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Oscillator Array Models for Associative Memory
and Pattern Recognition

Paolo MaffezzoniSenior Member, IEEEBichoy Bahr,Student Member, IEEEZheng ZhangStudent Member,
IEEE, and Luca DanielMember, IEEE

Abstract— Brain-inspired arrays of parallel processing oscilla-
tors represent an intriguing alternative to traditional computa-
tional methods for data analysis and recognition. This altenative
is now becoming more concrete thanks to the advent of emergin
oscillators fabrication technologies providing high dengy pack-
aging and low power consumption. One challenging issue retied
to oscillator arrays is the large number of system parametes
and the lack of efficient computational techniques for array
simulation and performance verification. This paper provides
a realistic phase-domain modeling and simulation methodolgy
of oscillator arrays which is able to account for the relevan
device nonidealities. The model is employed to investigatthe
associative memory performance of arrays composed of resant
LC oscillators.

Index Terms— Associative memory, oscillator array, neurocom-
puting, phase-domain modeling.

|I. INTRODUCTION

is related to finding oscillatory devices and coupling ways
that allows a precise control of the array response in terms
of relative phase differences. Intuition suggests thatpero
coupling methods are those that produce phase modulation
while minimally affecting oscillating amplitudes.

A second crucial issue consists in developing a robust
design methodology. An oscillator array contains a huge
number of free parameters that determine its dynamics and
synchronization properties. Furthermore, the analysishef
phase response of medium/large oscillator arrays viaistans
level simulation is totally unfeasible due to the prohilety
long simulation times it would take. Behavioral models of os
cillators and couplings are thus mandatory to enable asoill
arrays design and associative-memory function verificatio

In this paper, we describe an efficient simulation and design
approach for arrays of resonant oscillators coupled throug
transconductance elements. The methodology is developed i

Driven by the continuous progress in CMOS fabricatiothe paper by referring to a LC tank oscillatory device but it
technology, digital computers based on Von-Neumann mean be applied to other resonant nano-oscillators fatedcat

chine have reached unprecedented computational capabilit emerging technologies, such as MEMS resonant body
In spite of that, it is well recognized that there are stiliransistor [5]. Extensions to non-resonant oscillators[T
classes of computational problems, such as data classifiaee also possible in principle and will be the subject of fatu
tion and recognition, where conventional digital compsiteinvestigations.
perform very poorly compared to the elementary skill of First, we report detailed circuit-level simulations foetbase
human intelligence. For these applications, it is expethatl of an elementary array formed by two coupled oscillators.
unconventional brain-inspired neurocomputing charétdr These simulations provide fundamental evidences about the
by a massive parallelism could lead to significant advancescillator responses and the shape of the coupling currents
[1]. Arrays of weakly coupled oscillators representa preing  Second, we exploit the above gained insights to provide a
approach to unconventional computation. It has been provwedlistic phase-domain macromodel of the oscillator array
that oscillator arrays can implement computational taskhs Such a macromodel is a generalization of previously pre-
as pattern recognition and associative memory by exptpitisented ones [8]-[11] in that it can incorporate the relevant
their natural attitude to synchronization [2]-[4]. In teesarray nonidealities, such as the nonlinear nature of cogpli
oscillator arrays, data information is commonly encodethen the variability of oscillating frequency and the unavoitiab
relative phase differences achieved at synchronizatidmgiw intrinsic noise. By means of a series of simplifications, we
makes computation robust against intrinsic noise of drcushow how the proposed model can be linked to the theory
implementation. of oscillating computing available in the literature [1R]]
However, while the associative memory capability hgd2]. This theory is in fact essential to highlight the asaec
been proved in principle using ideal oscillator models artive memory capability of oscillator arrays. Finally, efént
couplings, the actual implementation with physical desicesimulations are carried out with the nonlinear phase-domai
still presents many unsolved challenging issues. A firsteéssmodel to check the actual associative-memory performasrce f

a bench-mark case study. It is investigated how nonidesliti
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resonant oscillators. In Sec. Ill, we provide the detailbege-
domain model of the oscillator array and we link it to the
theory of oscillator neurocomputing. Sec. 1V, describes th
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Fig. 1. Coupled LC oscillators. We consider the two différeoupling ways 06 07 o8 o5 1

0 0.1 0.2 0.3 0.4 0.5
(a) and (b) shown in the boxes. Time[s] x10°

associative memory procedure for pattern recognitioralfjin Fig- 2. Array outputs in case a) and b).
in Sec. V we illustrate numerical experiments for a bench-

mark case study.
Fig. 3 shows the differential curreht

) : _ _ Ip,(t) = (I (t) = Iy (t))/2 1)
In this section, we analyze in details the elementary array

shown in Fig. 1 composed of two LC oscillators. The twavhich is injected by oscillator 2 into oscillator 1 for two
oscillators have the identical nominal parameters regoirte different polarization current$, = 20 A and I, = 30 uA of
Table-l. When working in free-running mode (i.e., with nahe coupling transistors. The differential pair works asaash
couplings) the two devices oscillate at the same frequeneymparator and thus its output differential currdit (¢) is
of 1.0261 GHz and their output voltage$, (t) = Vi,(t) well approximated by the sign function of its input voltage
(measured across the two LC tanks) are purely sinusoidad], i.e.
waveforms with peak values a3.1V. The oscillators are - :
coupled through differential pair transistors whose tcans Ip,(8) ~ g12 - SigN(Vo, (1))- @

ductance is controlled by a programmable current solifce |, aqgition, we see that by selecting the polarization aurfg
S_U(_:h current sources are usually found in current-steerif@ 4re able to control the amplituge, of the injected current,
digital to analog converters [13]. _ _i.e. we can modulate the strength of coupling. The evidences
For this gleme_ntary array, we perform a series of detaileglyve lead us to the schematic model plotted in Fig. 4
electrical simulations considering the two different Wa)s \yhere mutual coupling is achieved through transconduetanc
_and _b) of inserting the cquplmg transistors shown in theesoXg|ements. The module of transconductance parameters
in Fig. 1. We repeat simulations for several values of thg 2 jetermines the coupling strength while their sign depends
polarization current,. Fig. 2 shows the output voltages 0fyny the way the gates of coupling transistors are connected to
the coupled oscillators in the two cases a) and b) and f9fs oytput nodes: Case a) in Fig. 1 corresponds to a positive

I, = 20pA. In Case a), the two oscillators synchronize in, . _ ,,, parameter (which leads to anti-phase synchroniza-
anti-phasewhile in Case b) they synchroniie-phase In both tion) whereas Case b) corresponds to a negative= go1

cases, the output voltagés, () andVo, () remain sinusoidal arameter (which leads to in-phase synchronization).
with the same peak value as in the free-running mode. This

indicates a first ewdence_about the cou_plmg circuitin EE[gt. 1Common mode currentc:(t) — (I () + I (£))/2, which is almost
prOdU_Ces ph_ase quulatlon of the oscillator response®wtith constant, is filter out by the LC tank and thus can be neglected
affecting their amplitude. 2For reasons that will be clear later, we consider symmeuigplings.

Il. TWO COUPLED RESONANT OSCILLATORS
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Fig. 5. Array with N coupled oscillators.

Fig. 3. Injected differential currents. (Dotted line) sitlated, (Continuous

li imated b - sign(Vo, (t)). . .
ine) approximated bys2 - sign(Vb, (1)) modulation of their responses. As a consequence, the output

voltage of thenth oscillator can be written as

Vi (t + an(t)) = Vs cos(wnt + wnan(t)) = Var cos(0,(t))

(3)
where «,(t) is the time shift due to phase mod-
Vo, () Vo, () ulation, 0, (t) = wyt +wna,(t) is the total phase and
ni ny n D 5
! ™ 2 M2 on(t) = wpan(t) represents the excess phase.
The phase-domain model of the array is thus given by the
g1 - Sign(Va, (1)) o1 - SigN(Vo, (£)) following set of equations:
G (t) = T (t + an(t)Ip, (t) (4a)
Fig. 4. Schematic model of coupling.
N
Ip, () = gnjsignV;(t + a;(t))], (4b)
I11. A RRAY OF MUTUALLY COUPLED OSCILLATORS J=1
We pass now to study an array witN LC oscillators for n = 1,---,N. The functionT,,(¢) in (4a) is aT),-

coupled through differential pair transistors. Each dastl periodic time function that describes the periodicallyyiag

of index n can be coupled to any other of indgxwith phase sensitivity to the injected currefi (t) [15]. This

a transconductance,;, as schematically shown in Fig. 5.function can be calculated through simulations of the free-

Couplings are symmetric, i.@.; = gjn. running oscillator with specialized numerical techniq{3],
First, we present a nonlinear phase-domain of the array tfia¥] as well as with commercially available CAD tools [18].

is able to incorporate the relevant nondidealities of ttetesy.  Eq. (4b) gives the total differential currefy, (¢) injected into

Such a detailed model allows performing realistic numéricascillator of indexn.

simulations of the synchronization response in relatighlgrt The condition for mutual synchronization of the array is

times. Second, we derive a simplified model of the arraghat, asymptotically fort — oo, the total phase difference

This simplified model is needed to link our model to théetween any couple of oscillators of indexandj tends to a

theoretical results available in the literature about lt&tor constant valud,,; [19], i.e.

neurocomputing.

tliglo On (t) —0; (t) = On,- (5)
A. Nonlinear Phase-Domain Model for Numerical SimulaAt synchronization all devices oscillate with a common angu
tions lar frequencyw.. For thenth oscillator, it is thus possible to

define the angular variablg,, (¢) that measures the deviation

We denotel’,(t) = Vi cos(wnt) the output voltage of the of its total phase from the synchronization common apg

nth oscillator when working in free-running mode, wherg
is its angular frequency. Oscillators are nominally idesiti
and are designed to oscillate at the same nominal angulai(t) = 0,,(t) —wet = wpt +wp o, (t) —wet = Pn(t) + Awy t

frequencywy. In practical implementations, however, small (6)
mismatches among devices may introduce tiny variations where Aw¢ = w, — w. is the frequency detuning froma..
the oscillating frequencies,, = wy. Note that in the ideal case of identical oscillating freqeies

When the oscillators are connected via coupling transis;, = wy = w., we have thatAw? = 0 and thusy,(t) =
tors, the mutually injected differential currents prodptase ¢, (t).



We conclude that, for a given matri% = {g,,;} € RV*N  related transconductance coefficiepts. Thus, a positives,, ;
of transconductance values, the phase-domain model (4) @efficient favors in-phase synchronization between lasgoiis
lows us to simulate, in a numerically efficient way, the timef index n and j; while a negatives,; favors anti-phase
evolution of the total phase variablds,(t) and to check synchronization.
whether synchronization condition (5) is verified or not. In Eg. (11) can then be recast in terms of total phase deviations
these simulations it is possible to include the variabity defined in (6) as follows
oscillating frequencies,,. The model can be further enhanced N
by including the effects of internal noise sources. To tliis, a Un(t) = Awt + B - Z $nj sin(1; (1) — 1 (t)). (14)

(4a) is modified as follows j=1

an(t) = Tn(t + an(t))Ip, (t) + 15, (1), (7) By extending the approach in [2], it is possible to prove the
following result: if the symmetry property,,; = s;, holds,

n —_ W F H H
whereg, () = 1.4 (t) +17,(t) i @ macro noise source thalye nhase model (14) is the gradient of the function
reproduces the effects of white and flicker noise within the

. B
nth oscillator [20]’ [21] U(’l/)lv 1/)27 cee 71/)N) = 75 Z Z Snj C05(¢J*¢n)*Awg wna
noj
B. Simplified model for Theoretical Investigation _ (15)
i.e.,
In this subsection, instead, we move in the direction to sim- . oU
plify the model (4) so as to highlight its intrinsic assouiat Un(t) = 75—%' (16)
memory capability. First, we exploit the fact that the sBwisy
functionT'(¢) of harmonic oscillators is well approximated byAS a consequence
a sinusoid waveform delayed hy 2 with respect to the output dU N ooU . N )
response [11], [22], i.e. ar Z WW == Z [¥n]” < 0. (17)
n=1 n n=1
L(t) = P cos(wnt —m/2),  for anyn. (8) This means that, if oscillators are mutually synchronized,
Second, we use averaging [23], [24]. The average shape!lf vector of their phase deviatioris (¢), vz (1). ¥ (1)),
the functionc, (t) obtained by integrating in time (4) can bealways converges to an equilibrium point wh =0 and

approximated by using the simplification 1 (t) = a(t) = ¢ (t) = 0 which is a local minimum of the

sign(Vs cos(x)) = cos(x) (9) functionU.
Depending on the connection coefficients, the function
U can have many of such minima with any of them repre-
senting a stored/known pattern. Starting from a givendhiti
Gn(t) = Tacos(wpt +wpan(t) —/2) phase deviation vectors, which represents a new pattera to b
N (10) rec_ogn_ized, the array will evolye _towards the sto_red pla'_[ter
'Zgni cos(wjt + wja;(t)). which is closest according to its internal “dynamic mefic”
= the array will thus work as an associative memory. It is worth
underlining that the theory developed in this subsectiodsio
rovided that oscillator array keeps synchronized anddhis
verified via numerical simulations of (4).

within (4b). Thus, we substitute (4b) with the simplificatio
(9) into (4a) and use (3) and (8), obtaining

Keeping only the slowly varying terms that result from th
cosine products in (10), we get the averaged equations éor
total phase variables

. N IV. ASSOCIATIVEMEMORY FORPATTERN RECOGNITION
On(t) = wn + B Z sng sin(0;(t) = 0u(t)),  (11) A Information Encoding
j=1

Information can be encoded into the array by taking one

where of the oscillators and its total phase deviation as a referen
“On " Snj = 9nj (12) denotedd, (¢), and then defining the relative phase differences
and 253 . AG (1) = 0u(t) — 011, (18)
op = .
wn ' whereA#, (t) = 0 by construction. The constant value that the

With the notation above, the simplified model (11) looksth phase difference assumes at synchronizatién = 0,1
very similar to the well known Kuramoto model [2], [12]determines theith element

where the parametess ; are theconnection coefﬂme_ntahlle £, = cos(AB,), (19)
the parameterB determines thestrength of coupling The

parametersr,, defined in (13) give thescaling factorsthat of the output vector
allow us to map the “abstract” connection coefficiests of -

- §={&,8,....én} (20)
the Kuramoto model into concrete transconductance vajes
of the coupling transistors. It is also interesting to ndiatt The element,, € (—1, 1) of the output vector can be seen as
the connection coefficients,; have the opposite sign of thethe gray level (white for+1 and black for—1) of a pixel in



a pattern image. Fig. 8 shows, as an example, three different The final phase differencedd, (t) = 6,(t) — 01(¢),
patterns defined ovelN = 60 pixels of a bench-mark case substituted in (19), supply the recognized output pattern.

study that we will employ in further simulations. We conclude this section, by noting that the connection
coefficients defined in (24) and (22) are transformed via (12)
in afully-interconnecteascillator array. This implies that each
oscillator is connected to all of the oth&f — 1 oscillators.
To relax this high-connectivity problem, alternative aiga-
gk = (b ek ek, (21) ments have_ been propqsed in the Iiteratu.re that employ time-
dependent interconnections [2], [26]. In this paper, wepa@do
with £k = 1,...,p are given and define the patterns to be time-varyingswitched-interconnectestrangement where each
memorized in the array. The simplest way to memorize ttoscillator, over a given oscillation cycle, is injected pbly a
patterns is to set the connection coefficients with the wedubset ofd/ << N oscillators. Formally, at theth oscillation
known Hebbian ruleused to train Hopfield neural networkscycle the transconductance coefficients in (12) are transfd

B. Initialization and Recognition
Suppose that a set gfvectors

[25] into
1SN . 0\ = 0 - ;s (25)
snj ==Y EnEl. (22) g g
P4 wheren =1,...,NandL, <j< L, + M with L, =r - M,

However, for oscillator arrays a different setting of thenco While 0., are the scaling factors previously defined in (13).
nection coefficients is needed to initialize the array adigy At €ach oscillation cycle, the subset of transconductance

to the pattern to be recognized [2]. If the latter is desctib@OUPlings is shifted over a new block 81 oscillator outputs
by the vector so as to iteratively cover all of théVv oscillators. This

FO _ [¢0 (0 0 corresponds to incrementing by the indexr so that the
& =1{&,8& - & (23) :
e v} N x M transconductancegél? cover theN x N connection
then, during initialization, the connection coefficiente @et coefficientss,,; in N/M oscillating cycles.
to the values

ng = ’52 5?- (24) V. NUMERICAL EXPERIMENTS

From (14) and neglecting detuningsw¢, we see that if A. Array of two coupled oscillators

§n6) = 1 thenf,; = 0 while if &7 = —1 thenb; = 7. |n the first numerical experiment, we simulate the mutual
Thus, during |n|_t!aI|_zat|on, the array dynamics will comgeto coupling of the elementary array in Fig. 1 with the phase-
the correct equilibrium phase differenc&86,, that substituted gomain model sketched in Fig. 4 and described by equations

in (19) give the pattern-to-be-recognized vecf%r[Z]. ~(4). The results obtained with the phase-domain model are
In conclusion, the associative-memory operation consistscompared with those obtained with the detailed transistor-
a two-step procedure: level simulations described in Sec. Il. In this experiment,

« Initialization: The connection coefficients,; and the the two oscillators are considered identical with the param
corresponding coupling coefficients,; are first initial- eters reported in Table-l. The output voltagg(t) of the
ized to the pattern to be recognized according to (24). Tree-running LC oscillator and its sensitivity functidn(¢)
array is then allowed to achieve synchronization with thisre shown in Fig. 6. The samples of these waveforms are
coupling. employed in the phase-domain model (4). We consider the
In simulations, this corresponds to integrating in time thiesvo coupling arrangements previously investigated in $ec.
phase model (4), with the coefficients (24), while startingnd corresponding to: Case @) = ¢g»1 = 10uS; Case b)
from random initial time shifts. Simulation is carriedgi1o = g21 = —10uS. Starting from arbitrary initial time
out over a time interval;,;; until array synchronization shifts a;(0) and a»(0), the time shifts waveformsa,, (¢) are
is reached. Then, the time shift values,(T;,;:) are obtained by integrating the phase model (4), then, the total
calculated forn =1,...,N. phasest,,(t) = wot + woa,(t), for n = 1,2 are deduced.

« Recognition The connection coefficients,,;, and the Fig. 7 shows the simulated total phase differefige) —0: ().
related coupling coefficients, ;, are now switched to the In both cases, the total phase difference is bounded meaning
setting (22) which includes all the memorized patterrthat oscillators synchronize. In perfect accordance wiih t
collectively. In this condition, the oscillator array maeve results reported in Sec. Il, we have that in Case a), the
towards a new phase deviation vector. At synchronizatiophase difference tends togiving anti-phase synchronization
phase deviation vector provides the recognized outpwhile in Case b) the phase difference goes to zero giving
pattern. In simulations, the Recognition step corresponitlsphase synchronization. In both cases, the output vedtag
to integrating in time the phase model (4), with co¥,,(t) = Vo (t+a,(t)) calculated with the phase-domain model
efficients (22), starting from the initial phase shiftare perfectly superimposed to the waveforms shown in Fig. 2
an(Tinit), Obtained at the previous step. The wavefornend computed with transistor-level simulations. Simjlathe
of a,(t) and those of the total phasés(t) = w,t + coupling currentdp, (t) = g;.» - SigN(V,,(t)) provided by the
wn o, (t) are calculated over a sufficiently long timephase-domain model match with good accuracy the waveforms
interval allowing the array to achieve synchronizatiorcomputed with transistor-level simulations, as shown i Bi
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Fig. 7. Phase differences in the elementary array for cogslia) and b). pattern-to-be-recognized shown in Fig. 10 (leftmost patse
to) is loaded in the connection matrix. During the Initialipat

This confirms the reliability of the results provided by thesAlmuIatmn,- 1.e.0 <t < to = Tinit, the phase thferences

phase-domain simulation. 0,.(t) split into zero orm valges and. the associated output
pattern, computed with (19), just replicates the patterbé-

o o recognized. During the Recognition simulation, ite> to,

B. Associative memory application the phase differences evolve moving towards new constant
In the second experiment, we consider an array formeteady state values close to multiples of(i.e. array syn-
with N = 60 LC oscillators and implementing the associativehronizes). The output patterns computed at the interrtedia
memory function described in Sec. IV. The three patternsmulation timest,¢2,¢3 and reported in Fig. 10 converge
described by vectorg*, to be memorized in the array areto the correct association. Similar results are obtained fo
shown in Fig. 8. the other patterns, e.g for the distorted pattern “2” shown i
In these experiments, the oscillators may have differeRig. 11. We also verified that the correct pattern recognitio
oscillating frequencies,, =~ wy. In what follows we consider occurs for both the fully-interconnected and the switched-
two different degrees of frequency variability and severaiiterconnected architectures described in Sec. IV-B. & th
coupling strength parametét values. case of a switched-interconned array, a small ripple agpear

In the first case, the frequencieg are randomly generatedsuperimposed to the phase waveforms in Fig. 9 (the ripple is
in a narrow frequency interval dir x 100 kHz centered in very small and is not shown in the figure). Interestingly, the
wp. No internal noise is considered. In this case, a couplimgrrect association capability of the array continues ttd ho
strength of B = 4 - 10°, corresponding to weak couplingif the coupling strength parameté? is increased till about
currentsIp(t) of the order fractions ofuA, is enough to the upper valueB ~ 2 - 107. This upper value corresponds
yield array synchronization. Fig. 9 shows the time evolutioto coupling currentsip(¢t) of the order of a fewlOuA.
of the phase differenceAd,, (t) = 6,,(t) — 61(¢t) when the For stronger coupling values, mutual synchronization &.lo
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Fig. 12.  Phase difference time evolution during the Inaion and
Recognition simulations for a too large coupling strength Oscillators do
not synchronize.

to tl ) t3 % I E
Fig. 11. Sequence of output patterns at different times fdistorted input
to

“2".
tl to t3 t4

Fig. 12 shows that for large3, during the Recognitiol
simulation, some oscillators desynchronize with the esfee
and the related phase differences grow with no bound
time. The corresponding sequence of output patterns sl
in Fig. 13 alternates between the correct pattern “1” and the
wrong pattern “0”.

In the second case, we test the memory association perfo
mance for a much greater frequency variability: frequesnicie
wy, are randomly generated in a frequency intervalefx
10 MHz centered inwg. In addition, internal phase noise of
each LC oscillator is included in the model as described in
(7). Repeated phase-domain simulations show that for larg
frequency variability mutual synchronization becomes enor W~
critical and occurs for a narrower interval of coupling styth
values?2 - 106 < B < 2-107. In the presence of significant
frequency variability, in fact, a greater minimum coupling
strength is needed to synchronize the oscillator array. Fg
shows the time evolution of the phase differences for the T T I Y e
distorted input “1” and forB = 5 - 10° in a switched- Time(s] x10”
interconnected array with subset block of dimensidn= 5.

SWItChed Interconnection mtroduce_s sr_’nall phase ripplés WFig. 14. Phase differences time evolution for large fregqyewariability
a period equal toN/M = 12 oscillating cycles. After a computed with a switched-interconnected array.
Recognition simulation time of about)0 oscillation cycles,

Fig. 13. Sequence of output patterns for a too strong cogigtrength and
a distorted input “1”.

A, (t)[rad]
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to incorporate the relevant nonidealities of practical lenp
mentations. Relevant nonidealities are the nonlinearraaifi
coupling, the limited achievable coupling strength as vesl|
the variability of oscillating frequency and phase noisens
lations have revealed that for very small frequency valitgbi

as it is the case for high Q crystal or MEMs resonators or
in the presence of some frequency tuning mechanisms, the
correct associative memory behavior holds for a wide rarige o
coupling strength. By contrast, for relatively large freqay
variability, e.g. for low Q devices, the associative memory
performance results to be strongly affected by the coupling
strength. In this case, the proposed phase-domain macedmod
provides an invaluable aid to the array design and to the

definition of a proper recognition timing.

Fig. 15. Sequence of output patterns for a distorted inptitatid large
frequency variability.
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Fig. 16. Sequence of output patterns for a distorted inptitatad large [5]

frequency variability.

oscillators synchronize and the phase separations state pr[G]
vides the correct output. However, the almost constanteglu
approached by the phase differences in Fig. 14 are quitadpre
around multiple ofr and this results in the less clean output Y
pattern shown in Fig. 15. A similar result is seen in Fig. 16 (g
for the Recognition of a distorted input “2”".

More importantly, we verified that if the Recognition sim-
ulation is extended over a longer time interval, €5g000
cycles, in some cases, synchronization is eventually lodt a
a wrong output pattern is associated. A possible justiboati [10]
for such a performance deterioration is that significant fre
quency detuningdw¢ can produce spurious phase transients,
not considered in the simplified analysis in Sec. lIl. In thelll]
long run, such transients may disrupt the associative mgmor
mechanism. Our simulations show that this can be prevented
by limiting as much as possible the Recognition time, e.g. t62]
some hundreds oscillation cycles in our example.

9]

[13]
VI. CONCLUSIONS
In this paper, we have presented a methodological approagia]
to the analysis and design of arrays of resonant oscillators
for associative memory applications. A realistic phaseydio
model of the oscillator array has been described which is abl

REFERENCES

F. C. Hoppensteadt and E. M. Izhikevicklyeakly Connected Neural
Networks Springer-Verlag, NY, 1997.

F. C. Hoppensteadt and E. M. Izhikevich, Oscillatory remomputers
with dynamic connectivity, Phys. Rev. Lett., vol. 82, pp.832986
(1999).

F. Corinto, M. Bonnin, and M. Gilli, “Weakly connected @Hatory
network models for associative and dynamic memoriggérnational
Journal of Bifurcation and Chagwsol. 17, no. 12, pp. 4365-4379 Dec.
2007.

M. Mirchev, L. Basnarkov, F. Corinto, L. Kocarev, “Coapdive
Phenomena in Networks of Oscillators With Non-Identicaktactions
and Dynamics,1EEE Trans. Circuits and Syst. |: Regular Papevsl.
61, no. 3, pp. 811-819, Mar. 2014.

R. Marathe, B. Bahr, W. Wang, Z. Mahmood, L. Daniel, and D.
Weinstein, “Resonant Body Transistors in IBMs 32 nm SOl CMOS
Technology,”Journal of Microelectromechanical Systemsl. 23, no.

3, pp. 636-650, June 2014.

S. P. Levitan, Y. Fang, D. H. Dash, T. Shibata, D. E. Nikano
and G. |. Bourianoff, Non-Boolean associative architezubased on
nano-oscillators,13th International Workshop on Cellular Nanoscale
Networks and Their Applications (CNNAY012, pp. 16.

] N. Shukla, et al., “Synchronized charge oscillations darrelated

electron systems.Nature, Scientific repor{s4, 2014.

D. Harutyunyan, J. Rommes, J. ter Maten, W. Schildersmtfation

of Mutually Coupled Oscillators Using Nonlinear Phase Macodels
Applications,” IEEE Trans. on Computer-Aided-Design of Integrated
Circuits and Systemwol. 28, no. 10, pp. 1456-1466, Oct. 2009.

P. Maffezzoni, “Synchronization Analysis of Two Weak@oupled
Oscillators Through a PPV MacromodelEEE Trans. Circuits and
Syst. I: Regular Papersrol. 57, no. 3, pp. 654-663, Mar. 2010.

M. Bonnin, F. Corinto, “Phase Noise and Noise Induceddtency
Shift in Stochastic Nonlinear OscillatordEEE Trans. Circuits and
Syst. I: Regular Papersrol. 60, no. 8, pp. 2104 - 2115, Aug. 2013.
P. Maffezzoni, B. Bahr, Z. Zhang, and L. Daniel, “Analysand Design
of Weakly Coupled Oscillator Arrays Based on Phase-Domaatrig
models,” IEEE Trans. Computer-Aided-Design of Integrated Circuits
and Systemsvol. 34, no. 1, pp. 77-85, Jan. 2015.

J. A. Acebrn, L. L. Bonilla, C. J. P. Vicente, F. Ritort, Bpigler, “The
Kuramoto model: A simple paradigm for synchronization pivaena”,
Rev. Mod. Physicsvol. 77, pp. 137-185, Jan. 2005.

M. Gustavsson, J. J. Wikner, N. Nianxiong T&@MOS data converter
for communicationsSpringer International Series in Engineering and
Computer Science, vol. 543, 2000.

P. R. Gray, P. Hurst, S. Lewis, and R. G. Mey&nalysis and Design
of Analog Integrated CircuitsNY: Wiley, 2001.

] F. X. Kaertner, “Analysis of White and"—® Noise in Oscillators,”

International Journal of Circuit Theory and Applicationgol. 18, pp.
485-519, 1990.



[16] A. Demir, A. Mehrotra and J. Roychowdhury, “Phase Nors®scilla-
tors: A Unifying Theory and Numerical Methods for Charaistation,”
|EEE Trans. Circuits and Syst, Vol. 47, no. 5, pp. 655-674, May 2000.

[17] P. Maffezzoni, “Unified Computation of Parameter-Sevisy and
Signal-Injection Sensitivity in Nonlinear OscillatordEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systemt 27,
N. 5, pp. 781-790, May 2008.

[18] S. Levantino, P. Maffezzoni, “Computing the PertuibatProjection
Vector of Oscillators via Frequency Domain Analysi#£EE Trans.
Computer-Aided-Design of Integrated Circuits and Systevos 31,
no. 10, pp. 1499-1507, Oct. 2012.

Zheng Zhang (S'09) received his B.Eng. degree
from Huazhong University of Science and Technol-
ogy, China, in 2008, and M.Phil. degree from the
University of Hong Kong, Hong Kong, in 2010.
Currently, he is a Ph.D student in Electrical Engi-
neering and Computer Science at the Massachusetts
Institute of Technology (MIT), Cambridge, MA.
His research interests include uncertainty quantifi-
cation and tensor analysis, with applications in in-
tegrated circuits (ICs), microelectromechanical sys-
tems (MEMS), power systems, silicon photonics and

[19] A. Pikovsky, M. Rosenblum, J. KurthsSynchronization Cambridge other emerging engineering problems. Mr. Zhang received 2014 |IEEE

Univ. Press, UK 2001.

Transactions on CAD of Integrated Circuits and Systems paper award,

[20] A. Demir, “Computing Timing Jitter From Phase Noise &pa for the 2011 Li Ka Shing Prize (university best M.Phil/Ph.D tkesward) from
Oscillators and Phase-Locked Loops With White afig NoiselEEE  the University of Hong Kong, and the 2010 Mathworks Fellojpsfrom
Trans. Circuits and Syst, bol. 53, no. 9, pp. 1859-1874, Sep. 2006. MIT. Since 2011, he has been collaborating with Coventor, lmorking on

[21] P. Maffezzoni, S. Levantino, “Analysis of VCO Phase 8®in Charge- numerical methods for MEMS simulation.

Pump Phase-Locked LoopsEEE Trans. Circuits and Syst. |: Regular
Papers vol. 59, no. 10, pp. 2165-2175, Oct. 2012.

[22] A. Hajimiri, T. H. Lee, “A General Theory of Phase Noigeklectrical
Oscillator,” IEEE Journal of Solid-state Circuitsvol. 33, no. 2, pp.
179-194, Feb. 1998.

[23] P. Vanassche, G. Gielen, W. Sansen, “On the differeratesd®en two
widely publicized methods for analyzing oscillator phasshdwior,”
Proc. ICCAD 2002 Nov. 2002, pp. 229-233.

[24] M. I. Freidlin and A. D. WentzellRandom Perturbations of Dynamical
SystemsBerlin, Germany: Springer-Verlag, 1984.

[25] D. W. PattersonAtrtificial Neural Networks: Theory and Applications
Prentice-Hall, New Jersey, 1998.

[26] K. Kostorz, R. W. Holzel, and K. Krischer. “Distributedoupling
complexity in a weakly coupled oscillatory network with asgtive
properties,"New Journal of Physi¢s/ol. 15, no. 8, pp. 0830100(1-14),
Aug. 2013.

Luca Daniel (S'98-M'03) received the Ph.D. de-
gree in Electrical Engineering from the University
of California, Berkeley, in 2003. He is currently
a Full Professor in the Electrical Engineering and
Computer Science Department of the Massachusetts
Institute of Technology (MIT). Industry experiences
include HP Research Labs, Palo Alto (1998) and
Cadence Berkeley Labs (2001). His current research
interests include integral equation solvers, uncer-
tainty quantification and parameterized model order
reduction, applied to RF circuits, silicon photonics,

MEMs, Magnetic Resonance Imaging scanners, and the hundiowvascular
system. Prof. Daniel was the recipient of the 1999 |IEEE TramsPower
Electronics best paper award; the 2003 best PhD thesis sweoth the

and subsequently Associate Professor of electrical
engineering at Politecnico di Milano. His research
interests include analysis and simulation of nonlinear
circuits and systems, oscillating devices modeling,
synchronization, stochastic simulation. He has over
120 research publications among which 61 papers in inieradt journals.
He is currently serving as an Associate Editor for the IEEBNSactions on
Computer-Aided Design of Integrated Circuits and Systentsas a member
of the Technical Program Committee of IEEE/ACM Design Auétion
Conference (DAC).

Bichoy Bahr (S'10) received the B.Sc. degree with
honors in 2008 and the M.Sc. degree in 2012, both
in electrical engineering, from Ain Shams Univer-
sity, Cairo, Egypt. He worked as an Analog/Mixed
Signal and MEMS Modeling/Design Engineer at
MEMS Vision, Egypt. Mr. Bahr is currently working
towards the Ph.D. degree in the Department of
Electrical Engineering at Massachusetts Institute of
Technology (MIT), Cambridge, MA, USA. He is a

i \ \ ’ | research assistant in the HybridMEMS group, MIT.
! N Mr. Bahr's research interests include the design,
fabrication, modeling and optimization of monolithicallytegrated unreleased
MEMS resonators, in standard ICs technology. He is alsorésted in
multi-GHz MEMS-based monolithic oscillators, coupled iator-arrays and
unconventional signal processing.

Paolo Maffezzoni(M'08—SM’15) received the Lau- Electrical Engineering and the Applied Math departmentdJ@&t Berkeley;
rea degree (summa cum laude) in electrical engineethe 2003 ACM Outstanding Ph.D. Dissertation Award in Elecit Design
ing from the Politecnico di Milano, Italy, in 1991 Automation; the 2009 IBM Corporation Faculty Award; the QQEEE Early
and the Ph.D. degree in electronic instrumentatioiCareer Award in Electronic Design Automation; the 2014 IEE@&Nns. On
from the Universita’ di Brescia, Italy, in 1996. Computer Aided Design best paper award; and seven best pageds in
Since 1998, he has been an Assistant Professoonferences.



