy [Te0T0)], o A(0(1),0(2);34.44:5.67)

cES,

F [T T%)5, 4 B (1,2:3,,44:5.,67). (178)

Writing the Wilson coefficients in the decomposition in
Eqgs. (136) and (137), we have for the ggqq¢ channel
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Cxlzz(zq;af)(f?lvf?z;f’& P43 Ps» Do)

= {10107+ 1£,0 PolosolCopiigio ()

i i VLV >
+Z Q0"+, > P7(556) | Coaaa(aga) ()
p

Uf
+sz(s56) aidy (4, ,1!,)(...)}, (179)
with the weak couplings
’Uf— = ’U]f;y "ﬂ i 'UZ_ = /U;]?’ 1}61 — ’UZ.
(180)

For the WT channels ggud¢v and ggdive, we have

62 V(ﬂ N

2sin29dW Py (556)Cyaip(——) (---)-

Conyowe) (o) = (181)

The coefficients for ggggV are then given by

Criin( +)(P1,P2,P3 P4 Ds» Pe)
(1/11 2% 3;1,*,4,1,5Jr 6?)

+
Ak
— | Acm(22 130 .47:50.63) |,
B

xfm(ﬂl 237 ,47:57.63)

C)dl/lz (+:—

-

y(P1- Pas D3 Pas Ps» Do)

= Cxdd(+4) (P1+ P23 P3» Pas Pe» Ds)- (182)

The remaining Wilson coefficients are obtained by charge
conjugation invariance as follows:

Cq.mlaz(—;i)(i?l . P23 D3. P43 Pss De)

= ‘A/Cq,vl]iz(—&-;:t)(ﬁl’ P2 Pas P33 Pss De)s

-

Cazlﬁz(—;i)(f’hf?z;f%’l~74§l~75,l~76)
= —VCopi,(+:+)(P1. P23 Pa. D3 Ps Do)
010
with V=11 0 0 (183)
0 0 1

The tree-level helicity amplitudes are given in Appendix C 3 b.

VIL pp — JETS

In this section, we give the operator basis and matching
relations for pp — 2, 3 jets. We consider only the QCD
contributions, so that quarks only appear in same-flavor
quark-antiquark pairs with the same chirality, and so are
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described by the currents J;;,.. The helicity amplitudes for
each channel are given in Appendix D.

A. pp — 2 jets

For pp — 2 jets, the partonic channels ¢gq'q’, qGqq,
qq499, and gggg contribute. We will discuss each in turn.
The one-loop helicity amplitudes for all partonic channels
were first calculated in Ref. [23]. The tree-level and one-
loop results are given in Appendix D 1. The two-loop
amplitudes have also been calculated, and can be found in
Refs. [187,188] for gggg, Refs. [189-192] for g34'q’, qGqq
and in Refs. [193,194] for gggg.

1. q3q9'3' and q4qq
In the case of distinct quark flavors, ¢gq’g’, the helicity
basis consists of four independent operators,

O?fyi) =J Z[f2+J y§34+*
O?fff) =J Zfﬂ] "
OL) =TI s
O = I I (184)

For identical quark flavors, ggqg, the helicity basis only

has three independent operators,
o L g
(++) — 4 12+ 344>

afyd af 76
02+y) = J12+J§4—
Oaﬂﬁ —

—) "1 J12—J34—

(185)
Here we have not made the flavor label explicit, since both
quark currents have the same flavor. In both cases we use

the color basis
|
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T = 2T (8,56 5. 8,430,5)- (186)
The QCD helicity amplitudes for ¢gq’g’ can be color-
decomposed in the basis of Eq. (186) as

25:3,,4

A(913295@) = 2T p1|64,3,00,a,A(14. 25:

1
+ﬁ5a1a2 a3y (lqv2q>3 4 )

(187)
where we have included a factor of 1/N for convenience.
The amplitude vanishes in the case that the quark and
antiquark of the same flavor have the same helicity. This
is equivalent to the fact that the operators of Eq. (184)
provide a complete basis of helicity operators. For
identical quark flavors, the QCD amplitudes can be
written in terms of the amplitudes for the distinct flavor
case as

A(91429334) = A(013:054,) — A(01349532)-  (188)

The Wilson coefficients for ggq’'g’ are then given by

. S Afm(l(‘;,2q,3+ 4 )
C(+;+>(P1,P2;P3,P4) = iBf- (1+ - 3+ 4 )
mn q°“<q>

N o Afm(lq’zq’?’ 4 )
C(+;_>(p1,P2§P3ﬂp4) )>

- <NBﬁn(1+ 2713742
c

q b q’
C(—;+)(1~71,f72§1~73’1~?4): (+;—)(P2,P1;P4,P3)7

C(—;—)(i’1,l~72;1~73,1~74) - C(+;+)(1~72,f71;l~’471~73), (189)

and for ggqqg they are given in terms of the amplitudes
Agp and By, for ggq'g’ by

Ciiy(Pr. Pai B Ba) (Af‘“(ﬁ 25:37.47) - LBﬁn<1;,4q,3qﬂ2;>>
(++)\P1s P25 P3> Pa) = _
v Bin(19,27:34.47) — Aun(15,47334.27)
G (PP e, ) Ag (1;,24,34,4;)
(+-)\P1> P25 P3, P4) = )
#Bﬁn( q’24’3q’4;)
C (P1, P2 P3> Pa) = C(++)(P2,P1§P41P3)- (190)

The relations for C (-;+) and 5(__) follow from charge

conjugation invariance. The Wilson coefficient C (-
to 5‘< +:-)» since the amplitude vanishes when the quark and
antiquark of the same flavor have the same helicity (both + or

both —), so there is no exchange term. The subscript “fin” in
Egs. (189) and (190) denotes the IR-finite part of the helicity

) is equal

|

amplitudes as discussed in Sec. IV, see Eq. (96). Recall that the
symmetry factors of 1/4 in Eq. (185) already take care of the
interchange of identical (anti)quarks, so there are no additional

symmetry factors needed for C (++)- Explicitexpressions forall
required partial amplitudes at tree level and one loop are given
in Appendix D I a.
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2. ggqq

For ggqgq, the helicity basis has a total of six independent
operators,

abaf b gap
0++<+ _Ba By, Jauy
b a
0 =By, By,
by, af
OZ—((ﬁﬂ = —B?_B’;_J A
abaf b gof
(O o) = .85 I3,

aba, a
o —B BE Y-

Oabaﬁ o

——(=) Ba Bb J34—

(191)

Note that the use of a helicity basis has made it easy to
count the number of required opera'[ors.9 For the color
structure, we use the basis

Tabah — ((T9T?) 5, (TPT) 5, e[TOT?)5,5).  (192)

The color decomposition of the QCD helicity amplitudes
into partial amplitudes using the color basis of Eq. (192) is

A(91929344)
=iy [T%0T%)], . A(o(1).6(2);3,.4;)

cES,

[T T%]6,,4,B(1,2:3,,45), (193)

>Tq q

from which we can read off the Wilson coefficients,

Aﬁn( 2 3;, q)
Cio(1)(P1, P23 P3. Pa) = | Amn(27.17:35.47) |,
Bﬁn(l 3;74,1)
1’1(1+ 2+ 3;—7 q)
Ciiv(1)(P1, P23 D3 P4) = Aﬁn(z 37, q) ,
Aﬁn(1 27, 3;_, q)
Co)(P1. P23 P3n Pa) = | Amn(27,17337,47) | (194)
Bﬁn(l 2 ’3q74q)

°This should be contrasted with the more complicated basis
given in Eq. (126) of Ref. [195] which is built from fields y,,

and Bl" and standard Dirac structures. It can be reduced

to a minimal basis using identities such as O, = —0;, Og =
0,4+ 4t03 —4t0, and Og= 05-20,+ O(¢) where
t = —wywsn; - n3/2, and then can be related to the basis

used here.
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The remaining coefficients follow from charge conjugation

as discussed in Sec. IITE,

C,uz(—) (ﬁl,ﬁz;i?yih) = ‘A/CA,AZ(+)(I~7171~92§1~74»I33)v

0 -1 0
with V=|-1 0 0 (195)
0 0 -1

At tree level, the partial amplitudes are well known, and
only the first two entries in C,_( are nonzero. Explicit
expressions for all amplitudes at tree level and one loop are
given in Appendix D 1 b.

3. gggg
For gggg, the helicity basis has five independent operators,

Oiﬁiﬁf’H = B” Bh B B§f+,
1 ,
Oihﬁi— 31 14 B3, §+Bd—’
1
0Pl = —B‘f By Bs_Bi_.,
OEh_CﬁlJr = B“ Bb _B5_ 84 e
0%bed_ = EB’{_B‘;_B;‘_B;{_. (196)
We use the color basis
trlabed] + tr[deba] \ T
trlacdb] + tr[bdcal
cabed trladbc] + tr[cbda] ’ (197)
22Tk 2tr[abltr[cd]
2tr[ac|tr[db]
2tr[ad|tr[bc]
where we have used the shorthand notation
tr[ab) = w[TeT?], trlabed) = w[T*TPT°TY].  (198)

Under charge conjugation, the operators transform as

COj{”;;L MT“bcdc = 03’;}’2‘33 i4T“bcd. (199)

Thus, charge conjugation invariance of QCD leads to

abced __ (dcba

Idadsds — S ddadady (200)

In principle, there are three more color structures with a minus
sign instead of the plus sign in the first three lines in Eq. (197).
Since charge conjugation is a symmetry of QCD, Eq. (200)
holds to all orders, so these additional color structures cannot
contribute. In particular, the color structures in Eq. (197)
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cannot mix into these additional structures at any order. Hence,
itis sufficient to consider the reduced basis in Eq. (197) instead
of the 9 different color structures, which were used for
example in Ref. [88]. Note that for N = 3 it is possible to
further reduce the color basis by one using the relation

trlabed + dcebal + tr[acdb + bdca) + trladbce + cbdal

= tr[abltr[cd] + tr[ac]tr[db] + tr[ad]tr[bc].  (201)
We refrain from doing so, since it makes the structure of the
anomalous dimension matrix less visible, and because there
are no such relations for N > 3.

The color decomposition of the QCD amplitude into
partial amplitudes using the color basis in Eq. (197) is

1
A(91929394) = 57 {
F 6E€S4/Z4

x A(o(1),06(2),06(3),0(4))

+ Z tr[agma

0€84/23

x B<a<1>,a<2>,o<3>,o<4>>],

A1) Ao (2) o (3) o))

Jtr[a,(3)a(4)]

(202)

from which we obtain the Wilson coefficients

245, (1F,2%,37.47)
245, (1F,37,47,2%)
245, (1F,47,2%,37)
B (1,2+,37,47)
Bpn(1,37,47,2%)
Bpn(17,4,2%,37)
244, (17,27,3,47)
245, (17,3%,47,2%)
245, (1F,47,2%,3%)
Bpn(17,2+,3+,47)
B (1,3+,47,2%)
B (17,47,2+,3%)
245, (17,27, 3%, 47%)
245, (17,37, 4+ 2%)
2Aﬁ,,(1+ 4+ 2+ 3%)

W(1F,27 3% 4+)

C++__(1315 [727 i)37 I~J4) =

C+++—([~71v l~72’ i’B? 134) =

C++++(131’ ﬁZa i)37 134) =

’

C___.(P1. P2 P3: Psa) = C+++ f’l’i’2’p3’p4)|<~-><->[~]’
C____(ﬁlaﬁ25ﬁ3ﬁi)4)

(203)
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The last two coefficients follow from parity invariance. The
factors of two in the first three entries of the coefficients
come from combining the two color structures in the first
three entries in Eq. (197) using charge conjugation invari-
ance in Eq. (200).

The tree-level amplitudes are well known. At tree level,
only the A amplitudes with two positive and two negative
helicity gluons are nonzero. Because the A amplitudes
correspond to a single-trace color structure, which pos-
sesses a cyclic symmetry, the corresponding partial ampli-
tudes are invariant under the corresponding cyclic
permutations of their arguments. Explicit expressions for
the required amplitudes at tree level and one loop are given
in Appendix D 1 c.

B. pp — 3 jets

The four partonic channels g¢44'g’, 99393, 9999G, and
ggggg contribute to pp — 3 jets, which we discuss in turn.
The one-loop partial amplitudes for the different partonic
channels were calculated in Refs. [22,24,25]. Tree-level
results for the helicity amplitudes for each partonic process
are given in Appendix D 2.

1. g944'q and gq4qq
For the case of distinct quark flavors, gqgq’q’, the
helicity basis consists of eight independent operators,

Ofﬁi) = (fijzgwﬂitsy
O ) = Bld s Tipss.
Oia(liyi = B‘lli 3/2}3—J 2545+’
01"2{7‘2 Bi.J q23—‘] 2(?45 (204)

For identical quark flavors, gggqg, the basis reduces to six
independent helicity operators,

apys ap  yyo
oL = B?i YRS
Byd 0 S5
oL Bﬁfﬁ&lzs :
04" = B?iJZé’_JZ‘Z_ (205)
In both cases we use the color basis
TaoPre = 2T ( 40,55 T" 5a5, Taﬂéyg, 55aﬁ) (206)

The QCD helicity amplitudes for gggq'q’ can be color
decomposed into partial amplitudes in the color basis of
Eq. (206) as
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A(91923394'G5") = 2T pi | Tora, 60,a A(1: 2435344 55) + Tota, 0aas A(1:44. 553 24, 35)

s > g TgTq g

1
5&4(_15B(1.2 3—'4‘]/,5@/) +_Tal* 5 B(1;46/’5£_1';24’36_1) ) (207)

Y Lqr U g N ls (&Y

1 7
+N a0

where we have used the symmetry gg <> ¢'g’, and inserted the factors of 1/N for later convenience. The amplitude vanishes
when the quark and antiquark of the same flavor have the same helicity (both + or both —), in accordance with the fact that

the operators of Eq. (204) provide a complete basis of helicity operators. For identical quark flavors, the amplitudes can be
written in terms of the amplitudes for the distinct flavor case as

A(91923394G5) = A(9192G394'G5") — A(919235'94'G3)- (208)
The Wilson coefficients for gggq'q’ are then given by

Am(1%:25.37:45.57)

b q’ q?
¢ (Brs s B Pan Ps) Aﬁn(1+§4[;,5;/;2;,35)
+(+:+)\P15 P25 P35 P4s P5) = _ _ )
%Bﬁn(1+,2;73q,4(;,55/)
LB, (17:43.57:24.37)
Amn(1%325,3734,,57)
C.oim) (P13 Pos P3i Pas ) An(17345.55324.37) (209)
+(+:-)\P15 P25 P35 P4, P5) = o )
%Bﬁn(ﬁ;2;,3q;4q,,5qf)
ﬁBﬁn(ﬁ;ﬁ/,S;ﬁ;ZZ,?’g)
and for gggqqg they are given in terms of the amplitudes Ag, and By, for gggq'q’ by
Aa(17520.32:45.57) — % Brn(17:24,57:44.37)
G v (P o P o o) Asn(17545,57:25,37) — 5 Ban (17347, 37524.57)
+(++) P15 P2> P35 P4 P5) = _ _ _ _
%Bﬁn(]+32;}>’3Q74;}>95[])_Aﬁn(]+32;’SQ34;a3Z])
%Bﬁn(1+s4;}>’5572;}>935)_Aﬁn(1+s4;}>’3532;}>55[;
Atnn(1+,2;,35,4;75;)
o Af1n<1+’4q_75;’;’2q+73q_)
Ci(+—) (P13 P2, P33 Pas Ps) = (210)
+) LB (17325,37;47,5%)
A B (17345.55:24.37)
Charge conjugation invariance of QCD relates the 0O -1 0 O
Wilson coefficients, . -1 0 0 0
V= . (212)
g 0O 0 -1 0

Cz(—;¢)(ﬁ1;l~?2,l~73;l~?47135) = VCA(+;:F)<131§I337132;55,134),
Ci——) (P13 P2 P33 Pas Ps) = VCyay (P13 P3s P2 Pss Pa)»
(211)

The remaining Wilson coefficients for a negative helicity
with gluon follow from parity invariance,
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C_(4:0)(P13 P2s P33 Pas Ds)

= Cy(5) (P13 D2s P33 Pas D)yl ]
C_(++)(l~71§ P2. P33 Pas Ps)

= Cy—) (P13 P2, P35 P4 D5y -

(213)

Explicit expressions for all required partial amplitudes at

tree level are given in Appendix D2 a.

2. gggqq
For gggqg, we have a basis of eight independent helicity
operators,
Oabc&ﬂ . 1 Ba B B
() T y 24+%3+ 45i’
_ 1 _
Oibﬁilé ) B7+B§+B§—ngi’
O, = BB B T
bea C
0L = —B“ By B JY., (214)
and we use the color basis
[TaTbTC]a T
[TchTa]a_
T,
[Tch Ta]a_
[Ta Tch]a_
o — | [PTT5 | (1)
b
tr[TCT“]Taﬁ
b
tr[T°T ]T;B
b
tr[T' TC]TZB
tr[T*TPT¢)5,5

t[T*TPT)5,5

The color decomposition of the QCD helicity amplitudes
into partial amplitudes using Eq. (215) is

A(9192939475)
— iZ[Taa(l)Taa(z) Ta"(3)]a45t5A(6(])’0(2)’ (3),4(1, Sq)

0ES;

+i Y [T T T B(o(1),6(2). 0(3):4,. 5,
0€S;3/Z,

+1i Z tr [T T4 Taom}(sams
0€S3/Z;

x C(a(1).0(2). 0(3): 44. 59). (216)

)
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from which we can read off the Wilson coefficients,

Aﬁn
Atm 2
Aﬁn 3F

,2%,3%;47,57)

37, 1%:345,57)
JAF2%40,57)
3,24, 17:4;7,57)
J3%,24,45,57)
17,37:47,57)

(1"
(
(
Afin(
Apn (17

PasPs) = | Am(27,
B (3%, 17,2%:4/,57)
(
(
(
(3%

fin

Ciiz(+) (P1s--

i (3F
By, (17,27,3%:4;.57)

Bg,(2+,3%, 17147, 57)

I+,2+,3%:47,57)

20, 1047,57

Cfm
Cfln

)
(217)

Charge conjugation invariance of QCD relates the coef-
ficients with opposite quark helicities,

Cilﬁziz( )(pl’ P2. P33 Das ]35)

O3x3  13x3

13><3 O3><3

with V= 15353 . (218)

where 1,,, denotes the n-dimensional identity matrix and
the empty entries are all zero. The remaining coefficients
follow from parity invariance

C__+<i)(l~71, D2, D3 Das f’s)
= Coy—()(P1s P2s P35 Pas Ps)|( el ]
C___<i)(1~91 . P2+ P33 Pas Ds)

= Coyy()(P1> P2s P33 Pas P3|yl - (219)

At tree level, the partial amplitudes are well known,
and only the A amplitudes are nonzero. Furthermore,
the partial amplitudes with all negative or all positive
helicity gluons vanish. Combining the charge and
parity relations of Eqgs. (218) and (219), there are only
three independent amplitudes at tree level, which we take
to be A(17,2%,37 ,4;;,5[1) A(2%,37, 1+,4;;,5q) and
A3, 11, 2*,4;,5;) These amplitudes are given in
Appendix D 2 b.
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3. gggeg
For ggggg, the basis consists of six independent helicity
operators,

Oahcde B Bb B Bd B¢

++++ = 5+
abcde _ a b c d e
O *_Bl Bz B3+B4+BS—’

Odbede = 5 3‘3 B B, BY B,

Oabcde _ Ba Bb Bc Bd B¢

—_—t+ 2 3y 5+
Otbede = B" B5_Bs_BL_B:.,
Otbede  — 58?_8'5_85‘_81_8;. (220)

As before, we only need one operator for each number of
positive and negative helicities. We use the color basis

trlabcde] — trledcba] \ T
acdeb] — tr

trlacbed]| —

trlabced| —

abdec

[ Q
S )
L S a >
] Q8 QL
o o) Q S )

I-
I-
] -
I-
1=
1=

1 trlaechd| — trldbcea

Tabcde —
22T

tr|

[

[

[

[
trladce

[

[

[

[
trlacebd| — tr ' (221)
(tr[ced] —

(tr[abe] —
(trlacd] —

(tr[bec] — tr[ceb])tr[ad
(trladb] — tr[bdal)tr[ce
(
(
(
(

trlace] —tr

[
[

[
tr[bdc] — tr[cdb]
trlaed] — tr[ded]

lach] — tr[beal

where we have used the shorthand notation
trlab...cd] = tr[T“T”...TCTd]. (222)

A priori, there are twice as many color structures as in
Eq. (221) with a relative plus sign instead of a minus sign
between the two traces. Under charge conjugation, the
operators transform as
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TabcdeC (Tahcde)‘ (223)

Therefore, charge conjugation invariance implies for the
Wilson coefficients

abcde _
MAd3dads

C abcde

edcha
MArAz 45 -0

Iindzdads

_(edcba
Cﬂliz/lg/14/15 ’

(224)
and hence these additional color structures cannot appear at
any order in perturbation theory, either through matching or
renormalization group evolution.

The color decomposition of the QCD amplitude into

partial amplitudes using the color basis of Eq. (221) is

A1) A(2) Ao(3) Ao(4) Ao(s)]
0€S5/Zs

A(o(1),0(2),
+

6E€Ss/(Z3xZ,)

xB(a(1),a(z>,a(3>,a(4),a(5))}, (225)

1
A(9192939495) = 3T [
F

a(3),0(4),0(5))

A1) () Qo3 |t [As(4)A0(5)]

from which we obtain the Wilson coefficients
Agn(17,27,3%,47,57)
Agn(17,37,47,57,27)
Aﬁn1+3+2+5 ,47)
fn(17,27,3%,57,47)
Aﬁn 17,2%,47,57,3%)
fn(17,37,2%,47,57)
)
57)
)
57)
)
)

(
(
Afin(
(
Agin(
Apn(17,47,3%,57,27
Agn(17,47,37,2%5
Apn(17,57,2%,47,3F
Agn(17,27,47,3%,5
5+++——(1~917--wl~75) =2 Am(l7,57,37,27,47 ’
Agn(17,37,57,27, 4~
Bgn(31,57,47,11,2%)
Bgn (11, —,31,47)
By (17 ,3Jr 4-,2%,57)
Bgn(21,57,3%,17,47)
Bgn(11,47,27,3%,57)
Bgn(11,37,57,27,47)
Bpn(27,47,37,1%,57)
Bp, (17,57,47,2%,3%)
B, (11,37,27,47,57)
Bgn(21,57,47,17,3%)
6----1(131 s Ps) = 5++++¢(P1, ---aP5)|<.‘><—>[‘.]’
Cop i (ProaDs) = Coy i (Pr, e D3 (el

094003-32



EMPLOYING HELICITY AMPLITUDES FOR RESUMMATION

For brevity, we have not written out the coefficients
C..,,_and C,, ... They have exactly the same struc-

ture as C,,,__ with the replacements 4~ — 4" and 4,
57 — 47, 5T, respectively, in the arguments of the helicity
amplitudes. The remaining Wilson coefficients are given by
parity invariance as shown. The overall factor of two comes
from combining the two color structures in Eq. (221),
which are related by charge conjugation.

At tree level, all the B amplitudes vanish, as do all the

amplitudes in é++++i and 6‘____¢. By the parity rela-

tions given in Eq. (226), only the A amplitudes in 5+++__
are then required for the tree-level matching. Since these
amplitudes correspond to single trace color structures,
which posses a cyclic symmetry, the required partial
amplitudes are invariant under the corresponding cyclic
permutations of their arguments. Therefore, at tree level,
there are only two independent amplitudes, which we take
to be Ag,(17,27,3%,47,57) and A, (17,27,47,3%,57).
These are given in Appendix D2c. Simplifications
also occur at one loop, since the B amplitudes can be
expressed in terms of sums of permutations of the A
amplitudes [8,9].

VIII. RENORMALIZATION GROUP
EVOLUTION

In this section, we discuss the renormalization group
evolution (RGE) of the Wilson coefficients. We start with a
general discussion and give the solution of the RGE to all
orders in perturbation theory. For completeness, we also
explicitly derive the (known) anomalous dimension at one
loop. To discuss the RGE, it is convenient to consider the
operators O' in Eq. (54), which are vectors in color space.
Lastly, we give explicit results, in a manifestly crossing
symmetric form, for the relevant color mixing matrices for
the color bases we have used in the previous sections. Since
the operators’ renormalization is independent of their
helicity structure, we drop all helicity labels throughout
this section for notational simplicity.

A. General discussion

The renormalization of the hard scattering in SCET can
either be carried out as operator renormalization,
where the relation between bare and renormalized

matrix elements is (O')bae = Z;n"/zzgll"/z(éT)renZO, or
with coefficient renormalization where (O')bareC™® =
Z;"/ ZZZ-‘]/ (0")bweZ.C™". The relationship between the
two is Z¢ = 251. Here Z; and Z, are the wave-function

renormalizations of the SCET collinear quark and gluon
fields &, and A,,, defined in Sec. I B, and

9>

n,=ng +n n, =ng +ny (227)
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are the total number of quark and gluon helicity fields in the
operator (recall that there are two quark fields in each of the
fermionic helicity currents). The UV divergences for

-1

<0} ybare are given in terms of a local product (as opposed
to a convolution over label momenta), since we are working
at leading power where the operators contain a single field
per collinear sector.

Let us consider more explicitly how the renormalization
works at one loop. The counterterm Feynman rule at this
order is

(0" (Z2 70 7 1), (228)

>

At one loop, the UV divergences of <0;)balre are propor-
tional to the tree-level matrix element as (51')““& where
D is a matrix in color space, which denotes the 1/¢2 and
1/e UV divergences (with y defined in the MS scheme) of
the bare matrix element. The counterterm has to cancel
these UV divergences so
(0")me(22 220 = 1) = ~(0"y=D.  (229)
which fixes Z. at one loop.
Next consider the renormalization group equations,
working to all orders in a,. As usual, the x4 independence

of the bare operator implies the renormalization group
equation for the Wilson coefficient

dC(u

WS el

(230)
where the anomalous dimension matrix is defined as

d Zc(ﬂ)} :

ﬂxu>=:—25wu>[ (231)

dlnp

The solution of the RGE in Eq. (230) can be written as

Cu) = Ulpo. 1) C(uo), (232)
with the evolution matrix
2 Inp 17 /
O = Pesp| [ amitret)]. @3
N fo

Here, P denotes path ordering along increasing u, and
u > po. The path ordering is necessary since 7-(u) is a
matrix in color space.

The anomalous dimension matrix has the general form
(234)

7e(u) = Tousplag ()] A2) + 7lay (1))

where ' is the cusp anomalous dimension and Ap?)
is a process-dependent mixing matrix in color space,
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which does not depend on a,. Its u dependence is
given by

A67) = 1€y +n, Com () + A03). @39

which will be demonstrated explicitly at one loop in
Sec. VIIIB. We can then perform the integral in
Eq. (233) by using the running of the coupling,
dag(p)/dInp = p(ay), to switch variables from Inp to
a,. We find

U(ug, ) = e CatngCrKr(pon)
X Ipal\ CXP[’?F(MO, /’[)A(,u(z)) -+ f(},(ﬂo,ﬂ)],
(236)

where 7_3% now denotes path ordering along decreasing a;,
with a,(u) < a,(uo), and

Kr(po. 1) —/ dasp—/ doy ——~,
g s (o) Blas) Jaw)  Play)

@) Togplay)
1 (Ho- 1) =/ day, — ==,
a)  Play)

N a@w  Plas)
K, (ko n) = / da :
e a)  Plas)

Up to two loops, the noncusp piece 7(«;) in Eq. (234) is
proportional to the identity operator [196,197]

(237)

Plag) = (ngyé +ngre)l. (238)
In this case, the evolution factor simplifies to
U(pg. ) = e~ MaCatnaCoIKr (o) +Ky (o)
x explir (uo, ) A (4)]- (239)

Starting at three loops the noncusp anomalous dimension is
not color diagonal, and starts to depend on a conformal
cross ratio built from factors of p; - p; [198]. (For earlier
work beyond two loops see Refs. [199-207]. The result of
Ref. [198] implies that the conjectured all-order dipole
color structure in Refs. [202,203] is violated.)

The evolution factors Kp(ug,pu), and np(ug,u) are
universal. Explicit expressions for the integrals in
Eq. (237) to NNLL order, together with the required
coefficients for Iy, and the f function to three loops,
are given for reference in Appendix E.

B. One-loop anomalous dimension

The anomalous dimension 7(u) is process dependent.
In this subsection, we derive its general form at one loop.
The anomalous dimension of the operators is determined
from the UV divergences in the effective theory. The

PHYSICAL REVIEW D 93, 094003 (2016)

- .> - [ —
(@)
~Tja;, - % ajfy, - O
T“ﬂi'ﬂj';", T“bi"ﬁj" /1/
®,
s
Taci,é,- «a; ifaicbi a;
(b)
FIG. 1. (a) Collinear one-loop diagrams. (b) Soft one-loop

diagrams connecting two fields i and j in the operator.

relevant one-loop diagrams in SCET are shown in
Fig. 1. In pure dimensional regularization the UV and IR
divergences cancel such that the bare results for the loop
diagrams vanish. To extract the UV divergences, we
regulate the IR divergences by taking the external particles
off shell with p? = p? #0.

Since all fields in the operators correspond to distinct
collinear directions, the collinear loop diagrams in Fig. 1(a)
only involve one external line at a time. Different external
lines can only interact through the exchange of a soft gluon,
shown by the diagrams in Fig. 1(b).

When expressing our results, we use the notation [see
Eq. (73)]

2
P; Sij .

where sij = 2pl . p]
First, we recall the wave function renormalization con-
stants. In Feynman gauge at one loop,

) . (240)

a, 1
Z.=1=-2_(C ),
¢ 47‘[6( rte)

1
ZA:1+Z—;E(ﬂ0—2CA+---), (241)
where fy = 11/3C4 — 4/3Tpn; is the one-loop beta func-
tion coefficient [see Eq. (E1)], and n; is the number of
considered quark flavors. Here and below, the ellipses
denote possible UV-finite terms, which are irrelevant for
our discussion here. (Using the on-shell scheme for wave
function renormalization, the Z; contain UV-finite pieces;
see Appendix G.)

The collinear diagrams in Fig. 1(a) contribute

; oCp (2 2 2 o
I(L]-:Ig: 4ﬂ_F(€—2+2—2LiL+...><01>tree’

(XSC 2 1 2 AT\ tree
= (Gt )@ e
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where 1. denotes the result of the diagram for an external
leg of type i, either quark or gluon.

The soft diagrams in Fig. 1(b) differ from each other only
in their color structure. The result of the diagram connect-
ing particles i and j (with i # j) is given by

aml\@telymhu gt

Af\treesese
-><0 )ICE T,
(243)

where 7¢ and ?; are matrices in color space. From Egs. (242)
and (243) we see explicitly that the operators only mix with
respect to the color structure, with no mixing between
operators with distinct helicities.

The action of the matrix 7¢ on the color space is to insert a
generator acting on the color index of the ith particle, i.e.,

T} a;. .. /T
(T15) e = TG TP,
(Tig) o0 = =T Pt
(T’ilc)a, — lfaiCbiT"'b"', (244)

for quarks, antiquarks, and gluons, respectively. Our 7 is
identical to what is usually denoted as T; in the notation of
Refs. [208,209].

To give an explicit example, consider gggg. Then, for
quark i = 3 and antiquark j = 4 we have

0t3t4 Omarsas (Tiehe)maay
= 0”1“2“3"‘4T23-3( T}, 4)T“1"2ﬂ*ﬁ4 (245)

while for gluon i = 1 and quark j = 3,
0'K1 = Quamsmifachi e  Thiaf, (246)

sy

Plugging in the explicit basis in Eq. (192) and using the
relations in Appendix A 2, we can rewrite the resulting
color structures above in terms of the basis in Eq. (192),
which yields

Cr—3Cy 0 0
[ 0 Cr—3Cs 0 |,
T Tk Cr
1€y 0 Tg
K15=—1 0 0 T (247)
0 =T O
The other combinations are computed analogously.
In general, one can easily see that for i = j
Tar-mfeqe = T4, (248)
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where C; = Cr for quarks and C; = C, for gluons. By
construction, the color basis T%--% conserves color,
because each index corresponds to an external particle.
Since 7¢ measures the color charge of the ith particle, color
conservation implies

n

T <Z ?;') = 0. (249)
i=1

As a simple example, consider ggg for which

Ta®% =T, . In this case, Eq. (249) gives
b a a
ifac lelzaz +T¢ 2, Tha — Ta;ﬁ2 Th.a,
= (e T + [T, T))ge, = 0. (250)

The total bare one-loop matrix element is given by
summing Eq. (242) for each external particle and Eq. (243)
for each pair of distinct particles. The infrared logarithms
L;, have to drop out in the sum of all UV-divergent
contributions. To see that this is indeed the case, we can use
Eq. (248) to rewrite the collinear contributions. Then, the
sum of all L;, terms is proportional to

OT tree |:ZLlLtCtC + Z(Lu_ + L]J_),t\f,ij:|

i<j

<61‘>tree (ZLILIL + ZLlltz §)

i#]

= (O'yee (ZL,-ﬁf) <z,:t’> =0,

(251)

where in the last step we used Eq. (249). For the same
reason the 1/¢* poles in the soft diagrams cancel against
half of the 1/€? poles in the collinear diagrams. The
remaining UV-divergent part of the matrix element is
given by

> ~ > 1 1
<07‘>treeD _ <0T>tree:_s |:ngCA <_2 + Z)
T . €
12 2 4
+nqCF <g+z> —EA(M2)1| s (252)

where the color mixing matrix is given by

ZICICL

l<]

(253)

Combining this result with the identities in Egs. (248) and

(249), we can easily check that the i dependence of A (u?)
is as in Eq. (235):
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N A and VII. For simplicity, we only give explicit expressions
A(?) = Alug) 2Ztctc hl( > Ztctc ln< > for up to four partons, but allow for additional colorless

particles, such as a Higgs or vector boson. The matrices are
= 1(n,C4 + n,Cy)In </@> (254) straightfprward to evaluate using the color relations in

Appendix A 2, but become rather lengthy for more than

four partons, due to the large number of allowed color

We can now compute the anomalous dimension of the  structures, and are more easily evaluated in an automated
operators. From Eqs. (229) and (252), we find at one loop  way (see for example Ref. [210]). For convenience, we

introduce the following shorthand notation for sums and
Zc=1-D-1 [% (Zy—1)+ ?‘1( _ 1)] (255) differences of logarithms L;;,

i<j

which using Eq. (231) yields the one-loop anomalous Liju...=Lij+ L+,

dimension Lij. iy = (Lij..) = (Lyg....), (258)

Pelu) = 4ﬂ [4A( ?) - 1(nypo + nq3CF)]' (256) with L;; = ln(—s,»j/,u2 —10) as defined in Eq. (73).

The coefficient of 4 in front of A(x?) is the one-loop

. . . 1. P /l iXi tri
cusp anomalous dimension coefficient [see Eq. (E2)]. The “re grion mixing matrices

remaining terms determine the noncusp 7(a;) in Eq. (234) For gg and ggg in the bases used in Eq. (105) and
at one loop, Egs. (110) and (157), we have
a
P(a,) = ——(n,py +n,3Cp)1. 257 N N 1 1 0
(a) 47’7( oo+ 13Cr) (257) A (u?) = CyLyy, Ao (1) :ECAL12-13»23 0o 1)
C. Mixing matrices (259)

In this section, we give explicit expressions for
the mixing matrices for the color bases used in Secs. V, VI,  For gggg in the basis used in Egs. (130) and (197), we have
|

Agygg(/“z)
TCaL 12142334 0 0 2T rL1423/(13.24) 0 2T rL1234)(13.24)
0 5CaL12132434 0 2TrL1324/(1423) 2T rL1234/(1423) 0
_ 0 0 1CaL13142324 0 2TrL1423)(1234) 2TrL1324/(1234)
TrLi234/1324) TrL1234/(1423) 0 CaLip34 0 0
0 TrLi3a4/(1423) TrLi324/(1234) 0 CuLi324 0
TrL1423/(1324) 0 TrLi423/(12:34) 0 0 (OVAYES

(260)

For our color bases formed from multitrace color structures, the structure of the mixing matrices is simple. Since the mixing
matrices are determined by single gluon exchange, cyclicity is maintained, and all that can occur in the mixing is that a
single trace splits into two or two traces recombine into one. For example, the color structure tr[T7*T*T¢T?) can only mix
with

tr[TTPTeTY], tr[TeT?)ee[T°T9], and tr[T9Tec[TPTC]. (261)
Therefore, although the mixing matrices quickly get large as the number of color structures grows, their structure remains
relatively simple. (An alternative approach to the organization of the anomalous dimensions for a large number of partons

has been given in Ref. [211].) For the dijet case, i.e., in the absence of additional colorless particles, the kinematics
simplifies to
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§ =812 = 34, =813 = Su, U= S14 = 523, (262)
and these matrices were given in Ref. [153], which also gives their eigenvectors and eigenvalues.
2. Mixing matrices involving qq pairs
For gg and gqq in the bases used in Eq. (141) and Eqgs. (110) and (149), we have
N N 1
Aqé(ﬂz) = CrLy, quq(ﬂz) = ) [CaL1243 + (2CF = Cy)Lo3]. (263)
For ggq'q’ in the basis used in Egs. (118), (186), and (167), we have
A (u2) = A () (CFL14~23 + (Cr _%CA)L12'34/(13~24) TrLi423/(13.24) ) (264)
” = - 1=t M = .
o B TrL1234/(13.24) CrLizzs + (Cp—3 Ca)L1423/(1324)
For ggqq in the basis used in Egs. (124), (192), and (177), we have
%CAL12-13-24 + (Cr — % Ca)Lsy 0 TrLi324/(1423)
Aggga (W) = 0 3CaLin1403 + (Cp —%CA)LM TrLis23/(13.24) (265)
TrL1234/(1423) TrL1234/(13.24) CaLiy+ CpLsy
I
Again, these simplify in the dijet case, for which they S‘K(M, {n;}) = (O|T)7T({ni})5(M — M)Tf’({ni})|0>,
were given along with their eigenvectors and eigenvalues in (267)

Ref. [153].

D. Soft function evolution

In this section, we review the renormalization group
evolution of the soft function, focusing on our use of the
color basis notation of Sec. III D for nonorthogonal bases.
We will consider the particular case of the N-jettiness event
shape [95], which allows for a definition of exclusive N-jet
production with a factorization theorem of the form
of Eq. (2).

The color mixing matrices of the previous section are in
general complex valued for physical kinematics. For a
physical channel, some of the appearing s;; are positive,
giving rise to imaginary terms from the logarithms, as in
Eq. (73). Since the cross section is real, these imaginary
terms generated by the renormalization group evolution
must drop out of the final result. We start by describing the
properties of the soft function that ensure that this is
the case.

Recall that the hard function A, for a particular partonic
channel « has its color indices contracted with those of the
soft function. Explicitly,

tr(I:IKSK) — HZI aty b Mﬁ"S,IZ' -

. DBy 15 abiPady -ty oy
- §[Cl]](ln)] SKI 1 Cj’ll"("j'/J'

(266)

The soft function is defined as a vacuum matrix element of
a product of soft Wilson lines ¥ as

where ¥({n;}) is a product of soft Wilson lines in the n,
directions. It is a matrix in color space, and ¥ s its
Hermitian conjugate. Here T and T denote time ordering
and antitime ordering respectively. The matrices ¥ and ¥
are multiplied with each other, i.e. one of the color indices
of the corresponding Wilson lines are contracted, and the
external indices correspond to b;...#, and a;...a,, respec-
tively. Thus, for example ¥V =421 ...5%P The
dependence of the soft function on the particular meas-
urement, as well as the details of the jet algorithm, are
encoded in the measurement function M, whose precise
form is not relevant for the current discussion.

From the definition of the soft function in Eq. (267)

we see that it is Hermitian, namely (Sﬁ""ﬁ ne e —

ayb... . . o e
sé-@biPn T abstract notation, this means St=5,,

which implies that the product 6‘%}6 appearing in the
cross section is real, so imaginary terms that appear in the
Wilson coefficients due to renormalization group evolution
drop out in the final cross section.

While this argument is trivial in a basis independent
form, it is important to emphasize that in a nonorthogonal
basis it takes a slightly more complicated form. As
discussed in Sec. III D, in a specific nonorthogonal color

basis, Eq. (266) takes the form éTSKG‘ = 6‘”7’3}6‘ as in
Eq. (58), where the matrix T is defined in Eq. (56).
Similarly, the matrix representation of S'K is not
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Hermitian with respect to the naive conjugate transpose of
its components. Instead, the condition on the reality of the
cross section is given by [see Eq. (57)]

A

S =8 =7"'8T7T. (268)

The invariance of the cross section under the RGE

d
ﬂ@@v =0,

(269)
implies relations between the anomalous dimensions of the
SCET functions appearing in the factorization theorem of
Eq. (2). In particular, it allows the anomalous dimension of
the soft function to be determined from the anomalous
dimensions of the Wilson coefficients, along with the
anomalous dimensions of the beam and jet functions.
The anomalous dimensions of the jet and beam functions
are proportional to the color-space identity. The anomalous
dimensions of the beam and jet functions appearing in the
N-jettiness factorization theorem are equal to all orders in
perturbation theory [212] allowing us to use only the jet
function anomalous dimension in the following discussion.
Renormalization group consistency then implies that the
contributions of the soft function anomalous dimension not
proportional to the identity, including the color off-diagonal
components, are completely determined by the anomalous
dimensions of the Wilson coefficients.

The soft function for N-jettiness can be written in the
general form of Eq. (267), but with an explicit measurement
function

Sk by ke .. ky, {n;})

= (0|TY"({n;} H(Sk, THTY ({n;})|0).  (270)

Here ’ZA’, picks out the contribution to the N-jettiness
observable from the momentum region i, whose precise
definition can be found in Ref. [98]. The soft function for
N-jettiness was first presented to NLO in Ref. [98], and
more recently analyzed to NNLO in Ref. [213].

The all-orders structure of the renormalization group
evolution for the soft function can be derived from
Eq. (269), and is given by [88,98]

h Sl
/ [H‘”"] %[ ({ks = K} )8 (k). 1)
S ({k L w7k ({k; = K3}, m}

(271)

The soft anomalous dimension 7, and its conjugate ?;, are
given in terms of the anomalous dimension y; of the jet
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function and the anomalous dimension of the Wilson
coefficients, 7+ defined in Egs. (230) and (231), as

Ps({ki}.p) = —IZan Ok )| [6(k))
i
= 27c(m)] [otk

(Here, the Q; are related to the precise N-jettiness defi-
nition, see Ref. [98].) The Hermitian conjugates of 7~ and
75 above again refer to the abstract Hermitian conjugate in
color space. In a nonorthogonal color basis, they are given
in terms of the complex conjugate transpose components
according to Eq. (57) as

(272)

be=T790T, =TT (273)

IX. CONCLUSIONS

In this paper, we have presented a helicity operator
approach to SCET. Helicities are naturally defined with
respect to the external lightlike reference vectors specifying
the jet directions in the effective theory, eliminating the
need to consider complicated Lorentz and gamma matrix
structures in the operator basis. The helicity operators
correspond directly to physical states of definite helicity
and color, which when combined with color organization
techniques, greatly simplifies the construction of a minimal
operator basis. Furthermore, the helicity operators are
automatically crossing symmetric, and make manifest
parity and charge conjugation symmetries, making it
simple to determine relations amongst Wilson coefficients.

We demonstrated the utility of the helicity operator
approach by explicitly constructing the basis valid to all
orders in perturbation theory for a number of key processes
at the LHC involving jets, and then determining the
matching coefficients. In particular we considered pp —
H+0,1jets, pp - W/Z/y + 0.1 jets,and pp — 2 jets at
next-to-leading order, and pp - H+2 jets, pp —
W/Z/y +2 jets, and pp — 3 jets at leading order. We
also discussed the dependence of this matching on the
regularization scheme, considering schemes with helicities
in 4 and d dimensions. An important and well-known
simplification of the SCET approach is that when dimen-
sional regularization is used for both IR and UV diver-
gences, all loop graphs in the effective theory are scaleless,
and thus vanish. As a result, the hard SCET Wilson
coefficients in the MS scheme, determined from matching
QCD to SCET, are given directly by the IR-finite parts of
color-ordered helicity amplitudes, defined using Eq. (96).
The use of our helicity operator basis therefore makes it
simple to combine analytic resummation in SCET with
fixed-order calculations of helicity amplitudes.

The all-orders structure for the renormalization group
evolution of the helicity operator basis was discussed in
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detail. At leading power, distinct helicity structures do not
mix, with renormalization group evolution causing mixing
only in color space. This feature is made manifest at the
level of the SCET Lagrangian due to the expansion in the
soft and collinear limits. Subtleties associated with the use
of nonorthogonal color bases were carefully treated, and
expressions for the color sum matrix 7" are given for the
used color bases for all processes considered in the paper.
Explicit results are also given for the one-loop mixing
matrices describing the renormalization group evolution in
color space for the case of pp — up to 2 jets with an
arbitrary number of uncolored external particles and in a
manifestly crossing symmetric form.

Combining the methods of this paper with known
expressions for jet, beam, and soft functions for particular
exclusive jet cross sections, or jet shapes/observables,
should facilitate analytic resummation for a large number
of processes for which fixed-order amplitudes are known,
or are soon to be calculated.
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APPENDIX A: SPINOR AND COLOR
IDENTITES

1. Spinor algebra

The overall phase of the spinors |p4) is not determined
by the Dirac equation, p|p+) = 0, and so can be chosen
freely. In the Dirac representation,

o <1 o> . <0 a">

Yy = , Y= . ,
0 -1 - 0

<0 1)

5=\1 o)

and taking n¥ = (1,0, 0, 1), we have the standard solutions
[146]

(A1)
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o
1| /pFe?
V2| VP
Vptetr
Vpteh
=|
72 | —viFen |
>

(A2)

where
pl + ip2
VpipT

For negative p® and p™ we use the usual branch of the
square root, such that for p° > 0

pE=p"F p'.  exp(zig,) = (A3)

[(=p)£) =ilp£). (A4)
The conjugate spinors, (p =+ |, are defined as
(p £ | = sgn(p)|p£). (AS)

The additional minus sign for negative p° is included to use
the same branch of the square root for both types of spinors,
ie., for p > 0

(=p)£l = -[=p)E) = ~(-i)(p £ =ilp£|  (A6)
In this way all spinor identities are automatically valid for
both positive and negative momenta, which makes it easy
to use crossing symmetry. The additional signs only appear

in relations which involve explicit complex conjugation.
The most relevant is

(p=lg+) =sen(p°¢°) (g +[p-). (A7)
The spinor products are denoted by
(pa) =(p—la+).  [pal=(p+lg=). (A8)

Similarly, for products involving additional gamma matri-
ces, we write

plr*lq) = (p + Ir*lq+),
(A9)

(plr*lql = (p = Ir*lq—).

[plklg) = (p + [K|g+),
(A10)

(plklq] = (p - |klq—),
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(plgkll) = (p — |gk|l+), [plakll] = (p + |qk|l-),

(A11)
etc.

Some useful identities, that follow directly from the
definition of the spinors, are

(pq) =—(qr).  [pal=-lgp].  (Al2)
[ply*|p) = (plr*|p] = 2p*. (A13)
From the completeness relations
P =] =22, (A14)
p = |pl{p| + P)[pl. (A15)

one finds

1
{pa)lgp] = su{(l =ys)pgt =2p-q.  (Al6)
Combining this with Eq. (A7), it follows that

(pa)| = Ilpgll = V/12p - ql.

The completeness relation is also useful to reduce typical
expressions like

(A17)

[plglk) = [pgl(qk). (A18)
to spinor products.

Charge conjugation invariance of the current, the Fierz
identity and the Schouten identity are

(plr*lq] = lalr"|p), (A19)
[Pyl @) [kl |T) = 2[pk](lq), (A20)
(pq)(kl) = (pk){ql) + (pl)(kq). (A21)

Finally, momentum conservation ) . | p; = 0 implies

n

S [jil(ik) =o.

i=1

(A22)

From Eq. (A2), we see that under parity the spinors
transform as

|pP+) = £e* 9y pF), (A23)
and therefore

(PPq") = =€ v 9 pq], (A24)
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[PPq"] = =79 +44) (pg). (A25)

When applying the above result to a helicity amplitude,
the phases which appear are determined by the little group
scaling (see e.g. Refs. [146,147,214] for a review). The
little group is the subgroup of the Lorentz transformations
that fixes a particular momentum. In terms of the spinor
helicity variables, the action of the little group, which
preserves the momentum vector p, is given by

1p) = 2lp). ol = 2 (ol (A2

In the case that the particle with momentum p has helicity
h, the corresponding helicity amplitude scales as z~> under
the little group scaling. This property of the helicity
amplitudes then predicts the phases that appear in the
amplitude under a parity transformation.

The following completeness relation for the polarization
vectors is also useful

. Pudy + P4
> (P ) (el(p. @) = =g +F——"E.

A27
2 4 (A27)

In SCET the collinear quark fields produce projected
spinors

A
[p£), = Ip£)- (A28)
The projected spinor trivially satisfies the relation
A
”(T'pi>> =0, (A29)

so it is proportional to |n4). Working in the basis in
Eq. (A2), we have

W o Teos (O con(%
1 lp) =1\/p _cos(z)cos<2

0
¢»=9n) sin (%) sin (7”) } n),
n_}_{ — 0_ i((/))_{/)n) @ e—p
4|p]—\/p _e pm0ncos| = | cos|

(%) 0(2)

Here 0, ¢,, and 0, ¢, are the polar and azimuthal angle
of the n and p vectors, respectively. In particular, we see
that choosing n* = p#/p°, which can always be done at
leading power since there is a single particle per collinear
sector, we have gbp =¢,, 91, = 60,,, and the simple relation

—~

+éf

(A30)
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(A31)

A n-p
—|px) = +).
T lpt) = [ Shink)

2. Color algebra

The generators t¢ of a general irreducible representation
r of SU(N) satisfy
19, 2] = ifabere,

114 = C,1, tr[t¢t?] = T,6,

(A32)

where f¢ are completely antisymmetric, and C, is the
quadratic Casimir of the representation r. The normaliza-
tion T, is given by T, = C,d,/d, where d, is the dimension
of the representation and d the dimension of the Lie
algebra.

We denote the generators in the fundamental represen-
tation by % = T, and the overall normalization is fixed by
choosing a specific value for Tz. The adjoint representation
is given by (#4),. = —if*, which implies

facdfhcd — CA(suh‘ (A33)

We also define the symmetric structure constants as

1
dabe = T—tr[T“{T”, T¢}). (A34)

F

For the fundamental and adjoint representations we have
dr =N, d, =d=N?-1, and so

N2 -1
fr— = A
Cr N Cys =N, (A35)
where we have chosen the standard normalization
1
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Throughout the text, and for the amplitudes in the appen-
dixes, we have kept T arbitrary. This can be done using
Cp=Tg(N*>-1)/N, C4 =2TpN. The strong coupling
constant, g,, can be kept convention independent, by

using g, = g,/v/2T .
Some additional useful color identities are

140194 = <C, - ﬁ) b, (A37)

2
C
TeTPTT* = T26%1 + <CF - 7/*) TTC,  (A38)

where the second relation is equivalent to the completeness
relation

TZBT;‘S =Tr (50,55”3 - %50!6”5) . (A39)

We also have
ThifbacTe = % T4, (A40)
TeifcadifdbeTe = T3.501 + % T°T.  (A41)

3. QCD color decompositions

Here we briefly review a common color decomposition for
QCD NLO amplitudes [5—-8]. The color bases used for the
processes discussed in the text are specific examples of
the decompositions given below, and were chosen to facilitate
the extraction of the matching coefficients from the amplitudes
literature. For a pedagogical introduction to color decom-
positions in QCD amplitudes see for example Refs. [146,147].

For an n gluon process, a one-loop color decomposition
in terms of fundamental generators 7¢ is given by

A(greega) = g2 Y w140 T0][AF(o(1), ... 6(n)) + G Caly (6(1), ... o(n))]

€S, /Z,
ln/2]+1

DD

¢=3  06€S,/Sc—tn—ct1

tr[T90) . Tt [T T A, (o(1), ....0(n)),

(A42)

where A,.;, A;° are primitive amplitudes, which can be efficiently calculated using unitarity methods, and the A, are
partial amplitudes which can be written as sums of permutations of the primitive amplitudes. The amplitudes appearing in
this decomposition are separately gauge invariant. In this formula, S, is the permutation group on n elements, and S; ; is the
subgroup of §;, ; which leaves the given trace structure invariant. At tree level, only the single trace color structure appears.

In the case that additional noncolored particles are also present, an identical decomposition exists, since the color
structure is unaffected. For example, for a process involving n gluons and a Higgs particle, the amplitude satisfies the same
decomposition as in Eq. (A42), but with the partial and primitive amplitudes in Eq. (A42) simply replaced by
A(p,0(1),...,0(n)), where ¢ denotes the Higgs particle [177].
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A similar decomposition exists for processes involving gg pairs. For example, the one-loop decomposition for a process

with a gg pair and n — 2 gluons is given by [25]

An(@1G295--90) = 572 ) (T0..T%0) 5[A5(15. 243 6(3). ... 0(n)) + G7CaA i (15. 243 6(3). ... o(n))]

0€S,

n—3

P>

c=3 0€S,.,/Z.

tr[T9%0 .. Tl (T %+, T )a/—iAn;c(l 524,0(3),...,0(n))

7 “q>

tg D [T T ](T90) 54,5 (15, 24:0(3), ... 0(n))

Uesn—Z/Zn—S

+ g5 Z tr[Ta”(S) . 'Taa(")]éaﬁAn;n—l (121,

Uesn—Z/zn—Z

This decomposition is easily extended to the case of
additional ¢gg pairs. As with the gluon case, the same color
decomposition also applies if additional uncolored particles
are included in the amplitude.

For more than five particles, the one-loop color
decompositions given above do not give a complete
basis of color structures beyond one loop, since color
structures with more than two traces can appear. A
complete basis of color structures is required for the
SCET basis to guarantee a consistent RGE. A convenient
basis of color structures for one-loop matching is then
given by extending the one-loop decomposition to
involve all higher trace structures.

APPENDIX B: HELICITY AMPLITUDES FOR
HIGGS + JETS

In this appendix we give explicit results for the hard
matching coefficients for H 40, 1, 2 jets. We only
explicitly consider gluon-fusion processes, where the
Higgs couples to two gluons through a top-quark loop,
and additional jets correspond to additional gluons, or
quark antiquark pairs. When matching onto SCET we
perform a one-step matching and directly match full
QCD onto SCET, as was done for H+40 jets in
Ref. [97]. Most QCD results are obtained in the limit
of infinite top quark mass, by first integrating out
the top quark and matching onto an effective ggH
interaction,

C
Lhua = o HGE, G4,

Bl
1270 (B1)

which is then used to compute the QCD amplitudes.
Here v = (v/2Gy)™!/? =246 GeV. From the point of
view of the one-step matching from QCD onto SCET,
using Eq. (B1) is just a convenient way to compute the
full QCD amplitude in the m, — oo limit. In particular,
the a, corrections to C; in Eq. (B1) are included in the
amplitudes below, and therefore also in the SCET
Wilson coefficients. In this way, if higher-order

2,:0(3),...,0(n)).

q»

(A43)

|
corrections in 1/m, or the exact m, dependence for a
specific amplitude are known, they can easily be
included in the QCD amplitudes and the corresponding
SCET Wilson coefficients. We illustrate this for the case
of H+ 0 jets below.

We separate the QCD amplitudes into their IR-divergent
and IR-finite parts

A = Agiy + Agin,

B = Bgiy + Biins (B2)

where Ag,, Bp, enter the matching coefficients in
Sec. V. For simplicity, we drop the subscript “fin”
for those amplitudes that have no divergent parts, i.e.
for Agy, =0 we have Ay, = A. For the logarithms we
use the notation

S m3
L.y =1In —i—io>—1n<——H—i0>.
Jj/H < e P

1. H + 0 jets

We expand the amplitudes in powers of a,(u) as

_2TFas(:u) < (n) as(ﬂ) "
A= 3zv ZA 4z ) -

n=0

(B3)

The amplitudes with opposite helicity gluons vanish to all
orders because of angular momentum conservation,

A(1%,2F;3,) =0, (B4)
corresponding to the fact that the helicity operators for
these helicity configurations were not included in the basis

of Eq. (104). The lowest order helicity amplitudes includ-
ing the full m, dependence are given by
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A0 273 =22 Lo (212) 3 o () g,

2 (12) 4m? 2 4m?
12) s s s .
AO(17,27:3 )=s£<—F(°>< 12) =22 F(0) <i>e@ﬁ, (B5)
) 4m? 2 4m?

where the function F(©)(z) is defined as

3003 1| ( arcsin?(1/z), 0<z<1,
F(")(z):———l——{ Ve (B6)
2z 2z In?[-i(yz+vz-1)], z>1.
For simplicity, we have extracted the (irrelevant) overall phases
i@ [12] i@ (12)
=", —H = . B7
Ty ¢ [12] (B7)

Since the two helicity amplitudes for ggH cannot interfere and are equal to each other by parity up to an overall phase, their
higher-order corrections are the same as for the spin-summed ggH form factor. The divergent part of the NLO amplitudes is
given by

1

2
Afi])(li,2i;3H) :A(O)(li’zﬂ:;?’H) |:_gCA +E

iv

(2CiL1s —ﬂo>]. (B8)

The IR-finite parts entering the matching coefficients in Eq. (107) at NLO are [97]

2

Ag) (1,25 3y) = A0 (15,25 3) {CA <‘L%2 +%) +FO <:,;fz>}
t

38 1289 , 155 , 5385047

F(]) = 5 —_— —_ 2 _ 3 _ 4

@ CA( 45°74725° T 1134° T 65488500 )

307_, 25813 , 3055907 , 659504801 +O0)
90 “ T 18900° T 3969000° " 1309770000 ° )

+Cr <—3 + (B9)

The full analytic expression for F(1)(z) is very long, so we only give the result expanded in z. Since the additional ,
dependence coming from F(!)(z) is small and the expansion converges quickly, the expanded result is fully sufficient for on-
shell studies of Higgs production. The IR-finite parts at NNLO are [97]

1 1 4 7 5 K
AQ(1%,2%:3,) = A0 (1%, 21;3;1){5 CALt +3 CaboLi; + Ca [CA <—§ + g> —3ho—FU (4;2” Lt
t

59 19 #? s s
52 -9 )

419 722 7t
FO(2) = (1C2 + 11CCr — 6C1f) In(=4z — i0) + C2 <— + =42 44§3>

27 6 72
217 #? 2255 57 23{3\ 5
CuCr =L aa Cubo (222 42 1 22%3) 2,7
+AF< > T3 T C3>+ Aﬂo<108+12+3> galr
27 41 4

Here we only give the leading terms in the m, — oo limit. The first few higher-order terms in z in F?) (z) can be obtained
from the results of Refs. [171,172].
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2. H+1 jet

The amplitudes for H + 1 jet were calculated in Ref. [32] in the m, — oo limit. Reference [32] uses T = 1 and g, 7%/v/2

for the ¢gg coupling. Thus, we can convert to our conventions by replacing 7¢ — /27, and identifying 1/N = C, — 2Cy
and N = C, in the results of Ref. [32]. We expand the amplitudes in powers of a,(u) as

A= 2T§:v ZA < ) (B11)

a. gggH

The tree-level amplitudes entering the matching coefficient 5++i in Eq. (115) are

1 mt mt .
A0, 2834 dy) = o = — e,
\/§<12><23><31> 2|S12513523|
1 [12 2 .
A0 2 3y == W b e, (B12)

V2(13123] (/251513803

where we have extracted the (irrelevant) overall phases

o — VIsial VIsis[ V/[s2] i — [12] V/[s12] VIs13] Vs3] . (B13)

T2 Gl (23) “(2) (2) 13 3

The divergent parts of the one-loop amplitudes are

3

1 3
Agv)(ﬁ, 2+,3%4,) = A0 (17, 2%, 3i,4H){_€_2CA + - [CA(LIZ + L3+ L) —Eﬂo] } (B14)

The finite parts of the gggH amplitudes, which enter the matching coefficient 6‘++i at one loop are

1
Ag‘iln)(ﬁ»2+» 3T4y) = A0, 28, 3+;4H){f(512’ S13+ S23, Mg H) + §(CA —2Tpny) it SZ;LB - 813323},
H
1
AR (1+.2%.3714y) = A<°><1+,z+,3—;4H>{f<s12,sn,s23,mz,u>+§<c —~2Tn »WB}, (B15)
512

where we have extracted the common function

1
F (512,813, 823, miy, ) = —Cy [5( b+ L3+ L33) + LioyuLisym + LioyuLosyn + LisyuLosm

+2L12<1—SL§>+2L12<1—£>+2L< sij) 5—31}—3@ (B16)
m m m

H H H 4

b. gqqgH

The tree-level amplitudes entering the matching coefficient éi( +) in Eq. (114) are

2
(1+’ q73q’ ) _Lu: S12 eiq>+(+)H’
2 [23] \/2|S23|
1 <13>2 S13

AO (17524 37:4y) = -

324,37 =——=—¢%tm, (B17)
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where the (irrelevant) overall phases are given by

1Py — , 1@y = L 1 B18
¢ (12) 23] ‘ [13] (23) (BI8)
The divergent parts of the one-loop amplitudes are
toot AO) (1% 1 1 Po
Adw(l 324.35:4y) = AV(17;27,37:4y) —;(CA‘FZCFH'E CA(L12+L13_L23)+CF(2L23_3)_? .
(B19)
The finite parts of the gggH amplitudes, which enter the matching coefficient 6‘i<+) at one loop are
s
Aéxl)(l+72(-}_a3qa ) A< )(1+’2q73q’ ){g(s127sl3vs23’m%lhu)+(CF_CA)£},
s
Aim)(l‘,zj, 37:4y) = Al )(1_’21173q’4H){g(SIZvSISvSZB’m%—Pﬂ) +(Cr = CA)ﬁ}’ (B20)

where we have extracted the common function

| , p 2 2
9(s12. 813, 823, m3;. 1) = Cy {—5 (L3, + Ly = L33) + LioyuLysyy — (Lioys + Lisyu) Losyu — 2L, (1 - ﬁ) +5+ —]

2
1+ Cr [—Lg3 + 3Ly — 2L 1oLy, — 2Lis (1 - s—'j) ~2Li, (1 - s—‘j) — 11+ ”—}
miy my 2

+Bo (—L23 + g) . (B21)

3. H +2 jets

The full set of tree-level helicity amplitudes for H + 2 jets in the m, — oo limit were calculated in Ref. [31], and all
amplitudes below are taken from there. We expand the amplitudes A, B, in the decomposition of Eq. (119), Eq. (124), and
Eq. (130), as

2TFas /’t) 2 -
A=—"" Al
kY2 nz: ’

B= ZT% 2i3 < > (B22)

n=|

For simplicity, we only give explicit results for the tree-level amplitudes in this appendix. To reduce the length of
expressions, we use the kinematic variables s, defined by

Sijk = (Pi + P+ Pi)* = sij + Sik + 8 (B23)

The H + 2 jets process is nonplanar, which means that we cannot remove all the relative phases in the amplitudes. It is
therefore most convenient to keep all expressions in spinor helicity notation. We will explicitly demonstrate an example of
the phases which appear in Egs. (B28) and (B29).
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a. qqq'q'H and qqqqH
The tree-level amplitudes entering the Wilson coefficients C< +.+) and C( ++) in Egs. (121) and (122) are

N N N 1[ (24)? [13)?
A0 23534 435 3) = =BG 20534 3) = [<1z><34>+[12n341]’
2 2
b. ggqqH

The tree-level amplitudes entering the Wilson coefficients 6‘+_<+>, 6‘++(+), and 5__(+) in Eq. (126) are

(24)° 13

(12)(14)(34)  [12][23][34]

[13]2[14] (23)(24)2

[12][24][34]  (12)(13)(34)"

[1|2+3|4>2[23]<1 1) 201 +3[4)°13]  [3]1 +2J4)°
5234(24) 523 S34 S134534(14) (12)(14)(24)[34]
~ QI +43P04) (1 1 (124 432(24) (42 + 1]3]?

AV 27345550 = O () e+ T ()

()(1+ 2 93;74(]’51'1) =

A0 (2= 17,35, 42:5,) =

1Yq 0 Tg o

AO(1+,2+;37,4215,) = —

(B25)
14 S34

In these expressions we have eliminated the Higgs momentum, ps, using momentum conservation, so that all momenta
appearing in the above expressions are lightlike. We have also used an extended spinor-helicity sandwich, defined by
[ilj + k|l) = [i|j|l) + [ilk|l) to simplify notation.

All the B amplitudes vanish at tree level,

BO(17,27;35,42:5,) = BO(1+,2%;37,42:5,) = BO(17,27;37,47:5,) = 0. (B26)

c. ggggH

The tree-level amplitudes entering the Wilson coefficients 5‘++__, 6‘+++_, and 6‘++++ in Eq. (133) are

+ 9+ 2+ g+ _ _2M?1
AV(17.27,37.4 ’5H)f<12><23><34><41>’
AO(1+ 2% 3+ 4-;5,) :2[[1|2+3I4>2[23}2+[2|1+3I4>2[13]2+[3|1+2l4>2[12]2
$234523534 5134514534 $124512514
[13] spll24+3]4)  so3[3|1 +2]4)
e (o 1 )|
ot A e s [12]* (34)*
AV 2737 4750) =2 s s G

N [12]* (34)*
AV 47.23%50) =2 [t e R (B27)

To illustrate the relative phases that appear in these amplitudes, we can rewrite the amplitude A(O)(ﬁ, 2+.,37,47;5 g) in
terms of the Lorentz invariants s;;

2

2
s .
12 el 3 ,
V |S12523S34sl4| vV |312523S34314|

AO(1+,2%,37,47;5,)) = 2el®+—n [ (B28)
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with

i\/523(=512534 + 813824 + S14523 — (V@ + 2/513/523514)]
p= —Zﬂarg{ .

—512534(\/S13 = 13/523) + (513524 = S14523 + V@) (/513 +14/523)

_ Hov P o\2 2
a = 16(€;wpaP1P2P3P4) = 4513514523524 — (512534 — 513524 — S14523)° 2 0,

B = sgn(€,,,. P pspips).

The branch cut of the square root is given by the usual
prescription, /57 = \/s;; +10 = iy/[s;;| if s;; <0. Our
convention for the antisymmetric Levi-Civita tensor is
€013 = —1. For this process we can choose a frame where
all but one of the momenta p; through p, lie in a plane
(with ps determined by momentum conservation). The
phase ¢ is needed to determine the momentum of the
nonplanar momentum and the sign /3 resolves which side of
the plane this particle is on, which is not captured by the s;;
(because they are symmetric with respect to a reflection
about the plane). We note the simplicity of the spinor-
helicity expression as compared with the explicit expres-
sion for the phases.

APPENDIX C: HELICITY AMPLITUDES FOR
VECTOR BOSON + JETS

In this appendix we give all required partial amplitudes for
the vector boson + jets processes discussed in Sec. VI. For
each of the amplitudes A, , ,, B, , , defined in Sec. VI, we
split the amplitude into its IR-divergent and IR-finite parts,

X = Xgiv + Xfin> (C1)
|
0 _ _ . [13](24)
Ag)(13,25;3;,45ﬂ) :_21s—12
1 _ _ 0 _
A (15.27335,47) = AP (15,27

1 - _ 0 _
A (15.25:35.45) = AP (1527

2.V +1jet

In this section we give the amplitudes A, , , for V + 1
jets. Each amplitude is expanded as

X = g,(n) f; X <%’:)) '

where X stands for any of A, ,. The tree-level and one-
loop helicity amplitudes for V + 1 jets were calculated in

(C5)

2
3/,42)Cp {—L%z +3L,, -8+ ]

(B29)

I
where X stands forany of A, , , and B, ,, ,. For the logarithms
we use the notation

S
Lij = hl(-/;;-lo),
Sij . .
Lij/kl = LU _Lkl = ln(—ﬂ—é—lo) —11'1(—%—10)

()

1. V + 0 jets

In this section we give the amplitudes A, , , for V +0
jets. For each partonic channel, we expand the amplitudes
as

(C3)

X = 2}((") (%:))

where X stands for any of A, ,. The tree-level and one-
loop helicity amplitudes entering the matching coefficient
in Eq. (146) are given by

€

2 1
3;,42)Cr {—62 +-(2Lp - 3)} ;

T

¢ 6

(C4)

Refs. [11,12,14,181]. We use the results given in Ref. [14],

which uses T = 1 and g,7%/ /2 for the qqg coupling. We
can thus convert to our conventions by replacing
T¢ - \/2T% and identifying 1/N = C,—2Cr and
N = Cy4. The one-loop amplitudes are given in the FDH
scheme in Ref. [14], which we convert to the HV scheme
using Egs. (100) and (101).

The tree-level amplitudes entering the matching coef-

ficient éx +(+:+) In Eq. (154) is given by

094003-47



MOULT et al. PHYSICAL REVIEW D 93, 094003 (2016)

(35)°
(12)(13)(45)
AV = 4D =o.

AP (1%:24.37:41.57)

(Co)
The divergent part of the one-loop helicity amplitude is given by

AW

O (17:28.35:47.55) = AP (11,25,37:47.55)

s&g g s&g g

x{ lz(cA+2cF) [CA(L12+L13—L23)+CF(2L23—3>—ﬂ—2°H. )

The finite parts entering the matching coefficients at one loop are

A

qﬁn(ﬁ 20,37;47 .57)

127,373 = AY(14.2§.35:47.57)

s =g Vg

C 2 2
x{%(—L%Z 3+3L13—7+7;>+<CF——>< L§3+3L45—8+%)

e { Ls_ (S]Z 513>
e
S45 S45

(3]24]5)
35 S45

3|24|5>

545

L(32) -2 g b ()]

”CA‘ZCF)[LS‘ Cﬁ ii2)+(<fii2< >2 <15>< >><3<5>><25>)LS“C2 ji)

2[12](25)(13) . (s13) , 2 >2[2|1|3 13) 3|21|5 25 (13) - (545
(35) 545 LO(S45> 235 (12)(35)%s)3 <513> )2523 L0<523)
<13>2[1|2|5> Sa5 [1|2I3>[4|1|5 45 Sas
2(35)s1 b <S13) (35)? <523>
+[14]([12][ 4] + [13)[24))(1 ><45>H
2(35)2[13][23][45] '
M 1+.9+ + - $23 _ 1
A (1412 .37:41.57) = 4V2T[12][14)(35) L45 <s45) —12s45m%]’
AV =o. (C8)
The contributions from virtual top quark loops are calcu- 3. V+2 jets

lated in an expansion in 1/m, to order 1/m? in Ref. [14],
hence the divergent behavior of Agl) as m, — 0. To reduce
the length of the expressions, we have used the commonly

defined functions

lnr Lo()+1
Lo(r) = ——,  Ly(r)="""—
o(r) -/ i(r) = 1=
71'2
Ls_l(rl,rz):Liz(l—rl)+Li2(]—r2)+lnr11nr2—€.

(©9)

The proper branch cut of logarithms follows from the pre-
scriptions s;; — s;; +10. The proper branch cut of the dilogar-
ithm follows from that of the logarithm through the identity

Im[Liy (1 = r)] = = 1In(1 — r)Im[In r]. (C10)

In this section, we give the amplitudes A, , ,, B, , for
V + 2 jets. Each amplitude is expanded as

where X stands for any of A, , or B, ,, ,. We also define the
kinematic variables s;;; as

(C11)

Sije = (Pi + P+ Pu)* = sij + S + Sjie (C12)
The one-loop helicity amplitudes for ¢'g'qgV and
qqqqV were calculated in Ref. [186]. The one-loop
helicity amplitudes for ggggV were -calculated in
Ref. [14], which also gives compact expressions for

the four-quark amplitudes, which we use here. The
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contributions from virtual top quark loops are calcu-  FDH scheme in Ref. [14], which we convert to the HV
lated in an expansion in 1/m, to order 1/m?  scheme using Egs. (100) and (101).
in Ref. [14].

Reference [14] uses T = 1 and ¢,7%/+/2 for the ggg a. ¢'q'qqV and qqqqV
coupling. We can thus convert to our conventions by The tree-level amplitudes for ¢'g'qgV and ¢GqqV enter-
replacing 7% — /2T, and identifying 1/N = C4 — 2Cr. ing the Wilson coefficients in Eqs. (173) and (174) are
and N = C,. The one-loop amplitudes are given in the  given by
|

AP (15.25:37.47:57.67) = =B (15,2535 47:57.67)

_ 2 ]<46>(< 2)[15] - (23)[35]) n (24)[35]([12](26) + [14](46))]
S12556 | S123 S124 _’
AP (17.25:35.47:55.63) = =By (1724135 .47:57.63)
__ 2 [[23[46)({12)[25] + (13)(35]) | (14)[35]([12](16) — [24](46))]
$12556 | 5123 S124 _’
AV =AY =B = BY =o0. (C13)

Due to the length of the one-loop ¢’'g’'qgV amplitudes, we only show how to translate the decomposition of the amplitude
in Ref. [14] to our notation. The one-loop amplitudes are given in terms of the bare partial amplitudes A; ;(3,.25. 1 ¢, 4;) of
Ref. [14] as

_ . p 1
AP (15.2413,.45:65,57) = —i322°NAg, (34,25, 19 45) — ( 720 =Gy )A AP (15.2413,.45:65.57).

1
B (1,4,2533,.45:65.55) = =322 NAga (3,4, 25. 19, 47) — ( °+2CF—§CA>Bg>(1q,,2q,3q,4q,6 57),

AP (17.2413,.45:65.55) = =B (1. 27:3,.45:65.55) = —i321%A5(3,. 20, 10, 47).

AV =BV = o. (C14)
The overall factor —i32z is due to our different normalization conventions. We have not included helicity labels, as these
relations are true for all helicity combinations. Note that the partial amplitudes A;.; do not include labels for the lepton

momenta, which are implicitly taken as 6, 55 Z- The terms in the first two lines propomonal to AEI ) and Bg ) come from the
UV renormalization and switching from FDH to HV.

b. ggqqV
The tree-level amplitudes for ggqqV entering the matching coefficients in Eq. (182) are given by
©) 1+ 9+.2+ + =) — (46)°
Ag (17,2%:35,4755,, 6)_—4<12>< 13)(24)(56) "
AP0 235,557 65) - [LUUOEIBS) 12 (15) | EORSIIZIEO) + (1449)
! S12556 (13)s123 [24] 5124
+([12]<26> + [14](46))((23)[35] — (12)[15])
(13)[24] ’
) (1= ~t.a+ o ((12)[25] + (13)[35]) | (14)[35]([12](16) — [24](46))
A (172 ’3q’4q’5+ 512856 [ [13]s123 " (24) 5124
(14)[35](46)
[13}<24> ]
AV = A0 = B = B = B — 0. (C15)
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Due to the length of the one-loop ggqqV amplitudes, we again only show how to translate the decomposition of the
amplitude in Ref. [14] to our notation. The one-loop amplitudes are given in terms of the bare partial amplitudes
Aij(34,1,2,45), AY;(34,45:1,2), and A%S(3,, 44 1,2) of Ref. [14] as

qr q> g q>Tqe o

AV(1,233,,45567,57) = —i647°NAg (34, 1,2.4;) — ( °+CF>A< )(1,2;3,,4,:6/.53).

s~qgr g

9qaq9f7f

BY(1,2:3,,45:67.57) = —i64n2Ag3(3,.45: 1.2).

q’ "q°

AV(1,2:3,.45:65.55) = 4o

BY(1,2:3,.45:65.55) =

>~qr g

q>Tqe o

~i6472AY,(3,,45:1,2),

q "9

2
64 T AL (3,.44:1.2),

AP(1,2;3,,45:65.57) = —i6422A, (3,45 1,2).

q’ "q°

1
BV (1,2;3,.4,; 67.57) = ~i64n’ - [AR5(3,.47:1.2) -

q "q

q "q°

The overall factor —i647 is due to our different normali-
zation conventions. We have not included helicity labels, as
these relations are true for all helicity combinations. Note
that the partial amplitudes A;.; do not include labels for the
lepton momenta, which are implicitly taken as 6, 57. The

term in the first line proportional to Aéo) comes from the UV

renormalization and switching from FDH to HV.

APPENDIX D: HELICITY AMPLITUDES
FOR pp —» JETS

1. pp — 2 jets

In this appendix we give explicit expressions for all
partial amplitudes that are required in Egs. (189), (190),
(194), and (203), for the various partonic channels of the
pp — 2 jets process. Since this process is planar, we can
write all amplitudes for a given set of helicities with a
common overall phase extracted, which is determined by
the phases of the external particles. In this way, we do not
need to worry about relative phases between the Wilson
coefficients for different color structures when they mix
under renormalization. The cross section does not depend
on this overall phase. This simplifies the numerical imple-
mentation considerably for this process, as it avoids having
to implement the complex spinor algebra. To extract the
overall phase from the amplitudes, the following relations
for the relative phases between the spinor products are
useful:

These relations follow from Eq. (A22) with n =4
We split the partial amplitudes into their IR-divergent

and IR-finite parts,
A = Agiv + Atin,

B = Bgiy + Biin, (D2)

q>Tqe o

AR, (340453 1,2) — AR, (3, 4532, 1)].

q "q°

(C16)

|

where the IR-finite parts enter the matching coefficients.
We expand the amplitudes and Wilson coefficients in
powers of a,(u) as

© n

2 x() ag (ﬂ) ’ D3

(P x4 (D3)
n=0

where X stands for any of Ay fin» Baiy.fin» and X© and X(1)

are the tree-level and one-loop contributions, respectively.

For simplicity, we drop the subscript “fin” for those

amplitudes that have no divergent parts, e.g., for the

tree-level amplitudes Ag?g =0 and At(—gl) = A, For the

logarithms we use the notation

§;
Ll]:1 (---10)
' IS

a. q4q'q’ and qqqq

Here we list all partial amplitudes up to one loop entering
the Wilson coefficients in Eqs. (189) and (190). The one-
loop helicity amplitudes for ¢gq'g’ and qgqg were first
calculated in Ref. [23], and the two-loop helicity ampli-
tudes were computed in Refs. [191,192]. We find agree-
ment between the one-loop results of Refs. [191] and [192],
from which we take our results.'® Our one-loop matching
coefficients agree with the calculation of Ref. [88].

""Note that there is a minor disagreement here with the earlier
calculation in Ref. [23], presumably due to typos. Specifically, in
Ref. [23] the factors (log®{*+z°) and (log”{* +7*) in Eqgs. (5.10)
and (5.12) respectively, must be swapped to achieve agreement
with the results of Refs. [88,191,192]. Reference [192] also has a
minor typo, having a flipped overall sign for the IR-divergent
terms.
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The tree-level amplitudes are

A0(17.25:35.47) = ~BO(1].25:35.47) = - T _ 30 g
S12 S12
23)[14 .

AO(15,25:3,,41) = -BO(17,27:3,,41) = _ 2314 ]:sﬁe@w, (D5)
S12 S12

where the phases are given by

(24) o (23)

— P = _— D6
my T T (be)
We have chosen to express all the one-loop amplitudes in terms of A >(1j;, 2q,3+ ;,) and A )(1;,2,],3 4 .). The
divergent parts of the one-loop amplitudes are

ei(I)(+:+) =

2

4
A§13(1q+,2q,3+~4—/) =AO(17,2; 3 A4 ){_ech +E[CF(2L]2 —4Ly3/14 = 3) + Ca(Li3j14 — L12/13)]},

q’7q°

4 2
Bgii( 1. q’3+”4") = (>(1q+72q’3+ _){?CF_E[CF(2L12_2L13/14_3)+CA(L13/14_L12/13)]}a

4 2
Afil\)f(12;72q’3 4+) A(>(1q*,2q,3 47 ){_G—ZCF+E[CF(2L12—4L13/14—3)+CA(L13/14—L12/13)]}7

4 2
5113(1;,%,3 4) A(>(1;’2q’3 4 ){ECF_E[CF(2L12_2L13/14_3)+CA(L13/14_L12/13)]}- (D7)

The finite parts entering the Wilson coefficients are

tm(lz}—’zq’:s 42) = AO(15,25:3),42) [ (512, 513 S14. ) + (ACr = Ca)g (512, 513, 514)];
f1n (1;rv2q»3+ 45,) = A0 (1;’251’3+ 7 )[4CFL12L13/14 f<512,513,3147ﬂ) + (CA - 2CF)9<S12, 313,514)]7
f1n(1;]‘r’2q’3 ;) = A0 (12}_7261’3 /,4;-;)[ f(812, 513 S14: 1) + 2(Cx = 2CF) g(512, 514. 513)].
f1n( \27:3,.45) = AO(14,27:3 2 4VACEL Ly s = (12513, 8145 ) + 2(Cr = Ca)g(S12, 5145 513)]

72 10
(512, 813: S14. 1) = Cp [—ZL%z +2L5(3 +4Ly314) — 16 + ?] + Cy <2L12(L12/13 —Ly3p4) + 3T ”2>

5
_/B()(le _§)’

s |1 s
9(812, 513, S14) = S£ [5 <1 - it) <L%2/14 + ”2> + L12/14] . (D8)

13 $13

b. 2899
The one-loop helicity amplitudes for gggg were first calculated in Ref. [23], and the two-loop helicity amplitudes were
computed in Refs. [187,188]. We take our results from Ref. [187], converted to our conventions."!
Here we list all partial amplitudes up to one loop entering the Wilson coefficients in Eq. (194). We start with the partial
amplitudes where the gluons have opposite helicity, which are the only ones having a nonzero tree-level contribution. The
tree-level amplitudes are given by

""We find a slight disagreement with the earlier results of Ref. [23] for their subleading color amplitude in Eq. (5.24). This amplitude
appears to have typos since it does not have the correct IR structure, as determined by the general formula [215] or by the SCET result in
Eq. (G4). Comparing with the matching calculation of Ref. [88], we find a typo in the z* term in W, in Eq. (54), which should have
3n2u?/(2ts) — =3x%u/(4t).
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3
AO(1+ 2735 47) = 2232 p Vsl o,

P04 =2 men@en 0 s |
s oihad gy (23)24°  siVIsissul e,
AN ) = 2 @) s ©
BO(1+,27;3/,47) = 0. (D9)

In the second step we extracted a common overall phase from the amplitudes, which is given by

o) — (24) [13][14] (D10)

[24] vV 513514 .

The divergent parts of the corresponding one-loop amplitudes are

2 1
Aéiv)(1+,2 ;35.47) = 01+, 2- ’32_74q)|: ) (Ca+Cp) +g<2CFL12+2CAL13 _3CF_ﬂO>:|7
2 1
A7 T 3547) = A0 195314 [ 3 (€ + €+ (2CrL 1 +2C L1 = 3C0 — o)
1
BY)(14,2733F,47) = AO(1+,27;3] 47) ~ 4TF<L12/14+ L12/13> (D11)

The corresponding finite parts entering the Wilson coefficient 5+_(+) at one loop are
) 2 2 7’ 2 *
A (17,27335,42) = AO(1F,27:35.42) Cu | -L, + Ly +1 +T + Cp| L7, +3L;, -8 +E
s
+(Ca— CF)S_]j (L%2/13 + ”2)},
1

C 4n>
AW (= 1435 47) = AO (27 1+;37 47 ){TA <—2L§4+L§2/14—3L12/14+ 1 +i)

fin ’Tq g >Tq g 3
7\ Cys s 2 51,
+Cp<—L%2+3L12—8+6> —TAﬂ [(1—14L12/14> +L12/14+ ]
S13 13 13
C s s 2 52
‘|‘( A CF> 12 [(14— 121412/14> —L12/14+%7Z2]},
2 S13 A S 13
3s
BL) (14,2733, 47) = AO(1+,27 3;,4q)4TF[ L12L13/14+—L14L12/13—Z£( 12/14—1—7:)] (D12)

The partial amplitudes where both gluons have the same helicity vanish at tree level,

AO(1F,2%:35 47) = BO(17,27;3; . 47) =

AO(17,27; 134.47) = BO(1-,27; 134.47)

0,
0. (D13)

The corresponding one-loop amplitudes entering the Wilson coefficients C 4+(+) and 6‘__<+> are IR finite. They are

) 1 1 1
AW(1F,27:37,47) = 24/|s13814 P+ [(CA —Cp) —+3(Cy —2Tny) }
s;3 3 S12
()(p+ 1+.3+ 4= i® 1 1
AV(27,1%:35,47) = =24/ |si3s14]e 0 | (Cy = Cp) — + 2 (Ca = 2T pny) —
sig 3 S12
BW(1F,2+:3F 47) =0, (D14)

094003-52



EMPLOYING HELICITY AMPLITUDES FOR RESUMMATION PHYSICAL REVIEW D 93, 094003 (2016)

and

. 1 1 1
A(l)(1_72';3;,4§) = 2+/|s13514 € |:(CA - CF)—+§(CA - 2TF"f)—}
S13 S12

. 1 1 1
AW (27,17 35.47)=-2 |513514]€ P |:(CA —Cp)—+5(Ca— 2Tan>_],
sS4 3 S12

BW(17,27;3/,47) =0, (D15)
with the overall phases

el — @M el =1 L L N (D16)

(12) \/Is13514] (2] /[s 13514

C. 8888
The one-loop helicity amplitudes for gggg were first calculated in Ref. [23], and the two-loop amplitudes were computed
in Refs. [193,194]. The results given here are taken from Ref. [194], and converted to our conventions. We also find
complete agreement with the expressions given in Ref. [23]."2
The amplitudes inherit the cyclic symmetry of the traces, which means that many of the amplitudes appearing in
Eq. (203) are related, for example

A(11,37,47,2%) = A(27,17,37,47). (D17)
For the convenience of the reader, we will explicitly give all amplitudes needed in Eq. (203). We start with the partial

amplitudes with two positive-helicity and two negative-helicity gluons, which are the only nonvanishing amplitudes at tree
level. We have

34>4 S1r .
AO(1%,2+ 3 47) = 4— =42 i
( )= enan Y,
34)* Sy
AO(17,37,4727) =4 ( =4l
( )= e eEn Y,
4 2
AO(1F,47,27,37) =4 34) R (D18)

(14)(42)(23)(31)  s13514

with the common overall phase
el — _ ) (D19)
The corresponding B(®) all vanish,
BO(1+,27,37,47) = BO(1+,37,47,2%) = BO(1+,47,2%,37) = 0. (D20)

At one loop the B() amplitudes can be expressed in terms of the n r-independent part of the AW,

2T
BW(1%,2+,37,47) = C—Fz[A<1>(1+,2+, 37,47) + AD(1+,37,47,24) + A (1,47, 2%, 37)]
A

|nf=0' (D21)

"2We have also compared with the matching calculation of Ref. [88], which has a minor typo. In particular, in F (s,t,u) in Eq. (61) the
ny terms must be dropped and f3; set to 11C, /3. Also as noted in Ref. [89], the last column of Table 5 in Ref. [88] applies to helicities 7,
8, while the second-to-last column applies to helicities 9-16.
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The same relation also holds for the other helicity assignments. Using the cyclic symmetries of the amplitudes, it follows
that the last three entries in the Wilson coefficients in Eq. (203) at one loop are all equal to each other and are given by
2T/C, times the sum of the first three entries at n, = 0. The divergent parts of the one-loop amplitudes are

4 2 ]

Aéw)(ﬁ 2+,37,47) = AO(17,27,37.47) —;CA +E(CAL12+CAL14_ﬁO> .
AW 1+ 3= 4= 2+) = AO(1+.3-_ 4- 2+ 4 2 |

a(17,37,47,27) = AD(17,37,47,27) —;CA+E(CAL12+CAL13—ﬁ0) ;
A( )1+ + _ + + 4 2 |

av(17,47,27,37) = O)(1+,47,2%,37) __CA +E(CAL13+CAL14_ﬁO> ,

( ) + + + + STF

Byy(17,27,37,47) = AO(17,2%,37,47) (L12/13+ L12/14)

8T r s

B, 37,420 = A0(17, 27,37 4) TF<;4L13/14+—L13/12>}

(1) + + + A+ 8TF
By (17,47,2%,37) = AO(17,27,37.47) |—= (L1413 +—L14/12) (D22)

The finite parts entering the Wilson coefficient 6‘++__ at one loop are

4 47? 5
A1(°i1n>(1+’2+’3_’4_) =AO(1%,27,37,47) |:CA <—2L12L14 —3+;[> +bo <L14 —3)],

4 4n? 5

3 S12

S14 513514
1+<———>L +<2 —)(L2 +7z)}
12 [ P 13/14 512 13/14

_ 3Tans13S14 (L23/14 +r )}
STz

4
AR(1F,47,2%,37) = AO(1+, 47,27, 37) {CA< 2LyyLyy+ 57 ) ﬁ0< SI3L14+SI4L13)
S

—(Cy —2Tpn f)

B (1+,2+,37.47) = B (1+,3- 4=, 2+) = B (1+ 4= 27 3")

fln

= —4TpAO (172,37, 47) [M2L13L12/14 +2L4L 1513 + 4 1 (m - M)Ln/m
S12 S12 \S12 S12

S14 S13514
+—<2— > )(L%Mﬁnz)]. (D23)
12

Due to Eq. (D17), the first two amplitudes in Eq. (D18), as well as the first two in Eq. (D23), can be obtained from each
other by interchanging 1™ <> 2% which corresponds to s,3 <> s;4 without an effect on the overall phase.
The amplitudes with only one or no gluon with negative helicity vanish at tree level,

AO(1+,2% 3% 4%) = AO(1+,3F, 4% 27) = AO 17,4+, 2+ 3%) = 0,
BO(1+,2%,3+ 4%) = BO(1+,3%,4% 27) = BO(1+,4% 2+ 3%) = 0. (D24)

The corresponding one-loop amplitudes are infrared finite. Those entering 6‘+++_ are given by
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13)? 1 : 1 si3 S
A1, 2%, 3%, 4~ :4[—_ —27T — foiPiii _2T S13 |, S13
( s y 3 s ) [41]<12> <23>[34] 3 (CA Fl’lf)(S14 + S34) e 3 (C an) o — 4+ _s14 R
23)? 1 , 1 Si4 S
AW+ 3% 4= 2t :4—[ —(Cy—2T = 4¢!®++i- —(Cy = 2T LR
| )=z T 2T ) =S G T (G

21 I oy o
AW(1F,47,2+, 3+ =4[—_ C, —2T 4P S (Cy — 2T 1 12)
( ) [42](23)(31)[14 ]3< 4 an)<S13+S14) e 3( A an) S14+S13
BW(1+,2+ 3% 47) = BO(1+,3+ 4=, 27) = BO(1F,47, 2% 3T) = —16T pel®+++,

and those for 6‘++++ are
. 1
AW(1F,27,37,4%) = AD(1F,3%, 4, 20) = AD(1F, 4,2 34) = 4elPriss 3 (Ca = 2Tgny),
W(1+,2+,3%,47) = BO(1F,3+,4+,27) = BO(1F, 4+, 2+ 37) = 16T pei®++,
where for convenience we have extracted the overall phases

ei‘b+++— = [12] [13] <14> iQyiy — _M [34]

Ty ¢ T T ) 34y

2. pp — 3 jets

(D25)

(D26)

(D27)

In this appendix we give explicit expressions for all partial amplitudes that are required in Egs. (209), (210), (217), and
(226), for the various partonic channels for the pp — 3 jets process. The one-loop amplitudes for these processes were

calculated in Refs. [22,24,25], respectively. These papers use T = 1 and g,7%/+/2 for the ¢gg coupling. Thus, we can

convert to our conventions by replacing 7% — /27, and identifying 1/N = C4 —2Cr and N = C,. Below we restrict
ourselves to giving explicit expressions for the tree-level amplitudes, since the one-loop expressions are fairly lengthy.

For each partonic channel, we expand the amplitude as

where X stands for any of Agiy fin» Bdiv fin-

a. g94q'q’ and gqq4qq
The tree-level amplitudes entering the Wilson coefficients in Eqs. (209) and (210) are given by

AV1523. 3545, 5) = VI oy AV457:20. %) =~V i e

A2 3543.57) = Vo e AV457:20.3) = Vi
B2 35455) =~ Ay A0 5203) = VA
BOI24.3:43.57) = VI s 3OS 55520%) = Vi e

Of these helicity amplitudes only 4 are independent. The one-loop amplitudes were computed in Ref. [24].
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b. gggqq
The three independent tree-level partial amplitudes which enter the Wilson coefficients in Eq. (217) are given by

AO(1+ 2+ 37145 57) =2v/2

> Tg g

A2, 37 11:47.57) =

AO (3= 1,254 57) =

BO) — c0) = (.

At tree level, the partial amplitudes for the other color
structures vanish, B()) = C(®) = 0. The one-loop ampli-
tudes were computed in Ref. [25].

C. 88888
The two independent partial amplitudes that enter the
Wilson coefficients in Eq. (226) are given by the Parke-
Taylor formula [216]

) o (45)4

AOF. 25,3547, 57) = V2 s T
+ 2+ 4= 3+t 57) = <45>4

AO(1+ 2% 4= 3+ 5 )—4\f2<12><15><24><34><35>’

B = 0. (D31)
All other amplitudes can be obtained by cyclic permuta-
tions. The double-trace color structure does not appear at

|

1. 4 34
ﬁo:?CA—gTan, ﬁ1=?C2
2857 205
pr = ?CZ (C% 18 — CrCy —

and for the cusp anomalous dimension they are [219,220]

268  4n? 80
F0:4, F1:<T—T>CA—3TFI’IJC,

490 53672 44zt 88¢, 8072 836
I=|[—-— 2
? (3 27 45 3 )C (

27 27

-2V2

20

1415
54

112¢,
3

(34)(35)*
(12)(14)(23)(45)°
(34)(35)°
(13)(15)(23)(24

)(45)”

-2V2 (35)°

(12)(13)(25)(45)”
(D30)

tree level, so B(Y) =0. The one-loop amplitudes were
calculated in Ref. [22].

APPENDIX E: RGE INGREDIENTS

In this appendix, we collect explicit results required for
the running of the hard matching coefficients required to
NNLL order. We expand the § function and cusp anoma-
lous dimension in powers of @, as

[Se]

Teusp (@) = i r, (Z—ﬂ) " (E1)

Up to three-loop order in the MS scheme, the coefficients of
the S function are [217,218]

3 CA + 4CF) TFI’lf,

79

11
C2>2Tpnf + <? CF =+ —CA>4T%~I’ZJ2£, (EZ)

54

_ 110

64

(E3)

Note that here I, does not include an overall color factor; it differs from the usual gg case by a factor of Cp.

For the noncusp anomalous dimension of the Wilson coefficient, which is color diagonal to two loops, we write

?(as) =

[ngrélay) + ngre(a;)]1 + O(as), (E4)

as in Eq. (238). The quark and gluon noncusp anomalous dimensions,
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relas) = (Z—;)r” + <Zﬂ>27c17 relas) = (Zﬂ) reo + <4 >2rc1, (Es)

have the following coefficients:

v&o = —3Cr,
41 3 65 71’2
vé = —Cr [(3 - 26C3)CA + <§ -2+ 24C3>CF + (18 3>ﬁ0] ’
Yeo = —Po-
59 19 722
vl = <—3+2C3)C/24+ <—?+€)CA,BO_:BI' (EO)

The evolution kernels required for the resummation were defined in Eq. (237) by the integrals

a)  Toup(as) [a 1
Kr(uo, ) = day,————— da .
F(/"O H) L . Ax(ﬂo) * ﬂ(as/)

s(ﬂO) ﬂ(av)
a;(u) lﬂcus (a\‘)
e (Ho- 1) =/ da, ==,
ro ag(po) ﬂ(as)
N aw  P(ay)
B o) = [ da T (E7)
’ atw)  Plas)

Up to two loops, we can simplify the noncusp evolution kernel as

K, (o, ) = (n K§ (uo. ) + n K (s, u))1. (E8)

Explicit results to NNLL order are given by

Kr(po. n) = 4{500{ ‘Eﬂ ) <1 —%—mr) + (% ﬁ:})(l—r—{—lnr)-%;%ln r

as(/«lo) % )25 1—r? Al ﬂz I, /il (1—’")2
e &Tﬂ?)( 2 ‘”>+<ﬂoro ﬂo)(l_””‘”) (ﬁf/ﬁ) 2 ”

I, r o’ r r 2 |
ne (o) = =5 [Inr+% %y )< : &>(r—1)+ (”2) <—z—ﬁ—' '+ﬁ—§—&> ]
2B | 4 \I'o fo 16z~ \I'o  pol'o  f5 Po) 2
reo | a(po) (ve1 B
K} (pg, ) = =52 lnr+—<——— (r=1)1,
s 260 | ar \rly Po
7co ag(mo) (ver P
K (g, Inr —I— <——— r—1)1, E9
7( 0 ) 2,80 ] 47[ y%o ﬁ() ( ) ( )
with r = a,(u)/a,(po). The running coupling in the above equations is given by the three-loop expression
1 X : 2 lnX 1
= 4 1nx+““(”2) @<1 >+ﬂ (n +——1>}, (E10)
a,(u)  ag(puo)  4npy 167~ [ fo B X
|
with X = 1+ a (o) o In 1/ o)/ (2). Coit = Y0 i = T, ()

APPENDIX F: COLOR SUM MATRICES where 7% % is a row vector of color structures which

For each specific process considered in the text we  form a complete basis of the allowed color structures for
decomposed the Wilson coefficients in a color basis as the particular process. Since convenient color bases are
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generically not orthogonal, the scalar product between
Wilson coefficients is nontrivial. The C" is given by

.

TR s NS
where

T= Y (Tar-om)iTao (F3)

is the matrix of color sums.

In this appendix we give explicit expressions for T for all
the processes in this paper, both for general SU(N), as well
as a numerical result for the specific case of N = 3. For
simplicity, in this section we restrict ourselves to the
normalization convention T = 1/2, and C, = N, and
write the results for general SU(N) in terms of only Cy
and Cp.

For ¢g and gg in the basis in Eq. (105), we have

T, =2C,Cr=8. (F4)
For ggg and ggg in the basis Eq. (110), we have

qut? - CACF - 4,

. Cc% 0 8/9 0
T,.,=2C =— . (F5
999 F(o c§—4> 3<0 5) (£3)

For ¢qgqg and ¢qq’'g’ in the basis Eq. (186), we have

. . Cf, Cy 9 3
Tya9a = Tgaqq = (CA C%) = (3 9>- (F6)

For ggqg in the basis Eq. (192), we have

2,  2Cp-C, 1

R C,Cr
999G — T 2CF - CA 2CF 1
1 1 C,
8§ -1 3
2
33 9

and for gggg in the basis Eq. (197), we have

a b b ¢ d c

b a b ¢ c d
»_CaCr b b a d c c (F8)
9999 4 c cde f fl

d ¢c ¢ f e f

c c f f e
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where

9 1 23
a:Ci—ECACF+6C%+Z:E,

1
b:Ci—SCACF+6C%:—§,

4 2Cr—Cy) 1
—Cp=n,  d="ETEA)
c=trTy 2 6

1
e=CiCy=4,  f=3. (F9)

c, 0 1 1
1

1 C4 O
1 1 0 Cy
301 1
0 3 1 1
=4 (F10)
11 3 0
1 1 0 3
For gggqg in the basis Eq. (215) we have
a b b c dd e f f i |
b a b d c¢c d f e f i |
b b addc f f e i j
c d d a b b e f f j i
c d ¢ d b a b f e f J i
?gggqq:TFddcbbaffeji,
e f f e f f g h h 0 0
f e f f e f h g h 00
f f e f f e h h g 00
iiij j j 000 i j
Jj Jj j i i i 0 0 0 j i
(F11)
where
64 1
Cl:4CAC%-:?, b:CA_Q'CF:ga
10 8
c:(CiJrl)(CA—ZCF):?, d=-2Cp=~3.
e=—1, f=2C,Cr =38, g=2C3Cp =24,
h=C,=3, i=Ci-2=1, ji=-2. (F12)

For ggggg in the basis Eq. (221) we have
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(F13)

where
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(F14)
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and
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a=C4—4C% +10 =55, b=2C%—-4=14,
c=2, d=2C3Cp =24, e=C,=3,
f=2CCr =172, g=C%=09. (F15)

APPENDIX G: IR DIVERGENCES

In this appendix, we explicitly check that the IR
divergences of QCD are reproduced by SCET. This ensures
that they drop out in the one-loop matching, and that the
resulting Wilson coefficients are IR finite. They also
provide a very useful cross check when converting from
the different conventions used in the literature to ours.

The one-loop matching equation relating the SCET
operators and their Wilson coefficients to the QCD ampli-
tude is

-

(0O 1 (oHMED = _jaM (G1)
First we determine the residues of the propagators entering
the LSZ reduction formula. Regulating both UV and IR
divergences in dimensional regularization, all bare loop
integrals in SCET are scaleless and vanish, i.e. the UV and

<0'>(1)C<0) —_ <6T>(0) |:(Z;q/zzzy/2zc _ 1) 4 (qu/zRZy/z _ 1):| 6(0) — <5+>(0)(2C — I)C(O)

1

€

—(oho% | _
<O> 471{

1
- (f’lgCA + nqCF) + E <_

PHYSICAL REVIEW D 93, 094003 (2016)

IR divergences cancel. In particular, for the self-energy
diagrams, we have

Z == ZUV + EIR == 0 (GZ)
The UV divergences Xy plus possible additional UV finite
terms X, (as dictated by the renormalization scheme)
determine the wave function renormalization Z:. The
remainder Xz — X, enters the residue R;:

Zf_l —=1= d(ZUV + Zx) ,
dﬂ p=0
dZRr — 2
RE] =1- M (G3)
d'ﬁ =0

At one loop in pure dimensional regularization, we then
have R; = Z;', and similarly for gluons Ry = Z}'. In the
on-shell scheme X, =2, so with pure dimensional
regularization Z; = R; = Z, = Ry = 1.

Since all loop diagrams contributing to (5T>(1) vanish,
the only nonzero contributions come from the counterterm
in Eq. (229) and the one-loop residues. At one loop we find

1

5 1bo =51, Cr + 2&(#))] ¢, (G4)

where we used the explicit expression for Z derived in Sec. VIII B. One can easily check that this exactly reproduces the
IR-divergent parts of the QCD amplitudes. For example, for ggqg, we have

1 1
=2 (2Cp +2CF) + - (=Po —

Hence, the IR divergences in <5+)(1>5(O) and A

3Cr + 2Aggqq( )

cancel each other and do not enter in C

1
Afii\)/( 3;’411)
~(0
CO o (prpipsip) = | Al 17:35.47) | (GS)
B((il\)/<1+ 2 32_’ ;)

*(1), as must be the case.
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