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Abstract

Diffusion-weighted MRI (DW-MRI) has become a popular imaging modality for probing the

microstructural properties of white matter and comparing them between populations in vivo.

However, the contrast in DW-MRI arises from the microscopic random motion of water molecules

in brain tissues, which makes it particularly sensitive to macroscopic head motion. Although this

has been known since the introduction of DW-MRI, most studies that use this modality for group

comparisons do not report measures of head motion for each group and rely on registration-based

correction methods that cannot eliminate the full effects of head motion on the DW-MRI contrast.

In this work we use data from children with autism and typically developing children to

investigate the effects of head motion on differences in anisotropy and diffusivity measures

between groups. We show that group differences in head motion can induce group differences in

DW-MRI measures, and that this is the case even when comparing groups that include control

subjects only, where no anisotropy or diffusivity differences are expected. We also show that such

effects can be more prominent in some white-matter pathways than others, and that they can be

ameliorated by including motion as a nuisance regressor in the analyses. Our results demonstrate

the importance of taking head motion into account in any population study where one group might

exhibit more head motion than the other.
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1. Introduction

Diffusion-weighted MRI (DW-MRI) encodes information on the direction and speed of the

diffusion of water molecules in the intensity values of the acquired images. In neuroimaging

this has become a tool for inferring the local orientation of white-matter (WM) pathways at

every voxel in the brain, as well as deriving measures of diffusivity and anisotropy that are

thought to reflect the local structure and integrity of those pathways. These measures have

been used to follow progressive changes in the brain across the lifespan (Yoshida et al.,

2013; Salat, In press) and to study the effects of a variety of conditions, including

Alzheimer's disease (Stebbins and Murphy, 2009), Huntington's disease (Bohanna et al.,

2008), Parkinson's disease (Cochrane and Ebmeier, 2013), multiple sclerosis (Inglese and

Bester, 2010), schizophrenia (Kubicki et al., 2007), and autism (Travers et al., 2012).

However, the populations compared in such studies may differ not only in terms of WM

structure, but also in how likely they are to exhibit head motion during the scan. Remaining

still in the scanner may be more challenging for some age groups than others. It may also be

more challenging for subjects with one of the aforementioned disorders than control

subjects. This can make group comparisons of measures derived from DW-MRI scans

problematic. Subject motion during the acquisition of a DW-MRI series will not only result

in misalignment between the images in the series; it can also alter the intensity values in the

images, because motion during the diffusion-encoding gradient pulses leads to attenuation of

the image intensity. That is, the very phenomenon that gives rise to the DW-MRI contrast is

also what makes it particularly sensitive to subject motion. Signal attenuation due to

macroscopic head motion can confound the measurement of interest, which is signal

attenuation due to microscopic random motion of water molecules in tissues. If a subject

moves only during the application of one diffusion-encoding gradient, this can give the

appearance of preferential diffusion in the direction of that gradient and lead to an

overestimation of diffusion anisotropy. If a subject moves randomly throughout the scan,

this can reduce the contrast between diffusion directions and lead to an underestimation of

diffusion anisotropy.

The deleterious effects of head motion on DW-MRI have been known since the early days

of its application to neuroimaging (Anderson and Gore, 1994). However, the issue has

received surprisingly little attention in the numerous DW-MRI studies of clinical

populations that have been published since then. It is common to realign the images in a

DW-MRI series to each other (Andersson and Skare, 2002; Rohde et al., 2004). This will

mitigate motion artifacts but not remove them completely, and most studies do not report the

levels of detected motion by group. For example, 48 studies of autism spectrum disorders

(ASD) that use DW-MRI are reviewed in Travers et al. (2012). Almost all of these studies

report significant differences in diffusion measures between subjects with ASD and control

subjects. However, only five of the studies evaluate some measure related to head motion

for each group and report that it is comparable between groups.

In this work, we use data collected from children with ASD and typically developing (TD)

children to investigate the effects of head motion on measures of anisotropy and diffusivity

derived from DW-MRI and tractography. We show that group differences in such measures
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can increase substantially for small increases in the difference in head motion between

groups. This is the case not only when the groups being compared are children with ASD vs.

TD children, but also when both groups include TD children only. We also show that DW-

MRI findings may be more sensitive to head motion for some WM pathways than others.

Our results have implications not only for autism studies but for a wide range of

neurological and psychiatric applications where the population under study and the control

population are likely to exhibit different levels of head motion.

2. Materials and methods

2.1. Data acquisition

All MRI data was collected at the Massachusetts Institute of Technology, using a Siemens

3T Magnetom Tim Trio scanner (Siemens, Erlangen, Germany) with a custom-made 32-

channel pediatric head coil (Keil et al., 2011). All sessions included DW images and T1-

weighted images.

The DW images were acquired using a conventional 2D spin-echo echo-planar imaging

(EPI) sequence. The series included 30 images acquired with diffusion weighting along non-

colinear directions (b = 700s · mm−2), and 10 images acquired without diffusion weighting

(b = 0). The acquisition parameters were: 2mm isotropic resolution, matrix size 128×128,

number of slices ranging from 52 to 74 and chosen for full brain coverage, no inter-slice

gap, TE=84msec, TR ranging from 8.04sec to 14.18sec depending on the number of slices,

BW=1395 Hz/px, GRAPPA acceleration factor 2.

The T1-weighted images were acquired using a 3D multi-echo magnetization-prepared

gradient echo (MP-RAGE) sequence with prospective motion correction (van der Kouwe et

al., 2008; Tisdall et al., 2012). The acquisition parameters were: 1mm isotropic resolution,

192×192×176 image matrix, 12 echos with minimum TE=1.64msec and maximum

TE=27msec, TR=2.53sec, BW=651 Hz/pixel, flip angle 7°, GRAPPA acceleration factor 3.

2.2. Participants

The data described above was collected for 112 children, 50 in the ASD group and 62 in the

TD group. Several of the subjects were scanned twice, leading to a total of 165 scans. The

subjects' ages were 5–12 years. Their non-verbal IQ was evaluated using the Kaufman brief

intelligence test II (Kaufman and Kaufman, 2004). All subjects included in the study had

non-verbal IQ of at least 80; no history of birth or brain trauma; and normal or corrected-to-

normal vision. The children in the ASD group were evaluated using the diagnostic criteria in

the DSM-IV, as well as the autism diagnostic observation schedule (ADOS) (Lord et al.,

2000). In addition, all children were evaluated on the social responsiveness scale (SRS)

(Constantino et al., 2007). For more information on the standardized tests administered as

part of this study, see Koldewyn et al. (2013a).

2.3. Image analysis

For each DW-MRI scan, we aligned all images in the series to the first non-diffusion-

weighted image using affine registration (Jenkinson et al., 2002) and reoriented the
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corresponding diffusion-weighting gradient vectors accordingly (Rohde et al., 2004;

Leemans and Jones, 2009). Affine registration between volumes is a processing step that is

commonly applied to DW-MRI data to reduce misalignment between the images due to head

motion and eddy currents. To quantify head motion in each scan, we derived volume-by-

volume translation and rotation from this affine registration, as well as slice-by-slice signal

drop-out measures that are specific to DW-MRI (Benner et al., 2011). The registration-based

measures are better at capturing slower, between-volume motion, whereas the intensity-

based measures are better at capturing more rapid, within-volume motion. In more detail the

motion measures were:

1. Average volume-by-volume translation: We used the translation component of the

affine registration from each volume to the first volume to compute the translation

vector between each pair of consecutive volumes. We averaged the magnitude of

these translation vectors over all volumes in the scan.

2. Average volume-by-volume rotation: We used the rotation component of the affine

registration from each volume to the first volume to compute the rotation angles

between each pair of consecutive volumes. We averaged the sum of the absolute

values of these rotation angles over all volumes in the scan.

3. Percentage of slices with signal drop-out: We computed the signal dropout score

proposed in Benner et al. (2011) for each slice in each volume. Slices with a score

greater than 1 are considered to have suspect signal drop-out. We computed the

percentage of slices in the entire scan that had a score greater than 1.

4. Signal drop-out severity: We computed the average signal drop-out score over all

slices in the scan that had a score greater than 1.

We used TRActs Constrained by UnderLying Anatomy (TRACULA) to delineate 18 major

WM fascicles in each scan (Yendiki et al., 2011). This is an algorithm for automated global

probabilistic tractography that estimates the posterior probability of each of the 18 pathways

given the DW-MRI data. The posterior probability is decomposed into a data likelihood

term, which uses the “ball-and-stick” model of diffusion (Behrens et al., 2007), and a

pathway prior term, which incorporates prior anatomical knowledge on the pathways from a

set of training subjects. The information extracted from the training subjects is the

probability of each pathway passing through (or next to) each anatomical segmentation

label. This probability is calculated separately for every point along the trajectory of the

pathway. Thus there is no assumption that the pathways have the same shape in the study

subjects and training subjects, only that the pathways traverse the same regions relative to

the surrounding anatomy. In other words, TRACULA does not rely on perfect alignment

between the study subjects and training subjects. The anatomical segmentation labels

required by TRACULA were obtained by processing the T1-weighted images of the study

subjects with the automated cortical parcellation and subcortical segmentation tools in

FreeSurfer (Fischl et al., 2002, 2004b,a). More details on the tractography method, as well

as an evaluation of its accuracy on healthy subjects and schizophrenia patients, can be found

in Yendiki et al. (2011).
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The pathways reconstructed by TRACULA are: corticospinal tract (CST), uncinate

fasciculus (UNC), inferior longitudinal fasciculus (ILF), anterior thalamic radiations (ATR),

cingulum - cingulate gyrus bundle (CCG), cingulum - angular bundle (CAB), superior

longitudinal fasciculus - parietal terminations (SLFP), superior longitudinal fasciculus -

temporal terminations (SLFT), corpus callosum - forceps major (FMAJ), and corpus

callosum - forceps minor (FMIN). Other than the corpus callosum, all other pathways are

reconstructed for the left (L) and right (R) hemisphere. Figure 1 shows an example

reconstruction, where an isosurface of the probability distribution of each pathway is

displayed.

We obtained mean values of the fractional anisotropy (FA), mean diffusivity (MD), radial

diffusivity (RD), and axial diffusivity (AD) in each of the 18 WM pathways reconstructed

by TRACULA for each subject. To compute these mean values, the pathway distributions

were thresholded at 20% of their maximum value, and the FA, MD, RD, and AD values at

each voxel were weighted by the pathway probability at that voxel. We also computed the

average FA, MD, RD, and AD in the entire WM for each subject. For this purpose we

generated a WM mask from the subject's anatomical segmentation and mapped it from the

space of the T1-weighted image to the space of the DWIs. Note that the tensor model was fit

to the data only to extract these anisotropy and diffiusivity measures, and not to perform the

tractography in TRACULA, which relies on the ball-and-stick model of diffusion instead.

Our quality assurance procedure involved careful visual inspection of all the DW images,

FA maps, and tractography reconstructions, in conjunction with the motion measures

described above. As will be discussed further in section 4, we excluded from any further

analysis 17 scans (12 of them from children with ASD) that were deemed to have excessive

motion. Thus all analyses presented in the following include the remaining 148 scans only.

2.4. Group comparisons

Our goal was to examine whether more group differences in DW-MRI measures would be

detected between groups with different levels of head motion than between groups with

similar levels of head motion. We had at our disposal subjects with different amounts of

motion and, for some of those subjects, two scans with different amounts of motion. Thus

we were able to generate multiple combinations of scans to include in each group and, for

each combination, quantify the differences in motion parameters and the differences in DW-

MRI measures between groups. We first considered the case where a group of children with

ASD was compared to an age-matched group of TD children. We then considered the case

where both groups consisted of age-matched TD children only, thus no group differences in

DW-MRI measures were expected. Finally, using the TD subjects that had two scans, we

examined differences between scans from the same children but with different levels of

motion. All the aforementioned analyses where performed on mean values of the DW-MRI

measures over entire pathways. To further investigate how the effects were distributed

spatially, we also performed a voxel-wise analysis of the association between FA and

motion.
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2.4.1. ASD vs. TD—First we investigated how motion affected the differences between

subjects with autism and control subjects. We generated 50,000 random combinations of 30

children with ASD and 30 age-matched TD children. For subjects that had two scans, we

chose one of the two scans at random each time. For each of the 18 pathways and for the

entire WM, we computed T-tests on the difference in the mean FA, MD, RD, and AD

between the ASD and TD group, using age as a nuisance regressor. For each of the 50,000

scan combinations, we recorded how many of the 18 pathways exhibited significant

differences in each DW-MRI measure at the p < 0.05 level between the ASD and TD group.

We also computed the difference in the average motion measures between the ASD and TD

group.

Introducing nuisance regressors is a common ad hoc approach to accounting for confounds

in neuroimaging studies. We examined whether the use of a motion score as a nuisance

regressor would reduce findings of statistically significant differences in DW-MRI measures

between groups. We define here the following total motion index (TMI) for the i-th subject:

where j = 1, …, 4 indexes the four motion measures described in section 2.3, xij is the value

of the j-th motion measure for the i-th subject, and Mj, Qj, qj are, respectively, the median,

upper quartile, and lower quartile of the j-th motion measure over all subjects included in a

group comparison. Note that the mean and standard deviation are not good measures of

central tendency and dispersion for the four motion parameters, as their distributions are

skewed (see section 3). We repeated the group comparisons of the mean FA, MD, RD, and

AD for each of the 50,000 scan combinations, using TMI as a nuisance regressor (in

addition to age).

2.4.2. TD vs. TD—To confirm that motion-induced differences were not specific to

autism, we repeated the previous experiment using only control subjects. This time we

generated random combinations of 60 TD children that could be split into two age-matched

groups of 30. We adopted the following procedure for generating groups that had subtle

differences in head motion. For subjects with a single scan, that scan could be drawn either

for group 1 or for group 2. For subjects with two scans, we used the lower-motion scan

when the subject was drawn for group 1 and the higher-motion scan when the subject was

drawn for group 2. Comparisons between groups 1 and 2 were carried out for each of the 18

pathways and for the entire WM, as described in the previous section. The frequency with

which significant group differences in DW-MRI measures were detected was now the false

positive rate, as no differences are expected between random combinations of TD children.

2.4.3. Test vs. retest—To demonstrate definitively that motion can generate false

positives where no true differences exist, we used data from the subjects that had two scans.

In this experiment we included only TD children whose motion parameters were below a

rather stringent threshold (the median plus 1.5 times the interquartile range of the cohort) for

both of their scans. This left us with 25 subjects. We used paired T-tests to test for
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differences in DW-MRI measures in each pathway between the lower- and higher-motion

scans of these 25 children.

2.4.4. Voxel-based analysis—The tractography-based approach that we followed in this

work was to compute mean values of DW-MRI measures over each pathway in each

subject's native space, and compare these mean values across subjects. A popular alternative

is the voxel-based approach, where the images of the subjects are aligned in a common

(template) space, and the values of DW-MRI measures at individual voxels are compared

across subjects in this template space. To further investigate the effects of motion with the

voxel-based approach, we used Tract-Based Spatial Statistics (TBSS), a popular method for

aligning FA maps across subjects in a template space and performing voxel-wise statistics

on FA values on the interior skeleton of the WM (Smith et al., 2006). In this analysis we

included data from all subjects. We used group, age, and motion parameters as regressors.

We tested for voxels with a statistically significant association of FA with motion, using

threshold-free cluster enhancement (Smith and Nichols, 2009) and non-parametric

permutation testing (Nichols and Holmes, 2002).

3. Results

3.1. Overview of motion in the data

Figure 2 shows histograms of the four measures of motion described in section 2.3 for the

148 data sets that were included in the analyses, and for the 17 data sets that were excluded

by visual inspection due to egregious motion artifacts. Figure 3 shows box-and-whisker

plots of these measures by group for the 148 scans that were deemed acceptable. As seen in

these plots, the median of all four motion measures was higher in the scans of children with

ASD than those of TD children. A Wilcoxon rank-sum test showed statistically significant

group differences (translation: p = 0.009; rotation: p = 0.0006; portion of slices with signal

drop-out: p = 0.01; signal drop-out score: p = 0.02). For children that had two scans, the

median time between scans was 29 days and the interquartile range was 40 days. There was

no general tendency for more or less motion in the earlier scan compared to the later scan

(translation: p = 0.48; rotation: p = 0.57; portion of slices with signal drop-out: p = 0.89;

signal drop-out score: p = 0.83). There was no difference in the time between scans between

groups (p = 0.97).

Table 1 contains demographic information on the subjects whose scans were included in the

analyses, including age, IQ, SRS score, and ADOS score. Pearson correlation coefficients of

each of these variables to translational and rotational motion are also shown. There were no

significant correlations of age, IQ, or SRS scores with motion measures. However, the

ADOS symptom severity scores of the autistic children were positively correlated with

rotational motion (p = 0.04).

3.2. ASD vs. TD

In figure 4 we have grouped the 50,000 random combinations of 30 children with ASD and

30 age-matched TD children based on how many of the 18 pathways reconstructed by

TRACULA were found to have significant FA differences between the ASD and TD group
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at the p < 0.05 level. The plots show the average difference in motion measures between 285

the groups (ASD-TD), plotted against the number of pathways that exhibited significant FA

group differences. As seen in the figure, the trials with significantly different FA between

the ASD and TD groups in a greater number of pathways were also, on average, the trials

with a greater difference in motion measures between the two groups. The most frequent

outcome was only one pathway with a significant group difference (10998 trials with no

findings, 21867 with one, 12131 with two, 3719 with three, 946 with four, and 339 with five

or more). The one-pathway outcome was also associated with the lowest difference in

motion between the ASD and TD groups, for three out of the four motion measures.

In general, as the difference in motion between the children with ASD and the TD children

increased, differences in DW-MRI measures between the groups increased, and this was

more pronounced for some pathways than others. To illustrate this, we show results from

two sets of trials: the 500 trials with the lowest group differences in rotational motion and

the 500 trials with the highest group differences in rotational motion. In the former set, the

groups had average differences (ASD-TD) in translation: 0.040 ± 0.034 mm; rotation: 0.054

± 0.012°; portion of slices with drop-out: 0.040 ± 0.018%; drop-out score: 0.022 ± 0.017. In

the latter set, the groups had average differences in translation: 0.358 ± 0.031 mm; rotation:

0.276 ± 0.011°; portion of slices with drop-out: 0.113 ± 0.015%; drop-out score: 0.075 ±

0.016. Figure 5 shows group differences in FA, MD, RD, and AD, averaged over the 500

trials with low or high differences in motion, for each pathway and for the entire WM.

Figure 6 shows the frequency (fraction of the 500 trials) with which these differences

reached statistical significance at the p < 0.05 level.

As seen in figure 6, the right ILF is the pathway that exhibits significant group differences in

DW-MRI measures the most consistently, for both lower and higher group differences in

motion. Other pathways show significant differences in DW-MRI measures mostly when

there are higher differences in motion between groups. As seen in figure 5, when there is

more motion in the ASD group relative to the TD group, the FA of the ASD group tends to

decrease and its RD tends to increase relative to the TD group. Note that for some of the

pathways the FA is somewhat higher in the ASD than the TD group (although these

differences may not be significant) when the differences in motion are small. For those

pathways, the FA differences decrease and then change sign as the motion differences

become greater. This is, perhaps, why in figure 4 the trials where FA differences do not

reach statistical significance in any pathways have somewhat more motion than the trials

where there is a significant difference in one pathway.

3.2.1. Using TMI as a nuisance regressor—Figure 7 shows the frequency of

significant differences in DW-MRI measures at the p < 0.05 level, for the same trials as the

ones shown in figure 6, when the TMI of the subjects is used as a nuisance regressor. The

plots show that, with the introduction of the motion regressor in the analysis, the results

become very similar between the trials with low group differences in motion (figure 7a) and

the ones with high group differences in motion (figure 7b). A comparison of these plots to

the respective plots in figure 6 shows that the frequency of significant findings is decreased

when TMI is used as a regressor, and that this decrease is much more substantial for the
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trials with high group differences in motion than for the trials with low group differences in

motion.

3.3. TD vs. TD

Figures 8, 9, and 10 show results from comparisons of random combinations of TD children,

i.e., groups of 30 TD children with less head motion vs. 30 age-matched TD children with

more head motion. As in the previous section, sets of 500 trials with lower differences in

head motion between the two groups and 500 trials with higher differences in head motion

between the two groups were identified. In the former set, the groups had average

differences in translation: 0.041 ± 0.031 mm; rotation: 0.0003 ± 0.0002°; portion of slices

with drop-out: 0.013 ± 0.010 %; drop-out score: 0.016 ± 0.012. In the latter set, the groups

had average differences in translation: 0.276 ± 0.047 mm; rotation: 0.204 ± 0.011°; portion

of slices with drop-out: 0.071 ± 0.013%; drop-out score: 0.065 ± 0.016. Note that these

differences between lower-motion and higher motion scans from TD children are more

subtle than the respective differences between scans from children with ASD and TD

children, which were reported in the previous section.

Figure 8 shows group differences in FA, MD, RD, and AD, averaged over the 500 trials

with low or high differences in motion, for each pathway and for the entire WM. Figure 9

shows the frequency (fraction of the 500 trials) with which these differences reached

statistical significance at the p < 0.05 level. This frequency is now a false positive rate, as no

differences in DW-MRI measures are expected between random combinations of TD

children. As seen in the plots, when the motion differences between the groups of TD

children was low, there were no group differences in DW-MRI measures (figure 8a) and the

false positive rate was around 5% for all pathways (figure 9a). This was consistent with the

chosen threshold (p < 0.05) for the probability of detecting a difference between groups

under the null hypothesis. When the motion difference between groups was higher, the false

positive rates increased (figure 9b), particularly for the forceps major of the corpus callosum

and the cingulum bundle. For these pathways, there was an increase in RD and a (smaller)

decrease in AD for the group with more motion relative to the group with less motion

(figure 8b). As a result, there was a decrease in FA but a much smaller increase in MD in the

presence of motion.

3.3.1. Using TMI as a nuisance regressor—Figure 10 shows the frequency of

significant differences in DW-MRI measures at the p < 0.05 level, for the same trials as the

ones shown in figure 9, when the TMI of the subjects is used as a nuisance regressor. The

introduction of the motion regressor in the analysis reduced the false positives substantially

in the trials with high group differences in motion (figure 10b), although it did not bring

them quite to the same level as the trials with low group differences in motion (figure 10a).

The false positive rate was decreased, when motion was used as a regressor, even for the

trials with low group differences in motion, where it fell slightly below 5%. This may be an

indication that the motion regressor introduces some noise in the analysis, as the motion

parameters are themselves noisy estimates derived from image data. Thus it is plausible that

the introduction of motion parameters in the analysis reduces the bias due to motion at the

cost of a small increase in variance due to noise.
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3.4. Test vs. retest

Here we used data from 25 TD children only. These children had test-retest scans that did

not exceed a stringent motion threshold, so that the maximum translational and rotational

motion in any of the scans included in this analysis was, respectively, 1.17 mm and 0.58°.

The median number of days between test-retest scans was 22 and the interquartile range was

37. Paired T-tests between the earlier and later scans showed no significant change in FA;

thus there were no significant longitudinal within-subject changes between these scans. The

higher- and lower-motion scans of these 25 children had average differences in translation:

0.157 ± 0.032 mm; rotation: 0.126 ± 0.020°; portion of slices with drop-out: 0.025 ±

0.014%; drop-out score: 0.037 ± 0.017.

Figure 11 shows comparisons of FA, MD, RD, and AD, for each of the 18 pathways

reconstructed by TRACULA and for the entire WM, between the subjects' lower-motion and

higher-motion scans. The corpus callosum and cingulum bundle showed significant

differences in FA between the lower-motion and higher-motion scans of these 25 TD

children. The differences followed a similar pattern as the one seen in the previous section:

higher motion led to decreased FA but largely unchanged MD, due to an increase in RD and

decrease in AD. The sizes of these differences are shown in table 2.

We also investigated whether the differences in DW-MRI measures could be caused by the

inclusion of more grey matter voxels in the posterior probability distributions of the

pathways in the presence of more motion. Due to the fact that the distributions were

thresholded at 20% of their maximum value, and the voxels that remained were weighted by

their probabilities, grey matter voxels contributed very little to the computation of the mean

values of DW-MRI measures over each pathway. For example, for the forceps major of the

corpus callosum, which showed the greatest sensitivity to motion, the sum of the

probabilities of all included grey matter voxels was on average 0.01 ± 0.003 for the lower-

motion scans, 0.02 ± 0.005 for the higher-motion scans, and their differences did not reach

statistical significance based on a paired T-test (p = 0.062).

3.5. Voxel-based analysis

Statistical significance maps from the voxel-wise statistical analysis of the association of FA

and rotational motion in the full set of scans are shown in the supplementary figure.

Increased motion is associated with decreased FA, and the corpus callosum shows the

strongest association. This result replicates, in our cohort of children, what was shown for a

group of middle-aged and older adults by Salat (In press, Figure 10). Using translational

instead of rotational motion did not alter this result.

4. Discussion

Anisotropy and diffusivity measures derived from DW-MRI are sensitive to several

confounding factors, including head motion, partial volume, and fiber crossing effects

(Jones and Cercignani, 2010; Metzler-Baddeley et al., 2012; Jones et al., 2013). Although

we have focused exclusively on head motion in this work, care must be taken by researchers

to ensure that group differences in their studies are not caused by any of the above factors.
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4.1. Effects of head motion

Our results illustrate that group differences in motion can have a non-negligible effect on

group differences in DW-MRI measures. In our comparison of subjects with autism to

control subjects, the former always exhibited greater motion than the latter. Small increases

in this difference in motion between the two groups were accompanied by increases in the

number of pathways that had significantly different FA between the groups (figure 4). A

comparison of results from trials with smaller motion differences between groups (figures

5a, 6a) to those from trials with larger motion differences between groups (figures 5b, 6b)

showed that the latter were characterized by greater group differences in DW-MRI

measures. In particular, more motion in the ASD group relative to the TD group was

accompanied by an apparent increase in RD and decrease in FA in the ASD group relative to

the TD group. This pattern of group differences in anisotropy and diffusivity has often been

reported in the autism literature (Travers et al., 2012).

However, in the absence of ground truth on the structure of the autistic brain, it is difficult to

determine if these findings are false positives. As we found head motion to be correlated

with ADOS symptom severity scores in the children with ASD, in principle one could not

eliminate the possibility of a true biological underpinning for the greater differences in DW-

MRI measures for ASD groups with more head motion. Furthermore, group comparisons of

measures derived from the tensor model of diffusion can be confounded by other factors.

For example, subjects from different populations could differ not only in terms of head

motion, but also in terms of partial-volume or fiber-crossing effects. To make sure that we

can isolate the effects of head motion from other possible group differences, we went on to

compare groups consisting of control subjects only.

When we compared groups of randomly drawn, age-matched TD children with similar

levels of head motion, differences in DW-MRI measures of anisotropy and diffusivity were

close to zero and the false positive rate was uniformly at 5% for all 18 pathways (figures 8a,

9a). However, the magnitude of the differences increased substantially when one group of

TD children exhibited more head motion than the other (figures 8b, 9b). The motion

differences between these groups were even subtler than the differences between ASD and

TD groups in our previous set of experiments. We were also able to detect within-subject

differences between the lower-motion and higher-motion scans of a set of TD children who

had received test-retest scans, even after removing the subjects with the most head motion

(figure 11). The pattern that emerged from our analyses of data from TD children was that,

as motion increased, there was an overestimation of RD, accompanied by an

underestimation of AD. This led to a significant underestimation of FA but only a very small

(non-significant) overestimation of MD.

The pathways that exhibited the most substantial motion-induced group differences in our

data were the corpus callosum and the cingulum bundle. Perhaps this is related to the

proximity of non-brain voxels (such as the ventricles) to a sizeable portion of those

pathways. Furthermore, in our voxel-based analysis of the association of FA and motion,

deeper brain areas appear to be more affected than more superficial ones (see supplementary

figure). Thus distance from the head coils may also be a factor. Interestingly, anisotropy and

diffusivity measures for the corpus callosum and cingulum bundle have often been reported
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in the literature to differ between a variety of clinical populations and healthy subjects

(Salat, In press; Stebbins and Murphy, 2009; Bohanna et al., 2008; Cochrane and Ebmeier,

2013; Inglese and Bester, 2010; Kubicki et al., 2007; Travers et al., 2012). This raises

questions about the extent to which differences in head motion between the clinical and

control population may be a confound in such studies, particularly given that reporting

levels of head motion by group is not commonplace in the literature.

4.2. Strategies for group comparisons

There are several approaches to comparing DW-MRI measures between groups. In this

work, we have focused on mean values of such measures over major WM pathways, as

obtained from tractography. Motion will affect these mean values if it affects a large enough

portion of the pathway. As can be seen in the statistical maps produced by a voxel-wise

analysis (supplementary figure), the effects of motion may be more significant in certain

parts of a given pathway than others. Thus, one would expect that if tractography were used

to compare DW-MRI measures along the trajectory of a pathway, the effects of motion

might not be homogeneous over the entire trajectory. In general, we would not expect results

from voxel-wise statistical analysis, which is performed in a common template space and

thus relies on good spatial alignment of subjects in that space, to agree perfectly with tract-

wise statistical analysis, where measures are extracted in the native space of each subject.

An alternative approach to defining WM pathways, instead of tractography, is to use regions

of interest from an atlas (e.g., Faria et al. (2011); Keihaninejad et al. (2013)). This would

rely on accurate registration of the individual to the atlas but it would not rely on the DW-

MRI data beyond that. Our approach is an intermediate one, where prior information from

an atlas is used to constrain the tractography solutions in areas where there is uncertainty in

the DW-MRI data. Finally, if a study were to examine more than one of the pathways

included here, the p-values would typically be corrected for multiple comparisons. If we

applied Bonferroni correction to the results of figure 9, then both the blue line indicating the

threshold and the bars indicating the frequency of significant findings would be lower than

they are now. However, for the trials with greater motion differences between groups, the

frequency of significant findings would still be above the blue line, and thus greater than

what would be expected by random chance alone, for the same pathways.

Our results are based on data from children aged 5–12, a population that is particularly

challenging to scan regardless of diagnosis. However, our voxel-based analysis

(supplementary figure) replicates a result on the sensitivity of the corpus callosum to motion

that has been shown elsewhere for a group of middle-aged and older adults (Salat, In press,

Figure 10). Importantly, even if the average adult moved less that the subjects in our study,

studies of adult subjects could still be confounded by different amounts of head motion

between groups, such as younger vs. older or clinical vs. control populations.

A potential concern when analyzing image data from children is that analysis methods that

have been developed for adult subjects may not be appropriate. Our tractography method

relies on an automated surface reconstruction and segmentation of our subjects' T1-weighted

images. The validity of this particular anatomical data processing stream and its lack of age-

related bias has been shown previously for children of the same age range (Ghosh et al.,
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2010). Our tractography algorithm does not rely on exact spatial alignment of our subjects to

an atlas, as it uses information only about which anatomical labels each pathway passes

through or next to, and not about the exact spatial coordinates or shape of the pathways

(Yendiki et al., 2011).

4.3. Strategies for motion compensation

Having illustrated the impact that head motion can have on DW-MRI group studies, our

results underline the importance of accounting for motion in any such study where one

population is more prone to motion in the scanner than the other. In general, methods for

motion compensation in imaging data are either retrospective, i.e., they are performed as a

post-processing step after the images are acquired, or prospective, i.e., they are built into the

image acquisition. In the following we discuss these potential remedies briefly.

The most popular retrospective approach to motion correction in DW-MRI relies on image

registration to align the DW images to a baseline image (Andersson and Skare, 2002; Rohde

et al., 2004). However, the effects of head motion on DW-MRI are two-fold; it can cause

misalignment between different volumes in the DW-MRI series but it can also alter the

intensity values of a specific volume (or, more appropriately for a 2D acquisition, a specific

slice), if head motion occurs during the diffusion-encoding gradient pulse. Although

registration-based correction will address the misalignment between volumes, the drop-out

in intensity values will persist. All the results shown in the present study were obtained after

performing registration-based correction.

A common strategy for controlling confounding factors in neuroimaging group studies is to

introduce these factors as linear regressors in statistical analyses. In this work we used TMI,

a composite index defined from four measures of motion, as a nuisance regressor in the

statistical analysis of the mean values of FA, MD, RD, and AD in each pathway. The use of

this regressor allowed us to reduce the frequency of significant findings among trials with

high motion difference between groups, making it very similar to the respective frequency

among trials with low motion difference between groups. This was the case in comparisons

between children with ASD and TD children (figure 7), as well as comparisons between TD

children with lower and higher motion (figure 10). We found TMI to be more effective in

this regard than the individual motion measures (results not shown). Of course, any such

linear regression approach is ad hoc, as anisotropy and diffusivity measures are not linear

with respect to global motion parameters. Thus regressors cannot be expected to eliminate

false positives completely. A true model-based approach would involve knowledge of the

trajectory of head motion during the acquisition of each slice. Furthermore, measures of

motion may be linearly dependent with respect to other regressors that are often included in

DW-MRI group analyses, most notably age.

Another retrospective approach to addressing the effects of motion is outlier rejection. This

can range from a procedure as simple as discarding an entire scan that exceeds acceptable

levels of motion, either by visual inspection or based on a hard threshold on motion

parameters, to statistical methods for detecting and discarding subsets of the data in each

scan as outliers (Chang et al., 2005; Zwiers, 2010). When discarding subsets of the data in a

scan, i.e., volumes or slices, the amount of redundancy in each data set is an important
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consideration. It has been shown that the minimum number of distinct gradient directions

that are necessary for robust estimation of FA values is 30 (Jones, 2004). Thus it is desirable

to have more than 30 gradient directions per data set, so that outlier volumes can be

discarded and scans with intermittent head motion can still be used without introducing bias

in the analyses. However, the data in the present study included only 30 gradient directions.

In the absence of redundancy, we chose to discard egregiously poor scans in their entirety

but maintain the full range of data quality in the scans that were included in our analyses.

Specifically, we inspected all scans and discarded only the ones where head motion led to

visibly poor quality of the FA maps. This was the case for 17 scans, or roughly 10% of the

full set of data. As seen in figure 2, the scans that we discarded based on visual inspection

included most if not all of the scans that would be deemed outliers based on one of the four

measures of motion. (Note that, if a scan had visible signal drop-out in a slice at the very top

or base of the brain that would not affect the major WM pathways, we did not discard it.

Hence a few of the scans included in the analyses may score high in terms of signal drop-out

but none scores high in terms of the percentage of affected slices.) Some of the 17 discarded

scans were outliers based on only one of the four motion measures, some were outliers

based on more than one measure, and some were not outliers based on any of these

measures. This illustrates the difficulty in setting a hard threshold on motion measures for

excluding scans from a study and the importance of taking into account all such measures,

as well as inspecting the data visually. Hard thresholds that have been used in other autism

studies are 2mm of translational motion (Knaus et al., 2010; Shukla et al., 2011) and 2° of

rotational motion (Knaus et al., 2010). As seen in figure 3, none of the data sets included in

our analyses exceeded the 2° threshold. Only two data sets exceeded the 2mm threshold, and

excluding them from the analyses did not change our results.

The approach that we followed here, applying one of the most widely available methods for

registration-based correction (Jenkinson et al., 2002) and discarding poor-quality scans

based on visual inspection, is certainly not the only possible route but it is one that we

believe reflects current common practices. No matter which combination of registration-

based and outlier-based corrections is used, however, a concern with all such retrospective

methods is that data with different levels of motion will also be subjected to different levels

of processing. In a group study where subjects from one group tend to move more, scans

from this group will have more volumes smoothed due to the interpolation performed by a

registration-based motion correction method, and more data points removed by a method for

rejecting outlier slices or volumes.

A potential remedy for the residual effects of motion that cannot be removed by

retrospective correction methods, as well as the effects of treating one group more than the

other with such methods, is to make sure that the scans in the two groups are matched with

respect to some summary measures of motion. Our results indicate that, when the groups do

not differ in terms of the motion measures that we considered in this work, the chance of

false positive findings is reduced substantially. However, even if matching groups for

motion measures can decrease false positives, it will not address the potential for false

negatives due to motion. That is, the contamination of the image data with motion, even if

that motion is comparable between groups, may occlude true but subtle differences in WM
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microstructure. For accurate measures of this microstructure, one needs not only equal

motion artifacts between groups, but ideally no motion artifacts at all.

An additional drawback of motion correction methods that rely on registration of DW

images is that their performance is dependent on the b-value. Images acquired with very

high b-values do not contain enough anatomical features to be registered accurately. For

such data, it is not possible to use registration-based approaches, either to correct

translational and rotational motion, or to quantify it and match it across populations. This

makes motion correction particularly problematic for high-angular resolution DW-MRI

scans that require the acquisition of data with higher b-values than routine scans. Such high-

angular resolution acquisitions are at once more sensitive to head motion due to higher

diffusion contrast at high b-values and more likely to include head motion due to the longer

scan time needed to acquire more diffusion-encoding gradient directions.

Prospective methods for motion correction have been proposed to overcome some of the

limitations of retrospective methods. Several motion-compensated sequences for DW-MRI

have been introduced recently, using volume registration (Benner et al., 2011; Joelle E Sarlls

et al., 2012), external optical tracking systems (Aksoy et al., 2011), free-induction decay

navigators (Kober et al., 2012), or volumetric navigators (Alhamud et al., 2012; Bhat et al.,

2012). In Aksoy et al. (2011) and Alhamud et al. (2012) the authors compare their methods

to standard retrospective methods for motion correction and show that the prospective

approach leads to improved performance. A particular benefit of prospective motion

correction is that it avoids the interpolation of image intensities performed by registration-

based retrospective methods. In addition to motion-compensated sequences, a promising

development for DW-MRI are accelerated acquisition methods (Feinberg and Setsompop,

2013), as reducing the duration of a scan will also make it less susceptible to subject motion.

4.4. Further analyses

The results presented here show the effects of motion on group comparisons of anisotropy

and diffusivity. However, there are are other types of analyses that we have not investigated

in this work but that may be confounded by head motion:

• Differences in lateralization of diffusion measures between groups. It is not entirely

clear how differences in head motion might affect differences in lateralization. If

subjects in one group moved more, thus reducing the apparent anisotropy in both

hemispheres, power to detect differences between hemispheres in that group could

be reduced. Whether these differences would still be detectable would also depend

on the level of noise in the data.

• Correlation of diffusion measures with other study parameters. The amount of head

motion that subjects exhibit in the scanner could be correlated with several

demographic and behavioral attributes of the subjects, including age, IQ, cognitive

performance metrics, or symptom severity for various conditions. If such a

correlation existed, motion could induce spurious associations between

demographic or behavioral parameters and the measures of anisotropy and

diffusivity extracted from DW-MRI data.
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4.5. Implications for autism studies and beyond

In the autism literature, which has been the motivation for this work, findings in all of the

above categories have been reported (Travers et al., 2012). Among the 48 studies reviewed

in Travers et al. (2012), the following strategies for mitigating motion artifacts are

mentioned: retrospective registration-based correction in 30 studies; ad hoc outlier rejection

(discarding entire scans either by visual inspection or by a hard threshold on a motion

parameter) in 13 studies; selective sedation (only for the most challenging subjects) in 10

studies. However, despite the limitations of the above approaches, very few of the 48 studies

report measures of head motion for subjects in each group.

Specifically, Thakkar et al. report that there was no significant difference in translational

motion between subjects with ASD and control subjects in their study (although those

motion measures are estimated from a functional MRI scan). They find significant FA

differences between groups in the subcortical WM underlying a number of cortical regions

of interest (Thakkar et al., 2008). Knaus et al. report that there were no significant group

differences in motion parameters in the DW-MRI scans of their subjects, based on a

multivariate analysis of variance. They find no significant group differences in the FA of the

arcuate fasciculus (Knaus et al., 2010). Shukla et al. report that there were no significant

group differences in translational or rotational motion in their DW-MRI data. They find

significant group differences in FA in a region-of-interest analysis (Shukla et al., 2010), as

well as a voxel-based analysis (Shukla et al., 2011). Groen et al. follow a statistical approach

to outlier removal as part of the tensor estimation step. They use the mean diffusivity values

in cerebrospinal fluid to quantify motion artifacts and report that there was no significant

difference between groups in that respect. They find no significant group differences in FA

after correcting for age and IQ, but do find significant differences in mean diffusivity. In

addition, they report a significantly higher number of voxels classified as outliers in subjects

with ASD than control subjects (Groen, 2011). Weinstein et al. use sedation for all of the

subjects in their study. They find significant FA differences between groups in a voxel-

based analysis (Weinstein et al., 2010). In a more recent study, Walker et al. compare

sedated children with ASD to sleeping TD children. They find significant but small

differences in FA, on the order of 1%–2%, in voxel-based analyses. Importantly, they also

study the spatial distribution of artifacts, as identified by their method for detecting outlier

voxels, and they report differences between the two groups. The authors conclude that these

differences may be partly due to more head motion in the unsedated TD subjects than the

sedated subjects with ASD, and that this could have affected certain aspects of their DW-

MRI findings (Walker et al., 2012).

Taken together, the studies discussed above suggest that differences in measures derived

from DW-MRI between subjects with autism and control subjects could not be explained

entirely by head motion, and that true effects are likely to exist. However, as we have shown

here, it is worth revisiting studies that have not reported measures of motion and examining

whether group differences in motion exist and, if so, whether controlling for this and using

analysis methods that are robust to outliers increases the specificity of the findings. In our

own data, we find significant but not wide-spread differences between children with ASD

and TD children, after matching the groups for motion (Koldewyn et al., 2013b).
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Specifically, our follow-up analyses confirm that differences between the two groups in the

right ILF persist even after head motion is accounted for.

The small portion of studies that report measures of motion for each group is not

characteristic only of the autism literature. It is representative of the wide range of

applications that use DW-MRI to infer group differences in WM microstructure. Our results

show the impact that differences in head motion between groups can have on DW-MRI

group studies and thus underline the importance of reporting measures of head motion. If

differences in the amount of motion are found between the groups, a combination of the

retrospective correction methods described above, i.e., between-volume registration, outlier

rejection, and using motion measures as nuisance regressors, will mitigate the effects of

motion. However, it is important to note the limitations of these approaches and not to

assume that they will eliminate all such effects completely. Ultimately, our results

demonstrate the significance of developing motion-compensated acquisition methods for

DW-MRI and incorporating them into the common practice of neuroimaging studies.

5. Conclusions

We found that small differences in the amount of head motion between two groups of

subjects were sufficient to yield false positive findings of differences in anisotropy and

diffusivity between the groups, and that some WM pathways were more sensitive to this

than others. The popular postprocessing approach to motion correction by registration of

DW images to a baseline image did not eliminate the problem. The introduction of a motion

index as a regressor in the analysis reduced the false positives substantially. Our results have

implications for any diffusion MRI study where one population is less likely to remain still

in the scanner than the other. Specifically, these results highlight the importance of (i)

ensuring that there are no group differences in motion and reporting motion measures by

group in any study that reports group differences in the DW-MRI measures that we studied

here, and (ii) using motion-compensated acquisition methods for DW-MRI in future studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

- We use diffusion MRI data with varying amounts of head motion

- We compare mean FA in white-matter pathways between age-matched

groups

- The greater the difference in motion between groups, the more the

differences in FA

- Some pathways may be more sensitive to motion differences than others

- Studies of clinical populations must ensure that motion is matched between

groups
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Figure 1. WM pathways reconstructed by TRACULA
ATR: anterior thalamic radiations; CAB: cingulum - angular bundle; CCG: cingulum -

cingulate gyrus bundle; CST: corticospinal tract; FMAJ: corpus callosum - forceps major;

FMIN: corpus callosum - forceps minor; ILF: inferior longitudinal fasciculus; SLFP:

superior longitudinal fasciculus - parietal terminations; SLFT: superior longitudinal

fasciculus - temporal terminations; UNC: uncinate fasciculus.
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Figure 2. Overview of motion measures
Histograms of the four motion measures are shown for the 148 scans that were included in

our analyses (green) and 17 scans that were excluded due to excessive motion (black).
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Figure 3. Motion measures by group
The four motion measures are plotted for the 148 scans that were included in the analyses.

Median motion measures (black dots) were higher for children with ASD than for TD

children.
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Figure 4. Subjects with autism vs. control subjects
The difference in motion measures between groups of 30 children with ASD and 30 age-

matched TD children, plotted against the number of pathways that exhibited significant FA

differences between the ASD and TD group at the p < 0.05 level. Averages and standard

error bars are shown for each of the four motion measures, over a total of 50,000 randomly

drawn subject combinations. On average, the greater the difference in motion between the

ASD and TD group, the greater the number of pathways with significant FA differences.
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Figure 5. Subjects with autism vs. control subjects
Group differences in FA, MD, RD, and AD, for each of the 18 pathways reconstructed by

TRACULA and for the entire WM, averaged over 500 trials with low differences in motion

(a) and 500 trials with high differences in motion between groups (b). Differences in DW-

MRI measures are expressed as 100 · (xASD − xTD)/xTD, where xASD and xTD are the

measures for the ASD and TD group, respectively. There were greater group differences in

DW-MRI measures for some pathways when the group differences in motion were higher.
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Figure 6. Subjects with autism vs. control subjects
Frequency of significant group differences in FA, MD, RD, and AD at the p < 0.05 level, for

each of the 18 pathways reconstructed by TRACULA and for the entire WM. Results are

shown for 500 trials with low differences in motion (a) and 500 trials with high differences

in motion between groups (b). The horizontal blue line indicates the type-I error rate of 0.05.

Some pathways showed group differences in DW-MRI measures more frequently when the

group differences in motion were higher.
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Figure 7. Subjects with autism vs. control subjects, regressing motion
Frequency of significant group differences in FA, MD, RD, and AD at the p < 0.05 level, for

each of the 18 pathways reconstructed by TRACULA and for the entire WM. Results are

shown for 500 trials with low differences in motion (a) and 500 trials with high differences

in motion between groups (b). The horizontal blue line indicates the type-I error rate of 0.05.

Introducing the motion regressor led to similar results between trials with low and high

group differences in motion.
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Figure 8. Control subjects only
Group differences in FA, MD, RD, and AD, for each of the 18 pathways reconstructed by

TRACULA and for the entire WM, averaged over 500 trials with low differences in motion

(a) and 500 trials with high differences in motion between groups (b). Differences in DW-

MRI measures are expressed as 100 · (xTD2 − xTD1)/xTD1, where xTD1 and xTD2 are the

measures for the TD group with less and more motion, respectively. There were group

differences in DW-MRI measures for some pathways, only when the group differences in

motion were higher.
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Figure 9. Control subjects only
False positive rates for FA, MD, RD, and AD at the p < 0.05 level, for each of the 18

pathways reconstructed by TRACULA and for the entire WM. Results are shown for 500

trials with low differences in motion (a) and 500 trials with high differences in motion

between groups (b). The horizontal blue line indicates the type-I error rate of 0.05. False

positive rates increased for some pathways when the group differences in motion increased.
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Figure 10. Control subjects only, regressing motion
False positive rates for FA, MD, RD, and AD at the p < 0.05 level, for each of the 18

pathways reconstructed by TRACULA and for the entire WM. Results are shown for 500

trials with low differences in motion (a) and 500 trials with high differences in motion

between groups (b). The horizontal blue line indicates the type-I error rate of 0.05.

Introducing the motion regressor led to similar false positive rates between trials with low

and high group differences in motion.
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Figure 11. Subjects with test-retest scans
Mean FA, MD, RD, and AD for each of the 18 pathways reconstructed by TRACULA and

for the entire WM are plotted for the lower- and higher-motion scans of the same 25

children. Group averages and standard error bars are shown. An asterisk indicates a

significant difference in FA between groups (p < 0.05) and a disk indicates a trend towards

significance (p < 0.1) based on a paired T -test. Significant group differences were found

between test and retest scans of the same children, particularly in the corpus callosum and

cingulum bundle.
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Table 1

Demographic information for the children whose 148 scans were included in the analyses. For each group the

number of subjects (nsubj) and total number of scans (nscan) are shown. For the age, IQ, SRS and ADOS scores

of each group, the columns show average value (μ), standard deviation (σ), correlation with translational

motion (rT) and correlation with rotational motion (rR). Pearson correlation coefficients are provided with the

respective p-values in parentheses.

ASD (nsubj = 45, nscan = 57) TD (nsubj = 61, nscan = 91)

μ σ r T r R μ σ r T r R

Age 8.7 1.7 −0.14 (0.31) −0.22 (0.11) 8.4 1.9 −0.02 (0.86) −0.04 (0.71)

IQ 108.0 16.9 −0.15 (0.35) −0.12 (0.43) 115.2 14.0 0.01 (0.92) −0.00 (0.99)

SRS 77.5 9.2 −0.08 (0.66) −0.08 (0.63) 47.0 8.9 −0.20 (0.18) −0.20 0.18)

ADOS 7.0 1.9 0.24 (0.12) 0.31 (0.04) – – – –
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Table 2

Percent differences in FA, MD, RD, and AD between the test-retest scans of 25 TD children. Differences are

expressed as 100 · (xTD2 − xTD1)/xTD1, where xTD1 and xTD2 are the measures for the scans with less and more

motion, respectively. Results are shown for the three pathways that showed statistically significant changes in

FA (FMAJ, L-CCG, R-CCG). The columns show average (μ), standard error (∊), and p-value from a paired T-

test on the difference between the lower-motion and higher-motion scans.

FMAJ L-CCG R-CCG

μ ± ∊ p μ ± ∊ p μ ± ∊ p

FA −4.9 ± 0.4 0.01 −5.5 ± 0.5 0.02 −5.1 ± 0.5 0.03

MD 0.1 ± 0.3 0.99 0.9 ± 0.2 0.38 1.1 ± 0.2 0.41

RD 8.1 ± 0.7 0.03 5.3 ± 0.4 0.03 4.6 ± 0.5 0.09

AD −3.6 ± 0.7 0.03 −2.4 ± 0.2 0.03 −1.7 ± 0.2 0.10
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